1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include "i40e.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33 
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 				u32 td_tag)
36 {
37 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
39 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43 
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 /**
46  * i40e_fdir - Generate a Flow Director descriptor based on fdata
47  * @tx_ring: Tx ring to send buffer on
48  * @fdata: Flow director filter data
49  * @add: Indicate if we are adding a rule or deleting one
50  *
51  **/
52 static void i40e_fdir(struct i40e_ring *tx_ring,
53 		      struct i40e_fdir_filter *fdata, bool add)
54 {
55 	struct i40e_filter_program_desc *fdir_desc;
56 	struct i40e_pf *pf = tx_ring->vsi->back;
57 	u32 flex_ptype, dtype_cmd;
58 	u16 i;
59 
60 	/* grab the next descriptor */
61 	i = tx_ring->next_to_use;
62 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
63 
64 	i++;
65 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
66 
67 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
68 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
69 
70 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
71 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
72 
73 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
74 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
75 
76 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
77 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
78 
79 	/* Use LAN VSI Id if not programmed by user */
80 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
81 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
82 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
83 
84 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
85 
86 	dtype_cmd |= add ?
87 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
88 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
89 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
90 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
91 
92 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
93 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
94 
95 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
96 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
97 
98 	if (fdata->cnt_index) {
99 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
101 			     ((u32)fdata->cnt_index <<
102 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
103 	}
104 
105 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
106 	fdir_desc->rsvd = cpu_to_le32(0);
107 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
108 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
109 }
110 
111 #define I40E_FD_CLEAN_DELAY 10
112 /**
113  * i40e_program_fdir_filter - Program a Flow Director filter
114  * @fdir_data: Packet data that will be filter parameters
115  * @raw_packet: the pre-allocated packet buffer for FDir
116  * @pf: The PF pointer
117  * @add: True for add/update, False for remove
118  **/
119 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
120 				    u8 *raw_packet, struct i40e_pf *pf,
121 				    bool add)
122 {
123 	struct i40e_tx_buffer *tx_buf, *first;
124 	struct i40e_tx_desc *tx_desc;
125 	struct i40e_ring *tx_ring;
126 	struct i40e_vsi *vsi;
127 	struct device *dev;
128 	dma_addr_t dma;
129 	u32 td_cmd = 0;
130 	u16 i;
131 
132 	/* find existing FDIR VSI */
133 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 	if (!vsi)
135 		return -ENOENT;
136 
137 	tx_ring = vsi->tx_rings[0];
138 	dev = tx_ring->dev;
139 
140 	/* we need two descriptors to add/del a filter and we can wait */
141 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
142 		if (!i)
143 			return -EAGAIN;
144 		msleep_interruptible(1);
145 	}
146 
147 	dma = dma_map_single(dev, raw_packet,
148 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 	if (dma_mapping_error(dev, dma))
150 		goto dma_fail;
151 
152 	/* grab the next descriptor */
153 	i = tx_ring->next_to_use;
154 	first = &tx_ring->tx_bi[i];
155 	i40e_fdir(tx_ring, fdir_data, add);
156 
157 	/* Now program a dummy descriptor */
158 	i = tx_ring->next_to_use;
159 	tx_desc = I40E_TX_DESC(tx_ring, i);
160 	tx_buf = &tx_ring->tx_bi[i];
161 
162 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
163 
164 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165 
166 	/* record length, and DMA address */
167 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 	dma_unmap_addr_set(tx_buf, dma, dma);
169 
170 	tx_desc->buffer_addr = cpu_to_le64(dma);
171 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172 
173 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
174 	tx_buf->raw_buf = (void *)raw_packet;
175 
176 	tx_desc->cmd_type_offset_bsz =
177 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 
179 	/* Force memory writes to complete before letting h/w
180 	 * know there are new descriptors to fetch.
181 	 */
182 	wmb();
183 
184 	/* Mark the data descriptor to be watched */
185 	first->next_to_watch = tx_desc;
186 
187 	writel(tx_ring->next_to_use, tx_ring->tail);
188 	return 0;
189 
190 dma_fail:
191 	return -1;
192 }
193 
194 #define IP_HEADER_OFFSET 14
195 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
196 /**
197  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
198  * @vsi: pointer to the targeted VSI
199  * @fd_data: the flow director data required for the FDir descriptor
200  * @add: true adds a filter, false removes it
201  *
202  * Returns 0 if the filters were successfully added or removed
203  **/
204 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
205 				   struct i40e_fdir_filter *fd_data,
206 				   bool add)
207 {
208 	struct i40e_pf *pf = vsi->back;
209 	struct udphdr *udp;
210 	struct iphdr *ip;
211 	u8 *raw_packet;
212 	int ret;
213 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
214 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
215 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
216 
217 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
218 	if (!raw_packet)
219 		return -ENOMEM;
220 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
221 
222 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
223 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
224 	      + sizeof(struct iphdr));
225 
226 	ip->daddr = fd_data->dst_ip;
227 	udp->dest = fd_data->dst_port;
228 	ip->saddr = fd_data->src_ip;
229 	udp->source = fd_data->src_port;
230 
231 	if (fd_data->flex_filter) {
232 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
233 		__be16 pattern = fd_data->flex_word;
234 		u16 off = fd_data->flex_offset;
235 
236 		*((__force __be16 *)(payload + off)) = pattern;
237 	}
238 
239 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
240 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
241 	if (ret) {
242 		dev_info(&pf->pdev->dev,
243 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
244 			 fd_data->pctype, fd_data->fd_id, ret);
245 		/* Free the packet buffer since it wasn't added to the ring */
246 		kfree(raw_packet);
247 		return -EOPNOTSUPP;
248 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 		if (add)
250 			dev_info(&pf->pdev->dev,
251 				 "Filter OK for PCTYPE %d loc = %d\n",
252 				 fd_data->pctype, fd_data->fd_id);
253 		else
254 			dev_info(&pf->pdev->dev,
255 				 "Filter deleted for PCTYPE %d loc = %d\n",
256 				 fd_data->pctype, fd_data->fd_id);
257 	}
258 
259 	if (add)
260 		pf->fd_udp4_filter_cnt++;
261 	else
262 		pf->fd_udp4_filter_cnt--;
263 
264 	return 0;
265 }
266 
267 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
268 /**
269  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
270  * @vsi: pointer to the targeted VSI
271  * @fd_data: the flow director data required for the FDir descriptor
272  * @add: true adds a filter, false removes it
273  *
274  * Returns 0 if the filters were successfully added or removed
275  **/
276 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
277 				   struct i40e_fdir_filter *fd_data,
278 				   bool add)
279 {
280 	struct i40e_pf *pf = vsi->back;
281 	struct tcphdr *tcp;
282 	struct iphdr *ip;
283 	u8 *raw_packet;
284 	int ret;
285 	/* Dummy packet */
286 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
287 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
288 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
289 		0x0, 0x72, 0, 0, 0, 0};
290 
291 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
292 	if (!raw_packet)
293 		return -ENOMEM;
294 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
295 
296 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
297 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
298 	      + sizeof(struct iphdr));
299 
300 	ip->daddr = fd_data->dst_ip;
301 	tcp->dest = fd_data->dst_port;
302 	ip->saddr = fd_data->src_ip;
303 	tcp->source = fd_data->src_port;
304 
305 	if (fd_data->flex_filter) {
306 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
307 		__be16 pattern = fd_data->flex_word;
308 		u16 off = fd_data->flex_offset;
309 
310 		*((__force __be16 *)(payload + off)) = pattern;
311 	}
312 
313 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
315 	if (ret) {
316 		dev_info(&pf->pdev->dev,
317 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
318 			 fd_data->pctype, fd_data->fd_id, ret);
319 		/* Free the packet buffer since it wasn't added to the ring */
320 		kfree(raw_packet);
321 		return -EOPNOTSUPP;
322 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 		if (add)
324 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
325 				 fd_data->pctype, fd_data->fd_id);
326 		else
327 			dev_info(&pf->pdev->dev,
328 				 "Filter deleted for PCTYPE %d loc = %d\n",
329 				 fd_data->pctype, fd_data->fd_id);
330 	}
331 
332 	if (add) {
333 		pf->fd_tcp4_filter_cnt++;
334 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
335 		    I40E_DEBUG_FD & pf->hw.debug_mask)
336 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338 	} else {
339 		pf->fd_tcp4_filter_cnt--;
340 	}
341 
342 	return 0;
343 }
344 
345 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
346 /**
347  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
348  * a specific flow spec
349  * @vsi: pointer to the targeted VSI
350  * @fd_data: the flow director data required for the FDir descriptor
351  * @add: true adds a filter, false removes it
352  *
353  * Returns 0 if the filters were successfully added or removed
354  **/
355 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
356 				    struct i40e_fdir_filter *fd_data,
357 				    bool add)
358 {
359 	struct i40e_pf *pf = vsi->back;
360 	struct sctphdr *sctp;
361 	struct iphdr *ip;
362 	u8 *raw_packet;
363 	int ret;
364 	/* Dummy packet */
365 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
366 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
367 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
368 
369 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
370 	if (!raw_packet)
371 		return -ENOMEM;
372 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
373 
374 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
375 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
376 	      + sizeof(struct iphdr));
377 
378 	ip->daddr = fd_data->dst_ip;
379 	sctp->dest = fd_data->dst_port;
380 	ip->saddr = fd_data->src_ip;
381 	sctp->source = fd_data->src_port;
382 
383 	if (fd_data->flex_filter) {
384 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
385 		__be16 pattern = fd_data->flex_word;
386 		u16 off = fd_data->flex_offset;
387 
388 		*((__force __be16 *)(payload + off)) = pattern;
389 	}
390 
391 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
392 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
393 	if (ret) {
394 		dev_info(&pf->pdev->dev,
395 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
396 			 fd_data->pctype, fd_data->fd_id, ret);
397 		/* Free the packet buffer since it wasn't added to the ring */
398 		kfree(raw_packet);
399 		return -EOPNOTSUPP;
400 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
401 		if (add)
402 			dev_info(&pf->pdev->dev,
403 				 "Filter OK for PCTYPE %d loc = %d\n",
404 				 fd_data->pctype, fd_data->fd_id);
405 		else
406 			dev_info(&pf->pdev->dev,
407 				 "Filter deleted for PCTYPE %d loc = %d\n",
408 				 fd_data->pctype, fd_data->fd_id);
409 	}
410 
411 	if (add)
412 		pf->fd_sctp4_filter_cnt++;
413 	else
414 		pf->fd_sctp4_filter_cnt--;
415 
416 	return 0;
417 }
418 
419 #define I40E_IP_DUMMY_PACKET_LEN 34
420 /**
421  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
422  * a specific flow spec
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  *
427  * Returns 0 if the filters were successfully added or removed
428  **/
429 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
430 				  struct i40e_fdir_filter *fd_data,
431 				  bool add)
432 {
433 	struct i40e_pf *pf = vsi->back;
434 	struct iphdr *ip;
435 	u8 *raw_packet;
436 	int ret;
437 	int i;
438 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
439 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
440 		0, 0, 0, 0};
441 
442 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
443 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 		if (!raw_packet)
446 			return -ENOMEM;
447 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
448 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
449 
450 		ip->saddr = fd_data->src_ip;
451 		ip->daddr = fd_data->dst_ip;
452 		ip->protocol = 0;
453 
454 		if (fd_data->flex_filter) {
455 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
456 			__be16 pattern = fd_data->flex_word;
457 			u16 off = fd_data->flex_offset;
458 
459 			*((__force __be16 *)(payload + off)) = pattern;
460 		}
461 
462 		fd_data->pctype = i;
463 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
464 		if (ret) {
465 			dev_info(&pf->pdev->dev,
466 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
467 				 fd_data->pctype, fd_data->fd_id, ret);
468 			/* The packet buffer wasn't added to the ring so we
469 			 * need to free it now.
