1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * The full GNU General Public License is included in this distribution in
20  * the file called "COPYING".
21  *
22  * Contact Information:
23  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25  *
26  ******************************************************************************/
27 
28 #include "i40e.h"
29 
30 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
31 				u32 td_tag)
32 {
33 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
34 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
35 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
36 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
37 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
38 }
39 
40 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
41 /**
42  * i40e_program_fdir_filter - Program a Flow Director filter
43  * @fdir_input: Packet data that will be filter parameters
44  * @pf: The pf pointer
45  * @add: True for add/update, False for remove
46  **/
47 int i40e_program_fdir_filter(struct i40e_fdir_data *fdir_data,
48 			     struct i40e_pf *pf, bool add)
49 {
50 	struct i40e_filter_program_desc *fdir_desc;
51 	struct i40e_tx_buffer *tx_buf;
52 	struct i40e_tx_desc *tx_desc;
53 	struct i40e_ring *tx_ring;
54 	unsigned int fpt, dcc;
55 	struct i40e_vsi *vsi;
56 	struct device *dev;
57 	dma_addr_t dma;
58 	u32 td_cmd = 0;
59 	u16 i;
60 
61 	/* find existing FDIR VSI */
62 	vsi = NULL;
63 	for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
64 		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
65 			vsi = pf->vsi[i];
66 	if (!vsi)
67 		return -ENOENT;
68 
69 	tx_ring = vsi->tx_rings[0];
70 	dev = tx_ring->dev;
71 
72 	dma = dma_map_single(dev, fdir_data->raw_packet,
73 			     I40E_FDIR_MAX_RAW_PACKET_LOOKUP, DMA_TO_DEVICE);
74 	if (dma_mapping_error(dev, dma))
75 		goto dma_fail;
76 
77 	/* grab the next descriptor */
78 	i = tx_ring->next_to_use;
79 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
80 	tx_buf = &tx_ring->tx_bi[i];
81 
82 	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
83 
84 	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
85 	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
86 
87 	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
88 	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
89 
90 	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
91 	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
92 
93 	/* Use LAN VSI Id if not programmed by user */
94 	if (fdir_data->dest_vsi == 0)
95 		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
96 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
97 	else
98 		fpt |= ((u32)fdir_data->dest_vsi <<
99 			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
100 		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
101 
102 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
103 
104 	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
105 
106 	if (add)
107 		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
108 		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
109 	else
110 		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
111 		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
112 
113 	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
114 	       I40E_TXD_FLTR_QW1_DEST_MASK;
115 
116 	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
117 	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
118 
119 	if (fdir_data->cnt_index != 0) {
120 		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
121 		dcc |= ((u32)fdir_data->cnt_index <<
122 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
123 		       I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
124 	}
125 
126 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
127 	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
128 
129 	/* Now program a dummy descriptor */
130 	i = tx_ring->next_to_use;
131 	tx_desc = I40E_TX_DESC(tx_ring, i);
132 
133 	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
134 
135 	tx_desc->buffer_addr = cpu_to_le64(dma);
136 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
137 
138 	tx_desc->cmd_type_offset_bsz =
139 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_LOOKUP, 0);
140 
141 	/* Force memory writes to complete before letting h/w
142 	 * know there are new descriptors to fetch.  (Only
143 	 * applicable for weak-ordered memory model archs,
144 	 * such as IA-64).
145 	 */
146 	wmb();
147 
148 	/* Mark the data descriptor to be watched */
149 	tx_buf->next_to_watch = tx_desc;
150 
151 	writel(tx_ring->next_to_use, tx_ring->tail);
152 	return 0;
153 
154 dma_fail:
155 	return -1;
156 }
157 
158 /**
159  * i40e_fd_handle_status - check the Programming Status for FD
160  * @rx_ring: the Rx ring for this descriptor
161  * @qw: the descriptor data
162  * @prog_id: the id originally used for programming
163  *
164  * This is used to verify if the FD programming or invalidation
165  * requested by SW to the HW is successful or not and take actions accordingly.
166  **/
167 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u32 qw, u8 prog_id)
168 {
169 	struct pci_dev *pdev = rx_ring->vsi->back->pdev;
170 	u32 error;
171 
172 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
173 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
174 
175 	/* for now just print the Status */
176 	dev_info(&pdev->dev, "FD programming id %02x, Status %08x\n",
177 		 prog_id, error);
178 }
179 
180 /**
181  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
182  * @ring:      the ring that owns the buffer
183  * @tx_buffer: the buffer to free
184  **/
185 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
186 					    struct i40e_tx_buffer *tx_buffer)
187 {
188 	if (tx_buffer->skb) {
189 		dev_kfree_skb_any(tx_buffer->skb);
190 		if (dma_unmap_len(tx_buffer, len))
191 			dma_unmap_single(ring->dev,
192 					 dma_unmap_addr(tx_buffer, dma),
193 					 dma_unmap_len(tx_buffer, len),
194 					 DMA_TO_DEVICE);
195 	} else if (dma_unmap_len(tx_buffer, len)) {
196 		dma_unmap_page(ring->dev,
197 			       dma_unmap_addr(tx_buffer, dma),
198 			       dma_unmap_len(tx_buffer, len),
199 			       DMA_TO_DEVICE);
200 	}
201 	tx_buffer->next_to_watch = NULL;
202 	tx_buffer->skb = NULL;
203 	dma_unmap_len_set(tx_buffer, len, 0);
204 	/* tx_buffer must be completely set up in the transmit path */
205 }
206 
207 /**
208  * i40e_clean_tx_ring - Free any empty Tx buffers
209  * @tx_ring: ring to be cleaned
210  **/
211 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
212 {
213 	unsigned long bi_size;
214 	u16 i;
215 
216 	/* ring already cleared, nothing to do */
217 	if (!tx_ring->tx_bi)
218 		return;
219 
220 	/* Free all the Tx ring sk_buffs */
221 	for (i = 0; i < tx_ring->count; i++)
222 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
223 
224 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
225 	memset(tx_ring->tx_bi, 0, bi_size);
226 
227 	/* Zero out the descriptor ring */
228 	memset(tx_ring->desc, 0, tx_ring->size);
229 
230 	tx_ring->next_to_use = 0;
231 	tx_ring->next_to_clean = 0;
232 
233 	if (!tx_ring->netdev)
234 		return;
235 
236 	/* cleanup Tx queue statistics */
237 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
238 						  tx_ring->queue_index));
239 }
240 
241 /**
242  * i40e_free_tx_resources - Free Tx resources per queue
243  * @tx_ring: Tx descriptor ring for a specific queue
244  *
245  * Free all transmit software resources
246  **/
247 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
248 {
249 	i40e_clean_tx_ring(tx_ring);
250 	kfree(tx_ring->tx_bi);
251 	tx_ring->tx_bi = NULL;
252 
253 	if (tx_ring->desc) {
254 		dma_free_coherent(tx_ring->dev, tx_ring->size,
255 				  tx_ring->desc, tx_ring->dma);
256 		tx_ring->desc = NULL;
257 	}
258 }
259 
260 /**
261  * i40e_get_tx_pending - how many tx descriptors not processed
262  * @tx_ring: the ring of descriptors
263  *
264  * Since there is no access to the ring head register
265  * in XL710, we need to use our local copies
266  **/
267 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
268 {
269 	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
270 			? ring->next_to_use
271 			: ring->next_to_use + ring->count);
272 	return ntu - ring->next_to_clean;
273 }
274 
275 /**
276  * i40e_check_tx_hang - Is there a hang in the Tx queue
277  * @tx_ring: the ring of descriptors
278  **/
279 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
280 {
281 	u32 tx_pending = i40e_get_tx_pending(tx_ring);
282 	bool ret = false;
283 
284 	clear_check_for_tx_hang(tx_ring);
285 
286 	/* Check for a hung queue, but be thorough. This verifies
287 	 * that a transmit has been completed since the previous
288 	 * check AND there is at least one packet pending. The
289 	 * ARMED bit is set to indicate a potential hang. The
290 	 * bit is cleared if a pause frame is received to remove
291 	 * false hang detection due to PFC or 802.3x frames. By
292 	 * requiring this to fail twice we avoid races with
293 	 * PFC clearing the ARMED bit and conditions where we
294 	 * run the check_tx_hang logic with a transmit completion
295 	 * pending but without time to complete it yet.
