1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	/* Use LAN VSI Id if not programmed by user */
46 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
47 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
48 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
49 
50 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
51 
52 	dtype_cmd |= add ?
53 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
54 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
55 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
56 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
57 
58 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
59 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
62 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
63 
64 	if (fdata->cnt_index) {
65 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
67 			     ((u32)fdata->cnt_index <<
68 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
69 	}
70 
71 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
72 	fdir_desc->rsvd = cpu_to_le32(0);
73 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
74 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
75 }
76 
77 #define I40E_FD_CLEAN_DELAY 10
78 /**
79  * i40e_program_fdir_filter - Program a Flow Director filter
80  * @fdir_data: Packet data that will be filter parameters
81  * @raw_packet: the pre-allocated packet buffer for FDir
82  * @pf: The PF pointer
83  * @add: True for add/update, False for remove
84  **/
85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
86 				    u8 *raw_packet, struct i40e_pf *pf,
87 				    bool add)
88 {
89 	struct i40e_tx_buffer *tx_buf, *first;
90 	struct i40e_tx_desc *tx_desc;
91 	struct i40e_ring *tx_ring;
92 	struct i40e_vsi *vsi;
93 	struct device *dev;
94 	dma_addr_t dma;
95 	u32 td_cmd = 0;
96 	u16 i;
97 
98 	/* find existing FDIR VSI */
99 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
100 	if (!vsi)
101 		return -ENOENT;
102 
103 	tx_ring = vsi->tx_rings[0];
104 	dev = tx_ring->dev;
105 
106 	/* we need two descriptors to add/del a filter and we can wait */
107 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
108 		if (!i)
109 			return -EAGAIN;
110 		msleep_interruptible(1);
111 	}
112 
113 	dma = dma_map_single(dev, raw_packet,
114 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
115 	if (dma_mapping_error(dev, dma))
116 		goto dma_fail;
117 
118 	/* grab the next descriptor */
119 	i = tx_ring->next_to_use;
120 	first = &tx_ring->tx_bi[i];
121 	i40e_fdir(tx_ring, fdir_data, add);
122 
123 	/* Now program a dummy descriptor */
124 	i = tx_ring->next_to_use;
125 	tx_desc = I40E_TX_DESC(tx_ring, i);
126 	tx_buf = &tx_ring->tx_bi[i];
127 
128 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
129 
130 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
131 
132 	/* record length, and DMA address */
133 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
134 	dma_unmap_addr_set(tx_buf, dma, dma);
135 
136 	tx_desc->buffer_addr = cpu_to_le64(dma);
137 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
138 
139 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
140 	tx_buf->raw_buf = (void *)raw_packet;
141 
142 	tx_desc->cmd_type_offset_bsz =
143 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
144 
145 	/* Force memory writes to complete before letting h/w
146 	 * know there are new descriptors to fetch.
147 	 */
148 	wmb();
149 
150 	/* Mark the data descriptor to be watched */
151 	first->next_to_watch = tx_desc;
152 
153 	writel(tx_ring->next_to_use, tx_ring->tail);
154 	return 0;
155 
156 dma_fail:
157 	return -1;
158 }
159 
160 /**
161  * i40e_create_dummy_packet - Constructs dummy packet for HW
162  * @dummy_packet: preallocated space for dummy packet
163  * @ipv4: is layer 3 packet of version 4 or 6
164  * @l4proto: next level protocol used in data portion of l3
165  * @data: filter data
166  *
167  * Returns address of layer 4 protocol dummy packet.
168  **/
169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
170 				      struct i40e_fdir_filter *data)
171 {
172 	bool is_vlan = !!data->vlan_tag;
173 	struct vlan_hdr vlan;
174 	struct ipv6hdr ipv6;
175 	struct ethhdr eth;
176 	struct iphdr ip;
177 	u8 *tmp;
178 
179 	if (ipv4) {
180 		eth.h_proto = cpu_to_be16(ETH_P_IP);
181 		ip.protocol = l4proto;
182 		ip.version = 0x4;
183 		ip.ihl = 0x5;
184 
185 		ip.daddr = data->dst_ip;
186 		ip.saddr = data->src_ip;
187 	} else {
188 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
189 		ipv6.nexthdr = l4proto;
190 		ipv6.version = 0x6;
191 
192 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
193 		       sizeof(__be32) * 4);
194 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
195 		       sizeof(__be32) * 4);
196 	}
197 
198 	if (is_vlan) {
199 		vlan.h_vlan_TCI = data->vlan_tag;
200 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
201 		eth.h_proto = data->vlan_etype;
202 	}
203 
204 	tmp = dummy_packet;
205 	memcpy(tmp, &eth, sizeof(eth));
206 	tmp += sizeof(eth);
207 
208 	if (is_vlan) {
209 		memcpy(tmp, &vlan, sizeof(vlan));
210 		tmp += sizeof(vlan);
211 	}
212 
213 	if (ipv4) {
214 		memcpy(tmp, &ip, sizeof(ip));
215 		tmp += sizeof(ip);
216 	} else {
217 		memcpy(tmp, &ipv6, sizeof(ipv6));
218 		tmp += sizeof(ipv6);
219 	}
220 
221 	return tmp;
222 }
223 
224 /**
225  * i40e_create_dummy_udp_packet - helper function to create UDP packet
226  * @raw_packet: preallocated space for dummy packet
227  * @ipv4: is layer 3 packet of version 4 or 6
228  * @l4proto: next level protocol used in data portion of l3
229  * @data: filter data
230  *
231  * Helper function to populate udp fields.
232  **/
233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
234 					 struct i40e_fdir_filter *data)
235 {
236 	struct udphdr *udp;
237 	u8 *tmp;
238 
239 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
240 	udp = (struct udphdr *)(tmp);
241 	udp->dest = data->dst_port;
242 	udp->source = data->src_port;
243 }
244 
245 /**
246  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
247  * @raw_packet: preallocated space for dummy packet
248  * @ipv4: is layer 3 packet of version 4 or 6
249  * @l4proto: next level protocol used in data portion of l3
250  * @data: filter data
251  *
252  * Helper function to populate tcp fields.
253  **/
254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
255 					 struct i40e_fdir_filter *data)
256 {
257 	struct tcphdr *tcp;
258 	u8 *tmp;
259 	/* Dummy tcp packet */
260 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
261 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
262 
263 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
264 
265 	tcp = (struct tcphdr *)tmp;
266 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
267 	tcp->dest = data->dst_port;
268 	tcp->source = data->src_port;
269 }
270 
271 /**
272  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
273  * @raw_packet: preallocated space for dummy packet
274  * @ipv4: is layer 3 packet of version 4 or 6
275  * @l4proto: next level protocol used in data portion of l3
276  * @data: filter data
277  *
278  * Helper function to populate sctp fields.
279  **/
280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
281 					  u8 l4proto,
282 					  struct i40e_fdir_filter *data)
283 {
284 	struct sctphdr *sctp;
285 	u8 *tmp;
286 
287 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
288 
289 	sctp = (struct sctphdr *)tmp;
290 	sctp->dest = data->dst_port;
291 	sctp->source = data->src_port;
292 }
293 
294 /**
295  * i40e_prepare_fdir_filter - Prepare and program fdir filter
296  * @pf: physical function to attach filter to
297  * @fd_data: filter data
298  * @add: add or delete filter
299  * @packet_addr: address of dummy packet, used in filtering
300  * @payload_offset: offset from dummy packet address to user defined data
301  * @pctype: Packet type for which filter is used
302  *
303  * Helper function to offset data of dummy packet, program it and
304  * handle errors.
305  **/
306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
307 				    struct i40e_fdir_filter *fd_data,
308 				    bool add, char *packet_addr,
309 				    int payload_offset, u8 pctype)
310 {
311 	int ret;
312 
313 	if (fd_data->flex_filter) {
314 		u8 *payload;
315 		__be16 pattern = fd_data->flex_word;
316 		u16 off = fd_data->flex_offset;
317 
318 		payload = packet_addr + payload_offset;
319 
320 		/* If user provided vlan, offset payload by vlan header length */
321 		if (!!fd_data->vlan_tag)
322 			payload += VLAN_HLEN;
323 
324 		*((__force __be16 *)(payload + off)) = pattern;
325 	}
326 
327 	fd_data->pctype = pctype;
328 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
329 	if (ret) {
330 		dev_info(&pf->pdev->dev,
331 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
332 			 fd_data->pctype, fd_data->fd_id, ret);
333 		/* Free the packet buffer since it wasn't added to the ring */
334 		return -EOPNOTSUPP;
335 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
336 		if (add)
337 			dev_info(&pf->pdev->dev,
338 				 "Filter OK for PCTYPE %d loc = %d\n",
339 				 fd_data->pctype, fd_data->fd_id);
340 		else
341 			dev_info(&pf->pdev->dev,
342 				 "Filter deleted for PCTYPE %d loc = %d\n",
343 				 fd_data->pctype, fd_data->fd_id);
344 	}
345 
346 	return ret;
347 }
348 
349 /**
350  * i40e_change_filter_num - Prepare and program fdir filter
351  * @ipv4: is layer 3 packet of version 4 or 6
352  * @add: add or delete filter
353  * @ipv4_filter_num: field to update
354  * @ipv6_filter_num: field to update
355  *
356  * Update filter number field for pf.