470 			 */
471 			kfree(raw_packet);
472 			return -EOPNOTSUPP;
473 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 			if (add)
475 				dev_info(&pf->pdev->dev,
476 					 "Filter OK for PCTYPE %d loc = %d\n",
477 					 fd_data->pctype, fd_data->fd_id);
478 			else
479 				dev_info(&pf->pdev->dev,
480 					 "Filter deleted for PCTYPE %d loc = %d\n",
481 					 fd_data->pctype, fd_data->fd_id);
482 		}
483 	}
484 
485 	if (add)
486 		pf->fd_ip4_filter_cnt++;
487 	else
488 		pf->fd_ip4_filter_cnt--;
489 
490 	return 0;
491 }
492 
493 /**
494  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
495  * @vsi: pointer to the targeted VSI
496  * @cmd: command to get or set RX flow classification rules
497  * @add: true adds a filter, false removes it
498  *
499  **/
500 int i40e_add_del_fdir(struct i40e_vsi *vsi,
501 		      struct i40e_fdir_filter *input, bool add)
502 {
503 	struct i40e_pf *pf = vsi->back;
504 	int ret;
505 
506 	switch (input->flow_type & ~FLOW_EXT) {
507 	case TCP_V4_FLOW:
508 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 		break;
510 	case UDP_V4_FLOW:
511 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512 		break;
513 	case SCTP_V4_FLOW:
514 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
515 		break;
516 	case IP_USER_FLOW:
517 		switch (input->ip4_proto) {
518 		case IPPROTO_TCP:
519 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 			break;
521 		case IPPROTO_UDP:
522 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523 			break;
524 		case IPPROTO_SCTP:
525 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
526 			break;
527 		case IPPROTO_IP:
528 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529 			break;
530 		default:
531 			/* We cannot support masking based on protocol */
532 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
533 				 input->ip4_proto);
534 			return -EINVAL;
535 		}
536 		break;
537 	default:
538 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539 			 input->flow_type);
540 		return -EINVAL;
541 	}
542 
543 	/* The buffer allocated here will be normally be freed by
544 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
545 	 * completion. In the event of an error adding the buffer to the FDIR
546 	 * ring, it will immediately be freed. It may also be freed by
547 	 * i40e_clean_tx_ring() when closing the VSI.
548 	 */
549 	return ret;
550 }
551 
552 /**
553  * i40e_fd_handle_status - check the Programming Status for FD
554  * @rx_ring: the Rx ring for this descriptor
555  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556  * @prog_id: the id originally used for programming
557  *
558  * This is used to verify if the FD programming or invalidation
559  * requested by SW to the HW is successful or not and take actions accordingly.
560  **/
561 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
562 				  union i40e_rx_desc *rx_desc, u8 prog_id)
563 {
564 	struct i40e_pf *pf = rx_ring->vsi->back;
565 	struct pci_dev *pdev = pf->pdev;
566 	u32 fcnt_prog, fcnt_avail;
567 	u32 error;
568 	u64 qw;
569 
570 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
572 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
573 
574 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
577 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
578 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579 				 pf->fd_inv);
580 
581 		/* Check if the programming error is for ATR.
582 		 * If so, auto disable ATR and set a state for
583 		 * flush in progress. Next time we come here if flush is in
584 		 * progress do nothing, once flush is complete the state will
585 		 * be cleared.
586 		 */
587 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 			return;
589 
590 		pf->fd_add_err++;
591 		/* store the current atr filter count */
592 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
593 
594 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
596 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 		}
599 
600 		/* filter programming failed most likely due to table full */
601 		fcnt_prog = i40e_get_global_fd_count(pf);
602 		fcnt_avail = pf->fdir_pf_filter_count;
603 		/* If ATR is running fcnt_prog can quickly change,
604 		 * if we are very close to full, it makes sense to disable
605 		 * FD ATR/SB and then re-enable it when there is room.
606 		 */
607 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
610 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
612 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 			}
614 		}
615 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618 				 rx_desc->wb.qword0.hi_dword.fd_id);
619 	}
620 }
621 
622 /**
623  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624  * @ring:      the ring that owns the buffer
625  * @tx_buffer: the buffer to free
626  **/
627 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
628 					    struct i40e_tx_buffer *tx_buffer)
629 {
630 	if (tx_buffer->skb) {
631 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
632 			kfree(tx_buffer->raw_buf);
633 		else if (ring_is_xdp(ring))
634 			page_frag_free(tx_buffer->raw_buf);
635 		else
636 			dev_kfree_skb_any(tx_buffer->skb);
637 		if (dma_unmap_len(tx_buffer, len))
638 			dma_unmap_single(ring->dev,
639 					 dma_unmap_addr(tx_buffer, dma),
640 					 dma_unmap_len(tx_buffer, len),
641 					 DMA_TO_DEVICE);
642 	} else if (dma_unmap_len(tx_buffer, len)) {
643 		dma_unmap_page(ring->dev,
644 			       dma_unmap_addr(tx_buffer, dma),
645 			       dma_unmap_len(tx_buffer, len),
646 			       DMA_TO_DEVICE);
647 	}
648 
649 	tx_buffer->next_to_watch = NULL;
650 	tx_buffer->skb = NULL;
651 	dma_unmap_len_set(tx_buffer, len, 0);
652 	/* tx_buffer must be completely set up in the transmit path */
653 }
654 
655 /**
656  * i40e_clean_tx_ring - Free any empty Tx buffers
657  * @tx_ring: ring to be cleaned
658  **/
659 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
660 {
661 	unsigned long bi_size;
662 	u16 i;
663 
664 	/* ring already cleared, nothing to do */
665 	if (!tx_ring->tx_bi)
666 		return;
667 
668 	/* Free all the Tx ring sk_buffs */
669 	for (i = 0; i < tx_ring->count; i++)
670 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 
672 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
673 	memset(tx_ring->tx_bi, 0, bi_size);
674 
675 	/* Zero out the descriptor ring */
676 	memset(tx_ring->desc, 0, tx_ring->size);
677 
678 	tx_ring->next_to_use = 0;
679 	tx_ring->next_to_clean = 0;
680 
681 	if (!tx_ring->netdev)
682 		return;
683 
684 	/* cleanup Tx queue statistics */
685 	netdev_tx_reset_queue(txring_txq(tx_ring));
686 }
687 
688 /**
689  * i40e_free_tx_resources - Free Tx resources per queue
690  * @tx_ring: Tx descriptor ring for a specific queue
691  *
692  * Free all transmit software resources
693  **/
694 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
695 {
696 	i40e_clean_tx_ring(tx_ring);
697 	kfree(tx_ring->tx_bi);
698 	tx_ring->tx_bi = NULL;
699 
700 	if (tx_ring->desc) {
701 		dma_free_coherent(tx_ring->dev, tx_ring->size,
702 				  tx_ring->desc, tx_ring->dma);
703 		tx_ring->desc = NULL;
704 	}
705 }
706 
707 /**
708  * i40e_get_tx_pending - how many tx descriptors not processed
709  * @tx_ring: the ring of descriptors
710  *
711  * Since there is no access to the ring head register
712  * in XL710, we need to use our local copies
713  **/
714 u32 i40e_get_tx_pending(struct i40e_ring *ring)
715 {
716 	u32 head, tail;
717 
718 	head = i40e_get_head(ring);
719 	tail = readl(ring->tail);
720 
721 	if (head != tail)
722 		return (head < tail) ?
723 			tail - head : (tail + ring->count - head);
724 
725 	return 0;
726 }
727 
728 #define WB_STRIDE 4
729 
730 /**
731  * i40e_clean_tx_irq - Reclaim resources after transmit completes
732  * @vsi: the VSI we care about
733  * @tx_ring: Tx ring to clean
734  * @napi_budget: Used to determine if we are in netpoll
735  *
736  * Returns true if there's any budget left (e.g. the clean is finished)
737  **/
738 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
739 			      struct i40e_ring *tx_ring, int napi_budget)
740 {
741 	u16 i = tx_ring->next_to_clean;
742 	struct i40e_tx_buffer *tx_buf;
743 	struct i40e_tx_desc *tx_head;
744 	struct i40e_tx_desc *tx_desc;
745 	unsigned int total_bytes = 0, total_packets = 0;
746 	unsigned int budget = vsi->work_limit;
747 
748 	tx_buf = &tx_ring->tx_bi[i];
749 	tx_desc = I40E_TX_DESC(tx_ring, i);
750 	i -= tx_ring->count;
751 
752 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
753 
754 	do {
755 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 
757 		/* if next_to_watch is not set then there is no work pending */
758 		if (!eop_desc)
759 			break;
760 
761 		/* prevent any other reads prior to eop_desc */
762 		read_barrier_depends();
763 
764 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 		/* we have caught up to head, no work left to do */
766 		if (tx_head == tx_desc)
767 			break;
768 
769 		/* clear next_to_watch to prevent false hangs */
770 		tx_buf->next_to_watch = NULL;
771 
772 		/* update the statistics for this packet */
773 		total_bytes += tx_buf->bytecount;
774 		total_packets += tx_buf->gso_segs;
775 
776 		/* free the skb/XDP data */
777 		if (ring_is_xdp(tx_ring))
778 			page_frag_free(tx_buf->raw_buf);
779 		else
780 			napi_consume_skb(tx_buf->skb, napi_budget);
781 
782 		/* unmap skb header data */
783 		dma_unmap_single(tx_ring->dev,
784 				 dma_unmap_addr(tx_buf, dma),
785 				 dma_unmap_len(tx_buf, len),
786 				 DMA_TO_DEVICE);
787 
788 		/* clear tx_buffer data */
789 		tx_buf->skb = NULL;
790 		dma_unmap_len_set(tx_buf, len, 0);
791 
792 		/* unmap remaining buffers */
793 		while (tx_desc != eop_desc) {
794 			i40e_trace(clean_tx_irq_unmap,
795 				   tx_ring, tx_desc, tx_buf);
796 
797 			tx_buf++;
798 			tx_desc++;
799 			i++;
800 			if (unlikely(!i)) {
801 				i -= tx_ring->count;
802 				tx_buf = tx_ring->tx_bi;
803 				tx_desc = I40E_TX_DESC(tx_ring, 0);
804 			}
805 
806 			/* unmap any remaining paged data */
807 			if (dma_unmap_len(tx_buf, len)) {
808 				dma_unmap_page(tx_ring->dev,
809 					       dma_unmap_addr(tx_buf, dma),
810 					       dma_unmap_len(tx_buf, len),
811 					       DMA_TO_DEVICE);
812 				dma_unmap_len_set(tx_buf, len, 0);
813 			}
814 		}
815 
816 		/* move us one more past the eop_desc for start of next pkt */
817 		tx_buf++;
818 		tx_desc++;
819 		i++;
820 		if (unlikely(!i)) {
821 			i -= tx_ring->count;
822 			tx_buf = tx_ring->tx_bi;
823 			tx_desc = I40E_TX_DESC(tx_ring, 0);
824 		}
825 
826 		prefetch(tx_desc);
827 
828 		/* update budget accounting */
829 		budget--;
830 	} while (likely(budget));
831 
832 	i += tx_ring->count;
833 	tx_ring->next_to_clean = i;
834 	u64_stats_update_begin(&tx_ring->syncp);
835 	tx_ring->stats.bytes += total_bytes;
836 	tx_ring->stats.packets += total_packets;
837 	u64_stats_update_end(&tx_ring->syncp);
838 	tx_ring->q_vector->tx.total_bytes += total_bytes;
839 	tx_ring->q_vector->tx.total_packets += total_packets;
840 
841 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
842 		/* check to see if there are < 4 descriptors
843 		 * waiting to be written back, then kick the hardware to force
844 		 * them to be written back in case we stay in NAPI.
845 		 * In this mode on X722 we do not enable Interrupt.
846 		 */
847 		unsigned int j = i40e_get_tx_pending(tx_ring);
848 
849 		if (budget &&
850 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
853 			tx_ring->arm_wb = true;
854 	}
855 
856 	if (ring_is_xdp(tx_ring))
857 		return !!budget;
858 
859 	/* notify netdev of completed buffers */
860 	netdev_tx_completed_queue(txring_txq(tx_ring),
861 				  total_packets, total_bytes);
862 
863 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
864 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
865 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
866 		/* Make sure that anybody stopping the queue after this
867 		 * sees the new next_to_clean.
868 		 */
869 		smp_mb();
870 		if (__netif_subqueue_stopped(tx_ring->netdev,
871 					     tx_ring->queue_index) &&
872 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 			netif_wake_subqueue(tx_ring->netdev,
874 					    tx_ring->queue_index);
875 			++tx_ring->tx_stats.restart_queue;
876 		}
877 	}
878 
879 	return !!budget;
880 }
881 
882 /**
883  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884  * @vsi: the VSI we care about
885  * @q_vector: the vector on which to enable writeback
886  *
887  **/
888 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
889 				  struct i40e_q_vector *q_vector)
890 {
891 	u16 flags = q_vector->tx.ring[0].flags;
892 	u32 val;
893 
894 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
895 		return;
896 
897 	if (q_vector->arm_wb_state)
898 		return;
899 
900 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
901 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
902 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903 
904 		wr32(&vsi->back->hw,
905 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
906 		     val);
907 	} else {
908 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
909 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910 
911 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
912 	}
913 	q_vector->arm_wb_state = true;
914 }
915 
916 /**
917  * i40e_force_wb - Issue SW Interrupt so HW does a wb
918  * @vsi: the VSI we care about
919  * @q_vector: the vector  on which to force writeback
920  *
921  **/
922 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
923 {
924 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
926 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
927 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
928 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
929 			  /* allow 00 to be written to the index */
930 
931 		wr32(&vsi->back->hw,
932 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
933 					 vsi->base_vector - 1), val);
934 	} else {
935 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
936 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
937 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
938 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
939 			/* allow 00 to be written to the index */
940 
941 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
942 	}
943 }
944 
945 /**
946  * i40e_set_new_dynamic_itr - Find new ITR level
947  * @rc: structure containing ring performance data
948  *
949  * Returns true if ITR changed, false if not
950  *
951  * Stores a new ITR value based on packets and byte counts during
952  * the last interrupt.  The advantage of per interrupt computation
953  * is faster updates and more accurate ITR for the current traffic
954  * pattern.  Constants in this function were computed based on
955  * theoretical maximum wire speed and thresholds were set based on
956  * testing data as well as attempting to minimize response time
957  * while increasing bulk throughput.