296 	 */
297 	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
298 	    tx_pending) {
299 		/* make sure it is true for two checks in a row */
300 		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
301 				       &tx_ring->state);
302 	} else {
303 		/* update completed stats and disarm the hang check */
304 		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
305 		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
306 	}
307 
308 	return ret;
309 }
310 
311 /**
312  * i40e_clean_tx_irq - Reclaim resources after transmit completes
313  * @tx_ring:  tx ring to clean
314  * @budget:   how many cleans we're allowed
315  *
316  * Returns true if there's any budget left (e.g. the clean is finished)
317  **/
318 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
319 {
320 	u16 i = tx_ring->next_to_clean;
321 	struct i40e_tx_buffer *tx_buf;
322 	struct i40e_tx_desc *tx_desc;
323 	unsigned int total_packets = 0;
324 	unsigned int total_bytes = 0;
325 
326 	tx_buf = &tx_ring->tx_bi[i];
327 	tx_desc = I40E_TX_DESC(tx_ring, i);
328 	i -= tx_ring->count;
329 
330 	do {
331 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
332 
333 		/* if next_to_watch is not set then there is no work pending */
334 		if (!eop_desc)
335 			break;
336 
337 		/* prevent any other reads prior to eop_desc */
338 		read_barrier_depends();
339 
340 		/* if the descriptor isn't done, no work yet to do */
341 		if (!(eop_desc->cmd_type_offset_bsz &
342 		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
343 			break;
344 
345 		/* clear next_to_watch to prevent false hangs */
346 		tx_buf->next_to_watch = NULL;
347 
348 		/* update the statistics for this packet */
349 		total_bytes += tx_buf->bytecount;
350 		total_packets += tx_buf->gso_segs;
351 
352 		/* free the skb */
353 		dev_kfree_skb_any(tx_buf->skb);
354 
355 		/* unmap skb header data */
356 		dma_unmap_single(tx_ring->dev,
357 				 dma_unmap_addr(tx_buf, dma),
358 				 dma_unmap_len(tx_buf, len),
359 				 DMA_TO_DEVICE);
360 
361 		/* clear tx_buffer data */
362 		tx_buf->skb = NULL;
363 		dma_unmap_len_set(tx_buf, len, 0);
364 
365 		/* unmap remaining buffers */
366 		while (tx_desc != eop_desc) {
367 
368 			tx_buf++;
369 			tx_desc++;
370 			i++;
371 			if (unlikely(!i)) {
372 				i -= tx_ring->count;
373 				tx_buf = tx_ring->tx_bi;
374 				tx_desc = I40E_TX_DESC(tx_ring, 0);
375 			}
376 
377 			/* unmap any remaining paged data */
378 			if (dma_unmap_len(tx_buf, len)) {
379 				dma_unmap_page(tx_ring->dev,
380 					       dma_unmap_addr(tx_buf, dma),
381 					       dma_unmap_len(tx_buf, len),
382 					       DMA_TO_DEVICE);
383 				dma_unmap_len_set(tx_buf, len, 0);
384 			}
385 		}
386 
387 		/* move us one more past the eop_desc for start of next pkt */
388 		tx_buf++;
389 		tx_desc++;
390 		i++;
391 		if (unlikely(!i)) {
392 			i -= tx_ring->count;
393 			tx_buf = tx_ring->tx_bi;
394 			tx_desc = I40E_TX_DESC(tx_ring, 0);
395 		}
396 
397 		/* update budget accounting */
398 		budget--;
399 	} while (likely(budget));
400 
401 	i += tx_ring->count;
402 	tx_ring->next_to_clean = i;
403 	u64_stats_update_begin(&tx_ring->syncp);
404 	tx_ring->stats.bytes += total_bytes;
405 	tx_ring->stats.packets += total_packets;
406 	u64_stats_update_end(&tx_ring->syncp);
407 	tx_ring->q_vector->tx.total_bytes += total_bytes;
408 	tx_ring->q_vector->tx.total_packets += total_packets;
409 
410 	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
411 		/* schedule immediate reset if we believe we hung */
412 		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
413 			 "  VSI                  <%d>\n"
414 			 "  Tx Queue             <%d>\n"
415 			 "  next_to_use          <%x>\n"
416 			 "  next_to_clean        <%x>\n",
417 			 tx_ring->vsi->seid,
418 			 tx_ring->queue_index,
419 			 tx_ring->next_to_use, i);
420 		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
421 			 "  time_stamp           <%lx>\n"
422 			 "  jiffies              <%lx>\n",
423 			 tx_ring->tx_bi[i].time_stamp, jiffies);
424 
425 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
426 
427 		dev_info(tx_ring->dev,
428 			 "tx hang detected on queue %d, resetting adapter\n",
429 			 tx_ring->queue_index);
430 
431 		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
432 
433 		/* the adapter is about to reset, no point in enabling stuff */
434 		return true;
435 	}
436 
437 	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
438 						      tx_ring->queue_index),
439 				  total_packets, total_bytes);
440 
441 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
442 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
443 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
444 		/* Make sure that anybody stopping the queue after this
445 		 * sees the new next_to_clean.
446 		 */
447 		smp_mb();
448 		if (__netif_subqueue_stopped(tx_ring->netdev,
449 					     tx_ring->queue_index) &&
450 		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
451 			netif_wake_subqueue(tx_ring->netdev,
452 					    tx_ring->queue_index);
453 			++tx_ring->tx_stats.restart_queue;
454 		}
455 	}
456 
457 	return budget > 0;
458 }
459 
460 /**
461  * i40e_set_new_dynamic_itr - Find new ITR level
462  * @rc: structure containing ring performance data
463  *
464  * Stores a new ITR value based on packets and byte counts during
465  * the last interrupt.  The advantage of per interrupt computation
466  * is faster updates and more accurate ITR for the current traffic
467  * pattern.  Constants in this function were computed based on
468  * theoretical maximum wire speed and thresholds were set based on
469  * testing data as well as attempting to minimize response time
470  * while increasing bulk throughput.
