1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/prefetch.h> 6 #include <linux/sctp.h> 7 #include <net/mpls.h> 8 #include <net/xdp.h> 9 #include "i40e_txrx_common.h" 10 #include "i40e_trace.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 /* Use LAN VSI Id if not programmed by user */ 46 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 47 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 48 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 49 50 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 51 52 dtype_cmd |= add ? 53 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 54 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 55 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 56 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 57 58 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 59 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 62 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 63 64 if (fdata->cnt_index) { 65 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 67 ((u32)fdata->cnt_index << 68 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 69 } 70 71 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 72 fdir_desc->rsvd = cpu_to_le32(0); 73 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 74 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 75 } 76 77 #define I40E_FD_CLEAN_DELAY 10 78 /** 79 * i40e_program_fdir_filter - Program a Flow Director filter 80 * @fdir_data: Packet data that will be filter parameters 81 * @raw_packet: the pre-allocated packet buffer for FDir 82 * @pf: The PF pointer 83 * @add: True for add/update, False for remove 84 **/ 85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 86 u8 *raw_packet, struct i40e_pf *pf, 87 bool add) 88 { 89 struct i40e_tx_buffer *tx_buf, *first; 90 struct i40e_tx_desc *tx_desc; 91 struct i40e_ring *tx_ring; 92 struct i40e_vsi *vsi; 93 struct device *dev; 94 dma_addr_t dma; 95 u32 td_cmd = 0; 96 u16 i; 97 98 /* find existing FDIR VSI */ 99 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 100 if (!vsi) 101 return -ENOENT; 102 103 tx_ring = vsi->tx_rings[0]; 104 dev = tx_ring->dev; 105 106 /* we need two descriptors to add/del a filter and we can wait */ 107 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 108 if (!i) 109 return -EAGAIN; 110 msleep_interruptible(1); 111 } 112 113 dma = dma_map_single(dev, raw_packet, 114 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 115 if (dma_mapping_error(dev, dma)) 116 goto dma_fail; 117 118 /* grab the next descriptor */ 119 i = tx_ring->next_to_use; 120 first = &tx_ring->tx_bi[i]; 121 i40e_fdir(tx_ring, fdir_data, add); 122 123 /* Now program a dummy descriptor */ 124 i = tx_ring->next_to_use; 125 tx_desc = I40E_TX_DESC(tx_ring, i); 126 tx_buf = &tx_ring->tx_bi[i]; 127 128 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 129 130 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 131 132 /* record length, and DMA address */ 133 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 134 dma_unmap_addr_set(tx_buf, dma, dma); 135 136 tx_desc->buffer_addr = cpu_to_le64(dma); 137 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 138 139 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 140 tx_buf->raw_buf = (void *)raw_packet; 141 142 tx_desc->cmd_type_offset_bsz = 143 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 144 145 /* Force memory writes to complete before letting h/w 146 * know there are new descriptors to fetch. 147 */ 148 wmb(); 149 150 /* Mark the data descriptor to be watched */ 151 first->next_to_watch = tx_desc; 152 153 writel(tx_ring->next_to_use, tx_ring->tail); 154 return 0; 155 156 dma_fail: 157 return -1; 158 } 159 160 /** 161 * i40e_create_dummy_packet - Constructs dummy packet for HW 162 * @dummy_packet: preallocated space for dummy packet 163 * @ipv4: is layer 3 packet of version 4 or 6 164 * @l4proto: next level protocol used in data portion of l3 165 * @data: filter data 166 * 167 * Returns address of layer 4 protocol dummy packet. 168 **/ 169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, 170 struct i40e_fdir_filter *data) 171 { 172 bool is_vlan = !!data->vlan_tag; 173 struct vlan_hdr vlan = {}; 174 struct ipv6hdr ipv6 = {}; 175 struct ethhdr eth = {}; 176 struct iphdr ip = {}; 177 u8 *tmp; 178 179 if (ipv4) { 180 eth.h_proto = cpu_to_be16(ETH_P_IP); 181 ip.protocol = l4proto; 182 ip.version = 0x4; 183 ip.ihl = 0x5; 184 185 ip.daddr = data->dst_ip; 186 ip.saddr = data->src_ip; 187 } else { 188 eth.h_proto = cpu_to_be16(ETH_P_IPV6); 189 ipv6.nexthdr = l4proto; 190 ipv6.version = 0x6; 191 192 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, 193 sizeof(__be32) * 4); 194 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, 195 sizeof(__be32) * 4); 196 } 197 198 if (is_vlan) { 199 vlan.h_vlan_TCI = data->vlan_tag; 200 vlan.h_vlan_encapsulated_proto = eth.h_proto; 201 eth.h_proto = data->vlan_etype; 202 } 203 204 tmp = dummy_packet; 205 memcpy(tmp, ð, sizeof(eth)); 206 tmp += sizeof(eth); 207 208 if (is_vlan) { 209 memcpy(tmp, &vlan, sizeof(vlan)); 210 tmp += sizeof(vlan); 211 } 212 213 if (ipv4) { 214 memcpy(tmp, &ip, sizeof(ip)); 215 tmp += sizeof(ip); 216 } else { 217 memcpy(tmp, &ipv6, sizeof(ipv6)); 218 tmp += sizeof(ipv6); 219 } 220 221 return tmp; 222 } 223 224 /** 225 * i40e_create_dummy_udp_packet - helper function to create UDP packet 226 * @raw_packet: preallocated space for dummy packet 227 * @ipv4: is layer 3 packet of version 4 or 6 228 * @l4proto: next level protocol used in data portion of l3 229 * @data: filter data 230 * 231 * Helper function to populate udp fields. 232 **/ 233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 234 struct i40e_fdir_filter *data) 235 { 236 struct udphdr *udp; 237 u8 *tmp; 238 239 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data); 240 udp = (struct udphdr *)(tmp); 241 udp->dest = data->dst_port; 242 udp->source = data->src_port; 243 } 244 245 /** 246 * i40e_create_dummy_tcp_packet - helper function to create TCP packet 247 * @raw_packet: preallocated space for dummy packet 248 * @ipv4: is layer 3 packet of version 4 or 6 249 * @l4proto: next level protocol used in data portion of l3 250 * @data: filter data 251 * 252 * Helper function to populate tcp fields. 253 **/ 254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 255 struct i40e_fdir_filter *data) 256 { 257 struct tcphdr *tcp; 258 u8 *tmp; 259 /* Dummy tcp packet */ 260 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 261 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; 262 263 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data); 264 265 tcp = (struct tcphdr *)tmp; 266 memcpy(tcp, tcp_packet, sizeof(tcp_packet)); 267 tcp->dest = data->dst_port; 268 tcp->source = data->src_port; 269 } 270 271 /** 272 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet 273 * @raw_packet: preallocated space for dummy packet 274 * @ipv4: is layer 3 packet of version 4 or 6 275 * @l4proto: next level protocol used in data portion of l3 276 * @data: filter data 277 * 278 * Helper function to populate sctp fields. 279 **/ 280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, 281 u8 l4proto, 282 struct i40e_fdir_filter *data) 283 { 284 struct sctphdr *sctp; 285 u8 *tmp; 286 287 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data); 288 289 sctp = (struct sctphdr *)tmp; 290 sctp->dest = data->dst_port; 291 sctp->source = data->src_port; 292 } 293 294 /** 295 * i40e_prepare_fdir_filter - Prepare and program fdir filter 296 * @pf: physical function to attach filter to 297 * @fd_data: filter data 298 * @add: add or delete filter 299 * @packet_addr: address of dummy packet, used in filtering 300 * @payload_offset: offset from dummy packet address to user defined data 301 * @pctype: Packet type for which filter is used 302 * 303 * Helper function to offset data of dummy packet, program it and 304 * handle errors. 305 **/ 306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf, 307 struct i40e_fdir_filter *fd_data, 308 bool add, char *packet_addr, 309 int payload_offset, u8 pctype) 310 { 311 int ret; 312 313 if (fd_data->flex_filter) { 314 u8 *payload; 315 __be16 pattern = fd_data->flex_word; 316 u16 off = fd_data->flex_offset; 317 318 payload = packet_addr + payload_offset; 319 320 /* If user provided vlan, offset payload by vlan header length */ 321 if (!!fd_data->vlan_tag) 322 payload += VLAN_HLEN; 323 324 *((__force __be16 *)(payload + off)) = pattern; 325 } 326 327 fd_data->pctype = pctype; 328 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add); 329 if (ret) { 330 dev_info(&pf->pdev->dev, 331 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 332 fd_data->pctype, fd_data->fd_id, ret); 333 /* Free the packet buffer since it wasn't added to the ring */ 334 return -EOPNOTSUPP; 335 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 336 if (add) 337 dev_info(&pf->pdev->dev, 338 "Filter OK for PCTYPE %d loc = %d\n", 339 fd_data->pctype, fd_data->fd_id); 340 else 341 dev_info(&pf->pdev->dev, 342 "Filter deleted for PCTYPE %d loc = %d\n", 343 fd_data->pctype, fd_data->fd_id); 344 } 345 346 return ret; 347 } 348 349 /** 350 * i40e_change_filter_num - Prepare and program fdir filter 351 * @ipv4: is layer 3 packet of version 4 or 6 352 * @add: add or delete filter 353 * @ipv4_filter_num: field to update 354 * @ipv6_filter_num: field to update 355 * 356 * Update filter number field for pf. 357 **/ 358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, 359 u16 *ipv6_filter_num) 360 { 361 if (add) { 362 if (ipv4) 363 (*ipv4_filter_num)++; 364 else 365 (*ipv6_filter_num)++; 366 } else { 367 if (ipv4) 368 (*ipv4_filter_num)--; 369 else 370 (*ipv6_filter_num)--; 371 } 372 } 373 374 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 375 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 376 /** 377 * i40e_add_del_fdir_udp - Add/Remove UDP filters 378 * @vsi: pointer to the targeted VSI 379 * @fd_data: the flow director data required for the FDir descriptor 380 * @add: true adds a filter, false removes it 381 * @ipv4: true is v4, false is v6 382 * 383 * Returns 0 if the filters were successfully added or removed 384 **/ 385 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, 386 struct i40e_fdir_filter *fd_data, 387 bool add, 388 bool ipv4) 389 { 390 struct i40e_pf *pf = vsi->back; 391 u8 *raw_packet; 392 int ret; 393 394 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 395 if (!raw_packet) 396 return -ENOMEM; 397 398 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data); 399 400 if (ipv4) 401 ret = i40e_prepare_fdir_filter 402 (pf, fd_data, add, raw_packet, 403 I40E_UDPIP_DUMMY_PACKET_LEN, 404 I40E_FILTER_PCTYPE_NONF_IPV4_UDP); 405 else 406 ret = i40e_prepare_fdir_filter 407 (pf, fd_data, add, raw_packet, 408 I40E_UDPIP6_DUMMY_PACKET_LEN, 409 I40E_FILTER_PCTYPE_NONF_IPV6_UDP); 410 411 if (ret) { 412 kfree(raw_packet); 413 return ret; 414 } 415 416 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt, 417 &pf->fd_udp6_filter_cnt); 418 419 return 0; 420 } 421 422 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 423 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 424 /** 425 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters 426 * @vsi: pointer to the targeted VSI 427 * @fd_data: the flow director data required for the FDir descriptor 428 * @add: true adds a filter, false removes it 429 * @ipv4: true is v4, false is v6 430 * 431 * Returns 0 if the filters were successfully added or removed 432 **/ 433 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, 434 struct i40e_fdir_filter *fd_data, 435 bool add, 436 bool ipv4) 437 { 438 struct i40e_pf *pf = vsi->back; 439 u8 *raw_packet; 440 int ret; 441 442 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 443 if (!raw_packet) 444 return -ENOMEM; 445 446 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data); 447 if (ipv4) 448 ret = i40e_prepare_fdir_filter 449 (pf, fd_data, add, raw_packet, 450 I40E_TCPIP_DUMMY_PACKET_LEN, 451 I40E_FILTER_PCTYPE_NONF_IPV4_TCP); 452 else 453 ret = i40e_prepare_fdir_filter 454 (pf, fd_data, add, raw_packet, 455 I40E_TCPIP6_DUMMY_PACKET_LEN, 456 I40E_FILTER_PCTYPE_NONF_IPV6_TCP); 457 458 if (ret) { 459 kfree(raw_packet); 460 return ret; 461 } 462 463 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt, 464 &pf->fd_tcp6_filter_cnt); 465 466 if (add) { 467 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 468 I40E_DEBUG_FD & pf->hw.debug_mask) 469 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 470 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 471 } 472 return 0; 473 } 474 475 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 476 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 477 /** 478 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for 479 * a specific flow spec 480 * @vsi: pointer to the targeted VSI 481 * @fd_data: the flow director data required for the FDir descriptor 482 * @add: true adds a filter, false removes it 483 * @ipv4: true is v4, false is v6 484 * 485 * Returns 0 if the filters were successfully added or removed 486 **/ 487 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, 488 struct i40e_fdir_filter *fd_data, 489 bool add, 490 bool ipv4) 491 { 492 struct i40e_pf *pf = vsi->back; 493 u8 *raw_packet; 494 int ret; 495 496 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 497 if (!raw_packet) 498 return -ENOMEM; 499 500 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data); 501 502 if (ipv4) 503 ret = i40e_prepare_fdir_filter 504 (pf, fd_data, add, raw_packet, 505 I40E_SCTPIP_DUMMY_PACKET_LEN, 506 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); 507 else 508 ret = i40e_prepare_fdir_filter 509 (pf, fd_data, add, raw_packet, 510 I40E_SCTPIP6_DUMMY_PACKET_LEN, 511 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); 512 513 if (ret) { 514 kfree(raw_packet); 515 return ret; 516 } 517 518 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt, 519 &pf->fd_sctp6_filter_cnt); 520 521 return 0; 522 } 523 524 #define I40E_IP_DUMMY_PACKET_LEN 34 525 #define I40E_IP6_DUMMY_PACKET_LEN 54 526 /** 527 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for 528 * a specific flow spec 529 * @vsi: pointer to the targeted VSI 530 * @fd_data: the flow director data required for the FDir descriptor 531 * @add: true adds a filter, false removes it 532 * @ipv4: true is v4, false is v6 533 * 534 * Returns 0 if the filters were successfully added or removed 535 **/ 536 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, 537 struct i40e_fdir_filter *fd_data, 538 bool add, 539 bool ipv4) 540 { 541 struct i40e_pf *pf = vsi->back; 542 int payload_offset; 543 u8 *raw_packet; 544 int iter_start; 545 int iter_end; 546 int ret; 547 int i; 548 549 if (ipv4) { 550 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 551 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; 552 } else { 553 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; 554 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; 555 } 556 557 for (i = iter_start; i <= iter_end; i++) { 558 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 559 if (!raw_packet) 560 return -ENOMEM; 561 562 /* IPv6 no header option differs from IPv4 */ 563 (void)i40e_create_dummy_packet 564 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE, 565 fd_data); 566 567 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : 568 I40E_IP6_DUMMY_PACKET_LEN; 569 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet, 570 payload_offset, i); 571 if (ret) 572 goto err; 573 } 574 575 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt, 576 &pf->fd_ip6_filter_cnt); 577 578 return 0; 579 err: 580 kfree(raw_packet); 581 return ret; 582 } 583 584 /** 585 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 586 * @vsi: pointer to the targeted VSI 587 * @input: filter to add or delete 588 * @add: true adds a filter, false removes it 589 * 590 **/ 591 int i40e_add_del_fdir(struct i40e_vsi *vsi, 592 struct i40e_fdir_filter *input, bool add) 593 { 594 enum ip_ver { ipv6 = 0, ipv4 = 1 }; 595 struct i40e_pf *pf = vsi->back; 596 int ret; 597 598 switch (input->flow_type & ~FLOW_EXT) { 599 case TCP_V4_FLOW: 600 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 601 break; 602 case UDP_V4_FLOW: 603 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 604 break; 605 case SCTP_V4_FLOW: 606 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 607 break; 608 case TCP_V6_FLOW: 609 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 610 break; 611 case UDP_V6_FLOW: 612 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 613 break; 614 case SCTP_V6_FLOW: 615 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 616 break; 617 case IP_USER_FLOW: 618 switch (input->ipl4_proto) { 619 case IPPROTO_TCP: 620 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 621 break; 622 case IPPROTO_UDP: 623 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 624 break; 625 case IPPROTO_SCTP: 626 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 627 break; 628 case IPPROTO_IP: 629 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4); 630 break; 631 default: 632 /* We cannot support masking based on protocol */ 633 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 634 input->ipl4_proto); 635 return -EINVAL; 636 } 637 break; 638 case IPV6_USER_FLOW: 639 switch (input->ipl4_proto) { 640 case IPPROTO_TCP: 641 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 642 break; 643 case IPPROTO_UDP: 644 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 645 break; 646 case IPPROTO_SCTP: 647 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 648 break; 649 case IPPROTO_IP: 650 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6); 651 break; 652 default: 653 /* We cannot support masking based on protocol */ 654 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n", 655 input->ipl4_proto); 656 return -EINVAL; 657 } 658 break; 659 default: 660 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 661 input->flow_type); 662 return -EINVAL; 663 } 664 665 /* The buffer allocated here will be normally be freed by 666 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 667 * completion. In the event of an error adding the buffer to the FDIR 668 * ring, it will immediately be freed. It may also be freed by 669 * i40e_clean_tx_ring() when closing the VSI. 670 */ 671 return ret; 672 } 673 674 /** 675 * i40e_fd_handle_status - check the Programming Status for FD 676 * @rx_ring: the Rx ring for this descriptor 677 * @qword0_raw: qword0 678 * @qword1: qword1 after le_to_cpu 679 * @prog_id: the id originally used for programming 680 * 681 * This is used to verify if the FD programming or invalidation 682 * requested by SW to the HW is successful or not and take actions accordingly. 683 **/ 684 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 685 u64 qword1, u8 prog_id) 686 { 687 struct i40e_pf *pf = rx_ring->vsi->back; 688 struct pci_dev *pdev = pf->pdev; 689 struct i40e_16b_rx_wb_qw0 *qw0; 690 u32 fcnt_prog, fcnt_avail; 691 u32 error; 692 693 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; 694 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 695 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 696 697 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 698 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 699 if (qw0->hi_dword.fd_id != 0 || 700 (I40E_DEBUG_FD & pf->hw.debug_mask)) 701 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 702 pf->fd_inv); 703 704 /* Check if the programming error is for ATR. 705 * If so, auto disable ATR and set a state for 706 * flush in progress. Next time we come here if flush is in 707 * progress do nothing, once flush is complete the state will 708 * be cleared. 709 */ 710 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 711 return; 712 713 pf->fd_add_err++; 714 /* store the current atr filter count */ 715 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 716 717 if (qw0->hi_dword.fd_id == 0 && 718 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 719 /* These set_bit() calls aren't atomic with the 720 * test_bit() here, but worse case we potentially 721 * disable ATR and queue a flush right after SB 722 * support is re-enabled. That shouldn't cause an 723 * issue in practice 724 */ 725 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 726 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 727 } 728 729 /* filter programming failed most likely due to table full */ 730 fcnt_prog = i40e_get_global_fd_count(pf); 731 fcnt_avail = pf->fdir_pf_filter_count; 732 /* If ATR is running fcnt_prog can quickly change, 733 * if we are very close to full, it makes sense to disable 734 * FD ATR/SB and then re-enable it when there is room. 735 */ 736 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 737 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 738 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 739 pf->state)) 740 if (I40E_DEBUG_FD & pf->hw.debug_mask) 741 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 742 } 743 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 744 if (I40E_DEBUG_FD & pf->hw.debug_mask) 745 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 746 qw0->hi_dword.fd_id); 747 } 748 } 749 750 /** 751 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 752 * @ring: the ring that owns the buffer 753 * @tx_buffer: the buffer to free 754 **/ 755 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 756 struct i40e_tx_buffer *tx_buffer) 757 { 758 if (tx_buffer->skb) { 759 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 760 kfree(tx_buffer->raw_buf); 761 else if (ring_is_xdp(ring)) 762 xdp_return_frame(tx_buffer->xdpf); 763 else 764 dev_kfree_skb_any(tx_buffer->skb); 765 if (dma_unmap_len(tx_buffer, len)) 766 dma_unmap_single(ring->dev, 767 dma_unmap_addr(tx_buffer, dma), 768 dma_unmap_len(tx_buffer, len), 769 DMA_TO_DEVICE); 770 } else if (dma_unmap_len(tx_buffer, len)) { 771 dma_unmap_page(ring->dev, 772 dma_unmap_addr(tx_buffer, dma), 773 dma_unmap_len(tx_buffer, len), 774 DMA_TO_DEVICE); 775 } 776 777 tx_buffer->next_to_watch = NULL; 778 tx_buffer->skb = NULL; 779 dma_unmap_len_set(tx_buffer, len, 0); 780 /* tx_buffer must be completely set up in the transmit path */ 781 } 782 783 /** 784 * i40e_clean_tx_ring - Free any empty Tx buffers 785 * @tx_ring: ring to be cleaned 786 **/ 787 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 788 { 789 unsigned long bi_size; 790 u16 i; 791 792 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 793 i40e_xsk_clean_tx_ring(tx_ring); 794 } else { 795 /* ring already cleared, nothing to do */ 796 if (!tx_ring->tx_bi) 797 return; 798 799 /* Free all the Tx ring sk_buffs */ 800 for (i = 0; i < tx_ring->count; i++) 801 i40e_unmap_and_free_tx_resource(tx_ring, 802 &tx_ring->tx_bi[i]); 803 } 804 805 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 806 memset(tx_ring->tx_bi, 0, bi_size); 807 808 /* Zero out the descriptor ring */ 809 memset(tx_ring->desc, 0, tx_ring->size); 810 811 tx_ring->next_to_use = 0; 812 tx_ring->next_to_clean = 0; 813 814 if (!tx_ring->netdev) 815 return; 816 817 /* cleanup Tx queue statistics */ 818 netdev_tx_reset_queue(txring_txq(tx_ring)); 819 } 820 821 /** 822 * i40e_free_tx_resources - Free Tx resources per queue 823 * @tx_ring: Tx descriptor ring for a specific queue 824 * 825 * Free all transmit software resources 826 **/ 827 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 828 { 829 i40e_clean_tx_ring(tx_ring); 830 kfree(tx_ring->tx_bi); 831 tx_ring->tx_bi = NULL; 832 833 if (tx_ring->desc) { 834 dma_free_coherent(tx_ring->dev, tx_ring->size, 835 tx_ring->desc, tx_ring->dma); 836 tx_ring->desc = NULL; 837 } 838 } 839 840 /** 841 * i40e_get_tx_pending - how many tx descriptors not processed 842 * @ring: the ring of descriptors 843 * @in_sw: use SW variables 844 * 845 * Since there is no access to the ring head register 846 * in XL710, we need to use our local copies 847 **/ 848 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 849 { 850 u32 head, tail; 851 852 if (!in_sw) { 853 head = i40e_get_head(ring); 854 tail = readl(ring->tail); 855 } else { 856 head = ring->next_to_clean; 857 tail = ring->next_to_use; 858 } 859 860 if (head != tail) 861 return (head < tail) ? 862 tail - head : (tail + ring->count - head); 863 864 return 0; 865 } 866 867 /** 868 * i40e_detect_recover_hung - Function to detect and recover hung_queues 869 * @vsi: pointer to vsi struct with tx queues 870 * 871 * VSI has netdev and netdev has TX queues. This function is to check each of 872 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 873 **/ 874 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 875 { 876 struct i40e_ring *tx_ring = NULL; 877 struct net_device *netdev; 878 unsigned int i; 879 int packets; 880 881 if (!vsi) 882 return; 883 884 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 885 return; 886 887 netdev = vsi->netdev; 888 if (!netdev) 889 return; 890 891 if (!netif_carrier_ok(netdev)) 892 return; 893 894 for (i = 0; i < vsi->num_queue_pairs; i++) { 895 tx_ring = vsi->tx_rings[i]; 896 if (tx_ring && tx_ring->desc) { 897 /* If packet counter has not changed the queue is 898 * likely stalled, so force an interrupt for this 899 * queue. 900 * 901 * prev_pkt_ctr would be negative if there was no 902 * pending work. 903 */ 904 packets = tx_ring->stats.packets & INT_MAX; 905 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 906 i40e_force_wb(vsi, tx_ring->q_vector); 907 continue; 908 } 909 910 /* Memory barrier between read of packet count and call 911 * to i40e_get_tx_pending() 912 */ 913 smp_rmb(); 914 tx_ring->tx_stats.prev_pkt_ctr = 915 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 916 } 917 } 918 } 919 920 /** 921 * i40e_clean_tx_irq - Reclaim resources after transmit completes 922 * @vsi: the VSI we care about 923 * @tx_ring: Tx ring to clean 924 * @napi_budget: Used to determine if we are in netpoll 925 * @tx_cleaned: Out parameter set to the number of TXes cleaned 926 * 927 * Returns true if there's any budget left (e.g. the clean is finished) 928 **/ 929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 930 struct i40e_ring *tx_ring, int napi_budget, 931 unsigned int *tx_cleaned) 932 { 933 int i = tx_ring->next_to_clean; 934 struct i40e_tx_buffer *tx_buf; 935 struct i40e_tx_desc *tx_head; 936 struct i40e_tx_desc *tx_desc; 937 unsigned int total_bytes = 0, total_packets = 0; 938 unsigned int budget = vsi->work_limit; 939 940 tx_buf = &tx_ring->tx_bi[i]; 941 tx_desc = I40E_TX_DESC(tx_ring, i); 942 i -= tx_ring->count; 943 944 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 945 946 do { 947 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 948 949 /* if next_to_watch is not set then there is no work pending */ 950 if (!eop_desc) 951 break; 952 953 /* prevent any other reads prior to eop_desc */ 954 smp_rmb(); 955 956 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 957 /* we have caught up to head, no work left to do */ 958 if (tx_head == tx_desc) 959 break; 960 961 /* clear next_to_watch to prevent false hangs */ 962 tx_buf->next_to_watch = NULL; 963 964 /* update the statistics for this packet */ 965 total_bytes += tx_buf->bytecount; 966 total_packets += tx_buf->gso_segs; 967 968 /* free the skb/XDP data */ 969 if (ring_is_xdp(tx_ring)) 970 xdp_return_frame(tx_buf->xdpf); 971 else 972 napi_consume_skb(tx_buf->skb, napi_budget); 973 974 /* unmap skb header data */ 975 dma_unmap_single(tx_ring->dev, 976 dma_unmap_addr(tx_buf, dma), 977 dma_unmap_len(tx_buf, len), 978 DMA_TO_DEVICE); 979 980 /* clear tx_buffer data */ 981 tx_buf->skb = NULL; 982 dma_unmap_len_set(tx_buf, len, 0); 983 984 /* unmap remaining buffers */ 985 while (tx_desc != eop_desc) { 986 i40e_trace(clean_tx_irq_unmap, 987 tx_ring, tx_desc, tx_buf); 988 989 tx_buf++; 990 tx_desc++; 991 i++; 992 if (unlikely(!i)) { 993 i -= tx_ring->count; 994 tx_buf = tx_ring->tx_bi; 995 tx_desc = I40E_TX_DESC(tx_ring, 0); 996 } 997 998 /* unmap any remaining paged data */ 999 if (dma_unmap_len(tx_buf, len)) { 1000 dma_unmap_page(tx_ring->dev, 1001 dma_unmap_addr(tx_buf, dma), 1002 dma_unmap_len(tx_buf, len), 1003 DMA_TO_DEVICE); 1004 dma_unmap_len_set(tx_buf, len, 0); 1005 } 1006 } 1007 1008 /* move us one more past the eop_desc for start of next pkt */ 1009 tx_buf++; 1010 tx_desc++; 1011 i++; 1012 if (unlikely(!i)) { 1013 i -= tx_ring->count; 1014 tx_buf = tx_ring->tx_bi; 1015 tx_desc = I40E_TX_DESC(tx_ring, 0); 1016 } 1017 1018 prefetch(tx_desc); 1019 1020 /* update budget accounting */ 1021 budget--; 1022 } while (likely(budget)); 1023 1024 i += tx_ring->count; 1025 tx_ring->next_to_clean = i; 1026 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 1027 i40e_arm_wb(tx_ring, vsi, budget); 1028 1029 if (ring_is_xdp(tx_ring)) 1030 return !!budget; 1031 1032 /* notify netdev of completed buffers */ 1033 netdev_tx_completed_queue(txring_txq(tx_ring), 1034 total_packets, total_bytes); 1035 1036 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 1037 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1038 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 1039 /* Make sure that anybody stopping the queue after this 1040 * sees the new next_to_clean. 1041 */ 1042 smp_mb(); 1043 if (__netif_subqueue_stopped(tx_ring->netdev, 1044 tx_ring->queue_index) && 1045 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 1046 netif_wake_subqueue(tx_ring->netdev, 1047 tx_ring->queue_index); 1048 ++tx_ring->tx_stats.restart_queue; 1049 } 1050 } 1051 1052 *tx_cleaned = total_packets; 1053 return !!budget; 1054 } 1055 1056 /** 1057 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 1058 * @vsi: the VSI we care about 1059 * @q_vector: the vector on which to enable writeback 1060 * 1061 **/ 1062 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 1063 struct i40e_q_vector *q_vector) 1064 { 1065 u16 flags = q_vector->tx.ring[0].flags; 1066 u32 val; 1067 1068 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 1069 return; 1070 1071 if (q_vector->arm_wb_state) 1072 return; 1073 1074 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 1075 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 1076 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 1077 1078 wr32(&vsi->back->hw, 1079 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 1080 val); 1081 } else { 1082 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 1083 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 1084 1085 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1086 } 1087 q_vector->arm_wb_state = true; 1088 } 1089 1090 /** 1091 * i40e_force_wb - Issue SW Interrupt so HW does a wb 1092 * @vsi: the VSI we care about 1093 * @q_vector: the vector on which to force writeback 1094 * 1095 **/ 1096 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 1097 { 1098 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 1099 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 1100 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 1101 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 1102 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 1103 /* allow 00 to be written to the index */ 1104 1105 wr32(&vsi->back->hw, 1106 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 1107 } else { 1108 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 1109 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 1110 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 1111 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 1112 /* allow 00 to be written to the index */ 1113 1114 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1115 } 1116 } 1117 1118 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 1119 struct i40e_ring_container *rc) 1120 { 1121 return &q_vector->rx == rc; 1122 } 1123 1124 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 1125 { 1126 unsigned int divisor; 1127 1128 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 1129 case I40E_LINK_SPEED_40GB: 1130 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 1131 break; 1132 case I40E_LINK_SPEED_25GB: 1133 case I40E_LINK_SPEED_20GB: 1134 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 1135 break; 1136 default: 1137 case I40E_LINK_SPEED_10GB: 1138 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 1139 break; 1140 case I40E_LINK_SPEED_1GB: 1141 case I40E_LINK_SPEED_100MB: 1142 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 1143 break; 1144 } 1145 1146 return divisor; 1147 } 1148 1149 /** 1150 * i40e_update_itr - update the dynamic ITR value based on statistics 1151 * @q_vector: structure containing interrupt and ring information 1152 * @rc: structure containing ring performance data 1153 * 1154 * Stores a new ITR value based on packets and byte 1155 * counts during the last interrupt. The advantage of per interrupt 1156 * computation is faster updates and more accurate ITR for the current 1157 * traffic pattern. Constants in this function were computed 1158 * based on theoretical maximum wire speed and thresholds were set based 1159 * on testing data as well as attempting to minimize response time 1160 * while increasing bulk throughput. 