xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47 
48 	/* Use LAN VSI Id if not programmed by user */
49 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52 
53 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 
55 	dtype_cmd |= add ?
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63 
64 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66 
67 	if (fdata->cnt_index) {
68 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 			     ((u32)fdata->cnt_index <<
71 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 	}
73 
74 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 	fdir_desc->rsvd = cpu_to_le32(0);
76 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79 
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82  * i40e_program_fdir_filter - Program a Flow Director filter
83  * @fdir_data: Packet data that will be filter parameters
84  * @raw_packet: the pre-allocated packet buffer for FDir
85  * @pf: The PF pointer
86  * @add: True for add/update, False for remove
87  **/
88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 				    u8 *raw_packet, struct i40e_pf *pf,
90 				    bool add)
91 {
92 	struct i40e_tx_buffer *tx_buf, *first;
93 	struct i40e_tx_desc *tx_desc;
94 	struct i40e_ring *tx_ring;
95 	struct i40e_vsi *vsi;
96 	struct device *dev;
97 	dma_addr_t dma;
98 	u32 td_cmd = 0;
99 	u16 i;
100 
101 	/* find existing FDIR VSI */
102 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 	if (!vsi)
104 		return -ENOENT;
105 
106 	tx_ring = vsi->tx_rings[0];
107 	dev = tx_ring->dev;
108 
109 	/* we need two descriptors to add/del a filter and we can wait */
110 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 		if (!i)
112 			return -EAGAIN;
113 		msleep_interruptible(1);
114 	}
115 
116 	dma = dma_map_single(dev, raw_packet,
117 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 	if (dma_mapping_error(dev, dma))
119 		goto dma_fail;
120 
121 	/* grab the next descriptor */
122 	i = tx_ring->next_to_use;
123 	first = &tx_ring->tx_bi[i];
124 	i40e_fdir(tx_ring, fdir_data, add);
125 
126 	/* Now program a dummy descriptor */
127 	i = tx_ring->next_to_use;
128 	tx_desc = I40E_TX_DESC(tx_ring, i);
129 	tx_buf = &tx_ring->tx_bi[i];
130 
131 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132 
133 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134 
135 	/* record length, and DMA address */
136 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 	dma_unmap_addr_set(tx_buf, dma, dma);
138 
139 	tx_desc->buffer_addr = cpu_to_le64(dma);
140 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141 
142 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 	tx_buf->raw_buf = (void *)raw_packet;
144 
145 	tx_desc->cmd_type_offset_bsz =
146 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 
148 	/* Force memory writes to complete before letting h/w
149 	 * know there are new descriptors to fetch.
150 	 */
151 	wmb();
152 
153 	/* Mark the data descriptor to be watched */
154 	first->next_to_watch = tx_desc;
155 
156 	writel(tx_ring->next_to_use, tx_ring->tail);
157 	return 0;
158 
159 dma_fail:
160 	return -1;
161 }
162 
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167  * @vsi: pointer to the targeted VSI
168  * @fd_data: the flow director data required for the FDir descriptor
169  * @add: true adds a filter, false removes it
170  *
171  * Returns 0 if the filters were successfully added or removed
172  **/
173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 				   struct i40e_fdir_filter *fd_data,
175 				   bool add)
176 {
177 	struct i40e_pf *pf = vsi->back;
178 	struct udphdr *udp;
179 	struct iphdr *ip;
180 	u8 *raw_packet;
181 	int ret;
182 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185 
186 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 	if (!raw_packet)
188 		return -ENOMEM;
189 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190 
191 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 	      + sizeof(struct iphdr));
194 
195 	ip->daddr = fd_data->dst_ip;
196 	udp->dest = fd_data->dst_port;
197 	ip->saddr = fd_data->src_ip;
198 	udp->source = fd_data->src_port;
199 
200 	if (fd_data->flex_filter) {
201 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 		__be16 pattern = fd_data->flex_word;
203 		u16 off = fd_data->flex_offset;
204 
205 		*((__force __be16 *)(payload + off)) = pattern;
206 	}
207 
208 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 	if (ret) {
211 		dev_info(&pf->pdev->dev,
212 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 			 fd_data->pctype, fd_data->fd_id, ret);
214 		/* Free the packet buffer since it wasn't added to the ring */
215 		kfree(raw_packet);
216 		return -EOPNOTSUPP;
217 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 		if (add)
219 			dev_info(&pf->pdev->dev,
220 				 "Filter OK for PCTYPE %d loc = %d\n",
221 				 fd_data->pctype, fd_data->fd_id);
222 		else
223 			dev_info(&pf->pdev->dev,
224 				 "Filter deleted for PCTYPE %d loc = %d\n",
225 				 fd_data->pctype, fd_data->fd_id);
226 	}
227 
228 	if (add)
229 		pf->fd_udp4_filter_cnt++;
230 	else
231 		pf->fd_udp4_filter_cnt--;
232 
233 	return 0;
234 }
235 
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239  * @vsi: pointer to the targeted VSI
240  * @fd_data: the flow director data required for the FDir descriptor
241  * @add: true adds a filter, false removes it
242  *
243  * Returns 0 if the filters were successfully added or removed
244  **/
245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 				   struct i40e_fdir_filter *fd_data,
247 				   bool add)
248 {
249 	struct i40e_pf *pf = vsi->back;
250 	struct tcphdr *tcp;
251 	struct iphdr *ip;
252 	u8 *raw_packet;
253 	int ret;
254 	/* Dummy packet */
255 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 		0x0, 0x72, 0, 0, 0, 0};
259 
260 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 	if (!raw_packet)
262 		return -ENOMEM;
263 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264 
265 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 	      + sizeof(struct iphdr));
268 
269 	ip->daddr = fd_data->dst_ip;
270 	tcp->dest = fd_data->dst_port;
271 	ip->saddr = fd_data->src_ip;
272 	tcp->source = fd_data->src_port;
273 
274 	if (fd_data->flex_filter) {
275 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 		__be16 pattern = fd_data->flex_word;
277 		u16 off = fd_data->flex_offset;
278 
279 		*((__force __be16 *)(payload + off)) = pattern;
280 	}
281 
282 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 	if (ret) {
285 		dev_info(&pf->pdev->dev,
286 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 			 fd_data->pctype, fd_data->fd_id, ret);
288 		/* Free the packet buffer since it wasn't added to the ring */
289 		kfree(raw_packet);
290 		return -EOPNOTSUPP;
291 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 		if (add)
293 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 				 fd_data->pctype, fd_data->fd_id);
295 		else
296 			dev_info(&pf->pdev->dev,
297 				 "Filter deleted for PCTYPE %d loc = %d\n",
298 				 fd_data->pctype, fd_data->fd_id);
299 	}
300 
301 	if (add) {
302 		pf->fd_tcp4_filter_cnt++;
303 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 		    I40E_DEBUG_FD & pf->hw.debug_mask)
305 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 	} else {
308 		pf->fd_tcp4_filter_cnt--;
309 	}
310 
311 	return 0;
312 }
313 
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317  * a specific flow spec
318  * @vsi: pointer to the targeted VSI
319  * @fd_data: the flow director data required for the FDir descriptor
320  * @add: true adds a filter, false removes it
321  *
322  * Returns 0 if the filters were successfully added or removed
323  **/
324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 				    struct i40e_fdir_filter *fd_data,
326 				    bool add)
327 {
328 	struct i40e_pf *pf = vsi->back;
329 	struct sctphdr *sctp;
330 	struct iphdr *ip;
331 	u8 *raw_packet;
332 	int ret;
333 	/* Dummy packet */
334 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337 
338 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 	if (!raw_packet)
340 		return -ENOMEM;
341 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342 
343 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 	      + sizeof(struct iphdr));
346 
347 	ip->daddr = fd_data->dst_ip;
348 	sctp->dest = fd_data->dst_port;
349 	ip->saddr = fd_data->src_ip;
350 	sctp->source = fd_data->src_port;
351 
352 	if (fd_data->flex_filter) {
353 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 		__be16 pattern = fd_data->flex_word;
355 		u16 off = fd_data->flex_offset;
356 
357 		*((__force __be16 *)(payload + off)) = pattern;
358 	}
359 
360 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 	if (ret) {
363 		dev_info(&pf->pdev->dev,
364 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 			 fd_data->pctype, fd_data->fd_id, ret);
366 		/* Free the packet buffer since it wasn't added to the ring */
367 		kfree(raw_packet);
368 		return -EOPNOTSUPP;
369 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 		if (add)
371 			dev_info(&pf->pdev->dev,
372 				 "Filter OK for PCTYPE %d loc = %d\n",
373 				 fd_data->pctype, fd_data->fd_id);
374 		else
375 			dev_info(&pf->pdev->dev,
376 				 "Filter deleted for PCTYPE %d loc = %d\n",
377 				 fd_data->pctype, fd_data->fd_id);
378 	}
379 
380 	if (add)
381 		pf->fd_sctp4_filter_cnt++;
382 	else
383 		pf->fd_sctp4_filter_cnt--;
384 
385 	return 0;
386 }
387 
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391  * a specific flow spec
392  * @vsi: pointer to the targeted VSI
393  * @fd_data: the flow director data required for the FDir descriptor
394  * @add: true adds a filter, false removes it
395  *
396  * Returns 0 if the filters were successfully added or removed
397  **/
398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 				  struct i40e_fdir_filter *fd_data,
400 				  bool add)
401 {
402 	struct i40e_pf *pf = vsi->back;
403 	struct iphdr *ip;
404 	u8 *raw_packet;
405 	int ret;
406 	int i;
407 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 		0, 0, 0, 0};
410 
411 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 		if (!raw_packet)
415 			return -ENOMEM;
416 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418 
419 		ip->saddr = fd_data->src_ip;
420 		ip->daddr = fd_data->dst_ip;
421 		ip->protocol = 0;
422 
423 		if (fd_data->flex_filter) {
424 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 			__be16 pattern = fd_data->flex_word;
426 			u16 off = fd_data->flex_offset;
427 
428 			*((__force __be16 *)(payload + off)) = pattern;
429 		}
430 
431 		fd_data->pctype = i;
432 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 		if (ret) {
434 			dev_info(&pf->pdev->dev,
435 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 				 fd_data->pctype, fd_data->fd_id, ret);
437 			/* The packet buffer wasn't added to the ring so we
438 			 * need to free it now.
439 			 */
440 			kfree(raw_packet);
441 			return -EOPNOTSUPP;
442 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 			if (add)
444 				dev_info(&pf->pdev->dev,
445 					 "Filter OK for PCTYPE %d loc = %d\n",
446 					 fd_data->pctype, fd_data->fd_id);
447 			else
448 				dev_info(&pf->pdev->dev,
449 					 "Filter deleted for PCTYPE %d loc = %d\n",
450 					 fd_data->pctype, fd_data->fd_id);
451 		}
452 	}
453 
454 	if (add)
455 		pf->fd_ip4_filter_cnt++;
456 	else
457 		pf->fd_ip4_filter_cnt--;
458 
459 	return 0;
460 }
461 
462 /**
463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464  * @vsi: pointer to the targeted VSI
465  * @input: filter to add or delete
466  * @add: true adds a filter, false removes it
467  *
468  **/
469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 		      struct i40e_fdir_filter *input, bool add)
471 {
472 	struct i40e_pf *pf = vsi->back;
473 	int ret;
474 
475 	switch (input->flow_type & ~FLOW_EXT) {
476 	case TCP_V4_FLOW:
477 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 		break;
479 	case UDP_V4_FLOW:
480 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 		break;
482 	case SCTP_V4_FLOW:
483 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 		break;
485 	case IP_USER_FLOW:
486 		switch (input->ip4_proto) {
487 		case IPPROTO_TCP:
488 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 			break;
490 		case IPPROTO_UDP:
491 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 			break;
493 		case IPPROTO_SCTP:
494 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 			break;
496 		case IPPROTO_IP:
497 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 			break;
499 		default:
500 			/* We cannot support masking based on protocol */
501 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 				 input->ip4_proto);
503 			return -EINVAL;
504 		}
505 		break;
506 	default:
507 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 			 input->flow_type);
509 		return -EINVAL;
510 	}
511 
512 	/* The buffer allocated here will be normally be freed by
513 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 	 * completion. In the event of an error adding the buffer to the FDIR
515 	 * ring, it will immediately be freed. It may also be freed by
516 	 * i40e_clean_tx_ring() when closing the VSI.