471  **/
472 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
473 {
474 	enum i40e_latency_range new_latency_range = rc->latency_range;
475 	u32 new_itr = rc->itr;
476 	int bytes_per_int;
477 
478 	if (rc->total_packets == 0 || !rc->itr)
479 		return;
480 
481 	/* simple throttlerate management
482 	 *   0-10MB/s   lowest (100000 ints/s)
483 	 *  10-20MB/s   low    (20000 ints/s)
484 	 *  20-1249MB/s bulk   (8000 ints/s)
485 	 */
486 	bytes_per_int = rc->total_bytes / rc->itr;
487 	switch (rc->itr) {
488 	case I40E_LOWEST_LATENCY:
489 		if (bytes_per_int > 10)
490 			new_latency_range = I40E_LOW_LATENCY;
491 		break;
492 	case I40E_LOW_LATENCY:
493 		if (bytes_per_int > 20)
494 			new_latency_range = I40E_BULK_LATENCY;
495 		else if (bytes_per_int <= 10)
496 			new_latency_range = I40E_LOWEST_LATENCY;
497 		break;
498 	case I40E_BULK_LATENCY:
499 		if (bytes_per_int <= 20)
500 			rc->latency_range = I40E_LOW_LATENCY;
501 		break;
502 	}
503 
504 	switch (new_latency_range) {
505 	case I40E_LOWEST_LATENCY:
506 		new_itr = I40E_ITR_100K;
507 		break;
508 	case I40E_LOW_LATENCY:
509 		new_itr = I40E_ITR_20K;
510 		break;
511 	case I40E_BULK_LATENCY:
512 		new_itr = I40E_ITR_8K;
513 		break;
514 	default:
515 		break;
516 	}
517 
518 	if (new_itr != rc->itr) {
519 		/* do an exponential smoothing */
520 		new_itr = (10 * new_itr * rc->itr) /
521 			  ((9 * new_itr) + rc->itr);
522 		rc->itr = new_itr & I40E_MAX_ITR;
523 	}
524 
525 	rc->total_bytes = 0;
526 	rc->total_packets = 0;
527 }
528 
529 /**
530  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
531  * @q_vector: the vector to adjust
532  **/
533 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
534 {
535 	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
536 	struct i40e_hw *hw = &q_vector->vsi->back->hw;
537 	u32 reg_addr;
538 	u16 old_itr;
539 
540 	reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
541 	old_itr = q_vector->rx.itr;
542 	i40e_set_new_dynamic_itr(&q_vector->rx);
543 	if (old_itr != q_vector->rx.itr)
544 		wr32(hw, reg_addr, q_vector->rx.itr);
545 
546 	reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
547 	old_itr = q_vector->tx.itr;
548 	i40e_set_new_dynamic_itr(&q_vector->tx);
549 	if (old_itr != q_vector->tx.itr)
550 		wr32(hw, reg_addr, q_vector->tx.itr);
551 }
552 
553 /**
554  * i40e_clean_programming_status - clean the programming status descriptor
555  * @rx_ring: the rx ring that has this descriptor
556  * @rx_desc: the rx descriptor written back by HW
557  *
558  * Flow director should handle FD_FILTER_STATUS to check its filter programming
559  * status being successful or not and take actions accordingly. FCoE should
560  * handle its context/filter programming/invalidation status and take actions.
561  *
562  **/
563 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
564 					  union i40e_rx_desc *rx_desc)
565 {
566 	u64 qw;
567 	u8 id;
568 
569 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
570 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
571 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
572 
573 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
574 		i40e_fd_handle_status(rx_ring, qw, id);
575 }
576 
577 /**
578  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
579  * @tx_ring: the tx ring to set up
580  *
581  * Return 0 on success, negative on error
582  **/
583 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
584 {
585 	struct device *dev = tx_ring->dev;
586 	int bi_size;
587 
588 	if (!dev)
589 		return -ENOMEM;
590 
591 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
592 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
593 	if (!tx_ring->tx_bi)
594 		goto err;
595 
596 	/* round up to nearest 4K */
597 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
598 	tx_ring->size = ALIGN(tx_ring->size, 4096);
599 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
600 					   &tx_ring->dma, GFP_KERNEL);
601 	if (!tx_ring->desc) {
602 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
603 			 tx_ring->size);
604 		goto err;
605 	}
606 
607 	tx_ring->next_to_use = 0;
608 	tx_ring->next_to_clean = 0;
609 	return 0;
610 
611 err:
612 	kfree(tx_ring->tx_bi);
613 	tx_ring->tx_bi = NULL;
614 	return -ENOMEM;
615 }
616 
617 /**
618  * i40e_clean_rx_ring - Free Rx buffers
619  * @rx_ring: ring to be cleaned
620  **/
621 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
622 {
623 	struct device *dev = rx_ring->dev;
624 	struct i40e_rx_buffer *rx_bi;
625 	unsigned long bi_size;
626 	u16 i;
627 
628 	/* ring already cleared, nothing to do */
629 	if (!rx_ring->rx_bi)
630 		return;
631 
632 	/* Free all the Rx ring sk_buffs */
633 	for (i = 0; i < rx_ring->count; i++) {
634 		rx_bi = &rx_ring->rx_bi[i];
635 		if (rx_bi->dma) {
636 			dma_unmap_single(dev,
637 					 rx_bi->dma,
638 					 rx_ring->rx_buf_len,
639 					 DMA_FROM_DEVICE);
640 			rx_bi->dma = 0;
641 		}
642 		if (rx_bi->skb) {
643 			dev_kfree_skb(rx_bi->skb);
644 			rx_bi->skb = NULL;
645 		}
646 		if (rx_bi->page) {
647 			if (rx_bi->page_dma) {
648 				dma_unmap_page(dev,
649 					       rx_bi->page_dma,
650 					       PAGE_SIZE / 2,
651 					       DMA_FROM_DEVICE);
652 				rx_bi->page_dma = 0;
653 			}
654 			__free_page(rx_bi->page);
655 			rx_bi->page = NULL;
656 			rx_bi->page_offset = 0;
657 		}
658 	}
659 
660 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
661 	memset(rx_ring->rx_bi, 0, bi_size);
662 
663 	/* Zero out the descriptor ring */
664 	memset(rx_ring->desc, 0, rx_ring->size);
665 
666 	rx_ring->next_to_clean = 0;
667 	rx_ring->next_to_use = 0;
668 }
669 
670 /**
671  * i40e_free_rx_resources - Free Rx resources
672  * @rx_ring: ring to clean the resources from
673  *
674  * Free all receive software resources
675  **/
676 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
677 {
678 	i40e_clean_rx_ring(rx_ring);
679 	kfree(rx_ring->rx_bi);
680 	rx_ring->rx_bi = NULL;
681 
682 	if (rx_ring->desc) {
683 		dma_free_coherent(rx_ring->dev, rx_ring->size,
684 				  rx_ring->desc, rx_ring->dma);
685 		rx_ring->desc = NULL;
686 	}
687 }
688 
689 /**
690  * i40e_setup_rx_descriptors - Allocate Rx descriptors
691  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
692  *
693  * Returns 0 on success, negative on failure
694  **/
695 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
696 {
697 	struct device *dev = rx_ring->dev;
698 	int bi_size;
699 
700 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
701 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
702 	if (!rx_ring->rx_bi)
703 		goto err;
704 
705 	/* Round up to nearest 4K */
706 	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
707 		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
708 		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
709 	rx_ring->size = ALIGN(rx_ring->size, 4096);
710 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
711 					   &rx_ring->dma, GFP_KERNEL);
712 
713 	if (!rx_ring->desc) {
714 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
715 			 rx_ring->size);
716 		goto err;
717 	}
718 
719 	rx_ring->next_to_clean = 0;
720 	rx_ring->next_to_use = 0;
721 
722 	return 0;
723 err:
724 	kfree(rx_ring->rx_bi);
725 	rx_ring->rx_bi = NULL;
726 	return -ENOMEM;
727 }
728 
729 /**
730  * i40e_release_rx_desc - Store the new tail and head values
731  * @rx_ring: ring to bump
732  * @val: new head index
733  **/
734 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
735 {
736 	rx_ring->next_to_use = val;
737 	/* Force memory writes to complete before letting h/w
738 	 * know there are new descriptors to fetch.  (Only
739 	 * applicable for weak-ordered memory model archs,
740 	 * such as IA-64).