1161 **/ 1162 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1163 struct i40e_ring_container *rc) 1164 { 1165 unsigned int avg_wire_size, packets, bytes, itr; 1166 unsigned long next_update = jiffies; 1167 1168 /* If we don't have any rings just leave ourselves set for maximum 1169 * possible latency so we take ourselves out of the equation. 1170 */ 1171 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1172 return; 1173 1174 /* For Rx we want to push the delay up and default to low latency. 1175 * for Tx we want to pull the delay down and default to high latency. 1176 */ 1177 itr = i40e_container_is_rx(q_vector, rc) ? 1178 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1179 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1180 1181 /* If we didn't update within up to 1 - 2 jiffies we can assume 1182 * that either packets are coming in so slow there hasn't been 1183 * any work, or that there is so much work that NAPI is dealing 1184 * with interrupt moderation and we don't need to do anything. 1185 */ 1186 if (time_after(next_update, rc->next_update)) 1187 goto clear_counts; 1188 1189 /* If itr_countdown is set it means we programmed an ITR within 1190 * the last 4 interrupt cycles. This has a side effect of us 1191 * potentially firing an early interrupt. In order to work around 1192 * this we need to throw out any data received for a few 1193 * interrupts following the update. 1194 */ 1195 if (q_vector->itr_countdown) { 1196 itr = rc->target_itr; 1197 goto clear_counts; 1198 } 1199 1200 packets = rc->total_packets; 1201 bytes = rc->total_bytes; 1202 1203 if (i40e_container_is_rx(q_vector, rc)) { 1204 /* If Rx there are 1 to 4 packets and bytes are less than 1205 * 9000 assume insufficient data to use bulk rate limiting 1206 * approach unless Tx is already in bulk rate limiting. We 1207 * are likely latency driven. 1208 */ 1209 if (packets && packets < 4 && bytes < 9000 && 1210 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1211 itr = I40E_ITR_ADAPTIVE_LATENCY; 1212 goto adjust_by_size; 1213 } 1214 } else if (packets < 4) { 1215 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1216 * bulk mode and we are receiving 4 or fewer packets just 1217 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1218 * that the Rx can relax. 1219 */ 1220 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1221 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1222 I40E_ITR_ADAPTIVE_MAX_USECS) 1223 goto clear_counts; 1224 } else if (packets > 32) { 1225 /* If we have processed over 32 packets in a single interrupt 1226 * for Tx assume we need to switch over to "bulk" mode. 1227 */ 1228 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1229 } 1230 1231 /* We have no packets to actually measure against. This means 1232 * either one of the other queues on this vector is active or 1233 * we are a Tx queue doing TSO with too high of an interrupt rate. 1234 * 1235 * Between 4 and 56 we can assume that our current interrupt delay 1236 * is only slightly too low. As such we should increase it by a small 1237 * fixed amount. 1238 */ 1239 if (packets < 56) { 1240 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1241 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1242 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1243 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1244 } 1245 goto clear_counts; 1246 } 1247 1248 if (packets <= 256) { 1249 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1250 itr &= I40E_ITR_MASK; 1251 1252 /* Between 56 and 112 is our "goldilocks" zone where we are 1253 * working out "just right". Just report that our current 1254 * ITR is good for us. 1255 */ 1256 if (packets <= 112) 1257 goto clear_counts; 1258 1259 /* If packet count is 128 or greater we are likely looking 1260 * at a slight overrun of the delay we want. Try halving 1261 * our delay to see if that will cut the number of packets 1262 * in half per interrupt. 1263 */ 1264 itr /= 2; 1265 itr &= I40E_ITR_MASK; 1266 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1267 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1268 1269 goto clear_counts; 1270 } 1271 1272 /* The paths below assume we are dealing with a bulk ITR since 1273 * number of packets is greater than 256. We are just going to have 1274 * to compute a value and try to bring the count under control, 1275 * though for smaller packet sizes there isn't much we can do as 1276 * NAPI polling will likely be kicking in sooner rather than later. 1277 */ 1278 itr = I40E_ITR_ADAPTIVE_BULK; 1279 1280 adjust_by_size: 1281 /* If packet counts are 256 or greater we can assume we have a gross 1282 * overestimation of what the rate should be. Instead of trying to fine 1283 * tune it just use the formula below to try and dial in an exact value 1284 * give the current packet size of the frame. 1285 */ 1286 avg_wire_size = bytes / packets; 1287 1288 /* The following is a crude approximation of: 1289 * wmem_default / (size + overhead) = desired_pkts_per_int 1290 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1291 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1292 * 1293 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1294 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1295 * formula down to 1296 * 1297 * (170 * (size + 24)) / (size + 640) = ITR 1298 * 1299 * We first do some math on the packet size and then finally bitshift 1300 * by 8 after rounding up. We also have to account for PCIe link speed 1301 * difference as ITR scales based on this. 1302 */ 1303 if (avg_wire_size <= 60) { 1304 /* Start at 250k ints/sec */ 1305 avg_wire_size = 4096; 1306 } else if (avg_wire_size <= 380) { 1307 /* 250K ints/sec to 60K ints/sec */ 1308 avg_wire_size *= 40; 1309 avg_wire_size += 1696; 1310 } else if (avg_wire_size <= 1084) { 1311 /* 60K ints/sec to 36K ints/sec */ 1312 avg_wire_size *= 15; 1313 avg_wire_size += 11452; 1314 } else if (avg_wire_size <= 1980) { 1315 /* 36K ints/sec to 30K ints/sec */ 1316 avg_wire_size *= 5; 1317 avg_wire_size += 22420; 1318 } else { 1319 /* plateau at a limit of 30K ints/sec */ 1320 avg_wire_size = 32256; 1321 } 1322 1323 /* If we are in low latency mode halve our delay which doubles the 1324 * rate to somewhere between 100K to 16K ints/sec 1325 */ 1326 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1327 avg_wire_size /= 2; 1328 1329 /* Resultant value is 256 times larger than it needs to be. This 1330 * gives us room to adjust the value as needed to either increase 1331 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1332 * 1333 * Use addition as we have already recorded the new latency flag 1334 * for the ITR value. 1335 */ 1336 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1337 I40E_ITR_ADAPTIVE_MIN_INC; 1338 1339 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1340 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1341 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1342 } 1343 1344 clear_counts: 1345 /* write back value */ 1346 rc->target_itr = itr; 1347 1348 /* next update should occur within next jiffy */ 1349 rc->next_update = next_update + 1; 1350 1351 rc->total_bytes = 0; 1352 rc->total_packets = 0; 1353 } 1354 1355 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1356 { 1357 return &rx_ring->rx_bi[idx]; 1358 } 1359 1360 /** 1361 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1362 * @rx_ring: rx descriptor ring to store buffers on 1363 * @old_buff: donor buffer to have page reused 1364 * 1365 * Synchronizes page for reuse by the adapter 1366 **/ 1367 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1368 struct i40e_rx_buffer *old_buff) 1369 { 1370 struct i40e_rx_buffer *new_buff; 1371 u16 nta = rx_ring->next_to_alloc; 1372 1373 new_buff = i40e_rx_bi(rx_ring, nta); 1374 1375 /* update, and store next to alloc */ 1376 nta++; 1377 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1378 1379 /* transfer page from old buffer to new buffer */ 1380 new_buff->dma = old_buff->dma; 1381 new_buff->page = old_buff->page; 1382 new_buff->page_offset = old_buff->page_offset; 1383 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1384 1385 /* clear contents of buffer_info */ 1386 old_buff->page = NULL; 1387 } 1388 1389 /** 1390 * i40e_clean_programming_status - clean the programming status descriptor 1391 * @rx_ring: the rx ring that has this descriptor 1392 * @qword0_raw: qword0 1393 * @qword1: qword1 representing status_error_len in CPU ordering 1394 * 1395 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1396 * status being successful or not and take actions accordingly. FCoE should 1397 * handle its context/filter programming/invalidation status and take actions. 1398 * 1399 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1400 **/ 1401 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1402 u64 qword1) 1403 { 1404 u8 id; 1405 1406 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1407 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1408 1409 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1410 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1411 } 1412 1413 /** 1414 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1415 * @tx_ring: the tx ring to set up 1416 * 1417 * Return 0 on success, negative on error 1418 **/ 1419 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1420 { 1421 struct device *dev = tx_ring->dev; 1422 int bi_size; 1423 1424 if (!dev) 1425 return -ENOMEM; 1426 1427 /* warn if we are about to overwrite the pointer */ 1428 WARN_ON(tx_ring->tx_bi); 1429 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1430 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1431 if (!tx_ring->tx_bi) 1432 goto err; 1433 1434 u64_stats_init(&tx_ring->syncp); 1435 1436 /* round up to nearest 4K */ 1437 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1438 /* add u32 for head writeback, align after this takes care of 1439 * guaranteeing this is at least one cache line in size 1440 */ 1441 tx_ring->size += sizeof(u32); 1442 tx_ring->size = ALIGN(tx_ring->size, 4096); 1443 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1444 &tx_ring->dma, GFP_KERNEL); 1445 if (!tx_ring->desc) { 1446 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1447 tx_ring->size); 1448 goto err; 1449 } 1450 1451 tx_ring->next_to_use = 0; 1452 tx_ring->next_to_clean = 0; 1453 tx_ring->tx_stats.prev_pkt_ctr = -1; 1454 return 0; 1455 1456 err: 1457 kfree(tx_ring->tx_bi); 1458 tx_ring->tx_bi = NULL; 1459 return -ENOMEM; 1460 } 1461 1462 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1463 { 1464 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1465 } 1466 1467 /** 1468 * i40e_clean_rx_ring - Free Rx buffers 1469 * @rx_ring: ring to be cleaned 1470 **/ 1471 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1472 { 1473 u16 i; 1474 1475 /* ring already cleared, nothing to do */ 1476 if (!rx_ring->rx_bi) 1477 return; 1478 1479 if (rx_ring->xsk_pool) { 1480 i40e_xsk_clean_rx_ring(rx_ring); 1481 goto skip_free; 1482 } 1483 1484 /* Free all the Rx ring sk_buffs */ 1485 for (i = 0; i < rx_ring->count; i++) { 1486 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1487 1488 if (!rx_bi->page) 1489 continue; 1490 1491 /* Invalidate cache lines that may have been written to by 1492 * device so that we avoid corrupting memory. 1493 */ 1494 dma_sync_single_range_for_cpu(rx_ring->dev, 1495 rx_bi->dma, 1496 rx_bi->page_offset, 1497 rx_ring->rx_buf_len, 1498 DMA_FROM_DEVICE); 1499 1500 /* free resources associated with mapping */ 1501 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1502 i40e_rx_pg_size(rx_ring), 1503 DMA_FROM_DEVICE, 1504 I40E_RX_DMA_ATTR); 1505 1506 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1507 1508 rx_bi->page = NULL; 1509 rx_bi->page_offset = 0; 1510 } 1511 1512 skip_free: 1513 if (rx_ring->xsk_pool) 1514 i40e_clear_rx_bi_zc(rx_ring); 1515 else 1516 i40e_clear_rx_bi(rx_ring); 1517 1518 /* Zero out the descriptor ring */ 1519 memset(rx_ring->desc, 0, rx_ring->size); 1520 1521 rx_ring->next_to_alloc = 0; 1522 rx_ring->next_to_clean = 0; 1523 rx_ring->next_to_process = 0; 1524 rx_ring->next_to_use = 0; 1525 } 1526 1527 /** 1528 * i40e_free_rx_resources - Free Rx resources 1529 * @rx_ring: ring to clean the resources from 1530 * 1531 * Free all receive software resources 1532 **/ 1533 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1534 { 1535 i40e_clean_rx_ring(rx_ring); 1536 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1537 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1538 rx_ring->xdp_prog = NULL; 1539 kfree(rx_ring->rx_bi); 1540 rx_ring->rx_bi = NULL; 1541 1542 if (rx_ring->desc) { 1543 dma_free_coherent(rx_ring->dev, rx_ring->size, 1544 rx_ring->desc, rx_ring->dma); 1545 rx_ring->desc = NULL; 1546 } 1547 } 1548 1549 /** 1550 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1551 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1552 * 1553 * Returns 0 on success, negative on failure 1554 **/ 1555 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1556 { 1557 struct device *dev = rx_ring->dev; 1558 1559 u64_stats_init(&rx_ring->syncp); 1560 1561 /* Round up to nearest 4K */ 1562 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); 1563 rx_ring->size = ALIGN(rx_ring->size, 4096); 1564 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1565 &rx_ring->dma, GFP_KERNEL); 1566 1567 if (!rx_ring->desc) { 1568 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1569 rx_ring->size); 1570 return -ENOMEM; 1571 } 1572 1573 rx_ring->next_to_alloc = 0; 1574 rx_ring->next_to_clean = 0; 1575 rx_ring->next_to_process = 0; 1576 rx_ring->next_to_use = 0; 1577 1578 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1579 1580 rx_ring->rx_bi = 1581 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL); 1582 if (!rx_ring->rx_bi) 1583 return -ENOMEM; 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * i40e_release_rx_desc - Store the new tail and head values 1590 * @rx_ring: ring to bump 1591 * @val: new head index 1592 **/ 1593 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1594 { 1595 rx_ring->next_to_use = val; 1596 1597 /* update next to alloc since we have filled the ring */ 1598 rx_ring->next_to_alloc = val; 1599 1600 /* Force memory writes to complete before letting h/w 1601 * know there are new descriptors to fetch. (Only 1602 * applicable for weak-ordered memory model archs, 1603 * such as IA-64). 