517 	 */
518 	return ret;
519 }
520 
521 /**
522  * i40e_fd_handle_status - check the Programming Status for FD
523  * @rx_ring: the Rx ring for this descriptor
524  * @qword0_raw: qword0
525  * @qword1: qword1 after le_to_cpu
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 				  u64 qword1, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	struct i40e_16b_rx_wb_qw0 *qw0;
537 	u32 fcnt_prog, fcnt_avail;
538 	u32 error;
539 
540 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 		if (qw0->hi_dword.fd_id != 0 ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if (qw0->hi_dword.fd_id == 0 &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 qw0->hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 		i40e_xsk_clean_tx_ring(tx_ring);
641 	} else {
642 		/* ring already cleared, nothing to do */
643 		if (!tx_ring->tx_bi)
644 			return;
645 
646 		/* Free all the Tx ring sk_buffs */
647 		for (i = 0; i < tx_ring->count; i++)
648 			i40e_unmap_and_free_tx_resource(tx_ring,
649 							&tx_ring->tx_bi[i]);
650 	}
651 
652 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 	memset(tx_ring->tx_bi, 0, bi_size);
654 
655 	/* Zero out the descriptor ring */
656 	memset(tx_ring->desc, 0, tx_ring->size);
657 
658 	tx_ring->next_to_use = 0;
659 	tx_ring->next_to_clean = 0;
660 
661 	if (!tx_ring->netdev)
662 		return;
663 
664 	/* cleanup Tx queue statistics */
665 	netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667 
668 /**
669  * i40e_free_tx_resources - Free Tx resources per queue
670  * @tx_ring: Tx descriptor ring for a specific queue
671  *
672  * Free all transmit software resources
673  **/
674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 	i40e_clean_tx_ring(tx_ring);
677 	kfree(tx_ring->tx_bi);
678 	tx_ring->tx_bi = NULL;
679 
680 	if (tx_ring->desc) {
681 		dma_free_coherent(tx_ring->dev, tx_ring->size,
682 				  tx_ring->desc, tx_ring->dma);
683 		tx_ring->desc = NULL;
684 	}
685 }
686 
687 /**
688  * i40e_get_tx_pending - how many tx descriptors not processed
689  * @ring: the ring of descriptors
690  * @in_sw: use SW variables
691  *
692  * Since there is no access to the ring head register
693  * in XL710, we need to use our local copies
694  **/
695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 	u32 head, tail;
698 
699 	if (!in_sw) {
700 		head = i40e_get_head(ring);
701 		tail = readl(ring->tail);
702 	} else {
703 		head = ring->next_to_clean;
704 		tail = ring->next_to_use;
705 	}
706 
707 	if (head != tail)
708 		return (head < tail) ?
709 			tail - head : (tail + ring->count - head);
710 
711 	return 0;
712 }
713 
714 /**
715  * i40e_detect_recover_hung - Function to detect and recover hung_queues
716  * @vsi:  pointer to vsi struct with tx queues
717  *
718  * VSI has netdev and netdev has TX queues. This function is to check each of
719  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720  **/
721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 	struct i40e_ring *tx_ring = NULL;
724 	struct net_device *netdev;
725 	unsigned int i;
726 	int packets;
727 
728 	if (!vsi)
729 		return;
730 
731 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 		return;
733 
734 	netdev = vsi->netdev;
735 	if (!netdev)
736 		return;
737 
738 	if (!netif_carrier_ok(netdev))
739 		return;
740 
741 	for (i = 0; i < vsi->num_queue_pairs; i++) {
742 		tx_ring = vsi->tx_rings[i];
743 		if (tx_ring && tx_ring->desc) {
744 			/* If packet counter has not changed the queue is
745 			 * likely stalled, so force an interrupt for this
746 			 * queue.
747 			 *
748 			 * prev_pkt_ctr would be negative if there was no
749 			 * pending work.
750 			 */
751 			packets = tx_ring->stats.packets & INT_MAX;
752 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 				i40e_force_wb(vsi, tx_ring->q_vector);
754 				continue;
755 			}
756 
757 			/* Memory barrier between read of packet count and call
758 			 * to i40e_get_tx_pending()
759 			 */
760 			smp_rmb();
761 			tx_ring->tx_stats.prev_pkt_ctr =
762 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 		}
764 	}
765 }
766 
767 /**
768  * i40e_clean_tx_irq - Reclaim resources after transmit completes
769  * @vsi: the VSI we care about
770  * @tx_ring: Tx ring to clean
771  * @napi_budget: Used to determine if we are in netpoll
772  *
773  * Returns true if there's any budget left (e.g. the clean is finished)
774  **/
775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 			      struct i40e_ring *tx_ring, int napi_budget)
777 {
778 	int i = tx_ring->next_to_clean;
779 	struct i40e_tx_buffer *tx_buf;
780 	struct i40e_tx_desc *tx_head;
781 	struct i40e_tx_desc *tx_desc;
782 	unsigned int total_bytes = 0, total_packets = 0;
783 	unsigned int budget = vsi->work_limit;
784 
785 	tx_buf = &tx_ring->tx_bi[i];
786 	tx_desc = I40E_TX_DESC(tx_ring, i);
787 	i -= tx_ring->count;
788 
789 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790 
791 	do {
792 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793 
794 		/* if next_to_watch is not set then there is no work pending */
795 		if (!eop_desc)
796 			break;
797 
798 		/* prevent any other reads prior to eop_desc */
799 		smp_rmb();
800 
801 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 		/* we have caught up to head, no work left to do */
803 		if (tx_head == tx_desc)
804 			break;
805 
806 		/* clear next_to_watch to prevent false hangs */
807 		tx_buf->next_to_watch = NULL;
808 
809 		/* update the statistics for this packet */
810 		total_bytes += tx_buf->bytecount;
811 		total_packets += tx_buf->gso_segs;
812 
813 		/* free the skb/XDP data */
814 		if (ring_is_xdp(tx_ring))
815 			xdp_return_frame(tx_buf->xdpf);
816 		else
817 			napi_consume_skb(tx_buf->skb, napi_budget);
818 
819 		/* unmap skb header data */
820 		dma_unmap_single(tx_ring->dev,
821 				 dma_unmap_addr(tx_buf, dma),
822 				 dma_unmap_len(tx_buf, len),
823 				 DMA_TO_DEVICE);
824 
825 		/* clear tx_buffer data */
826 		tx_buf->skb = NULL;
827 		dma_unmap_len_set(tx_buf, len, 0);
828 
829 		/* unmap remaining buffers */
830 		while (tx_desc != eop_desc) {
831 			i40e_trace(clean_tx_irq_unmap,
832 				   tx_ring, tx_desc, tx_buf);
833 
834 			tx_buf++;
835 			tx_desc++;
836 			i++;
837 			if (unlikely(!i)) {
838 				i -= tx_ring->count;
839 				tx_buf = tx_ring->tx_bi;
840 				tx_desc = I40E_TX_DESC(tx_ring, 0);
841 			}
842 
843 			/* unmap any remaining paged data */
844 			if (dma_unmap_len(tx_buf, len)) {
845 				dma_unmap_page(tx_ring->dev,
846 					       dma_unmap_addr(tx_buf, dma),
847 					       dma_unmap_len(tx_buf, len),
848 					       DMA_TO_DEVICE);
849 				dma_unmap_len_set(tx_buf, len, 0);
850 			}
851 		}
852 
853 		/* move us one more past the eop_desc for start of next pkt */
854 		tx_buf++;
855 		tx_desc++;
856 		i++;
857 		if (unlikely(!i)) {
858 			i -= tx_ring->count;
859 			tx_buf = tx_ring->tx_bi;
860 			tx_desc = I40E_TX_DESC(tx_ring, 0);
861 		}
862 
863 		prefetch(tx_desc);
864 
865 		/* update budget accounting */
866 		budget--;
867 	} while (likely(budget));
868 
869 	i += tx_ring->count;
870 	tx_ring->next_to_clean = i;
871 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 	i40e_arm_wb(tx_ring, vsi, budget);
873 
874 	if (ring_is_xdp(tx_ring))
875 		return !!budget;
876 
877 	/* notify netdev of completed buffers */
878 	netdev_tx_completed_queue(txring_txq(tx_ring),
879 				  total_packets, total_bytes);
880 
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 		/* Make sure that anybody stopping the queue after this
885 		 * sees the new next_to_clean.
886 		 */
887 		smp_mb();
888 		if (__netif_subqueue_stopped(tx_ring->netdev,
889 					     tx_ring->queue_index) &&
890 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 			netif_wake_subqueue(tx_ring->netdev,
892 					    tx_ring->queue_index);
893 			++tx_ring->tx_stats.restart_queue;
894 		}
895 	}
896 
897 	return !!budget;
898 }
899 
900 /**
901  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902  * @vsi: the VSI we care about
903  * @q_vector: the vector on which to enable writeback
904  *
905  **/
906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 				  struct i40e_q_vector *q_vector)
908 {
909 	u16 flags = q_vector->tx.ring[0].flags;
910 	u32 val;
911 
912 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 		return;
914 
915 	if (q_vector->arm_wb_state)
916 		return;
917 
918 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921 
922 		wr32(&vsi->back->hw,
923 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 		     val);
925 	} else {
926 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928 
929 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 	}
931 	q_vector->arm_wb_state = true;
932 }
933 
934 /**
935  * i40e_force_wb - Issue SW Interrupt so HW does a wb
936  * @vsi: the VSI we care about
937  * @q_vector: the vector  on which to force writeback
938  *
939  **/
940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 			  /* allow 00 to be written to the index */
948 
949 		wr32(&vsi->back->hw,
950 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 	} else {
952 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 			/* allow 00 to be written to the index */
957 
958 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 	}
960 }
961 
962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 					struct i40e_ring_container *rc)
964 {
965 	return &q_vector->rx == rc;
966 }
967 
968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 	unsigned int divisor;
971 
972 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 	case I40E_LINK_SPEED_40GB:
974 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 		break;
976 	case I40E_LINK_SPEED_25GB:
977 	case I40E_LINK_SPEED_20GB:
978 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 		break;
980 	default:
981 	case I40E_LINK_SPEED_10GB:
982 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 		break;
984 	case I40E_LINK_SPEED_1GB:
985 	case I40E_LINK_SPEED_100MB:
986 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 		break;
988 	}
989 
990 	return divisor;
991 }
992 
993 /**
994  * i40e_update_itr - update the dynamic ITR value based on statistics
995  * @q_vector: structure containing interrupt and ring information
996  * @rc: structure containing ring performance data
997  *
998  * Stores a new ITR value based on packets and byte
999  * counts during the last interrupt.  The advantage of per interrupt
1000  * computation is faster updates and more accurate ITR for the current
1001  * traffic pattern.  Constants in this function were computed
1002  * based on theoretical maximum wire speed and thresholds were set based
1003  * on testing data as well as attempting to minimize response time
1004  * while increasing bulk throughput.
1005  **/
1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 			    struct i40e_ring_container *rc)
1008 {
1009 	unsigned int avg_wire_size, packets, bytes, itr;
1010 	unsigned long next_update = jiffies;
1011 
1012 	/* If we don't have any rings just leave ourselves set for maximum
1013 	 * possible latency so we take ourselves out of the equation.
1014 	 */
1015 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 		return;
1017 
1018 	/* For Rx we want to push the delay up and default to low latency.
1019 	 * for Tx we want to pull the delay down and default to high latency.
1020 	 */
1021 	itr = i40e_container_is_rx(q_vector, rc) ?
1022 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024 
1025 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026 	 * that either packets are coming in so slow there hasn't been
1027 	 * any work, or that there is so much work that NAPI is dealing
1028 	 * with interrupt moderation and we don't need to do anything.
1029 	 */
1030 	if (time_after(next_update, rc->next_update))
1031 		goto clear_counts;
1032 
1033 	/* If itr_countdown is set it means we programmed an ITR within
1034 	 * the last 4 interrupt cycles. This has a side effect of us
1035 	 * potentially firing an early interrupt. In order to work around
1036 	 * this we need to throw out any data received for a few
1037 	 * interrupts following the update.
1038 	 */
1039 	if (q_vector->itr_countdown) {
1040 		itr = rc->target_itr;
1041 		goto clear_counts;
1042 	}
1043 
1044 	packets = rc->total_packets;
1045 	bytes = rc->total_bytes;
1046 
1047 	if (i40e_container_is_rx(q_vector, rc)) {
1048 		/* If Rx there are 1 to 4 packets and bytes are less than
1049 		 * 9000 assume insufficient data to use bulk rate limiting
1050 		 * approach unless Tx is already in bulk rate limiting. We
1051 		 * are likely latency driven.
1052 		 */
1053 		if (packets && packets < 4 && bytes < 9000 &&
1054 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 			goto adjust_by_size;
1057 		}
1058 	} else if (packets < 4) {
1059 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 		 * bulk mode and we are receiving 4 or fewer packets just
1061 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 		 * that the Rx can relax.
1063 		 */
1064 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067 			goto clear_counts;
1068 	} else if (packets > 32) {
1069 		/* If we have processed over 32 packets in a single interrupt
1070 		 * for Tx assume we need to switch over to "bulk" mode.
1071 		 */
1072 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 	}
1074 
1075 	/* We have no packets to actually measure against. This means
1076 	 * either one of the other queues on this vector is active or
1077 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 	 *
1079 	 * Between 4 and 56 we can assume that our current interrupt delay
1080 	 * is only slightly too low. As such we should increase it by a small
1081 	 * fixed amount.
1082 	 */
1083 	if (packets < 56) {
1084 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 		}
1089 		goto clear_counts;
1090 	}
1091 
1092 	if (packets <= 256) {
1093 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 		itr &= I40E_ITR_MASK;
1095 
1096 		/* Between 56 and 112 is our "goldilocks" zone where we are
1097 		 * working out "just right". Just report that our current
1098 		 * ITR is good for us.
1099 		 */
1100 		if (packets <= 112)
1101 			goto clear_counts;
1102 
1103 		/* If packet count is 128 or greater we are likely looking
1104 		 * at a slight overrun of the delay we want. Try halving
1105 		 * our delay to see if that will cut the number of packets
1106 		 * in half per interrupt.