741 	 */
742 	wmb();
743 	writel(val, rx_ring->tail);
744 }
745 
746 /**
747  * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
748  * @rx_ring: ring to place buffers on
749  * @cleaned_count: number of buffers to replace
750  **/
751 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
752 {
753 	u16 i = rx_ring->next_to_use;
754 	union i40e_rx_desc *rx_desc;
755 	struct i40e_rx_buffer *bi;
756 	struct sk_buff *skb;
757 
758 	/* do nothing if no valid netdev defined */
759 	if (!rx_ring->netdev || !cleaned_count)
760 		return;
761 
762 	while (cleaned_count--) {
763 		rx_desc = I40E_RX_DESC(rx_ring, i);
764 		bi = &rx_ring->rx_bi[i];
765 		skb = bi->skb;
766 
767 		if (!skb) {
768 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
769 							rx_ring->rx_buf_len);
770 			if (!skb) {
771 				rx_ring->rx_stats.alloc_rx_buff_failed++;
772 				goto no_buffers;
773 			}
774 			/* initialize queue mapping */
775 			skb_record_rx_queue(skb, rx_ring->queue_index);
776 			bi->skb = skb;
777 		}
778 
779 		if (!bi->dma) {
780 			bi->dma = dma_map_single(rx_ring->dev,
781 						 skb->data,
782 						 rx_ring->rx_buf_len,
783 						 DMA_FROM_DEVICE);
784 			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
785 				rx_ring->rx_stats.alloc_rx_buff_failed++;
786 				bi->dma = 0;
787 				goto no_buffers;
788 			}
789 		}
790 
791 		if (ring_is_ps_enabled(rx_ring)) {
792 			if (!bi->page) {
793 				bi->page = alloc_page(GFP_ATOMIC);
794 				if (!bi->page) {
795 					rx_ring->rx_stats.alloc_rx_page_failed++;
796 					goto no_buffers;
797 				}
798 			}
799 
800 			if (!bi->page_dma) {
801 				/* use a half page if we're re-using */
802 				bi->page_offset ^= PAGE_SIZE / 2;
803 				bi->page_dma = dma_map_page(rx_ring->dev,
804 							    bi->page,
805 							    bi->page_offset,
806 							    PAGE_SIZE / 2,
807 							    DMA_FROM_DEVICE);
808 				if (dma_mapping_error(rx_ring->dev,
809 						      bi->page_dma)) {
810 					rx_ring->rx_stats.alloc_rx_page_failed++;
811 					bi->page_dma = 0;
812 					goto no_buffers;
813 				}
814 			}
815 
816 			/* Refresh the desc even if buffer_addrs didn't change
817 			 * because each write-back erases this info.
818 			 */
819 			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
820 			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
821 		} else {
822 			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
823 			rx_desc->read.hdr_addr = 0;
824 		}
825 		i++;
826 		if (i == rx_ring->count)
827 			i = 0;
828 	}
829 
830 no_buffers:
831 	if (rx_ring->next_to_use != i)
832 		i40e_release_rx_desc(rx_ring, i);
833 }
834 
835 /**
836  * i40e_receive_skb - Send a completed packet up the stack
837  * @rx_ring:  rx ring in play
838  * @skb: packet to send up
839  * @vlan_tag: vlan tag for packet
840  **/
841 static void i40e_receive_skb(struct i40e_ring *rx_ring,
842 			     struct sk_buff *skb, u16 vlan_tag)
843 {
844 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
845 	struct i40e_vsi *vsi = rx_ring->vsi;
846 	u64 flags = vsi->back->flags;
847 
848 	if (vlan_tag & VLAN_VID_MASK)
849 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
850 
851 	if (flags & I40E_FLAG_IN_NETPOLL)
852 		netif_rx(skb);
853 	else
854 		napi_gro_receive(&q_vector->napi, skb);
855 }
856 
857 /**
858  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
859  * @vsi: the VSI we care about
860  * @skb: skb currently being received and modified
861  * @rx_status: status value of last descriptor in packet
862  * @rx_error: error value of last descriptor in packet
863  **/
864 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
865 				    struct sk_buff *skb,
866 				    u32 rx_status,
867 				    u32 rx_error)
868 {
869 	skb->ip_summed = CHECKSUM_NONE;
870 
871 	/* Rx csum enabled and ip headers found? */
872 	if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
873 	      rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
874 		return;
875 
876 	/* IP or L4 checksum error */
877 	if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
878 			(1 << I40E_RX_DESC_ERROR_L4E_SHIFT))) {
879 		vsi->back->hw_csum_rx_error++;
880 		return;
881 	}
882 
883 	skb->ip_summed = CHECKSUM_UNNECESSARY;
884 }
885 
886 /**
887  * i40e_rx_hash - returns the hash value from the Rx descriptor
888  * @ring: descriptor ring
889  * @rx_desc: specific descriptor
890  **/
891 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
892 			       union i40e_rx_desc *rx_desc)
893 {
894 	if (ring->netdev->features & NETIF_F_RXHASH) {
895 		if ((le64_to_cpu(rx_desc->wb.qword1.status_error_len) >>
896 		     I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
897 		    I40E_RX_DESC_FLTSTAT_RSS_HASH)
898 			return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
899 	}
900 	return 0;
901 }
902 
903 /**
904  * i40e_clean_rx_irq - Reclaim resources after receive completes
905  * @rx_ring:  rx ring to clean
906  * @budget:   how many cleans we're allowed
907  *
908  * Returns true if there's any budget left (e.g. the clean is finished)
909  **/
910 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
911 {
912 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
913 	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
914 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
915 	const int current_node = numa_node_id();
916 	struct i40e_vsi *vsi = rx_ring->vsi;
917 	u16 i = rx_ring->next_to_clean;
918 	union i40e_rx_desc *rx_desc;
919 	u32 rx_error, rx_status;
920 	u64 qword;
921 
922 	rx_desc = I40E_RX_DESC(rx_ring, i);
923 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
924 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
925 				>> I40E_RXD_QW1_STATUS_SHIFT;
926 
927 	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
928 		union i40e_rx_desc *next_rxd;
929 		struct i40e_rx_buffer *rx_bi;
930 		struct sk_buff *skb;
931 		u16 vlan_tag;
932 		if (i40e_rx_is_programming_status(qword)) {
