xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <net/busy_poll.h>
6 #include <linux/bpf_trace.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39 
40 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42 
43 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45 
46 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
47 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
48 
49 	/* Use LAN VSI Id if not programmed by user */
50 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
51 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
52 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
53 
54 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
55 
56 	dtype_cmd |= add ?
57 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
58 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
59 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
60 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
61 
62 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
63 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
64 
65 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
66 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
67 
68 	if (fdata->cnt_index) {
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
70 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
71 			     ((u32)fdata->cnt_index <<
72 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
73 	}
74 
75 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
76 	fdir_desc->rsvd = cpu_to_le32(0);
77 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
78 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
79 }
80 
81 #define I40E_FD_CLEAN_DELAY 10
82 /**
83  * i40e_program_fdir_filter - Program a Flow Director filter
84  * @fdir_data: Packet data that will be filter parameters
85  * @raw_packet: the pre-allocated packet buffer for FDir
86  * @pf: The PF pointer
87  * @add: True for add/update, False for remove
88  **/
89 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
90 				    u8 *raw_packet, struct i40e_pf *pf,
91 				    bool add)
92 {
93 	struct i40e_tx_buffer *tx_buf, *first;
94 	struct i40e_tx_desc *tx_desc;
95 	struct i40e_ring *tx_ring;
96 	struct i40e_vsi *vsi;
97 	struct device *dev;
98 	dma_addr_t dma;
99 	u32 td_cmd = 0;
100 	u16 i;
101 
102 	/* find existing FDIR VSI */
103 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
104 	if (!vsi)
105 		return -ENOENT;
106 
107 	tx_ring = vsi->tx_rings[0];
108 	dev = tx_ring->dev;
109 
110 	/* we need two descriptors to add/del a filter and we can wait */
111 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
112 		if (!i)
113 			return -EAGAIN;
114 		msleep_interruptible(1);
115 	}
116 
117 	dma = dma_map_single(dev, raw_packet,
118 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
119 	if (dma_mapping_error(dev, dma))
120 		goto dma_fail;
121 
122 	/* grab the next descriptor */
123 	i = tx_ring->next_to_use;
124 	first = &tx_ring->tx_bi[i];
125 	i40e_fdir(tx_ring, fdir_data, add);
126 
127 	/* Now program a dummy descriptor */
128 	i = tx_ring->next_to_use;
129 	tx_desc = I40E_TX_DESC(tx_ring, i);
130 	tx_buf = &tx_ring->tx_bi[i];
131 
132 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
133 
134 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
135 
136 	/* record length, and DMA address */
137 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
138 	dma_unmap_addr_set(tx_buf, dma, dma);
139 
140 	tx_desc->buffer_addr = cpu_to_le64(dma);
141 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
142 
143 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
144 	tx_buf->raw_buf = (void *)raw_packet;
145 
146 	tx_desc->cmd_type_offset_bsz =
147 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
148 
149 	/* Force memory writes to complete before letting h/w
150 	 * know there are new descriptors to fetch.
151 	 */
152 	wmb();
153 
154 	/* Mark the data descriptor to be watched */
155 	first->next_to_watch = tx_desc;
156 
157 	writel(tx_ring->next_to_use, tx_ring->tail);
158 	return 0;
159 
160 dma_fail:
161 	return -1;
162 }
163 
164 #define IP_HEADER_OFFSET 14
165 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
166 /**
167  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
168  * @vsi: pointer to the targeted VSI
169  * @fd_data: the flow director data required for the FDir descriptor
170  * @add: true adds a filter, false removes it
171  *
172  * Returns 0 if the filters were successfully added or removed
173  **/
174 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
175 				   struct i40e_fdir_filter *fd_data,
176 				   bool add)
177 {
178 	struct i40e_pf *pf = vsi->back;
179 	struct udphdr *udp;
180 	struct iphdr *ip;
181 	u8 *raw_packet;
182 	int ret;
183 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
184 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
185 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
186 
187 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
188 	if (!raw_packet)
189 		return -ENOMEM;
190 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
191 
192 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
193 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
194 	      + sizeof(struct iphdr));
195 
196 	ip->daddr = fd_data->dst_ip;
197 	udp->dest = fd_data->dst_port;
198 	ip->saddr = fd_data->src_ip;
199 	udp->source = fd_data->src_port;
200 
201 	if (fd_data->flex_filter) {
202 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
203 		__be16 pattern = fd_data->flex_word;
204 		u16 off = fd_data->flex_offset;
205 
206 		*((__force __be16 *)(payload + off)) = pattern;
207 	}
208 
209 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
210 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
211 	if (ret) {
212 		dev_info(&pf->pdev->dev,
213 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
214 			 fd_data->pctype, fd_data->fd_id, ret);
215 		/* Free the packet buffer since it wasn't added to the ring */
216 		kfree(raw_packet);
217 		return -EOPNOTSUPP;
218 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
219 		if (add)
220 			dev_info(&pf->pdev->dev,
221 				 "Filter OK for PCTYPE %d loc = %d\n",
222 				 fd_data->pctype, fd_data->fd_id);
223 		else
224 			dev_info(&pf->pdev->dev,
225 				 "Filter deleted for PCTYPE %d loc = %d\n",
226 				 fd_data->pctype, fd_data->fd_id);
227 	}
228 
229 	if (add)
230 		pf->fd_udp4_filter_cnt++;
231 	else
232 		pf->fd_udp4_filter_cnt--;
233 
234 	return 0;
235 }
236 
237 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
238 /**
239  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
240  * @vsi: pointer to the targeted VSI
241  * @fd_data: the flow director data required for the FDir descriptor
242  * @add: true adds a filter, false removes it
243  *
244  * Returns 0 if the filters were successfully added or removed
245  **/
246 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
247 				   struct i40e_fdir_filter *fd_data,
248 				   bool add)
249 {
250 	struct i40e_pf *pf = vsi->back;
251 	struct tcphdr *tcp;
252 	struct iphdr *ip;
253 	u8 *raw_packet;
254 	int ret;
255 	/* Dummy packet */
256 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
257 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
258 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
259 		0x0, 0x72, 0, 0, 0, 0};
260 
261 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
262 	if (!raw_packet)
263 		return -ENOMEM;
264 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
265 
266 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
267 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
268 	      + sizeof(struct iphdr));
269 
270 	ip->daddr = fd_data->dst_ip;
271 	tcp->dest = fd_data->dst_port;
272 	ip->saddr = fd_data->src_ip;
273 	tcp->source = fd_data->src_port;
274 
275 	if (fd_data->flex_filter) {
276 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
277 		__be16 pattern = fd_data->flex_word;
278 		u16 off = fd_data->flex_offset;
279 
280 		*((__force __be16 *)(payload + off)) = pattern;
281 	}
282 
283 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
284 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
285 	if (ret) {
286 		dev_info(&pf->pdev->dev,
287 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
288 			 fd_data->pctype, fd_data->fd_id, ret);
289 		/* Free the packet buffer since it wasn't added to the ring */
290 		kfree(raw_packet);
291 		return -EOPNOTSUPP;
292 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
293 		if (add)
294 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
295 				 fd_data->pctype, fd_data->fd_id);
296 		else
297 			dev_info(&pf->pdev->dev,
298 				 "Filter deleted for PCTYPE %d loc = %d\n",
299 				 fd_data->pctype, fd_data->fd_id);
300 	}
301 
302 	if (add) {
303 		pf->fd_tcp4_filter_cnt++;
304 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
305 		    I40E_DEBUG_FD & pf->hw.debug_mask)
306 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
307 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
308 	} else {
309 		pf->fd_tcp4_filter_cnt--;
310 	}
311 
312 	return 0;
313 }
314 
315 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
316 /**
317  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
318  * a specific flow spec
319  * @vsi: pointer to the targeted VSI
320  * @fd_data: the flow director data required for the FDir descriptor
321  * @add: true adds a filter, false removes it
322  *
323  * Returns 0 if the filters were successfully added or removed
324  **/
325 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
326 				    struct i40e_fdir_filter *fd_data,
327 				    bool add)
328 {
329 	struct i40e_pf *pf = vsi->back;
330 	struct sctphdr *sctp;
331 	struct iphdr *ip;
332 	u8 *raw_packet;
333 	int ret;
334 	/* Dummy packet */
335 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
336 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
337 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
338 
339 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
340 	if (!raw_packet)
341 		return -ENOMEM;
342 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
343 
344 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
345 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
346 	      + sizeof(struct iphdr));
347 
348 	ip->daddr = fd_data->dst_ip;
349 	sctp->dest = fd_data->dst_port;
350 	ip->saddr = fd_data->src_ip;
351 	sctp->source = fd_data->src_port;
352 
353 	if (fd_data->flex_filter) {
354 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
355 		__be16 pattern = fd_data->flex_word;
356 		u16 off = fd_data->flex_offset;
357 
358 		*((__force __be16 *)(payload + off)) = pattern;
359 	}
360 
361 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
362 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
363 	if (ret) {
364 		dev_info(&pf->pdev->dev,
365 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
366 			 fd_data->pctype, fd_data->fd_id, ret);
367 		/* Free the packet buffer since it wasn't added to the ring */
368 		kfree(raw_packet);
369 		return -EOPNOTSUPP;
370 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
371 		if (add)
372 			dev_info(&pf->pdev->dev,
373 				 "Filter OK for PCTYPE %d loc = %d\n",
374 				 fd_data->pctype, fd_data->fd_id);
375 		else
376 			dev_info(&pf->pdev->dev,
377 				 "Filter deleted for PCTYPE %d loc = %d\n",
378 				 fd_data->pctype, fd_data->fd_id);
379 	}
380 
381 	if (add)
382 		pf->fd_sctp4_filter_cnt++;
383 	else
384 		pf->fd_sctp4_filter_cnt--;
385 
386 	return 0;
387 }
388 
389 #define I40E_IP_DUMMY_PACKET_LEN 34
390 /**
391  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
392  * a specific flow spec
393  * @vsi: pointer to the targeted VSI
394  * @fd_data: the flow director data required for the FDir descriptor
395  * @add: true adds a filter, false removes it
396  *
397  * Returns 0 if the filters were successfully added or removed
398  **/
399 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
400 				  struct i40e_fdir_filter *fd_data,
401 				  bool add)
402 {
403 	struct i40e_pf *pf = vsi->back;
404 	struct iphdr *ip;
405 	u8 *raw_packet;
406 	int ret;
407 	int i;
408 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
409 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
410 		0, 0, 0, 0};
411 
412 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
413 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
414 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
415 		if (!raw_packet)
416 			return -ENOMEM;
417 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
418 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
419 
420 		ip->saddr = fd_data->src_ip;
421 		ip->daddr = fd_data->dst_ip;
422 		ip->protocol = 0;
423 
424 		if (fd_data->flex_filter) {
425 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
426 			__be16 pattern = fd_data->flex_word;
427 			u16 off = fd_data->flex_offset;
428 
429 			*((__force __be16 *)(payload + off)) = pattern;
430 		}
431 
432 		fd_data->pctype = i;
433 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
434 		if (ret) {
435 			dev_info(&pf->pdev->dev,
436 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
437 				 fd_data->pctype, fd_data->fd_id, ret);
438 			/* The packet buffer wasn't added to the ring so we
439 			 * need to free it now.
440 			 */
441 			kfree(raw_packet);
442 			return -EOPNOTSUPP;
443 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
444 			if (add)
445 				dev_info(&pf->pdev->dev,
446 					 "Filter OK for PCTYPE %d loc = %d\n",
447 					 fd_data->pctype, fd_data->fd_id);
448 			else
449 				dev_info(&pf->pdev->dev,
450 					 "Filter deleted for PCTYPE %d loc = %d\n",
451 					 fd_data->pctype, fd_data->fd_id);
452 		}
453 	}
454 
455 	if (add)
456 		pf->fd_ip4_filter_cnt++;
457 	else
458 		pf->fd_ip4_filter_cnt--;
459 
460 	return 0;
461 }
462 
463 /**
464  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
465  * @vsi: pointer to the targeted VSI
466  * @input: filter to add or delete
467  * @add: true adds a filter, false removes it
468  *
469  **/
470 int i40e_add_del_fdir(struct i40e_vsi *vsi,
471 		      struct i40e_fdir_filter *input, bool add)
472 {
473 	struct i40e_pf *pf = vsi->back;
474 	int ret;
475 
476 	switch (input->flow_type & ~FLOW_EXT) {
477 	case TCP_V4_FLOW:
478 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
479 		break;
480 	case UDP_V4_FLOW:
481 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
482 		break;
483 	case SCTP_V4_FLOW:
484 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
485 		break;
486 	case IP_USER_FLOW:
487 		switch (input->ip4_proto) {
488 		case IPPROTO_TCP:
489 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
490 			break;
491 		case IPPROTO_UDP:
492 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
493 			break;
494 		case IPPROTO_SCTP:
495 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
496 			break;
497 		case IPPROTO_IP:
498 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
499 			break;
500 		default:
501 			/* We cannot support masking based on protocol */
502 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
503 				 input->ip4_proto);
504 			return -EINVAL;
505 		}
506 		break;
507 	default:
508 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
509 			 input->flow_type);
510 		return -EINVAL;
511 	}
512 
513 	/* The buffer allocated here will be normally be freed by
514 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
515 	 * completion. In the event of an error adding the buffer to the FDIR
516 	 * ring, it will immediately be freed. It may also be freed by
517 	 * i40e_clean_tx_ring() when closing the VSI.
