1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #ifndef _I40E_TXRX_H_ 5 #define _I40E_TXRX_H_ 6 7 #include <net/xdp.h> 8 9 /* Interrupt Throttling and Rate Limiting Goodies */ 10 #define I40E_DEFAULT_IRQ_WORK 256 11 12 /* The datasheet for the X710 and XL710 indicate that the maximum value for 13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 15 * the register value which is divided by 2 lets use the actual values and 16 * avoid an excessive amount of translation. 17 */ 18 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 19 #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ 20 #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ 21 #define I40E_ITR_20K 50 22 #define I40E_ITR_8K 122 23 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ 24 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) 25 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) 26 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) 27 28 #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 29 #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 30 31 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if 32 * the value of the rate limit is non-zero 33 */ 34 #define INTRL_ENA BIT(6) 35 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 36 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 37 38 /** 39 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register 40 * @intrl: interrupt rate limit to convert 41 * 42 * This function converts a decimal interrupt rate limit to the appropriate 43 * register format expected by the firmware when setting interrupt rate limit. 44 */ 45 static inline u16 i40e_intrl_usec_to_reg(int intrl) 46 { 47 if (intrl >> 2) 48 return ((intrl >> 2) | INTRL_ENA); 49 else 50 return 0; 51 } 52 53 #define I40E_QUEUE_END_OF_LIST 0x7FF 54 55 /* this enum matches hardware bits and is meant to be used by DYN_CTLN 56 * registers and QINT registers or more generally anywhere in the manual 57 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 58 * register but instead is a special value meaning "don't update" ITR0/1/2. 59 */ 60 enum i40e_dyn_idx_t { 61 I40E_IDX_ITR0 = 0, 62 I40E_IDX_ITR1 = 1, 63 I40E_IDX_ITR2 = 2, 64 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 65 }; 66 67 /* these are indexes into ITRN registers */ 68 #define I40E_RX_ITR I40E_IDX_ITR0 69 #define I40E_TX_ITR I40E_IDX_ITR1 70 71 /* Supported RSS offloads */ 72 #define I40E_DEFAULT_RSS_HENA ( \ 73 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 74 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 75 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 76 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 77 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ 78 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 79 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 82 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ 83 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) 84 85 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ 86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 90 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 91 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 92 93 #define i40e_pf_get_default_rss_hena(pf) \ 94 (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ 95 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) 96 97 /* Supported Rx Buffer Sizes (a multiple of 128) */ 98 #define I40E_RXBUFFER_256 256 99 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 100 #define I40E_RXBUFFER_2048 2048 101 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 102 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 103 104 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 105 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 106 * this adds up to 512 bytes of extra data meaning the smallest allocation 107 * we could have is 1K. 108 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 109 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 110 */ 111 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 112 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 113 #define i40e_rx_desc i40e_16byte_rx_desc 114 115 #define I40E_RX_DMA_ATTR \ 116 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 117 118 /* Attempt to maximize the headroom available for incoming frames. We 119 * use a 2K buffer for receives and need 1536/1534 to store the data for 120 * the frame. This leaves us with 512 bytes of room. From that we need 121 * to deduct the space needed for the shared info and the padding needed 122 * to IP align the frame. 