357  **/
358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
359 				   u16 *ipv6_filter_num)
360 {
361 	if (add) {
362 		if (ipv4)
363 			(*ipv4_filter_num)++;
364 		else
365 			(*ipv6_filter_num)++;
366 	} else {
367 		if (ipv4)
368 			(*ipv4_filter_num)--;
369 		else
370 			(*ipv6_filter_num)--;
371 	}
372 }
373 
374 #define IP_HEADER_OFFSET		14
375 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377 /**
378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
379  * @vsi: pointer to the targeted VSI
380  * @fd_data: the flow director data required for the FDir descriptor
381  * @add: true adds a filter, false removes it
382  * @ipv4: true is v4, false is v6
383  *
384  * Returns 0 if the filters were successfully added or removed
385  **/
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 				 struct i40e_fdir_filter *fd_data,
388 				 bool add,
389 				 bool ipv4)
390 {
391 	struct i40e_pf *pf = vsi->back;
392 	u8 *raw_packet;
393 	int ret;
394 
395 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 	if (!raw_packet)
397 		return -ENOMEM;
398 
399 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400 
401 	if (ipv4)
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 	else
407 		ret = i40e_prepare_fdir_filter
408 			(pf, fd_data, add, raw_packet,
409 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411 
412 	if (ret) {
413 		kfree(raw_packet);
414 		return ret;
415 	}
416 
417 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 			       &pf->fd_udp6_filter_cnt);
419 
420 	return 0;
421 }
422 
423 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425 /**
426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427  * @vsi: pointer to the targeted VSI
428  * @fd_data: the flow director data required for the FDir descriptor
429  * @add: true adds a filter, false removes it
430  * @ipv4: true is v4, false is v6
431  *
432  * Returns 0 if the filters were successfully added or removed
433  **/
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 				 struct i40e_fdir_filter *fd_data,
436 				 bool add,
437 				 bool ipv4)
438 {
439 	struct i40e_pf *pf = vsi->back;
440 	u8 *raw_packet;
441 	int ret;
442 
443 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 	if (!raw_packet)
445 		return -ENOMEM;
446 
447 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 	if (ipv4)
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 	else
454 		ret = i40e_prepare_fdir_filter
455 			(pf, fd_data, add, raw_packet,
456 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458 
459 	if (ret) {
460 		kfree(raw_packet);
461 		return ret;
462 	}
463 
464 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 			       &pf->fd_tcp6_filter_cnt);
466 
467 	if (add) {
468 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 		    I40E_DEBUG_FD & pf->hw.debug_mask)
470 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 	}
473 	return 0;
474 }
475 
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478 /**
479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480  * a specific flow spec
481  * @vsi: pointer to the targeted VSI
482  * @fd_data: the flow director data required for the FDir descriptor
483  * @add: true adds a filter, false removes it
484  * @ipv4: true is v4, false is v6
485  *
486  * Returns 0 if the filters were successfully added or removed
487  **/
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 				  struct i40e_fdir_filter *fd_data,
490 				  bool add,
491 				  bool ipv4)
492 {
493 	struct i40e_pf *pf = vsi->back;
494 	u8 *raw_packet;
495 	int ret;
496 
497 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 	if (!raw_packet)
499 		return -ENOMEM;
500 
501 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502 
503 	if (ipv4)
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 	else
509 		ret = i40e_prepare_fdir_filter
510 			(pf, fd_data, add, raw_packet,
511 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513 
514 	if (ret) {
515 		kfree(raw_packet);
516 		return ret;
517 	}
518 
519 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 			       &pf->fd_sctp6_filter_cnt);
521 
522 	return 0;
523 }
524 
525 #define I40E_IP_DUMMY_PACKET_LEN	34
526 #define I40E_IP6_DUMMY_PACKET_LEN	54
527 /**
528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529  * a specific flow spec
530  * @vsi: pointer to the targeted VSI
531  * @fd_data: the flow director data required for the FDir descriptor
532  * @add: true adds a filter, false removes it
533  * @ipv4: true is v4, false is v6
534  *
535  * Returns 0 if the filters were successfully added or removed
536  **/
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 				struct i40e_fdir_filter *fd_data,
539 				bool add,
540 				bool ipv4)
541 {
542 	struct i40e_pf *pf = vsi->back;
543 	int payload_offset;
544 	u8 *raw_packet;
545 	int iter_start;
546 	int iter_end;
547 	int ret;
548 	int i;
549 
550 	if (ipv4) {
551 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 	} else {
554 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 	}
557 
558 	for (i = iter_start; i <= iter_end; i++) {
559 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 		if (!raw_packet)
561 			return -ENOMEM;
562 
563 		/* IPv6 no header option differs from IPv4 */
564 		(void)i40e_create_dummy_packet
565 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 			 fd_data);
567 
568 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 			I40E_IP6_DUMMY_PACKET_LEN;
570 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 					       payload_offset, i);
572 		if (ret)
573 			goto err;
574 	}
575 
576 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 			       &pf->fd_ip6_filter_cnt);
578 
579 	return 0;
580 err:
581 	kfree(raw_packet);
582 	return ret;
583 }
584 
585 /**
586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587  * @vsi: pointer to the targeted VSI
588  * @input: filter to add or delete
589  * @add: true adds a filter, false removes it
590  *
591  **/
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 		      struct i40e_fdir_filter *input, bool add)
594 {
595 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 	struct i40e_pf *pf = vsi->back;
597 	int ret;
598 
599 	switch (input->flow_type & ~FLOW_EXT) {
600 	case TCP_V4_FLOW:
601 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 		break;
603 	case UDP_V4_FLOW:
604 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 		break;
606 	case SCTP_V4_FLOW:
607 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 		break;
609 	case TCP_V6_FLOW:
610 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 		break;
612 	case UDP_V6_FLOW:
613 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 		break;
615 	case SCTP_V6_FLOW:
616 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 		break;
618 	case IP_USER_FLOW:
619 		switch (input->ipl4_proto) {
620 		case IPPROTO_TCP:
621 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_UDP:
624 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 			break;
626 		case IPPROTO_SCTP:
627 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 			break;
629 		case IPPROTO_IP:
630 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 			break;
632 		default:
633 			/* We cannot support masking based on protocol */
634 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 				 input->ipl4_proto);
636 			return -EINVAL;
637 		}
638 		break;
639 	case IPV6_USER_FLOW:
640 		switch (input->ipl4_proto) {
641 		case IPPROTO_TCP:
642 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_UDP:
645 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 			break;
647 		case IPPROTO_SCTP:
648 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 			break;
650 		case IPPROTO_IP:
651 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 			break;
653 		default:
654 			/* We cannot support masking based on protocol */
655 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 				 input->ipl4_proto);
657 			return -EINVAL;
658 		}
659 		break;
660 	default:
661 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 			 input->flow_type);
663 		return -EINVAL;
664 	}
665 
666 	/* The buffer allocated here will be normally be freed by
667 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 	 * completion. In the event of an error adding the buffer to the FDIR
669 	 * ring, it will immediately be freed. It may also be freed by
670 	 * i40e_clean_tx_ring() when closing the VSI.
671 	 */
672 	return ret;
673 }
674 
675 /**
676  * i40e_fd_handle_status - check the Programming Status for FD
677  * @rx_ring: the Rx ring for this descriptor
678  * @qword0_raw: qword0
679  * @qword1: qword1 after le_to_cpu
680  * @prog_id: the id originally used for programming
681  *
682  * This is used to verify if the FD programming or invalidation
683  * requested by SW to the HW is successful or not and take actions accordingly.
684  **/
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 				  u64 qword1, u8 prog_id)
687 {
688 	struct i40e_pf *pf = rx_ring->vsi->back;
689 	struct pci_dev *pdev = pf->pdev;
690 	struct i40e_16b_rx_wb_qw0 *qw0;
691 	u32 fcnt_prog, fcnt_avail;
692 	u32 error;
693 
694 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697 
698 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 		if (qw0->hi_dword.fd_id != 0 ||
701 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 				 pf->fd_inv);
704 
705 		/* Check if the programming error is for ATR.
706 		 * If so, auto disable ATR and set a state for
707 		 * flush in progress. Next time we come here if flush is in
708 		 * progress do nothing, once flush is complete the state will
709 		 * be cleared.
710 		 */
711 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 			return;
713 
714 		pf->fd_add_err++;
715 		/* store the current atr filter count */
716 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717 
718 		if (qw0->hi_dword.fd_id == 0 &&
719 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 			/* These set_bit() calls aren't atomic with the
721 			 * test_bit() here, but worse case we potentially
722 			 * disable ATR and queue a flush right after SB
723 			 * support is re-enabled. That shouldn't cause an
724 			 * issue in practice
725 			 */
726 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 		}
729 
730 		/* filter programming failed most likely due to table full */
731 		fcnt_prog = i40e_get_global_fd_count(pf);
732 		fcnt_avail = pf->fdir_pf_filter_count;
733 		/* If ATR is running fcnt_prog can quickly change,
734 		 * if we are very close to full, it makes sense to disable
735 		 * FD ATR/SB and then re-enable it when there is room.