518 	 */
519 	return ret;
520 }
521 
522 /**
523  * i40e_fd_handle_status - check the Programming Status for FD
524  * @rx_ring: the Rx ring for this descriptor
525  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
531 void i40e_fd_handle_status(struct i40e_ring *rx_ring,
532 			   union i40e_rx_desc *rx_desc, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	u32 fcnt_prog, fcnt_avail;
537 	u32 error;
538 	u64 qw;
539 
540 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
541 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
546 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 rx_desc->wb.qword0.hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	/* ring already cleared, nothing to do */
640 	if (!tx_ring->tx_bi)
641 		return;
642 
643 	/* Free all the Tx ring sk_buffs */
644 	for (i = 0; i < tx_ring->count; i++)
645 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
646 
647 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
648 	memset(tx_ring->tx_bi, 0, bi_size);
649 
650 	/* Zero out the descriptor ring */
651 	memset(tx_ring->desc, 0, tx_ring->size);
652 
653 	tx_ring->next_to_use = 0;
654 	tx_ring->next_to_clean = 0;
655 
656 	if (!tx_ring->netdev)
657 		return;
658 
659 	/* cleanup Tx queue statistics */
660 	netdev_tx_reset_queue(txring_txq(tx_ring));
661 }
662 
663 /**
664  * i40e_free_tx_resources - Free Tx resources per queue
665  * @tx_ring: Tx descriptor ring for a specific queue
666  *
667  * Free all transmit software resources
668  **/
669 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
670 {
671 	i40e_clean_tx_ring(tx_ring);
672 	kfree(tx_ring->tx_bi);
673 	tx_ring->tx_bi = NULL;
674 
675 	if (tx_ring->desc) {
676 		dma_free_coherent(tx_ring->dev, tx_ring->size,
677 				  tx_ring->desc, tx_ring->dma);
678 		tx_ring->desc = NULL;
679 	}
680 }
681 
682 /**
683  * i40e_get_tx_pending - how many tx descriptors not processed
684  * @ring: the ring of descriptors
685  * @in_sw: use SW variables
686  *
687  * Since there is no access to the ring head register
688  * in XL710, we need to use our local copies
689  **/
690 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
691 {
692 	u32 head, tail;
693 
694 	if (!in_sw) {
695 		head = i40e_get_head(ring);
696 		tail = readl(ring->tail);
697 	} else {
698 		head = ring->next_to_clean;
699 		tail = ring->next_to_use;
700 	}
701 
702 	if (head != tail)
703 		return (head < tail) ?
704 			tail - head : (tail + ring->count - head);
705 
706 	return 0;
707 }
708 
709 /**
710  * i40e_detect_recover_hung - Function to detect and recover hung_queues
711  * @vsi:  pointer to vsi struct with tx queues
712  *
713  * VSI has netdev and netdev has TX queues. This function is to check each of
714  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
715  **/
716 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
717 {
718 	struct i40e_ring *tx_ring = NULL;
719 	struct net_device *netdev;
720 	unsigned int i;
721 	int packets;
722 
723 	if (!vsi)
724 		return;
725 
726 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
727 		return;
728 
729 	netdev = vsi->netdev;
730 	if (!netdev)
731 		return;
732 
733 	if (!netif_carrier_ok(netdev))
734 		return;
735 
736 	for (i = 0; i < vsi->num_queue_pairs; i++) {
737 		tx_ring = vsi->tx_rings[i];
738 		if (tx_ring && tx_ring->desc) {
739 			/* If packet counter has not changed the queue is
740 			 * likely stalled, so force an interrupt for this
741 			 * queue.
742 			 *
743 			 * prev_pkt_ctr would be negative if there was no
744 			 * pending work.
745 			 */
746 			packets = tx_ring->stats.packets & INT_MAX;
747 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
748 				i40e_force_wb(vsi, tx_ring->q_vector);
749 				continue;
750 			}
751 
752 			/* Memory barrier between read of packet count and call
753 			 * to i40e_get_tx_pending()
754 			 */
755 			smp_rmb();
756 			tx_ring->tx_stats.prev_pkt_ctr =
757 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
758 		}
759 	}
760 }
761 
762 /**
763  * i40e_clean_tx_irq - Reclaim resources after transmit completes
764  * @vsi: the VSI we care about
765  * @tx_ring: Tx ring to clean
766  * @napi_budget: Used to determine if we are in netpoll
767  *
768  * Returns true if there's any budget left (e.g. the clean is finished)
769  **/
770 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
771 			      struct i40e_ring *tx_ring, int napi_budget)
772 {
773 	u16 i = tx_ring->next_to_clean;
774 	struct i40e_tx_buffer *tx_buf;
775 	struct i40e_tx_desc *tx_head;
776 	struct i40e_tx_desc *tx_desc;
777 	unsigned int total_bytes = 0, total_packets = 0;
778 	unsigned int budget = vsi->work_limit;
779 
780 	tx_buf = &tx_ring->tx_bi[i];
781 	tx_desc = I40E_TX_DESC(tx_ring, i);
782 	i -= tx_ring->count;
783 
784 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
785 
786 	do {
787 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
788 
789 		/* if next_to_watch is not set then there is no work pending */
790 		if (!eop_desc)
791 			break;
792 
793 		/* prevent any other reads prior to eop_desc */
794 		smp_rmb();
795 
796 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
797 		/* we have caught up to head, no work left to do */
798 		if (tx_head == tx_desc)
799 			break;
800 
801 		/* clear next_to_watch to prevent false hangs */
802 		tx_buf->next_to_watch = NULL;
803 
804 		/* update the statistics for this packet */
805 		total_bytes += tx_buf->bytecount;
806 		total_packets += tx_buf->gso_segs;
807 
808 		/* free the skb/XDP data */
809 		if (ring_is_xdp(tx_ring))
810 			xdp_return_frame(tx_buf->xdpf);
811 		else
812 			napi_consume_skb(tx_buf->skb, napi_budget);
813 
814 		/* unmap skb header data */
815 		dma_unmap_single(tx_ring->dev,
816 				 dma_unmap_addr(tx_buf, dma),
817 				 dma_unmap_len(tx_buf, len),
818 				 DMA_TO_DEVICE);
819 
820 		/* clear tx_buffer data */
821 		tx_buf->skb = NULL;
822 		dma_unmap_len_set(tx_buf, len, 0);
823 
824 		/* unmap remaining buffers */
825 		while (tx_desc != eop_desc) {
826 			i40e_trace(clean_tx_irq_unmap,
827 				   tx_ring, tx_desc, tx_buf);
828 
829 			tx_buf++;
830 			tx_desc++;
831 			i++;
832 			if (unlikely(!i)) {
833 				i -= tx_ring->count;
834 				tx_buf = tx_ring->tx_bi;
835 				tx_desc = I40E_TX_DESC(tx_ring, 0);
836 			}
837 
838 			/* unmap any remaining paged data */
839 			if (dma_unmap_len(tx_buf, len)) {
840 				dma_unmap_page(tx_ring->dev,
841 					       dma_unmap_addr(tx_buf, dma),
842 					       dma_unmap_len(tx_buf, len),
843 					       DMA_TO_DEVICE);
844 				dma_unmap_len_set(tx_buf, len, 0);
845 			}
846 		}
847 
848 		/* move us one more past the eop_desc for start of next pkt */
849 		tx_buf++;
850 		tx_desc++;
851 		i++;
852 		if (unlikely(!i)) {
853 			i -= tx_ring->count;
854 			tx_buf = tx_ring->tx_bi;
855 			tx_desc = I40E_TX_DESC(tx_ring, 0);
856 		}
857 
858 		prefetch(tx_desc);
859 
860 		/* update budget accounting */
861 		budget--;
862 	} while (likely(budget));
863 
864 	i += tx_ring->count;
865 	tx_ring->next_to_clean = i;
866 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
867 	i40e_arm_wb(tx_ring, vsi, budget);
868 
869 	if (ring_is_xdp(tx_ring))
870 		return !!budget;
871 
872 	/* notify netdev of completed buffers */
873 	netdev_tx_completed_queue(txring_txq(tx_ring),
874 				  total_packets, total_bytes);
875 
876 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
877 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
878 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
879 		/* Make sure that anybody stopping the queue after this
880 		 * sees the new next_to_clean.
881 		 */
882 		smp_mb();
883 		if (__netif_subqueue_stopped(tx_ring->netdev,
884 					     tx_ring->queue_index) &&
885 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
886 			netif_wake_subqueue(tx_ring->netdev,
887 					    tx_ring->queue_index);
888 			++tx_ring->tx_stats.restart_queue;
889 		}
890 	}
891 
892 	return !!budget;
893 }
894 
895 /**
896  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
897  * @vsi: the VSI we care about
898  * @q_vector: the vector on which to enable writeback
899  *
900  **/
901 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
902 				  struct i40e_q_vector *q_vector)
903 {
904 	u16 flags = q_vector->tx.ring[0].flags;
905 	u32 val;
906 
907 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
908 		return;
909 
910 	if (q_vector->arm_wb_state)
911 		return;
912 
913 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
914 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
915 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
916 
917 		wr32(&vsi->back->hw,
918 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
919 		     val);
920 	} else {
921 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
922 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
923 
924 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
925 	}
926 	q_vector->arm_wb_state = true;
927 }
928 
929 /**
930  * i40e_force_wb - Issue SW Interrupt so HW does a wb
931  * @vsi: the VSI we care about
932  * @q_vector: the vector  on which to force writeback
933  *
934  **/
935 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
936 {
937 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
938 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
939 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
940 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
941 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
942 			  /* allow 00 to be written to the index */
943 
944 		wr32(&vsi->back->hw,
945 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
946 	} else {
947 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
948 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
949 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
950 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
951 			/* allow 00 to be written to the index */
952 
953 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
954 	}
955 }
956 
957 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
958 					struct i40e_ring_container *rc)
959 {
960 	return &q_vector->rx == rc;
961 }
962 
963 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
964 {
965 	unsigned int divisor;
966 
967 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
968 	case I40E_LINK_SPEED_40GB:
969 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
970 		break;
971 	case I40E_LINK_SPEED_25GB:
972 	case I40E_LINK_SPEED_20GB:
973 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
974 		break;
975 	default:
976 	case I40E_LINK_SPEED_10GB:
977 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
978 		break;
979 	case I40E_LINK_SPEED_1GB:
980 	case I40E_LINK_SPEED_100MB:
981 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
982 		break;
983 	}
984 
985 	return divisor;
986 }
987 
988 /**
989  * i40e_update_itr - update the dynamic ITR value based on statistics
990  * @q_vector: structure containing interrupt and ring information
991  * @rc: structure containing ring performance data
992  *
993  * Stores a new ITR value based on packets and byte
994  * counts during the last interrupt.  The advantage of per interrupt
995  * computation is faster updates and more accurate ITR for the current
996  * traffic pattern.  Constants in this function were computed
997  * based on theoretical maximum wire speed and thresholds were set based
998  * on testing data as well as attempting to minimize response time
999  * while increasing bulk throughput.
1000  **/
1001 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1002 			    struct i40e_ring_container *rc)
1003 {
1004 	unsigned int avg_wire_size, packets, bytes, itr;
1005 	unsigned long next_update = jiffies;
1006 
1007 	/* If we don't have any rings just leave ourselves set for maximum
1008 	 * possible latency so we take ourselves out of the equation.
1009 	 */
1010 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1011 		return;
1012 
1013 	/* For Rx we want to push the delay up and default to low latency.
1014 	 * for Tx we want to pull the delay down and default to high latency.
1015 	 */
1016 	itr = i40e_container_is_rx(q_vector, rc) ?
1017 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1018 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1019 
1020 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1021 	 * that either packets are coming in so slow there hasn't been
1022 	 * any work, or that there is so much work that NAPI is dealing
1023 	 * with interrupt moderation and we don't need to do anything.
1024 	 */
1025 	if (time_after(next_update, rc->next_update))
1026 		goto clear_counts;
1027 
1028 	/* If itr_countdown is set it means we programmed an ITR within
1029 	 * the last 4 interrupt cycles. This has a side effect of us
1030 	 * potentially firing an early interrupt. In order to work around
1031 	 * this we need to throw out any data received for a few
1032 	 * interrupts following the update.
1033 	 */
1034 	if (q_vector->itr_countdown) {
1035 		itr = rc->target_itr;
1036 		goto clear_counts;
1037 	}
1038 
1039 	packets = rc->total_packets;
1040 	bytes = rc->total_bytes;
1041 
1042 	if (i40e_container_is_rx(q_vector, rc)) {
1043 		/* If Rx there are 1 to 4 packets and bytes are less than
1044 		 * 9000 assume insufficient data to use bulk rate limiting
1045 		 * approach unless Tx is already in bulk rate limiting. We
1046 		 * are likely latency driven.
1047 		 */
1048 		if (packets && packets < 4 && bytes < 9000 &&
1049 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1050 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1051 			goto adjust_by_size;
1052 		}
1053 	} else if (packets < 4) {
1054 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1055 		 * bulk mode and we are receiving 4 or fewer packets just
1056 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1057 		 * that the Rx can relax.
1058 		 */
1059 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1060 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1061 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1062 			goto clear_counts;
1063 	} else if (packets > 32) {
1064 		/* If we have processed over 32 packets in a single interrupt
1065 		 * for Tx assume we need to switch over to "bulk" mode.
1066 		 */
1067 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1068 	}
1069 
1070 	/* We have no packets to actually measure against. This means
1071 	 * either one of the other queues on this vector is active or
1072 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1073 	 *
1074 	 * Between 4 and 56 we can assume that our current interrupt delay
1075 	 * is only slightly too low. As such we should increase it by a small
1076 	 * fixed amount.