123 * 124 * Note: For cache line sizes 256 or larger this value is going to end 125 * up negative. In these cases we should fall back to the legacy 126 * receive path. 127 */ 128 #if (PAGE_SIZE < 8192) 129 #define I40E_2K_TOO_SMALL_WITH_PADDING \ 130 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) 131 132 static inline int i40e_compute_pad(int rx_buf_len) 133 { 134 int page_size, pad_size; 135 136 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 137 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 138 139 return pad_size; 140 } 141 142 static inline int i40e_skb_pad(void) 143 { 144 int rx_buf_len; 145 146 /* If a 2K buffer cannot handle a standard Ethernet frame then 147 * optimize padding for a 3K buffer instead of a 1.5K buffer. 148 * 149 * For a 3K buffer we need to add enough padding to allow for 150 * tailroom due to NET_IP_ALIGN possibly shifting us out of 151 * cache-line alignment. 152 */ 153 if (I40E_2K_TOO_SMALL_WITH_PADDING) 154 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 155 else 156 rx_buf_len = I40E_RXBUFFER_1536; 157 158 /* if needed make room for NET_IP_ALIGN */ 159 rx_buf_len -= NET_IP_ALIGN; 160 161 return i40e_compute_pad(rx_buf_len); 162 } 163 164 #define I40E_SKB_PAD i40e_skb_pad() 165 #else 166 #define I40E_2K_TOO_SMALL_WITH_PADDING false 167 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 168 #endif 169 170 /** 171 * i40e_test_staterr - tests bits in Rx descriptor status and error fields 172 * @rx_desc: pointer to receive descriptor (in le64 format) 173 * @stat_err_bits: value to mask 174 * 175 * This function does some fast chicanery in order to return the 176 * value of the mask which is really only used for boolean tests. 177 * The status_error_len doesn't need to be shifted because it begins 178 * at offset zero. 179 */ 180 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, 181 const u64 stat_err_bits) 182 { 183 return !!(rx_desc->wb.qword1.status_error_len & 184 cpu_to_le64(stat_err_bits)); 185 } 186 187 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 188 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ 189 190 #define I40E_RX_NEXT_DESC(r, i, n) \ 191 do { \ 192 (i)++; \ 193 if ((i) == (r)->count) \ 194 i = 0; \ 195 (n) = I40E_RX_DESC((r), (i)); \ 196 } while (0) 197 198 199 #define I40E_MAX_BUFFER_TXD 8 200 #define I40E_MIN_TX_LEN 17 201 202 /* The size limit for a transmit buffer in a descriptor is (16K - 1). 203 * In order to align with the read requests we will align the value to 204 * the nearest 4K which represents our maximum read request size. 205 */ 206 #define I40E_MAX_READ_REQ_SIZE 4096 207 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) 208 #define I40E_MAX_DATA_PER_TXD_ALIGNED \ 209 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) 210 211 /** 212 * i40e_txd_use_count - estimate the number of descriptors needed for Tx 213 * @size: transmit request size in bytes 214 * 215 * Due to hardware alignment restrictions (4K alignment), we need to 216 * assume that we can have no more than 12K of data per descriptor, even 217 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 218 * Thus, we need to divide by 12K. But division is slow! Instead, 219 * we decompose the operation into shifts and one relatively cheap 220 * multiply operation. 221 * 222 * To divide by 12K, we first divide by 4K, then divide by 3: 223 * To divide by 4K, shift right by 12 bits 224 * To divide by 3, multiply by 85, then divide by 256 225 * (Divide by 256 is done by shifting right by 8 bits) 226 * Finally, we add one to round up. Because 256 isn't an exact multiple of 227 * 3, we'll underestimate near each multiple of 12K. This is actually more 228 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 229 * segment. For our purposes this is accurate out to 1M which is orders of 230 * magnitude greater than our largest possible GSO size. 231 * 232 * This would then be implemented as: 233 * return (((size >> 12) * 85) >> 8) + 1; 234 * 235 * Since multiplication and division are commutative, we can reorder 236 * operations into: 237 * return ((size * 85) >> 20) + 1; 238 */ 239 static inline unsigned int i40e_txd_use_count(unsigned int size) 240 { 241 return ((size * 85) >> 20) + 1; 242 } 243 244 /* Tx Descriptors needed, worst case */ 245 #define DESC_NEEDED (MAX_SKB_FRAGS + 6) 246 247 #define I40E_TX_FLAGS_HW_VLAN BIT(1) 248 #define I40E_TX_FLAGS_SW_VLAN BIT(2) 249 #define I40E_TX_FLAGS_TSO BIT(3) 250 #define I40E_TX_FLAGS_IPV4 BIT(4) 251 #define I40E_TX_FLAGS_IPV6 BIT(5) 252 #define I40E_TX_FLAGS_TSYN BIT(8) 253 #define I40E_TX_FLAGS_FD_SB BIT(9) 254 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 255 