1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _I40E_TXRX_H_ 5 #define _I40E_TXRX_H_ 6 7 #include <net/xdp.h> 8 9 /* Interrupt Throttling and Rate Limiting Goodies */ 10 #define I40E_DEFAULT_IRQ_WORK 256 11 12 /* The datasheet for the X710 and XL710 indicate that the maximum value for 13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 15 * the register value which is divided by 2 lets use the actual values and 16 * avoid an excessive amount of translation. 17 */ 18 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 19 #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ 20 #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ 21 #define I40E_ITR_100K 10 /* all values below must be even */ 22 #define I40E_ITR_50K 20 23 #define I40E_ITR_20K 50 24 #define I40E_ITR_18K 60 25 #define I40E_ITR_8K 122 26 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ 27 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) 28 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) 29 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) 30 31 #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 32 #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 33 34 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 35 * the value of the rate limit is non-zero 36 */ 37 #define INTRL_ENA BIT(6) 38 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 39 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 40 41 /** 42 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register 43 * @intrl: interrupt rate limit to convert 44 * 45 * This function converts a decimal interrupt rate limit to the appropriate 46 * register format expected by the firmware when setting interrupt rate limit. 47 */ 48 static inline u16 i40e_intrl_usec_to_reg(int intrl) 49 { 50 if (intrl >> 2) 51 return ((intrl >> 2) | INTRL_ENA); 52 else 53 return 0; 54 } 55 #define I40E_INTRL_8K 125 /* 8000 ints/sec */ 56 #define I40E_INTRL_62K 16 /* 62500 ints/sec */ 57 #define I40E_INTRL_83K 12 /* 83333 ints/sec */ 58 59 #define I40E_QUEUE_END_OF_LIST 0x7FF 60 61 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 62 * registers and QINT registers or more generally anywhere in the manual 63 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 64 * register but instead is a special value meaning "don't update" ITR0/1/2. 65 */ 66 enum i40e_dyn_idx_t { 67 I40E_IDX_ITR0 = 0, 68 I40E_IDX_ITR1 = 1, 69 I40E_IDX_ITR2 = 2, 70 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 71 }; 72 73 /* these are indexes into ITRN registers */ 74 #define I40E_RX_ITR I40E_IDX_ITR0 75 #define I40E_TX_ITR I40E_IDX_ITR1 76 #define I40E_PE_ITR I40E_IDX_ITR2 77 78 /* Supported RSS offloads */ 79 #define I40E_DEFAULT_RSS_HENA ( \ 80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 84 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ 85 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 89 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ 90 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) 91 92 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ 93 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 99 100 #define i40e_pf_get_default_rss_hena(pf) \ 101 (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ 102 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) 103 104 /* Supported Rx Buffer Sizes (a multiple of 128) */ 105 #define I40E_RXBUFFER_256 256 106 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 107 #define I40E_RXBUFFER_2048 2048 108 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 109 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 110 111 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 112 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 113 * this adds up to 512 bytes of extra data meaning the smallest allocation 114 * we could have is 1K. 115 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 116 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 117 */ 118 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 119 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 120 #define i40e_rx_desc i40e_32byte_rx_desc 121 122 #define I40E_RX_DMA_ATTR \ 123 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 124 125 /* Attempt to maximize the headroom available for incoming frames. We 126 * use a 2K buffer for receives and need 1536/1534 to store the data for 127 * the frame. This leaves us with 512 bytes of room. From that we need 128 * to deduct the space needed for the shared info and the padding needed 129 * to IP align the frame. 