1107 		 */
1108 		itr /= 2;
1109 		itr &= I40E_ITR_MASK;
1110 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112 
1113 		goto clear_counts;
1114 	}
1115 
1116 	/* The paths below assume we are dealing with a bulk ITR since
1117 	 * number of packets is greater than 256. We are just going to have
1118 	 * to compute a value and try to bring the count under control,
1119 	 * though for smaller packet sizes there isn't much we can do as
1120 	 * NAPI polling will likely be kicking in sooner rather than later.
1121 	 */
1122 	itr = I40E_ITR_ADAPTIVE_BULK;
1123 
1124 adjust_by_size:
1125 	/* If packet counts are 256 or greater we can assume we have a gross
1126 	 * overestimation of what the rate should be. Instead of trying to fine
1127 	 * tune it just use the formula below to try and dial in an exact value
1128 	 * give the current packet size of the frame.
1129 	 */
1130 	avg_wire_size = bytes / packets;
1131 
1132 	/* The following is a crude approximation of:
1133 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 	 *
1137 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 	 * formula down to
1140 	 *
1141 	 *  (170 * (size + 24)) / (size + 640) = ITR
1142 	 *
1143 	 * We first do some math on the packet size and then finally bitshift
1144 	 * by 8 after rounding up. We also have to account for PCIe link speed
1145 	 * difference as ITR scales based on this.
1146 	 */
1147 	if (avg_wire_size <= 60) {
1148 		/* Start at 250k ints/sec */
1149 		avg_wire_size = 4096;
1150 	} else if (avg_wire_size <= 380) {
1151 		/* 250K ints/sec to 60K ints/sec */
1152 		avg_wire_size *= 40;
1153 		avg_wire_size += 1696;
1154 	} else if (avg_wire_size <= 1084) {
1155 		/* 60K ints/sec to 36K ints/sec */
1156 		avg_wire_size *= 15;
1157 		avg_wire_size += 11452;
1158 	} else if (avg_wire_size <= 1980) {
1159 		/* 36K ints/sec to 30K ints/sec */
1160 		avg_wire_size *= 5;
1161 		avg_wire_size += 22420;
1162 	} else {
1163 		/* plateau at a limit of 30K ints/sec */
1164 		avg_wire_size = 32256;
1165 	}
1166 
1167 	/* If we are in low latency mode halve our delay which doubles the
1168 	 * rate to somewhere between 100K to 16K ints/sec
1169 	 */
1170 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 		avg_wire_size /= 2;
1172 
1173 	/* Resultant value is 256 times larger than it needs to be. This
1174 	 * gives us room to adjust the value as needed to either increase
1175 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 	 *
1177 	 * Use addition as we have already recorded the new latency flag
1178 	 * for the ITR value.
1179 	 */
1180 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 	       I40E_ITR_ADAPTIVE_MIN_INC;
1182 
1183 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 	}
1187 
1188 clear_counts:
1189 	/* write back value */
1190 	rc->target_itr = itr;
1191 
1192 	/* next update should occur within next jiffy */
1193 	rc->next_update = next_update + 1;
1194 
1195 	rc->total_bytes = 0;
1196 	rc->total_packets = 0;
1197 }
1198 
1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 	return &rx_ring->rx_bi[idx];
1202 }
1203 
1204 /**
1205  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206  * @rx_ring: rx descriptor ring to store buffers on
1207  * @old_buff: donor buffer to have page reused
1208  *
1209  * Synchronizes page for reuse by the adapter
1210  **/
1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 			       struct i40e_rx_buffer *old_buff)
1213 {
1214 	struct i40e_rx_buffer *new_buff;
1215 	u16 nta = rx_ring->next_to_alloc;
1216 
1217 	new_buff = i40e_rx_bi(rx_ring, nta);
1218 
1219 	/* update, and store next to alloc */
1220 	nta++;
1221 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222 
1223 	/* transfer page from old buffer to new buffer */
1224 	new_buff->dma		= old_buff->dma;
1225 	new_buff->page		= old_buff->page;
1226 	new_buff->page_offset	= old_buff->page_offset;
1227 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1228 
1229 	rx_ring->rx_stats.page_reuse_count++;
1230 
1231 	/* clear contents of buffer_info */
1232 	old_buff->page = NULL;
1233 }
1234 
1235 /**
1236  * i40e_clean_programming_status - clean the programming status descriptor
1237  * @rx_ring: the rx ring that has this descriptor
1238  * @qword0_raw: qword0
1239  * @qword1: qword1 representing status_error_len in CPU ordering
1240  *
1241  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242  * status being successful or not and take actions accordingly. FCoE should
1243  * handle its context/filter programming/invalidation status and take actions.
1244  *
1245  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246  **/
1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 				   u64 qword1)
1249 {
1250 	u8 id;
1251 
1252 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254 
1255 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258 
1259 /**
1260  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261  * @tx_ring: the tx ring to set up
1262  *
1263  * Return 0 on success, negative on error
1264  **/
1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 	struct device *dev = tx_ring->dev;
1268 	int bi_size;
1269 
1270 	if (!dev)
1271 		return -ENOMEM;
1272 
1273 	/* warn if we are about to overwrite the pointer */
1274 	WARN_ON(tx_ring->tx_bi);
1275 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 	if (!tx_ring->tx_bi)
1278 		goto err;
1279 
1280 	u64_stats_init(&tx_ring->syncp);
1281 
1282 	/* round up to nearest 4K */
1283 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 	/* add u32 for head writeback, align after this takes care of
1285 	 * guaranteeing this is at least one cache line in size
1286 	 */
1287 	tx_ring->size += sizeof(u32);
1288 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 					   &tx_ring->dma, GFP_KERNEL);
1291 	if (!tx_ring->desc) {
1292 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 			 tx_ring->size);
1294 		goto err;
1295 	}
1296 
1297 	tx_ring->next_to_use = 0;
1298 	tx_ring->next_to_clean = 0;
1299 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 	return 0;
1301 
1302 err:
1303 	kfree(tx_ring->tx_bi);
1304 	tx_ring->tx_bi = NULL;
1305 	return -ENOMEM;
1306 }
1307 
1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311 
1312 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1314 }
1315 
1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317 {
1318 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319 }
1320 
1321 /**
1322  * i40e_clean_rx_ring - Free Rx buffers
1323  * @rx_ring: ring to be cleaned
1324  **/
1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326 {
1327 	u16 i;
1328 
1329 	/* ring already cleared, nothing to do */
1330 	if (!rx_ring->rx_bi)
1331 		return;
1332 
1333 	if (rx_ring->skb) {
1334 		dev_kfree_skb(rx_ring->skb);
1335 		rx_ring->skb = NULL;
1336 	}
1337 
1338 	if (rx_ring->xsk_pool) {
1339 		i40e_xsk_clean_rx_ring(rx_ring);
1340 		goto skip_free;
1341 	}
1342 
1343 	/* Free all the Rx ring sk_buffs */
1344 	for (i = 0; i < rx_ring->count; i++) {
1345 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346 
1347 		if (!rx_bi->page)
1348 			continue;
1349 
1350 		/* Invalidate cache lines that may have been written to by
1351 		 * device so that we avoid corrupting memory.
1352 		 */
1353 		dma_sync_single_range_for_cpu(rx_ring->dev,
1354 					      rx_bi->dma,
1355 					      rx_bi->page_offset,
1356 					      rx_ring->rx_buf_len,
1357 					      DMA_FROM_DEVICE);
1358 
1359 		/* free resources associated with mapping */
1360 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361 				     i40e_rx_pg_size(rx_ring),
1362 				     DMA_FROM_DEVICE,
1363 				     I40E_RX_DMA_ATTR);
1364 
1365 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366 
1367 		rx_bi->page = NULL;
1368 		rx_bi->page_offset = 0;
1369 	}
1370 
1371 skip_free:
1372 	if (rx_ring->xsk_pool)
1373 		i40e_clear_rx_bi_zc(rx_ring);
1374 	else
1375 		i40e_clear_rx_bi(rx_ring);
1376 
1377 	/* Zero out the descriptor ring */
1378 	memset(rx_ring->desc, 0, rx_ring->size);
1379 
1380 	rx_ring->next_to_alloc = 0;
1381 	rx_ring->next_to_clean = 0;
1382 	rx_ring->next_to_use = 0;
1383 }
1384 
1385 /**
1386  * i40e_free_rx_resources - Free Rx resources
1387  * @rx_ring: ring to clean the resources from
1388  *
1389  * Free all receive software resources
1390  **/
1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392 {
1393 	i40e_clean_rx_ring(rx_ring);
1394 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396 	rx_ring->xdp_prog = NULL;
1397 	kfree(rx_ring->rx_bi);
1398 	rx_ring->rx_bi = NULL;
1399 
1400 	if (rx_ring->desc) {
1401 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1402 				  rx_ring->desc, rx_ring->dma);
1403 		rx_ring->desc = NULL;
1404 	}
1405 }
1406 
1407 /**
1408  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410  *
1411  * Returns 0 on success, negative on failure
1412  **/
1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414 {
1415 	struct device *dev = rx_ring->dev;
1416 	int err;
1417 
1418 	u64_stats_init(&rx_ring->syncp);
1419 
1420 	/* Round up to nearest 4K */
1421 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1422 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1423 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424 					   &rx_ring->dma, GFP_KERNEL);
1425 
1426 	if (!rx_ring->desc) {
1427 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428 			 rx_ring->size);
1429 		return -ENOMEM;
1430 	}
1431 
1432 	rx_ring->next_to_alloc = 0;
1433 	rx_ring->next_to_clean = 0;
1434 	rx_ring->next_to_use = 0;
1435 
1436 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1437 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439 				       rx_ring->queue_index);
1440 		if (err < 0)
1441 			return err;
1442 	}
1443 
1444 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  * i40e_release_rx_desc - Store the new tail and head values
1451  * @rx_ring: ring to bump
1452  * @val: new head index
1453  **/
1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455 {
1456 	rx_ring->next_to_use = val;
1457 
1458 	/* update next to alloc since we have filled the ring */
1459 	rx_ring->next_to_alloc = val;
1460 
1461 	/* Force memory writes to complete before letting h/w
1462 	 * know there are new descriptors to fetch.  (Only
1463 	 * applicable for weak-ordered memory model archs,
1464 	 * such as IA-64).
1465 	 */
1466 	wmb();
1467 	writel(val, rx_ring->tail);
1468 }
1469 
1470 /**
1471  * i40e_rx_offset - Return expected offset into page to access data
1472  * @rx_ring: Ring we are requesting offset of
1473  *
1474  * Returns the offset value for ring into the data buffer.
1475  */
1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477 {
1478 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479 }
1480 
1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482 					   unsigned int size)
1483 {
1484 	unsigned int truesize;
1485 
1486 #if (PAGE_SIZE < 8192)
1487 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488 #else
1489 	truesize = i40e_rx_offset(rx_ring) ?
1490 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492 		SKB_DATA_ALIGN(size);
1493 #endif
1494 	return truesize;
1495 }
1496 
1497 /**
1498  * i40e_alloc_mapped_page - recycle or make a new page
1499  * @rx_ring: ring to use
1500  * @bi: rx_buffer struct to modify
1501  *
1502  * Returns true if the page was successfully allocated or
1503  * reused.
1504  **/
1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506 				   struct i40e_rx_buffer *bi)
1507 {
1508 	struct page *page = bi->page;
1509 	dma_addr_t dma;
1510 
1511 	/* since we are recycling buffers we should seldom need to alloc */
1512 	if (likely(page)) {
1513 		rx_ring->rx_stats.page_reuse_count++;
1514 		return true;
1515 	}
1516 
1517 	/* alloc new page for storage */
1518 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519 	if (unlikely(!page)) {
1520 		rx_ring->rx_stats.alloc_page_failed++;
1521 		return false;
1522 	}
1523 
1524 	/* map page for use */
1525 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526 				 i40e_rx_pg_size(rx_ring),
1527 				 DMA_FROM_DEVICE,
1528 				 I40E_RX_DMA_ATTR);
1529 
1530 	/* if mapping failed free memory back to system since
1531 	 * there isn't much point in holding memory we can't use
1532 	 */
1533 	if (dma_mapping_error(rx_ring->dev, dma)) {
1534 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1535 		rx_ring->rx_stats.alloc_page_failed++;
1536 		return false;
1537 	}
1538 
1539 	bi->dma = dma;
1540 	bi->page = page;
1541 	bi->page_offset = i40e_rx_offset(rx_ring);
1542 	page_ref_add(page, USHRT_MAX - 1);
1543 	bi->pagecnt_bias = USHRT_MAX;
1544 
1545 	return true;
1546 }
1547 
1548 /**
1549  * i40e_alloc_rx_buffers - Replace used receive buffers
1550  * @rx_ring: ring to place buffers on
1551  * @cleaned_count: number of buffers to replace
1552  *
1553  * Returns false if all allocations were successful, true if any fail
1554  **/
1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556 {
1557 	u16 ntu = rx_ring->next_to_use;
1558 	union i40e_rx_desc *rx_desc;
1559 	struct i40e_rx_buffer *bi;
1560 
1561 	/* do nothing if no valid netdev defined */
1562 	if (!rx_ring->netdev || !cleaned_count)
1563 		return false;
1564 
1565 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566 	bi = i40e_rx_bi(rx_ring, ntu);
1567 
1568 	do {
1569 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1570 			goto no_buffers;
1571 
1572 		/* sync the buffer for use by the device */
1573 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574 						 bi->page_offset,
1575 						 rx_ring->rx_buf_len,
1576 						 DMA_FROM_DEVICE);
1577 
1578 		/* Refresh the desc even if buffer_addrs didn't change
1579 		 * because each write-back erases this info.