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 256 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 257 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 258 #define I40E_TX_FLAGS_VLAN_SHIFT 16 259 260 struct i40e_tx_buffer { 261 struct i40e_tx_desc *next_to_watch; 262 union { 263 struct xdp_frame *xdpf; 264 struct sk_buff *skb; 265 void *raw_buf; 266 }; 267 unsigned int bytecount; 268 unsigned short gso_segs; 269 270 DEFINE_DMA_UNMAP_ADDR(dma); 271 DEFINE_DMA_UNMAP_LEN(len); 272 u32 tx_flags; 273 }; 274 275 struct i40e_rx_buffer { 276 dma_addr_t dma; 277 struct page *page; 278 __u32 page_offset; 279 __u16 pagecnt_bias; 280 }; 281 282 struct i40e_queue_stats { 283 u64 packets; 284 u64 bytes; 285 }; 286 287 struct i40e_tx_queue_stats { 288 u64 restart_queue; 289 u64 tx_busy; 290 u64 tx_done_old; 291 u64 tx_linearize; 292 u64 tx_force_wb; 293 int prev_pkt_ctr; 294 }; 295 296 struct i40e_rx_queue_stats { 297 u64 non_eop_descs; 298 u64 alloc_page_failed; 299 u64 alloc_buff_failed; 300 u64 page_reuse_count; 301 u64 realloc_count; 302 }; 303 304 enum i40e_ring_state_t { 305 __I40E_TX_FDIR_INIT_DONE, 306 __I40E_TX_XPS_INIT_DONE, 307 __I40E_RING_STATE_NBITS /* must be last */ 308 }; 309 310 /* some useful defines for virtchannel interface, which 311 * is the only remaining user of header split 312 */ 313 #define I40E_RX_DTYPE_HEADER_SPLIT 1 314 #define I40E_RX_SPLIT_L2 0x1 315 #define I40E_RX_SPLIT_IP 0x2 316 #define I40E_RX_SPLIT_TCP_UDP 0x4 317 #define I40E_RX_SPLIT_SCTP 0x8 318 319 /* struct that defines a descriptor ring, associated with a VSI */ 320 struct i40e_ring { 321 struct i40e_ring *next; /* pointer to next ring in q_vector */ 322 void *desc; /* Descriptor ring memory */ 323 struct device *dev; /* Used for DMA mapping */ 324 struct net_device *netdev; /* netdev ring maps to */ 325 struct bpf_prog *xdp_prog; 326 union { 327 struct i40e_tx_buffer *tx_bi; 328 struct i40e_rx_buffer *rx_bi; 329 struct xdp_buff **rx_bi_zc; 330 }; 331 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); 332 u16 queue_index; /* Queue number of ring */ 333 u8 dcb_tc; /* Traffic class of ring */ 334 u8 __iomem *tail; 335 336 /* high bit set means dynamic, use accessor routines to read/write. 337 * hardware only supports 2us resolution for the ITR registers. 338 * these values always store the USER setting, and must be converted 339 * before programming to a register. 340 */ 341 u16 itr_setting; 342 343 u16 count; /* Number of descriptors */ 344 u16 reg_idx; /* HW register index of the ring */ 345 u16 rx_buf_len; 346 347 /* used in interrupt processing */ 348 u16 next_to_use; 349 u16 next_to_clean; 350 u16 xdp_tx_active; 351 352 u8 atr_sample_rate; 353 u8 atr_count; 354 355 bool ring_active; /* is ring online or not */ 356 bool arm_wb; /* do something to arm write back */ 357 u8 packet_stride; 358 359 u16 flags; 360 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 361 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 362 #define I40E_TXR_FLAGS_XDP BIT(2) 363 364 /* stats structs */ 365 struct i40e_queue_stats stats; 366 struct u64_stats_sync syncp; 367 union { 368 struct i40e_tx_queue_stats tx_stats; 369 struct i40e_rx_queue_stats rx_stats; 370 }; 371 372 unsigned int size; /* length of descriptor ring in bytes */ 373 dma_addr_t dma; /* physical address of ring */ 374 375 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 376 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 377 378 struct rcu_head rcu; /* to avoid race on free */ 379 u16 next_to_alloc; 380 struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must 381 * return before it sees the EOP for 382 * the current packet, we save that skb 383 * here and resume receiving this 384 * packet the next time 385 * i40e_clean_rx_ring_irq() is called 386 * for this ring. 387 */ 388 389 struct i40e_channel *ch; 390 u16 rx_offset; 391 struct xdp_rxq_info xdp_rxq; 392 struct xsk_buff_pool *xsk_pool; 393 struct xdp_desc *xsk_descs; /* For storing descriptors in the AF_XDP ZC path */ 394 } ____cacheline_internodealigned_in_smp; 395 396 static inline bool ring_uses_build_skb(struct i40e_ring *ring) 397 { 398 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); 399 } 400 401 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) 402 { 403 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 404 } 405 406 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) 407 { 408 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 409 } 410 411 static inline bool ring_is_xdp(struct i40e_ring *ring) 412 { 413 return !!