1604 */ 1605 wmb(); 1606 writel(val, rx_ring->tail); 1607 } 1608 1609 #if (PAGE_SIZE >= 8192) 1610 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1611 unsigned int size) 1612 { 1613 unsigned int truesize; 1614 1615 truesize = rx_ring->rx_offset ? 1616 SKB_DATA_ALIGN(size + rx_ring->rx_offset) + 1617 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1618 SKB_DATA_ALIGN(size); 1619 return truesize; 1620 } 1621 #endif 1622 1623 /** 1624 * i40e_alloc_mapped_page - recycle or make a new page 1625 * @rx_ring: ring to use 1626 * @bi: rx_buffer struct to modify 1627 * 1628 * Returns true if the page was successfully allocated or 1629 * reused. 1630 **/ 1631 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1632 struct i40e_rx_buffer *bi) 1633 { 1634 struct page *page = bi->page; 1635 dma_addr_t dma; 1636 1637 /* since we are recycling buffers we should seldom need to alloc */ 1638 if (likely(page)) { 1639 rx_ring->rx_stats.page_reuse_count++; 1640 return true; 1641 } 1642 1643 /* alloc new page for storage */ 1644 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1645 if (unlikely(!page)) { 1646 rx_ring->rx_stats.alloc_page_failed++; 1647 return false; 1648 } 1649 1650 rx_ring->rx_stats.page_alloc_count++; 1651 1652 /* map page for use */ 1653 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1654 i40e_rx_pg_size(rx_ring), 1655 DMA_FROM_DEVICE, 1656 I40E_RX_DMA_ATTR); 1657 1658 /* if mapping failed free memory back to system since 1659 * there isn't much point in holding memory we can't use 1660 */ 1661 if (dma_mapping_error(rx_ring->dev, dma)) { 1662 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1663 rx_ring->rx_stats.alloc_page_failed++; 1664 return false; 1665 } 1666 1667 bi->dma = dma; 1668 bi->page = page; 1669 bi->page_offset = rx_ring->rx_offset; 1670 page_ref_add(page, USHRT_MAX - 1); 1671 bi->pagecnt_bias = USHRT_MAX; 1672 1673 return true; 1674 } 1675 1676 /** 1677 * i40e_alloc_rx_buffers - Replace used receive buffers 1678 * @rx_ring: ring to place buffers on 1679 * @cleaned_count: number of buffers to replace 1680 * 1681 * Returns false if all allocations were successful, true if any fail 1682 **/ 1683 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1684 { 1685 u16 ntu = rx_ring->next_to_use; 1686 union i40e_rx_desc *rx_desc; 1687 struct i40e_rx_buffer *bi; 1688 1689 /* do nothing if no valid netdev defined */ 1690 if (!rx_ring->netdev || !cleaned_count) 1691 return false; 1692 1693 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1694 bi = i40e_rx_bi(rx_ring, ntu); 1695 1696 do { 1697 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1698 goto no_buffers; 1699 1700 /* sync the buffer for use by the device */ 1701 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1702 bi->page_offset, 1703 rx_ring->rx_buf_len, 1704 DMA_FROM_DEVICE); 1705 1706 /* Refresh the desc even if buffer_addrs didn't change 1707 * because each write-back erases this info. 1708 */ 1709 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1710 1711 rx_desc++; 1712 bi++; 1713 ntu++; 1714 if (unlikely(ntu == rx_ring->count)) { 1715 rx_desc = I40E_RX_DESC(rx_ring, 0); 1716 bi = i40e_rx_bi(rx_ring, 0); 1717 ntu = 0; 1718 } 1719 1720 /* clear the status bits for the next_to_use descriptor */ 1721 rx_desc->wb.qword1.status_error_len = 0; 1722 1723 cleaned_count--; 1724 } while (cleaned_count); 1725 1726 if (rx_ring->next_to_use != ntu) 1727 i40e_release_rx_desc(rx_ring, ntu); 1728 1729 return false; 1730 1731 no_buffers: 1732 if (rx_ring->next_to_use != ntu) 1733 i40e_release_rx_desc(rx_ring, ntu); 1734 1735 /* make sure to come back via polling to try again after 1736 * allocation failure 1737 */ 1738 return true; 1739 } 1740 1741 /** 1742 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1743 * @vsi: the VSI we care about 1744 * @skb: skb currently being received and modified 1745 * @rx_desc: the receive descriptor 1746 **/ 1747 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1748 struct sk_buff *skb, 1749 union i40e_rx_desc *rx_desc) 1750 { 1751 struct i40e_rx_ptype_decoded decoded; 1752 u32 rx_error, rx_status; 1753 bool ipv4, ipv6; 1754 u8 ptype; 1755 u64 qword; 1756 1757 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1758 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1759 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1760 I40E_RXD_QW1_ERROR_SHIFT; 1761 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1762 I40E_RXD_QW1_STATUS_SHIFT; 1763 decoded = decode_rx_desc_ptype(ptype); 1764 1765 skb->ip_summed = CHECKSUM_NONE; 1766 1767 skb_checksum_none_assert(skb); 1768 1769 /* Rx csum enabled and ip headers found? */ 1770 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1771 return; 1772 1773 /* did the hardware decode the packet and checksum? */ 1774 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1775 return; 1776 1777 /* both known and outer_ip must be set for the below code to work */ 1778 if (!(decoded.known && decoded.outer_ip)) 1779 return; 1780 1781 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1782 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1783 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1784 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1785 1786 if (ipv4 && 1787 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1788 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1789 goto checksum_fail; 1790 1791 /* likely incorrect csum if alternate IP extension headers found */ 1792 if (ipv6 && 1793 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1794 /* don't increment checksum err here, non-fatal err */ 1795 return; 1796 1797 /* there was some L4 error, count error and punt packet to the stack */ 1798 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1799 goto checksum_fail; 1800 1801 /* handle packets that were not able to be checksummed due 1802 * to arrival speed, in this case the stack can compute 1803 * the csum. 1804 */ 1805 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1806 return; 1807 1808 /* If there is an outer header present that might contain a checksum 1809 * we need to bump the checksum level by 1 to reflect the fact that 1810 * we are indicating we validated the inner checksum. 1811 */ 1812 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1813 skb->csum_level = 1; 1814 1815 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1816 switch (decoded.inner_prot) { 1817 case I40E_RX_PTYPE_INNER_PROT_TCP: 1818 case I40E_RX_PTYPE_INNER_PROT_UDP: 1819 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1820 skb->ip_summed = CHECKSUM_UNNECESSARY; 1821 fallthrough; 1822 default: 1823 break; 1824 } 1825 1826 return; 1827 1828 checksum_fail: 1829 vsi->back->hw_csum_rx_error++; 1830 } 1831 1832 /** 1833 * i40e_ptype_to_htype - get a hash type 1834 * @ptype: the ptype value from the descriptor 1835 * 1836 * Returns a hash type to be used by skb_set_hash 1837 **/ 1838 static inline int i40e_ptype_to_htype(u8 ptype) 1839 { 1840 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1841 1842 if (!decoded.known) 1843 return PKT_HASH_TYPE_NONE; 1844 1845 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1846 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1847 return PKT_HASH_TYPE_L4; 1848 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1849 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1850 return PKT_HASH_TYPE_L3; 1851 else 1852 return PKT_HASH_TYPE_L2; 1853 } 1854 1855 /** 1856 * i40e_rx_hash - set the hash value in the skb 1857 * @ring: descriptor ring 1858 * @rx_desc: specific descriptor 1859 * @skb: skb currently being received and modified 1860 * @rx_ptype: Rx packet type 1861 **/ 1862 static inline void i40e_rx_hash(struct i40e_ring *ring, 1863 union i40e_rx_desc *rx_desc, 1864 struct sk_buff *skb, 1865 u8 rx_ptype) 1866 { 1867 u32 hash; 1868 const __le64 rss_mask = 1869 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1870 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1871 1872 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1873 return; 1874 1875 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1876 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1877 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1878 } 1879 } 1880 1881 /** 1882 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1883 * @rx_ring: rx descriptor ring packet is being transacted on 1884 * @rx_desc: pointer to the EOP Rx descriptor 1885 * @skb: pointer to current skb being populated 1886 * 1887 * This function checks the ring, descriptor, and packet information in 1888 * order to populate the hash, checksum, VLAN, protocol, and 1889 * other fields within the skb. 1890 **/ 1891 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1892 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1893 { 1894 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1895 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1896 I40E_RXD_QW1_STATUS_SHIFT; 1897 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1898 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1899 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1900 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1901 I40E_RXD_QW1_PTYPE_SHIFT; 1902 1903 if (unlikely(tsynvalid)) 1904 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1905 1906 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1907 1908 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1909 1910 skb_record_rx_queue(skb, rx_ring->queue_index); 1911 1912 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1913 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1914 1915 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1916 le16_to_cpu(vlan_tag)); 1917 } 1918 1919 /* modifies the skb - consumes the enet header */ 1920 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1921 } 1922 1923 /** 1924 * i40e_cleanup_headers - Correct empty headers 1925 * @rx_ring: rx descriptor ring packet is being transacted on 1926 * @skb: pointer to current skb being fixed 1927 * @rx_desc: pointer to the EOP Rx descriptor 1928 * 1929 * In addition if skb is not at least 60 bytes we need to pad it so that 1930 * it is large enough to qualify as a valid Ethernet frame. 1931 * 1932 * Returns true if an error was encountered and skb was freed. 1933 **/ 1934 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1935 union i40e_rx_desc *rx_desc) 1936 1937 { 1938 /* ERR_MASK will only have valid bits if EOP set, and 1939 * what we are doing here is actually checking 1940 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1941 * the error field 1942 */ 1943 if (unlikely(i40e_test_staterr(rx_desc, 1944 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1945 dev_kfree_skb_any(skb); 1946 return true; 1947 } 1948 1949 /* if eth_skb_pad returns an error the skb was freed */ 1950 if (eth_skb_pad(skb)) 1951 return true; 1952 1953 return false; 1954 } 1955 1956 /** 1957 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx 1958 * @rx_buffer: buffer containing the page 1959 * @rx_stats: rx stats structure for the rx ring 1960 * 1961 * If page is reusable, we have a green light for calling i40e_reuse_rx_page, 1962 * which will assign the current buffer to the buffer that next_to_alloc is 1963 * pointing to; otherwise, the DMA mapping needs to be destroyed and 1964 * page freed. 1965 * 1966 * rx_stats will be updated to indicate whether the page was waived 1967 * or busy if it could not be reused. 1968 */ 1969 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, 1970 struct i40e_rx_queue_stats *rx_stats) 1971 { 1972 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1973 struct page *page = rx_buffer->page; 1974 1975 /* Is any reuse possible? */ 1976 if (!dev_page_is_reusable(page)) { 1977 rx_stats->page_waive_count++; 1978 return false; 1979 } 1980 1981 #if (PAGE_SIZE < 8192) 1982 /* if we are only owner of page we can reuse it */ 1983 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) { 1984 rx_stats->page_busy_count++; 1985 return false; 1986 } 1987 #else 1988 #define I40E_LAST_OFFSET \ 1989 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1990 if (rx_buffer->page_offset > I40E_LAST_OFFSET) { 1991 rx_stats->page_busy_count++; 1992 return false; 1993 } 1994 #endif 1995 1996 /* If we have drained the page fragment pool we need to update 1997 * the pagecnt_bias and page count so that we fully restock the 1998 * number of references the driver holds. 1999 */ 2000 if (unlikely(pagecnt_bias == 1)) { 2001 page_ref_add(page, USHRT_MAX - 1); 2002 rx_buffer->pagecnt_bias = USHRT_MAX; 2003 } 2004 2005 return true; 2006 } 2007 2008 /** 2009 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2010 * @rx_buffer: Rx buffer to adjust 2011 * @truesize: Size of adjustment 2012 **/ 2013 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer, 2014 unsigned int truesize) 2015 { 2016 #if (PAGE_SIZE < 8192) 2017 rx_buffer->page_offset ^= truesize; 2018 #else 2019 rx_buffer->page_offset += truesize; 2020 #endif 2021 } 2022 2023 /** 2024 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 2025 * @rx_ring: rx descriptor ring to transact packets on 2026 * @size: size of buffer to add to skb 2027 * 2028 * This function will pull an Rx buffer from the ring and synchronize it 2029 * for use by the CPU. 2030 */ 2031 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 2032 const unsigned int size) 2033 { 2034 struct i40e_rx_buffer *rx_buffer; 2035 2036 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process); 2037 rx_buffer->page_count = 2038 #if (PAGE_SIZE < 8192) 2039 page_count(rx_buffer->page); 2040 #else 2041 0; 2042 #endif 2043 prefetch_page_address(rx_buffer->page); 2044 2045 /* we are reusing so sync this buffer for CPU use */ 2046 dma_sync_single_range_for_cpu(rx_ring->dev, 2047 rx_buffer->dma, 2048 rx_buffer->page_offset, 2049 size, 2050 DMA_FROM_DEVICE); 2051 2052 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 2053 rx_buffer->pagecnt_bias--; 2054 2055 return rx_buffer; 2056 } 2057 2058 /** 2059 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2060 * @rx_ring: rx descriptor ring to transact packets on 2061 * @rx_buffer: rx buffer to pull data from 2062 * 2063 * This function will clean up the contents of the rx_buffer. It will 2064 * either recycle the buffer or unmap it and free the associated resources. 2065 */ 2066 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2067 struct i40e_rx_buffer *rx_buffer) 2068 { 2069 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) { 2070 /* hand second half of page back to the ring */ 2071 i40e_reuse_rx_page(rx_ring, rx_buffer); 2072 } else { 2073 /* we are not reusing the buffer so unmap it */ 2074 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2075 i40e_rx_pg_size(rx_ring), 2076 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2077 __page_frag_cache_drain(rx_buffer->page, 2078 rx_buffer->pagecnt_bias); 2079 /* clear contents of buffer_info */ 2080 rx_buffer->page = NULL; 2081 } 2082 } 2083 2084 /** 2085 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error 2086 * @rx_ring: Rx descriptor ring to transact packets on 2087 * @xdp_res: Result of the XDP program 2088 * @xdp: xdp_buff pointing to the data 2089 **/ 2090 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res, 2091 struct xdp_buff *xdp) 2092 { 2093 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; 2094 u32 next = rx_ring->next_to_clean, i = 0; 2095 struct i40e_rx_buffer *rx_buffer; 2096 2097 xdp->flags = 0; 2098 2099 while (1) { 2100 rx_buffer = i40e_rx_bi(rx_ring, next); 2101 if (++next == rx_ring->count) 2102 next = 0; 2103 2104 if (!rx_buffer->page) 2105 continue; 2106 2107 if (xdp_res != I40E_XDP_CONSUMED) 2108 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2109 else if (i++ <= nr_frags) 2110 rx_buffer->pagecnt_bias++; 2111 2112 /* EOP buffer will be put in i40e_clean_rx_irq() */ 2113 if (next == rx_ring->next_to_process) 2114 return; 2115 2116 i40e_put_rx_buffer(rx_ring, rx_buffer); 2117 } 2118 } 2119 2120 /** 2121 * i40e_construct_skb - Allocate skb and populate it 2122 * @rx_ring: rx descriptor ring to transact packets on 2123 * @xdp: xdp_buff pointing to the data 2124 * 2125 * This function allocates an skb. It then populates it with the page 2126 * data from the current receive descriptor, taking care to set up the 2127 * skb correctly. 