1580 		 */
1581 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582 
1583 		rx_desc++;
1584 		bi++;
1585 		ntu++;
1586 		if (unlikely(ntu == rx_ring->count)) {
1587 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1588 			bi = i40e_rx_bi(rx_ring, 0);
1589 			ntu = 0;
1590 		}
1591 
1592 		/* clear the status bits for the next_to_use descriptor */
1593 		rx_desc->wb.qword1.status_error_len = 0;
1594 
1595 		cleaned_count--;
1596 	} while (cleaned_count);
1597 
1598 	if (rx_ring->next_to_use != ntu)
1599 		i40e_release_rx_desc(rx_ring, ntu);
1600 
1601 	return false;
1602 
1603 no_buffers:
1604 	if (rx_ring->next_to_use != ntu)
1605 		i40e_release_rx_desc(rx_ring, ntu);
1606 
1607 	/* make sure to come back via polling to try again after
1608 	 * allocation failure
1609 	 */
1610 	return true;
1611 }
1612 
1613 /**
1614  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615  * @vsi: the VSI we care about
1616  * @skb: skb currently being received and modified
1617  * @rx_desc: the receive descriptor
1618  **/
1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620 				    struct sk_buff *skb,
1621 				    union i40e_rx_desc *rx_desc)
1622 {
1623 	struct i40e_rx_ptype_decoded decoded;
1624 	u32 rx_error, rx_status;
1625 	bool ipv4, ipv6;
1626 	u8 ptype;
1627 	u64 qword;
1628 
1629 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632 		   I40E_RXD_QW1_ERROR_SHIFT;
1633 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634 		    I40E_RXD_QW1_STATUS_SHIFT;
1635 	decoded = decode_rx_desc_ptype(ptype);
1636 
1637 	skb->ip_summed = CHECKSUM_NONE;
1638 
1639 	skb_checksum_none_assert(skb);
1640 
1641 	/* Rx csum enabled and ip headers found? */
1642 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643 		return;
1644 
1645 	/* did the hardware decode the packet and checksum? */
1646 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647 		return;
1648 
1649 	/* both known and outer_ip must be set for the below code to work */
1650 	if (!(decoded.known && decoded.outer_ip))
1651 		return;
1652 
1653 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657 
1658 	if (ipv4 &&
1659 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661 		goto checksum_fail;
1662 
1663 	/* likely incorrect csum if alternate IP extension headers found */
1664 	if (ipv6 &&
1665 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666 		/* don't increment checksum err here, non-fatal err */
1667 		return;
1668 
1669 	/* there was some L4 error, count error and punt packet to the stack */
1670 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671 		goto checksum_fail;
1672 
1673 	/* handle packets that were not able to be checksummed due
1674 	 * to arrival speed, in this case the stack can compute
1675 	 * the csum.
1676 	 */
1677 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678 		return;
1679 
1680 	/* If there is an outer header present that might contain a checksum
1681 	 * we need to bump the checksum level by 1 to reflect the fact that
1682 	 * we are indicating we validated the inner checksum.
1683 	 */
1684 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685 		skb->csum_level = 1;
1686 
1687 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688 	switch (decoded.inner_prot) {
1689 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1690 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1691 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 		fallthrough;
1694 	default:
1695 		break;
1696 	}
1697 
1698 	return;
1699 
1700 checksum_fail:
1701 	vsi->back->hw_csum_rx_error++;
1702 }
1703 
1704 /**
1705  * i40e_ptype_to_htype - get a hash type
1706  * @ptype: the ptype value from the descriptor
1707  *
1708  * Returns a hash type to be used by skb_set_hash
1709  **/
1710 static inline int i40e_ptype_to_htype(u8 ptype)
1711 {
1712 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713 
1714 	if (!decoded.known)
1715 		return PKT_HASH_TYPE_NONE;
1716 
1717 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719 		return PKT_HASH_TYPE_L4;
1720 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722 		return PKT_HASH_TYPE_L3;
1723 	else
1724 		return PKT_HASH_TYPE_L2;
1725 }
1726 
1727 /**
1728  * i40e_rx_hash - set the hash value in the skb
1729  * @ring: descriptor ring
1730  * @rx_desc: specific descriptor
1731  * @skb: skb currently being received and modified
1732  * @rx_ptype: Rx packet type
1733  **/
1734 static inline void i40e_rx_hash(struct i40e_ring *ring,
1735 				union i40e_rx_desc *rx_desc,
1736 				struct sk_buff *skb,
1737 				u8 rx_ptype)
1738 {
1739 	u32 hash;
1740 	const __le64 rss_mask =
1741 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743 
1744 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1745 		return;
1746 
1747 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750 	}
1751 }
1752 
1753 /**
1754  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755  * @rx_ring: rx descriptor ring packet is being transacted on
1756  * @rx_desc: pointer to the EOP Rx descriptor
1757  * @skb: pointer to current skb being populated
1758  *
1759  * This function checks the ring, descriptor, and packet information in
1760  * order to populate the hash, checksum, VLAN, protocol, and
1761  * other fields within the skb.
1762  **/
1763 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1764 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1765 {
1766 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1767 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1768 			I40E_RXD_QW1_STATUS_SHIFT;
1769 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1770 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1771 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1772 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1773 		      I40E_RXD_QW1_PTYPE_SHIFT;
1774 
1775 	if (unlikely(tsynvalid))
1776 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1777 
1778 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1779 
1780 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1781 
1782 	skb_record_rx_queue(skb, rx_ring->queue_index);
1783 
1784 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1785 		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1786 
1787 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1788 				       le16_to_cpu(vlan_tag));
1789 	}
1790 
1791 	/* modifies the skb - consumes the enet header */
1792 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1793 }
1794 
1795 /**
1796  * i40e_cleanup_headers - Correct empty headers
1797  * @rx_ring: rx descriptor ring packet is being transacted on
1798  * @skb: pointer to current skb being fixed
1799  * @rx_desc: pointer to the EOP Rx descriptor
1800  *
1801  * Also address the case where we are pulling data in on pages only
1802  * and as such no data is present in the skb header.
1803  *
1804  * In addition if skb is not at least 60 bytes we need to pad it so that
1805  * it is large enough to qualify as a valid Ethernet frame.
1806  *
1807  * Returns true if an error was encountered and skb was freed.
1808  **/
1809 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1810 				 union i40e_rx_desc *rx_desc)
1811 
1812 {
1813 	/* XDP packets use error pointer so abort at this point */
1814 	if (IS_ERR(skb))
1815 		return true;
1816 
1817 	/* ERR_MASK will only have valid bits if EOP set, and
1818 	 * what we are doing here is actually checking
1819 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1820 	 * the error field
1821 	 */
1822 	if (unlikely(i40e_test_staterr(rx_desc,
1823 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1824 		dev_kfree_skb_any(skb);
1825 		return true;
1826 	}
1827 
1828 	/* if eth_skb_pad returns an error the skb was freed */
1829 	if (eth_skb_pad(skb))
1830 		return true;
1831 
1832 	return false;
1833 }
1834 
1835 /**
1836  * i40e_page_is_reusable - check if any reuse is possible
1837  * @page: page struct to check
1838  *
1839  * A page is not reusable if it was allocated under low memory
1840  * conditions, or it's not in the same NUMA node as this CPU.
1841  */
1842 static inline bool i40e_page_is_reusable(struct page *page)
1843 {
1844 	return (page_to_nid(page) == numa_mem_id()) &&
1845 		!page_is_pfmemalloc(page);
1846 }
1847 
1848 /**
1849  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1850  * the adapter for another receive
1851  *
1852  * @rx_buffer: buffer containing the page
1853  *
1854  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1855  * an unused region in the page.
1856  *
1857  * For small pages, @truesize will be a constant value, half the size
1858  * of the memory at page.  We'll attempt to alternate between high and
1859  * low halves of the page, with one half ready for use by the hardware
1860  * and the other half being consumed by the stack.  We use the page
1861  * ref count to determine whether the stack has finished consuming the
1862  * portion of this page that was passed up with a previous packet.  If
1863  * the page ref count is >1, we'll assume the "other" half page is
1864  * still busy, and this page cannot be reused.
1865  *
1866  * For larger pages, @truesize will be the actual space used by the
1867  * received packet (adjusted upward to an even multiple of the cache
1868  * line size).  This will advance through the page by the amount
1869  * actually consumed by the received packets while there is still
1870  * space for a buffer.  Each region of larger pages will be used at
1871  * most once, after which the page will not be reused.
1872  *
1873  * In either case, if the page is reusable its refcount is increased.
1874  **/
1875 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1876 {
1877 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1878 	struct page *page = rx_buffer->page;
1879 
1880 	/* Is any reuse possible? */
1881 	if (unlikely(!i40e_page_is_reusable(page)))
1882 		return false;
1883 
1884 #if (PAGE_SIZE < 8192)
1885 	/* if we are only owner of page we can reuse it */
1886 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1887 		return false;
1888 #else
1889 #define I40E_LAST_OFFSET \
1890 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1891 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1892 		return false;
1893 #endif
1894 
1895 	/* If we have drained the page fragment pool we need to update
1896 	 * the pagecnt_bias and page count so that we fully restock the
1897 	 * number of references the driver holds.
1898 	 */
1899 	if (unlikely(pagecnt_bias == 1)) {
1900 		page_ref_add(page, USHRT_MAX - 1);
1901 		rx_buffer->pagecnt_bias = USHRT_MAX;
1902 	}
1903 
1904 	return true;
1905 }
1906 
1907 /**
1908  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1909  * @rx_ring: rx descriptor ring to transact packets on
1910  * @rx_buffer: buffer containing page to add
1911  * @skb: sk_buff to place the data into
1912  * @size: packet length from rx_desc
1913  *
1914  * This function will add the data contained in rx_buffer->page to the skb.
1915  * It will just attach the page as a frag to the skb.
1916  *
1917  * The function will then update the page offset.
1918  **/
1919 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1920 			     struct i40e_rx_buffer *rx_buffer,
1921 			     struct sk_buff *skb,
1922 			     unsigned int size)
1923 {
1924 #if (PAGE_SIZE < 8192)
1925 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1926 #else
1927 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1928 #endif
1929 
1930 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1931 			rx_buffer->page_offset, size, truesize);
1932 
1933 	/* page is being used so we must update the page offset */
1934 #if (PAGE_SIZE < 8192)
1935 	rx_buffer->page_offset ^= truesize;
1936 #else
1937 	rx_buffer->page_offset += truesize;
1938 #endif
1939 }
1940 
1941 /**
1942  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1943  * @rx_ring: rx descriptor ring to transact packets on
1944  * @size: size of buffer to add to skb
1945  *
1946  * This function will pull an Rx buffer from the ring and synchronize it
1947  * for use by the CPU.
1948  */
1949 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1950 						 const unsigned int size)
1951 {
1952 	struct i40e_rx_buffer *rx_buffer;
1953 
1954 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1955 	prefetch_page_address(rx_buffer->page);
1956 
1957 	/* we are reusing so sync this buffer for CPU use */
1958 	dma_sync_single_range_for_cpu(rx_ring->dev,
1959 				      rx_buffer->dma,
1960 				      rx_buffer->page_offset,
1961 				      size,
1962 				      DMA_FROM_DEVICE);
1963 
1964 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1965 	rx_buffer->pagecnt_bias--;
1966 
1967 	return rx_buffer;
1968 }
1969 
1970 /**
1971  * i40e_construct_skb - Allocate skb and populate it
1972  * @rx_ring: rx descriptor ring to transact packets on
1973  * @rx_buffer: rx buffer to pull data from
1974  * @xdp: xdp_buff pointing to the data
1975  *
1976  * This function allocates an skb.  It then populates it with the page
1977  * data from the current receive descriptor, taking care to set up the
1978  * skb correctly.
1979  */
1980 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1981 					  struct i40e_rx_buffer *rx_buffer,
1982 					  struct xdp_buff *xdp)
1983 {
1984 	unsigned int size = xdp->data_end - xdp->data;
1985 #if (PAGE_SIZE < 8192)
1986 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1987 #else
1988 	unsigned int truesize = SKB_DATA_ALIGN(size);
1989 #endif
1990 	unsigned int headlen;
1991 	struct sk_buff *skb;
1992 
1993 	/* prefetch first cache line of first page */
1994 	net_prefetch(xdp->data);
1995 
1996 	/* Note, we get here by enabling legacy-rx via:
1997 	 *
1998 	 *    ethtool --set-priv-flags <dev> legacy-rx on
1999 	 *
2000 	 * In this mode, we currently get 0 extra XDP headroom as
2001 	 * opposed to having legacy-rx off, where we process XDP
2002 	 * packets going to stack via i40e_build_skb(). The latter
2003 	 * provides us currently with 192 bytes of headroom.
2004 	 *
2005 	 * For i40e_construct_skb() mode it means that the
2006 	 * xdp->data_meta will always point to xdp->data, since
2007 	 * the helper cannot expand the head. Should this ever
2008 	 * change in future for legacy-rx mode on, then lets also
2009 	 * add xdp->data_meta handling here.