933 			i40e_clean_programming_status(rx_ring, rx_desc);
934 			I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
935 			goto next_desc;
936 		}
937 		rx_bi = &rx_ring->rx_bi[i];
938 		skb = rx_bi->skb;
939 		prefetch(skb->data);
940 
941 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK)
942 					      >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
943 		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK)
944 					      >> I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
945 		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK)
946 					      >> I40E_RXD_QW1_LENGTH_SPH_SHIFT;
947 
948 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK)
949 					      >> I40E_RXD_QW1_ERROR_SHIFT;
950 		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
951 		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
952 
953 		rx_bi->skb = NULL;
954 
955 		/* This memory barrier is needed to keep us from reading
956 		 * any other fields out of the rx_desc until we know the
957 		 * STATUS_DD bit is set
958 		 */
959 		rmb();
960 
961 		/* Get the header and possibly the whole packet
962 		 * If this is an skb from previous receive dma will be 0
963 		 */
964 		if (rx_bi->dma) {
965 			u16 len;
966 
967 			if (rx_hbo)
968 				len = I40E_RX_HDR_SIZE;
969 			else if (rx_sph)
970 				len = rx_header_len;
971 			else if (rx_packet_len)
972 				len = rx_packet_len;   /* 1buf/no split found */
973 			else
974 				len = rx_header_len;   /* split always mode */
975 
976 			skb_put(skb, len);
977 			dma_unmap_single(rx_ring->dev,
978 					 rx_bi->dma,
979 					 rx_ring->rx_buf_len,
980 					 DMA_FROM_DEVICE);
981 			rx_bi->dma = 0;
982 		}
983 
984 		/* Get the rest of the data if this was a header split */
985 		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
986 
987 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
988 					   rx_bi->page,
989 					   rx_bi->page_offset,
990 					   rx_packet_len);
991 
992 			skb->len += rx_packet_len;
993 			skb->data_len += rx_packet_len;
994 			skb->truesize += rx_packet_len;
995 
996 			if ((page_count(rx_bi->page) == 1) &&
997 			    (page_to_nid(rx_bi->page) == current_node))
998 				get_page(rx_bi->page);
999 			else
1000 				rx_bi->page = NULL;
1001 
1002 			dma_unmap_page(rx_ring->dev,
1003 				       rx_bi->page_dma,
1004 				       PAGE_SIZE / 2,
1005 				       DMA_FROM_DEVICE);
1006 			rx_bi->page_dma = 0;
1007 		}
1008 		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1009 
1010 		if (unlikely(
1011 		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1012 			struct i40e_rx_buffer *next_buffer;
1013 
1014 			next_buffer = &rx_ring->rx_bi[i];
1015 
1016 			if (ring_is_ps_enabled(rx_ring)) {
1017 				rx_bi->skb = next_buffer->skb;
1018 				rx_bi->dma = next_buffer->dma;
1019 				next_buffer->skb = skb;
1020 				next_buffer->dma = 0;
1021 			}
1022 			rx_ring->rx_stats.non_eop_descs++;
1023 			goto next_desc;
1024 		}
1025 
1026 		/* ERR_MASK will only have valid bits if EOP set */
1027 		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1028 			dev_kfree_skb_any(skb);
1029 			goto next_desc;
1030 		}
1031 
1032 		skb->rxhash = i40e_rx_hash(rx_ring, rx_desc);
1033 		i40e_rx_checksum(vsi, skb, rx_status, rx_error);
1034 
1035 		/* probably a little skewed due to removing CRC */
1036 		total_rx_bytes += skb->len;
1037 		total_rx_packets++;
1038 
1039 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1040 		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1041 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1042 			 : 0;
1043 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1044 
1045 		rx_ring->netdev->last_rx = jiffies;
1046 		budget--;
1047 next_desc:
1048 		rx_desc->wb.qword1.status_error_len = 0;
1049 		if (!budget)
1050 			break;
1051 
1052 		cleaned_count++;
1053 		/* return some buffers to hardware, one at a time is too slow */
1054 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1055 			i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1056 			cleaned_count = 0;
1057 		}
1058 
1059 		/* use prefetched values */
1060 		rx_desc = next_rxd;
1061 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1062 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
1063 						>> I40E_RXD_QW1_STATUS_SHIFT;
1064 	}
1065 
1066 	rx_ring->next_to_clean = i;
1067 	u64_stats_update_begin(&rx_ring->syncp);
1068 	rx_ring->stats.packets += total_rx_packets;
1069 	rx_ring->stats.bytes += total_rx_bytes;
1070 	u64_stats_update_end(&rx_ring->syncp);
1071 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1072 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1073 
1074 	if (cleaned_count)
1075 		i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1076 
1077 	return budget > 0;
1078 }
1079 
1080 /**
1081  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1082  * @napi: napi struct with our devices info in it
1083  * @budget: amount of work driver is allowed to do this pass, in packets
1084  *
1085  * This function will clean all queues associated with a q_vector.
1086  *
1087  * Returns the amount of work done
1088  **/
1089 int i40e_napi_poll(struct napi_struct *napi, int budget)
1090 {
1091 	struct i40e_q_vector *q_vector =
1092 			       container_of(napi, struct i40e_q_vector, napi);
1093 	struct i40e_vsi *vsi = q_vector->vsi;
1094 	struct i40e_ring *ring;
1095 	bool clean_complete = true;
1096 	int budget_per_ring;
1097 
1098 	if (test_bit(__I40E_DOWN, &vsi->state)) {
1099 		napi_complete(napi);
1100 		return 0;
1101 	}
1102 
1103 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1104 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1105 	 */
1106 	i40e_for_each_ring(ring, q_vector->tx)
1107 		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1108 
1109 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1110 	 * allow the budget to go below 1 because that would exit polling early.