736 		 */
737 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 					      pf->state))
741 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 		}
744 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 				 qw0->hi_dword.fd_id);
748 	}
749 }
750 
751 /**
752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753  * @ring:      the ring that owns the buffer
754  * @tx_buffer: the buffer to free
755  **/
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 					    struct i40e_tx_buffer *tx_buffer)
758 {
759 	if (tx_buffer->skb) {
760 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 			kfree(tx_buffer->raw_buf);
762 		else if (ring_is_xdp(ring))
763 			xdp_return_frame(tx_buffer->xdpf);
764 		else
765 			dev_kfree_skb_any(tx_buffer->skb);
766 		if (dma_unmap_len(tx_buffer, len))
767 			dma_unmap_single(ring->dev,
768 					 dma_unmap_addr(tx_buffer, dma),
769 					 dma_unmap_len(tx_buffer, len),
770 					 DMA_TO_DEVICE);
771 	} else if (dma_unmap_len(tx_buffer, len)) {
772 		dma_unmap_page(ring->dev,
773 			       dma_unmap_addr(tx_buffer, dma),
774 			       dma_unmap_len(tx_buffer, len),
775 			       DMA_TO_DEVICE);
776 	}
777 
778 	tx_buffer->next_to_watch = NULL;
779 	tx_buffer->skb = NULL;
780 	dma_unmap_len_set(tx_buffer, len, 0);
781 	/* tx_buffer must be completely set up in the transmit path */
782 }
783 
784 /**
785  * i40e_clean_tx_ring - Free any empty Tx buffers
786  * @tx_ring: ring to be cleaned
787  **/
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 	unsigned long bi_size;
791 	u16 i;
792 
793 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 		i40e_xsk_clean_tx_ring(tx_ring);
795 	} else {
796 		/* ring already cleared, nothing to do */
797 		if (!tx_ring->tx_bi)
798 			return;
799 
800 		/* Free all the Tx ring sk_buffs */
801 		for (i = 0; i < tx_ring->count; i++)
802 			i40e_unmap_and_free_tx_resource(tx_ring,
803 							&tx_ring->tx_bi[i]);
804 	}
805 
806 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 	memset(tx_ring->tx_bi, 0, bi_size);
808 
809 	/* Zero out the descriptor ring */
810 	memset(tx_ring->desc, 0, tx_ring->size);
811 
812 	tx_ring->next_to_use = 0;
813 	tx_ring->next_to_clean = 0;
814 
815 	if (!tx_ring->netdev)
816 		return;
817 
818 	/* cleanup Tx queue statistics */
819 	netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821 
822 /**
823  * i40e_free_tx_resources - Free Tx resources per queue
824  * @tx_ring: Tx descriptor ring for a specific queue
825  *
826  * Free all transmit software resources
827  **/
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 	i40e_clean_tx_ring(tx_ring);
831 	kfree(tx_ring->tx_bi);
832 	tx_ring->tx_bi = NULL;
833 	kfree(tx_ring->xsk_descs);
834 	tx_ring->xsk_descs = NULL;
835 
836 	if (tx_ring->desc) {
837 		dma_free_coherent(tx_ring->dev, tx_ring->size,
838 				  tx_ring->desc, tx_ring->dma);
839 		tx_ring->desc = NULL;
840 	}
841 }
842 
843 /**
844  * i40e_get_tx_pending - how many tx descriptors not processed
845  * @ring: the ring of descriptors
846  * @in_sw: use SW variables
847  *
848  * Since there is no access to the ring head register
849  * in XL710, we need to use our local copies
850  **/
851 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
852 {
853 	u32 head, tail;
854 
855 	if (!in_sw) {
856 		head = i40e_get_head(ring);
857 		tail = readl(ring->tail);
858 	} else {
859 		head = ring->next_to_clean;
860 		tail = ring->next_to_use;
861 	}
862 
863 	if (head != tail)
864 		return (head < tail) ?
865 			tail - head : (tail + ring->count - head);
866 
867 	return 0;
868 }
869 
870 /**
871  * i40e_detect_recover_hung - Function to detect and recover hung_queues
872  * @vsi:  pointer to vsi struct with tx queues
873  *
874  * VSI has netdev and netdev has TX queues. This function is to check each of
875  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
876  **/
877 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
878 {
879 	struct i40e_ring *tx_ring = NULL;
880 	struct net_device *netdev;
881 	unsigned int i;
882 	int packets;
883 
884 	if (!vsi)
885 		return;
886 
887 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
888 		return;
889 
890 	netdev = vsi->netdev;
891 	if (!netdev)
892 		return;
893 
894 	if (!netif_carrier_ok(netdev))
895 		return;
896 
897 	for (i = 0; i < vsi->num_queue_pairs; i++) {
898 		tx_ring = vsi->tx_rings[i];
899 		if (tx_ring && tx_ring->desc) {
900 			/* If packet counter has not changed the queue is
901 			 * likely stalled, so force an interrupt for this
902 			 * queue.
903 			 *
904 			 * prev_pkt_ctr would be negative if there was no
905 			 * pending work.
906 			 */
907 			packets = tx_ring->stats.packets & INT_MAX;
908 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
909 				i40e_force_wb(vsi, tx_ring->q_vector);
910 				continue;
911 			}
912 
913 			/* Memory barrier between read of packet count and call
914 			 * to i40e_get_tx_pending()
915 			 */
916 			smp_rmb();
917 			tx_ring->tx_stats.prev_pkt_ctr =
918 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
919 		}
920 	}
921 }
922 
923 /**
924  * i40e_clean_tx_irq - Reclaim resources after transmit completes
925  * @vsi: the VSI we care about
926  * @tx_ring: Tx ring to clean
927  * @napi_budget: Used to determine if we are in netpoll
928  *
929  * Returns true if there's any budget left (e.g. the clean is finished)
930  **/
931 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
932 			      struct i40e_ring *tx_ring, int napi_budget)
933 {
934 	int i = tx_ring->next_to_clean;
935 	struct i40e_tx_buffer *tx_buf;
936 	struct i40e_tx_desc *tx_head;
937 	struct i40e_tx_desc *tx_desc;
938 	unsigned int total_bytes = 0, total_packets = 0;
939 	unsigned int budget = vsi->work_limit;
940 
941 	tx_buf = &tx_ring->tx_bi[i];
942 	tx_desc = I40E_TX_DESC(tx_ring, i);
943 	i -= tx_ring->count;
944 
945 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946 
947 	do {
948 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949 
950 		/* if next_to_watch is not set then there is no work pending */
951 		if (!eop_desc)
952 			break;
953 
954 		/* prevent any other reads prior to eop_desc */
955 		smp_rmb();
956 
957 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 		/* we have caught up to head, no work left to do */
959 		if (tx_head == tx_desc)
960 			break;
961 
962 		/* clear next_to_watch to prevent false hangs */
963 		tx_buf->next_to_watch = NULL;
964 
965 		/* update the statistics for this packet */
966 		total_bytes += tx_buf->bytecount;
967 		total_packets += tx_buf->gso_segs;
968 
969 		/* free the skb/XDP data */
970 		if (ring_is_xdp(tx_ring))
971 			xdp_return_frame(tx_buf->xdpf);
972 		else
973 			napi_consume_skb(tx_buf->skb, napi_budget);
974 
975 		/* unmap skb header data */
976 		dma_unmap_single(tx_ring->dev,
977 				 dma_unmap_addr(tx_buf, dma),
978 				 dma_unmap_len(tx_buf, len),
979 				 DMA_TO_DEVICE);
980 
981 		/* clear tx_buffer data */
982 		tx_buf->skb = NULL;
983 		dma_unmap_len_set(tx_buf, len, 0);
984 
985 		/* unmap remaining buffers */
986 		while (tx_desc != eop_desc) {
987 			i40e_trace(clean_tx_irq_unmap,
988 				   tx_ring, tx_desc, tx_buf);
989 
990 			tx_buf++;
991 			tx_desc++;
992 			i++;
993 			if (unlikely(!i)) {
994 				i -= tx_ring->count;
995 				tx_buf = tx_ring->tx_bi;
996 				tx_desc = I40E_TX_DESC(tx_ring, 0);
997 			}
998 
999 			/* unmap any remaining paged data */
1000 			if (dma_unmap_len(tx_buf, len)) {
1001 				dma_unmap_page(tx_ring->dev,
1002 					       dma_unmap_addr(tx_buf, dma),
1003 					       dma_unmap_len(tx_buf, len),
1004 					       DMA_TO_DEVICE);
1005 				dma_unmap_len_set(tx_buf, len, 0);
1006 			}
1007 		}
1008 
1009 		/* move us one more past the eop_desc for start of next pkt */
1010 		tx_buf++;
1011 		tx_desc++;
1012 		i++;
1013 		if (unlikely(!i)) {
1014 			i -= tx_ring->count;
1015 			tx_buf = tx_ring->tx_bi;
1016 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 		}
1018 
1019 		prefetch(tx_desc);
1020 
1021 		/* update budget accounting */
1022 		budget--;
1023 	} while (likely(budget));
1024 
1025 	i += tx_ring->count;
1026 	tx_ring->next_to_clean = i;
1027 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 	i40e_arm_wb(tx_ring, vsi, budget);
1029 
1030 	if (ring_is_xdp(tx_ring))
1031 		return !!budget;
1032 
1033 	/* notify netdev of completed buffers */
1034 	netdev_tx_completed_queue(txring_txq(tx_ring),
1035 				  total_packets, total_bytes);
1036 
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 		/* Make sure that anybody stopping the queue after this
1041 		 * sees the new next_to_clean.