958  **/
959 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 {
961 	enum i40e_latency_range new_latency_range = rc->latency_range;
962 	struct i40e_q_vector *qv = rc->ring->q_vector;
963 	u32 new_itr = rc->itr;
964 	int bytes_per_int;
965 	int usecs;
966 
967 	if (rc->total_packets == 0 || !rc->itr)
968 		return false;
969 
970 	/* simple throttlerate management
971 	 *   0-10MB/s   lowest (50000 ints/s)
972 	 *  10-20MB/s   low    (20000 ints/s)
973 	 *  20-1249MB/s bulk   (18000 ints/s)
974 	 *  > 40000 Rx packets per second (8000 ints/s)
975 	 *
976 	 * The math works out because the divisor is in 10^(-6) which
977 	 * turns the bytes/us input value into MB/s values, but
978 	 * make sure to use usecs, as the register values written
979 	 * are in 2 usec increments in the ITR registers, and make sure
980 	 * to use the smoothed values that the countdown timer gives us.
981 	 */
982 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
983 	bytes_per_int = rc->total_bytes / usecs;
984 
985 	switch (new_latency_range) {
986 	case I40E_LOWEST_LATENCY:
987 		if (bytes_per_int > 10)
988 			new_latency_range = I40E_LOW_LATENCY;
989 		break;
990 	case I40E_LOW_LATENCY:
991 		if (bytes_per_int > 20)
992 			new_latency_range = I40E_BULK_LATENCY;
993 		else if (bytes_per_int <= 10)
994 			new_latency_range = I40E_LOWEST_LATENCY;
995 		break;
996 	case I40E_BULK_LATENCY:
997 	case I40E_ULTRA_LATENCY:
998 	default:
999 		if (bytes_per_int <= 20)
1000 			new_latency_range = I40E_LOW_LATENCY;
1001 		break;
1002 	}
1003 
1004 	/* this is to adjust RX more aggressively when streaming small
1005 	 * packets.  The value of 40000 was picked as it is just beyond
1006 	 * what the hardware can receive per second if in low latency
1007 	 * mode.
1008 	 */
1009 #define RX_ULTRA_PACKET_RATE 40000
1010 
1011 	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
1012 	    (&qv->rx == rc))
1013 		new_latency_range = I40E_ULTRA_LATENCY;
1014 
1015 	rc->latency_range = new_latency_range;
1016 
1017 	switch (new_latency_range) {
1018 	case I40E_LOWEST_LATENCY:
1019 		new_itr = I40E_ITR_50K;
1020 		break;
1021 	case I40E_LOW_LATENCY:
1022 		new_itr = I40E_ITR_20K;
1023 		break;
1024 	case I40E_BULK_LATENCY:
1025 		new_itr = I40E_ITR_18K;
1026 		break;
1027 	case I40E_ULTRA_LATENCY:
1028 		new_itr = I40E_ITR_8K;
1029 		break;
1030 	default:
1031 		break;
1032 	}
1033 
1034 	rc->total_bytes = 0;
1035 	rc->total_packets = 0;
1036 
1037 	if (new_itr != rc->itr) {
1038 		rc->itr = new_itr;
1039 		return true;
1040 	}
1041 
1042 	return false;
1043 }
1044 
1045 /**
1046  * i40e_rx_is_programming_status - check for programming status descriptor
1047  * @qw: qword representing status_error_len in CPU ordering
1048  *
1049  * The value of in the descriptor length field indicate if this
1050  * is a programming status descriptor for flow director or FCoE
1051  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1052  * it is a packet descriptor.
1053  **/
1054 static inline bool i40e_rx_is_programming_status(u64 qw)
1055 {
1056 	/* The Rx filter programming status and SPH bit occupy the same
1057 	 * spot in the descriptor. Since we don't support packet split we
1058 	 * can just reuse the bit as an indication that this is a
1059 	 * programming status descriptor.
1060 	 */
1061 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1062 }
1063 
1064 /**
1065  * i40e_clean_programming_status - clean the programming status descriptor
1066  * @rx_ring: the rx ring that has this descriptor
1067  * @rx_desc: the rx descriptor written back by HW
1068  * @qw: qword representing status_error_len in CPU ordering
1069  *
1070  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1071  * status being successful or not and take actions accordingly. FCoE should
1072  * handle its context/filter programming/invalidation status and take actions.
1073  *
1074  **/
1075 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1076 					  union i40e_rx_desc *rx_desc,
1077 					  u64 qw)
1078 {
1079 	u32 ntc = rx_ring->next_to_clean + 1;
1080 	u8 id;
1081 
1082 	/* fetch, update, and store next to clean */
1083 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1084 	rx_ring->next_to_clean = ntc;
1085 
1086 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1087 
1088 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1089 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1090 
1091 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1092 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1093 }
1094 
1095 /**
1096  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1097  * @tx_ring: the tx ring to set up
1098  *
1099  * Return 0 on success, negative on error
1100  **/
1101 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1102 {
1103 	struct device *dev = tx_ring->dev;
1104 	int bi_size;
1105 
1106 	if (!dev)
1107 		return -ENOMEM;
1108 
1109 	/* warn if we are about to overwrite the pointer */
1110 	WARN_ON(tx_ring->tx_bi);
1111 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1112 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1113 	if (!tx_ring->tx_bi)
1114 		goto err;
1115 
1116 	u64_stats_init(&tx_ring->syncp);
1117 
1118 	/* round up to nearest 4K */
1119 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1120 	/* add u32 for head writeback, align after this takes care of
1121 	 * guaranteeing this is at least one cache line in size
1122 	 */
1123 	tx_ring->size += sizeof(u32);
1124 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1125 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1126 					   &tx_ring->dma, GFP_KERNEL);
1127 	if (!tx_ring->desc) {
1128 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1129 			 tx_ring->size);
1130 		goto err;
1131 	}
1132 
1133 	tx_ring->next_to_use = 0;
1134 	tx_ring->next_to_clean = 0;
1135 	return 0;
1136 
1137 err:
1138 	kfree(tx_ring->tx_bi);
1139 	tx_ring->tx_bi = NULL;
1140 	return -ENOMEM;
1141 }
1142 
1143 /**
1144  * i40e_clean_rx_ring - Free Rx buffers
1145  * @rx_ring: ring to be cleaned
1146  **/
1147 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1148 {
1149 	unsigned long bi_size;
1150 	u16 i;
1151 
1152 	/* ring already cleared, nothing to do */
1153 	if (!rx_ring->rx_bi)
1154 		return;
1155 
1156 	if (rx_ring->skb) {
1157 		dev_kfree_skb(rx_ring->skb);
1158 		rx_ring->skb = NULL;
1159 	}
1160 
1161 	/* Free all the Rx ring sk_buffs */
1162 	for (i = 0; i < rx_ring->count; i++) {
1163 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1164 
1165 		if (!rx_bi->page)
1166 			continue;
1167 
1168 		/* Invalidate cache lines that may have been written to by
1169 		 * device so that we avoid corrupting memory.
1170 		 */
1171 		dma_sync_single_range_for_cpu(rx_ring->dev,
1172 					      rx_bi->dma,
1173 					      rx_bi->page_offset,
1174 					      rx_ring->rx_buf_len,
1175 					      DMA_FROM_DEVICE);
1176 
1177 		/* free resources associated with mapping */
1178 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1179 				     i40e_rx_pg_size(rx_ring),
1180 				     DMA_FROM_DEVICE,
1181 				     I40E_RX_DMA_ATTR);
1182 
1183 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1184 
1185 		rx_bi->page = NULL;
1186 		rx_bi->page_offset = 0;
1187 	}
1188 
1189 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1190 	memset(rx_ring->rx_bi, 0, bi_size);
1191 
1192 	/* Zero out the descriptor ring */
1193 	memset(rx_ring->desc, 0, rx_ring->size);
1194 
1195 	rx_ring->next_to_alloc = 0;
1196 	rx_ring->next_to_clean = 0;
1197 	rx_ring->next_to_use = 0;
1198 }
1199 
1200 /**
1201  * i40e_free_rx_resources - Free Rx resources
1202  * @rx_ring: ring to clean the resources from
1203  *
1204  * Free all receive software resources
1205  **/
1206 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1207 {
1208 	i40e_clean_rx_ring(rx_ring);
1209 	rx_ring->xdp_prog = NULL;
1210 	kfree(rx_ring->rx_bi);
1211 	rx_ring->rx_bi = NULL;
1212 
1213 	if (rx_ring->desc) {
1214 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1215 				  rx_ring->desc, rx_ring->dma);
1216 		rx_ring->desc = NULL;
1217 	}
1218 }
1219 
1220 /**
1221  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1222  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1223  *
1224  * Returns 0 on success, negative on failure
1225  **/
1226 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1227 {
1228 	struct device *dev = rx_ring->dev;
1229 	int bi_size;
1230 
1231 	/* warn if we are about to overwrite the pointer */
1232 	WARN_ON(rx_ring->rx_bi);
1233 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1234 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1235 	if (!rx_ring->rx_bi)
1236 		goto err;
1237 
1238 	u64_stats_init(&rx_ring->syncp);
1239 
1240 	/* Round up to nearest 4K */
1241 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1242 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1243 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1244 					   &rx_ring->dma, GFP_KERNEL);
1245 
1246 	if (!rx_ring->desc) {
1247 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1248 			 rx_ring->size);
1249 		goto err;
1250 	}
1251 
1252 	rx_ring->next_to_alloc = 0;
1253 	rx_ring->next_to_clean = 0;
1254 	rx_ring->next_to_use = 0;
1255 
1256 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1257 
1258 	return 0;
1259 err:
1260 	kfree(rx_ring->rx_bi);
1261 	rx_ring->rx_bi = NULL;
1262 	return -ENOMEM;
1263 }
1264 
1265 /**
1266  * i40e_release_rx_desc - Store the new tail and head values
1267  * @rx_ring: ring to bump
1268  * @val: new head index
1269  **/
1270 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1271 {
1272 	rx_ring->next_to_use = val;
1273 
1274 	/* update next to alloc since we have filled the ring */
1275 	rx_ring->next_to_alloc = val;
1276 
1277 	/* Force memory writes to complete before letting h/w
1278 	 * know there are new descriptors to fetch.  (Only
1279 	 * applicable for weak-ordered memory model archs,
1280 	 * such as IA-64).
1281 	 */
1282 	wmb();
1283 	writel(val, rx_ring->tail);
1284 }
1285 
1286 /**
1287  * i40e_rx_offset - Return expected offset into page to access data
1288  * @rx_ring: Ring we are requesting offset of
1289  *
1290  * Returns the offset value for ring into the data buffer.
1291  */
1292 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1293 {
1294 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1295 }
1296 
1297 /**
1298  * i40e_alloc_mapped_page - recycle or make a new page
1299  * @rx_ring: ring to use
1300  * @bi: rx_buffer struct to modify
1301  *
1302  * Returns true if the page was successfully allocated or
1303  * reused.