1077 	 */
1078 	if (packets < 56) {
1079 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1080 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1081 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1082 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1083 		}
1084 		goto clear_counts;
1085 	}
1086 
1087 	if (packets <= 256) {
1088 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1089 		itr &= I40E_ITR_MASK;
1090 
1091 		/* Between 56 and 112 is our "goldilocks" zone where we are
1092 		 * working out "just right". Just report that our current
1093 		 * ITR is good for us.
1094 		 */
1095 		if (packets <= 112)
1096 			goto clear_counts;
1097 
1098 		/* If packet count is 128 or greater we are likely looking
1099 		 * at a slight overrun of the delay we want. Try halving
1100 		 * our delay to see if that will cut the number of packets
1101 		 * in half per interrupt.
1102 		 */
1103 		itr /= 2;
1104 		itr &= I40E_ITR_MASK;
1105 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1106 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1107 
1108 		goto clear_counts;
1109 	}
1110 
1111 	/* The paths below assume we are dealing with a bulk ITR since
1112 	 * number of packets is greater than 256. We are just going to have
1113 	 * to compute a value and try to bring the count under control,
1114 	 * though for smaller packet sizes there isn't much we can do as
1115 	 * NAPI polling will likely be kicking in sooner rather than later.
1116 	 */
1117 	itr = I40E_ITR_ADAPTIVE_BULK;
1118 
1119 adjust_by_size:
1120 	/* If packet counts are 256 or greater we can assume we have a gross
1121 	 * overestimation of what the rate should be. Instead of trying to fine
1122 	 * tune it just use the formula below to try and dial in an exact value
1123 	 * give the current packet size of the frame.
1124 	 */
1125 	avg_wire_size = bytes / packets;
1126 
1127 	/* The following is a crude approximation of:
1128 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1129 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1130 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1131 	 *
1132 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1133 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1134 	 * formula down to
1135 	 *
1136 	 *  (170 * (size + 24)) / (size + 640) = ITR
1137 	 *
1138 	 * We first do some math on the packet size and then finally bitshift
1139 	 * by 8 after rounding up. We also have to account for PCIe link speed
1140 	 * difference as ITR scales based on this.
1141 	 */
1142 	if (avg_wire_size <= 60) {
1143 		/* Start at 250k ints/sec */
1144 		avg_wire_size = 4096;
1145 	} else if (avg_wire_size <= 380) {
1146 		/* 250K ints/sec to 60K ints/sec */
1147 		avg_wire_size *= 40;
1148 		avg_wire_size += 1696;
1149 	} else if (avg_wire_size <= 1084) {
1150 		/* 60K ints/sec to 36K ints/sec */
1151 		avg_wire_size *= 15;
1152 		avg_wire_size += 11452;
1153 	} else if (avg_wire_size <= 1980) {
1154 		/* 36K ints/sec to 30K ints/sec */
1155 		avg_wire_size *= 5;
1156 		avg_wire_size += 22420;
1157 	} else {
1158 		/* plateau at a limit of 30K ints/sec */
1159 		avg_wire_size = 32256;
1160 	}
1161 
1162 	/* If we are in low latency mode halve our delay which doubles the
1163 	 * rate to somewhere between 100K to 16K ints/sec
1164 	 */
1165 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1166 		avg_wire_size /= 2;
1167 
1168 	/* Resultant value is 256 times larger than it needs to be. This
1169 	 * gives us room to adjust the value as needed to either increase
1170 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1171 	 *
1172 	 * Use addition as we have already recorded the new latency flag
1173 	 * for the ITR value.
1174 	 */
1175 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1176 	       I40E_ITR_ADAPTIVE_MIN_INC;
1177 
1178 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1179 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1180 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1181 	}
1182 
1183 clear_counts:
1184 	/* write back value */
1185 	rc->target_itr = itr;
1186 
1187 	/* next update should occur within next jiffy */
1188 	rc->next_update = next_update + 1;
1189 
1190 	rc->total_bytes = 0;
1191 	rc->total_packets = 0;
1192 }
1193 
1194 /**
1195  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1196  * @rx_ring: rx descriptor ring to store buffers on
1197  * @old_buff: donor buffer to have page reused
1198  *
1199  * Synchronizes page for reuse by the adapter
1200  **/
1201 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1202 			       struct i40e_rx_buffer *old_buff)
1203 {
1204 	struct i40e_rx_buffer *new_buff;
1205 	u16 nta = rx_ring->next_to_alloc;
1206 
1207 	new_buff = &rx_ring->rx_bi[nta];
1208 
1209 	/* update, and store next to alloc */
1210 	nta++;
1211 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1212 
1213 	/* transfer page from old buffer to new buffer */
1214 	new_buff->dma		= old_buff->dma;
1215 	new_buff->page		= old_buff->page;
1216 	new_buff->page_offset	= old_buff->page_offset;
1217 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1218 
1219 	rx_ring->rx_stats.page_reuse_count++;
1220 
1221 	/* clear contents of buffer_info */
1222 	old_buff->page = NULL;
1223 }
1224 
1225 /**
1226  * i40e_rx_is_programming_status - check for programming status descriptor
1227  * @qw: qword representing status_error_len in CPU ordering
1228  *
1229  * The value of in the descriptor length field indicate if this
1230  * is a programming status descriptor for flow director or FCoE
1231  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1232  * it is a packet descriptor.
1233  **/
1234 static inline bool i40e_rx_is_programming_status(u64 qw)
1235 {
1236 	/* The Rx filter programming status and SPH bit occupy the same
1237 	 * spot in the descriptor. Since we don't support packet split we
1238 	 * can just reuse the bit as an indication that this is a
1239 	 * programming status descriptor.
1240 	 */
1241 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1242 }
1243 
1244 /**
1245  * i40e_clean_programming_status - try clean the programming status descriptor
1246  * @rx_ring: the rx ring that has this descriptor
1247  * @rx_desc: the rx descriptor written back by HW
1248  * @qw: qword representing status_error_len in CPU ordering
1249  *
1250  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1251  * status being successful or not and take actions accordingly. FCoE should
1252  * handle its context/filter programming/invalidation status and take actions.
1253  *
1254  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1255  **/
1256 struct i40e_rx_buffer *i40e_clean_programming_status(
1257 	struct i40e_ring *rx_ring,
1258 	union i40e_rx_desc *rx_desc,
1259 	u64 qw)
1260 {
1261 	struct i40e_rx_buffer *rx_buffer;
1262 	u32 ntc;
1263 	u8 id;
1264 
1265 	if (!i40e_rx_is_programming_status(qw))
1266 		return NULL;
1267 
1268 	ntc = rx_ring->next_to_clean;
1269 
1270 	/* fetch, update, and store next to clean */
1271 	rx_buffer = &rx_ring->rx_bi[ntc++];
1272 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1273 	rx_ring->next_to_clean = ntc;
1274 
1275 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1276 
1277 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1278 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1279 
1280 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1281 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1282 
1283 	return rx_buffer;
1284 }
1285 
1286 /**
1287  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1288  * @tx_ring: the tx ring to set up
1289  *
1290  * Return 0 on success, negative on error
1291  **/
1292 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1293 {
1294 	struct device *dev = tx_ring->dev;
1295 	int bi_size;
1296 
1297 	if (!dev)
1298 		return -ENOMEM;
1299 
1300 	/* warn if we are about to overwrite the pointer */
1301 	WARN_ON(tx_ring->tx_bi);
1302 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1303 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1304 	if (!tx_ring->tx_bi)
1305 		goto err;
1306 
1307 	u64_stats_init(&tx_ring->syncp);
1308 
1309 	/* round up to nearest 4K */
1310 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1311 	/* add u32 for head writeback, align after this takes care of
1312 	 * guaranteeing this is at least one cache line in size
1313 	 */
1314 	tx_ring->size += sizeof(u32);
1315 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1316 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1317 					   &tx_ring->dma, GFP_KERNEL);
1318 	if (!tx_ring->desc) {
1319 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1320 			 tx_ring->size);
1321 		goto err;
1322 	}
1323 
1324 	tx_ring->next_to_use = 0;
1325 	tx_ring->next_to_clean = 0;
1326 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1327 	return 0;
1328 
1329 err:
1330 	kfree(tx_ring->tx_bi);
1331 	tx_ring->tx_bi = NULL;
1332 	return -ENOMEM;
1333 }
1334 
1335 /**
1336  * i40e_clean_rx_ring - Free Rx buffers
1337  * @rx_ring: ring to be cleaned
1338  **/
1339 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1340 {
1341 	unsigned long bi_size;
1342 	u16 i;
1343 
1344 	/* ring already cleared, nothing to do */
1345 	if (!rx_ring->rx_bi)
1346 		return;
1347 
1348 	if (rx_ring->skb) {
1349 		dev_kfree_skb(rx_ring->skb);
1350 		rx_ring->skb = NULL;
1351 	}
1352 
1353 	if (rx_ring->xsk_umem)
1354 		goto skip_free;
1355 
1356 	/* Free all the Rx ring sk_buffs */
1357 	for (i = 0; i < rx_ring->count; i++) {
1358 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1359 
1360 		if (!rx_bi->page)
1361 			continue;
1362 
1363 		/* Invalidate cache lines that may have been written to by
1364 		 * device so that we avoid corrupting memory.
1365 		 */
1366 		dma_sync_single_range_for_cpu(rx_ring->dev,
1367 					      rx_bi->dma,
1368 					      rx_bi->page_offset,
1369 					      rx_ring->rx_buf_len,
1370 					      DMA_FROM_DEVICE);
1371 
1372 		/* free resources associated with mapping */
1373 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1374 				     i40e_rx_pg_size(rx_ring),
1375 				     DMA_FROM_DEVICE,
1376 				     I40E_RX_DMA_ATTR);
1377 
1378 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1379 
1380 		rx_bi->page = NULL;
1381 		rx_bi->page_offset = 0;
1382 	}
1383 
1384 skip_free:
1385 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1386 	memset(rx_ring->rx_bi, 0, bi_size);
1387 
1388 	/* Zero out the descriptor ring */
1389 	memset(rx_ring->desc, 0, rx_ring->size);
1390 
1391 	rx_ring->next_to_alloc = 0;
1392 	rx_ring->next_to_clean = 0;
1393 	rx_ring->next_to_use = 0;
1394 }
1395 
1396 /**
1397  * i40e_free_rx_resources - Free Rx resources
1398  * @rx_ring: ring to clean the resources from
1399  *
1400  * Free all receive software resources
1401  **/
1402 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1403 {
1404 	i40e_clean_rx_ring(rx_ring);
1405 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1406 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1407 	rx_ring->xdp_prog = NULL;
1408 	kfree(rx_ring->rx_bi);
1409 	rx_ring->rx_bi = NULL;
1410 
1411 	if (rx_ring->desc) {
1412 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1413 				  rx_ring->desc, rx_ring->dma);
1414 		rx_ring->desc = NULL;
1415 	}
1416 }
1417 
1418 /**
1419  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1420  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1421  *
1422  * Returns 0 on success, negative on failure
1423  **/
1424 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1425 {
1426 	struct device *dev = rx_ring->dev;
1427 	int err = -ENOMEM;
1428 	int bi_size;
1429 
1430 	/* warn if we are about to overwrite the pointer */
1431 	WARN_ON(rx_ring->rx_bi);
1432 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1433 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1434 	if (!rx_ring->rx_bi)
1435 		goto err;
1436 
1437 	u64_stats_init(&rx_ring->syncp);
1438 
1439 	/* Round up to nearest 4K */
1440 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1441 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1442 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1443 					   &rx_ring->dma, GFP_KERNEL);
1444 
1445 	if (!rx_ring->desc) {
1446 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1447 			 rx_ring->size);
1448 		goto err;
1449 	}
1450 
1451 	rx_ring->next_to_alloc = 0;
1452 	rx_ring->next_to_clean = 0;
1453 	rx_ring->next_to_use = 0;
1454 
1455 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1456 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1457 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1458 				       rx_ring->queue_index);
1459 		if (err < 0)
1460 			goto err;
1461 	}
1462 
1463 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1464 
1465 	return 0;
1466 err:
1467 	kfree(rx_ring->rx_bi);
1468 	rx_ring->rx_bi = NULL;
1469 	return err;
1470 }
1471 
1472 /**
1473  * i40e_release_rx_desc - Store the new tail and head values
1474  * @rx_ring: ring to bump
1475  * @val: new head index
1476  **/
1477 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1478 {
1479 	rx_ring->next_to_use = val;
1480 
1481 	/* update next to alloc since we have filled the ring */
1482 	rx_ring->next_to_alloc = val;
1483 
1484 	/* Force memory writes to complete before letting h/w
1485 	 * know there are new descriptors to fetch.  (Only
1486 	 * applicable for weak-ordered memory model archs,
1487 	 * such as IA-64).
1488 	 */
1489 	wmb();
1490 	writel(val, rx_ring->tail);
1491 }
1492 
1493 /**
1494  * i40e_rx_offset - Return expected offset into page to access data
1495  * @rx_ring: Ring we are requesting offset of
1496  *
1497  * Returns the offset value for ring into the data buffer.
1498  */
1499 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1500 {
1501 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1502 }
1503 
1504 /**
1505  * i40e_alloc_mapped_page - recycle or make a new page
1506  * @rx_ring: ring to use
1507  * @bi: rx_buffer struct to modify
1508  *
1509  * Returns true if the page was successfully allocated or
1510  * reused.