2010 	 */
2011 
2012 	/* allocate a skb to store the frags */
2013 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2014 			       I40E_RX_HDR_SIZE,
2015 			       GFP_ATOMIC | __GFP_NOWARN);
2016 	if (unlikely(!skb))
2017 		return NULL;
2018 
2019 	/* Determine available headroom for copy */
2020 	headlen = size;
2021 	if (headlen > I40E_RX_HDR_SIZE)
2022 		headlen = eth_get_headlen(skb->dev, xdp->data,
2023 					  I40E_RX_HDR_SIZE);
2024 
2025 	/* align pull length to size of long to optimize memcpy performance */
2026 	memcpy(__skb_put(skb, headlen), xdp->data,
2027 	       ALIGN(headlen, sizeof(long)));
2028 
2029 	/* update all of the pointers */
2030 	size -= headlen;
2031 	if (size) {
2032 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2033 				rx_buffer->page_offset + headlen,
2034 				size, truesize);
2035 
2036 		/* buffer is used by skb, update page_offset */
2037 #if (PAGE_SIZE < 8192)
2038 		rx_buffer->page_offset ^= truesize;
2039 #else
2040 		rx_buffer->page_offset += truesize;
2041 #endif
2042 	} else {
2043 		/* buffer is unused, reset bias back to rx_buffer */
2044 		rx_buffer->pagecnt_bias++;
2045 	}
2046 
2047 	return skb;
2048 }
2049 
2050 /**
2051  * i40e_build_skb - Build skb around an existing buffer
2052  * @rx_ring: Rx descriptor ring to transact packets on
2053  * @rx_buffer: Rx buffer to pull data from
2054  * @xdp: xdp_buff pointing to the data
2055  *
2056  * This function builds an skb around an existing Rx buffer, taking care
2057  * to set up the skb correctly and avoid any memcpy overhead.
2058  */
2059 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2060 				      struct i40e_rx_buffer *rx_buffer,
2061 				      struct xdp_buff *xdp)
2062 {
2063 	unsigned int metasize = xdp->data - xdp->data_meta;
2064 #if (PAGE_SIZE < 8192)
2065 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2066 #else
2067 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2068 				SKB_DATA_ALIGN(xdp->data_end -
2069 					       xdp->data_hard_start);
2070 #endif
2071 	struct sk_buff *skb;
2072 
2073 	/* Prefetch first cache line of first page. If xdp->data_meta
2074 	 * is unused, this points exactly as xdp->data, otherwise we
2075 	 * likely have a consumer accessing first few bytes of meta
2076 	 * data, and then actual data.
2077 	 */
2078 	net_prefetch(xdp->data_meta);
2079 
2080 	/* build an skb around the page buffer */
2081 	skb = build_skb(xdp->data_hard_start, truesize);
2082 	if (unlikely(!skb))
2083 		return NULL;
2084 
2085 	/* update pointers within the skb to store the data */
2086 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2087 	__skb_put(skb, xdp->data_end - xdp->data);
2088 	if (metasize)
2089 		skb_metadata_set(skb, metasize);
2090 
2091 	/* buffer is used by skb, update page_offset */
2092 #if (PAGE_SIZE < 8192)
2093 	rx_buffer->page_offset ^= truesize;
2094 #else
2095 	rx_buffer->page_offset += truesize;
2096 #endif
2097 
2098 	return skb;
2099 }
2100 
2101 /**
2102  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2103  * @rx_ring: rx descriptor ring to transact packets on
2104  * @rx_buffer: rx buffer to pull data from
2105  *
2106  * This function will clean up the contents of the rx_buffer.  It will
2107  * either recycle the buffer or unmap it and free the associated resources.
2108  */
2109 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2110 			       struct i40e_rx_buffer *rx_buffer)
2111 {
2112 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2113 		/* hand second half of page back to the ring */
2114 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2115 	} else {
2116 		/* we are not reusing the buffer so unmap it */
2117 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2118 				     i40e_rx_pg_size(rx_ring),
2119 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2120 		__page_frag_cache_drain(rx_buffer->page,
2121 					rx_buffer->pagecnt_bias);
2122 		/* clear contents of buffer_info */
2123 		rx_buffer->page = NULL;
2124 	}
2125 }
2126 
2127 /**
2128  * i40e_is_non_eop - process handling of non-EOP buffers
2129  * @rx_ring: Rx ring being processed
2130  * @rx_desc: Rx descriptor for current buffer
2131  * @skb: Current socket buffer containing buffer in progress
2132  *
2133  * This function updates next to clean.  If the buffer is an EOP buffer
2134  * this function exits returning false, otherwise it will place the
2135  * sk_buff in the next buffer to be chained and return true indicating
2136  * that this is in fact a non-EOP buffer.
2137  **/
2138 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2139 			    union i40e_rx_desc *rx_desc,
2140 			    struct sk_buff *skb)
2141 {
2142 	u32 ntc = rx_ring->next_to_clean + 1;
2143 
2144 	/* fetch, update, and store next to clean */
2145 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2146 	rx_ring->next_to_clean = ntc;
2147 
2148 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2149 
2150 	/* if we are the last buffer then there is nothing else to do */
2151 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2152 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2153 		return false;
2154 
2155 	rx_ring->rx_stats.non_eop_descs++;
2156 
2157 	return true;
2158 }
2159 
2160 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2161 			      struct i40e_ring *xdp_ring);
2162 
2163 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2164 {
2165 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2166 
2167 	if (unlikely(!xdpf))
2168 		return I40E_XDP_CONSUMED;
2169 
2170 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2171 }
2172 
2173 /**
2174  * i40e_run_xdp - run an XDP program
2175  * @rx_ring: Rx ring being processed
2176  * @xdp: XDP buffer containing the frame
2177  **/
2178 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2179 				    struct xdp_buff *xdp)
2180 {
2181 	int err, result = I40E_XDP_PASS;
2182 	struct i40e_ring *xdp_ring;
2183 	struct bpf_prog *xdp_prog;
2184 	u32 act;
2185 
2186 	rcu_read_lock();
2187 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2188 
2189 	if (!xdp_prog)
2190 		goto xdp_out;
2191 
2192 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2193 
2194 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2195 	switch (act) {
2196 	case XDP_PASS:
2197 		break;
2198 	case XDP_TX:
2199 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2200 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2201 		break;
2202 	case XDP_REDIRECT:
2203 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2204 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2205 		break;
2206 	default:
2207 		bpf_warn_invalid_xdp_action(act);
2208 		fallthrough;
2209 	case XDP_ABORTED:
2210 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2211 		fallthrough; /* handle aborts by dropping packet */
2212 	case XDP_DROP:
2213 		result = I40E_XDP_CONSUMED;
2214 		break;
2215 	}
2216 xdp_out:
2217 	rcu_read_unlock();
2218 	return ERR_PTR(-result);
2219 }
2220 
2221 /**
2222  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2223  * @rx_ring: Rx ring
2224  * @rx_buffer: Rx buffer to adjust
2225  * @size: Size of adjustment
2226  **/
2227 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2228 				struct i40e_rx_buffer *rx_buffer,
2229 				unsigned int size)
2230 {
2231 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2232 
2233 #if (PAGE_SIZE < 8192)
2234 	rx_buffer->page_offset ^= truesize;
2235 #else
2236 	rx_buffer->page_offset += truesize;
2237 #endif
2238 }
2239 
2240 /**
2241  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2242  * @xdp_ring: XDP Tx ring
2243  *
2244  * This function updates the XDP Tx ring tail register.
2245  **/
2246 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2247 {
2248 	/* Force memory writes to complete before letting h/w
2249 	 * know there are new descriptors to fetch.
2250 	 */
2251 	wmb();
2252 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2253 }
2254 
2255 /**
2256  * i40e_update_rx_stats - Update Rx ring statistics
2257  * @rx_ring: rx descriptor ring
2258  * @total_rx_bytes: number of bytes received
2259  * @total_rx_packets: number of packets received
2260  *
2261  * This function updates the Rx ring statistics.
2262  **/
2263 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2264 			  unsigned int total_rx_bytes,
2265 			  unsigned int total_rx_packets)
2266 {
2267 	u64_stats_update_begin(&rx_ring->syncp);
2268 	rx_ring->stats.packets += total_rx_packets;
2269 	rx_ring->stats.bytes += total_rx_bytes;
2270 	u64_stats_update_end(&rx_ring->syncp);
2271 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2272 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2273 }
2274 
2275 /**
2276  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2277  * @rx_ring: Rx ring
2278  * @xdp_res: Result of the receive batch
2279  *
2280  * This function bumps XDP Tx tail and/or flush redirect map, and
2281  * should be called when a batch of packets has been processed in the
2282  * napi loop.
2283  **/
2284 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2285 {
2286 	if (xdp_res & I40E_XDP_REDIR)
2287 		xdp_do_flush_map();
2288 
2289 	if (xdp_res & I40E_XDP_TX) {
2290 		struct i40e_ring *xdp_ring =
2291 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2292 
2293 		i40e_xdp_ring_update_tail(xdp_ring);
2294 	}
2295 }
2296 
2297 /**
2298  * i40e_inc_ntc: Advance the next_to_clean index
2299  * @rx_ring: Rx ring
2300  **/
2301 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2302 {
2303 	u32 ntc = rx_ring->next_to_clean + 1;
2304 
2305 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2306 	rx_ring->next_to_clean = ntc;
2307 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2308 }
2309 
2310 /**
2311  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2312  * @rx_ring: rx descriptor ring to transact packets on
2313  * @budget: Total limit on number of packets to process
2314  *
2315  * This function provides a "bounce buffer" approach to Rx interrupt
2316  * processing.  The advantage to this is that on systems that have
2317  * expensive overhead for IOMMU access this provides a means of avoiding
2318  * it by maintaining the mapping of the page to the system.
2319  *
2320  * Returns amount of work completed
2321  **/
2322 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2323 {
2324 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2325 	struct sk_buff *skb = rx_ring->skb;
2326 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2327 	unsigned int xdp_xmit = 0;
2328 	bool failure = false;
2329 	struct xdp_buff xdp;
2330 
2331 #if (PAGE_SIZE < 8192)
2332 	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2333 #endif
2334 	xdp.rxq = &rx_ring->xdp_rxq;
2335 
2336 	while (likely(total_rx_packets < (unsigned int)budget)) {
2337 		struct i40e_rx_buffer *rx_buffer;
2338 		union i40e_rx_desc *rx_desc;
2339 		unsigned int size;
2340 		u64 qword;
2341 
2342 		/* return some buffers to hardware, one at a time is too slow */
2343 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2344 			failure = failure ||
2345 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2346 			cleaned_count = 0;
2347 		}
2348 
2349 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2350 
2351 		/* status_error_len will always be zero for unused descriptors
2352 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2353 		 * which is always zero because packet split isn't used, if the
2354 		 * hardware wrote DD then the length will be non-zero
2355 		 */
2356 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2357 
2358 		/* This memory barrier is needed to keep us from reading
2359 		 * any other fields out of the rx_desc until we have
2360 		 * verified the descriptor has been written back.
2361 		 */
2362 		dma_rmb();
2363 
2364 		if (i40e_rx_is_programming_status(qword)) {
2365 			i40e_clean_programming_status(rx_ring,
2366 						      rx_desc->raw.qword[0],
2367 						      qword);
2368 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2369 			i40e_inc_ntc(rx_ring);
2370 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2371 			cleaned_count++;
2372 			continue;
2373 		}
2374 
2375 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2376 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2377 		if (!size)
2378 			break;
2379 
2380 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2381 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2382 
2383 		/* retrieve a buffer from the ring */
2384 		if (!skb) {
2385 			xdp.data = page_address(rx_buffer->page) +
2386 				   rx_buffer->page_offset;
2387 			xdp.data_meta = xdp.data;
2388 			xdp.data_hard_start = xdp.data -
2389 					      i40e_rx_offset(rx_ring);
2390 			xdp.data_end = xdp.data + size;
2391 #if (PAGE_SIZE > 4096)
2392 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2393 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2394 #endif
2395 			skb = i40e_run_xdp(rx_ring, &xdp);
2396 		}
2397 
2398 		if (IS_ERR(skb)) {
2399 			unsigned int xdp_res = -PTR_ERR(skb);
2400 
2401 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2402 				xdp_xmit |= xdp_res;
2403 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2404 			} else {
2405 				rx_buffer->pagecnt_bias++;
2406 			}
2407 			total_rx_bytes += size;
2408 			total_rx_packets++;
2409 		} else if (skb) {
2410 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2411 		} else if (ring_uses_build_skb(rx_ring)) {
2412 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2413 		} else {
2414 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2415 		}
2416 
2417 		/* exit if we failed to retrieve a buffer */
2418 		if (!skb) {
2419 			rx_ring->rx_stats.alloc_buff_failed++;
2420 			rx_buffer->pagecnt_bias++;
2421 			break;
2422 		}
2423 
2424 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2425 		cleaned_count++;
2426 
2427 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2428 			continue;
2429 
2430 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2431 			skb = NULL;
2432 			continue;
2433 		}
2434 
2435 		/* probably a little skewed due to removing CRC */
2436 		total_rx_bytes += skb->len;
2437 
2438 		/* populate checksum, VLAN, and protocol */
2439 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2440 
2441 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2442 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2443 		skb = NULL;
2444 
2445 		/* update budget accounting */
2446 		total_rx_packets++;
2447 	}
2448 
2449 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2450 	rx_ring->skb = skb;
2451 
2452 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2453 
2454 	/* guarantee a trip back through this routine if there was a failure */
2455 	return failure ? budget : (int)total_rx_packets;
2456 }
2457 
2458 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2459 {
2460 	u32 val;
2461 
2462 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2463 	 * points out doing so is "meaningless since it was already
2464 	 * auto-cleared". The auto-clearing happens when the interrupt is
2465 	 * asserted.