1304  **/
1305 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1306 				   struct i40e_rx_buffer *bi)
1307 {
1308 	struct page *page = bi->page;
1309 	dma_addr_t dma;
1310 
1311 	/* since we are recycling buffers we should seldom need to alloc */
1312 	if (likely(page)) {
1313 		rx_ring->rx_stats.page_reuse_count++;
1314 		return true;
1315 	}
1316 
1317 	/* alloc new page for storage */
1318 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1319 	if (unlikely(!page)) {
1320 		rx_ring->rx_stats.alloc_page_failed++;
1321 		return false;
1322 	}
1323 
1324 	/* map page for use */
1325 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1326 				 i40e_rx_pg_size(rx_ring),
1327 				 DMA_FROM_DEVICE,
1328 				 I40E_RX_DMA_ATTR);
1329 
1330 	/* if mapping failed free memory back to system since
1331 	 * there isn't much point in holding memory we can't use
1332 	 */
1333 	if (dma_mapping_error(rx_ring->dev, dma)) {
1334 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1335 		rx_ring->rx_stats.alloc_page_failed++;
1336 		return false;
1337 	}
1338 
1339 	bi->dma = dma;
1340 	bi->page = page;
1341 	bi->page_offset = i40e_rx_offset(rx_ring);
1342 
1343 	/* initialize pagecnt_bias to 1 representing we fully own page */
1344 	bi->pagecnt_bias = 1;
1345 
1346 	return true;
1347 }
1348 
1349 /**
1350  * i40e_receive_skb - Send a completed packet up the stack
1351  * @rx_ring:  rx ring in play
1352  * @skb: packet to send up
1353  * @vlan_tag: vlan tag for packet
1354  **/
1355 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1356 			     struct sk_buff *skb, u16 vlan_tag)
1357 {
1358 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1359 
1360 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1361 	    (vlan_tag & VLAN_VID_MASK))
1362 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1363 
1364 	napi_gro_receive(&q_vector->napi, skb);
1365 }
1366 
1367 /**
1368  * i40e_alloc_rx_buffers - Replace used receive buffers
1369  * @rx_ring: ring to place buffers on
1370  * @cleaned_count: number of buffers to replace
1371  *
1372  * Returns false if all allocations were successful, true if any fail
1373  **/
1374 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1375 {
1376 	u16 ntu = rx_ring->next_to_use;
1377 	union i40e_rx_desc *rx_desc;
1378 	struct i40e_rx_buffer *bi;
1379 
1380 	/* do nothing if no valid netdev defined */
1381 	if (!rx_ring->netdev || !cleaned_count)
1382 		return false;
1383 
1384 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1385 	bi = &rx_ring->rx_bi[ntu];
1386 
1387 	do {
1388 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1389 			goto no_buffers;
1390 
1391 		/* sync the buffer for use by the device */
1392 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1393 						 bi->page_offset,
1394 						 rx_ring->rx_buf_len,
1395 						 DMA_FROM_DEVICE);
1396 
1397 		/* Refresh the desc even if buffer_addrs didn't change
1398 		 * because each write-back erases this info.
1399 		 */
1400 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1401 
1402 		rx_desc++;
1403 		bi++;
1404 		ntu++;
1405 		if (unlikely(ntu == rx_ring->count)) {
1406 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1407 			bi = rx_ring->rx_bi;
1408 			ntu = 0;
1409 		}
1410 
1411 		/* clear the status bits for the next_to_use descriptor */
1412 		rx_desc->wb.qword1.status_error_len = 0;
1413 
1414 		cleaned_count--;
1415 	} while (cleaned_count);
1416 
1417 	if (rx_ring->next_to_use != ntu)
1418 		i40e_release_rx_desc(rx_ring, ntu);
1419 
1420 	return false;
1421 
1422 no_buffers:
1423 	if (rx_ring->next_to_use != ntu)
1424 		i40e_release_rx_desc(rx_ring, ntu);
1425 
1426 	/* make sure to come back via polling to try again after
1427 	 * allocation failure
1428 	 */
1429 	return true;
1430 }
1431 
1432 /**
1433  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1434  * @vsi: the VSI we care about
1435  * @skb: skb currently being received and modified
1436  * @rx_desc: the receive descriptor
1437  **/
1438 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1439 				    struct sk_buff *skb,
1440 				    union i40e_rx_desc *rx_desc)
1441 {
1442 	struct i40e_rx_ptype_decoded decoded;
1443 	u32 rx_error, rx_status;
1444 	bool ipv4, ipv6;
1445 	u8 ptype;
1446 	u64 qword;
1447 
1448 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1449 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1450 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1451 		   I40E_RXD_QW1_ERROR_SHIFT;
1452 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1453 		    I40E_RXD_QW1_STATUS_SHIFT;
1454 	decoded = decode_rx_desc_ptype(ptype);
1455 
1456 	skb->ip_summed = CHECKSUM_NONE;
1457 
1458 	skb_checksum_none_assert(skb);
1459 
1460 	/* Rx csum enabled and ip headers found? */
1461 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1462 		return;
1463 
1464 	/* did the hardware decode the packet and checksum? */
1465 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1466 		return;
1467 
1468 	/* both known and outer_ip must be set for the below code to work */
1469 	if (!(decoded.known && decoded.outer_ip))
1470 		return;
1471 
1472 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1473 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1474 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1475 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1476 
1477 	if (ipv4 &&
1478 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1479 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1480 		goto checksum_fail;
1481 
1482 	/* likely incorrect csum if alternate IP extension headers found */
1483 	if (ipv6 &&
1484 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1485 		/* don't increment checksum err here, non-fatal err */
1486 		return;
1487 
1488 	/* there was some L4 error, count error and punt packet to the stack */
1489 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1490 		goto checksum_fail;
1491 
1492 	/* handle packets that were not able to be checksummed due
1493 	 * to arrival speed, in this case the stack can compute
1494 	 * the csum.
1495 	 */
1496 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1497 		return;
1498 
1499 	/* If there is an outer header present that might contain a checksum
1500 	 * we need to bump the checksum level by 1 to reflect the fact that
1501 	 * we are indicating we validated the inner checksum.
1502 	 */
1503 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1504 		skb->csum_level = 1;
1505 
1506 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1507 	switch (decoded.inner_prot) {
1508 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1509 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1510 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1511 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1512 		/* fall though */
1513 	default:
1514 		break;
1515 	}
1516 
1517 	return;
1518 
1519 checksum_fail:
1520 	vsi->back->hw_csum_rx_error++;
1521 }
1522 
1523 /**
1524  * i40e_ptype_to_htype - get a hash type
1525  * @ptype: the ptype value from the descriptor
1526  *
1527  * Returns a hash type to be used by skb_set_hash
1528  **/
1529 static inline int i40e_ptype_to_htype(u8 ptype)
1530 {
1531 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1532 
1533 	if (!decoded.known)
1534 		return PKT_HASH_TYPE_NONE;
1535 
1536 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1537 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1538 		return PKT_HASH_TYPE_L4;
1539 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1540 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1541 		return PKT_HASH_TYPE_L3;
1542 	else
1543 		return PKT_HASH_TYPE_L2;
1544 }
1545 
1546 /**
1547  * i40e_rx_hash - set the hash value in the skb
1548  * @ring: descriptor ring
1549  * @rx_desc: specific descriptor
1550  **/
1551 static inline void i40e_rx_hash(struct i40e_ring *ring,
1552 				union i40e_rx_desc *rx_desc,
1553 				struct sk_buff *skb,
1554 				u8 rx_ptype)
1555 {
1556 	u32 hash;
1557 	const __le64 rss_mask =
1558 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1559 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1560 
1561 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1562 		return;
1563 
1564 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1565 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1566 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1567 	}
1568 }
1569 
1570 /**
1571  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1572  * @rx_ring: rx descriptor ring packet is being transacted on
1573  * @rx_desc: pointer to the EOP Rx descriptor
1574  * @skb: pointer to current skb being populated
1575  * @rx_ptype: the packet type decoded by hardware
1576  *
1577  * This function checks the ring, descriptor, and packet information in
1578  * order to populate the hash, checksum, VLAN, protocol, and
1579  * other fields within the skb.
1580  **/
1581 static inline
1582 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1583 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1584 			     u8 rx_ptype)
1585 {
1586 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1587 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1588 			I40E_RXD_QW1_STATUS_SHIFT;
1589 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1590 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1591 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1592 
1593 	if (unlikely(tsynvalid))
1594 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1595 
1596 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1597 
1598 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1599 
1600 	skb_record_rx_queue(skb, rx_ring->queue_index);
1601 
1602 	/* modifies the skb - consumes the enet header */
1603 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1604 }
1605 
1606 /**
1607  * i40e_cleanup_headers - Correct empty headers
1608  * @rx_ring: rx descriptor ring packet is being transacted on
1609  * @skb: pointer to current skb being fixed
1610  * @rx_desc: pointer to the EOP Rx descriptor
1611  *
1612  * Also address the case where we are pulling data in on pages only
1613  * and as such no data is present in the skb header.
1614  *
1615  * In addition if skb is not at least 60 bytes we need to pad it so that
1616  * it is large enough to qualify as a valid Ethernet frame.
1617  *
1618  * Returns true if an error was encountered and skb was freed.
1619  **/
1620 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1621 				 union i40e_rx_desc *rx_desc)
1622 
1623 {
1624 	/* XDP packets use error pointer so abort at this point */
1625 	if (IS_ERR(skb))
1626 		return true;
1627 
1628 	/* ERR_MASK will only have valid bits if EOP set, and
1629 	 * what we are doing here is actually checking
1630 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1631 	 * the error field
1632 	 */
1633 	if (unlikely(i40e_test_staterr(rx_desc,
1634 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1635 		dev_kfree_skb_any(skb);
1636 		return true;
1637 	}
1638 
1639 	/* if eth_skb_pad returns an error the skb was freed */
1640 	if (eth_skb_pad(skb))
1641 		return true;
1642 
1643 	return false;
1644 }
1645 
1646 /**
1647  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1648  * @rx_ring: rx descriptor ring to store buffers on
1649  * @old_buff: donor buffer to have page reused
1650  *
1651  * Synchronizes page for reuse by the adapter
1652  **/
1653 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1654 			       struct i40e_rx_buffer *old_buff)
1655 {
1656 	struct i40e_rx_buffer *new_buff;
1657 	u16 nta = rx_ring->next_to_alloc;
1658 
1659 	new_buff = &rx_ring->rx_bi[nta];
1660 
1661 	/* update, and store next to alloc */
1662 	nta++;
1663 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1664 
1665 	/* transfer page from old buffer to new buffer */
1666 	new_buff->dma		= old_buff->dma;
1667 	new_buff->page		= old_buff->page;
1668 	new_buff->page_offset	= old_buff->page_offset;
1669 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1670 }
1671 
1672 /**
1673  * i40e_page_is_reusable - check if any reuse is possible
1674  * @page: page struct to check
1675  *
1676  * A page is not reusable if it was allocated under low memory
1677  * conditions, or it's not in the same NUMA node as this CPU.
1678  */
1679 static inline bool i40e_page_is_reusable(struct page *page)
1680 {
1681 	return (page_to_nid(page) == numa_mem_id()) &&
1682 		!page_is_pfmemalloc(page);
1683 }
1684 
1685 /**
1686  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1687  * the adapter for another receive
1688  *
1689  * @rx_buffer: buffer containing the page
1690  *
1691  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1692  * an unused region in the page.
1693  *
1694  * For small pages, @truesize will be a constant value, half the size
1695  * of the memory at page.  We'll attempt to alternate between high and
1696  * low halves of the page, with one half ready for use by the hardware
1697  * and the other half being consumed by the stack.  We use the page
1698  * ref count to determine whether the stack has finished consuming the
1699  * portion of this page that was passed up with a previous packet.  If
1700  * the page ref count is >1, we'll assume the "other" half page is
1701  * still busy, and this page cannot be reused.
1702  *
1703  * For larger pages, @truesize will be the actual space used by the
1704  * received packet (adjusted upward to an even multiple of the cache
1705  * line size).  This will advance through the page by the amount
1706  * actually consumed by the received packets while there is still
1707  * space for a buffer.  Each region of larger pages will be used at
1708  * most once, after which the page will not be reused.
1709  *
1710  * In either case, if the page is reusable its refcount is increased.
1711  **/
1712 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1713 {
1714 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1715 	struct page *page = rx_buffer->page;
1716 
1717 	/* Is any reuse possible? */
1718 	if (unlikely(!i40e_page_is_reusable(page)))
1719 		return false;
1720 
1721 #if (PAGE_SIZE < 8192)
1722 	/* if we are only owner of page we can reuse it */
1723 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1724 		return false;
1725 #else
1726 #define I40E_LAST_OFFSET \
1727 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1728 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1729 		return false;
1730 #endif
1731 
1732 	/* If we have drained the page fragment pool we need to update
1733 	 * the pagecnt_bias and page count so that we fully restock the
1734 	 * number of references the driver holds.
1735 	 */
1736 	if (unlikely(!pagecnt_bias)) {
1737 		page_ref_add(page, USHRT_MAX);
1738 		rx_buffer->pagecnt_bias = USHRT_MAX;
1739 	}
1740 
1741 	return true;
1742 }
1743 
1744 /**
1745  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1746  * @rx_ring: rx descriptor ring to transact packets on
1747  * @rx_buffer: buffer containing page to add
1748  * @skb: sk_buff to place the data into
1749  * @size: packet length from rx_desc
1750  *
1751  * This function will add the data contained in rx_buffer->page to the skb.
1752  * It will just attach the page as a frag to the skb.
1753  *
1754  * The function will then update the page offset.