1042 		 */
1043 		smp_mb();
1044 		if (__netif_subqueue_stopped(tx_ring->netdev,
1045 					     tx_ring->queue_index) &&
1046 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 			netif_wake_subqueue(tx_ring->netdev,
1048 					    tx_ring->queue_index);
1049 			++tx_ring->tx_stats.restart_queue;
1050 		}
1051 	}
1052 
1053 	return !!budget;
1054 }
1055 
1056 /**
1057  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1058  * @vsi: the VSI we care about
1059  * @q_vector: the vector on which to enable writeback
1060  *
1061  **/
1062 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1063 				  struct i40e_q_vector *q_vector)
1064 {
1065 	u16 flags = q_vector->tx.ring[0].flags;
1066 	u32 val;
1067 
1068 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069 		return;
1070 
1071 	if (q_vector->arm_wb_state)
1072 		return;
1073 
1074 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1075 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1076 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1077 
1078 		wr32(&vsi->back->hw,
1079 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080 		     val);
1081 	} else {
1082 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1083 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1084 
1085 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1086 	}
1087 	q_vector->arm_wb_state = true;
1088 }
1089 
1090 /**
1091  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1092  * @vsi: the VSI we care about
1093  * @q_vector: the vector  on which to force writeback
1094  *
1095  **/
1096 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1097 {
1098 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1099 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1100 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1101 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1102 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1103 			  /* allow 00 to be written to the index */
1104 
1105 		wr32(&vsi->back->hw,
1106 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1107 	} else {
1108 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1109 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1110 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1111 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1112 			/* allow 00 to be written to the index */
1113 
1114 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1115 	}
1116 }
1117 
1118 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1119 					struct i40e_ring_container *rc)
1120 {
1121 	return &q_vector->rx == rc;
1122 }
1123 
1124 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1125 {
1126 	unsigned int divisor;
1127 
1128 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1129 	case I40E_LINK_SPEED_40GB:
1130 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1131 		break;
1132 	case I40E_LINK_SPEED_25GB:
1133 	case I40E_LINK_SPEED_20GB:
1134 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135 		break;
1136 	default:
1137 	case I40E_LINK_SPEED_10GB:
1138 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1139 		break;
1140 	case I40E_LINK_SPEED_1GB:
1141 	case I40E_LINK_SPEED_100MB:
1142 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1143 		break;
1144 	}
1145 
1146 	return divisor;
1147 }
1148 
1149 /**
1150  * i40e_update_itr - update the dynamic ITR value based on statistics
1151  * @q_vector: structure containing interrupt and ring information
1152  * @rc: structure containing ring performance data
1153  *
1154  * Stores a new ITR value based on packets and byte
1155  * counts during the last interrupt.  The advantage of per interrupt
1156  * computation is faster updates and more accurate ITR for the current
1157  * traffic pattern.  Constants in this function were computed
1158  * based on theoretical maximum wire speed and thresholds were set based
1159  * on testing data as well as attempting to minimize response time
1160  * while increasing bulk throughput.
1161  **/
1162 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1163 			    struct i40e_ring_container *rc)
1164 {
1165 	unsigned int avg_wire_size, packets, bytes, itr;
1166 	unsigned long next_update = jiffies;
1167 
1168 	/* If we don't have any rings just leave ourselves set for maximum
1169 	 * possible latency so we take ourselves out of the equation.
1170 	 */
1171 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172 		return;
1173 
1174 	/* For Rx we want to push the delay up and default to low latency.
1175 	 * for Tx we want to pull the delay down and default to high latency.
1176 	 */
1177 	itr = i40e_container_is_rx(q_vector, rc) ?
1178 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1179 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1180 
1181 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1182 	 * that either packets are coming in so slow there hasn't been
1183 	 * any work, or that there is so much work that NAPI is dealing
1184 	 * with interrupt moderation and we don't need to do anything.
1185 	 */
1186 	if (time_after(next_update, rc->next_update))
1187 		goto clear_counts;
1188 
1189 	/* If itr_countdown is set it means we programmed an ITR within
1190 	 * the last 4 interrupt cycles. This has a side effect of us
1191 	 * potentially firing an early interrupt. In order to work around
1192 	 * this we need to throw out any data received for a few
1193 	 * interrupts following the update.
1194 	 */
1195 	if (q_vector->itr_countdown) {
1196 		itr = rc->target_itr;
1197 		goto clear_counts;
1198 	}
1199 
1200 	packets = rc->total_packets;
1201 	bytes = rc->total_bytes;
1202 
1203 	if (i40e_container_is_rx(q_vector, rc)) {
1204 		/* If Rx there are 1 to 4 packets and bytes are less than
1205 		 * 9000 assume insufficient data to use bulk rate limiting
1206 		 * approach unless Tx is already in bulk rate limiting. We
1207 		 * are likely latency driven.
1208 		 */
1209 		if (packets && packets < 4 && bytes < 9000 &&
1210 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1211 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1212 			goto adjust_by_size;
1213 		}
1214 	} else if (packets < 4) {
1215 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1216 		 * bulk mode and we are receiving 4 or fewer packets just
1217 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1218 		 * that the Rx can relax.
1219 		 */
1220 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1221 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1222 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1223 			goto clear_counts;
1224 	} else if (packets > 32) {
1225 		/* If we have processed over 32 packets in a single interrupt
1226 		 * for Tx assume we need to switch over to "bulk" mode.
1227 		 */
1228 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229 	}
1230 
1231 	/* We have no packets to actually measure against. This means
1232 	 * either one of the other queues on this vector is active or
1233 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1234 	 *
1235 	 * Between 4 and 56 we can assume that our current interrupt delay
1236 	 * is only slightly too low. As such we should increase it by a small
1237 	 * fixed amount.
1238 	 */
1239 	if (packets < 56) {
1240 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1241 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1242 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1243 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1244 		}
1245 		goto clear_counts;
1246 	}
1247 
1248 	if (packets <= 256) {
1249 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1250 		itr &= I40E_ITR_MASK;
1251 
1252 		/* Between 56 and 112 is our "goldilocks" zone where we are
1253 		 * working out "just right". Just report that our current
1254 		 * ITR is good for us.
1255 		 */
1256 		if (packets <= 112)
1257 			goto clear_counts;
1258 
1259 		/* If packet count is 128 or greater we are likely looking
1260 		 * at a slight overrun of the delay we want. Try halving
1261 		 * our delay to see if that will cut the number of packets
1262 		 * in half per interrupt.
1263 		 */
1264 		itr /= 2;
1265 		itr &= I40E_ITR_MASK;
1266 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1267 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1268 
1269 		goto clear_counts;
1270 	}
1271 
1272 	/* The paths below assume we are dealing with a bulk ITR since
1273 	 * number of packets is greater than 256. We are just going to have
1274 	 * to compute a value and try to bring the count under control,
1275 	 * though for smaller packet sizes there isn't much we can do as
1276 	 * NAPI polling will likely be kicking in sooner rather than later.
1277 	 */
1278 	itr = I40E_ITR_ADAPTIVE_BULK;
1279 
1280 adjust_by_size:
1281 	/* If packet counts are 256 or greater we can assume we have a gross
1282 	 * overestimation of what the rate should be. Instead of trying to fine
1283 	 * tune it just use the formula below to try and dial in an exact value
1284 	 * give the current packet size of the frame.
1285 	 */
1286 	avg_wire_size = bytes / packets;
1287 
1288 	/* The following is a crude approximation of:
1289 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1290 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1291 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1292 	 *
1293 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1294 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295 	 * formula down to
1296 	 *
1297 	 *  (170 * (size + 24)) / (size + 640) = ITR
1298 	 *
1299 	 * We first do some math on the packet size and then finally bitshift
1300 	 * by 8 after rounding up. We also have to account for PCIe link speed
1301 	 * difference as ITR scales based on this.
1302 	 */
1303 	if (avg_wire_size <= 60) {
1304 		/* Start at 250k ints/sec */
1305 		avg_wire_size = 4096;
1306 	} else if (avg_wire_size <= 380) {
1307 		/* 250K ints/sec to 60K ints/sec */
1308 		avg_wire_size *= 40;
1309 		avg_wire_size += 1696;
1310 	} else if (avg_wire_size <= 1084) {
1311 		/* 60K ints/sec to 36K ints/sec */
1312 		avg_wire_size *= 15;
1313 		avg_wire_size += 11452;
1314 	} else if (avg_wire_size <= 1980) {
1315 		/* 36K ints/sec to 30K ints/sec */
1316 		avg_wire_size *= 5;
1317 		avg_wire_size += 22420;
1318 	} else {
1319 		/* plateau at a limit of 30K ints/sec */
1320 		avg_wire_size = 32256;
1321 	}
1322 
1323 	/* If we are in low latency mode halve our delay which doubles the
1324 	 * rate to somewhere between 100K to 16K ints/sec
1325 	 */
1326 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327 		avg_wire_size /= 2;
1328 
1329 	/* Resultant value is 256 times larger than it needs to be. This
1330 	 * gives us room to adjust the value as needed to either increase
1331 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1332 	 *
1333 	 * Use addition as we have already recorded the new latency flag
1334 	 * for the ITR value.
1335 	 */
1336 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1337 	       I40E_ITR_ADAPTIVE_MIN_INC;
1338 
1339 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1340 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1341 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1342 	}
1343 
1344 clear_counts:
1345 	/* write back value */
1346 	rc->target_itr = itr;
1347 
1348 	/* next update should occur within next jiffy */
1349 	rc->next_update = next_update + 1;
1350 
1351 	rc->total_bytes = 0;
1352 	rc->total_packets = 0;
1353 }
1354 
1355 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1356 {
1357 	return &rx_ring->rx_bi[idx];
1358 }
1359 
1360 /**
1361  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1362  * @rx_ring: rx descriptor ring to store buffers on
1363  * @old_buff: donor buffer to have page reused
1364  *
1365  * Synchronizes page for reuse by the adapter
1366  **/
1367 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1368 			       struct i40e_rx_buffer *old_buff)
1369 {
1370 	struct i40e_rx_buffer *new_buff;
1371 	u16 nta = rx_ring->next_to_alloc;
1372 
1373 	new_buff = i40e_rx_bi(rx_ring, nta);
1374 
1375 	/* update, and store next to alloc */
1376 	nta++;
1377 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1378 
1379 	/* transfer page from old buffer to new buffer */
1380 	new_buff->dma		= old_buff->dma;
1381 	new_buff->page		= old_buff->page;
1382 	new_buff->page_offset	= old_buff->page_offset;
1383 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1384 
1385 	rx_ring->rx_stats.page_reuse_count++;
1386 
1387 	/* clear contents of buffer_info */
1388 	old_buff->page = NULL;
1389 }
1390 
1391 /**
1392  * i40e_clean_programming_status - clean the programming status descriptor
1393  * @rx_ring: the rx ring that has this descriptor
1394  * @qword0_raw: qword0
1395  * @qword1: qword1 representing status_error_len in CPU ordering
1396  *
1397  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1398  * status being successful or not and take actions accordingly. FCoE should
1399  * handle its context/filter programming/invalidation status and take actions.