1511  **/
1512 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1513 				   struct i40e_rx_buffer *bi)
1514 {
1515 	struct page *page = bi->page;
1516 	dma_addr_t dma;
1517 
1518 	/* since we are recycling buffers we should seldom need to alloc */
1519 	if (likely(page)) {
1520 		rx_ring->rx_stats.page_reuse_count++;
1521 		return true;
1522 	}
1523 
1524 	/* alloc new page for storage */
1525 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1526 	if (unlikely(!page)) {
1527 		rx_ring->rx_stats.alloc_page_failed++;
1528 		return false;
1529 	}
1530 
1531 	/* map page for use */
1532 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1533 				 i40e_rx_pg_size(rx_ring),
1534 				 DMA_FROM_DEVICE,
1535 				 I40E_RX_DMA_ATTR);
1536 
1537 	/* if mapping failed free memory back to system since
1538 	 * there isn't much point in holding memory we can't use
1539 	 */
1540 	if (dma_mapping_error(rx_ring->dev, dma)) {
1541 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1542 		rx_ring->rx_stats.alloc_page_failed++;
1543 		return false;
1544 	}
1545 
1546 	bi->dma = dma;
1547 	bi->page = page;
1548 	bi->page_offset = i40e_rx_offset(rx_ring);
1549 	page_ref_add(page, USHRT_MAX - 1);
1550 	bi->pagecnt_bias = USHRT_MAX;
1551 
1552 	return true;
1553 }
1554 
1555 /**
1556  * i40e_receive_skb - Send a completed packet up the stack
1557  * @rx_ring:  rx ring in play
1558  * @skb: packet to send up
1559  * @vlan_tag: vlan tag for packet
1560  **/
1561 void i40e_receive_skb(struct i40e_ring *rx_ring,
1562 		      struct sk_buff *skb, u16 vlan_tag)
1563 {
1564 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1565 
1566 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1567 	    (vlan_tag & VLAN_VID_MASK))
1568 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1569 
1570 	napi_gro_receive(&q_vector->napi, skb);
1571 }
1572 
1573 /**
1574  * i40e_alloc_rx_buffers - Replace used receive buffers
1575  * @rx_ring: ring to place buffers on
1576  * @cleaned_count: number of buffers to replace
1577  *
1578  * Returns false if all allocations were successful, true if any fail
1579  **/
1580 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1581 {
1582 	u16 ntu = rx_ring->next_to_use;
1583 	union i40e_rx_desc *rx_desc;
1584 	struct i40e_rx_buffer *bi;
1585 
1586 	/* do nothing if no valid netdev defined */
1587 	if (!rx_ring->netdev || !cleaned_count)
1588 		return false;
1589 
1590 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1591 	bi = &rx_ring->rx_bi[ntu];
1592 
1593 	do {
1594 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1595 			goto no_buffers;
1596 
1597 		/* sync the buffer for use by the device */
1598 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1599 						 bi->page_offset,
1600 						 rx_ring->rx_buf_len,
1601 						 DMA_FROM_DEVICE);
1602 
1603 		/* Refresh the desc even if buffer_addrs didn't change
1604 		 * because each write-back erases this info.
1605 		 */
1606 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1607 
1608 		rx_desc++;
1609 		bi++;
1610 		ntu++;
1611 		if (unlikely(ntu == rx_ring->count)) {
1612 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1613 			bi = rx_ring->rx_bi;
1614 			ntu = 0;
1615 		}
1616 
1617 		/* clear the status bits for the next_to_use descriptor */
1618 		rx_desc->wb.qword1.status_error_len = 0;
1619 
1620 		cleaned_count--;
1621 	} while (cleaned_count);
1622 
1623 	if (rx_ring->next_to_use != ntu)
1624 		i40e_release_rx_desc(rx_ring, ntu);
1625 
1626 	return false;
1627 
1628 no_buffers:
1629 	if (rx_ring->next_to_use != ntu)
1630 		i40e_release_rx_desc(rx_ring, ntu);
1631 
1632 	/* make sure to come back via polling to try again after
1633 	 * allocation failure
1634 	 */
1635 	return true;
1636 }
1637 
1638 /**
1639  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1640  * @vsi: the VSI we care about
1641  * @skb: skb currently being received and modified
1642  * @rx_desc: the receive descriptor
1643  **/
1644 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1645 				    struct sk_buff *skb,
1646 				    union i40e_rx_desc *rx_desc)
1647 {
1648 	struct i40e_rx_ptype_decoded decoded;
1649 	u32 rx_error, rx_status;
1650 	bool ipv4, ipv6;
1651 	u8 ptype;
1652 	u64 qword;
1653 
1654 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1655 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1656 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1657 		   I40E_RXD_QW1_ERROR_SHIFT;
1658 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1659 		    I40E_RXD_QW1_STATUS_SHIFT;
1660 	decoded = decode_rx_desc_ptype(ptype);
1661 
1662 	skb->ip_summed = CHECKSUM_NONE;
1663 
1664 	skb_checksum_none_assert(skb);
1665 
1666 	/* Rx csum enabled and ip headers found? */
1667 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1668 		return;
1669 
1670 	/* did the hardware decode the packet and checksum? */
1671 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1672 		return;
1673 
1674 	/* both known and outer_ip must be set for the below code to work */
1675 	if (!(decoded.known && decoded.outer_ip))
1676 		return;
1677 
1678 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1679 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1680 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1681 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1682 
1683 	if (ipv4 &&
1684 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1685 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1686 		goto checksum_fail;
1687 
1688 	/* likely incorrect csum if alternate IP extension headers found */
1689 	if (ipv6 &&
1690 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1691 		/* don't increment checksum err here, non-fatal err */
1692 		return;
1693 
1694 	/* there was some L4 error, count error and punt packet to the stack */
1695 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1696 		goto checksum_fail;
1697 
1698 	/* handle packets that were not able to be checksummed due
1699 	 * to arrival speed, in this case the stack can compute
1700 	 * the csum.
1701 	 */
1702 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1703 		return;
1704 
1705 	/* If there is an outer header present that might contain a checksum
1706 	 * we need to bump the checksum level by 1 to reflect the fact that
1707 	 * we are indicating we validated the inner checksum.
1708 	 */
1709 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1710 		skb->csum_level = 1;
1711 
1712 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1713 	switch (decoded.inner_prot) {
1714 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1715 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1716 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1717 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 		/* fall though */
1719 	default:
1720 		break;
1721 	}
1722 
1723 	return;
1724 
1725 checksum_fail:
1726 	vsi->back->hw_csum_rx_error++;
1727 }
1728 
1729 /**
1730  * i40e_ptype_to_htype - get a hash type
1731  * @ptype: the ptype value from the descriptor
1732  *
1733  * Returns a hash type to be used by skb_set_hash
1734  **/
1735 static inline int i40e_ptype_to_htype(u8 ptype)
1736 {
1737 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1738 
1739 	if (!decoded.known)
1740 		return PKT_HASH_TYPE_NONE;
1741 
1742 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1743 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1744 		return PKT_HASH_TYPE_L4;
1745 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1746 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1747 		return PKT_HASH_TYPE_L3;
1748 	else
1749 		return PKT_HASH_TYPE_L2;
1750 }
1751 
1752 /**
1753  * i40e_rx_hash - set the hash value in the skb
1754  * @ring: descriptor ring
1755  * @rx_desc: specific descriptor
1756  * @skb: skb currently being received and modified
1757  * @rx_ptype: Rx packet type
1758  **/
1759 static inline void i40e_rx_hash(struct i40e_ring *ring,
1760 				union i40e_rx_desc *rx_desc,
1761 				struct sk_buff *skb,
1762 				u8 rx_ptype)
1763 {
1764 	u32 hash;
1765 	const __le64 rss_mask =
1766 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1767 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1768 
1769 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1770 		return;
1771 
1772 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1773 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1774 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1775 	}
1776 }
1777 
1778 /**
1779  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1780  * @rx_ring: rx descriptor ring packet is being transacted on
1781  * @rx_desc: pointer to the EOP Rx descriptor
1782  * @skb: pointer to current skb being populated
1783  * @rx_ptype: the packet type decoded by hardware
1784  *
1785  * This function checks the ring, descriptor, and packet information in
1786  * order to populate the hash, checksum, VLAN, protocol, and
1787  * other fields within the skb.
1788  **/
1789 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1790 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1791 			     u8 rx_ptype)
1792 {
1793 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1794 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1795 			I40E_RXD_QW1_STATUS_SHIFT;
1796 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1797 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1798 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1799 
1800 	if (unlikely(tsynvalid))
1801 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1802 
1803 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1804 
1805 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1806 
1807 	skb_record_rx_queue(skb, rx_ring->queue_index);
1808 
1809 	/* modifies the skb - consumes the enet header */
1810 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1811 }
1812 
1813 /**
1814  * i40e_cleanup_headers - Correct empty headers
1815  * @rx_ring: rx descriptor ring packet is being transacted on
1816  * @skb: pointer to current skb being fixed
1817  * @rx_desc: pointer to the EOP Rx descriptor
1818  *
1819  * Also address the case where we are pulling data in on pages only
1820  * and as such no data is present in the skb header.
1821  *
1822  * In addition if skb is not at least 60 bytes we need to pad it so that
1823  * it is large enough to qualify as a valid Ethernet frame.
1824  *
1825  * Returns true if an error was encountered and skb was freed.
1826  **/
1827 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1828 				 union i40e_rx_desc *rx_desc)
1829 
1830 {
1831 	/* XDP packets use error pointer so abort at this point */
1832 	if (IS_ERR(skb))
1833 		return true;
1834 
1835 	/* ERR_MASK will only have valid bits if EOP set, and
1836 	 * what we are doing here is actually checking
1837 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1838 	 * the error field
1839 	 */
1840 	if (unlikely(i40e_test_staterr(rx_desc,
1841 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1842 		dev_kfree_skb_any(skb);
1843 		return true;
1844 	}
1845 
1846 	/* if eth_skb_pad returns an error the skb was freed */
1847 	if (eth_skb_pad(skb))
1848 		return true;
1849 
1850 	return false;
1851 }
1852 
1853 /**
1854  * i40e_page_is_reusable - check if any reuse is possible
1855  * @page: page struct to check
1856  *
1857  * A page is not reusable if it was allocated under low memory
1858  * conditions, or it's not in the same NUMA node as this CPU.
1859  */
1860 static inline bool i40e_page_is_reusable(struct page *page)
1861 {
1862 	return (page_to_nid(page) == numa_mem_id()) &&
1863 		!page_is_pfmemalloc(page);
1864 }
1865 
1866 /**
1867  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1868  * the adapter for another receive
1869  *
1870  * @rx_buffer: buffer containing the page
1871  *
1872  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1873  * an unused region in the page.
1874  *
1875  * For small pages, @truesize will be a constant value, half the size
1876  * of the memory at page.  We'll attempt to alternate between high and
1877  * low halves of the page, with one half ready for use by the hardware
1878  * and the other half being consumed by the stack.  We use the page
1879  * ref count to determine whether the stack has finished consuming the
1880  * portion of this page that was passed up with a previous packet.  If
1881  * the page ref count is >1, we'll assume the "other" half page is
1882  * still busy, and this page cannot be reused.
1883  *
1884  * For larger pages, @truesize will be the actual space used by the
1885  * received packet (adjusted upward to an even multiple of the cache
1886  * line size).  This will advance through the page by the amount
1887  * actually consumed by the received packets while there is still
1888  * space for a buffer.  Each region of larger pages will be used at
1889  * most once, after which the page will not be reused.
1890  *
1891  * In either case, if the page is reusable its refcount is increased.
1892  **/
1893 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1894 {
1895 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1896 	struct page *page = rx_buffer->page;
1897 
1898 	/* Is any reuse possible? */
1899 	if (unlikely(!i40e_page_is_reusable(page)))
1900 		return false;
1901 
1902 #if (PAGE_SIZE < 8192)
1903 	/* if we are only owner of page we can reuse it */
1904 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1905 		return false;
1906 #else
1907 #define I40E_LAST_OFFSET \
1908 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1909 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1910 		return false;
1911 #endif
1912 
1913 	/* If we have drained the page fragment pool we need to update
1914 	 * the pagecnt_bias and page count so that we fully restock the
1915 	 * number of references the driver holds.
1916 	 */
1917 	if (unlikely(pagecnt_bias == 1)) {
1918 		page_ref_add(page, USHRT_MAX - 1);
1919 		rx_buffer->pagecnt_bias = USHRT_MAX;
1920 	}
1921 
1922 	return true;
1923 }
1924 
1925 /**
1926  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1927  * @rx_ring: rx descriptor ring to transact packets on
1928  * @rx_buffer: buffer containing page to add
1929  * @skb: sk_buff to place the data into
1930  * @size: packet length from rx_desc
1931  *
1932  * This function will add the data contained in rx_buffer->page to the skb.
1933  * It will just attach the page as a frag to the skb.
1934  *
1935  * The function will then update the page offset.
1936  **/
1937 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1938 			     struct i40e_rx_buffer *rx_buffer,
1939 			     struct sk_buff *skb,
1940 			     unsigned int size)
1941 {
1942 #if (PAGE_SIZE < 8192)
1943 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1944 #else
1945 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1946 #endif
1947 
1948 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1949 			rx_buffer->page_offset, size, truesize);
1950 
1951 	/* page is being used so we must update the page offset */
1952 #if (PAGE_SIZE < 8192)
1953 	rx_buffer->page_offset ^= truesize;
1954 #else
1955 	rx_buffer->page_offset += truesize;
1956 #endif
1957 }
1958 
1959 /**
1960  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1961  * @rx_ring: rx descriptor ring to transact packets on
1962  * @size: size of buffer to add to skb
1963  *
1964  * This function will pull an Rx buffer from the ring and synchronize it
1965  * for use by the CPU.