130 * 131 * Note: For cache line sizes 256 or larger this value is going to end 132 * up negative. In these cases we should fall back to the legacy 133 * receive path. 134 */ 135 #if (PAGE_SIZE < 8192) 136 #define I40E_2K_TOO_SMALL_WITH_PADDING \ 137 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) 138 139 static inline int i40e_compute_pad(int rx_buf_len) 140 { 141 int page_size, pad_size; 142 143 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 144 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 145 146 return pad_size; 147 } 148 149 static inline int i40e_skb_pad(void) 150 { 151 int rx_buf_len; 152 153 /* If a 2K buffer cannot handle a standard Ethernet frame then 154 * optimize padding for a 3K buffer instead of a 1.5K buffer. 155 * 156 * For a 3K buffer we need to add enough padding to allow for 157 * tailroom due to NET_IP_ALIGN possibly shifting us out of 158 * cache-line alignment. 159 */ 160 if (I40E_2K_TOO_SMALL_WITH_PADDING) 161 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 162 else 163 rx_buf_len = I40E_RXBUFFER_1536; 164 165 /* if needed make room for NET_IP_ALIGN */ 166 rx_buf_len -= NET_IP_ALIGN; 167 168 return i40e_compute_pad(rx_buf_len); 169 } 170 171 #define I40E_SKB_PAD i40e_skb_pad() 172 #else 173 #define I40E_2K_TOO_SMALL_WITH_PADDING false 174 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 175 #endif 176 177 /** 178 * i40e_test_staterr - tests bits in Rx descriptor status and error fields 179 * @rx_desc: pointer to receive descriptor (in le64 format) 180 * @stat_err_bits: value to mask 181 * 182 * This function does some fast chicanery in order to return the 183 * value of the mask which is really only used for boolean tests. 184 * The status_error_len doesn't need to be shifted because it begins 185 * at offset zero. 186 */ 187 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, 188 const u64 stat_err_bits) 189 { 190 return !!(rx_desc->wb.qword1.status_error_len & 191 cpu_to_le64(stat_err_bits)); 192 } 193 194 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 195 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ 196 #define I40E_RX_INCREMENT(r, i) \ 197 do { \ 198 (i)++; \ 199 if ((i) == (r)->count) \ 200 i = 0; \ 201 r->next_to_clean = i; \ 202 } while (0) 203 204 #define I40E_RX_NEXT_DESC(r, i, n) \ 205 do { \ 206 (i)++; \ 207 if ((i) == (r)->count) \ 208 i = 0; \ 209 (n) = I40E_RX_DESC((r), (i)); \ 210 } while (0) 211 212 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ 213 do { \ 214 I40E_RX_NEXT_DESC((r), (i), (n)); \ 215 prefetch((n)); \ 216 } while (0) 217 218 #define I40E_MAX_BUFFER_TXD 8 219 #define I40E_MIN_TX_LEN 17 220 221 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 222 * In order to align with the read requests we will align the value to 223 * the nearest 4K which represents our maximum read request size. 224 */ 225 #define I40E_MAX_READ_REQ_SIZE 4096 226 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) 227 #define I40E_MAX_DATA_PER_TXD_ALIGNED \ 228 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) 229 230 /** 231 * i40e_txd_use_count - estimate the number of descriptors needed for Tx 232 * @size: transmit request size in bytes 233 * 234 * Due to hardware alignment restrictions (4K alignment), we need to 235 * assume that we can have no more than 12K of data per descriptor, even 236 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 237 * Thus, we need to divide by 12K. But division is slow! Instead, 238 * we decompose the operation into shifts and one relatively cheap 239 * multiply operation. 240 * 241 * To divide by 12K, we first divide by 4K, then divide by 3: 242 * To divide by 4K, shift right by 12 bits 243 * To divide by 3, multiply by 85, then divide by 256 244 * (Divide by 256 is done by shifting right by 8 bits) 245 * Finally, we add one to round up. Because 256 isn't an exact multiple of 246 * 3, we'll underestimate near each multiple of 12K. This is actually more 247 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 248 * segment. For our purposes this is accurate out to 1M which is orders of 249 * magnitude greater than our largest possible GSO size. 250 * 251 * This would then be implemented as: 252 * return (((size >> 12) * 85) >> 8) + 1; 253 * 254 * Since multiplication and division are commutative, we can reorder 255 * operations into: 256 * return ((size * 85) >> 20) + 1; 257 */ 258 static inline unsigned int i40e_txd_use_count(unsigned int size) 259 { 260 return ((size * 85) >> 20) + 1; 261 } 262 263 /* Tx Descriptors needed, worst case */ 264 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 265 #define I40E_MIN_DESC_PENDING 4 266 267 #define I40E_TX_FLAGS_HW_VLAN BIT(1) 268 #define I40E_TX_FLAGS_SW_VLAN BIT(2) 269 #define I40E_TX_FLAGS_TSO BIT(3) 270 #define I40E_TX_FLAGS_IPV4 BIT(4) 271 #define I40E_TX_FLAGS_IPV6 BIT(5) 272 #define I40E_TX_FLAGS_FCCRC BIT(6) 273 #define I40E_TX_FLAGS_FSO BIT(7) 274 #define I40E_TX_FLAGS_TSYN BIT(8) 275 #define