1400  *
1401  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1402  **/
1403 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1404 				   u64 qword1)
1405 {
1406 	u8 id;
1407 
1408 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1409 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1410 
1411 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1412 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1413 }
1414 
1415 /**
1416  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1417  * @tx_ring: the tx ring to set up
1418  *
1419  * Return 0 on success, negative on error
1420  **/
1421 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1422 {
1423 	struct device *dev = tx_ring->dev;
1424 	int bi_size;
1425 
1426 	if (!dev)
1427 		return -ENOMEM;
1428 
1429 	/* warn if we are about to overwrite the pointer */
1430 	WARN_ON(tx_ring->tx_bi);
1431 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1432 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1433 	if (!tx_ring->tx_bi)
1434 		goto err;
1435 
1436 	if (ring_is_xdp(tx_ring)) {
1437 		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
1438 					     GFP_KERNEL);
1439 		if (!tx_ring->xsk_descs)
1440 			goto err;
1441 	}
1442 
1443 	u64_stats_init(&tx_ring->syncp);
1444 
1445 	/* round up to nearest 4K */
1446 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1447 	/* add u32 for head writeback, align after this takes care of
1448 	 * guaranteeing this is at least one cache line in size
1449 	 */
1450 	tx_ring->size += sizeof(u32);
1451 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1452 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1453 					   &tx_ring->dma, GFP_KERNEL);
1454 	if (!tx_ring->desc) {
1455 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1456 			 tx_ring->size);
1457 		goto err;
1458 	}
1459 
1460 	tx_ring->next_to_use = 0;
1461 	tx_ring->next_to_clean = 0;
1462 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1463 	return 0;
1464 
1465 err:
1466 	kfree(tx_ring->xsk_descs);
1467 	tx_ring->xsk_descs = NULL;
1468 	kfree(tx_ring->tx_bi);
1469 	tx_ring->tx_bi = NULL;
1470 	return -ENOMEM;
1471 }
1472 
1473 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1474 {
1475 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1476 
1477 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1478 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1479 }
1480 
1481 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1482 {
1483 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1484 }
1485 
1486 /**
1487  * i40e_clean_rx_ring - Free Rx buffers
1488  * @rx_ring: ring to be cleaned
1489  **/
1490 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1491 {
1492 	u16 i;
1493 
1494 	/* ring already cleared, nothing to do */
1495 	if (!rx_ring->rx_bi)
1496 		return;
1497 
1498 	if (rx_ring->skb) {
1499 		dev_kfree_skb(rx_ring->skb);
1500 		rx_ring->skb = NULL;
1501 	}
1502 
1503 	if (rx_ring->xsk_pool) {
1504 		i40e_xsk_clean_rx_ring(rx_ring);
1505 		goto skip_free;
1506 	}
1507 
1508 	/* Free all the Rx ring sk_buffs */
1509 	for (i = 0; i < rx_ring->count; i++) {
1510 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1511 
1512 		if (!rx_bi->page)
1513 			continue;
1514 
1515 		/* Invalidate cache lines that may have been written to by
1516 		 * device so that we avoid corrupting memory.
1517 		 */
1518 		dma_sync_single_range_for_cpu(rx_ring->dev,
1519 					      rx_bi->dma,
1520 					      rx_bi->page_offset,
1521 					      rx_ring->rx_buf_len,
1522 					      DMA_FROM_DEVICE);
1523 
1524 		/* free resources associated with mapping */
1525 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1526 				     i40e_rx_pg_size(rx_ring),
1527 				     DMA_FROM_DEVICE,
1528 				     I40E_RX_DMA_ATTR);
1529 
1530 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1531 
1532 		rx_bi->page = NULL;
1533 		rx_bi->page_offset = 0;
1534 	}
1535 
1536 skip_free:
1537 	if (rx_ring->xsk_pool)
1538 		i40e_clear_rx_bi_zc(rx_ring);
1539 	else
1540 		i40e_clear_rx_bi(rx_ring);
1541 
1542 	/* Zero out the descriptor ring */
1543 	memset(rx_ring->desc, 0, rx_ring->size);
1544 
1545 	rx_ring->next_to_alloc = 0;
1546 	rx_ring->next_to_clean = 0;
1547 	rx_ring->next_to_use = 0;
1548 }
1549 
1550 /**
1551  * i40e_free_rx_resources - Free Rx resources
1552  * @rx_ring: ring to clean the resources from
1553  *
1554  * Free all receive software resources
1555  **/
1556 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1557 {
1558 	i40e_clean_rx_ring(rx_ring);
1559 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1560 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1561 	rx_ring->xdp_prog = NULL;
1562 	kfree(rx_ring->rx_bi);
1563 	rx_ring->rx_bi = NULL;
1564 
1565 	if (rx_ring->desc) {
1566 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1567 				  rx_ring->desc, rx_ring->dma);
1568 		rx_ring->desc = NULL;
1569 	}
1570 }
1571 
1572 /**
1573  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1574  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1575  *
1576  * Returns 0 on success, negative on failure
1577  **/
1578 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1579 {
1580 	struct device *dev = rx_ring->dev;
1581 	int err;
1582 
1583 	u64_stats_init(&rx_ring->syncp);
1584 
1585 	/* Round up to nearest 4K */
1586 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1587 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1588 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1589 					   &rx_ring->dma, GFP_KERNEL);
1590 
1591 	if (!rx_ring->desc) {
1592 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1593 			 rx_ring->size);
1594 		return -ENOMEM;
1595 	}
1596 
1597 	rx_ring->next_to_alloc = 0;
1598 	rx_ring->next_to_clean = 0;
1599 	rx_ring->next_to_use = 0;
1600 
1601 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1602 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1603 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1604 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1605 		if (err < 0)
1606 			return err;
1607 	}
1608 
1609 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1610 
1611 	return 0;
1612 }
1613 
1614 /**
1615  * i40e_release_rx_desc - Store the new tail and head values
1616  * @rx_ring: ring to bump
1617  * @val: new head index
1618  **/
1619 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1620 {
1621 	rx_ring->next_to_use = val;
1622 
1623 	/* update next to alloc since we have filled the ring */
1624 	rx_ring->next_to_alloc = val;
1625 
1626 	/* Force memory writes to complete before letting h/w
1627 	 * know there are new descriptors to fetch.  (Only
1628 	 * applicable for weak-ordered memory model archs,
1629 	 * such as IA-64).
1630 	 */
1631 	wmb();
1632 	writel(val, rx_ring->tail);
1633 }
1634 
1635 /**
1636  * i40e_rx_offset - Return expected offset into page to access data
1637  * @rx_ring: Ring we are requesting offset of
1638  *
1639  * Returns the offset value for ring into the data buffer.
1640  */
1641 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1642 {
1643 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1644 }
1645 
1646 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1647 					   unsigned int size)
1648 {
1649 	unsigned int truesize;
1650 
1651 #if (PAGE_SIZE < 8192)
1652 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1653 #else
1654 	truesize = i40e_rx_offset(rx_ring) ?
1655 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1656 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1657 		SKB_DATA_ALIGN(size);
1658 #endif
1659 	return truesize;
1660 }
1661 
1662 /**
1663  * i40e_alloc_mapped_page - recycle or make a new page
1664  * @rx_ring: ring to use
1665  * @bi: rx_buffer struct to modify
1666  *
1667  * Returns true if the page was successfully allocated or
1668  * reused.
1669  **/
1670 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1671 				   struct i40e_rx_buffer *bi)
1672 {
1673 	struct page *page = bi->page;
1674 	dma_addr_t dma;
1675 
1676 	/* since we are recycling buffers we should seldom need to alloc */
1677 	if (likely(page)) {
1678 		rx_ring->rx_stats.page_reuse_count++;
1679 		return true;
1680 	}
1681 
1682 	/* alloc new page for storage */
1683 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1684 	if (unlikely(!page)) {
1685 		rx_ring->rx_stats.alloc_page_failed++;
1686 		return false;
1687 	}
1688 
1689 	/* map page for use */
1690 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1691 				 i40e_rx_pg_size(rx_ring),
1692 				 DMA_FROM_DEVICE,
1693 				 I40E_RX_DMA_ATTR);
1694 
1695 	/* if mapping failed free memory back to system since
1696 	 * there isn't much point in holding memory we can't use
1697 	 */
1698 	if (dma_mapping_error(rx_ring->dev, dma)) {
1699 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1700 		rx_ring->rx_stats.alloc_page_failed++;
1701 		return false;
1702 	}
1703 
1704 	bi->dma = dma;
1705 	bi->page = page;
1706 	bi->page_offset = i40e_rx_offset(rx_ring);
1707 	page_ref_add(page, USHRT_MAX - 1);
1708 	bi->pagecnt_bias = USHRT_MAX;
1709 
1710 	return true;
1711 }
1712 
1713 /**
1714  * i40e_alloc_rx_buffers - Replace used receive buffers
1715  * @rx_ring: ring to place buffers on
1716  * @cleaned_count: number of buffers to replace
1717  *
1718  * Returns false if all allocations were successful, true if any fail
1719  **/
1720 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1721 {
1722 	u16 ntu = rx_ring->next_to_use;
1723 	union i40e_rx_desc *rx_desc;
1724 	struct i40e_rx_buffer *bi;
1725 
1726 	/* do nothing if no valid netdev defined */
1727 	if (!rx_ring->netdev || !cleaned_count)
1728 		return false;
1729 
1730 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1731 	bi = i40e_rx_bi(rx_ring, ntu);
1732 
1733 	do {
1734 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1735 			goto no_buffers;
1736 
1737 		/* sync the buffer for use by the device */
1738 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1739 						 bi->page_offset,
1740 						 rx_ring->rx_buf_len,
1741 						 DMA_FROM_DEVICE);
1742 
1743 		/* Refresh the desc even if buffer_addrs didn't change
1744 		 * because each write-back erases this info.