2466 	 *
2467 	 * Hardware errata 28 for also indicates that writing to a
2468 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2469 	 * an event in the PBA anyway so we need to rely on the automask
2470 	 * to hold pending events for us until the interrupt is re-enabled
2471 	 *
2472 	 * The itr value is reported in microseconds, and the register
2473 	 * value is recorded in 2 microsecond units. For this reason we
2474 	 * only need to shift by the interval shift - 1 instead of the
2475 	 * full value.
2476 	 */
2477 	itr &= I40E_ITR_MASK;
2478 
2479 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2480 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2481 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2482 
2483 	return val;
2484 }
2485 
2486 /* a small macro to shorten up some long lines */
2487 #define INTREG I40E_PFINT_DYN_CTLN
2488 
2489 /* The act of updating the ITR will cause it to immediately trigger. In order
2490  * to prevent this from throwing off adaptive update statistics we defer the
2491  * update so that it can only happen so often. So after either Tx or Rx are
2492  * updated we make the adaptive scheme wait until either the ITR completely
2493  * expires via the next_update expiration or we have been through at least
2494  * 3 interrupts.
2495  */
2496 #define ITR_COUNTDOWN_START 3
2497 
2498 /**
2499  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2500  * @vsi: the VSI we care about
2501  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2502  *
2503  **/
2504 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2505 					  struct i40e_q_vector *q_vector)
2506 {
2507 	struct i40e_hw *hw = &vsi->back->hw;
2508 	u32 intval;
2509 
2510 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2511 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2512 		i40e_irq_dynamic_enable_icr0(vsi->back);
2513 		return;
2514 	}
2515 
2516 	/* These will do nothing if dynamic updates are not enabled */
2517 	i40e_update_itr(q_vector, &q_vector->tx);
2518 	i40e_update_itr(q_vector, &q_vector->rx);
2519 
2520 	/* This block of logic allows us to get away with only updating
2521 	 * one ITR value with each interrupt. The idea is to perform a
2522 	 * pseudo-lazy update with the following criteria.
2523 	 *
2524 	 * 1. Rx is given higher priority than Tx if both are in same state
2525 	 * 2. If we must reduce an ITR that is given highest priority.
2526 	 * 3. We then give priority to increasing ITR based on amount.
2527 	 */
2528 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2529 		/* Rx ITR needs to be reduced, this is highest priority */
2530 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2531 					   q_vector->rx.target_itr);
2532 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2533 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2534 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2535 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2536 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2537 		/* Tx ITR needs to be reduced, this is second priority
2538 		 * Tx ITR needs to be increased more than Rx, fourth priority
2539 		 */
2540 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2541 					   q_vector->tx.target_itr);
2542 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2543 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2544 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2545 		/* Rx ITR needs to be increased, third priority */
2546 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2547 					   q_vector->rx.target_itr);
2548 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2549 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2550 	} else {
2551 		/* No ITR update, lowest priority */
2552 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2553 		if (q_vector->itr_countdown)
2554 			q_vector->itr_countdown--;
2555 	}
2556 
2557 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2558 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2559 }
2560 
2561 /**
2562  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2563  * @napi: napi struct with our devices info in it
2564  * @budget: amount of work driver is allowed to do this pass, in packets
2565  *
2566  * This function will clean all queues associated with a q_vector.
2567  *
2568  * Returns the amount of work done
2569  **/
2570 int i40e_napi_poll(struct napi_struct *napi, int budget)
2571 {
2572 	struct i40e_q_vector *q_vector =
2573 			       container_of(napi, struct i40e_q_vector, napi);
2574 	struct i40e_vsi *vsi = q_vector->vsi;
2575 	struct i40e_ring *ring;
2576 	bool clean_complete = true;
2577 	bool arm_wb = false;
2578 	int budget_per_ring;
2579 	int work_done = 0;
2580 
2581 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2582 		napi_complete(napi);
2583 		return 0;
2584 	}
2585 
2586 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2587 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2588 	 */
2589 	i40e_for_each_ring(ring, q_vector->tx) {
2590 		bool wd = ring->xsk_pool ?
2591 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2592 			  i40e_clean_tx_irq(vsi, ring, budget);
2593 
2594 		if (!wd) {
2595 			clean_complete = false;
2596 			continue;
2597 		}
2598 		arm_wb |= ring->arm_wb;
2599 		ring->arm_wb = false;
2600 	}
2601 
2602 	/* Handle case where we are called by netpoll with a budget of 0 */
2603 	if (budget <= 0)
2604 		goto tx_only;
2605 
2606 	/* normally we have 1 Rx ring per q_vector */
2607 	if (unlikely(q_vector->num_ringpairs > 1))
2608 		/* We attempt to distribute budget to each Rx queue fairly, but
2609 		 * don't allow the budget to go below 1 because that would exit
2610 		 * polling early.
2611 		 */
2612 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2613 	else
2614 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2615 		budget_per_ring = budget;
2616 
2617 	i40e_for_each_ring(ring, q_vector->rx) {
2618 		int cleaned = ring->xsk_pool ?
2619 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2620 			      i40e_clean_rx_irq(ring, budget_per_ring);
2621 
2622 		work_done += cleaned;
2623 		/* if we clean as many as budgeted, we must not be done */
2624 		if (cleaned >= budget_per_ring)
2625 			clean_complete = false;
2626 	}
2627 
2628 	/* If work not completed, return budget and polling will return */
2629 	if (!clean_complete) {
2630 		int cpu_id = smp_processor_id();
2631 
2632 		/* It is possible that the interrupt affinity has changed but,
2633 		 * if the cpu is pegged at 100%, polling will never exit while
2634 		 * traffic continues and the interrupt will be stuck on this
2635 		 * cpu.  We check to make sure affinity is correct before we
2636 		 * continue to poll, otherwise we must stop polling so the
2637 		 * interrupt can move to the correct cpu.
2638 		 */
2639 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2640 			/* Tell napi that we are done polling */
2641 			napi_complete_done(napi, work_done);
2642 
2643 			/* Force an interrupt */
2644 			i40e_force_wb(vsi, q_vector);
2645 
2646 			/* Return budget-1 so that polling stops */
2647 			return budget - 1;
2648 		}
2649 tx_only:
2650 		if (arm_wb) {
2651 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2652 			i40e_enable_wb_on_itr(vsi, q_vector);
2653 		}
2654 		return budget;
2655 	}
2656 
2657 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2658 		q_vector->arm_wb_state = false;
2659 
2660 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2661 	 * poll us due to busy-polling
2662 	 */
2663 	if (likely(napi_complete_done(napi, work_done)))
2664 		i40e_update_enable_itr(vsi, q_vector);
2665 
2666 	return min(work_done, budget - 1);
2667 }
2668 
2669 /**
2670  * i40e_atr - Add a Flow Director ATR filter
2671  * @tx_ring:  ring to add programming descriptor to
2672  * @skb:      send buffer
2673  * @tx_flags: send tx flags
2674  **/
2675 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2676 		     u32 tx_flags)
2677 {
2678 	struct i40e_filter_program_desc *fdir_desc;
2679 	struct i40e_pf *pf = tx_ring->vsi->back;
2680 	union {
2681 		unsigned char *network;
2682 		struct iphdr *ipv4;
2683 		struct ipv6hdr *ipv6;
2684 	} hdr;
2685 	struct tcphdr *th;
2686 	unsigned int hlen;
2687 	u32 flex_ptype, dtype_cmd;
2688 	int l4_proto;
2689 	u16 i;
2690 
2691 	/* make sure ATR is enabled */
2692 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2693 		return;
2694 
2695 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2696 		return;
2697 
2698 	/* if sampling is disabled do nothing */
2699 	if (!tx_ring->atr_sample_rate)
2700 		return;
2701 
2702 	/* Currently only IPv4/IPv6 with TCP is supported */
2703 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2704 		return;
2705 
2706 	/* snag network header to get L4 type and address */
2707 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2708 		      skb_inner_network_header(skb) : skb_network_header(skb);
2709 
2710 	/* Note: tx_flags gets modified to reflect inner protocols in
2711 	 * tx_enable_csum function if encap is enabled.
2712 	 */
2713 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2714 		/* access ihl as u8 to avoid unaligned access on ia64 */
2715 		hlen = (hdr.network[0] & 0x0F) << 2;
2716 		l4_proto = hdr.ipv4->protocol;
2717 	} else {
2718 		/* find the start of the innermost ipv6 header */
2719 		unsigned int inner_hlen = hdr.network - skb->data;
2720 		unsigned int h_offset = inner_hlen;
2721 
2722 		/* this function updates h_offset to the end of the header */
2723 		l4_proto =
2724 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2725 		/* hlen will contain our best estimate of the tcp header */
2726 		hlen = h_offset - inner_hlen;
2727 	}
2728 
2729 	if (l4_proto != IPPROTO_TCP)
2730 		return;
2731 
2732 	th = (struct tcphdr *)(hdr.network + hlen);
2733 
2734 	/* Due to lack of space, no more new filters can be programmed */
2735 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2736 		return;
2737 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2738 		/* HW ATR eviction will take care of removing filters on FIN
2739 		 * and RST packets.
2740 		 */
2741 		if (th->fin || th->rst)
2742 			return;
2743 	}
2744 
2745 	tx_ring->atr_count++;
2746 
2747 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2748 	if (!th->fin &&
2749 	    !th->syn &&
2750 	    !th->rst &&
2751 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2752 		return;
2753 
2754 	tx_ring->atr_count = 0;
2755 
2756 	/* grab the next descriptor */
2757 	i = tx_ring->next_to_use;
2758 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2759 
2760 	i++;
2761 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2762 
2763 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2764 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2765 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2766 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2767 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2768 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2769 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2770 
2771 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2772 
2773 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2774 
2775 	dtype_cmd |= (th->fin || th->rst) ?
2776 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2777 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2778 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2779 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2780 
2781 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2782 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2783 
2784 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2785 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2786 
2787 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2788 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2789 		dtype_cmd |=
2790 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2791 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2792 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2793 	else
2794 		dtype_cmd |=
2795 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2796 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2797 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2798 
2799 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2800 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2801 
2802 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2803 	fdir_desc->rsvd = cpu_to_le32(0);
2804 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2805 	fdir_desc->fd_id = cpu_to_le32(0);
2806 }
2807 
2808 /**
2809  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2810  * @skb:     send buffer
2811  * @tx_ring: ring to send buffer on
2812  * @flags:   the tx flags to be set
2813  *
2814  * Checks the skb and set up correspondingly several generic transmit flags
2815  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2816  *
2817  * Returns error code indicate the frame should be dropped upon error and the
2818  * otherwise  returns 0 to indicate the flags has been set properly.
2819  **/
2820 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2821 					     struct i40e_ring *tx_ring,
2822 					     u32 *flags)
2823 {
2824 	__be16 protocol = skb->protocol;
2825 	u32  tx_flags = 0;
2826 
2827 	if (protocol == htons(ETH_P_8021Q) &&
2828 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2829 		/* When HW VLAN acceleration is turned off by the user the
2830 		 * stack sets the protocol to 8021q so that the driver
2831 		 * can take any steps required to support the SW only
2832 		 * VLAN handling.  In our case the driver doesn't need
2833 		 * to take any further steps so just set the protocol
2834 		 * to the encapsulated ethertype.