I40E_TX_FLAGS_FD_SB BIT(9) 276 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 277 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 278 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 279 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 280 #define I40E_TX_FLAGS_VLAN_SHIFT 16 281 282 struct i40e_tx_buffer { 283 struct i40e_tx_desc *next_to_watch; 284 union { 285 struct xdp_frame *xdpf; 286 struct sk_buff *skb; 287 void *raw_buf; 288 }; 289 unsigned int bytecount; 290 unsigned short gso_segs; 291 292 DEFINE_DMA_UNMAP_ADDR(dma); 293 DEFINE_DMA_UNMAP_LEN(len); 294 u32 tx_flags; 295 }; 296 297 struct i40e_rx_buffer { 298 dma_addr_t dma; 299 union { 300 struct { 301 struct page *page; 302 __u32 page_offset; 303 __u16 pagecnt_bias; 304 }; 305 struct { 306 void *addr; 307 u64 handle; 308 }; 309 }; 310 }; 311 312 struct i40e_queue_stats { 313 u64 packets; 314 u64 bytes; 315 }; 316 317 struct i40e_tx_queue_stats { 318 u64 restart_queue; 319 u64 tx_busy; 320 u64 tx_done_old; 321 u64 tx_linearize; 322 u64 tx_force_wb; 323 int prev_pkt_ctr; 324 }; 325 326 struct i40e_rx_queue_stats { 327 u64 non_eop_descs; 328 u64 alloc_page_failed; 329 u64 alloc_buff_failed; 330 u64 page_reuse_count; 331 u64 realloc_count; 332 }; 333 334 enum i40e_ring_state_t { 335 __I40E_TX_FDIR_INIT_DONE, 336 __I40E_TX_XPS_INIT_DONE, 337 __I40E_RING_STATE_NBITS /* must be last */ 338 }; 339 340 /* some useful defines for virtchannel interface, which 341 * is the only remaining user of header split 342 */ 343 #define I40E_RX_DTYPE_NO_SPLIT 0 344 #define I40E_RX_DTYPE_HEADER_SPLIT 1 345 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2 346 #define I40E_RX_SPLIT_L2 0x1 347 #define I40E_RX_SPLIT_IP 0x2 348 #define I40E_RX_SPLIT_TCP_UDP 0x4 349 #define I40E_RX_SPLIT_SCTP 0x8 350 351 /* struct that defines a descriptor ring, associated with a VSI */ 352 struct i40e_ring { 353 struct i40e_ring *next; /* pointer to next ring in q_vector */ 354 void *desc; /* Descriptor ring memory */ 355 struct device *dev; /* Used for DMA mapping */ 356 struct net_device *netdev; /* netdev ring maps to */ 357 struct bpf_prog *xdp_prog; 358 union { 359 struct i40e_tx_buffer *tx_bi; 360 struct i40e_rx_buffer *rx_bi; 361 }; 362 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); 363 u16 queue_index; /* Queue number of ring */ 364 u8 dcb_tc; /* Traffic class of ring */ 365 u8 __iomem *tail; 366 367 /* high bit set means dynamic, use accessor routines to read/write. 368 * hardware only supports 2us resolution for the ITR registers. 369 * these values always store the USER setting, and must be converted 370 * before programming to a register. 371 */ 372 u16 itr_setting; 373 374 u16 count; /* Number of descriptors */ 375 u16 reg_idx; /* HW register index of the ring */ 376 u16 rx_buf_len; 377 378 /* used in interrupt processing */ 379 u16 next_to_use; 380 u16 next_to_clean; 381 382 u8 atr_sample_rate; 383 u8 atr_count; 384 385 bool ring_active; /* is ring online or not */ 386 bool arm_wb; /* do something to arm write back */ 387 u8 packet_stride; 388 389 u16 flags; 390 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 391 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 392 #define I40E_TXR_FLAGS_XDP BIT(2) 393 394 /* stats structs */ 395 struct i40e_queue_stats stats; 396 struct u64_stats_sync syncp; 397 union { 398 struct i40e_tx_queue_stats tx_stats; 399 struct i40e_rx_queue_stats rx_stats; 400 }; 401 402 unsigned int size; /* length of descriptor ring in bytes */ 403 dma_addr_t dma; /* physical address of ring */ 404 405 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 406 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 407 408 struct rcu_head rcu; /* to avoid race on free */ 409 u16 next_to_alloc; 410 struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must 411 * return before it sees the EOP for 412 * the current packet, we save that skb 413 * here and resume receiving this 414 * packet the next time 415 * i40e_clean_rx_ring_irq() is called 416 * for this ring. 417 */ 418 419 struct i40e_channel *ch; 420 struct xdp_rxq_info xdp_rxq; 421 struct xdp_umem *xsk_umem; 422 struct zero_copy_allocator zca; /* ZC allocator anchor */ 423 } ____cacheline_internodealigned_in_smp; 424 425 static inline bool ring_uses_build_skb(struct i40e_ring *ring) 426 { 427 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); 428 } 429 430 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) 431 { 432 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 433 } 434 435 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) 436 { 437 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 438 } 439 440 static inline bool ring_is_xdp(struct i40e_ring *ring) 441 { 442 return !!