1111 	 */
1112 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1113 
1114 	i40e_for_each_ring(ring, q_vector->rx)
1115 		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1116 
1117 	/* If work not completed, return budget and polling will return */
1118 	if (!clean_complete)
1119 		return budget;
1120 
1121 	/* Work is done so exit the polling mode and re-enable the interrupt */
1122 	napi_complete(napi);
1123 	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1124 	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1125 		i40e_update_dynamic_itr(q_vector);
1126 
1127 	if (!test_bit(__I40E_DOWN, &vsi->state)) {
1128 		if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1129 			i40e_irq_dynamic_enable(vsi,
1130 					q_vector->v_idx + vsi->base_vector);
1131 		} else {
1132 			struct i40e_hw *hw = &vsi->back->hw;
1133 			/* We re-enable the queue 0 cause, but
1134 			 * don't worry about dynamic_enable
1135 			 * because we left it on for the other
1136 			 * possible interrupts during napi
1137 			 */
1138 			u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1139 			qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1140 			wr32(hw, I40E_QINT_RQCTL(0), qval);
1141 
1142 			qval = rd32(hw, I40E_QINT_TQCTL(0));
1143 			qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1144 			wr32(hw, I40E_QINT_TQCTL(0), qval);
1145 
1146 			i40e_irq_dynamic_enable_icr0(vsi->back);
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 /**
1154  * i40e_atr - Add a Flow Director ATR filter
1155  * @tx_ring:  ring to add programming descriptor to
1156  * @skb:      send buffer
1157  * @flags:    send flags
1158  * @protocol: wire protocol
1159  **/
1160 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1161 		     u32 flags, __be16 protocol)
1162 {
1163 	struct i40e_filter_program_desc *fdir_desc;
1164 	struct i40e_pf *pf = tx_ring->vsi->back;
1165 	union {
1166 		unsigned char *network;
1167 		struct iphdr *ipv4;
1168 		struct ipv6hdr *ipv6;
1169 	} hdr;
1170 	struct tcphdr *th;
1171 	unsigned int hlen;
1172 	u32 flex_ptype, dtype_cmd;
1173 	u16 i;
1174 
1175 	/* make sure ATR is enabled */
1176 	if (!(pf->flags & I40E_FLAG_FDIR_ATR_ENABLED))
1177 		return;
1178 
1179 	/* if sampling is disabled do nothing */
1180 	if (!tx_ring->atr_sample_rate)
1181 		return;
1182 
1183 	tx_ring->atr_count++;
1184 
1185 	/* snag network header to get L4 type and address */
1186 	hdr.network = skb_network_header(skb);
1187 
1188 	/* Currently only IPv4/IPv6 with TCP is supported */
1189 	if (protocol == htons(ETH_P_IP)) {
1190 		if (hdr.ipv4->protocol != IPPROTO_TCP)
1191 			return;
1192 
1193 		/* access ihl as a u8 to avoid unaligned access on ia64 */
1194 		hlen = (hdr.network[0] & 0x0F) << 2;
1195 	} else if (protocol == htons(ETH_P_IPV6)) {
1196 		if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1197 			return;
1198 
1199 		hlen = sizeof(struct ipv6hdr);
1200 	} else {
1201 		return;
1202 	}
1203 
1204 	th = (struct tcphdr *)(hdr.network + hlen);
1205 
1206 	/* sample on all syn/fin packets or once every atr sample rate */
1207 	if (!th->fin && !th->syn && (tx_ring->atr_count < tx_ring->atr_sample_rate))
1208 		return;
1209 
1210 	tx_ring->atr_count = 0;
1211 
1212 	/* grab the next descriptor */
1213 	i = tx_ring->next_to_use;
1214 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1215 
1216 	i++;
1217 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1218 
1219 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1220 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
1221 	flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1222 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1223 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1224 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1225 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1226 
1227 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1228 
1229 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1230 
1231 	dtype_cmd |= th->fin ?
1232 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1233 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1234 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1235 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1236 
1237 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1238 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
1239 
1240 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1241 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1242 
1243 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1244 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1245 }
1246 
1247 /**
1248  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1249  * @skb:     send buffer
1250  * @tx_ring: ring to send buffer on
1251  * @flags:   the tx flags to be set
1252  *
1253  * Checks the skb and set up correspondingly several generic transmit flags
1254  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1255  *
1256  * Returns error code indicate the frame should be dropped upon error and the
1257  * otherwise  returns 0 to indicate the flags has been set properly.
1258  **/
1259 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1260 				      struct i40e_ring *tx_ring,
1261 				      u32 *flags)
1262 {
1263 	__be16 protocol = skb->protocol;
1264 	u32  tx_flags = 0;
1265 
1266 	/* if we have a HW VLAN tag being added, default to the HW one */
1267 	if (vlan_tx_tag_present(skb)) {
1268 		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1269 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1270 	/* else if it is a SW VLAN, check the next protocol and store the tag */
1271 	} else if (protocol == __constant_htons(ETH_P_8021Q)) {
1272 		struct vlan_hdr *vhdr, _vhdr;
1273 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1274 		if (!vhdr)
1275 			return -EINVAL;
1276 
1277 		protocol = vhdr->h_vlan_encapsulated_proto;
1278 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1279 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1280 	}
1281 
1282 	/* Insert 802.1p priority into VLAN header */
1283 	if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1284 	    ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1285 	     (skb->priority != TC_PRIO_CONTROL))) {
1286 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1287 		tx_flags |= (skb->priority & 0x7) <<
1288 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1289 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1290 			struct vlan_ethhdr *vhdr;
1291 			if (skb_header_cloned(skb) &&
1292 			    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1293 				return -ENOMEM;
1294 			vhdr = (struct vlan_ethhdr *)skb->data;
1295 			vhdr->h_vlan_TCI = htons(tx_flags >>
1296 						 I40E_TX_FLAGS_VLAN_SHIFT);
1297 		} else {
1298 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1299 		}
1300 	}
1301 	*flags = tx_flags;
1302 	return 0;
1303 }
1304 
1305 /**
1306  * i40e_tso - set up the tso context descriptor
1307  * @tx_ring:  ptr to the ring to send
1308  * @skb:      ptr to the skb we're sending
1309  * @tx_flags: the collected send information
1310  * @protocol: the send protocol
1311  * @hdr_len:  ptr to the size of the packet header
1312  * @cd_tunneling: ptr to context descriptor bits
1313  *
1314  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1315  **/
1316 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1317 		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1318 		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1319 {
1320 	u32 cd_cmd, cd_tso_len, cd_mss;
1321 	struct tcphdr *tcph;
1322 	struct iphdr *iph;
1323 	u32 l4len;
1324 	int err;
1325 	struct ipv6hdr *ipv6h;
1326 
1327 	if (!skb_is_gso(skb))
1328 		return 0;
1329 
1330 	if (skb_header_cloned(skb)) {
1331 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1332 		if (err)
1333 			return err;
1334 	}
1335 
1336 	if (protocol == __constant_htons(ETH_P_IP)) {
1337 		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1338 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1339 		iph->tot_len = 0;
1340 		iph->check = 0;
1341 		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1342 						 0, IPPROTO_TCP, 0);
1343 	} else if (skb_is_gso_v6(skb)) {
1344 
1345 		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1346 					   : ipv6_hdr(skb);
1347 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1348 		ipv6h->payload_len = 0;
1349 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1350 					       0, IPPROTO_TCP, 0);
1351 	}
1352 
1353 	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1354 	*hdr_len = (skb->encapsulation
1355 		    ? (skb_inner_transport_header(skb) - skb->data)
1356 		    : skb_transport_offset(skb)) + l4len;
1357 
1358 	/* find the field values */
1359 	cd_cmd = I40E_TX_CTX_DESC_TSO;
1360 	cd_tso_len = skb->len - *hdr_len;
1361 	cd_mss = skb_shinfo(skb)->gso_size;