1755  **/
1756 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1757 			     struct i40e_rx_buffer *rx_buffer,
1758 			     struct sk_buff *skb,
1759 			     unsigned int size)
1760 {
1761 #if (PAGE_SIZE < 8192)
1762 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1763 #else
1764 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1765 #endif
1766 
1767 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1768 			rx_buffer->page_offset, size, truesize);
1769 
1770 	/* page is being used so we must update the page offset */
1771 #if (PAGE_SIZE < 8192)
1772 	rx_buffer->page_offset ^= truesize;
1773 #else
1774 	rx_buffer->page_offset += truesize;
1775 #endif
1776 }
1777 
1778 /**
1779  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1780  * @rx_ring: rx descriptor ring to transact packets on
1781  * @size: size of buffer to add to skb
1782  *
1783  * This function will pull an Rx buffer from the ring and synchronize it
1784  * for use by the CPU.
1785  */
1786 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1787 						 const unsigned int size)
1788 {
1789 	struct i40e_rx_buffer *rx_buffer;
1790 
1791 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1792 	prefetchw(rx_buffer->page);
1793 
1794 	/* we are reusing so sync this buffer for CPU use */
1795 	dma_sync_single_range_for_cpu(rx_ring->dev,
1796 				      rx_buffer->dma,
1797 				      rx_buffer->page_offset,
1798 				      size,
1799 				      DMA_FROM_DEVICE);
1800 
1801 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1802 	rx_buffer->pagecnt_bias--;
1803 
1804 	return rx_buffer;
1805 }
1806 
1807 /**
1808  * i40e_construct_skb - Allocate skb and populate it
1809  * @rx_ring: rx descriptor ring to transact packets on
1810  * @rx_buffer: rx buffer to pull data from
1811  * @xdp: xdp_buff pointing to the data
1812  *
1813  * This function allocates an skb.  It then populates it with the page
1814  * data from the current receive descriptor, taking care to set up the
1815  * skb correctly.
1816  */
1817 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1818 					  struct i40e_rx_buffer *rx_buffer,
1819 					  struct xdp_buff *xdp)
1820 {
1821 	unsigned int size = xdp->data_end - xdp->data;
1822 #if (PAGE_SIZE < 8192)
1823 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1824 #else
1825 	unsigned int truesize = SKB_DATA_ALIGN(size);
1826 #endif
1827 	unsigned int headlen;
1828 	struct sk_buff *skb;
1829 
1830 	/* prefetch first cache line of first page */
1831 	prefetch(xdp->data);
1832 #if L1_CACHE_BYTES < 128
1833 	prefetch(xdp->data + L1_CACHE_BYTES);
1834 #endif
1835 
1836 	/* allocate a skb to store the frags */
1837 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1838 			       I40E_RX_HDR_SIZE,
1839 			       GFP_ATOMIC | __GFP_NOWARN);
1840 	if (unlikely(!skb))
1841 		return NULL;
1842 
1843 	/* Determine available headroom for copy */
1844 	headlen = size;
1845 	if (headlen > I40E_RX_HDR_SIZE)
1846 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1847 
1848 	/* align pull length to size of long to optimize memcpy performance */
1849 	memcpy(__skb_put(skb, headlen), xdp->data,
1850 	       ALIGN(headlen, sizeof(long)));
1851 
1852 	/* update all of the pointers */
1853 	size -= headlen;
1854 	if (size) {
1855 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1856 				rx_buffer->page_offset + headlen,
1857 				size, truesize);
1858 
1859 		/* buffer is used by skb, update page_offset */
1860 #if (PAGE_SIZE < 8192)
1861 		rx_buffer->page_offset ^= truesize;
1862 #else
1863 		rx_buffer->page_offset += truesize;
1864 #endif
1865 	} else {
1866 		/* buffer is unused, reset bias back to rx_buffer */
1867 		rx_buffer->pagecnt_bias++;
1868 	}
1869 
1870 	return skb;
1871 }
1872 
1873 /**
1874  * i40e_build_skb - Build skb around an existing buffer
1875  * @rx_ring: Rx descriptor ring to transact packets on
1876  * @rx_buffer: Rx buffer to pull data from
1877  * @xdp: xdp_buff pointing to the data
1878  *
1879  * This function builds an skb around an existing Rx buffer, taking care
1880  * to set up the skb correctly and avoid any memcpy overhead.
1881  */
1882 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1883 				      struct i40e_rx_buffer *rx_buffer,
1884 				      struct xdp_buff *xdp)
1885 {
1886 	unsigned int size = xdp->data_end - xdp->data;
1887 #if (PAGE_SIZE < 8192)
1888 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1889 #else
1890 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1891 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1892 #endif
1893 	struct sk_buff *skb;
1894 
1895 	/* prefetch first cache line of first page */
1896 	prefetch(xdp->data);
1897 #if L1_CACHE_BYTES < 128
1898 	prefetch(xdp->data + L1_CACHE_BYTES);
1899 #endif
1900 	/* build an skb around the page buffer */
1901 	skb = build_skb(xdp->data_hard_start, truesize);
1902 	if (unlikely(!skb))
1903 		return NULL;
1904 
1905 	/* update pointers within the skb to store the data */
1906 	skb_reserve(skb, I40E_SKB_PAD);
1907 	__skb_put(skb, size);
1908 
1909 	/* buffer is used by skb, update page_offset */
1910 #if (PAGE_SIZE < 8192)
1911 	rx_buffer->page_offset ^= truesize;
1912 #else
1913 	rx_buffer->page_offset += truesize;
1914 #endif
1915 
1916 	return skb;
1917 }
1918 
1919 /**
1920  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1921  * @rx_ring: rx descriptor ring to transact packets on
1922  * @rx_buffer: rx buffer to pull data from
1923  *
1924  * This function will clean up the contents of the rx_buffer.  It will
1925  * either recycle the bufer or unmap it and free the associated resources.
1926  */
1927 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1928 			       struct i40e_rx_buffer *rx_buffer)
1929 {
1930 	if (i40e_can_reuse_rx_page(rx_buffer)) {
1931 		/* hand second half of page back to the ring */
1932 		i40e_reuse_rx_page(rx_ring, rx_buffer);
1933 		rx_ring->rx_stats.page_reuse_count++;
1934 	} else {
1935 		/* we are not reusing the buffer so unmap it */
1936 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1937 				     i40e_rx_pg_size(rx_ring),
1938 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1939 		__page_frag_cache_drain(rx_buffer->page,
1940 					rx_buffer->pagecnt_bias);
1941 	}
1942 
1943 	/* clear contents of buffer_info */
1944 	rx_buffer->page = NULL;
1945 }
1946 
1947 /**
1948  * i40e_is_non_eop - process handling of non-EOP buffers
1949  * @rx_ring: Rx ring being processed
1950  * @rx_desc: Rx descriptor for current buffer
1951  * @skb: Current socket buffer containing buffer in progress
1952  *
1953  * This function updates next to clean.  If the buffer is an EOP buffer
1954  * this function exits returning false, otherwise it will place the
1955  * sk_buff in the next buffer to be chained and return true indicating
1956  * that this is in fact a non-EOP buffer.
1957  **/
1958 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1959 			    union i40e_rx_desc *rx_desc,
1960 			    struct sk_buff *skb)
1961 {
1962 	u32 ntc = rx_ring->next_to_clean + 1;
1963 
1964 	/* fetch, update, and store next to clean */
1965 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1966 	rx_ring->next_to_clean = ntc;
1967 
1968 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1969 
1970 	/* if we are the last buffer then there is nothing else to do */
1971 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1972 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1973 		return false;
1974 
1975 	rx_ring->rx_stats.non_eop_descs++;
1976 
1977 	return true;
1978 }
1979 
1980 #define I40E_XDP_PASS 0
1981 #define I40E_XDP_CONSUMED 1
1982 #define I40E_XDP_TX 2
1983 
1984 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
1985 			      struct i40e_ring *xdp_ring);
1986 
1987 /**
1988  * i40e_run_xdp - run an XDP program
1989  * @rx_ring: Rx ring being processed
1990  * @xdp: XDP buffer containing the frame
1991  **/
1992 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
1993 				    struct xdp_buff *xdp)
1994 {
1995 	int result = I40E_XDP_PASS;
1996 	struct i40e_ring *xdp_ring;
1997 	struct bpf_prog *xdp_prog;
1998 	u32 act;
1999 
2000 	rcu_read_lock();
2001 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2002 
2003 	if (!xdp_prog)
2004 		goto xdp_out;
2005 
2006 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2007 	switch (act) {
2008 	case XDP_PASS:
2009 		break;
2010 	case XDP_TX:
2011 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2012 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2013 		break;
2014 	default:
2015 		bpf_warn_invalid_xdp_action(act);
2016 	case XDP_ABORTED:
2017 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2018 		/* fallthrough -- handle aborts by dropping packet */
2019 	case XDP_DROP:
2020 		result = I40E_XDP_CONSUMED;
2021 		break;
2022 	}
2023 xdp_out:
2024 	rcu_read_unlock();
2025 	return ERR_PTR(-result);
2026 }
2027 
2028 /**
2029  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2030  * @rx_ring: Rx ring
2031  * @rx_buffer: Rx buffer to adjust
2032  * @size: Size of adjustment
2033  **/
2034 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2035 				struct i40e_rx_buffer *rx_buffer,
2036 				unsigned int size)
2037 {
2038 #if (PAGE_SIZE < 8192)
2039 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2040 
2041 	rx_buffer->page_offset ^= truesize;
2042 #else
2043 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2044 
2045 	rx_buffer->page_offset += truesize;
2046 #endif
2047 }
2048 
2049 /**
2050  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2051  * @rx_ring: rx descriptor ring to transact packets on
2052  * @budget: Total limit on number of packets to process
2053  *
2054  * This function provides a "bounce buffer" approach to Rx interrupt
2055  * processing.  The advantage to this is that on systems that have
2056  * expensive overhead for IOMMU access this provides a means of avoiding
2057  * it by maintaining the mapping of the page to the system.
2058  *
2059  * Returns amount of work completed
2060  **/
2061 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2062 {
2063 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2064 	struct sk_buff *skb = rx_ring->skb;
2065 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2066 	bool failure = false, xdp_xmit = false;
2067 
2068 	while (likely(total_rx_packets < budget)) {
2069 		struct i40e_rx_buffer *rx_buffer;
2070 		union i40e_rx_desc *rx_desc;
2071 		struct xdp_buff xdp;
2072 		unsigned int size;
2073 		u16 vlan_tag;
2074 		u8 rx_ptype;
2075 		u64 qword;
2076 
2077 		/* return some buffers to hardware, one at a time is too slow */
2078 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2079 			failure = failure ||
2080 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2081 			cleaned_count = 0;
2082 		}
2083 
2084 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2085 
2086 		/* status_error_len will always be zero for unused descriptors
2087 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2088 		 * which is always zero because packet split isn't used, if the
2089 		 * hardware wrote DD then the length will be non-zero
2090 		 */
2091 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2092 
2093 		/* This memory barrier is needed to keep us from reading
2094 		 * any other fields out of the rx_desc until we have
2095 		 * verified the descriptor has been written back.
2096 		 */
2097 		dma_rmb();
2098 
2099 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2100 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2101 			continue;
2102 		}
2103 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2104 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2105 		if (!size)
2106 			break;
2107 
2108 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2109 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2110 
2111 		/* retrieve a buffer from the ring */
2112 		if (!skb) {
2113 			xdp.data = page_address(rx_buffer->page) +
2114 				   rx_buffer->page_offset;
2115 			xdp.data_hard_start = xdp.data -
2116 					      i40e_rx_offset(rx_ring);
2117 			xdp.data_end = xdp.data + size;
2118 
2119 			skb = i40e_run_xdp(rx_ring, &xdp);
2120 		}
2121 
2122 		if (IS_ERR(skb)) {
2123 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2124 				xdp_xmit = true;
2125 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2126 			} else {
2127 				rx_buffer->pagecnt_bias++;
2128 			}
2129 			total_rx_bytes += size;
2130 			total_rx_packets++;
2131 		} else if (skb) {
2132 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2133 		} else if (ring_uses_build_skb(rx_ring)) {
2134 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2135 		} else {
2136 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2137 		}
2138 
2139 		/* exit if we failed to retrieve a buffer */
2140 		if (!skb) {
2141 			rx_ring->rx_stats.alloc_buff_failed++;
2142 			rx_buffer->pagecnt_bias++;
2143 			break;
2144 		}
2145 
2146 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2147 		cleaned_count++;
2148 
2149 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2150 			continue;
2151 
2152 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2153 			skb = NULL;
2154 			continue;
2155 		}
2156 
2157 		/* probably a little skewed due to removing CRC */
2158 		total_rx_bytes += skb->len;
2159 
2160 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2161 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2162 			   I40E_RXD_QW1_PTYPE_SHIFT;
2163 
2164 		/* populate checksum, VLAN, and protocol */
2165 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2166 
2167 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2168 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2169 
2170 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2171 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2172 		skb = NULL;
2173 
2174 		/* update budget accounting */
2175 		total_rx_packets++;
2176 	}
2177 
2178 	if (xdp_xmit) {
2179 		struct i40e_ring *xdp_ring;
2180 
2181 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2182 
2183 		/* Force memory writes to complete before letting h/w
2184 		 * know there are new descriptors to fetch.