(ring->flags & I40E_TXR_FLAGS_XDP); 443 } 444 445 static inline void set_ring_xdp(struct i40e_ring *ring) 446 { 447 ring->flags |= I40E_TXR_FLAGS_XDP; 448 } 449 450 #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 451 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 452 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e 453 #define I40E_ITR_ADAPTIVE_LATENCY 0x8000 454 #define I40E_ITR_ADAPTIVE_BULK 0x0000 455 #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY)) 456 457 struct i40e_ring_container { 458 struct i40e_ring *ring; /* pointer to linked list of ring(s) */ 459 unsigned long next_update; /* jiffies value of next update */ 460 unsigned int total_bytes; /* total bytes processed this int */ 461 unsigned int total_packets; /* total packets processed this int */ 462 u16 count; 463 u16 target_itr; /* target ITR setting for ring(s) */ 464 u16 current_itr; /* current ITR setting for ring(s) */ 465 }; 466 467 /* iterator for handling rings in ring container */ 468 #define i40e_for_each_ring(pos, head) \ 469 for (pos = (head).ring; pos != NULL; pos = pos->next) 470 471 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) 472 { 473 #if (PAGE_SIZE < 8192) 474 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 475 return 1; 476 #endif 477 return 0; 478 } 479 480 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) 481 482 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); 483 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 484 void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 485 void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 486 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 487 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 488 void i40e_free_tx_resources(struct i40e_ring *tx_ring); 489 void i40e_free_rx_resources(struct i40e_ring *rx_ring); 490 int i40e_napi_poll(struct napi_struct *napi, int budget); 491 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 492 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 493 void i40e_detect_recover_hung(struct i40e_vsi *vsi); 494 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 495 bool __i40e_chk_linearize(struct sk_buff *skb); 496 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 497 u32 flags); 498 499 /** 500 * i40e_get_head - Retrieve head from head writeback 501 * @tx_ring: tx ring to fetch head of 502 * 503 * Returns value of Tx ring head based on value stored 504 * in head write-back location 505 **/ 506 static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 507 { 508 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 509 510 return le32_to_cpu(*(volatile __le32 *)head); 511 } 512 513 /** 514 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 515 * @skb: send buffer 516 * @tx_ring: ring to send buffer on 517 * 518 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 519 * there is not enough descriptors available in this ring since we need at least 520 * one descriptor. 521 **/ 522 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 523 { 524 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 525 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 526 int count = 0, size = skb_headlen(skb); 527 528 for (;;) { 529 count += i40e_txd_use_count(size); 530 531 if (!nr_frags--) 532 break; 533 534 size = skb_frag_size(frag++); 535 } 536 537 return count; 538 } 539 540 /** 541 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 542 * @tx_ring: the ring to be checked 543 * @size: the size buffer we want to assure is available 544 * 545 * Returns 0 if stop is not needed 546 **/ 547 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 548 { 549 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 550 return 0; 551 return __i40e_maybe_stop_tx(tx_ring, size); 552 } 553 554 /** 555 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 556 * @skb: send buffer 557 * @count: number of buffers used 558 * 559 * Note: Our HW can't scatter-gather more than 8 fragments to build 560 * a packet on the wire and so we need to figure out the cases where we 561 * need to linearize the skb. 562 **/ 563 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 564 { 565 /* Both TSO and single send will work if count is less than 8 */ 566 if (likely(count < I40E_MAX_BUFFER_TXD)) 567 return false; 568 569 if (skb_is_gso(skb)) 570 return __i40e_chk_linearize(skb); 571 572 /* we can support up to 8 data buffers for a single send */ 573 return count != I40E_MAX_BUFFER_TXD; 574 } 575 576 /** 577 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring 578 * @ring: Tx ring to find the netdev equivalent of 579 **/ 580 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) 581 { 582 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 583 } 584 #endif /* _I40E_TXRX_H_ */ 585