1745 		 */
1746 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1747 
1748 		rx_desc++;
1749 		bi++;
1750 		ntu++;
1751 		if (unlikely(ntu == rx_ring->count)) {
1752 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1753 			bi = i40e_rx_bi(rx_ring, 0);
1754 			ntu = 0;
1755 		}
1756 
1757 		/* clear the status bits for the next_to_use descriptor */
1758 		rx_desc->wb.qword1.status_error_len = 0;
1759 
1760 		cleaned_count--;
1761 	} while (cleaned_count);
1762 
1763 	if (rx_ring->next_to_use != ntu)
1764 		i40e_release_rx_desc(rx_ring, ntu);
1765 
1766 	return false;
1767 
1768 no_buffers:
1769 	if (rx_ring->next_to_use != ntu)
1770 		i40e_release_rx_desc(rx_ring, ntu);
1771 
1772 	/* make sure to come back via polling to try again after
1773 	 * allocation failure
1774 	 */
1775 	return true;
1776 }
1777 
1778 /**
1779  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1780  * @vsi: the VSI we care about
1781  * @skb: skb currently being received and modified
1782  * @rx_desc: the receive descriptor
1783  **/
1784 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1785 				    struct sk_buff *skb,
1786 				    union i40e_rx_desc *rx_desc)
1787 {
1788 	struct i40e_rx_ptype_decoded decoded;
1789 	u32 rx_error, rx_status;
1790 	bool ipv4, ipv6;
1791 	u8 ptype;
1792 	u64 qword;
1793 
1794 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1795 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1796 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1797 		   I40E_RXD_QW1_ERROR_SHIFT;
1798 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1799 		    I40E_RXD_QW1_STATUS_SHIFT;
1800 	decoded = decode_rx_desc_ptype(ptype);
1801 
1802 	skb->ip_summed = CHECKSUM_NONE;
1803 
1804 	skb_checksum_none_assert(skb);
1805 
1806 	/* Rx csum enabled and ip headers found? */
1807 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1808 		return;
1809 
1810 	/* did the hardware decode the packet and checksum? */
1811 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1812 		return;
1813 
1814 	/* both known and outer_ip must be set for the below code to work */
1815 	if (!(decoded.known && decoded.outer_ip))
1816 		return;
1817 
1818 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1819 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1820 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1821 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1822 
1823 	if (ipv4 &&
1824 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1825 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1826 		goto checksum_fail;
1827 
1828 	/* likely incorrect csum if alternate IP extension headers found */
1829 	if (ipv6 &&
1830 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1831 		/* don't increment checksum err here, non-fatal err */
1832 		return;
1833 
1834 	/* there was some L4 error, count error and punt packet to the stack */
1835 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1836 		goto checksum_fail;
1837 
1838 	/* handle packets that were not able to be checksummed due
1839 	 * to arrival speed, in this case the stack can compute
1840 	 * the csum.
1841 	 */
1842 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1843 		return;
1844 
1845 	/* If there is an outer header present that might contain a checksum
1846 	 * we need to bump the checksum level by 1 to reflect the fact that
1847 	 * we are indicating we validated the inner checksum.
1848 	 */
1849 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1850 		skb->csum_level = 1;
1851 
1852 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1853 	switch (decoded.inner_prot) {
1854 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1855 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1856 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1857 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1858 		fallthrough;
1859 	default:
1860 		break;
1861 	}
1862 
1863 	return;
1864 
1865 checksum_fail:
1866 	vsi->back->hw_csum_rx_error++;
1867 }
1868 
1869 /**
1870  * i40e_ptype_to_htype - get a hash type
1871  * @ptype: the ptype value from the descriptor
1872  *
1873  * Returns a hash type to be used by skb_set_hash
1874  **/
1875 static inline int i40e_ptype_to_htype(u8 ptype)
1876 {
1877 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1878 
1879 	if (!decoded.known)
1880 		return PKT_HASH_TYPE_NONE;
1881 
1882 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1883 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1884 		return PKT_HASH_TYPE_L4;
1885 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1886 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1887 		return PKT_HASH_TYPE_L3;
1888 	else
1889 		return PKT_HASH_TYPE_L2;
1890 }
1891 
1892 /**
1893  * i40e_rx_hash - set the hash value in the skb
1894  * @ring: descriptor ring
1895  * @rx_desc: specific descriptor
1896  * @skb: skb currently being received and modified
1897  * @rx_ptype: Rx packet type
1898  **/
1899 static inline void i40e_rx_hash(struct i40e_ring *ring,
1900 				union i40e_rx_desc *rx_desc,
1901 				struct sk_buff *skb,
1902 				u8 rx_ptype)
1903 {
1904 	u32 hash;
1905 	const __le64 rss_mask =
1906 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1907 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1908 
1909 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1910 		return;
1911 
1912 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1913 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1914 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1915 	}
1916 }
1917 
1918 /**
1919  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1920  * @rx_ring: rx descriptor ring packet is being transacted on
1921  * @rx_desc: pointer to the EOP Rx descriptor
1922  * @skb: pointer to current skb being populated
1923  *
1924  * This function checks the ring, descriptor, and packet information in
1925  * order to populate the hash, checksum, VLAN, protocol, and
1926  * other fields within the skb.
1927  **/
1928 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1929 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1930 {
1931 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1932 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1933 			I40E_RXD_QW1_STATUS_SHIFT;
1934 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1935 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1936 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1937 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1938 		      I40E_RXD_QW1_PTYPE_SHIFT;
1939 
1940 	if (unlikely(tsynvalid))
1941 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1942 
1943 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1944 
1945 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1946 
1947 	skb_record_rx_queue(skb, rx_ring->queue_index);
1948 
1949 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1950 		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1951 
1952 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1953 				       le16_to_cpu(vlan_tag));
1954 	}
1955 
1956 	/* modifies the skb - consumes the enet header */
1957 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1958 }
1959 
1960 /**
1961  * i40e_cleanup_headers - Correct empty headers
1962  * @rx_ring: rx descriptor ring packet is being transacted on
1963  * @skb: pointer to current skb being fixed
1964  * @rx_desc: pointer to the EOP Rx descriptor
1965  *
1966  * Also address the case where we are pulling data in on pages only
1967  * and as such no data is present in the skb header.
1968  *
1969  * In addition if skb is not at least 60 bytes we need to pad it so that
1970  * it is large enough to qualify as a valid Ethernet frame.
1971  *
1972  * Returns true if an error was encountered and skb was freed.
1973  **/
1974 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1975 				 union i40e_rx_desc *rx_desc)
1976 
1977 {
1978 	/* XDP packets use error pointer so abort at this point */
1979 	if (IS_ERR(skb))
1980 		return true;
1981 
1982 	/* ERR_MASK will only have valid bits if EOP set, and
1983 	 * what we are doing here is actually checking
1984 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1985 	 * the error field
1986 	 */
1987 	if (unlikely(i40e_test_staterr(rx_desc,
1988 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1989 		dev_kfree_skb_any(skb);
1990 		return true;
1991 	}
1992 
1993 	/* if eth_skb_pad returns an error the skb was freed */
1994 	if (eth_skb_pad(skb))
1995 		return true;
1996 
1997 	return false;
1998 }
1999 
2000 /**
2001  * i40e_can_reuse_rx_page - Determine if this page can be reused by
2002  * the adapter for another receive
2003  *
2004  * @rx_buffer: buffer containing the page
2005  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
2006  *
2007  * If page is reusable, rx_buffer->page_offset is adjusted to point to
2008  * an unused region in the page.
2009  *
2010  * For small pages, @truesize will be a constant value, half the size
2011  * of the memory at page.  We'll attempt to alternate between high and
2012  * low halves of the page, with one half ready for use by the hardware
2013  * and the other half being consumed by the stack.  We use the page
2014  * ref count to determine whether the stack has finished consuming the
2015  * portion of this page that was passed up with a previous packet.  If
2016  * the page ref count is >1, we'll assume the "other" half page is
2017  * still busy, and this page cannot be reused.
2018  *
2019  * For larger pages, @truesize will be the actual space used by the
2020  * received packet (adjusted upward to an even multiple of the cache
2021  * line size).  This will advance through the page by the amount
2022  * actually consumed by the received packets while there is still
2023  * space for a buffer.  Each region of larger pages will be used at
2024  * most once, after which the page will not be reused.
2025  *
2026  * In either case, if the page is reusable its refcount is increased.
2027  **/
2028 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
2029 				   int rx_buffer_pgcnt)
2030 {
2031 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2032 	struct page *page = rx_buffer->page;
2033 
2034 	/* Is any reuse possible? */
2035 	if (!dev_page_is_reusable(page))
2036 		return false;
2037 
2038 #if (PAGE_SIZE < 8192)
2039 	/* if we are only owner of page we can reuse it */
2040 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2041 		return false;
2042 #else
2043 #define I40E_LAST_OFFSET \
2044 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2045 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
2046 		return false;
2047 #endif
2048 
2049 	/* If we have drained the page fragment pool we need to update
2050 	 * the pagecnt_bias and page count so that we fully restock the
2051 	 * number of references the driver holds.