(ring->flags & I40E_TXR_FLAGS_XDP); 414 } 415 416 static inline void set_ring_xdp(struct i40e_ring *ring) 417 { 418 ring->flags |= I40E_TXR_FLAGS_XDP; 419 } 420 421 #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 422 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 423 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e 424 #define I40E_ITR_ADAPTIVE_LATENCY 0x8000 425 #define I40E_ITR_ADAPTIVE_BULK 0x0000 426 427 struct i40e_ring_container { 428 struct i40e_ring *ring; /* pointer to linked list of ring(s) */ 429 unsigned long next_update; /* jiffies value of next update */ 430 unsigned int total_bytes; /* total bytes processed this int */ 431 unsigned int total_packets; /* total packets processed this int */ 432 u16 count; 433 u16 target_itr; /* target ITR setting for ring(s) */ 434 u16 current_itr; /* current ITR setting for ring(s) */ 435 }; 436 437 /* iterator for handling rings in ring container */ 438 #define i40e_for_each_ring(pos, head) \ 439 for (pos = (head).ring; pos != NULL; pos = pos->next) 440 441 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) 442 { 443 #if (PAGE_SIZE < 8192) 444 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 445 return 1; 446 #endif 447 return 0; 448 } 449 450 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) 451 452 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); 453 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 454 void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 455 void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 456 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 457 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 458 void i40e_free_tx_resources(struct i40e_ring *tx_ring); 459 void i40e_free_rx_resources(struct i40e_ring *rx_ring); 460 int i40e_napi_poll(struct napi_struct *napi, int budget); 461 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 462 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 463 void i40e_detect_recover_hung(struct i40e_vsi *vsi); 464 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 465 bool __i40e_chk_linearize(struct sk_buff *skb); 466 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 467 u32 flags); 468 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring); 469 470 /** 471 * i40e_get_head - Retrieve head from head writeback 472 * @tx_ring: tx ring to fetch head of 473 * 474 * Returns value of Tx ring head based on value stored 475 * in head write-back location 476 **/ 477 static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 478 { 479 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 480 481 return le32_to_cpu(*(volatile __le32 *)head); 482 } 483 484 /** 485 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 486 * @skb: send buffer 487 * 488 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 489 * there is not enough descriptors available in this ring since we need at least 490 * one descriptor. 491 **/ 492 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 493 { 494 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 495 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 496 int count = 0, size = skb_headlen(skb); 497 498 for (;;) { 499 count += i40e_txd_use_count(size); 500 501 if (!nr_frags--) 502 break; 503 504 size = skb_frag_size(frag++); 505 } 506 507 return count; 508 } 509 510 /** 511 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 512 * @tx_ring: the ring to be checked 513 * @size: the size buffer we want to assure is available 514 * 515 * Returns 0 if stop is not needed 516 **/ 517 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 518 { 519 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 520 return 0; 521 return __i40e_maybe_stop_tx(tx_ring, size); 522 } 523 524 /** 525 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 526 * @skb: send buffer 527 * @count: number of buffers used 528 * 529 * Note: Our HW can't scatter-gather more than 8 fragments to build 530 * a packet on the wire and so we need to figure out the cases where we 531 * need to linearize the skb. 532 **/ 533 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 534 { 535 /* Both TSO and single send will work if count is less than 8 */ 536 if (likely(count < I40E_MAX_BUFFER_TXD)) 537 return false; 538 539 if (skb_is_gso(skb)) 540 return __i40e_chk_linearize(skb); 541 542 /* we can support up to 8 data buffers for a single send */ 543 return count != I40E_MAX_BUFFER_TXD; 544 } 545 546 /** 547 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring 548 * @ring: Tx ring to find the netdev equivalent of 549 **/ 550 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) 551 { 552 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 553 } 554 #endif /* _I40E_TXRX_H_ */ 555