2185 		 */
2186 		wmb();
2187 
2188 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2189 	}
2190 
2191 	rx_ring->skb = skb;
2192 
2193 	u64_stats_update_begin(&rx_ring->syncp);
2194 	rx_ring->stats.packets += total_rx_packets;
2195 	rx_ring->stats.bytes += total_rx_bytes;
2196 	u64_stats_update_end(&rx_ring->syncp);
2197 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2198 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2199 
2200 	/* guarantee a trip back through this routine if there was a failure */
2201 	return failure ? budget : total_rx_packets;
2202 }
2203 
2204 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2205 {
2206 	u32 val;
2207 
2208 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2209 	      /* Don't clear PBA because that can cause lost interrupts that
2210 	       * came in while we were cleaning/polling
2211 	       */
2212 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2213 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2214 
2215 	return val;
2216 }
2217 
2218 /* a small macro to shorten up some long lines */
2219 #define INTREG I40E_PFINT_DYN_CTLN
2220 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2221 {
2222 	return vsi->rx_rings[idx]->rx_itr_setting;
2223 }
2224 
2225 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2226 {
2227 	return vsi->tx_rings[idx]->tx_itr_setting;
2228 }
2229 
2230 /**
2231  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2232  * @vsi: the VSI we care about
2233  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2234  *
2235  **/
2236 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2237 					  struct i40e_q_vector *q_vector)
2238 {
2239 	struct i40e_hw *hw = &vsi->back->hw;
2240 	bool rx = false, tx = false;
2241 	u32 rxval, txval;
2242 	int vector;
2243 	int idx = q_vector->v_idx;
2244 	int rx_itr_setting, tx_itr_setting;
2245 
2246 	vector = (q_vector->v_idx + vsi->base_vector);
2247 
2248 	/* avoid dynamic calculation if in countdown mode OR if
2249 	 * all dynamic is disabled
2250 	 */
2251 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2252 
2253 	rx_itr_setting = get_rx_itr(vsi, idx);
2254 	tx_itr_setting = get_tx_itr(vsi, idx);
2255 
2256 	if (q_vector->itr_countdown > 0 ||
2257 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2258 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2259 		goto enable_int;
2260 	}
2261 
2262 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2263 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2264 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2265 	}
2266 
2267 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2268 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2269 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2270 	}
2271 
2272 	if (rx || tx) {
2273 		/* get the higher of the two ITR adjustments and
2274 		 * use the same value for both ITR registers
2275 		 * when in adaptive mode (Rx and/or Tx)
2276 		 */
2277 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2278 
2279 		q_vector->tx.itr = q_vector->rx.itr = itr;
2280 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2281 		tx = true;
2282 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2283 		rx = true;
2284 	}
2285 
2286 	/* only need to enable the interrupt once, but need
2287 	 * to possibly update both ITR values
2288 	 */
2289 	if (rx) {
2290 		/* set the INTENA_MSK_MASK so that this first write
2291 		 * won't actually enable the interrupt, instead just
2292 		 * updating the ITR (it's bit 31 PF and VF)
2293 		 */
2294 		rxval |= BIT(31);
2295 		/* don't check _DOWN because interrupt isn't being enabled */
2296 		wr32(hw, INTREG(vector - 1), rxval);
2297 	}
2298 
2299 enable_int:
2300 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2301 		wr32(hw, INTREG(vector - 1), txval);
2302 
2303 	if (q_vector->itr_countdown)
2304 		q_vector->itr_countdown--;
2305 	else
2306 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2307 }
2308 
2309 /**
2310  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2311  * @napi: napi struct with our devices info in it
2312  * @budget: amount of work driver is allowed to do this pass, in packets
2313  *
2314  * This function will clean all queues associated with a q_vector.
2315  *
2316  * Returns the amount of work done
2317  **/
2318 int i40e_napi_poll(struct napi_struct *napi, int budget)
2319 {
2320 	struct i40e_q_vector *q_vector =
2321 			       container_of(napi, struct i40e_q_vector, napi);
2322 	struct i40e_vsi *vsi = q_vector->vsi;
2323 	struct i40e_ring *ring;
2324 	bool clean_complete = true;
2325 	bool arm_wb = false;
2326 	int budget_per_ring;
2327 	int work_done = 0;
2328 
2329 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2330 		napi_complete(napi);
2331 		return 0;
2332 	}
2333 
2334 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2335 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2336 	 */
2337 	i40e_for_each_ring(ring, q_vector->tx) {
2338 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2339 			clean_complete = false;
2340 			continue;
2341 		}
2342 		arm_wb |= ring->arm_wb;
2343 		ring->arm_wb = false;
2344 	}
2345 
2346 	/* Handle case where we are called by netpoll with a budget of 0 */
2347 	if (budget <= 0)
2348 		goto tx_only;
2349 
2350 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2351 	 * allow the budget to go below 1 because that would exit polling early.
2352 	 */
2353 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2354 
2355 	i40e_for_each_ring(ring, q_vector->rx) {
2356 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2357 
2358 		work_done += cleaned;
2359 		/* if we clean as many as budgeted, we must not be done */
2360 		if (cleaned >= budget_per_ring)
2361 			clean_complete = false;
2362 	}
2363 
2364 	/* If work not completed, return budget and polling will return */
2365 	if (!clean_complete) {
2366 		const cpumask_t *aff_mask = &q_vector->affinity_mask;
2367 		int cpu_id = smp_processor_id();
2368 
2369 		/* It is possible that the interrupt affinity has changed but,
2370 		 * if the cpu is pegged at 100%, polling will never exit while
2371 		 * traffic continues and the interrupt will be stuck on this
2372 		 * cpu.  We check to make sure affinity is correct before we
2373 		 * continue to poll, otherwise we must stop polling so the
2374 		 * interrupt can move to the correct cpu.
2375 		 */
2376 		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2377 			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2378 tx_only:
2379 			if (arm_wb) {
2380 				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2381 				i40e_enable_wb_on_itr(vsi, q_vector);
2382 			}
2383 			return budget;
2384 		}
2385 	}
2386 
2387 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2388 		q_vector->arm_wb_state = false;
2389 
2390 	/* Work is done so exit the polling mode and re-enable the interrupt */
2391 	napi_complete_done(napi, work_done);
2392 
2393 	/* If we're prematurely stopping polling to fix the interrupt
2394 	 * affinity we want to make sure polling starts back up so we
2395 	 * issue a call to i40e_force_wb which triggers a SW interrupt.
2396 	 */
2397 	if (!clean_complete)
2398 		i40e_force_wb(vsi, q_vector);
2399 	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2400 		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2401 	else
2402 		i40e_update_enable_itr(vsi, q_vector);
2403 
2404 	return min(work_done, budget - 1);
2405 }
2406 
2407 /**
2408  * i40e_atr - Add a Flow Director ATR filter
2409  * @tx_ring:  ring to add programming descriptor to
2410  * @skb:      send buffer
2411  * @tx_flags: send tx flags
2412  **/
2413 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2414 		     u32 tx_flags)
2415 {
2416 	struct i40e_filter_program_desc *fdir_desc;
2417 	struct i40e_pf *pf = tx_ring->vsi->back;
2418 	union {
2419 		unsigned char *network;
2420 		struct iphdr *ipv4;
2421 		struct ipv6hdr *ipv6;
2422 	} hdr;
2423 	struct tcphdr *th;
2424 	unsigned int hlen;
2425 	u32 flex_ptype, dtype_cmd;
2426 	int l4_proto;
2427 	u16 i;
2428 
2429 	/* make sure ATR is enabled */
2430 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2431 		return;
2432 
2433 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2434 		return;
2435 
2436 	/* if sampling is disabled do nothing */
2437 	if (!tx_ring->atr_sample_rate)
2438 		return;
2439 
2440 	/* Currently only IPv4/IPv6 with TCP is supported */
2441 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2442 		return;
2443 
2444 	/* snag network header to get L4 type and address */
2445 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2446 		      skb_inner_network_header(skb) : skb_network_header(skb);
2447 
2448 	/* Note: tx_flags gets modified to reflect inner protocols in
2449 	 * tx_enable_csum function if encap is enabled.
2450 	 */
2451 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2452 		/* access ihl as u8 to avoid unaligned access on ia64 */
2453 		hlen = (hdr.network[0] & 0x0F) << 2;
2454 		l4_proto = hdr.ipv4->protocol;
2455 	} else {
2456 		hlen = hdr.network - skb->data;
2457 		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2458 		hlen -= hdr.network - skb->data;
2459 	}
2460 
2461 	if (l4_proto != IPPROTO_TCP)
2462 		return;
2463 
2464 	th = (struct tcphdr *)(hdr.network + hlen);
2465 
2466 	/* Due to lack of space, no more new filters can be programmed */
2467 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2468 		return;
2469 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2470 		/* HW ATR eviction will take care of removing filters on FIN
2471 		 * and RST packets.
2472 		 */
2473 		if (th->fin || th->rst)
2474 			return;
2475 	}
2476 
2477 	tx_ring->atr_count++;
2478 
2479 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2480 	if (!th->fin &&
2481 	    !th->syn &&
2482 	    !th->rst &&
2483 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2484 		return;
2485 
2486 	tx_ring->atr_count = 0;
2487 
2488 	/* grab the next descriptor */
2489 	i = tx_ring->next_to_use;
2490 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2491 
2492 	i++;
2493 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2494 
2495 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2496 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2497 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2498 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2499 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2500 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2501 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2502 
2503 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2504 
2505 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2506 
2507 	dtype_cmd |= (th->fin || th->rst) ?
2508 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2509 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2510 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2511 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2512 
2513 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2514 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2515 
2516 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2517 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2518 
2519 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2520 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2521 		dtype_cmd |=
2522 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2523 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2524 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2525 	else
2526 		dtype_cmd |=
2527 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2528 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2529 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2530 
2531 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2532 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2533 
2534 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2535 	fdir_desc->rsvd = cpu_to_le32(0);
2536 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2537 	fdir_desc->fd_id = cpu_to_le32(0);
2538 }
2539 
2540 /**
2541  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2542  * @skb:     send buffer
2543  * @tx_ring: ring to send buffer on
2544  * @flags:   the tx flags to be set
2545  *
2546  * Checks the skb and set up correspondingly several generic transmit flags
2547  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2548  *
2549  * Returns error code indicate the frame should be dropped upon error and the
2550  * otherwise  returns 0 to indicate the flags has been set properly.
2551  **/
2552 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2553 					     struct i40e_ring *tx_ring,
2554 					     u32 *flags)
2555 {
2556 	__be16 protocol = skb->protocol;
2557 	u32  tx_flags = 0;
2558 
2559 	if (protocol == htons(ETH_P_8021Q) &&
2560 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2561 		/* When HW VLAN acceleration is turned off by the user the
2562 		 * stack sets the protocol to 8021q so that the driver
2563 		 * can take any steps required to support the SW only
2564 		 * VLAN handling.  In our case the driver doesn't need
2565 		 * to take any further steps so just set the protocol
2566 		 * to the encapsulated ethertype.