2052 	 */
2053 	if (unlikely(pagecnt_bias == 1)) {
2054 		page_ref_add(page, USHRT_MAX - 1);
2055 		rx_buffer->pagecnt_bias = USHRT_MAX;
2056 	}
2057 
2058 	return true;
2059 }
2060 
2061 /**
2062  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2063  * @rx_ring: rx descriptor ring to transact packets on
2064  * @rx_buffer: buffer containing page to add
2065  * @skb: sk_buff to place the data into
2066  * @size: packet length from rx_desc
2067  *
2068  * This function will add the data contained in rx_buffer->page to the skb.
2069  * It will just attach the page as a frag to the skb.
2070  *
2071  * The function will then update the page offset.
2072  **/
2073 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2074 			     struct i40e_rx_buffer *rx_buffer,
2075 			     struct sk_buff *skb,
2076 			     unsigned int size)
2077 {
2078 #if (PAGE_SIZE < 8192)
2079 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2080 #else
2081 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
2082 #endif
2083 
2084 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2085 			rx_buffer->page_offset, size, truesize);
2086 
2087 	/* page is being used so we must update the page offset */
2088 #if (PAGE_SIZE < 8192)
2089 	rx_buffer->page_offset ^= truesize;
2090 #else
2091 	rx_buffer->page_offset += truesize;
2092 #endif
2093 }
2094 
2095 /**
2096  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2097  * @rx_ring: rx descriptor ring to transact packets on
2098  * @size: size of buffer to add to skb
2099  * @rx_buffer_pgcnt: buffer page refcount
2100  *
2101  * This function will pull an Rx buffer from the ring and synchronize it
2102  * for use by the CPU.
2103  */
2104 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2105 						 const unsigned int size,
2106 						 int *rx_buffer_pgcnt)
2107 {
2108 	struct i40e_rx_buffer *rx_buffer;
2109 
2110 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2111 	*rx_buffer_pgcnt =
2112 #if (PAGE_SIZE < 8192)
2113 		page_count(rx_buffer->page);
2114 #else
2115 		0;
2116 #endif
2117 	prefetch_page_address(rx_buffer->page);
2118 
2119 	/* we are reusing so sync this buffer for CPU use */
2120 	dma_sync_single_range_for_cpu(rx_ring->dev,
2121 				      rx_buffer->dma,
2122 				      rx_buffer->page_offset,
2123 				      size,
2124 				      DMA_FROM_DEVICE);
2125 
2126 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2127 	rx_buffer->pagecnt_bias--;
2128 
2129 	return rx_buffer;
2130 }
2131 
2132 /**
2133  * i40e_construct_skb - Allocate skb and populate it
2134  * @rx_ring: rx descriptor ring to transact packets on
2135  * @rx_buffer: rx buffer to pull data from
2136  * @xdp: xdp_buff pointing to the data
2137  *
2138  * This function allocates an skb.  It then populates it with the page
2139  * data from the current receive descriptor, taking care to set up the
2140  * skb correctly.
2141  */
2142 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2143 					  struct i40e_rx_buffer *rx_buffer,
2144 					  struct xdp_buff *xdp)
2145 {
2146 	unsigned int size = xdp->data_end - xdp->data;
2147 #if (PAGE_SIZE < 8192)
2148 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2149 #else
2150 	unsigned int truesize = SKB_DATA_ALIGN(size);
2151 #endif
2152 	unsigned int headlen;
2153 	struct sk_buff *skb;
2154 
2155 	/* prefetch first cache line of first page */
2156 	net_prefetch(xdp->data);
2157 
2158 	/* Note, we get here by enabling legacy-rx via:
2159 	 *
2160 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2161 	 *
2162 	 * In this mode, we currently get 0 extra XDP headroom as
2163 	 * opposed to having legacy-rx off, where we process XDP
2164 	 * packets going to stack via i40e_build_skb(). The latter
2165 	 * provides us currently with 192 bytes of headroom.
2166 	 *
2167 	 * For i40e_construct_skb() mode it means that the
2168 	 * xdp->data_meta will always point to xdp->data, since
2169 	 * the helper cannot expand the head. Should this ever
2170 	 * change in future for legacy-rx mode on, then lets also
2171 	 * add xdp->data_meta handling here.
2172 	 */
2173 
2174 	/* allocate a skb to store the frags */
2175 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2176 			       I40E_RX_HDR_SIZE,
2177 			       GFP_ATOMIC | __GFP_NOWARN);
2178 	if (unlikely(!skb))
2179 		return NULL;
2180 
2181 	/* Determine available headroom for copy */
2182 	headlen = size;
2183 	if (headlen > I40E_RX_HDR_SIZE)
2184 		headlen = eth_get_headlen(skb->dev, xdp->data,
2185 					  I40E_RX_HDR_SIZE);
2186 
2187 	/* align pull length to size of long to optimize memcpy performance */
2188 	memcpy(__skb_put(skb, headlen), xdp->data,
2189 	       ALIGN(headlen, sizeof(long)));
2190 
2191 	/* update all of the pointers */
2192 	size -= headlen;
2193 	if (size) {
2194 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2195 				rx_buffer->page_offset + headlen,
2196 				size, truesize);
2197 
2198 		/* buffer is used by skb, update page_offset */
2199 #if (PAGE_SIZE < 8192)
2200 		rx_buffer->page_offset ^= truesize;
2201 #else
2202 		rx_buffer->page_offset += truesize;
2203 #endif
2204 	} else {
2205 		/* buffer is unused, reset bias back to rx_buffer */
2206 		rx_buffer->pagecnt_bias++;
2207 	}
2208 
2209 	return skb;
2210 }
2211 
2212 /**
2213  * i40e_build_skb - Build skb around an existing buffer
2214  * @rx_ring: Rx descriptor ring to transact packets on
2215  * @rx_buffer: Rx buffer to pull data from
2216  * @xdp: xdp_buff pointing to the data
2217  *
2218  * This function builds an skb around an existing Rx buffer, taking care
2219  * to set up the skb correctly and avoid any memcpy overhead.
2220  */
2221 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2222 				      struct i40e_rx_buffer *rx_buffer,
2223 				      struct xdp_buff *xdp)
2224 {
2225 	unsigned int metasize = xdp->data - xdp->data_meta;
2226 #if (PAGE_SIZE < 8192)
2227 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2228 #else
2229 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2230 				SKB_DATA_ALIGN(xdp->data_end -
2231 					       xdp->data_hard_start);
2232 #endif
2233 	struct sk_buff *skb;
2234 
2235 	/* Prefetch first cache line of first page. If xdp->data_meta
2236 	 * is unused, this points exactly as xdp->data, otherwise we
2237 	 * likely have a consumer accessing first few bytes of meta
2238 	 * data, and then actual data.
2239 	 */
2240 	net_prefetch(xdp->data_meta);
2241 
2242 	/* build an skb around the page buffer */
2243 	skb = build_skb(xdp->data_hard_start, truesize);
2244 	if (unlikely(!skb))
2245 		return NULL;
2246 
2247 	/* update pointers within the skb to store the data */
2248 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2249 	__skb_put(skb, xdp->data_end - xdp->data);
2250 	if (metasize)
2251 		skb_metadata_set(skb, metasize);
2252 
2253 	/* buffer is used by skb, update page_offset */
2254 #if (PAGE_SIZE < 8192)
2255 	rx_buffer->page_offset ^= truesize;
2256 #else
2257 	rx_buffer->page_offset += truesize;
2258 #endif
2259 
2260 	return skb;
2261 }
2262 
2263 /**
2264  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2265  * @rx_ring: rx descriptor ring to transact packets on
2266  * @rx_buffer: rx buffer to pull data from
2267  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2268  *
2269  * This function will clean up the contents of the rx_buffer.  It will
2270  * either recycle the buffer or unmap it and free the associated resources.
2271  */
2272 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2273 			       struct i40e_rx_buffer *rx_buffer,
2274 			       int rx_buffer_pgcnt)
2275 {
2276 	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2277 		/* hand second half of page back to the ring */
2278 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2279 	} else {
2280 		/* we are not reusing the buffer so unmap it */
2281 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2282 				     i40e_rx_pg_size(rx_ring),
2283 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2284 		__page_frag_cache_drain(rx_buffer->page,
2285 					rx_buffer->pagecnt_bias);
2286 		/* clear contents of buffer_info */
2287 		rx_buffer->page = NULL;
2288 	}
2289 }
2290 
2291 /**
2292  * i40e_is_non_eop - process handling of non-EOP buffers
2293  * @rx_ring: Rx ring being processed
2294  * @rx_desc: Rx descriptor for current buffer
2295  * @skb: Current socket buffer containing buffer in progress
2296  *
2297  * This function updates next to clean.  If the buffer is an EOP buffer
2298  * this function exits returning false, otherwise it will place the
2299  * sk_buff in the next buffer to be chained and return true indicating
2300  * that this is in fact a non-EOP buffer.