2128 */ 2129 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2130 struct xdp_buff *xdp) 2131 { 2132 unsigned int size = xdp->data_end - xdp->data; 2133 struct i40e_rx_buffer *rx_buffer; 2134 struct skb_shared_info *sinfo; 2135 unsigned int headlen; 2136 struct sk_buff *skb; 2137 u32 nr_frags = 0; 2138 2139 /* prefetch first cache line of first page */ 2140 net_prefetch(xdp->data); 2141 2142 /* Note, we get here by enabling legacy-rx via: 2143 * 2144 * ethtool --set-priv-flags <dev> legacy-rx on 2145 * 2146 * In this mode, we currently get 0 extra XDP headroom as 2147 * opposed to having legacy-rx off, where we process XDP 2148 * packets going to stack via i40e_build_skb(). The latter 2149 * provides us currently with 192 bytes of headroom. 2150 * 2151 * For i40e_construct_skb() mode it means that the 2152 * xdp->data_meta will always point to xdp->data, since 2153 * the helper cannot expand the head. Should this ever 2154 * change in future for legacy-rx mode on, then lets also 2155 * add xdp->data_meta handling here. 2156 */ 2157 2158 /* allocate a skb to store the frags */ 2159 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2160 I40E_RX_HDR_SIZE, 2161 GFP_ATOMIC | __GFP_NOWARN); 2162 if (unlikely(!skb)) 2163 return NULL; 2164 2165 /* Determine available headroom for copy */ 2166 headlen = size; 2167 if (headlen > I40E_RX_HDR_SIZE) 2168 headlen = eth_get_headlen(skb->dev, xdp->data, 2169 I40E_RX_HDR_SIZE); 2170 2171 /* align pull length to size of long to optimize memcpy performance */ 2172 memcpy(__skb_put(skb, headlen), xdp->data, 2173 ALIGN(headlen, sizeof(long))); 2174 2175 if (unlikely(xdp_buff_has_frags(xdp))) { 2176 sinfo = xdp_get_shared_info_from_buff(xdp); 2177 nr_frags = sinfo->nr_frags; 2178 } 2179 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2180 /* update all of the pointers */ 2181 size -= headlen; 2182 if (size) { 2183 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2184 dev_kfree_skb(skb); 2185 return NULL; 2186 } 2187 skb_add_rx_frag(skb, 0, rx_buffer->page, 2188 rx_buffer->page_offset + headlen, 2189 size, xdp->frame_sz); 2190 /* buffer is used by skb, update page_offset */ 2191 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2192 } else { 2193 /* buffer is unused, reset bias back to rx_buffer */ 2194 rx_buffer->pagecnt_bias++; 2195 } 2196 2197 if (unlikely(xdp_buff_has_frags(xdp))) { 2198 struct skb_shared_info *skinfo = skb_shinfo(skb); 2199 2200 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], 2201 sizeof(skb_frag_t) * nr_frags); 2202 2203 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, 2204 sinfo->xdp_frags_size, 2205 nr_frags * xdp->frame_sz, 2206 xdp_buff_is_frag_pfmemalloc(xdp)); 2207 2208 /* First buffer has already been processed, so bump ntc */ 2209 if (++rx_ring->next_to_clean == rx_ring->count) 2210 rx_ring->next_to_clean = 0; 2211 2212 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); 2213 } 2214 2215 return skb; 2216 } 2217 2218 /** 2219 * i40e_build_skb - Build skb around an existing buffer 2220 * @rx_ring: Rx descriptor ring to transact packets on 2221 * @xdp: xdp_buff pointing to the data 2222 * 2223 * This function builds an skb around an existing Rx buffer, taking care 2224 * to set up the skb correctly and avoid any memcpy overhead. 2225 */ 2226 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2227 struct xdp_buff *xdp) 2228 { 2229 unsigned int metasize = xdp->data - xdp->data_meta; 2230 struct skb_shared_info *sinfo; 2231 struct sk_buff *skb; 2232 u32 nr_frags; 2233 2234 /* Prefetch first cache line of first page. If xdp->data_meta 2235 * is unused, this points exactly as xdp->data, otherwise we 2236 * likely have a consumer accessing first few bytes of meta 2237 * data, and then actual data. 2238 */ 2239 net_prefetch(xdp->data_meta); 2240 2241 if (unlikely(xdp_buff_has_frags(xdp))) { 2242 sinfo = xdp_get_shared_info_from_buff(xdp); 2243 nr_frags = sinfo->nr_frags; 2244 } 2245 2246 /* build an skb around the page buffer */ 2247 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 2248 if (unlikely(!skb)) 2249 return NULL; 2250 2251 /* update pointers within the skb to store the data */ 2252 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2253 __skb_put(skb, xdp->data_end - xdp->data); 2254 if (metasize) 2255 skb_metadata_set(skb, metasize); 2256 2257 if (unlikely(xdp_buff_has_frags(xdp))) { 2258 xdp_update_skb_shared_info(skb, nr_frags, 2259 sinfo->xdp_frags_size, 2260 nr_frags * xdp->frame_sz, 2261 xdp_buff_is_frag_pfmemalloc(xdp)); 2262 2263 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); 2264 } else { 2265 struct i40e_rx_buffer *rx_buffer; 2266 2267 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2268 /* buffer is used by skb, update page_offset */ 2269 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2270 } 2271 2272 return skb; 2273 } 2274 2275 /** 2276 * i40e_is_non_eop - process handling of non-EOP buffers 2277 * @rx_ring: Rx ring being processed 2278 * @rx_desc: Rx descriptor for current buffer 2279 * 2280 * If the buffer is an EOP buffer, this function exits returning false, 2281 * otherwise return true indicating that this is in fact a non-EOP buffer. 2282 */ 2283 bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2284 union i40e_rx_desc *rx_desc) 2285 { 2286 /* if we are the last buffer then there is nothing else to do */ 2287 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2288 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2289 return false; 2290 2291 rx_ring->rx_stats.non_eop_descs++; 2292 2293 return true; 2294 } 2295 2296 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2297 struct i40e_ring *xdp_ring); 2298 2299 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2300 { 2301 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2302 2303 if (unlikely(!xdpf)) 2304 return I40E_XDP_CONSUMED; 2305 2306 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2307 } 2308 2309 /** 2310 * i40e_run_xdp - run an XDP program 2311 * @rx_ring: Rx ring being processed 2312 * @xdp: XDP buffer containing the frame 2313 * @xdp_prog: XDP program to run 2314 **/ 2315 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) 2316 { 2317 int err, result = I40E_XDP_PASS; 2318 struct i40e_ring *xdp_ring; 2319 u32 act; 2320 2321 if (!xdp_prog) 2322 goto xdp_out; 2323 2324 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2325 2326 act = bpf_prog_run_xdp(xdp_prog, xdp); 2327 switch (act) { 2328 case XDP_PASS: 2329 break; 2330 case XDP_TX: 2331 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2332 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2333 if (result == I40E_XDP_CONSUMED) 2334 goto out_failure; 2335 break; 2336 case XDP_REDIRECT: 2337 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2338 if (err) 2339 goto out_failure; 2340 result = I40E_XDP_REDIR; 2341 break; 2342 default: 2343 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 2344 fallthrough; 2345 case XDP_ABORTED: 2346 out_failure: 2347 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2348 fallthrough; /* handle aborts by dropping packet */ 2349 case XDP_DROP: 2350 result = I40E_XDP_CONSUMED; 2351 break; 2352 } 2353 xdp_out: 2354 return result; 2355 } 2356 2357 /** 2358 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2359 * @xdp_ring: XDP Tx ring 2360 * 2361 * This function updates the XDP Tx ring tail register. 2362 **/ 2363 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2364 { 2365 /* Force memory writes to complete before letting h/w 2366 * know there are new descriptors to fetch. 2367 */ 2368 wmb(); 2369 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2370 } 2371 2372 /** 2373 * i40e_update_rx_stats - Update Rx ring statistics 2374 * @rx_ring: rx descriptor ring 2375 * @total_rx_bytes: number of bytes received 2376 * @total_rx_packets: number of packets received 2377 * 2378 * This function updates the Rx ring statistics. 2379 **/ 2380 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2381 unsigned int total_rx_bytes, 2382 unsigned int total_rx_packets) 2383 { 2384 u64_stats_update_begin(&rx_ring->syncp); 2385 rx_ring->stats.packets += total_rx_packets; 2386 rx_ring->stats.bytes += total_rx_bytes; 2387 u64_stats_update_end(&rx_ring->syncp); 2388 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2389 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2390 } 2391 2392 /** 2393 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2394 * @rx_ring: Rx ring 2395 * @xdp_res: Result of the receive batch 2396 * 2397 * This function bumps XDP Tx tail and/or flush redirect map, and 2398 * should be called when a batch of packets has been processed in the 2399 * napi loop. 2400 **/ 2401 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2402 { 2403 if (xdp_res & I40E_XDP_REDIR) 2404 xdp_do_flush_map(); 2405 2406 if (xdp_res & I40E_XDP_TX) { 2407 struct i40e_ring *xdp_ring = 2408 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2409 2410 i40e_xdp_ring_update_tail(xdp_ring); 2411 } 2412 } 2413 2414 /** 2415 * i40e_inc_ntp: Advance the next_to_process index 2416 * @rx_ring: Rx ring 2417 **/ 2418 static void i40e_inc_ntp(struct i40e_ring *rx_ring) 2419 { 2420 u32 ntp = rx_ring->next_to_process + 1; 2421 2422 ntp = (ntp < rx_ring->count) ? ntp : 0; 2423 rx_ring->next_to_process = ntp; 2424 prefetch(I40E_RX_DESC(rx_ring, ntp)); 2425 } 2426 2427 /** 2428 * i40e_add_xdp_frag: Add a frag to xdp_buff 2429 * @xdp: xdp_buff pointing to the data 2430 * @nr_frags: return number of buffers for the packet 2431 * @rx_buffer: rx_buffer holding data of the current frag 2432 * @size: size of data of current frag 2433 */ 2434 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags, 2435 struct i40e_rx_buffer *rx_buffer, u32 size) 2436 { 2437 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2438 2439 if (!xdp_buff_has_frags(xdp)) { 2440 sinfo->nr_frags = 0; 2441 sinfo->xdp_frags_size = 0; 2442 xdp_buff_set_frags_flag(xdp); 2443 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) { 2444 /* Overflowing packet: All frags need to be dropped */ 2445 return -ENOMEM; 2446 } 2447 2448 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page, 2449 rx_buffer->page_offset, size); 2450 2451 sinfo->xdp_frags_size += size; 2452 2453 if (page_is_pfmemalloc(rx_buffer->page)) 2454 xdp_buff_set_frag_pfmemalloc(xdp); 2455 *nr_frags = sinfo->nr_frags; 2456 2457 return 0; 2458 } 2459 2460 /** 2461 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc 2462 * @rx_ring: rx descriptor ring to transact packets on 2463 * @xdp: xdp_buff pointing to the data 2464 * @rx_buffer: rx_buffer of eop desc 2465 */ 2466 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring, 2467 struct xdp_buff *xdp, 2468 struct i40e_rx_buffer *rx_buffer) 2469 { 2470 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp); 2471 i40e_put_rx_buffer(rx_ring, rx_buffer); 2472 rx_ring->next_to_clean = rx_ring->next_to_process; 2473 xdp->data = NULL; 2474 } 2475 2476 /** 2477 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2478 * @rx_ring: rx descriptor ring to transact packets on 2479 * @budget: Total limit on number of packets to process 2480 * @rx_cleaned: Out parameter of the number of packets processed 2481 * 2482 * This function provides a "bounce buffer" approach to Rx interrupt 2483 * processing. The advantage to this is that on systems that have 2484 * expensive overhead for IOMMU access this provides a means of avoiding 2485 * it by maintaining the mapping of the page to the system. 2486 * 2487 * Returns amount of work completed 2488 **/ 2489 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget, 2490 unsigned int *rx_cleaned) 2491 { 2492 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2493 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2494 u16 clean_threshold = rx_ring->count / 2; 2495 unsigned int offset = rx_ring->rx_offset; 2496 struct xdp_buff *xdp = &rx_ring->xdp; 2497 unsigned int xdp_xmit = 0; 2498 struct bpf_prog *xdp_prog; 2499 bool failure = false; 2500 int xdp_res = 0; 2501 2502 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2503 2504 while (likely(total_rx_packets < (unsigned int)budget)) { 2505 u16 ntp = rx_ring->next_to_process; 2506 struct i40e_rx_buffer *rx_buffer; 2507 union i40e_rx_desc *rx_desc; 2508 struct sk_buff *skb; 2509 unsigned int size; 2510 u32 nfrags = 0; 2511 bool neop; 2512 u64 qword; 2513 2514 /* return some buffers to hardware, one at a time is too slow */ 2515 if (cleaned_count >= clean_threshold) { 2516 failure = failure || 2517 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2518 cleaned_count = 0; 2519 } 2520 2521 rx_desc = I40E_RX_DESC(rx_ring, ntp); 2522 2523 /* status_error_len will always be zero for unused descriptors 2524 * because it's cleared in cleanup, and overlaps with hdr_addr 2525 * which is always zero because packet split isn't used, if the 2526 * hardware wrote DD then the length will be non-zero 2527 */ 2528 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2529 2530 /* This memory barrier is needed to keep us from reading 2531 * any other fields out of the rx_desc until we have 2532 * verified the descriptor has been written back. 2533 */ 2534 dma_rmb(); 2535 2536 if (i40e_rx_is_programming_status(qword)) { 2537 i40e_clean_programming_status(rx_ring, 2538 rx_desc->raw.qword[0], 2539 qword); 2540 rx_buffer = i40e_rx_bi(rx_ring, ntp); 2541 i40e_inc_ntp(rx_ring); 2542 i40e_reuse_rx_page(rx_ring, rx_buffer); 2543 /* Update ntc and bump cleaned count if not in the 2544 * middle of mb packet. 