1966  */
1967 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1968 						 const unsigned int size)
1969 {
1970 	struct i40e_rx_buffer *rx_buffer;
1971 
1972 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1973 	prefetchw(rx_buffer->page);
1974 
1975 	/* we are reusing so sync this buffer for CPU use */
1976 	dma_sync_single_range_for_cpu(rx_ring->dev,
1977 				      rx_buffer->dma,
1978 				      rx_buffer->page_offset,
1979 				      size,
1980 				      DMA_FROM_DEVICE);
1981 
1982 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1983 	rx_buffer->pagecnt_bias--;
1984 
1985 	return rx_buffer;
1986 }
1987 
1988 /**
1989  * i40e_construct_skb - Allocate skb and populate it
1990  * @rx_ring: rx descriptor ring to transact packets on
1991  * @rx_buffer: rx buffer to pull data from
1992  * @xdp: xdp_buff pointing to the data
1993  *
1994  * This function allocates an skb.  It then populates it with the page
1995  * data from the current receive descriptor, taking care to set up the
1996  * skb correctly.
1997  */
1998 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1999 					  struct i40e_rx_buffer *rx_buffer,
2000 					  struct xdp_buff *xdp)
2001 {
2002 	unsigned int size = xdp->data_end - xdp->data;
2003 #if (PAGE_SIZE < 8192)
2004 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2005 #else
2006 	unsigned int truesize = SKB_DATA_ALIGN(size);
2007 #endif
2008 	unsigned int headlen;
2009 	struct sk_buff *skb;
2010 
2011 	/* prefetch first cache line of first page */
2012 	prefetch(xdp->data);
2013 #if L1_CACHE_BYTES < 128
2014 	prefetch(xdp->data + L1_CACHE_BYTES);
2015 #endif
2016 	/* Note, we get here by enabling legacy-rx via:
2017 	 *
2018 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2019 	 *
2020 	 * In this mode, we currently get 0 extra XDP headroom as
2021 	 * opposed to having legacy-rx off, where we process XDP
2022 	 * packets going to stack via i40e_build_skb(). The latter
2023 	 * provides us currently with 192 bytes of headroom.
2024 	 *
2025 	 * For i40e_construct_skb() mode it means that the
2026 	 * xdp->data_meta will always point to xdp->data, since
2027 	 * the helper cannot expand the head. Should this ever
2028 	 * change in future for legacy-rx mode on, then lets also
2029 	 * add xdp->data_meta handling here.
2030 	 */
2031 
2032 	/* allocate a skb to store the frags */
2033 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2034 			       I40E_RX_HDR_SIZE,
2035 			       GFP_ATOMIC | __GFP_NOWARN);
2036 	if (unlikely(!skb))
2037 		return NULL;
2038 
2039 	/* Determine available headroom for copy */
2040 	headlen = size;
2041 	if (headlen > I40E_RX_HDR_SIZE)
2042 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2043 
2044 	/* align pull length to size of long to optimize memcpy performance */
2045 	memcpy(__skb_put(skb, headlen), xdp->data,
2046 	       ALIGN(headlen, sizeof(long)));
2047 
2048 	/* update all of the pointers */
2049 	size -= headlen;
2050 	if (size) {
2051 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2052 				rx_buffer->page_offset + headlen,
2053 				size, truesize);
2054 
2055 		/* buffer is used by skb, update page_offset */
2056 #if (PAGE_SIZE < 8192)
2057 		rx_buffer->page_offset ^= truesize;
2058 #else
2059 		rx_buffer->page_offset += truesize;
2060 #endif
2061 	} else {
2062 		/* buffer is unused, reset bias back to rx_buffer */
2063 		rx_buffer->pagecnt_bias++;
2064 	}
2065 
2066 	return skb;
2067 }
2068 
2069 /**
2070  * i40e_build_skb - Build skb around an existing buffer
2071  * @rx_ring: Rx descriptor ring to transact packets on
2072  * @rx_buffer: Rx buffer to pull data from
2073  * @xdp: xdp_buff pointing to the data
2074  *
2075  * This function builds an skb around an existing Rx buffer, taking care
2076  * to set up the skb correctly and avoid any memcpy overhead.
2077  */
2078 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2079 				      struct i40e_rx_buffer *rx_buffer,
2080 				      struct xdp_buff *xdp)
2081 {
2082 	unsigned int metasize = xdp->data - xdp->data_meta;
2083 #if (PAGE_SIZE < 8192)
2084 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2085 #else
2086 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2087 				SKB_DATA_ALIGN(xdp->data_end -
2088 					       xdp->data_hard_start);
2089 #endif
2090 	struct sk_buff *skb;
2091 
2092 	/* Prefetch first cache line of first page. If xdp->data_meta
2093 	 * is unused, this points exactly as xdp->data, otherwise we
2094 	 * likely have a consumer accessing first few bytes of meta
2095 	 * data, and then actual data.
2096 	 */
2097 	prefetch(xdp->data_meta);
2098 #if L1_CACHE_BYTES < 128
2099 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2100 #endif
2101 	/* build an skb around the page buffer */
2102 	skb = build_skb(xdp->data_hard_start, truesize);
2103 	if (unlikely(!skb))
2104 		return NULL;
2105 
2106 	/* update pointers within the skb to store the data */
2107 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2108 	__skb_put(skb, xdp->data_end - xdp->data);
2109 	if (metasize)
2110 		skb_metadata_set(skb, metasize);
2111 
2112 	/* buffer is used by skb, update page_offset */
2113 #if (PAGE_SIZE < 8192)
2114 	rx_buffer->page_offset ^= truesize;
2115 #else
2116 	rx_buffer->page_offset += truesize;
2117 #endif
2118 
2119 	return skb;
2120 }
2121 
2122 /**
2123  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2124  * @rx_ring: rx descriptor ring to transact packets on
2125  * @rx_buffer: rx buffer to pull data from
2126  *
2127  * This function will clean up the contents of the rx_buffer.  It will
2128  * either recycle the buffer or unmap it and free the associated resources.
2129  */
2130 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2131 			       struct i40e_rx_buffer *rx_buffer)
2132 {
2133 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2134 		/* hand second half of page back to the ring */
2135 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2136 	} else {
2137 		/* we are not reusing the buffer so unmap it */
2138 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2139 				     i40e_rx_pg_size(rx_ring),
2140 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2141 		__page_frag_cache_drain(rx_buffer->page,
2142 					rx_buffer->pagecnt_bias);
2143 		/* clear contents of buffer_info */
2144 		rx_buffer->page = NULL;
2145 	}
2146 }
2147 
2148 /**
2149  * i40e_is_non_eop - process handling of non-EOP buffers
2150  * @rx_ring: Rx ring being processed
2151  * @rx_desc: Rx descriptor for current buffer
2152  * @skb: Current socket buffer containing buffer in progress
2153  *
2154  * This function updates next to clean.  If the buffer is an EOP buffer
2155  * this function exits returning false, otherwise it will place the
2156  * sk_buff in the next buffer to be chained and return true indicating
2157  * that this is in fact a non-EOP buffer.
2158  **/
2159 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2160 			    union i40e_rx_desc *rx_desc,
2161 			    struct sk_buff *skb)
2162 {
2163 	u32 ntc = rx_ring->next_to_clean + 1;
2164 
2165 	/* fetch, update, and store next to clean */
2166 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2167 	rx_ring->next_to_clean = ntc;
2168 
2169 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2170 
2171 	/* if we are the last buffer then there is nothing else to do */
2172 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2173 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2174 		return false;
2175 
2176 	rx_ring->rx_stats.non_eop_descs++;
2177 
2178 	return true;
2179 }
2180 
2181 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2182 			      struct i40e_ring *xdp_ring);
2183 
2184 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2185 {
2186 	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2187 
2188 	if (unlikely(!xdpf))
2189 		return I40E_XDP_CONSUMED;
2190 
2191 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2192 }
2193 
2194 /**
2195  * i40e_run_xdp - run an XDP program
2196  * @rx_ring: Rx ring being processed
2197  * @xdp: XDP buffer containing the frame
2198  **/
2199 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2200 				    struct xdp_buff *xdp)
2201 {
2202 	int err, result = I40E_XDP_PASS;
2203 	struct i40e_ring *xdp_ring;
2204 	struct bpf_prog *xdp_prog;
2205 	u32 act;
2206 
2207 	rcu_read_lock();
2208 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2209 
2210 	if (!xdp_prog)
2211 		goto xdp_out;
2212 
2213 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2214 
2215 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2216 	switch (act) {
2217 	case XDP_PASS:
2218 		break;
2219 	case XDP_TX:
2220 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2221 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2222 		break;
2223 	case XDP_REDIRECT:
2224 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2225 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2226 		break;
2227 	default:
2228 		bpf_warn_invalid_xdp_action(act);
2229 		/* fall through */
2230 	case XDP_ABORTED:
2231 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2232 		/* fall through -- handle aborts by dropping packet */
2233 	case XDP_DROP:
2234 		result = I40E_XDP_CONSUMED;
2235 		break;
2236 	}
2237 xdp_out:
2238 	rcu_read_unlock();
2239 	return ERR_PTR(-result);
2240 }
2241 
2242 /**
2243  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2244  * @rx_ring: Rx ring
2245  * @rx_buffer: Rx buffer to adjust
2246  * @size: Size of adjustment
2247  **/
2248 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2249 				struct i40e_rx_buffer *rx_buffer,
2250 				unsigned int size)
2251 {
2252 #if (PAGE_SIZE < 8192)
2253 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2254 
2255 	rx_buffer->page_offset ^= truesize;
2256 #else
2257 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2258 
2259 	rx_buffer->page_offset += truesize;
2260 #endif
2261 }
2262 
2263 /**
2264  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2265  * @xdp_ring: XDP Tx ring
2266  *
2267  * This function updates the XDP Tx ring tail register.
2268  **/
2269 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2270 {
2271 	/* Force memory writes to complete before letting h/w
2272 	 * know there are new descriptors to fetch.
2273 	 */
2274 	wmb();
2275 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2276 }
2277 
2278 /**
2279  * i40e_update_rx_stats - Update Rx ring statistics
2280  * @rx_ring: rx descriptor ring
2281  * @total_rx_bytes: number of bytes received
2282  * @total_rx_packets: number of packets received
2283  *
2284  * This function updates the Rx ring statistics.
2285  **/
2286 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2287 			  unsigned int total_rx_bytes,
2288 			  unsigned int total_rx_packets)
2289 {
2290 	u64_stats_update_begin(&rx_ring->syncp);
2291 	rx_ring->stats.packets += total_rx_packets;
2292 	rx_ring->stats.bytes += total_rx_bytes;
2293 	u64_stats_update_end(&rx_ring->syncp);
2294 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2295 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2296 }
2297 
2298 /**
2299  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2300  * @rx_ring: Rx ring
2301  * @xdp_res: Result of the receive batch
2302  *
2303  * This function bumps XDP Tx tail and/or flush redirect map, and
2304  * should be called when a batch of packets has been processed in the
2305  * napi loop.
2306  **/
2307 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2308 {
2309 	if (xdp_res & I40E_XDP_REDIR)
2310 		xdp_do_flush_map();
2311 
2312 	if (xdp_res & I40E_XDP_TX) {
2313 		struct i40e_ring *xdp_ring =
2314 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2315 
2316 		i40e_xdp_ring_update_tail(xdp_ring);
2317 	}
2318 }
2319 
2320 /**
2321  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2322  * @rx_ring: rx descriptor ring to transact packets on
2323  * @budget: Total limit on number of packets to process
2324  *
2325  * This function provides a "bounce buffer" approach to Rx interrupt
2326  * processing.  The advantage to this is that on systems that have
2327  * expensive overhead for IOMMU access this provides a means of avoiding
2328  * it by maintaining the mapping of the page to the system.
2329  *
2330  * Returns amount of work completed
2331  **/
2332 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2333 {
2334 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2335 	struct sk_buff *skb = rx_ring->skb;
2336 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2337 	unsigned int xdp_xmit = 0;
2338 	bool failure = false;
2339 	struct xdp_buff xdp;
2340 
2341 	xdp.rxq = &rx_ring->xdp_rxq;
2342 
2343 	while (likely(total_rx_packets < (unsigned int)budget)) {
2344 		struct i40e_rx_buffer *rx_buffer;
2345 		union i40e_rx_desc *rx_desc;
2346 		unsigned int size;
2347 		u16 vlan_tag;
2348 		u8 rx_ptype;
2349 		u64 qword;
2350 
2351 		/* return some buffers to hardware, one at a time is too slow */
2352 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2353 			failure = failure ||
2354 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2355 			cleaned_count = 0;
2356 		}
2357 
2358 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2359 
2360 		/* status_error_len will always be zero for unused descriptors
2361 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2362 		 * which is always zero because packet split isn't used, if the
2363 		 * hardware wrote DD then the length will be non-zero
2364 		 */
2365 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2366 
2367 		/* This memory barrier is needed to keep us from reading
2368 		 * any other fields out of the rx_desc until we have
2369 		 * verified the descriptor has been written back.