1362 	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT)
1363 			     | ((u64)cd_tso_len
1364 				<< I40E_TXD_CTX_QW1_TSO_LEN_SHIFT)
1365 			     | ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1366 	return 1;
1367 }
1368 
1369 /**
1370  * i40e_tx_enable_csum - Enable Tx checksum offloads
1371  * @skb: send buffer
1372  * @tx_flags: Tx flags currently set
1373  * @td_cmd: Tx descriptor command bits to set
1374  * @td_offset: Tx descriptor header offsets to set
1375  * @cd_tunneling: ptr to context desc bits
1376  **/
1377 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1378 				u32 *td_cmd, u32 *td_offset,
1379 				struct i40e_ring *tx_ring,
1380 				u32 *cd_tunneling)
1381 {
1382 	struct ipv6hdr *this_ipv6_hdr;
1383 	unsigned int this_tcp_hdrlen;
1384 	struct iphdr *this_ip_hdr;
1385 	u32 network_hdr_len;
1386 	u8 l4_hdr = 0;
1387 
1388 	if (skb->encapsulation) {
1389 		network_hdr_len = skb_inner_network_header_len(skb);
1390 		this_ip_hdr = inner_ip_hdr(skb);
1391 		this_ipv6_hdr = inner_ipv6_hdr(skb);
1392 		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1393 
1394 		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1395 
1396 			if (tx_flags & I40E_TX_FLAGS_TSO) {
1397 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1398 				ip_hdr(skb)->check = 0;
1399 			} else {
1400 				*cd_tunneling |=
1401 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1402 			}
1403 		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1404 			if (tx_flags & I40E_TX_FLAGS_TSO) {
1405 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1406 				ip_hdr(skb)->check = 0;
1407 			} else {
1408 				*cd_tunneling |=
1409 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1410 			}
1411 		}
1412 
1413 		/* Now set the ctx descriptor fields */
1414 		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1415 					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1416 				   I40E_TXD_CTX_UDP_TUNNELING            |
1417 				   ((skb_inner_network_offset(skb) -
1418 					skb_transport_offset(skb)) >> 1) <<
1419 				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1420 
1421 	} else {
1422 		network_hdr_len = skb_network_header_len(skb);
1423 		this_ip_hdr = ip_hdr(skb);
1424 		this_ipv6_hdr = ipv6_hdr(skb);
1425 		this_tcp_hdrlen = tcp_hdrlen(skb);
1426 	}
1427 
1428 	/* Enable IP checksum offloads */
1429 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1430 		l4_hdr = this_ip_hdr->protocol;
1431 		/* the stack computes the IP header already, the only time we
1432 		 * need the hardware to recompute it is in the case of TSO.
1433 		 */
1434 		if (tx_flags & I40E_TX_FLAGS_TSO) {
1435 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1436 			this_ip_hdr->check = 0;
1437 		} else {
1438 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1439 		}
1440 		/* Now set the td_offset for IP header length */
1441 		*td_offset = (network_hdr_len >> 2) <<
1442 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1443 	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1444 		l4_hdr = this_ipv6_hdr->nexthdr;
1445 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1446 		/* Now set the td_offset for IP header length */
1447 		*td_offset = (network_hdr_len >> 2) <<
1448 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1449 	}
1450 	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1451 	*td_offset |= (skb_network_offset(skb) >> 1) <<
1452 		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1453 
1454 	/* Enable L4 checksum offloads */
1455 	switch (l4_hdr) {
1456 	case IPPROTO_TCP:
1457 		/* enable checksum offloads */
1458 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1459 		*td_offset |= (this_tcp_hdrlen >> 2) <<
1460 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1461 		break;
1462 	case IPPROTO_SCTP:
1463 		/* enable SCTP checksum offload */
1464 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1465 		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1466 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1467 		break;
1468 	case IPPROTO_UDP:
1469 		/* enable UDP checksum offload */
1470 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1471 		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1472 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1473 		break;
1474 	default:
1475 		break;
1476 	}
1477 }
1478 
1479 /**
1480  * i40e_create_tx_ctx Build the Tx context descriptor
1481  * @tx_ring:  ring to create the descriptor on
1482  * @cd_type_cmd_tso_mss: Quad Word 1
1483  * @cd_tunneling: Quad Word 0 - bits 0-31
1484  * @cd_l2tag2: Quad Word 0 - bits 32-63
1485  **/
1486 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1487 			       const u64 cd_type_cmd_tso_mss,
1488 			       const u32 cd_tunneling, const u32 cd_l2tag2)
1489 {
1490 	struct i40e_tx_context_desc *context_desc;
1491 	int i = tx_ring->next_to_use;
1492 
1493 	if (!cd_type_cmd_tso_mss && !cd_tunneling && !cd_l2tag2)
1494 		return;
1495 
1496 	/* grab the next descriptor */
1497 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1498 
1499 	i++;
1500 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1501 
1502 	/* cpu_to_le32 and assign to struct fields */
1503 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1504 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1505 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1506 }
1507 
1508 /**
1509  * i40e_tx_map - Build the Tx descriptor
1510  * @tx_ring:  ring to send buffer on
1511  * @skb:      send buffer
1512  * @first:    first buffer info buffer to use
1513  * @tx_flags: collected send information
1514  * @hdr_len:  size of the packet header
1515  * @td_cmd:   the command field in the descriptor
1516  * @td_offset: offset for checksum or crc
1517  **/
1518 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1519 			struct i40e_tx_buffer *first, u32 tx_flags,
1520 			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1521 {
1522 	unsigned int data_len = skb->data_len;
1523 	unsigned int size = skb_headlen(skb);
1524 	struct skb_frag_struct *frag;
1525 	struct i40e_tx_buffer *tx_bi;
1526 	struct i40e_tx_desc *tx_desc;
1527 	u16 i = tx_ring->next_to_use;
1528 	u32 td_tag = 0;
1529 	dma_addr_t dma;
1530 	u16 gso_segs;
1531 
1532 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1533 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1534 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1535 			 I40E_TX_FLAGS_VLAN_SHIFT;
1536 	}
1537 
1538 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1539 		gso_segs = skb_shinfo(skb)->gso_segs;
1540 	else
1541 		gso_segs = 1;
1542 
1543 	/* multiply data chunks by size of headers */
1544 	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1545 	first->gso_segs = gso_segs;
1546 	first->skb = skb;
1547 	first->tx_flags = tx_flags;
1548 
1549 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1550 
1551 	tx_desc = I40E_TX_DESC(tx_ring, i);
1552 	tx_bi = first;
1553 
1554 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1555 		if (dma_mapping_error(tx_ring->dev, dma))
1556 			goto dma_error;
1557 
1558 		/* record length, and DMA address */
1559 		dma_unmap_len_set(tx_bi, len, size);
1560 		dma_unmap_addr_set(tx_bi, dma, dma);
1561 
1562 		tx_desc->buffer_addr = cpu_to_le64(dma);
1563 
1564 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1565 			tx_desc->cmd_type_offset_bsz =
1566 				build_ctob(td_cmd, td_offset,
1567 					   I40E_MAX_DATA_PER_TXD, td_tag);
1568 
1569 			tx_desc++;
1570 			i++;
1571 			if (i == tx_ring->count) {
1572 				tx_desc = I40E_TX_DESC(tx_ring, 0);
1573 				i = 0;
1574 			}
1575 
1576 			dma += I40E_MAX_DATA_PER_TXD;
1577 			size -= I40E_MAX_DATA_PER_TXD;
1578 
1579 			tx_desc->buffer_addr = cpu_to_le64(dma);
1580 		}
1581 
1582 		if (likely(!data_len))
1583 			break;
1584 
1585 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1586 							  size, td_tag);
1587 
1588 		tx_desc++;
1589 		i++;
1590 		if (i == tx_ring->count) {
1591 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1592 			i = 0;
1593 		}
1594 
1595 		size = skb_frag_size(frag);
1596 		data_len -= size;
1597 
1598 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1599 				       DMA_TO_DEVICE);
1600 
1601 		tx_bi = &tx_ring->tx_bi[i];
1602 	}
1603 
1604 	tx_desc->cmd_type_offset_bsz =
1605 		build_ctob(td_cmd, td_offset, size, td_tag) |
1606 		cpu_to_le64((u64)I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
1607 
1608 	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1609 						 tx_ring->queue_index),
1610 			     first->bytecount);
1611 
1612 	/* set the timestamp */
1613 	first->time_stamp = jiffies;
1614 
1615 	/* Force memory writes to complete before letting h/w
1616 	 * know there are new descriptors to fetch.  (Only
1617 	 * applicable for weak-ordered memory model archs,
1618 	 * such as IA-64).