2835 		 */
2836 		skb->protocol = vlan_get_protocol(skb);
2837 		goto out;
2838 	}
2839 
2840 	/* if we have a HW VLAN tag being added, default to the HW one */
2841 	if (skb_vlan_tag_present(skb)) {
2842 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2843 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2844 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2845 	} else if (protocol == htons(ETH_P_8021Q)) {
2846 		struct vlan_hdr *vhdr, _vhdr;
2847 
2848 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2849 		if (!vhdr)
2850 			return -EINVAL;
2851 
2852 		protocol = vhdr->h_vlan_encapsulated_proto;
2853 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2854 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2855 	}
2856 
2857 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2858 		goto out;
2859 
2860 	/* Insert 802.1p priority into VLAN header */
2861 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2862 	    (skb->priority != TC_PRIO_CONTROL)) {
2863 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2864 		tx_flags |= (skb->priority & 0x7) <<
2865 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2866 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2867 			struct vlan_ethhdr *vhdr;
2868 			int rc;
2869 
2870 			rc = skb_cow_head(skb, 0);
2871 			if (rc < 0)
2872 				return rc;
2873 			vhdr = (struct vlan_ethhdr *)skb->data;
2874 			vhdr->h_vlan_TCI = htons(tx_flags >>
2875 						 I40E_TX_FLAGS_VLAN_SHIFT);
2876 		} else {
2877 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2878 		}
2879 	}
2880 
2881 out:
2882 	*flags = tx_flags;
2883 	return 0;
2884 }
2885 
2886 /**
2887  * i40e_tso - set up the tso context descriptor
2888  * @first:    pointer to first Tx buffer for xmit
2889  * @hdr_len:  ptr to the size of the packet header
2890  * @cd_type_cmd_tso_mss: Quad Word 1
2891  *
2892  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2893  **/
2894 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2895 		    u64 *cd_type_cmd_tso_mss)
2896 {
2897 	struct sk_buff *skb = first->skb;
2898 	u64 cd_cmd, cd_tso_len, cd_mss;
2899 	union {
2900 		struct iphdr *v4;
2901 		struct ipv6hdr *v6;
2902 		unsigned char *hdr;
2903 	} ip;
2904 	union {
2905 		struct tcphdr *tcp;
2906 		struct udphdr *udp;
2907 		unsigned char *hdr;
2908 	} l4;
2909 	u32 paylen, l4_offset;
2910 	u16 gso_segs, gso_size;
2911 	int err;
2912 
2913 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2914 		return 0;
2915 
2916 	if (!skb_is_gso(skb))
2917 		return 0;
2918 
2919 	err = skb_cow_head(skb, 0);
2920 	if (err < 0)
2921 		return err;
2922 
2923 	ip.hdr = skb_network_header(skb);
2924 	l4.hdr = skb_transport_header(skb);
2925 
2926 	/* initialize outer IP header fields */
2927 	if (ip.v4->version == 4) {
2928 		ip.v4->tot_len = 0;
2929 		ip.v4->check = 0;
2930 	} else {
2931 		ip.v6->payload_len = 0;
2932 	}
2933 
2934 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2935 					 SKB_GSO_GRE_CSUM |
2936 					 SKB_GSO_IPXIP4 |
2937 					 SKB_GSO_IPXIP6 |
2938 					 SKB_GSO_UDP_TUNNEL |
2939 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2940 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2941 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2942 			l4.udp->len = 0;
2943 
2944 			/* determine offset of outer transport header */
2945 			l4_offset = l4.hdr - skb->data;
2946 
2947 			/* remove payload length from outer checksum */
2948 			paylen = skb->len - l4_offset;
2949 			csum_replace_by_diff(&l4.udp->check,
2950 					     (__force __wsum)htonl(paylen));
2951 		}
2952 
2953 		/* reset pointers to inner headers */
2954 		ip.hdr = skb_inner_network_header(skb);
2955 		l4.hdr = skb_inner_transport_header(skb);
2956 
2957 		/* initialize inner IP header fields */
2958 		if (ip.v4->version == 4) {
2959 			ip.v4->tot_len = 0;
2960 			ip.v4->check = 0;
2961 		} else {
2962 			ip.v6->payload_len = 0;
2963 		}
2964 	}
2965 
2966 	/* determine offset of inner transport header */
2967 	l4_offset = l4.hdr - skb->data;
2968 
2969 	/* remove payload length from inner checksum */
2970 	paylen = skb->len - l4_offset;
2971 
2972 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2973 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2974 		/* compute length of segmentation header */
2975 		*hdr_len = sizeof(*l4.udp) + l4_offset;
2976 	} else {
2977 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2978 		/* compute length of segmentation header */
2979 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2980 	}
2981 
2982 	/* pull values out of skb_shinfo */
2983 	gso_size = skb_shinfo(skb)->gso_size;
2984 	gso_segs = skb_shinfo(skb)->gso_segs;
2985 
2986 	/* update GSO size and bytecount with header size */
2987 	first->gso_segs = gso_segs;
2988 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2989 
2990 	/* find the field values */
2991 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2992 	cd_tso_len = skb->len - *hdr_len;
2993 	cd_mss = gso_size;
2994 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2995 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2996 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2997 	return 1;
2998 }
2999 
3000 /**
3001  * i40e_tsyn - set up the tsyn context descriptor
3002  * @tx_ring:  ptr to the ring to send
3003  * @skb:      ptr to the skb we're sending
3004  * @tx_flags: the collected send information
3005  * @cd_type_cmd_tso_mss: Quad Word 1
3006  *
3007  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3008  **/
3009 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3010 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3011 {
3012 	struct i40e_pf *pf;
3013 
3014 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3015 		return 0;
3016 
3017 	/* Tx timestamps cannot be sampled when doing TSO */
3018 	if (tx_flags & I40E_TX_FLAGS_TSO)
3019 		return 0;
3020 
3021 	/* only timestamp the outbound packet if the user has requested it and
3022 	 * we are not already transmitting a packet to be timestamped
3023 	 */
3024 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3025 	if (!(pf->flags & I40E_FLAG_PTP))
3026 		return 0;
3027 
3028 	if (pf->ptp_tx &&
3029 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3030 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3031 		pf->ptp_tx_start = jiffies;
3032 		pf->ptp_tx_skb = skb_get(skb);
3033 	} else {
3034 		pf->tx_hwtstamp_skipped++;
3035 		return 0;
3036 	}
3037 
3038 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3039 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3040 
3041 	return 1;
3042 }
3043 
3044 /**
3045  * i40e_tx_enable_csum - Enable Tx checksum offloads
3046  * @skb: send buffer
3047  * @tx_flags: pointer to Tx flags currently set
3048  * @td_cmd: Tx descriptor command bits to set
3049  * @td_offset: Tx descriptor header offsets to set
3050  * @tx_ring: Tx descriptor ring
3051  * @cd_tunneling: ptr to context desc bits
3052  **/
3053 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3054 			       u32 *td_cmd, u32 *td_offset,
3055 			       struct i40e_ring *tx_ring,
3056 			       u32 *cd_tunneling)
3057 {
3058 	union {
3059 		struct iphdr *v4;
3060 		struct ipv6hdr *v6;
3061 		unsigned char *hdr;
3062 	} ip;
3063 	union {
3064 		struct tcphdr *tcp;
3065 		struct udphdr *udp;
3066 		unsigned char *hdr;
3067 	} l4;
3068 	unsigned char *exthdr;
3069 	u32 offset, cmd = 0;
3070 	__be16 frag_off;
3071 	u8 l4_proto = 0;
3072 
3073 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3074 		return 0;
3075 
3076 	ip.hdr = skb_network_header(skb);
3077 	l4.hdr = skb_transport_header(skb);
3078 
3079 	/* compute outer L2 header size */
3080 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3081 
3082 	if (skb->encapsulation) {
3083 		u32 tunnel = 0;
3084 		/* define outer network header type */
3085 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3086 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3087 				  I40E_TX_CTX_EXT_IP_IPV4 :
3088 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3089 
3090 			l4_proto = ip.v4->protocol;
3091 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3092 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3093 
3094 			exthdr = ip.hdr + sizeof(*ip.v6);
3095 			l4_proto = ip.v6->nexthdr;
3096 			if (l4.hdr != exthdr)
3097 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3098 						 &l4_proto, &frag_off);
3099 		}
3100 
3101 		/* define outer transport */
3102 		switch (l4_proto) {
3103 		case IPPROTO_UDP:
3104 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3105 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3106 			break;
3107 		case IPPROTO_GRE:
3108 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3109 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3110 			break;
3111 		case IPPROTO_IPIP:
3112 		case IPPROTO_IPV6:
3113 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3114 			l4.hdr = skb_inner_network_header(skb);
3115 			break;
3116 		default:
3117 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3118 				return -1;
3119 
3120 			skb_checksum_help(skb);
3121 			return 0;
3122 		}
3123 
3124 		/* compute outer L3 header size */
3125 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3126 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3127 
3128 		/* switch IP header pointer from outer to inner header */
3129 		ip.hdr = skb_inner_network_header(skb);
3130 
3131 		/* compute tunnel header size */
3132 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3133 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3134 
3135 		/* indicate if we need to offload outer UDP header */
3136 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3137 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3138 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3139 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3140 
3141 		/* record tunnel offload values */
3142 		*cd_tunneling |= tunnel;
3143 
3144 		/* switch L4 header pointer from outer to inner */
3145 		l4.hdr = skb_inner_transport_header(skb);
3146 		l4_proto = 0;
3147 
3148 		/* reset type as we transition from outer to inner headers */
3149 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3150 		if (ip.v4->version == 4)
3151 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3152 		if (ip.v6->version == 6)
3153 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3154 	}
3155 
3156 	/* Enable IP checksum offloads */
3157 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3158 		l4_proto = ip.v4->protocol;
3159 		/* the stack computes the IP header already, the only time we
3160 		 * need the hardware to recompute it is in the case of TSO.
3161 		 */
3162 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3163 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3164 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3165 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3166 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3167 
3168 		exthdr = ip.hdr + sizeof(*ip.v6);
3169 		l4_proto = ip.v6->nexthdr;
3170 		if (l4.hdr != exthdr)
3171 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3172 					 &l4_proto, &frag_off);
3173 	}
3174 
3175 	/* compute inner L3 header size */
3176 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3177 
3178 	/* Enable L4 checksum offloads */
3179 	switch (l4_proto) {
3180 	case IPPROTO_TCP:
3181 		/* enable checksum offloads */
3182 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3183 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3184 		break;
3185 	case IPPROTO_SCTP:
3186 		/* enable SCTP checksum offload */
3187 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3188 		offset |= (sizeof(struct sctphdr) >> 2) <<
3189 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3190 		break;
3191 	case IPPROTO_UDP:
3192 		/* enable UDP checksum offload */
3193 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3194 		offset |= (sizeof(struct udphdr) >> 2) <<
3195 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3196 		break;
3197 	default:
3198 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3199 			return -1;
3200 		skb_checksum_help(skb);
3201 		return 0;
3202 	}
3203 
3204 	*td_cmd |= cmd;
3205 	*td_offset |= offset;
3206 
3207 	return 1;
3208 }
3209 
3210 /**
3211  * i40e_create_tx_ctx Build the Tx context descriptor
3212  * @tx_ring:  ring to create the descriptor on
3213  * @cd_type_cmd_tso_mss: Quad Word 1
3214  * @cd_tunneling: Quad Word 0 - bits 0-31
3215  * @cd_l2tag2: Quad Word 0 - bits 32-63
3216  **/
3217 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3218 			       const u64 cd_type_cmd_tso_mss,
3219 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3220 {
3221 	struct i40e_tx_context_desc *context_desc;
3222 	int i = tx_ring->next_to_use;
3223 
3224 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3225 	    !cd_tunneling && !cd_l2tag2)
3226 		return;
3227 
3228 	/* grab the next descriptor */
3229 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3230 
3231 	i++;
3232 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3233 
3234 	/* cpu_to_le32 and assign to struct fields */
3235 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3236 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3237 	context_desc->rsvd = cpu_to_le16(0);
3238 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3239 }
3240 
3241 /**
3242  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3243  * @tx_ring: the ring to be checked
3244  * @size:    the size buffer we want to assure is available
3245  *
3246  * Returns -EBUSY if a stop is needed, else 0
3247  **/
3248 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3249 {
3250 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3251 	/* Memory barrier before checking head and tail */
3252 	smp_mb();
3253 
3254 	/* Check again in a case another CPU has just made room available. */
3255 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3256 		return -EBUSY;
3257 
3258 	/* A reprieve! - use start_queue because it doesn't call schedule */
3259 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3260 	++tx_ring->tx_stats.restart_queue;
3261 	return 0;
3262 }
3263 
3264 /**
3265  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3266  * @skb:      send buffer
3267  *
3268  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3269  * and so we need to figure out the cases where we need to linearize the skb.
3270  *
3271  * For TSO we need to count the TSO header and segment payload separately.
3272  * As such we need to check cases where we have 7 fragments or more as we
3273  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3274  * the segment payload in the first descriptor, and another 7 for the
3275  * fragments.
3276  **/
3277 bool __i40e_chk_linearize(struct sk_buff *skb)
3278 {
3279 	const skb_frag_t *frag, *stale;
3280 	int nr_frags, sum;
3281 
3282 	/* no need to check if number of frags is less than 7 */
3283 	nr_frags = skb_shinfo(skb)->nr_frags;
3284 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3285 		return false;
3286 
3287 	/* We need to walk through the list and validate that each group
3288 	 * of 6 fragments totals at least gso_size.
3289 	 */
3290 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3291 	frag = &skb_shinfo(skb)->frags[0];
3292 
3293 	/* Initialize size to the negative value of gso_size minus 1.  We
3294 	 * use this as the worst case scenerio in which the frag ahead
3295 	 * of us only provides one byte which is why we are limited to 6
3296 	 * descriptors for a single transmit as the header and previous
3297 	 * fragment are already consuming 2 descriptors.
3298 	 */
3299 	sum = 1 - skb_shinfo(skb)->gso_size;
3300 
3301 	/* Add size of frags 0 through 4 to create our initial sum */
3302 	sum += skb_frag_size(frag++);
3303 	sum += skb_frag_size(frag++);
3304 	sum += skb_frag_size(frag++);
3305 	sum += skb_frag_size(frag++);
3306 	sum += skb_frag_size(frag++);
3307 
3308 	/* Walk through fragments adding latest fragment, testing it, and
3309 	 * then removing stale fragments from the sum.
3310 	 */
3311 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3312 		int stale_size = skb_frag_size(stale);
3313 
3314 		sum += skb_frag_size(frag++);
3315 
3316 		/* The stale fragment may present us with a smaller
3317 		 * descriptor than the actual fragment size. To account
3318 		 * for that we need to remove all the data on the front and
3319 		 * figure out what the remainder would be in the last
3320 		 * descriptor associated with the fragment.