2567 		 */
2568 		skb->protocol = vlan_get_protocol(skb);
2569 		goto out;
2570 	}
2571 
2572 	/* if we have a HW VLAN tag being added, default to the HW one */
2573 	if (skb_vlan_tag_present(skb)) {
2574 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2575 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2576 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2577 	} else if (protocol == htons(ETH_P_8021Q)) {
2578 		struct vlan_hdr *vhdr, _vhdr;
2579 
2580 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2581 		if (!vhdr)
2582 			return -EINVAL;
2583 
2584 		protocol = vhdr->h_vlan_encapsulated_proto;
2585 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2586 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2587 	}
2588 
2589 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2590 		goto out;
2591 
2592 	/* Insert 802.1p priority into VLAN header */
2593 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2594 	    (skb->priority != TC_PRIO_CONTROL)) {
2595 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2596 		tx_flags |= (skb->priority & 0x7) <<
2597 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2598 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2599 			struct vlan_ethhdr *vhdr;
2600 			int rc;
2601 
2602 			rc = skb_cow_head(skb, 0);
2603 			if (rc < 0)
2604 				return rc;
2605 			vhdr = (struct vlan_ethhdr *)skb->data;
2606 			vhdr->h_vlan_TCI = htons(tx_flags >>
2607 						 I40E_TX_FLAGS_VLAN_SHIFT);
2608 		} else {
2609 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2610 		}
2611 	}
2612 
2613 out:
2614 	*flags = tx_flags;
2615 	return 0;
2616 }
2617 
2618 /**
2619  * i40e_tso - set up the tso context descriptor
2620  * @first:    pointer to first Tx buffer for xmit
2621  * @hdr_len:  ptr to the size of the packet header
2622  * @cd_type_cmd_tso_mss: Quad Word 1
2623  *
2624  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2625  **/
2626 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2627 		    u64 *cd_type_cmd_tso_mss)
2628 {
2629 	struct sk_buff *skb = first->skb;
2630 	u64 cd_cmd, cd_tso_len, cd_mss;
2631 	union {
2632 		struct iphdr *v4;
2633 		struct ipv6hdr *v6;
2634 		unsigned char *hdr;
2635 	} ip;
2636 	union {
2637 		struct tcphdr *tcp;
2638 		struct udphdr *udp;
2639 		unsigned char *hdr;
2640 	} l4;
2641 	u32 paylen, l4_offset;
2642 	u16 gso_segs, gso_size;
2643 	int err;
2644 
2645 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2646 		return 0;
2647 
2648 	if (!skb_is_gso(skb))
2649 		return 0;
2650 
2651 	err = skb_cow_head(skb, 0);
2652 	if (err < 0)
2653 		return err;
2654 
2655 	ip.hdr = skb_network_header(skb);
2656 	l4.hdr = skb_transport_header(skb);
2657 
2658 	/* initialize outer IP header fields */
2659 	if (ip.v4->version == 4) {
2660 		ip.v4->tot_len = 0;
2661 		ip.v4->check = 0;
2662 	} else {
2663 		ip.v6->payload_len = 0;
2664 	}
2665 
2666 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2667 					 SKB_GSO_GRE_CSUM |
2668 					 SKB_GSO_IPXIP4 |
2669 					 SKB_GSO_IPXIP6 |
2670 					 SKB_GSO_UDP_TUNNEL |
2671 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2672 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2673 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2674 			l4.udp->len = 0;
2675 
2676 			/* determine offset of outer transport header */
2677 			l4_offset = l4.hdr - skb->data;
2678 
2679 			/* remove payload length from outer checksum */
2680 			paylen = skb->len - l4_offset;
2681 			csum_replace_by_diff(&l4.udp->check,
2682 					     (__force __wsum)htonl(paylen));
2683 		}
2684 
2685 		/* reset pointers to inner headers */
2686 		ip.hdr = skb_inner_network_header(skb);
2687 		l4.hdr = skb_inner_transport_header(skb);
2688 
2689 		/* initialize inner IP header fields */
2690 		if (ip.v4->version == 4) {
2691 			ip.v4->tot_len = 0;
2692 			ip.v4->check = 0;
2693 		} else {
2694 			ip.v6->payload_len = 0;
2695 		}
2696 	}
2697 
2698 	/* determine offset of inner transport header */
2699 	l4_offset = l4.hdr - skb->data;
2700 
2701 	/* remove payload length from inner checksum */
2702 	paylen = skb->len - l4_offset;
2703 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2704 
2705 	/* compute length of segmentation header */
2706 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2707 
2708 	/* pull values out of skb_shinfo */
2709 	gso_size = skb_shinfo(skb)->gso_size;
2710 	gso_segs = skb_shinfo(skb)->gso_segs;
2711 
2712 	/* update GSO size and bytecount with header size */
2713 	first->gso_segs = gso_segs;
2714 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2715 
2716 	/* find the field values */
2717 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2718 	cd_tso_len = skb->len - *hdr_len;
2719 	cd_mss = gso_size;
2720 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2721 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2722 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2723 	return 1;
2724 }
2725 
2726 /**
2727  * i40e_tsyn - set up the tsyn context descriptor
2728  * @tx_ring:  ptr to the ring to send
2729  * @skb:      ptr to the skb we're sending
2730  * @tx_flags: the collected send information
2731  * @cd_type_cmd_tso_mss: Quad Word 1
2732  *
2733  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2734  **/
2735 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2736 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2737 {
2738 	struct i40e_pf *pf;
2739 
2740 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2741 		return 0;
2742 
2743 	/* Tx timestamps cannot be sampled when doing TSO */
2744 	if (tx_flags & I40E_TX_FLAGS_TSO)
2745 		return 0;
2746 
2747 	/* only timestamp the outbound packet if the user has requested it and
2748 	 * we are not already transmitting a packet to be timestamped
2749 	 */
2750 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2751 	if (!(pf->flags & I40E_FLAG_PTP))
2752 		return 0;
2753 
2754 	if (pf->ptp_tx &&
2755 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2756 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2757 		pf->ptp_tx_start = jiffies;
2758 		pf->ptp_tx_skb = skb_get(skb);
2759 	} else {
2760 		pf->tx_hwtstamp_skipped++;
2761 		return 0;
2762 	}
2763 
2764 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2765 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2766 
2767 	return 1;
2768 }
2769 
2770 /**
2771  * i40e_tx_enable_csum - Enable Tx checksum offloads
2772  * @skb: send buffer
2773  * @tx_flags: pointer to Tx flags currently set
2774  * @td_cmd: Tx descriptor command bits to set
2775  * @td_offset: Tx descriptor header offsets to set
2776  * @tx_ring: Tx descriptor ring
2777  * @cd_tunneling: ptr to context desc bits
2778  **/
2779 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2780 			       u32 *td_cmd, u32 *td_offset,
2781 			       struct i40e_ring *tx_ring,
2782 			       u32 *cd_tunneling)
2783 {
2784 	union {
2785 		struct iphdr *v4;
2786 		struct ipv6hdr *v6;
2787 		unsigned char *hdr;
2788 	} ip;
2789 	union {
2790 		struct tcphdr *tcp;
2791 		struct udphdr *udp;
2792 		unsigned char *hdr;
2793 	} l4;
2794 	unsigned char *exthdr;
2795 	u32 offset, cmd = 0;
2796 	__be16 frag_off;
2797 	u8 l4_proto = 0;
2798 
2799 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2800 		return 0;
2801 
2802 	ip.hdr = skb_network_header(skb);
2803 	l4.hdr = skb_transport_header(skb);
2804 
2805 	/* compute outer L2 header size */
2806 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2807 
2808 	if (skb->encapsulation) {
2809 		u32 tunnel = 0;
2810 		/* define outer network header type */
2811 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2812 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2813 				  I40E_TX_CTX_EXT_IP_IPV4 :
2814 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2815 
2816 			l4_proto = ip.v4->protocol;
2817 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2818 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2819 
2820 			exthdr = ip.hdr + sizeof(*ip.v6);
2821 			l4_proto = ip.v6->nexthdr;
2822 			if (l4.hdr != exthdr)
2823 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2824 						 &l4_proto, &frag_off);
2825 		}
2826 
2827 		/* define outer transport */
2828 		switch (l4_proto) {
2829 		case IPPROTO_UDP:
2830 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2831 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2832 			break;
2833 		case IPPROTO_GRE:
2834 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2835 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2836 			break;
2837 		case IPPROTO_IPIP:
2838 		case IPPROTO_IPV6:
2839 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2840 			l4.hdr = skb_inner_network_header(skb);
2841 			break;
2842 		default:
2843 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2844 				return -1;
2845 
2846 			skb_checksum_help(skb);
2847 			return 0;
2848 		}
2849 
2850 		/* compute outer L3 header size */
2851 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2852 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2853 
2854 		/* switch IP header pointer from outer to inner header */
2855 		ip.hdr = skb_inner_network_header(skb);
2856 
2857 		/* compute tunnel header size */
2858 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2859 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2860 
2861 		/* indicate if we need to offload outer UDP header */
2862 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2863 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2864 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2865 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2866 
2867 		/* record tunnel offload values */
2868 		*cd_tunneling |= tunnel;
2869 
2870 		/* switch L4 header pointer from outer to inner */
2871 		l4.hdr = skb_inner_transport_header(skb);
2872 		l4_proto = 0;
2873 
2874 		/* reset type as we transition from outer to inner headers */
2875 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2876 		if (ip.v4->version == 4)
2877 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2878 		if (ip.v6->version == 6)
2879 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2880 	}
2881 
2882 	/* Enable IP checksum offloads */
2883 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2884 		l4_proto = ip.v4->protocol;
2885 		/* the stack computes the IP header already, the only time we
2886 		 * need the hardware to recompute it is in the case of TSO.
2887 		 */
2888 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2889 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2890 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2891 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2892 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2893 
2894 		exthdr = ip.hdr + sizeof(*ip.v6);
2895 		l4_proto = ip.v6->nexthdr;
2896 		if (l4.hdr != exthdr)
2897 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2898 					 &l4_proto, &frag_off);
2899 	}
2900 
2901 	/* compute inner L3 header size */
2902 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2903 
2904 	/* Enable L4 checksum offloads */
2905 	switch (l4_proto) {
2906 	case IPPROTO_TCP:
2907 		/* enable checksum offloads */
2908 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2909 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2910 		break;
2911 	case IPPROTO_SCTP:
2912 		/* enable SCTP checksum offload */
2913 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2914 		offset |= (sizeof(struct sctphdr) >> 2) <<
2915 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2916 		break;
2917 	case IPPROTO_UDP:
2918 		/* enable UDP checksum offload */
2919 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2920 		offset |= (sizeof(struct udphdr) >> 2) <<
2921 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2922 		break;
2923 	default:
2924 		if (*tx_flags & I40E_TX_FLAGS_TSO)
2925 			return -1;
2926 		skb_checksum_help(skb);
2927 		return 0;
2928 	}
2929 
2930 	*td_cmd |= cmd;
2931 	*td_offset |= offset;
2932 
2933 	return 1;
2934 }
2935 
2936 /**
2937  * i40e_create_tx_ctx Build the Tx context descriptor
2938  * @tx_ring:  ring to create the descriptor on
2939  * @cd_type_cmd_tso_mss: Quad Word 1
2940  * @cd_tunneling: Quad Word 0 - bits 0-31
2941  * @cd_l2tag2: Quad Word 0 - bits 32-63
2942  **/
2943 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2944 			       const u64 cd_type_cmd_tso_mss,
2945 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2946 {
2947 	struct i40e_tx_context_desc *context_desc;
2948 	int i = tx_ring->next_to_use;
2949 
2950 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2951 	    !cd_tunneling && !cd_l2tag2)
2952 		return;
2953 
2954 	/* grab the next descriptor */
2955 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2956 
2957 	i++;
2958 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2959 
2960 	/* cpu_to_le32 and assign to struct fields */
2961 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2962 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2963 	context_desc->rsvd = cpu_to_le16(0);
2964 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2965 }
2966 
2967 /**
2968  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2969  * @tx_ring: the ring to be checked
2970  * @size:    the size buffer we want to assure is available
2971  *
2972  * Returns -EBUSY if a stop is needed, else 0
2973  **/
2974 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2975 {
2976 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2977 	/* Memory barrier before checking head and tail */
2978 	smp_mb();
2979 
2980 	/* Check again in a case another CPU has just made room available. */
2981 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2982 		return -EBUSY;
2983 
2984 	/* A reprieve! - use start_queue because it doesn't call schedule */
2985 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2986 	++tx_ring->tx_stats.restart_queue;
2987 	return 0;
2988 }
2989 
2990 /**
2991  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2992  * @skb:      send buffer
2993  *
2994  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2995  * and so we need to figure out the cases where we need to linearize the skb.
2996  *
2997  * For TSO we need to count the TSO header and segment payload separately.
2998  * As such we need to check cases where we have 7 fragments or more as we
2999  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3000  * the segment payload in the first descriptor, and another 7 for the
3001  * fragments.
3002  **/
3003 bool __i40e_chk_linearize(struct sk_buff *skb)
3004 {
3005 	const struct skb_frag_struct *frag, *stale;
3006 	int nr_frags, sum;
3007 
3008 	/* no need to check if number of frags is less than 7 */
3009 	nr_frags = skb_shinfo(skb)->nr_frags;
3010 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3011 		return false;
3012 
3013 	/* We need to walk through the list and validate that each group
3014 	 * of 6 fragments totals at least gso_size.
3015 	 */
3016 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3017 	frag = &skb_shinfo(skb)->frags[0];
3018 
3019 	/* Initialize size to the negative value of gso_size minus 1.  We
3020 	 * use this as the worst case scenerio in which the frag ahead
3021 	 * of us only provides one byte which is why we are limited to 6
3022 	 * descriptors for a single transmit as the header and previous
3023 	 * fragment are already consuming 2 descriptors.
3024 	 */
3025 	sum = 1 - skb_shinfo(skb)->gso_size;
3026 
3027 	/* Add size of frags 0 through 4 to create our initial sum */
3028 	sum += skb_frag_size(frag++);
3029 	sum += skb_frag_size(frag++);
3030 	sum += skb_frag_size(frag++);
3031 	sum += skb_frag_size(frag++);
3032 	sum += skb_frag_size(frag++);
3033 
3034 	/* Walk through fragments adding latest fragment, testing it, and
3035 	 * then removing stale fragments from the sum.