2370 		 */
2371 		dma_rmb();
2372 
2373 		rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2374 							  qword);
2375 		if (unlikely(rx_buffer)) {
2376 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2377 			cleaned_count++;
2378 			continue;
2379 		}
2380 
2381 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2382 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2383 		if (!size)
2384 			break;
2385 
2386 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2387 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2388 
2389 		/* retrieve a buffer from the ring */
2390 		if (!skb) {
2391 			xdp.data = page_address(rx_buffer->page) +
2392 				   rx_buffer->page_offset;
2393 			xdp.data_meta = xdp.data;
2394 			xdp.data_hard_start = xdp.data -
2395 					      i40e_rx_offset(rx_ring);
2396 			xdp.data_end = xdp.data + size;
2397 
2398 			skb = i40e_run_xdp(rx_ring, &xdp);
2399 		}
2400 
2401 		if (IS_ERR(skb)) {
2402 			unsigned int xdp_res = -PTR_ERR(skb);
2403 
2404 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2405 				xdp_xmit |= xdp_res;
2406 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2407 			} else {
2408 				rx_buffer->pagecnt_bias++;
2409 			}
2410 			total_rx_bytes += size;
2411 			total_rx_packets++;
2412 		} else if (skb) {
2413 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2414 		} else if (ring_uses_build_skb(rx_ring)) {
2415 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2416 		} else {
2417 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2418 		}
2419 
2420 		/* exit if we failed to retrieve a buffer */
2421 		if (!skb) {
2422 			rx_ring->rx_stats.alloc_buff_failed++;
2423 			rx_buffer->pagecnt_bias++;
2424 			break;
2425 		}
2426 
2427 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2428 		cleaned_count++;
2429 
2430 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2431 			continue;
2432 
2433 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2434 			skb = NULL;
2435 			continue;
2436 		}
2437 
2438 		/* probably a little skewed due to removing CRC */
2439 		total_rx_bytes += skb->len;
2440 
2441 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2442 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2443 			   I40E_RXD_QW1_PTYPE_SHIFT;
2444 
2445 		/* populate checksum, VLAN, and protocol */
2446 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2447 
2448 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2449 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2450 
2451 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2452 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2453 		skb = NULL;
2454 
2455 		/* update budget accounting */
2456 		total_rx_packets++;
2457 	}
2458 
2459 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2460 	rx_ring->skb = skb;
2461 
2462 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2463 
2464 	/* guarantee a trip back through this routine if there was a failure */
2465 	return failure ? budget : (int)total_rx_packets;
2466 }
2467 
2468 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2469 {
2470 	u32 val;
2471 
2472 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2473 	 * points out doing so is "meaningless since it was already
2474 	 * auto-cleared". The auto-clearing happens when the interrupt is
2475 	 * asserted.
2476 	 *
2477 	 * Hardware errata 28 for also indicates that writing to a
2478 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2479 	 * an event in the PBA anyway so we need to rely on the automask
2480 	 * to hold pending events for us until the interrupt is re-enabled
2481 	 *
2482 	 * The itr value is reported in microseconds, and the register
2483 	 * value is recorded in 2 microsecond units. For this reason we
2484 	 * only need to shift by the interval shift - 1 instead of the
2485 	 * full value.
2486 	 */
2487 	itr &= I40E_ITR_MASK;
2488 
2489 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2490 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2491 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2492 
2493 	return val;
2494 }
2495 
2496 /* a small macro to shorten up some long lines */
2497 #define INTREG I40E_PFINT_DYN_CTLN
2498 
2499 /* The act of updating the ITR will cause it to immediately trigger. In order
2500  * to prevent this from throwing off adaptive update statistics we defer the
2501  * update so that it can only happen so often. So after either Tx or Rx are
2502  * updated we make the adaptive scheme wait until either the ITR completely
2503  * expires via the next_update expiration or we have been through at least
2504  * 3 interrupts.
2505  */
2506 #define ITR_COUNTDOWN_START 3
2507 
2508 /**
2509  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2510  * @vsi: the VSI we care about
2511  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2512  *
2513  **/
2514 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2515 					  struct i40e_q_vector *q_vector)
2516 {
2517 	struct i40e_hw *hw = &vsi->back->hw;
2518 	u32 intval;
2519 
2520 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2521 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2522 		i40e_irq_dynamic_enable_icr0(vsi->back);
2523 		return;
2524 	}
2525 
2526 	/* These will do nothing if dynamic updates are not enabled */
2527 	i40e_update_itr(q_vector, &q_vector->tx);
2528 	i40e_update_itr(q_vector, &q_vector->rx);
2529 
2530 	/* This block of logic allows us to get away with only updating
2531 	 * one ITR value with each interrupt. The idea is to perform a
2532 	 * pseudo-lazy update with the following criteria.
2533 	 *
2534 	 * 1. Rx is given higher priority than Tx if both are in same state
2535 	 * 2. If we must reduce an ITR that is given highest priority.
2536 	 * 3. We then give priority to increasing ITR based on amount.
2537 	 */
2538 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2539 		/* Rx ITR needs to be reduced, this is highest priority */
2540 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2541 					   q_vector->rx.target_itr);
2542 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2543 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2544 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2545 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2546 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2547 		/* Tx ITR needs to be reduced, this is second priority
2548 		 * Tx ITR needs to be increased more than Rx, fourth priority
2549 		 */
2550 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2551 					   q_vector->tx.target_itr);
2552 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2553 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2554 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2555 		/* Rx ITR needs to be increased, third priority */
2556 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2557 					   q_vector->rx.target_itr);
2558 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2559 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2560 	} else {
2561 		/* No ITR update, lowest priority */
2562 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2563 		if (q_vector->itr_countdown)
2564 			q_vector->itr_countdown--;
2565 	}
2566 
2567 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2568 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2569 }
2570 
2571 /**
2572  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2573  * @napi: napi struct with our devices info in it
2574  * @budget: amount of work driver is allowed to do this pass, in packets
2575  *
2576  * This function will clean all queues associated with a q_vector.
2577  *
2578  * Returns the amount of work done
2579  **/
2580 int i40e_napi_poll(struct napi_struct *napi, int budget)
2581 {
2582 	struct i40e_q_vector *q_vector =
2583 			       container_of(napi, struct i40e_q_vector, napi);
2584 	struct i40e_vsi *vsi = q_vector->vsi;
2585 	struct i40e_ring *ring;
2586 	bool clean_complete = true;
2587 	bool arm_wb = false;
2588 	int budget_per_ring;
2589 	int work_done = 0;
2590 
2591 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2592 		napi_complete(napi);
2593 		return 0;
2594 	}
2595 
2596 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2597 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2598 	 */
2599 	i40e_for_each_ring(ring, q_vector->tx) {
2600 		bool wd = ring->xsk_umem ?
2601 			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2602 			  i40e_clean_tx_irq(vsi, ring, budget);
2603 
2604 		if (!wd) {
2605 			clean_complete = false;
2606 			continue;
2607 		}
2608 		arm_wb |= ring->arm_wb;
2609 		ring->arm_wb = false;
2610 	}
2611 
2612 	/* Handle case where we are called by netpoll with a budget of 0 */
2613 	if (budget <= 0)
2614 		goto tx_only;
2615 
2616 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2617 	 * allow the budget to go below 1 because that would exit polling early.
2618 	 */
2619 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2620 
2621 	i40e_for_each_ring(ring, q_vector->rx) {
2622 		int cleaned = ring->xsk_umem ?
2623 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2624 			      i40e_clean_rx_irq(ring, budget_per_ring);
2625 
2626 		work_done += cleaned;
2627 		/* if we clean as many as budgeted, we must not be done */
2628 		if (cleaned >= budget_per_ring)
2629 			clean_complete = false;
2630 	}
2631 
2632 	/* If work not completed, return budget and polling will return */
2633 	if (!clean_complete) {
2634 		int cpu_id = smp_processor_id();
2635 
2636 		/* It is possible that the interrupt affinity has changed but,
2637 		 * if the cpu is pegged at 100%, polling will never exit while
2638 		 * traffic continues and the interrupt will be stuck on this
2639 		 * cpu.  We check to make sure affinity is correct before we
2640 		 * continue to poll, otherwise we must stop polling so the
2641 		 * interrupt can move to the correct cpu.
2642 		 */
2643 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2644 			/* Tell napi that we are done polling */
2645 			napi_complete_done(napi, work_done);
2646 
2647 			/* Force an interrupt */
2648 			i40e_force_wb(vsi, q_vector);
2649 
2650 			/* Return budget-1 so that polling stops */
2651 			return budget - 1;
2652 		}
2653 tx_only:
2654 		if (arm_wb) {
2655 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2656 			i40e_enable_wb_on_itr(vsi, q_vector);
2657 		}
2658 		return budget;
2659 	}
2660 
2661 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2662 		q_vector->arm_wb_state = false;
2663 
2664 	/* Work is done so exit the polling mode and re-enable the interrupt */
2665 	napi_complete_done(napi, work_done);
2666 
2667 	i40e_update_enable_itr(vsi, q_vector);
2668 
2669 	return min(work_done, budget - 1);
2670 }
2671 
2672 /**
2673  * i40e_atr - Add a Flow Director ATR filter
2674  * @tx_ring:  ring to add programming descriptor to
2675  * @skb:      send buffer
2676  * @tx_flags: send tx flags
2677  **/
2678 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2679 		     u32 tx_flags)
2680 {
2681 	struct i40e_filter_program_desc *fdir_desc;
2682 	struct i40e_pf *pf = tx_ring->vsi->back;
2683 	union {
2684 		unsigned char *network;
2685 		struct iphdr *ipv4;
2686 		struct ipv6hdr *ipv6;
2687 	} hdr;
2688 	struct tcphdr *th;
2689 	unsigned int hlen;
2690 	u32 flex_ptype, dtype_cmd;
2691 	int l4_proto;
2692 	u16 i;
2693 
2694 	/* make sure ATR is enabled */
2695 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2696 		return;
2697 
2698 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2699 		return;
2700 
2701 	/* if sampling is disabled do nothing */
2702 	if (!tx_ring->atr_sample_rate)
2703 		return;
2704 
2705 	/* Currently only IPv4/IPv6 with TCP is supported */
2706 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2707 		return;
2708 
2709 	/* snag network header to get L4 type and address */
2710 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2711 		      skb_inner_network_header(skb) : skb_network_header(skb);
2712 
2713 	/* Note: tx_flags gets modified to reflect inner protocols in
2714 	 * tx_enable_csum function if encap is enabled.
2715 	 */
2716 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2717 		/* access ihl as u8 to avoid unaligned access on ia64 */
2718 		hlen = (hdr.network[0] & 0x0F) << 2;
2719 		l4_proto = hdr.ipv4->protocol;
2720 	} else {
2721 		/* find the start of the innermost ipv6 header */
2722 		unsigned int inner_hlen = hdr.network - skb->data;
2723 		unsigned int h_offset = inner_hlen;
2724 
2725 		/* this function updates h_offset to the end of the header */
2726 		l4_proto =
2727 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2728 		/* hlen will contain our best estimate of the tcp header */
2729 		hlen = h_offset - inner_hlen;
2730 	}
2731 
2732 	if (l4_proto != IPPROTO_TCP)
2733 		return;
2734 
2735 	th = (struct tcphdr *)(hdr.network + hlen);
2736 
2737 	/* Due to lack of space, no more new filters can be programmed */
2738 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2739 		return;
2740 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2741 		/* HW ATR eviction will take care of removing filters on FIN
2742 		 * and RST packets.
2743 		 */
2744 		if (th->fin || th->rst)
2745 			return;
2746 	}
2747 
2748 	tx_ring->atr_count++;
2749 
2750 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2751 	if (!th->fin &&
2752 	    !th->syn &&
2753 	    !th->rst &&
2754 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2755 		return;
2756 
2757 	tx_ring->atr_count = 0;
2758 
2759 	/* grab the next descriptor */
2760 	i = tx_ring->next_to_use;
2761 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2762 
2763 	i++;
2764 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2765 
2766 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2767 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2768 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2769 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2770 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2771 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2772 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2773 
2774 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2775 
2776 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2777 
2778 	dtype_cmd |= (th->fin || th->rst) ?
2779 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2780 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2781 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2782 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2783 
2784 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2785 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2786 
2787 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2788 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2789 
2790 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2791 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2792 		dtype_cmd |=
2793 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2794 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2795 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2796 	else
2797 		dtype_cmd |=
2798 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2799 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2800 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2801 
2802 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2803 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2804 
2805 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2806 	fdir_desc->rsvd = cpu_to_le32(0);
2807 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2808 	fdir_desc->fd_id = cpu_to_le32(0);
2809 }
2810 
2811 /**
2812  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2813  * @skb:     send buffer
2814  * @tx_ring: ring to send buffer on
2815  * @flags:   the tx flags to be set
2816  *
2817  * Checks the skb and set up correspondingly several generic transmit flags
2818  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2819  *
2820  * Returns error code indicate the frame should be dropped upon error and the
2821  * otherwise  returns 0 to indicate the flags has been set properly.
2822  **/
2823 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2824 					     struct i40e_ring *tx_ring,
2825 					     u32 *flags)
2826 {
2827 	__be16 protocol = skb->protocol;
2828 	u32  tx_flags = 0;
2829 
2830 	if (protocol == htons(ETH_P_8021Q) &&
2831 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2832 		/* When HW VLAN acceleration is turned off by the user the
2833 		 * stack sets the protocol to 8021q so that the driver
2834 		 * can take any steps required to support the SW only
2835 		 * VLAN handling.  In our case the driver doesn't need
2836 		 * to take any further steps so just set the protocol
2837 		 * to the encapsulated ethertype.