3321 		 */
3322 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3323 			int align_pad = -(skb_frag_off(stale)) &
3324 					(I40E_MAX_READ_REQ_SIZE - 1);
3325 
3326 			sum -= align_pad;
3327 			stale_size -= align_pad;
3328 
3329 			do {
3330 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3331 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3332 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3333 		}
3334 
3335 		/* if sum is negative we failed to make sufficient progress */
3336 		if (sum < 0)
3337 			return true;
3338 
3339 		if (!nr_frags--)
3340 			break;
3341 
3342 		sum -= stale_size;
3343 	}
3344 
3345 	return false;
3346 }
3347 
3348 /**
3349  * i40e_tx_map - Build the Tx descriptor
3350  * @tx_ring:  ring to send buffer on
3351  * @skb:      send buffer
3352  * @first:    first buffer info buffer to use
3353  * @tx_flags: collected send information
3354  * @hdr_len:  size of the packet header
3355  * @td_cmd:   the command field in the descriptor
3356  * @td_offset: offset for checksum or crc
3357  *
3358  * Returns 0 on success, -1 on failure to DMA
3359  **/
3360 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3361 			      struct i40e_tx_buffer *first, u32 tx_flags,
3362 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3363 {
3364 	unsigned int data_len = skb->data_len;
3365 	unsigned int size = skb_headlen(skb);
3366 	skb_frag_t *frag;
3367 	struct i40e_tx_buffer *tx_bi;
3368 	struct i40e_tx_desc *tx_desc;
3369 	u16 i = tx_ring->next_to_use;
3370 	u32 td_tag = 0;
3371 	dma_addr_t dma;
3372 	u16 desc_count = 1;
3373 
3374 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3375 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3376 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3377 			 I40E_TX_FLAGS_VLAN_SHIFT;
3378 	}
3379 
3380 	first->tx_flags = tx_flags;
3381 
3382 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3383 
3384 	tx_desc = I40E_TX_DESC(tx_ring, i);
3385 	tx_bi = first;
3386 
3387 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3388 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3389 
3390 		if (dma_mapping_error(tx_ring->dev, dma))
3391 			goto dma_error;
3392 
3393 		/* record length, and DMA address */
3394 		dma_unmap_len_set(tx_bi, len, size);
3395 		dma_unmap_addr_set(tx_bi, dma, dma);
3396 
3397 		/* align size to end of page */
3398 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3399 		tx_desc->buffer_addr = cpu_to_le64(dma);
3400 
3401 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3402 			tx_desc->cmd_type_offset_bsz =
3403 				build_ctob(td_cmd, td_offset,
3404 					   max_data, td_tag);
3405 
3406 			tx_desc++;
3407 			i++;
3408 			desc_count++;
3409 
3410 			if (i == tx_ring->count) {
3411 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3412 				i = 0;
3413 			}
3414 
3415 			dma += max_data;
3416 			size -= max_data;
3417 
3418 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3419 			tx_desc->buffer_addr = cpu_to_le64(dma);
3420 		}
3421 
3422 		if (likely(!data_len))
3423 			break;
3424 
3425 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3426 							  size, td_tag);
3427 
3428 		tx_desc++;
3429 		i++;
3430 		desc_count++;
3431 
3432 		if (i == tx_ring->count) {
3433 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3434 			i = 0;
3435 		}
3436 
3437 		size = skb_frag_size(frag);
3438 		data_len -= size;
3439 
3440 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3441 				       DMA_TO_DEVICE);
3442 
3443 		tx_bi = &tx_ring->tx_bi[i];
3444 	}
3445 
3446 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3447 
3448 	i++;
3449 	if (i == tx_ring->count)
3450 		i = 0;
3451 
3452 	tx_ring->next_to_use = i;
3453 
3454 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3455 
3456 	/* write last descriptor with EOP bit */
3457 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3458 
3459 	/* We OR these values together to check both against 4 (WB_STRIDE)
3460 	 * below. This is safe since we don't re-use desc_count afterwards.
3461 	 */
3462 	desc_count |= ++tx_ring->packet_stride;
3463 
3464 	if (desc_count >= WB_STRIDE) {
3465 		/* write last descriptor with RS bit set */
3466 		td_cmd |= I40E_TX_DESC_CMD_RS;
3467 		tx_ring->packet_stride = 0;
3468 	}
3469 
3470 	tx_desc->cmd_type_offset_bsz =
3471 			build_ctob(td_cmd, td_offset, size, td_tag);
3472 
3473 	skb_tx_timestamp(skb);
3474 
3475 	/* Force memory writes to complete before letting h/w know there
3476 	 * are new descriptors to fetch.
3477 	 *
3478 	 * We also use this memory barrier to make certain all of the
3479 	 * status bits have been updated before next_to_watch is written.
3480 	 */
3481 	wmb();
3482 
3483 	/* set next_to_watch value indicating a packet is present */
3484 	first->next_to_watch = tx_desc;
3485 
3486 	/* notify HW of packet */
3487 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3488 		writel(i, tx_ring->tail);
3489 	}
3490 
3491 	return 0;
3492 
3493 dma_error:
3494 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3495 
3496 	/* clear dma mappings for failed tx_bi map */
3497 	for (;;) {
3498 		tx_bi = &tx_ring->tx_bi[i];
3499 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3500 		if (tx_bi == first)
3501 			break;
3502 		if (i == 0)
3503 			i = tx_ring->count;
3504 		i--;
3505 	}
3506 
3507 	tx_ring->next_to_use = i;
3508 
3509 	return -1;
3510 }
3511 
3512 /**
3513  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3514  * @xdpf: data to transmit
3515  * @xdp_ring: XDP Tx ring
3516  **/
3517 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3518 			      struct i40e_ring *xdp_ring)
3519 {
3520 	u16 i = xdp_ring->next_to_use;
3521 	struct i40e_tx_buffer *tx_bi;
3522 	struct i40e_tx_desc *tx_desc;
3523 	void *data = xdpf->data;
3524 	u32 size = xdpf->len;
3525 	dma_addr_t dma;
3526 
3527 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3528 		xdp_ring->tx_stats.tx_busy++;
3529 		return I40E_XDP_CONSUMED;
3530 	}
3531 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3532 	if (dma_mapping_error(xdp_ring->dev, dma))
3533 		return I40E_XDP_CONSUMED;
3534 
3535 	tx_bi = &xdp_ring->tx_bi[i];
3536 	tx_bi->bytecount = size;
3537 	tx_bi->gso_segs = 1;
3538 	tx_bi->xdpf = xdpf;
3539 
3540 	/* record length, and DMA address */
3541 	dma_unmap_len_set(tx_bi, len, size);
3542 	dma_unmap_addr_set(tx_bi, dma, dma);
3543 
3544 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3545 	tx_desc->buffer_addr = cpu_to_le64(dma);
3546 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3547 						  | I40E_TXD_CMD,
3548 						  0, size, 0);
3549 
3550 	/* Make certain all of the status bits have been updated
3551 	 * before next_to_watch is written.
3552 	 */
3553 	smp_wmb();
3554 
3555 	xdp_ring->xdp_tx_active++;
3556 	i++;
3557 	if (i == xdp_ring->count)
3558 		i = 0;
3559 
3560 	tx_bi->next_to_watch = tx_desc;
3561 	xdp_ring->next_to_use = i;
3562 
3563 	return I40E_XDP_TX;
3564 }
3565 
3566 /**
3567  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3568  * @skb:     send buffer
3569  * @tx_ring: ring to send buffer on
3570  *
3571  * Returns NETDEV_TX_OK if sent, else an error code
3572  **/
3573 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3574 					struct i40e_ring *tx_ring)
3575 {
3576 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3577 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3578 	struct i40e_tx_buffer *first;
3579 	u32 td_offset = 0;
3580 	u32 tx_flags = 0;
3581 	__be16 protocol;
3582 	u32 td_cmd = 0;
3583 	u8 hdr_len = 0;
3584 	int tso, count;
3585 	int tsyn;
3586 
3587 	/* prefetch the data, we'll need it later */
3588 	prefetch(skb->data);
3589 
3590 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3591 
3592 	count = i40e_xmit_descriptor_count(skb);
3593 	if (i40e_chk_linearize(skb, count)) {
3594 		if (__skb_linearize(skb)) {
3595 			dev_kfree_skb_any(skb);
3596 			return NETDEV_TX_OK;
3597 		}
3598 		count = i40e_txd_use_count(skb->len);
3599 		tx_ring->tx_stats.tx_linearize++;
3600 	}
3601 
3602 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3603 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3604 	 *       + 4 desc gap to avoid the cache line where head is,
3605 	 *       + 1 desc for context descriptor,
3606 	 * otherwise try next time
3607 	 */
3608 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3609 		tx_ring->tx_stats.tx_busy++;
3610 		return NETDEV_TX_BUSY;
3611 	}
3612 
3613 	/* record the location of the first descriptor for this packet */
3614 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3615 	first->skb = skb;
3616 	first->bytecount = skb->len;
3617 	first->gso_segs = 1;
3618 
3619 	/* prepare the xmit flags */
3620 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3621 		goto out_drop;
3622 
3623 	/* obtain protocol of skb */
3624 	protocol = vlan_get_protocol(skb);
3625 
3626 	/* setup IPv4/IPv6 offloads */
3627 	if (protocol == htons(ETH_P_IP))
3628 		tx_flags |= I40E_TX_FLAGS_IPV4;
3629 	else if (protocol == htons(ETH_P_IPV6))
3630 		tx_flags |= I40E_TX_FLAGS_IPV6;
3631 
3632 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3633 
3634 	if (tso < 0)
3635 		goto out_drop;
3636 	else if (tso)
3637 		tx_flags |= I40E_TX_FLAGS_TSO;
3638 
3639 	/* Always offload the checksum, since it's in the data descriptor */
3640 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3641 				  tx_ring, &cd_tunneling);
3642 	if (tso < 0)
3643 		goto out_drop;
3644 
3645 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3646 
3647 	if (tsyn)
3648 		tx_flags |= I40E_TX_FLAGS_TSYN;
3649 
3650 	/* always enable CRC insertion offload */
3651 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3652 
3653 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3654 			   cd_tunneling, cd_l2tag2);
3655 
3656 	/* Add Flow Director ATR if it's enabled.
3657 	 *
3658 	 * NOTE: this must always be directly before the data descriptor.
3659 	 */
3660 	i40e_atr(tx_ring, skb, tx_flags);
3661 
3662 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3663 			td_cmd, td_offset))
3664 		goto cleanup_tx_tstamp;
3665 
3666 	return NETDEV_TX_OK;
3667 
3668 out_drop:
3669 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3670 	dev_kfree_skb_any(first->skb);
3671 	first->skb = NULL;
3672 cleanup_tx_tstamp:
3673 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3674 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3675 
3676 		dev_kfree_skb_any(pf->ptp_tx_skb);
3677 		pf->ptp_tx_skb = NULL;
3678 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3679 	}
3680 
3681 	return NETDEV_TX_OK;
3682 }
3683 
3684 /**
3685  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3686  * @skb:    send buffer
3687  * @netdev: network interface device structure
3688  *
3689  * Returns NETDEV_TX_OK if sent, else an error code
3690  **/
3691 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3692 {
3693 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3694 	struct i40e_vsi *vsi = np->vsi;
3695 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3696 
3697 	/* hardware can't handle really short frames, hardware padding works
3698 	 * beyond this point
3699 	 */
3700 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3701 		return NETDEV_TX_OK;
3702 
3703 	return i40e_xmit_frame_ring(skb, tx_ring);
3704 }
3705 
3706 /**
3707  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3708  * @dev: netdev
3709  * @n: number of frames
3710  * @frames: array of XDP buffer pointers
3711  * @flags: XDP extra info
3712  *
3713  * Returns number of frames successfully sent. Frames that fail are
3714  * free'ed via XDP return API.
3715  *
3716  * For error cases, a negative errno code is returned and no-frames
3717  * are transmitted (caller must handle freeing frames).
3718  **/
3719 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3720 		  u32 flags)
3721 {
3722 	struct i40e_netdev_priv *np = netdev_priv(dev);
3723 	unsigned int queue_index = smp_processor_id();
3724 	struct i40e_vsi *vsi = np->vsi;
3725 	struct i40e_pf *pf = vsi->back;
3726 	struct i40e_ring *xdp_ring;
3727 	int drops = 0;
3728 	int i;
3729 
3730 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3731 		return -ENETDOWN;
3732 
3733 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3734 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3735 		return -ENXIO;
3736 
3737 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3738 		return -EINVAL;
3739 
3740 	xdp_ring = vsi->xdp_rings[queue_index];
3741 
3742 	for (i = 0; i < n; i++) {
3743 		struct xdp_frame *xdpf = frames[i];
3744 		int err;
3745 
3746 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3747 		if (err != I40E_XDP_TX) {
3748 			xdp_return_frame_rx_napi(xdpf);
3749 			drops++;
3750 		}
3751 	}
3752 
3753 	if (unlikely(flags & XDP_XMIT_FLUSH))
3754 		i40e_xdp_ring_update_tail(xdp_ring);
3755 
3756 	return n - drops;
3757 }
3758