3036 	 */
3037 	stale = &skb_shinfo(skb)->frags[0];
3038 	for (;;) {
3039 		sum += skb_frag_size(frag++);
3040 
3041 		/* if sum is negative we failed to make sufficient progress */
3042 		if (sum < 0)
3043 			return true;
3044 
3045 		if (!nr_frags--)
3046 			break;
3047 
3048 		sum -= skb_frag_size(stale++);
3049 	}
3050 
3051 	return false;
3052 }
3053 
3054 /**
3055  * i40e_tx_map - Build the Tx descriptor
3056  * @tx_ring:  ring to send buffer on
3057  * @skb:      send buffer
3058  * @first:    first buffer info buffer to use
3059  * @tx_flags: collected send information
3060  * @hdr_len:  size of the packet header
3061  * @td_cmd:   the command field in the descriptor
3062  * @td_offset: offset for checksum or crc
3063  *
3064  * Returns 0 on success, -1 on failure to DMA
3065  **/
3066 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3067 			      struct i40e_tx_buffer *first, u32 tx_flags,
3068 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3069 {
3070 	unsigned int data_len = skb->data_len;
3071 	unsigned int size = skb_headlen(skb);
3072 	struct skb_frag_struct *frag;
3073 	struct i40e_tx_buffer *tx_bi;
3074 	struct i40e_tx_desc *tx_desc;
3075 	u16 i = tx_ring->next_to_use;
3076 	u32 td_tag = 0;
3077 	dma_addr_t dma;
3078 	u16 desc_count = 1;
3079 
3080 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3081 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3082 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3083 			 I40E_TX_FLAGS_VLAN_SHIFT;
3084 	}
3085 
3086 	first->tx_flags = tx_flags;
3087 
3088 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3089 
3090 	tx_desc = I40E_TX_DESC(tx_ring, i);
3091 	tx_bi = first;
3092 
3093 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3094 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3095 
3096 		if (dma_mapping_error(tx_ring->dev, dma))
3097 			goto dma_error;
3098 
3099 		/* record length, and DMA address */
3100 		dma_unmap_len_set(tx_bi, len, size);
3101 		dma_unmap_addr_set(tx_bi, dma, dma);
3102 
3103 		/* align size to end of page */
3104 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3105 		tx_desc->buffer_addr = cpu_to_le64(dma);
3106 
3107 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3108 			tx_desc->cmd_type_offset_bsz =
3109 				build_ctob(td_cmd, td_offset,
3110 					   max_data, td_tag);
3111 
3112 			tx_desc++;
3113 			i++;
3114 			desc_count++;
3115 
3116 			if (i == tx_ring->count) {
3117 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3118 				i = 0;
3119 			}
3120 
3121 			dma += max_data;
3122 			size -= max_data;
3123 
3124 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3125 			tx_desc->buffer_addr = cpu_to_le64(dma);
3126 		}
3127 
3128 		if (likely(!data_len))
3129 			break;
3130 
3131 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3132 							  size, td_tag);
3133 
3134 		tx_desc++;
3135 		i++;
3136 		desc_count++;
3137 
3138 		if (i == tx_ring->count) {
3139 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3140 			i = 0;
3141 		}
3142 
3143 		size = skb_frag_size(frag);
3144 		data_len -= size;
3145 
3146 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3147 				       DMA_TO_DEVICE);
3148 
3149 		tx_bi = &tx_ring->tx_bi[i];
3150 	}
3151 
3152 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3153 
3154 	i++;
3155 	if (i == tx_ring->count)
3156 		i = 0;
3157 
3158 	tx_ring->next_to_use = i;
3159 
3160 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3161 
3162 	/* write last descriptor with EOP bit */
3163 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3164 
3165 	/* We can OR these values together as they both are checked against
3166 	 * 4 below and at this point desc_count will be used as a boolean value
3167 	 * after this if/else block.
3168 	 */
3169 	desc_count |= ++tx_ring->packet_stride;
3170 
3171 	/* Algorithm to optimize tail and RS bit setting:
3172 	 * if queue is stopped
3173 	 *	mark RS bit
3174 	 *	reset packet counter
3175 	 * else if xmit_more is supported and is true
3176 	 *	advance packet counter to 4
3177 	 *	reset desc_count to 0
3178 	 *
3179 	 * if desc_count >= 4
3180 	 *	mark RS bit
3181 	 *	reset packet counter
3182 	 * if desc_count > 0
3183 	 *	update tail
3184 	 *
3185 	 * Note: If there are less than 4 descriptors
3186 	 * pending and interrupts were disabled the service task will
3187 	 * trigger a force WB.
3188 	 */
3189 	if (netif_xmit_stopped(txring_txq(tx_ring))) {
3190 		goto do_rs;
3191 	} else if (skb->xmit_more) {
3192 		/* set stride to arm on next packet and reset desc_count */
3193 		tx_ring->packet_stride = WB_STRIDE;
3194 		desc_count = 0;
3195 	} else if (desc_count >= WB_STRIDE) {
3196 do_rs:
3197 		/* write last descriptor with RS bit set */
3198 		td_cmd |= I40E_TX_DESC_CMD_RS;
3199 		tx_ring->packet_stride = 0;
3200 	}
3201 
3202 	tx_desc->cmd_type_offset_bsz =
3203 			build_ctob(td_cmd, td_offset, size, td_tag);
3204 
3205 	/* Force memory writes to complete before letting h/w know there
3206 	 * are new descriptors to fetch.
3207 	 *
3208 	 * We also use this memory barrier to make certain all of the
3209 	 * status bits have been updated before next_to_watch is written.
3210 	 */
3211 	wmb();
3212 
3213 	/* set next_to_watch value indicating a packet is present */
3214 	first->next_to_watch = tx_desc;
3215 
3216 	/* notify HW of packet */
3217 	if (desc_count) {
3218 		writel(i, tx_ring->tail);
3219 
3220 		/* we need this if more than one processor can write to our tail
3221 		 * at a time, it synchronizes IO on IA64/Altix systems
3222 		 */
3223 		mmiowb();
3224 	}
3225 
3226 	return 0;
3227 
3228 dma_error:
3229 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3230 
3231 	/* clear dma mappings for failed tx_bi map */
3232 	for (;;) {
3233 		tx_bi = &tx_ring->tx_bi[i];
3234 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3235 		if (tx_bi == first)
3236 			break;
3237 		if (i == 0)
3238 			i = tx_ring->count;
3239 		i--;
3240 	}
3241 
3242 	tx_ring->next_to_use = i;
3243 
3244 	return -1;
3245 }
3246 
3247 /**
3248  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3249  * @xdp: data to transmit
3250  * @xdp_ring: XDP Tx ring
3251  **/
3252 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3253 			      struct i40e_ring *xdp_ring)
3254 {
3255 	u32 size = xdp->data_end - xdp->data;
3256 	u16 i = xdp_ring->next_to_use;
3257 	struct i40e_tx_buffer *tx_bi;
3258 	struct i40e_tx_desc *tx_desc;
3259 	dma_addr_t dma;
3260 
3261 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3262 		xdp_ring->tx_stats.tx_busy++;
3263 		return I40E_XDP_CONSUMED;
3264 	}
3265 
3266 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3267 	if (dma_mapping_error(xdp_ring->dev, dma))
3268 		return I40E_XDP_CONSUMED;
3269 
3270 	tx_bi = &xdp_ring->tx_bi[i];
3271 	tx_bi->bytecount = size;
3272 	tx_bi->gso_segs = 1;
3273 	tx_bi->raw_buf = xdp->data;
3274 
3275 	/* record length, and DMA address */
3276 	dma_unmap_len_set(tx_bi, len, size);
3277 	dma_unmap_addr_set(tx_bi, dma, dma);
3278 
3279 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3280 	tx_desc->buffer_addr = cpu_to_le64(dma);
3281 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3282 						  | I40E_TXD_CMD,
3283 						  0, size, 0);
3284 
3285 	/* Make certain all of the status bits have been updated
3286 	 * before next_to_watch is written.
3287 	 */
3288 	smp_wmb();
3289 
3290 	i++;
3291 	if (i == xdp_ring->count)
3292 		i = 0;
3293 
3294 	tx_bi->next_to_watch = tx_desc;
3295 	xdp_ring->next_to_use = i;
3296 
3297 	return I40E_XDP_TX;
3298 }
3299 
3300 /**
3301  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3302  * @skb:     send buffer
3303  * @tx_ring: ring to send buffer on
3304  *
3305  * Returns NETDEV_TX_OK if sent, else an error code
3306  **/
3307 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3308 					struct i40e_ring *tx_ring)
3309 {
3310 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3311 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3312 	struct i40e_tx_buffer *first;
3313 	u32 td_offset = 0;
3314 	u32 tx_flags = 0;
3315 	__be16 protocol;
3316 	u32 td_cmd = 0;
3317 	u8 hdr_len = 0;
3318 	int tso, count;
3319 	int tsyn;
3320 
3321 	/* prefetch the data, we'll need it later */
3322 	prefetch(skb->data);
3323 
3324 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3325 
3326 	count = i40e_xmit_descriptor_count(skb);
3327 	if (i40e_chk_linearize(skb, count)) {
3328 		if (__skb_linearize(skb)) {
3329 			dev_kfree_skb_any(skb);
3330 			return NETDEV_TX_OK;
3331 		}
3332 		count = i40e_txd_use_count(skb->len);
3333 		tx_ring->tx_stats.tx_linearize++;
3334 	}
3335 
3336 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3337 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3338 	 *       + 4 desc gap to avoid the cache line where head is,
3339 	 *       + 1 desc for context descriptor,
3340 	 * otherwise try next time
3341 	 */
3342 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3343 		tx_ring->tx_stats.tx_busy++;
3344 		return NETDEV_TX_BUSY;
3345 	}
3346 
3347 	/* record the location of the first descriptor for this packet */
3348 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3349 	first->skb = skb;
3350 	first->bytecount = skb->len;
3351 	first->gso_segs = 1;
3352 
3353 	/* prepare the xmit flags */
3354 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3355 		goto out_drop;
3356 
3357 	/* obtain protocol of skb */
3358 	protocol = vlan_get_protocol(skb);
3359 
3360 	/* setup IPv4/IPv6 offloads */
3361 	if (protocol == htons(ETH_P_IP))
3362 		tx_flags |= I40E_TX_FLAGS_IPV4;
3363 	else if (protocol == htons(ETH_P_IPV6))
3364 		tx_flags |= I40E_TX_FLAGS_IPV6;
3365 
3366 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3367 
3368 	if (tso < 0)
3369 		goto out_drop;
3370 	else if (tso)
3371 		tx_flags |= I40E_TX_FLAGS_TSO;
3372 
3373 	/* Always offload the checksum, since it's in the data descriptor */
3374 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3375 				  tx_ring, &cd_tunneling);
3376 	if (tso < 0)
3377 		goto out_drop;
3378 
3379 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3380 
3381 	if (tsyn)
3382 		tx_flags |= I40E_TX_FLAGS_TSYN;
3383 
3384 	skb_tx_timestamp(skb);
3385 
3386 	/* always enable CRC insertion offload */
3387 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3388 
3389 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3390 			   cd_tunneling, cd_l2tag2);
3391 
3392 	/* Add Flow Director ATR if it's enabled.
3393 	 *
3394 	 * NOTE: this must always be directly before the data descriptor.
3395 	 */
3396 	i40e_atr(tx_ring, skb, tx_flags);
3397 
3398 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3399 			td_cmd, td_offset))
3400 		goto cleanup_tx_tstamp;
3401 
3402 	return NETDEV_TX_OK;
3403 
3404 out_drop:
3405 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3406 	dev_kfree_skb_any(first->skb);
3407 	first->skb = NULL;
3408 cleanup_tx_tstamp:
3409 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3410 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3411 
3412 		dev_kfree_skb_any(pf->ptp_tx_skb);
3413 		pf->ptp_tx_skb = NULL;
3414 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3415 	}
3416 
3417 	return NETDEV_TX_OK;
3418 }
3419 
3420 /**
3421  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3422  * @skb:    send buffer
3423  * @netdev: network interface device structure
3424  *
3425  * Returns NETDEV_TX_OK if sent, else an error code
3426  **/
3427 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3428 {
3429 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3430 	struct i40e_vsi *vsi = np->vsi;
3431 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3432 
3433 	/* hardware can't handle really short frames, hardware padding works
3434 	 * beyond this point
3435 	 */
3436 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3437 		return NETDEV_TX_OK;
3438 
3439 	return i40e_xmit_frame_ring(skb, tx_ring);
3440 }
3441