2838 		 */
2839 		skb->protocol = vlan_get_protocol(skb);
2840 		goto out;
2841 	}
2842 
2843 	/* if we have a HW VLAN tag being added, default to the HW one */
2844 	if (skb_vlan_tag_present(skb)) {
2845 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2846 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2847 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2848 	} else if (protocol == htons(ETH_P_8021Q)) {
2849 		struct vlan_hdr *vhdr, _vhdr;
2850 
2851 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2852 		if (!vhdr)
2853 			return -EINVAL;
2854 
2855 		protocol = vhdr->h_vlan_encapsulated_proto;
2856 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2857 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2858 	}
2859 
2860 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2861 		goto out;
2862 
2863 	/* Insert 802.1p priority into VLAN header */
2864 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2865 	    (skb->priority != TC_PRIO_CONTROL)) {
2866 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2867 		tx_flags |= (skb->priority & 0x7) <<
2868 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2869 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2870 			struct vlan_ethhdr *vhdr;
2871 			int rc;
2872 
2873 			rc = skb_cow_head(skb, 0);
2874 			if (rc < 0)
2875 				return rc;
2876 			vhdr = (struct vlan_ethhdr *)skb->data;
2877 			vhdr->h_vlan_TCI = htons(tx_flags >>
2878 						 I40E_TX_FLAGS_VLAN_SHIFT);
2879 		} else {
2880 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2881 		}
2882 	}
2883 
2884 out:
2885 	*flags = tx_flags;
2886 	return 0;
2887 }
2888 
2889 /**
2890  * i40e_tso - set up the tso context descriptor
2891  * @first:    pointer to first Tx buffer for xmit
2892  * @hdr_len:  ptr to the size of the packet header
2893  * @cd_type_cmd_tso_mss: Quad Word 1
2894  *
2895  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2896  **/
2897 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2898 		    u64 *cd_type_cmd_tso_mss)
2899 {
2900 	struct sk_buff *skb = first->skb;
2901 	u64 cd_cmd, cd_tso_len, cd_mss;
2902 	union {
2903 		struct iphdr *v4;
2904 		struct ipv6hdr *v6;
2905 		unsigned char *hdr;
2906 	} ip;
2907 	union {
2908 		struct tcphdr *tcp;
2909 		struct udphdr *udp;
2910 		unsigned char *hdr;
2911 	} l4;
2912 	u32 paylen, l4_offset;
2913 	u16 gso_segs, gso_size;
2914 	int err;
2915 
2916 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2917 		return 0;
2918 
2919 	if (!skb_is_gso(skb))
2920 		return 0;
2921 
2922 	err = skb_cow_head(skb, 0);
2923 	if (err < 0)
2924 		return err;
2925 
2926 	ip.hdr = skb_network_header(skb);
2927 	l4.hdr = skb_transport_header(skb);
2928 
2929 	/* initialize outer IP header fields */
2930 	if (ip.v4->version == 4) {
2931 		ip.v4->tot_len = 0;
2932 		ip.v4->check = 0;
2933 	} else {
2934 		ip.v6->payload_len = 0;
2935 	}
2936 
2937 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2938 					 SKB_GSO_GRE_CSUM |
2939 					 SKB_GSO_IPXIP4 |
2940 					 SKB_GSO_IPXIP6 |
2941 					 SKB_GSO_UDP_TUNNEL |
2942 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2943 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2944 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2945 			l4.udp->len = 0;
2946 
2947 			/* determine offset of outer transport header */
2948 			l4_offset = l4.hdr - skb->data;
2949 
2950 			/* remove payload length from outer checksum */
2951 			paylen = skb->len - l4_offset;
2952 			csum_replace_by_diff(&l4.udp->check,
2953 					     (__force __wsum)htonl(paylen));
2954 		}
2955 
2956 		/* reset pointers to inner headers */
2957 		ip.hdr = skb_inner_network_header(skb);
2958 		l4.hdr = skb_inner_transport_header(skb);
2959 
2960 		/* initialize inner IP header fields */
2961 		if (ip.v4->version == 4) {
2962 			ip.v4->tot_len = 0;
2963 			ip.v4->check = 0;
2964 		} else {
2965 			ip.v6->payload_len = 0;
2966 		}
2967 	}
2968 
2969 	/* determine offset of inner transport header */
2970 	l4_offset = l4.hdr - skb->data;
2971 
2972 	/* remove payload length from inner checksum */
2973 	paylen = skb->len - l4_offset;
2974 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2975 
2976 	/* compute length of segmentation header */
2977 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2978 
2979 	/* pull values out of skb_shinfo */
2980 	gso_size = skb_shinfo(skb)->gso_size;
2981 	gso_segs = skb_shinfo(skb)->gso_segs;
2982 
2983 	/* update GSO size and bytecount with header size */
2984 	first->gso_segs = gso_segs;
2985 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2986 
2987 	/* find the field values */
2988 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2989 	cd_tso_len = skb->len - *hdr_len;
2990 	cd_mss = gso_size;
2991 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2992 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2993 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2994 	return 1;
2995 }
2996 
2997 /**
2998  * i40e_tsyn - set up the tsyn context descriptor
2999  * @tx_ring:  ptr to the ring to send
3000  * @skb:      ptr to the skb we're sending
3001  * @tx_flags: the collected send information
3002  * @cd_type_cmd_tso_mss: Quad Word 1
3003  *
3004  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3005  **/
3006 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3007 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3008 {
3009 	struct i40e_pf *pf;
3010 
3011 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3012 		return 0;
3013 
3014 	/* Tx timestamps cannot be sampled when doing TSO */
3015 	if (tx_flags & I40E_TX_FLAGS_TSO)
3016 		return 0;
3017 
3018 	/* only timestamp the outbound packet if the user has requested it and
3019 	 * we are not already transmitting a packet to be timestamped
3020 	 */
3021 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3022 	if (!(pf->flags & I40E_FLAG_PTP))
3023 		return 0;
3024 
3025 	if (pf->ptp_tx &&
3026 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3027 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3028 		pf->ptp_tx_start = jiffies;
3029 		pf->ptp_tx_skb = skb_get(skb);
3030 	} else {
3031 		pf->tx_hwtstamp_skipped++;
3032 		return 0;
3033 	}
3034 
3035 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3036 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3037 
3038 	return 1;
3039 }
3040 
3041 /**
3042  * i40e_tx_enable_csum - Enable Tx checksum offloads
3043  * @skb: send buffer
3044  * @tx_flags: pointer to Tx flags currently set
3045  * @td_cmd: Tx descriptor command bits to set
3046  * @td_offset: Tx descriptor header offsets to set
3047  * @tx_ring: Tx descriptor ring
3048  * @cd_tunneling: ptr to context desc bits
3049  **/
3050 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3051 			       u32 *td_cmd, u32 *td_offset,
3052 			       struct i40e_ring *tx_ring,
3053 			       u32 *cd_tunneling)
3054 {
3055 	union {
3056 		struct iphdr *v4;
3057 		struct ipv6hdr *v6;
3058 		unsigned char *hdr;
3059 	} ip;
3060 	union {
3061 		struct tcphdr *tcp;
3062 		struct udphdr *udp;
3063 		unsigned char *hdr;
3064 	} l4;
3065 	unsigned char *exthdr;
3066 	u32 offset, cmd = 0;
3067 	__be16 frag_off;
3068 	u8 l4_proto = 0;
3069 
3070 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3071 		return 0;
3072 
3073 	ip.hdr = skb_network_header(skb);
3074 	l4.hdr = skb_transport_header(skb);
3075 
3076 	/* compute outer L2 header size */
3077 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3078 
3079 	if (skb->encapsulation) {
3080 		u32 tunnel = 0;
3081 		/* define outer network header type */
3082 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3083 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3084 				  I40E_TX_CTX_EXT_IP_IPV4 :
3085 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3086 
3087 			l4_proto = ip.v4->protocol;
3088 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3089 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3090 
3091 			exthdr = ip.hdr + sizeof(*ip.v6);
3092 			l4_proto = ip.v6->nexthdr;
3093 			if (l4.hdr != exthdr)
3094 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3095 						 &l4_proto, &frag_off);
3096 		}
3097 
3098 		/* define outer transport */
3099 		switch (l4_proto) {
3100 		case IPPROTO_UDP:
3101 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3102 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3103 			break;
3104 		case IPPROTO_GRE:
3105 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3106 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3107 			break;
3108 		case IPPROTO_IPIP:
3109 		case IPPROTO_IPV6:
3110 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3111 			l4.hdr = skb_inner_network_header(skb);
3112 			break;
3113 		default:
3114 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3115 				return -1;
3116 
3117 			skb_checksum_help(skb);
3118 			return 0;
3119 		}
3120 
3121 		/* compute outer L3 header size */
3122 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3123 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3124 
3125 		/* switch IP header pointer from outer to inner header */
3126 		ip.hdr = skb_inner_network_header(skb);
3127 
3128 		/* compute tunnel header size */
3129 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3130 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3131 
3132 		/* indicate if we need to offload outer UDP header */
3133 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3134 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3135 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3136 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3137 
3138 		/* record tunnel offload values */
3139 		*cd_tunneling |= tunnel;
3140 
3141 		/* switch L4 header pointer from outer to inner */
3142 		l4.hdr = skb_inner_transport_header(skb);
3143 		l4_proto = 0;
3144 
3145 		/* reset type as we transition from outer to inner headers */
3146 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3147 		if (ip.v4->version == 4)
3148 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3149 		if (ip.v6->version == 6)
3150 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3151 	}
3152 
3153 	/* Enable IP checksum offloads */
3154 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3155 		l4_proto = ip.v4->protocol;
3156 		/* the stack computes the IP header already, the only time we
3157 		 * need the hardware to recompute it is in the case of TSO.
3158 		 */
3159 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3160 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3161 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3162 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3163 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3164 
3165 		exthdr = ip.hdr + sizeof(*ip.v6);
3166 		l4_proto = ip.v6->nexthdr;
3167 		if (l4.hdr != exthdr)
3168 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3169 					 &l4_proto, &frag_off);
3170 	}
3171 
3172 	/* compute inner L3 header size */
3173 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3174 
3175 	/* Enable L4 checksum offloads */
3176 	switch (l4_proto) {
3177 	case IPPROTO_TCP:
3178 		/* enable checksum offloads */
3179 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3180 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3181 		break;
3182 	case IPPROTO_SCTP:
3183 		/* enable SCTP checksum offload */
3184 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3185 		offset |= (sizeof(struct sctphdr) >> 2) <<
3186 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3187 		break;
3188 	case IPPROTO_UDP:
3189 		/* enable UDP checksum offload */
3190 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3191 		offset |= (sizeof(struct udphdr) >> 2) <<
3192 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3193 		break;
3194 	default:
3195 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3196 			return -1;
3197 		skb_checksum_help(skb);
3198 		return 0;
3199 	}
3200 
3201 	*td_cmd |= cmd;
3202 	*td_offset |= offset;
3203 
3204 	return 1;
3205 }
3206 
3207 /**
3208  * i40e_create_tx_ctx Build the Tx context descriptor
3209  * @tx_ring:  ring to create the descriptor on
3210  * @cd_type_cmd_tso_mss: Quad Word 1
3211  * @cd_tunneling: Quad Word 0 - bits 0-31
3212  * @cd_l2tag2: Quad Word 0 - bits 32-63
3213  **/
3214 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3215 			       const u64 cd_type_cmd_tso_mss,
3216 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3217 {
3218 	struct i40e_tx_context_desc *context_desc;
3219 	int i = tx_ring->next_to_use;
3220 
3221 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3222 	    !cd_tunneling && !cd_l2tag2)
3223 		return;
3224 
3225 	/* grab the next descriptor */
3226 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3227 
3228 	i++;
3229 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3230 
3231 	/* cpu_to_le32 and assign to struct fields */
3232 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3233 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3234 	context_desc->rsvd = cpu_to_le16(0);
3235 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3236 }
3237 
3238 /**
3239  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3240  * @tx_ring: the ring to be checked
3241  * @size:    the size buffer we want to assure is available
3242  *
3243  * Returns -EBUSY if a stop is needed, else 0
3244  **/
3245 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3246 {
3247 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3248 	/* Memory barrier before checking head and tail */
3249 	smp_mb();
3250 
3251 	/* Check again in a case another CPU has just made room available. */
3252 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3253 		return -EBUSY;
3254 
3255 	/* A reprieve! - use start_queue because it doesn't call schedule */
3256 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3257 	++tx_ring->tx_stats.restart_queue;
3258 	return 0;
3259 }
3260 
3261 /**
3262  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3263  * @skb:      send buffer
3264  *
3265  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3266  * and so we need to figure out the cases where we need to linearize the skb.
3267  *
3268  * For TSO we need to count the TSO header and segment payload separately.
3269  * As such we need to check cases where we have 7 fragments or more as we
3270  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3271  * the segment payload in the first descriptor, and another 7 for the
3272  * fragments.
3273  **/
3274 bool __i40e_chk_linearize(struct sk_buff *skb)
3275 {
3276 	const struct skb_frag_struct *frag, *stale;
3277 	int nr_frags, sum;
3278 
3279 	/* no need to check if number of frags is less than 7 */
3280 	nr_frags = skb_shinfo(skb)->nr_frags;
3281 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3282 		return false;
3283 
3284 	/* We need to walk through the list and validate that each group
3285 	 * of 6 fragments totals at least gso_size.
3286 	 */
3287 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3288 	frag = &skb_shinfo(skb)->frags[0];
3289 
3290 	/* Initialize size to the negative value of gso_size minus 1.  We
3291 	 * use this as the worst case scenerio in which the frag ahead
3292 	 * of us only provides one byte which is why we are limited to 6
3293 	 * descriptors for a single transmit as the header and previous
3294 	 * fragment are already consuming 2 descriptors.
3295 	 */
3296 	sum = 1 - skb_shinfo(skb)->gso_size;
3297 
3298 	/* Add size of frags 0 through 4 to create our initial sum */
3299 	sum += skb_frag_size(frag++);
3300 	sum += skb_frag_size(frag++);
3301 	sum += skb_frag_size(frag++);
3302 	sum += skb_frag_size(frag++);
3303 	sum += skb_frag_size(frag++);
3304 
3305 	/* Walk through fragments adding latest fragment, testing it, and
3306 	 * then removing stale fragments from the sum.