1619 	 */
1620 	wmb();
1621 
1622 	/* set next_to_watch value indicating a packet is present */
1623 	first->next_to_watch = tx_desc;
1624 
1625 	i++;
1626 	if (i == tx_ring->count)
1627 		i = 0;
1628 
1629 	tx_ring->next_to_use = i;
1630 
1631 	/* notify HW of packet */
1632 	writel(i, tx_ring->tail);
1633 
1634 	return;
1635 
1636 dma_error:
1637 	dev_info(tx_ring->dev, "TX DMA map failed\n");
1638 
1639 	/* clear dma mappings for failed tx_bi map */
1640 	for (;;) {
1641 		tx_bi = &tx_ring->tx_bi[i];
1642 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1643 		if (tx_bi == first)
1644 			break;
1645 		if (i == 0)
1646 			i = tx_ring->count;
1647 		i--;
1648 	}
1649 
1650 	tx_ring->next_to_use = i;
1651 }
1652 
1653 /**
1654  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1655  * @tx_ring: the ring to be checked
1656  * @size:    the size buffer we want to assure is available
1657  *
1658  * Returns -EBUSY if a stop is needed, else 0
1659  **/
1660 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1661 {
1662 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1663 	smp_mb();
1664 
1665 	/* Check again in a case another CPU has just made room available. */
1666 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1667 		return -EBUSY;
1668 
1669 	/* A reprieve! - use start_queue because it doesn't call schedule */
1670 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1671 	++tx_ring->tx_stats.restart_queue;
1672 	return 0;
1673 }
1674 
1675 /**
1676  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1677  * @tx_ring: the ring to be checked
1678  * @size:    the size buffer we want to assure is available
1679  *
1680  * Returns 0 if stop is not needed
1681  **/
1682 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1683 {
1684 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1685 		return 0;
1686 	return __i40e_maybe_stop_tx(tx_ring, size);
1687 }
1688 
1689 /**
1690  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1691  * @skb:     send buffer
1692  * @tx_ring: ring to send buffer on
1693  *
1694  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1695  * there is not enough descriptors available in this ring since we need at least
1696  * one descriptor.
1697  **/
1698 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1699 				      struct i40e_ring *tx_ring)
1700 {
1701 #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1702 	unsigned int f;
1703 #endif
1704 	int count = 0;
1705 
1706 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1707 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1708 	 *       + 2 desc gap to keep tail from touching head,
1709 	 *       + 1 desc for context descriptor,
1710 	 * otherwise try next time
1711 	 */
1712 #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1713 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1714 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1715 #else
1716 	count += skb_shinfo(skb)->nr_frags;
1717 #endif
1718 	count += TXD_USE_COUNT(skb_headlen(skb));
1719 	if (i40e_maybe_stop_tx(tx_ring, count + 3)) {
1720 		tx_ring->tx_stats.tx_busy++;
1721 		return 0;
1722 	}
1723 	return count;
1724 }
1725 
1726 /**
1727  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1728  * @skb:     send buffer
1729  * @tx_ring: ring to send buffer on
1730  *
1731  * Returns NETDEV_TX_OK if sent, else an error code
1732  **/
1733 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1734 					struct i40e_ring *tx_ring)
1735 {
1736 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1737 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
1738 	struct i40e_tx_buffer *first;
1739 	u32 td_offset = 0;
1740 	u32 tx_flags = 0;
1741 	__be16 protocol;
1742 	u32 td_cmd = 0;
1743 	u8 hdr_len = 0;
1744 	int tso;
1745 	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1746 		return NETDEV_TX_BUSY;
1747 
1748 	/* prepare the xmit flags */
1749 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1750 		goto out_drop;
1751 
1752 	/* obtain protocol of skb */
1753 	protocol = skb->protocol;
1754 
1755 	/* record the location of the first descriptor for this packet */
1756 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
1757 
1758 	/* setup IPv4/IPv6 offloads */
1759 	if (protocol == __constant_htons(ETH_P_IP))
1760 		tx_flags |= I40E_TX_FLAGS_IPV4;
1761 	else if (protocol == __constant_htons(ETH_P_IPV6))
1762 		tx_flags |= I40E_TX_FLAGS_IPV6;
1763 
1764 	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1765 		       &cd_type_cmd_tso_mss, &cd_tunneling);
1766 
1767 	if (tso < 0)
1768 		goto out_drop;
1769 	else if (tso)
1770 		tx_flags |= I40E_TX_FLAGS_TSO;
1771 
1772 	skb_tx_timestamp(skb);
1773 
1774 	/* always enable CRC insertion offload */
1775 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
1776 
1777 	/* Always offload the checksum, since it's in the data descriptor */
1778 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1779 		tx_flags |= I40E_TX_FLAGS_CSUM;
1780 
1781 		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1782 				    tx_ring, &cd_tunneling);
1783 	}
1784 
1785 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1786 			   cd_tunneling, cd_l2tag2);
1787 
1788 	/* Add Flow Director ATR if it's enabled.
1789 	 *
1790 	 * NOTE: this must always be directly before the data descriptor.
1791 	 */
1792 	i40e_atr(tx_ring, skb, tx_flags, protocol);
1793 
1794 	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1795 		    td_cmd, td_offset);
1796 
1797 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1798 
1799 	return NETDEV_TX_OK;
1800 
1801 out_drop:
1802 	dev_kfree_skb_any(skb);
1803 	return NETDEV_TX_OK;
1804 }
1805 
1806 /**
1807  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1808  * @skb:    send buffer
1809  * @netdev: network interface device structure
1810  *
1811  * Returns NETDEV_TX_OK if sent, else an error code
1812  **/
1813 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1814 {
1815 	struct i40e_netdev_priv *np = netdev_priv(netdev);
1816 	struct i40e_vsi *vsi = np->vsi;
1817 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
1818 
1819 	/* hardware can't handle really short frames, hardware padding works
1820 	 * beyond this point
1821 	 */
1822 	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1823 		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1824 			return NETDEV_TX_OK;
1825 		skb->len = I40E_MIN_TX_LEN;
1826 		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1827 	}
1828 
1829 	return i40e_xmit_frame_ring(skb, tx_ring);
1830 }
1831