2545 */ 2546 if (rx_ring->next_to_clean == ntp) { 2547 rx_ring->next_to_clean = 2548 rx_ring->next_to_process; 2549 cleaned_count++; 2550 } 2551 continue; 2552 } 2553 2554 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2555 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2556 if (!size) 2557 break; 2558 2559 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp); 2560 /* retrieve a buffer from the ring */ 2561 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2562 2563 neop = i40e_is_non_eop(rx_ring, rx_desc); 2564 i40e_inc_ntp(rx_ring); 2565 2566 if (!xdp->data) { 2567 unsigned char *hard_start; 2568 2569 hard_start = page_address(rx_buffer->page) + 2570 rx_buffer->page_offset - offset; 2571 xdp_prepare_buff(xdp, hard_start, offset, size, true); 2572 #if (PAGE_SIZE > 4096) 2573 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2574 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2575 #endif 2576 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) && 2577 !neop) { 2578 /* Overflowing packet: Drop all frags on EOP */ 2579 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); 2580 break; 2581 } 2582 2583 if (neop) 2584 continue; 2585 2586 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog); 2587 2588 if (xdp_res) { 2589 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); 2590 2591 if (unlikely(xdp_buff_has_frags(xdp))) { 2592 i40e_process_rx_buffs(rx_ring, xdp_res, xdp); 2593 size = xdp_get_buff_len(xdp); 2594 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2595 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); 2596 } else { 2597 rx_buffer->pagecnt_bias++; 2598 } 2599 total_rx_bytes += size; 2600 } else { 2601 if (ring_uses_build_skb(rx_ring)) 2602 skb = i40e_build_skb(rx_ring, xdp); 2603 else 2604 skb = i40e_construct_skb(rx_ring, xdp); 2605 2606 /* drop if we failed to retrieve a buffer */ 2607 if (!skb) { 2608 rx_ring->rx_stats.alloc_buff_failed++; 2609 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); 2610 break; 2611 } 2612 2613 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) 2614 goto process_next; 2615 2616 /* probably a little skewed due to removing CRC */ 2617 total_rx_bytes += skb->len; 2618 2619 /* populate checksum, VLAN, and protocol */ 2620 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2621 2622 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp); 2623 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2624 } 2625 2626 /* update budget accounting */ 2627 total_rx_packets++; 2628 process_next: 2629 cleaned_count += nfrags + 1; 2630 i40e_put_rx_buffer(rx_ring, rx_buffer); 2631 rx_ring->next_to_clean = rx_ring->next_to_process; 2632 2633 xdp->data = NULL; 2634 } 2635 2636 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2637 2638 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2639 2640 *rx_cleaned = total_rx_packets; 2641 2642 /* guarantee a trip back through this routine if there was a failure */ 2643 return failure ? budget : (int)total_rx_packets; 2644 } 2645 2646 /** 2647 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register 2648 * @itr_idx: interrupt throttling index 2649 * @interval: interrupt throttling interval value in usecs 2650 * @force_swint: force software interrupt 2651 * 2652 * The function builds a value for I40E_PFINT_DYN_CTLN register that 2653 * is used to update interrupt throttling interval for specified ITR index 2654 * and optionally enforces a software interrupt. If the @itr_idx is equal 2655 * to I40E_ITR_NONE then no interval change is applied and only @force_swint 2656 * parameter is taken into account. If the interval change and enforced 2657 * software interrupt are not requested then the built value just enables 2658 * appropriate vector interrupt. 2659 **/ 2660 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval, 2661 bool force_swint) 2662 { 2663 u32 val; 2664 2665 /* We don't bother with setting the CLEARPBA bit as the data sheet 2666 * points out doing so is "meaningless since it was already 2667 * auto-cleared". The auto-clearing happens when the interrupt is 2668 * asserted. 2669 * 2670 * Hardware errata 28 for also indicates that writing to a 2671 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2672 * an event in the PBA anyway so we need to rely on the automask 2673 * to hold pending events for us until the interrupt is re-enabled 2674 * 2675 * We have to shift the given value as it is reported in microseconds 2676 * and the register value is recorded in 2 microsecond units. 2677 */ 2678 interval >>= 1; 2679 2680 /* 1. Enable vector interrupt 2681 * 2. Update the interval for the specified ITR index 2682 * (I40E_ITR_NONE in the register is used to indicate that 2683 * no interval update is requested) 2684 */ 2685 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2686 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) | 2687 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval); 2688 2689 /* 3. Enforce software interrupt trigger if requested 2690 * (These software interrupts rate is limited by ITR2 that is 2691 * set to 20K interrupts per second) 2692 */ 2693 if (force_swint) 2694 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 2695 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK | 2696 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK, 2697 I40E_SW_ITR); 2698 2699 return val; 2700 } 2701 2702 /* The act of updating the ITR will cause it to immediately trigger. In order 2703 * to prevent this from throwing off adaptive update statistics we defer the 2704 * update so that it can only happen so often. So after either Tx or Rx are 2705 * updated we make the adaptive scheme wait until either the ITR completely 2706 * expires via the next_update expiration or we have been through at least 2707 * 3 interrupts. 2708 */ 2709 #define ITR_COUNTDOWN_START 3 2710 2711 /** 2712 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2713 * @vsi: the VSI we care about 2714 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2715 * 2716 **/ 2717 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2718 struct i40e_q_vector *q_vector) 2719 { 2720 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE; 2721 struct i40e_hw *hw = &vsi->back->hw; 2722 u16 interval = 0; 2723 u32 itr_val; 2724 2725 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2726 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2727 i40e_irq_dynamic_enable_icr0(vsi->back); 2728 return; 2729 } 2730 2731 /* These will do nothing if dynamic updates are not enabled */ 2732 i40e_update_itr(q_vector, &q_vector->tx); 2733 i40e_update_itr(q_vector, &q_vector->rx); 2734 2735 /* This block of logic allows us to get away with only updating 2736 * one ITR value with each interrupt. The idea is to perform a 2737 * pseudo-lazy update with the following criteria. 2738 * 2739 * 1. Rx is given higher priority than Tx if both are in same state 2740 * 2. If we must reduce an ITR that is given highest priority. 2741 * 3. We then give priority to increasing ITR based on amount. 2742 */ 2743 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2744 /* Rx ITR needs to be reduced, this is highest priority */ 2745 itr_idx = I40E_RX_ITR; 2746 interval = q_vector->rx.target_itr; 2747 q_vector->rx.current_itr = q_vector->rx.target_itr; 2748 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2749 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2750 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2751 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2752 /* Tx ITR needs to be reduced, this is second priority 2753 * Tx ITR needs to be increased more than Rx, fourth priority 2754 */ 2755 itr_idx = I40E_TX_ITR; 2756 interval = q_vector->tx.target_itr; 2757 q_vector->tx.current_itr = q_vector->tx.target_itr; 2758 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2759 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2760 /* Rx ITR needs to be increased, third priority */ 2761 itr_idx = I40E_RX_ITR; 2762 interval = q_vector->rx.target_itr; 2763 q_vector->rx.current_itr = q_vector->rx.target_itr; 2764 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2765 } else { 2766 /* No ITR update, lowest priority */ 2767 if (q_vector->itr_countdown) 2768 q_vector->itr_countdown--; 2769 } 2770 2771 /* Do not update interrupt control register if VSI is down */ 2772 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 2773 return; 2774 2775 /* Update ITR interval if necessary and enforce software interrupt 2776 * if we are exiting busy poll. 2777 */ 2778 if (q_vector->in_busy_poll) { 2779 itr_val = i40e_buildreg_itr(itr_idx, interval, true); 2780 q_vector->in_busy_poll = false; 2781 } else { 2782 itr_val = i40e_buildreg_itr(itr_idx, interval, false); 2783 } 2784 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val); 2785 } 2786 2787 /** 2788 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2789 * @napi: napi struct with our devices info in it 2790 * @budget: amount of work driver is allowed to do this pass, in packets 2791 * 2792 * This function will clean all queues associated with a q_vector. 2793 * 2794 * Returns the amount of work done 2795 **/ 2796 int i40e_napi_poll(struct napi_struct *napi, int budget) 2797 { 2798 struct i40e_q_vector *q_vector = 2799 container_of(napi, struct i40e_q_vector, napi); 2800 struct i40e_vsi *vsi = q_vector->vsi; 2801 struct i40e_ring *ring; 2802 bool tx_clean_complete = true; 2803 bool rx_clean_complete = true; 2804 unsigned int tx_cleaned = 0; 2805 unsigned int rx_cleaned = 0; 2806 bool clean_complete = true; 2807 bool arm_wb = false; 2808 int budget_per_ring; 2809 int work_done = 0; 2810 2811 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2812 napi_complete(napi); 2813 return 0; 2814 } 2815 2816 /* Since the actual Tx work is minimal, we can give the Tx a larger 2817 * budget and be more aggressive about cleaning up the Tx descriptors. 2818 */ 2819 i40e_for_each_ring(ring, q_vector->tx) { 2820 bool wd = ring->xsk_pool ? 2821 i40e_clean_xdp_tx_irq(vsi, ring) : 2822 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned); 2823 2824 if (!wd) { 2825 clean_complete = tx_clean_complete = false; 2826 continue; 2827 } 2828 arm_wb |= ring->arm_wb; 2829 ring->arm_wb = false; 2830 } 2831 2832 /* Handle case where we are called by netpoll with a budget of 0 */ 2833 if (budget <= 0) 2834 goto tx_only; 2835 2836 /* normally we have 1 Rx ring per q_vector */ 2837 if (unlikely(q_vector->num_ringpairs > 1)) 2838 /* We attempt to distribute budget to each Rx queue fairly, but 2839 * don't allow the budget to go below 1 because that would exit 2840 * polling early. 2841 */ 2842 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2843 else 2844 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2845 budget_per_ring = budget; 2846 2847 i40e_for_each_ring(ring, q_vector->rx) { 2848 int cleaned = ring->xsk_pool ? 2849 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2850 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned); 2851 2852 work_done += cleaned; 2853 /* if we clean as many as budgeted, we must not be done */ 2854 if (cleaned >= budget_per_ring) 2855 clean_complete = rx_clean_complete = false; 2856 } 2857 2858 if (!i40e_enabled_xdp_vsi(vsi)) 2859 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned, 2860 tx_cleaned, rx_clean_complete, tx_clean_complete); 2861 2862 /* If work not completed, return budget and polling will return */ 2863 if (!clean_complete) { 2864 int cpu_id = smp_processor_id(); 2865 2866 /* It is possible that the interrupt affinity has changed but, 2867 * if the cpu is pegged at 100%, polling will never exit while 2868 * traffic continues and the interrupt will be stuck on this 2869 * cpu. We check to make sure affinity is correct before we 2870 * continue to poll, otherwise we must stop polling so the 2871 * interrupt can move to the correct cpu. 2872 */ 2873 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2874 /* Tell napi that we are done polling */ 2875 napi_complete_done(napi, work_done); 2876 2877 /* Force an interrupt */ 2878 i40e_force_wb(vsi, q_vector); 2879 2880 /* Return budget-1 so that polling stops */ 2881 return budget - 1; 2882 } 2883 tx_only: 2884 if (arm_wb) { 2885 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2886 i40e_enable_wb_on_itr(vsi, q_vector); 2887 } 2888 return budget; 2889 } 2890 2891 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR) 2892 q_vector->arm_wb_state = false; 2893 2894 /* Exit the polling mode, but don't re-enable interrupts if stack might 2895 * poll us due to busy-polling 2896 */ 2897 if (likely(napi_complete_done(napi, work_done))) 2898 i40e_update_enable_itr(vsi, q_vector); 2899 else 2900 q_vector->in_busy_poll = true; 2901 2902 return min(work_done, budget - 1); 2903 } 2904 2905 /** 2906 * i40e_atr - Add a Flow Director ATR filter 2907 * @tx_ring: ring to add programming descriptor to 2908 * @skb: send buffer 2909 * @tx_flags: send tx flags 2910 **/ 2911 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2912 u32 tx_flags) 2913 { 2914 struct i40e_filter_program_desc *fdir_desc; 2915 struct i40e_pf *pf = tx_ring->vsi->back; 2916 union { 2917 unsigned char *network; 2918 struct iphdr *ipv4; 2919 struct ipv6hdr *ipv6; 2920 } hdr; 2921 struct tcphdr *th; 2922 unsigned int hlen; 2923 u32 flex_ptype, dtype_cmd; 2924 int l4_proto; 2925 u16 i; 2926 2927 /* make sure ATR is enabled */ 2928 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2929 return; 2930 2931 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2932 return; 2933 2934 /* if sampling is disabled do nothing */ 2935 if (!tx_ring->atr_sample_rate) 2936 return; 2937 2938 /* Currently only IPv4/IPv6 with TCP is supported */ 2939 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2940 return; 2941 2942 /* snag network header to get L4 type and address */ 2943 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2944 skb_inner_network_header(skb) : skb_network_header(skb); 2945 2946 /* Note: tx_flags gets modified to reflect inner protocols in 2947 * tx_enable_csum function if encap is enabled. 2948 */ 2949 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2950 /* access ihl as u8 to avoid unaligned access on ia64 */ 2951 hlen = (hdr.network[0] & 0x0F) << 2; 2952 l4_proto = hdr.ipv4->protocol; 2953 } else { 2954 /* find the start of the innermost ipv6 header */ 2955 unsigned int inner_hlen = hdr.network - skb->data; 2956 unsigned int h_offset = inner_hlen; 2957 2958 /* this function updates h_offset to the end of the header */ 2959 l4_proto = 2960 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2961 /* hlen will contain our best estimate of the tcp header */ 2962 hlen = h_offset - inner_hlen; 2963 } 2964 2965 if (l4_proto != IPPROTO_TCP) 2966 return; 2967 2968 th = (struct tcphdr *)(hdr.network + hlen); 2969 2970 /* Due to lack of space, no more new filters can be programmed */ 2971 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2972 return; 2973 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2974 /* HW ATR eviction will take care of removing filters on FIN 2975 * and RST packets. 2976 */ 2977 if (th->fin || th->rst) 2978 return; 2979 } 2980 2981 tx_ring->atr_count++; 2982 2983 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2984 if (!th->fin && 2985 !th->syn && 2986 !th->rst && 2987 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2988 return; 2989 2990 tx_ring->atr_count = 0; 2991 2992 /* grab the next descriptor */ 2993 i = tx_ring->next_to_use; 2994 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2995 2996 i++; 2997 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2998 2999 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 3000 I40E_TXD_FLTR_QW0_QINDEX_MASK; 3001 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 3002 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 3003 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 3004 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 3005 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 3006 3007 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 3008 3009 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 3010 3011 dtype_cmd |= (th->fin || th->rst) ? 3012 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 3013 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 3014 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 3015 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 3016 3017 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 3018 I40E_TXD_FLTR_QW1_DEST_SHIFT; 3019 3020 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 3021 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 3022 3023 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 3024 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 3025 dtype_cmd |= 3026 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 3027 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 3028 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 3029 else 3030 dtype_cmd |= 3031 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 3032 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 3033 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 3034 3035 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 3036 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 3037 3038 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 3039 fdir_desc->rsvd = cpu_to_le32(0); 3040 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 3041 fdir_desc->fd_id = cpu_to_le32(0); 3042 } 3043 3044 /** 3045 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 3046 * @skb: send buffer 3047 * @tx_ring: ring to send buffer on 3048 * @flags: the tx flags to be set 3049 * 3050 * Checks the skb and set up correspondingly several generic transmit flags 3051 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 3052 * 3053 * Returns error code indicate the frame should be dropped upon error and the 3054 * otherwise returns 0 to indicate the flags has been set properly. 