3307 	 */
3308 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3309 		int stale_size = skb_frag_size(stale);
3310 
3311 		sum += skb_frag_size(frag++);
3312 
3313 		/* The stale fragment may present us with a smaller
3314 		 * descriptor than the actual fragment size. To account
3315 		 * for that we need to remove all the data on the front and
3316 		 * figure out what the remainder would be in the last
3317 		 * descriptor associated with the fragment.
3318 		 */
3319 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3320 			int align_pad = -(stale->page_offset) &
3321 					(I40E_MAX_READ_REQ_SIZE - 1);
3322 
3323 			sum -= align_pad;
3324 			stale_size -= align_pad;
3325 
3326 			do {
3327 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3328 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3329 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3330 		}
3331 
3332 		/* if sum is negative we failed to make sufficient progress */
3333 		if (sum < 0)
3334 			return true;
3335 
3336 		if (!nr_frags--)
3337 			break;
3338 
3339 		sum -= stale_size;
3340 	}
3341 
3342 	return false;
3343 }
3344 
3345 /**
3346  * i40e_tx_map - Build the Tx descriptor
3347  * @tx_ring:  ring to send buffer on
3348  * @skb:      send buffer
3349  * @first:    first buffer info buffer to use
3350  * @tx_flags: collected send information
3351  * @hdr_len:  size of the packet header
3352  * @td_cmd:   the command field in the descriptor
3353  * @td_offset: offset for checksum or crc
3354  *
3355  * Returns 0 on success, -1 on failure to DMA
3356  **/
3357 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3358 			      struct i40e_tx_buffer *first, u32 tx_flags,
3359 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3360 {
3361 	unsigned int data_len = skb->data_len;
3362 	unsigned int size = skb_headlen(skb);
3363 	struct skb_frag_struct *frag;
3364 	struct i40e_tx_buffer *tx_bi;
3365 	struct i40e_tx_desc *tx_desc;
3366 	u16 i = tx_ring->next_to_use;
3367 	u32 td_tag = 0;
3368 	dma_addr_t dma;
3369 	u16 desc_count = 1;
3370 
3371 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3372 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3373 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3374 			 I40E_TX_FLAGS_VLAN_SHIFT;
3375 	}
3376 
3377 	first->tx_flags = tx_flags;
3378 
3379 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3380 
3381 	tx_desc = I40E_TX_DESC(tx_ring, i);
3382 	tx_bi = first;
3383 
3384 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3385 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3386 
3387 		if (dma_mapping_error(tx_ring->dev, dma))
3388 			goto dma_error;
3389 
3390 		/* record length, and DMA address */
3391 		dma_unmap_len_set(tx_bi, len, size);
3392 		dma_unmap_addr_set(tx_bi, dma, dma);
3393 
3394 		/* align size to end of page */
3395 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3396 		tx_desc->buffer_addr = cpu_to_le64(dma);
3397 
3398 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3399 			tx_desc->cmd_type_offset_bsz =
3400 				build_ctob(td_cmd, td_offset,
3401 					   max_data, td_tag);
3402 
3403 			tx_desc++;
3404 			i++;
3405 			desc_count++;
3406 
3407 			if (i == tx_ring->count) {
3408 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3409 				i = 0;
3410 			}
3411 
3412 			dma += max_data;
3413 			size -= max_data;
3414 
3415 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3416 			tx_desc->buffer_addr = cpu_to_le64(dma);
3417 		}
3418 
3419 		if (likely(!data_len))
3420 			break;
3421 
3422 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3423 							  size, td_tag);
3424 
3425 		tx_desc++;
3426 		i++;
3427 		desc_count++;
3428 
3429 		if (i == tx_ring->count) {
3430 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3431 			i = 0;
3432 		}
3433 
3434 		size = skb_frag_size(frag);
3435 		data_len -= size;
3436 
3437 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3438 				       DMA_TO_DEVICE);
3439 
3440 		tx_bi = &tx_ring->tx_bi[i];
3441 	}
3442 
3443 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3444 
3445 	i++;
3446 	if (i == tx_ring->count)
3447 		i = 0;
3448 
3449 	tx_ring->next_to_use = i;
3450 
3451 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3452 
3453 	/* write last descriptor with EOP bit */
3454 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3455 
3456 	/* We OR these values together to check both against 4 (WB_STRIDE)
3457 	 * below. This is safe since we don't re-use desc_count afterwards.
3458 	 */
3459 	desc_count |= ++tx_ring->packet_stride;
3460 
3461 	if (desc_count >= WB_STRIDE) {
3462 		/* write last descriptor with RS bit set */
3463 		td_cmd |= I40E_TX_DESC_CMD_RS;
3464 		tx_ring->packet_stride = 0;
3465 	}
3466 
3467 	tx_desc->cmd_type_offset_bsz =
3468 			build_ctob(td_cmd, td_offset, size, td_tag);
3469 
3470 	/* Force memory writes to complete before letting h/w know there
3471 	 * are new descriptors to fetch.
3472 	 *
3473 	 * We also use this memory barrier to make certain all of the
3474 	 * status bits have been updated before next_to_watch is written.
3475 	 */
3476 	wmb();
3477 
3478 	/* set next_to_watch value indicating a packet is present */
3479 	first->next_to_watch = tx_desc;
3480 
3481 	/* notify HW of packet */
3482 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3483 		writel(i, tx_ring->tail);
3484 
3485 		/* we need this if more than one processor can write to our tail
3486 		 * at a time, it synchronizes IO on IA64/Altix systems
3487 		 */
3488 		mmiowb();
3489 	}
3490 
3491 	return 0;
3492 
3493 dma_error:
3494 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3495 
3496 	/* clear dma mappings for failed tx_bi map */
3497 	for (;;) {
3498 		tx_bi = &tx_ring->tx_bi[i];
3499 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3500 		if (tx_bi == first)
3501 			break;
3502 		if (i == 0)
3503 			i = tx_ring->count;
3504 		i--;
3505 	}
3506 
3507 	tx_ring->next_to_use = i;
3508 
3509 	return -1;
3510 }
3511 
3512 /**
3513  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3514  * @xdp: data to transmit
3515  * @xdp_ring: XDP Tx ring
3516  **/
3517 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3518 			      struct i40e_ring *xdp_ring)
3519 {
3520 	u16 i = xdp_ring->next_to_use;
3521 	struct i40e_tx_buffer *tx_bi;
3522 	struct i40e_tx_desc *tx_desc;
3523 	u32 size = xdpf->len;
3524 	dma_addr_t dma;
3525 
3526 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3527 		xdp_ring->tx_stats.tx_busy++;
3528 		return I40E_XDP_CONSUMED;
3529 	}
3530 
3531 	dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE);
3532 	if (dma_mapping_error(xdp_ring->dev, dma))
3533 		return I40E_XDP_CONSUMED;
3534 
3535 	tx_bi = &xdp_ring->tx_bi[i];
3536 	tx_bi->bytecount = size;
3537 	tx_bi->gso_segs = 1;
3538 	tx_bi->xdpf = xdpf;
3539 
3540 	/* record length, and DMA address */
3541 	dma_unmap_len_set(tx_bi, len, size);
3542 	dma_unmap_addr_set(tx_bi, dma, dma);
3543 
3544 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3545 	tx_desc->buffer_addr = cpu_to_le64(dma);
3546 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3547 						  | I40E_TXD_CMD,
3548 						  0, size, 0);
3549 
3550 	/* Make certain all of the status bits have been updated
3551 	 * before next_to_watch is written.
3552 	 */
3553 	smp_wmb();
3554 
3555 	i++;
3556 	if (i == xdp_ring->count)
3557 		i = 0;
3558 
3559 	tx_bi->next_to_watch = tx_desc;
3560 	xdp_ring->next_to_use = i;
3561 
3562 	return I40E_XDP_TX;
3563 }
3564 
3565 /**
3566  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3567  * @skb:     send buffer
3568  * @tx_ring: ring to send buffer on
3569  *
3570  * Returns NETDEV_TX_OK if sent, else an error code
3571  **/
3572 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3573 					struct i40e_ring *tx_ring)
3574 {
3575 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3576 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3577 	struct i40e_tx_buffer *first;
3578 	u32 td_offset = 0;
3579 	u32 tx_flags = 0;
3580 	__be16 protocol;
3581 	u32 td_cmd = 0;
3582 	u8 hdr_len = 0;
3583 	int tso, count;
3584 	int tsyn;
3585 
3586 	/* prefetch the data, we'll need it later */
3587 	prefetch(skb->data);
3588 
3589 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3590 
3591 	count = i40e_xmit_descriptor_count(skb);
3592 	if (i40e_chk_linearize(skb, count)) {
3593 		if (__skb_linearize(skb)) {
3594 			dev_kfree_skb_any(skb);
3595 			return NETDEV_TX_OK;
3596 		}
3597 		count = i40e_txd_use_count(skb->len);
3598 		tx_ring->tx_stats.tx_linearize++;
3599 	}
3600 
3601 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3602 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3603 	 *       + 4 desc gap to avoid the cache line where head is,
3604 	 *       + 1 desc for context descriptor,
3605 	 * otherwise try next time
3606 	 */
3607 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3608 		tx_ring->tx_stats.tx_busy++;
3609 		return NETDEV_TX_BUSY;
3610 	}
3611 
3612 	/* record the location of the first descriptor for this packet */
3613 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3614 	first->skb = skb;
3615 	first->bytecount = skb->len;
3616 	first->gso_segs = 1;
3617 
3618 	/* prepare the xmit flags */
3619 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3620 		goto out_drop;
3621 
3622 	/* obtain protocol of skb */
3623 	protocol = vlan_get_protocol(skb);
3624 
3625 	/* setup IPv4/IPv6 offloads */
3626 	if (protocol == htons(ETH_P_IP))
3627 		tx_flags |= I40E_TX_FLAGS_IPV4;
3628 	else if (protocol == htons(ETH_P_IPV6))
3629 		tx_flags |= I40E_TX_FLAGS_IPV6;
3630 
3631 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3632 
3633 	if (tso < 0)
3634 		goto out_drop;
3635 	else if (tso)
3636 		tx_flags |= I40E_TX_FLAGS_TSO;
3637 
3638 	/* Always offload the checksum, since it's in the data descriptor */
3639 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3640 				  tx_ring, &cd_tunneling);
3641 	if (tso < 0)
3642 		goto out_drop;
3643 
3644 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3645 
3646 	if (tsyn)
3647 		tx_flags |= I40E_TX_FLAGS_TSYN;
3648 
3649 	skb_tx_timestamp(skb);
3650 
3651 	/* always enable CRC insertion offload */
3652 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3653 
3654 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3655 			   cd_tunneling, cd_l2tag2);
3656 
3657 	/* Add Flow Director ATR if it's enabled.
3658 	 *
3659 	 * NOTE: this must always be directly before the data descriptor.
3660 	 */
3661 	i40e_atr(tx_ring, skb, tx_flags);
3662 
3663 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3664 			td_cmd, td_offset))
3665 		goto cleanup_tx_tstamp;
3666 
3667 	return NETDEV_TX_OK;
3668 
3669 out_drop:
3670 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3671 	dev_kfree_skb_any(first->skb);
3672 	first->skb = NULL;
3673 cleanup_tx_tstamp:
3674 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3675 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3676 
3677 		dev_kfree_skb_any(pf->ptp_tx_skb);
3678 		pf->ptp_tx_skb = NULL;
3679 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3680 	}
3681 
3682 	return NETDEV_TX_OK;
3683 }
3684 
3685 /**
3686  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3687  * @skb:    send buffer
3688  * @netdev: network interface device structure
3689  *
3690  * Returns NETDEV_TX_OK if sent, else an error code
3691  **/
3692 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3693 {
3694 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3695 	struct i40e_vsi *vsi = np->vsi;
3696 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3697 
3698 	/* hardware can't handle really short frames, hardware padding works
3699 	 * beyond this point
3700 	 */
3701 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3702 		return NETDEV_TX_OK;
3703 
3704 	return i40e_xmit_frame_ring(skb, tx_ring);
3705 }
3706 
3707 /**
3708  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3709  * @dev: netdev
3710  * @xdp: XDP buffer
3711  *
3712  * Returns number of frames successfully sent. Frames that fail are
3713  * free'ed via XDP return API.
3714  *
3715  * For error cases, a negative errno code is returned and no-frames
3716  * are transmitted (caller must handle freeing frames).
3717  **/
3718 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3719 		  u32 flags)
3720 {
3721 	struct i40e_netdev_priv *np = netdev_priv(dev);
3722 	unsigned int queue_index = smp_processor_id();
3723 	struct i40e_vsi *vsi = np->vsi;
3724 	struct i40e_ring *xdp_ring;
3725 	int drops = 0;
3726 	int i;
3727 
3728 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3729 		return -ENETDOWN;
3730 
3731 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3732 		return -ENXIO;
3733 
3734 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3735 		return -EINVAL;
3736 
3737 	xdp_ring = vsi->xdp_rings[queue_index];
3738 
3739 	for (i = 0; i < n; i++) {
3740 		struct xdp_frame *xdpf = frames[i];
3741 		int err;
3742 
3743 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3744 		if (err != I40E_XDP_TX) {
3745 			xdp_return_frame_rx_napi(xdpf);
3746 			drops++;
3747 		}
3748 	}
3749 
3750 	if (unlikely(flags & XDP_XMIT_FLUSH))
3751 		i40e_xdp_ring_update_tail(xdp_ring);
3752 
3753 	return n - drops;
3754 }
3755