3055 **/ 3056 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 3057 struct i40e_ring *tx_ring, 3058 u32 *flags) 3059 { 3060 __be16 protocol = skb->protocol; 3061 u32 tx_flags = 0; 3062 3063 if (protocol == htons(ETH_P_8021Q) && 3064 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 3065 /* When HW VLAN acceleration is turned off by the user the 3066 * stack sets the protocol to 8021q so that the driver 3067 * can take any steps required to support the SW only 3068 * VLAN handling. In our case the driver doesn't need 3069 * to take any further steps so just set the protocol 3070 * to the encapsulated ethertype. 3071 */ 3072 skb->protocol = vlan_get_protocol(skb); 3073 goto out; 3074 } 3075 3076 /* if we have a HW VLAN tag being added, default to the HW one */ 3077 if (skb_vlan_tag_present(skb)) { 3078 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 3079 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 3080 /* else if it is a SW VLAN, check the next protocol and store the tag */ 3081 } else if (protocol == htons(ETH_P_8021Q)) { 3082 struct vlan_hdr *vhdr, _vhdr; 3083 3084 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 3085 if (!vhdr) 3086 return -EINVAL; 3087 3088 protocol = vhdr->h_vlan_encapsulated_proto; 3089 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 3090 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 3091 } 3092 3093 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 3094 goto out; 3095 3096 /* Insert 802.1p priority into VLAN header */ 3097 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 3098 (skb->priority != TC_PRIO_CONTROL)) { 3099 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 3100 tx_flags |= (skb->priority & 0x7) << 3101 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 3102 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 3103 struct vlan_ethhdr *vhdr; 3104 int rc; 3105 3106 rc = skb_cow_head(skb, 0); 3107 if (rc < 0) 3108 return rc; 3109 vhdr = skb_vlan_eth_hdr(skb); 3110 vhdr->h_vlan_TCI = htons(tx_flags >> 3111 I40E_TX_FLAGS_VLAN_SHIFT); 3112 } else { 3113 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 3114 } 3115 } 3116 3117 out: 3118 *flags = tx_flags; 3119 return 0; 3120 } 3121 3122 /** 3123 * i40e_tso - set up the tso context descriptor 3124 * @first: pointer to first Tx buffer for xmit 3125 * @hdr_len: ptr to the size of the packet header 3126 * @cd_type_cmd_tso_mss: Quad Word 1 3127 * 3128 * Returns 0 if no TSO can happen, 1 if tso is going, or error 3129 **/ 3130 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 3131 u64 *cd_type_cmd_tso_mss) 3132 { 3133 struct sk_buff *skb = first->skb; 3134 u64 cd_cmd, cd_tso_len, cd_mss; 3135 __be16 protocol; 3136 union { 3137 struct iphdr *v4; 3138 struct ipv6hdr *v6; 3139 unsigned char *hdr; 3140 } ip; 3141 union { 3142 struct tcphdr *tcp; 3143 struct udphdr *udp; 3144 unsigned char *hdr; 3145 } l4; 3146 u32 paylen, l4_offset; 3147 u16 gso_size; 3148 int err; 3149 3150 if (skb->ip_summed != CHECKSUM_PARTIAL) 3151 return 0; 3152 3153 if (!skb_is_gso(skb)) 3154 return 0; 3155 3156 err = skb_cow_head(skb, 0); 3157 if (err < 0) 3158 return err; 3159 3160 protocol = vlan_get_protocol(skb); 3161 3162 if (eth_p_mpls(protocol)) 3163 ip.hdr = skb_inner_network_header(skb); 3164 else 3165 ip.hdr = skb_network_header(skb); 3166 l4.hdr = skb_checksum_start(skb); 3167 3168 /* initialize outer IP header fields */ 3169 if (ip.v4->version == 4) { 3170 ip.v4->tot_len = 0; 3171 ip.v4->check = 0; 3172 3173 first->tx_flags |= I40E_TX_FLAGS_TSO; 3174 } else { 3175 ip.v6->payload_len = 0; 3176 first->tx_flags |= I40E_TX_FLAGS_TSO; 3177 } 3178 3179 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 3180 SKB_GSO_GRE_CSUM | 3181 SKB_GSO_IPXIP4 | 3182 SKB_GSO_IPXIP6 | 3183 SKB_GSO_UDP_TUNNEL | 3184 SKB_GSO_UDP_TUNNEL_CSUM)) { 3185 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3186 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 3187 l4.udp->len = 0; 3188 3189 /* determine offset of outer transport header */ 3190 l4_offset = l4.hdr - skb->data; 3191 3192 /* remove payload length from outer checksum */ 3193 paylen = skb->len - l4_offset; 3194 csum_replace_by_diff(&l4.udp->check, 3195 (__force __wsum)htonl(paylen)); 3196 } 3197 3198 /* reset pointers to inner headers */ 3199 ip.hdr = skb_inner_network_header(skb); 3200 l4.hdr = skb_inner_transport_header(skb); 3201 3202 /* initialize inner IP header fields */ 3203 if (ip.v4->version == 4) { 3204 ip.v4->tot_len = 0; 3205 ip.v4->check = 0; 3206 } else { 3207 ip.v6->payload_len = 0; 3208 } 3209 } 3210 3211 /* determine offset of inner transport header */ 3212 l4_offset = l4.hdr - skb->data; 3213 3214 /* remove payload length from inner checksum */ 3215 paylen = skb->len - l4_offset; 3216 3217 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3218 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 3219 /* compute length of segmentation header */ 3220 *hdr_len = sizeof(*l4.udp) + l4_offset; 3221 } else { 3222 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3223 /* compute length of segmentation header */ 3224 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3225 } 3226 3227 /* pull values out of skb_shinfo */ 3228 gso_size = skb_shinfo(skb)->gso_size; 3229 3230 /* update GSO size and bytecount with header size */ 3231 first->gso_segs = skb_shinfo(skb)->gso_segs; 3232 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3233 3234 /* find the field values */ 3235 cd_cmd = I40E_TX_CTX_DESC_TSO; 3236 cd_tso_len = skb->len - *hdr_len; 3237 cd_mss = gso_size; 3238 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 3239 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 3240 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 3241 return 1; 3242 } 3243 3244 /** 3245 * i40e_tsyn - set up the tsyn context descriptor 3246 * @tx_ring: ptr to the ring to send 3247 * @skb: ptr to the skb we're sending 3248 * @tx_flags: the collected send information 3249 * @cd_type_cmd_tso_mss: Quad Word 1 3250 * 3251 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3252 **/ 3253 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3254 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3255 { 3256 struct i40e_pf *pf; 3257 3258 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3259 return 0; 3260 3261 /* Tx timestamps cannot be sampled when doing TSO */ 3262 if (tx_flags & I40E_TX_FLAGS_TSO) 3263 return 0; 3264 3265 /* only timestamp the outbound packet if the user has requested it and 3266 * we are not already transmitting a packet to be timestamped 3267 */ 3268 pf = i40e_netdev_to_pf(tx_ring->netdev); 3269 if (!(pf->flags & I40E_FLAG_PTP)) 3270 return 0; 3271 3272 if (pf->ptp_tx && 3273 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3274 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3275 pf->ptp_tx_start = jiffies; 3276 pf->ptp_tx_skb = skb_get(skb); 3277 } else { 3278 pf->tx_hwtstamp_skipped++; 3279 return 0; 3280 } 3281 3282 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3283 I40E_TXD_CTX_QW1_CMD_SHIFT; 3284 3285 return 1; 3286 } 3287 3288 /** 3289 * i40e_tx_enable_csum - Enable Tx checksum offloads 3290 * @skb: send buffer 3291 * @tx_flags: pointer to Tx flags currently set 3292 * @td_cmd: Tx descriptor command bits to set 3293 * @td_offset: Tx descriptor header offsets to set 3294 * @tx_ring: Tx descriptor ring 3295 * @cd_tunneling: ptr to context desc bits 3296 **/ 3297 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3298 u32 *td_cmd, u32 *td_offset, 3299 struct i40e_ring *tx_ring, 3300 u32 *cd_tunneling) 3301 { 3302 union { 3303 struct iphdr *v4; 3304 struct ipv6hdr *v6; 3305 unsigned char *hdr; 3306 } ip; 3307 union { 3308 struct tcphdr *tcp; 3309 struct udphdr *udp; 3310 unsigned char *hdr; 3311 } l4; 3312 unsigned char *exthdr; 3313 u32 offset, cmd = 0; 3314 __be16 frag_off; 3315 __be16 protocol; 3316 u8 l4_proto = 0; 3317 3318 if (skb->ip_summed != CHECKSUM_PARTIAL) 3319 return 0; 3320 3321 protocol = vlan_get_protocol(skb); 3322 3323 if (eth_p_mpls(protocol)) { 3324 ip.hdr = skb_inner_network_header(skb); 3325 l4.hdr = skb_checksum_start(skb); 3326 } else { 3327 ip.hdr = skb_network_header(skb); 3328 l4.hdr = skb_transport_header(skb); 3329 } 3330 3331 /* set the tx_flags to indicate the IP protocol type. this is 3332 * required so that checksum header computation below is accurate. 3333 */ 3334 if (ip.v4->version == 4) 3335 *tx_flags |= I40E_TX_FLAGS_IPV4; 3336 else 3337 *tx_flags |= I40E_TX_FLAGS_IPV6; 3338 3339 /* compute outer L2 header size */ 3340 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3341 3342 if (skb->encapsulation) { 3343 u32 tunnel = 0; 3344 /* define outer network header type */ 3345 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3346 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3347 I40E_TX_CTX_EXT_IP_IPV4 : 3348 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3349 3350 l4_proto = ip.v4->protocol; 3351 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3352 int ret; 3353 3354 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3355 3356 exthdr = ip.hdr + sizeof(*ip.v6); 3357 l4_proto = ip.v6->nexthdr; 3358 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 3359 &l4_proto, &frag_off); 3360 if (ret < 0) 3361 return -1; 3362 } 3363 3364 /* define outer transport */ 3365 switch (l4_proto) { 3366 case IPPROTO_UDP: 3367 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3368 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3369 break; 3370 case IPPROTO_GRE: 3371 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3372 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3373 break; 3374 case IPPROTO_IPIP: 3375 case IPPROTO_IPV6: 3376 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3377 l4.hdr = skb_inner_network_header(skb); 3378 break; 3379 default: 3380 if (*tx_flags & I40E_TX_FLAGS_TSO) 3381 return -1; 3382 3383 skb_checksum_help(skb); 3384 return 0; 3385 } 3386 3387 /* compute outer L3 header size */ 3388 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3389 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3390 3391 /* switch IP header pointer from outer to inner header */ 3392 ip.hdr = skb_inner_network_header(skb); 3393 3394 /* compute tunnel header size */ 3395 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3396 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3397 3398 /* indicate if we need to offload outer UDP header */ 3399 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3400 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3401 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3402 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3403 3404 /* record tunnel offload values */ 3405 *cd_tunneling |= tunnel; 3406 3407 /* switch L4 header pointer from outer to inner */ 3408 l4.hdr = skb_inner_transport_header(skb); 3409 l4_proto = 0; 3410 3411 /* reset type as we transition from outer to inner headers */ 3412 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3413 if (ip.v4->version == 4) 3414 *tx_flags |= I40E_TX_FLAGS_IPV4; 3415 if (ip.v6->version == 6) 3416 *tx_flags |= I40E_TX_FLAGS_IPV6; 3417 } 3418 3419 /* Enable IP checksum offloads */ 3420 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3421 l4_proto = ip.v4->protocol; 3422 /* the stack computes the IP header already, the only time we 3423 * need the hardware to recompute it is in the case of TSO. 3424 */ 3425 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3426 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3427 I40E_TX_DESC_CMD_IIPT_IPV4; 3428 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3429 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3430 3431 exthdr = ip.hdr + sizeof(*ip.v6); 3432 l4_proto = ip.v6->nexthdr; 3433 if (l4.hdr != exthdr) 3434 ipv6_skip_exthdr(skb, exthdr - skb->data, 3435 &l4_proto, &frag_off); 3436 } 3437 3438 /* compute inner L3 header size */ 3439 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3440 3441 /* Enable L4 checksum offloads */ 3442 switch (l4_proto) { 3443 case IPPROTO_TCP: 3444 /* enable checksum offloads */ 3445 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3446 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3447 break; 3448 case IPPROTO_SCTP: 3449 /* enable SCTP checksum offload */ 3450 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3451 offset |= (sizeof(struct sctphdr) >> 2) << 3452 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3453 break; 3454 case IPPROTO_UDP: 3455 /* enable UDP checksum offload */ 3456 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3457 offset |= (sizeof(struct udphdr) >> 2) << 3458 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3459 break; 3460 default: 3461 if (*tx_flags & I40E_TX_FLAGS_TSO) 3462 return -1; 3463 skb_checksum_help(skb); 3464 return 0; 3465 } 3466 3467 *td_cmd |= cmd; 3468 *td_offset |= offset; 3469 3470 return 1; 3471 } 3472 3473 /** 3474 * i40e_create_tx_ctx - Build the Tx context descriptor 3475 * @tx_ring: ring to create the descriptor on 3476 * @cd_type_cmd_tso_mss: Quad Word 1 3477 * @cd_tunneling: Quad Word 0 - bits 0-31 3478 * @cd_l2tag2: Quad Word 0 - bits 32-63 3479 **/ 3480 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3481 const u64 cd_type_cmd_tso_mss, 3482 const u32 cd_tunneling, const u32 cd_l2tag2) 3483 { 3484 struct i40e_tx_context_desc *context_desc; 3485 int i = tx_ring->next_to_use; 3486 3487 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3488 !cd_tunneling && !cd_l2tag2) 3489 return; 3490 3491 /* grab the next descriptor */ 3492 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3493 3494 i++; 3495 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3496 3497 /* cpu_to_le32 and assign to struct fields */ 3498 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3499 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3500 context_desc->rsvd = cpu_to_le16(0); 3501 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3502 } 3503 3504 /** 3505 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3506 * @tx_ring: the ring to be checked 3507 * @size: the size buffer we want to assure is available 3508 * 3509 * Returns -EBUSY if a stop is needed, else 0 3510 **/ 3511 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3512 { 3513 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3514 /* Memory barrier before checking head and tail */ 3515 smp_mb(); 3516 3517 ++tx_ring->tx_stats.tx_stopped; 3518 3519 /* Check again in a case another CPU has just made room available. */ 3520 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3521 return -EBUSY; 3522 3523 /* A reprieve! - use start_queue because it doesn't call schedule */ 3524 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3525 ++tx_ring->tx_stats.restart_queue; 3526 return 0; 3527 } 3528 3529 /** 3530 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3531 * @skb: send buffer 3532 * 3533 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3534 * and so we need to figure out the cases where we need to linearize the skb. 3535 * 3536 * For TSO we need to count the TSO header and segment payload separately. 3537 * As such we need to check cases where we have 7 fragments or more as we 3538 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3539 * the segment payload in the first descriptor, and another 7 for the 3540 * fragments. 3541 **/ 3542 bool __i40e_chk_linearize(struct sk_buff *skb) 3543 { 3544 const skb_frag_t *frag, *stale; 3545 int nr_frags, sum; 3546 3547 /* no need to check if number of frags is less than 7 */ 3548 nr_frags = skb_shinfo(skb)->nr_frags; 3549 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3550 return false; 3551 3552 /* We need to walk through the list and validate that each group 3553 * of 6 fragments totals at least gso_size. 3554 */ 3555 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3556 frag = &skb_shinfo(skb)->frags[0]; 3557 3558 /* Initialize size to the negative value of gso_size minus 1. We 3559 * use this as the worst case scenerio in which the frag ahead 3560 * of us only provides one byte which is why we are limited to 6 3561 * descriptors for a single transmit as the header and previous 3562 * fragment are already consuming 2 descriptors. 3563 */ 3564 sum = 1 - skb_shinfo(skb)->gso_size; 3565 3566 /* Add size of frags 0 through 4 to create our initial sum */ 3567 sum += skb_frag_size(frag++); 3568 sum += skb_frag_size(frag++); 3569 sum += skb_frag_size(frag++); 3570 sum += skb_frag_size(frag++); 3571 sum += skb_frag_size(frag++); 3572 3573 /* Walk through fragments adding latest fragment, testing it, and 3574 * then removing stale fragments from the sum. 3575 */ 3576 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3577 int stale_size = skb_frag_size(stale); 3578 3579 sum += skb_frag_size(frag++); 3580 3581 /* The stale fragment may present us with a smaller 3582 * descriptor than the actual fragment size. To account 3583 * for that we need to remove all the data on the front and 3584 * figure out what the remainder would be in the last 3585 * descriptor associated with the fragment. 3586 */ 3587 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3588 int align_pad = -(skb_frag_off(stale)) & 3589 (I40E_MAX_READ_REQ_SIZE - 1); 3590 3591 sum -= align_pad; 3592 stale_size -= align_pad; 3593 3594 do { 3595 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3596 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3597 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3598 } 3599 3600 /* if sum is negative we failed to make sufficient progress */ 3601 if (sum < 0) 3602 return true; 3603 3604 if (!nr_frags--) 3605 break; 3606 3607 sum -= stale_size; 3608 } 3609 3610 return false; 3611 } 3612 3613 /** 3614 * i40e_tx_map - Build the Tx descriptor 3615 * @tx_ring: ring to send buffer on 3616 * @skb: send buffer 3617 * @first: first buffer info buffer to use 3618 * @tx_flags: collected send information 3619 * @hdr_len: size of the packet header 3620 * @td_cmd: the command field in the descriptor 3621 * @td_offset: offset for checksum or crc 3622 * 3623 * Returns 0 on success, -1 on failure to DMA 3624 **/ 3625 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3626 struct i40e_tx_buffer *first, u32 tx_flags, 3627 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3628 { 3629 unsigned int data_len = skb->data_len; 3630 unsigned int size = skb_headlen(skb); 3631 skb_frag_t *frag; 3632 struct i40e_tx_buffer *tx_bi; 3633 struct i40e_tx_desc *tx_desc; 3634 u16 i = tx_ring->next_to_use; 3635 u32 td_tag = 0; 3636 dma_addr_t dma; 3637 u16 desc_count = 1; 3638 3639 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3640 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3641 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3642 I40E_TX_FLAGS_VLAN_SHIFT; 3643 } 3644 3645 first->tx_flags = tx_flags; 3646 3647 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3648 3649 tx_desc = I40E_TX_DESC(tx_ring, i); 3650 tx_bi = first; 3651 3652 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3653 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3654 3655 if (dma_mapping_error(tx_ring->dev, dma)) 3656 goto dma_error; 3657 3658 /* record length, and DMA address */ 3659 dma_unmap_len_set(tx_bi, len, size); 3660 dma_unmap_addr_set(tx_bi, dma, dma); 3661 3662 /* align size to end of page */ 3663 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3664 tx_desc->buffer_addr = cpu_to_le64(dma); 3665 3666 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3667 tx_desc->cmd_type_offset_bsz = 3668 build_ctob(td_cmd, td_offset, 3669 max_data, td_tag); 3670 3671 tx_desc++; 3672 i++; 3673 desc_count++; 3674 3675 if (i == tx_ring->count) { 3676 tx_desc = I40E_TX_DESC(tx_ring, 0); 3677 i = 0; 3678 } 3679 3680 dma += max_data; 3681 size -= max_data; 3682 3683 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3684 tx_desc->buffer_addr = cpu_to_le64(dma); 3685 } 3686 3687 if (likely(!data_len)) 3688 break; 3689 3690 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3691 size, td_tag); 3692 3693 tx_desc++; 3694 i++; 3695 desc_count++; 3696 3697 if (i == tx_ring->count) { 3698 tx_desc = I40E_TX_DESC(tx_ring, 0); 3699 i = 0; 3700 } 3701 3702 size = skb_frag_size(frag); 3703 data_len -= size; 3704 3705 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3706 DMA_TO_DEVICE); 3707 3708 tx_bi = &tx_ring->tx_bi[i]; 3709 } 3710 3711 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3712 3713 i++; 3714 if (i == tx_ring->count) 3715 i = 0; 3716 3717 tx_ring->next_to_use = i; 3718 3719 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3720 3721 /* write last descriptor with EOP bit */ 3722 td_cmd |= I40E_TX_DESC_CMD_EOP; 3723 3724 /* We OR these values together to check both against 4 (WB_STRIDE) 3725 * below. This is safe since we don't re-use desc_count afterwards. 3726 */ 3727 desc_count |= ++tx_ring->packet_stride; 3728 3729 if (desc_count >= WB_STRIDE) { 3730 /* write last descriptor with RS bit set */ 3731 td_cmd |= I40E_TX_DESC_CMD_RS; 3732 tx_ring->packet_stride = 0; 3733 } 3734 3735 tx_desc->cmd_type_offset_bsz = 3736 build_ctob(td_cmd, td_offset, size, td_tag); 3737 3738 skb_tx_timestamp(skb); 3739 3740 /* Force memory writes to complete before letting h/w know there 3741 * are new descriptors to fetch. 3742 * 3743 * We also use this memory barrier to make certain all of the 3744 * status bits have been updated before next_to_watch is written. 3745 */ 3746 wmb(); 3747 3748 /* set next_to_watch value indicating a packet is present */ 3749 first->next_to_watch = tx_desc; 3750 3751 /* notify HW of packet */ 3752 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3753 writel(i, tx_ring->tail); 3754 } 3755 3756 return 0; 3757 3758 dma_error: 3759 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3760 3761 /* clear dma mappings for failed tx_bi map */ 3762 for (;;) { 3763 tx_bi = &tx_ring->tx_bi[i]; 3764 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3765 if (tx_bi == first) 3766 break; 3767 if (i == 0) 3768 i = tx_ring->count; 3769 i--; 3770 } 3771 3772 tx_ring->next_to_use = i; 3773 3774 return -1; 3775 } 3776 3777 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, 3778 const struct sk_buff *skb, 3779 u16 num_tx_queues) 3780 { 3781 u32 jhash_initval_salt = 0xd631614b; 3782 u32 hash; 3783 3784 if (skb->sk && skb->sk->sk_hash) 3785 hash = skb->sk->sk_hash; 3786 else 3787 hash = (__force u16)skb->protocol ^ skb->hash; 3788 3789 hash = jhash_1word(hash, jhash_initval_salt); 3790 3791 return (u16)(((u64)hash * num_tx_queues) >> 32); 3792 } 3793 3794 u16 i40e_lan_select_queue(struct net_device *netdev, 3795 struct sk_buff *skb, 3796 struct net_device __always_unused *sb_dev) 3797 { 3798 struct i40e_netdev_priv *np = netdev_priv(netdev); 3799 struct i40e_vsi *vsi = np->vsi; 3800 struct i40e_hw *hw; 3801 u16 qoffset; 3802 u16 qcount; 3803 u8 tclass; 3804 u16 hash; 3805 u8 prio; 3806 3807 /* is DCB enabled at all? */ 3808 if (vsi->tc_config.numtc == 1 || 3809 i40e_is_tc_mqprio_enabled(vsi->back)) 3810 return netdev_pick_tx(netdev, skb, sb_dev); 3811 3812 prio = skb->priority; 3813 hw = &vsi->back->hw; 3814 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; 3815 /* sanity check */ 3816 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) 3817 tclass = 0; 3818 3819 /* select a queue assigned for the given TC */ 3820 qcount = vsi->tc_config.tc_info[tclass].qcount; 3821 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount); 3822 3823 qoffset = vsi->tc_config.tc_info[tclass].qoffset; 3824 return qoffset + hash; 3825 } 3826 3827 /** 3828 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3829 * @xdpf: data to transmit 3830 * @xdp_ring: XDP Tx ring 3831 **/ 3832 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3833 struct i40e_ring *xdp_ring) 3834 { 3835 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 3836 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; 3837 u16 i = 0, index = xdp_ring->next_to_use; 3838 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index]; 3839 struct i40e_tx_buffer *tx_bi = tx_head; 3840 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index); 3841 void *data = xdpf->data; 3842 u32 size = xdpf->len; 3843 3844 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) { 3845 xdp_ring->tx_stats.tx_busy++; 3846 return I40E_XDP_CONSUMED; 3847 } 3848 3849 tx_head->bytecount = xdp_get_frame_len(xdpf); 3850 tx_head->gso_segs = 1; 3851 tx_head->xdpf = xdpf; 3852 3853 for (;;) { 3854 dma_addr_t dma; 3855 3856 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3857 if (dma_mapping_error(xdp_ring->dev, dma)) 3858 goto unmap; 3859 3860 /* record length, and DMA address */ 3861 dma_unmap_len_set(tx_bi, len, size); 3862 dma_unmap_addr_set(tx_bi, dma, dma); 3863 3864 tx_desc->buffer_addr = cpu_to_le64(dma); 3865 tx_desc->cmd_type_offset_bsz = 3866 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0); 3867 3868 if (++index == xdp_ring->count) 3869 index = 0; 3870 3871 if (i == nr_frags) 3872 break; 3873 3874 tx_bi = &xdp_ring->tx_bi[index]; 3875 tx_desc = I40E_TX_DESC(xdp_ring, index); 3876 3877 data = skb_frag_address(&sinfo->frags[i]); 3878 size = skb_frag_size(&sinfo->frags[i]); 3879 i++; 3880 } 3881 3882 tx_desc->cmd_type_offset_bsz |= 3883 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); 3884 3885 /* Make certain all of the status bits have been updated 3886 * before next_to_watch is written. 3887 */ 3888 smp_wmb(); 3889 3890 xdp_ring->xdp_tx_active++; 3891 3892 tx_head->next_to_watch = tx_desc; 3893 xdp_ring->next_to_use = index; 3894 3895 return I40E_XDP_TX; 3896 3897 unmap: 3898 for (;;) { 3899 tx_bi = &xdp_ring->tx_bi[index]; 3900 if (dma_unmap_len(tx_bi, len)) 3901 dma_unmap_page(xdp_ring->dev, 3902 dma_unmap_addr(tx_bi, dma), 3903 dma_unmap_len(tx_bi, len), 3904 DMA_TO_DEVICE); 3905 dma_unmap_len_set(tx_bi, len, 0); 3906 if (tx_bi == tx_head) 3907 break; 3908 3909 if (!index) 3910 index += xdp_ring->count; 3911 index--; 3912 } 3913 3914 return I40E_XDP_CONSUMED; 3915 } 3916 3917 /** 3918 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3919 * @skb: send buffer 3920 * @tx_ring: ring to send buffer on 3921 * 3922 * Returns NETDEV_TX_OK if sent, else an error code 3923 **/ 3924 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3925 struct i40e_ring *tx_ring) 3926 { 3927 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3928 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3929 struct i40e_tx_buffer *first; 3930 u32 td_offset = 0; 3931 u32 tx_flags = 0; 3932 u32 td_cmd = 0; 3933 u8 hdr_len = 0; 3934 int tso, count; 3935 int tsyn; 3936 3937 /* prefetch the data, we'll need it later */ 3938 prefetch(skb->data); 3939 3940 i40e_trace(xmit_frame_ring, skb, tx_ring); 3941 3942 count = i40e_xmit_descriptor_count(skb); 3943 if (i40e_chk_linearize(skb, count)) { 3944 if (__skb_linearize(skb)) { 3945 dev_kfree_skb_any(skb); 3946 return NETDEV_TX_OK; 3947 } 3948 count = i40e_txd_use_count(skb->len); 3949 tx_ring->tx_stats.tx_linearize++; 3950 } 3951 3952 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3953 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3954 * + 4 desc gap to avoid the cache line where head is, 3955 * + 1 desc for context descriptor, 3956 * otherwise try next time 3957 */ 3958 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3959 tx_ring->tx_stats.tx_busy++; 3960 return NETDEV_TX_BUSY; 3961 } 3962 3963 /* record the location of the first descriptor for this packet */ 3964 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3965 first->skb = skb; 3966 first->bytecount = skb->len; 3967 first->gso_segs = 1; 3968 3969 /* prepare the xmit flags */ 3970 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3971 goto out_drop; 3972 3973 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3974 3975 if (tso < 0) 3976 goto out_drop; 3977 else if (tso) 3978 tx_flags |= I40E_TX_FLAGS_TSO; 3979 3980 /* Always offload the checksum, since it's in the data descriptor */ 3981 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3982 tx_ring, &cd_tunneling); 3983 if (tso < 0) 3984 goto out_drop; 3985 3986 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3987 3988 if (tsyn) 3989 tx_flags |= I40E_TX_FLAGS_TSYN; 3990 3991 /* always enable CRC insertion offload */ 3992 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3993 3994 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3995 cd_tunneling, cd_l2tag2); 3996 3997 /* Add Flow Director ATR if it's enabled. 3998 * 3999 * NOTE: this must always be directly before the data descriptor. 4000 */ 4001 i40e_atr(tx_ring, skb, tx_flags); 4002 4003 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 4004 td_cmd, td_offset)) 4005 goto cleanup_tx_tstamp; 4006 4007 return NETDEV_TX_OK; 4008 4009 out_drop: 4010 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 4011 dev_kfree_skb_any(first->skb); 4012 first->skb = NULL; 4013 cleanup_tx_tstamp: 4014 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 4015 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 4016 4017 dev_kfree_skb_any(pf->ptp_tx_skb); 4018 pf->ptp_tx_skb = NULL; 4019 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 4020 } 4021 4022 return NETDEV_TX_OK; 4023 } 4024 4025 /** 4026 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 4027 * @skb: send buffer 4028 * @netdev: network interface device structure 4029 * 4030 * Returns NETDEV_TX_OK if sent, else an error code 4031 **/ 4032 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4033 { 4034 struct i40e_netdev_priv *np = netdev_priv(netdev); 4035 struct i40e_vsi *vsi = np->vsi; 4036 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 4037 4038 /* hardware can't handle really short frames, hardware padding works 4039 * beyond this point 4040 */ 4041 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 4042 return NETDEV_TX_OK; 4043 4044 return i40e_xmit_frame_ring(skb, tx_ring); 4045 } 4046 4047 /** 4048 * i40e_xdp_xmit - Implements ndo_xdp_xmit 4049 * @dev: netdev 4050 * @n: number of frames 4051 * @frames: array of XDP buffer pointers 4052 * @flags: XDP extra info 4053 * 4054 * Returns number of frames successfully sent. Failed frames 4055 * will be free'ed by XDP core. 4056 * 4057 * For error cases, a negative errno code is returned and no-frames 4058 * are transmitted (caller must handle freeing frames). 4059 **/ 4060 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 4061 u32 flags) 4062 { 4063 struct i40e_netdev_priv *np = netdev_priv(dev); 4064 unsigned int queue_index = smp_processor_id(); 4065 struct i40e_vsi *vsi = np->vsi; 4066 struct i40e_pf *pf = vsi->back; 4067 struct i40e_ring *xdp_ring; 4068 int nxmit = 0; 4069 int i; 4070 4071 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4072 return -ENETDOWN; 4073 4074 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 4075 test_bit(__I40E_CONFIG_BUSY, pf->state)) 4076 return -ENXIO; 4077 4078 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 4079 return -EINVAL; 4080 4081 xdp_ring = vsi->xdp_rings[queue_index]; 4082 4083 for (i = 0; i < n; i++) { 4084 struct xdp_frame *xdpf = frames[i]; 4085 int err; 4086 4087 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 4088 if (err != I40E_XDP_TX) 4089 break; 4090 nxmit++; 4091 } 4092 4093 if (unlikely(flags & XDP_XMIT_FLUSH)) 4094 i40e_xdp_ring_update_tail(xdp_ring); 4095 4096 return nxmit; 4097 } 4098