2301  **/
2302 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2303 			    union i40e_rx_desc *rx_desc,
2304 			    struct sk_buff *skb)
2305 {
2306 	u32 ntc = rx_ring->next_to_clean + 1;
2307 
2308 	/* fetch, update, and store next to clean */
2309 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2310 	rx_ring->next_to_clean = ntc;
2311 
2312 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2313 
2314 	/* if we are the last buffer then there is nothing else to do */
2315 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2316 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2317 		return false;
2318 
2319 	rx_ring->rx_stats.non_eop_descs++;
2320 
2321 	return true;
2322 }
2323 
2324 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2325 			      struct i40e_ring *xdp_ring);
2326 
2327 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2328 {
2329 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2330 
2331 	if (unlikely(!xdpf))
2332 		return I40E_XDP_CONSUMED;
2333 
2334 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2335 }
2336 
2337 /**
2338  * i40e_run_xdp - run an XDP program
2339  * @rx_ring: Rx ring being processed
2340  * @xdp: XDP buffer containing the frame
2341  **/
2342 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2343 				    struct xdp_buff *xdp)
2344 {
2345 	int err, result = I40E_XDP_PASS;
2346 	struct i40e_ring *xdp_ring;
2347 	struct bpf_prog *xdp_prog;
2348 	u32 act;
2349 
2350 	rcu_read_lock();
2351 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2352 
2353 	if (!xdp_prog)
2354 		goto xdp_out;
2355 
2356 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2357 
2358 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2359 	switch (act) {
2360 	case XDP_PASS:
2361 		break;
2362 	case XDP_TX:
2363 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2364 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2365 		break;
2366 	case XDP_REDIRECT:
2367 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2368 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2369 		break;
2370 	default:
2371 		bpf_warn_invalid_xdp_action(act);
2372 		fallthrough;
2373 	case XDP_ABORTED:
2374 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2375 		fallthrough; /* handle aborts by dropping packet */
2376 	case XDP_DROP:
2377 		result = I40E_XDP_CONSUMED;
2378 		break;
2379 	}
2380 xdp_out:
2381 	rcu_read_unlock();
2382 	return ERR_PTR(-result);
2383 }
2384 
2385 /**
2386  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2387  * @rx_ring: Rx ring
2388  * @rx_buffer: Rx buffer to adjust
2389  * @size: Size of adjustment
2390  **/
2391 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2392 				struct i40e_rx_buffer *rx_buffer,
2393 				unsigned int size)
2394 {
2395 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2396 
2397 #if (PAGE_SIZE < 8192)
2398 	rx_buffer->page_offset ^= truesize;
2399 #else
2400 	rx_buffer->page_offset += truesize;
2401 #endif
2402 }
2403 
2404 /**
2405  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2406  * @xdp_ring: XDP Tx ring
2407  *
2408  * This function updates the XDP Tx ring tail register.
2409  **/
2410 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2411 {
2412 	/* Force memory writes to complete before letting h/w
2413 	 * know there are new descriptors to fetch.
2414 	 */
2415 	wmb();
2416 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2417 }
2418 
2419 /**
2420  * i40e_update_rx_stats - Update Rx ring statistics
2421  * @rx_ring: rx descriptor ring
2422  * @total_rx_bytes: number of bytes received
2423  * @total_rx_packets: number of packets received
2424  *
2425  * This function updates the Rx ring statistics.
2426  **/
2427 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2428 			  unsigned int total_rx_bytes,
2429 			  unsigned int total_rx_packets)
2430 {
2431 	u64_stats_update_begin(&rx_ring->syncp);
2432 	rx_ring->stats.packets += total_rx_packets;
2433 	rx_ring->stats.bytes += total_rx_bytes;
2434 	u64_stats_update_end(&rx_ring->syncp);
2435 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2436 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2437 }
2438 
2439 /**
2440  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2441  * @rx_ring: Rx ring
2442  * @xdp_res: Result of the receive batch
2443  *
2444  * This function bumps XDP Tx tail and/or flush redirect map, and
2445  * should be called when a batch of packets has been processed in the
2446  * napi loop.
2447  **/
2448 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2449 {
2450 	if (xdp_res & I40E_XDP_REDIR)
2451 		xdp_do_flush_map();
2452 
2453 	if (xdp_res & I40E_XDP_TX) {
2454 		struct i40e_ring *xdp_ring =
2455 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2456 
2457 		i40e_xdp_ring_update_tail(xdp_ring);
2458 	}
2459 }
2460 
2461 /**
2462  * i40e_inc_ntc: Advance the next_to_clean index
2463  * @rx_ring: Rx ring
2464  **/
2465 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2466 {
2467 	u32 ntc = rx_ring->next_to_clean + 1;
2468 
2469 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2470 	rx_ring->next_to_clean = ntc;
2471 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2472 }
2473 
2474 /**
2475  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2476  * @rx_ring: rx descriptor ring to transact packets on
2477  * @budget: Total limit on number of packets to process
2478  *
2479  * This function provides a "bounce buffer" approach to Rx interrupt
2480  * processing.  The advantage to this is that on systems that have
2481  * expensive overhead for IOMMU access this provides a means of avoiding
2482  * it by maintaining the mapping of the page to the system.
2483  *
2484  * Returns amount of work completed
2485  **/
2486 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2487 {
2488 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2489 	struct sk_buff *skb = rx_ring->skb;
2490 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2491 	unsigned int xdp_xmit = 0;
2492 	bool failure = false;
2493 	struct xdp_buff xdp;
2494 
2495 #if (PAGE_SIZE < 8192)
2496 	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2497 #endif
2498 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2499 
2500 	while (likely(total_rx_packets < (unsigned int)budget)) {
2501 		struct i40e_rx_buffer *rx_buffer;
2502 		union i40e_rx_desc *rx_desc;
2503 		int rx_buffer_pgcnt;
2504 		unsigned int size;
2505 		u64 qword;
2506 
2507 		/* return some buffers to hardware, one at a time is too slow */
2508 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2509 			failure = failure ||
2510 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2511 			cleaned_count = 0;
2512 		}
2513 
2514 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2515 
2516 		/* status_error_len will always be zero for unused descriptors
2517 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2518 		 * which is always zero because packet split isn't used, if the
2519 		 * hardware wrote DD then the length will be non-zero
2520 		 */
2521 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2522 
2523 		/* This memory barrier is needed to keep us from reading
2524 		 * any other fields out of the rx_desc until we have
2525 		 * verified the descriptor has been written back.
2526 		 */
2527 		dma_rmb();
2528 
2529 		if (i40e_rx_is_programming_status(qword)) {
2530 			i40e_clean_programming_status(rx_ring,
2531 						      rx_desc->raw.qword[0],
2532 						      qword);
2533 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2534 			i40e_inc_ntc(rx_ring);
2535 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2536 			cleaned_count++;
2537 			continue;
2538 		}
2539 
2540 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2541 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2542 		if (!size)
2543 			break;
2544 
2545 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2546 		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2547 
2548 		/* retrieve a buffer from the ring */
2549 		if (!skb) {
2550 			unsigned int offset = i40e_rx_offset(rx_ring);
2551 			unsigned char *hard_start;
2552 
2553 			hard_start = page_address(rx_buffer->page) +
2554 				     rx_buffer->page_offset - offset;
2555 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2556 #if (PAGE_SIZE > 4096)
2557 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2558 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2559 #endif
2560 			skb = i40e_run_xdp(rx_ring, &xdp);
2561 		}
2562 
2563 		if (IS_ERR(skb)) {
2564 			unsigned int xdp_res = -PTR_ERR(skb);
2565 
2566 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2567 				xdp_xmit |= xdp_res;
2568 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2569 			} else {
2570 				rx_buffer->pagecnt_bias++;
2571 			}
2572 			total_rx_bytes += size;
2573 			total_rx_packets++;
2574 		} else if (skb) {
2575 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2576 		} else if (ring_uses_build_skb(rx_ring)) {
2577 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2578 		} else {
2579 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2580 		}
2581 
2582 		/* exit if we failed to retrieve a buffer */
2583 		if (!skb) {
2584 			rx_ring->rx_stats.alloc_buff_failed++;
2585 			rx_buffer->pagecnt_bias++;
2586 			break;
2587 		}
2588 
2589 		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2590 		cleaned_count++;
2591 
2592 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2593 			continue;
2594 
2595 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2596 			skb = NULL;
2597 			continue;
2598 		}
2599 
2600 		/* probably a little skewed due to removing CRC */
2601 		total_rx_bytes += skb->len;
2602 
2603 		/* populate checksum, VLAN, and protocol */
2604 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2605 
2606 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2607 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2608 		skb = NULL;
2609 
2610 		/* update budget accounting */
2611 		total_rx_packets++;
2612 	}
2613 
2614 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2615 	rx_ring->skb = skb;
2616 
2617 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2618 
2619 	/* guarantee a trip back through this routine if there was a failure */
2620 	return failure ? budget : (int)total_rx_packets;
2621 }
2622 
2623 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2624 {
2625 	u32 val;
2626 
2627 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2628 	 * points out doing so is "meaningless since it was already
2629 	 * auto-cleared". The auto-clearing happens when the interrupt is
2630 	 * asserted.
2631 	 *
2632 	 * Hardware errata 28 for also indicates that writing to a
2633 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2634 	 * an event in the PBA anyway so we need to rely on the automask
2635 	 * to hold pending events for us until the interrupt is re-enabled
2636 	 *
2637 	 * The itr value is reported in microseconds, and the register
2638 	 * value is recorded in 2 microsecond units. For this reason we
2639 	 * only need to shift by the interval shift - 1 instead of the
2640 	 * full value.
2641 	 */
2642 	itr &= I40E_ITR_MASK;
2643 
2644 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2645 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2646 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2647 
2648 	return val;
2649 }
2650 
2651 /* a small macro to shorten up some long lines */
2652 #define INTREG I40E_PFINT_DYN_CTLN
2653 
2654 /* The act of updating the ITR will cause it to immediately trigger. In order
2655  * to prevent this from throwing off adaptive update statistics we defer the
2656  * update so that it can only happen so often. So after either Tx or Rx are
2657  * updated we make the adaptive scheme wait until either the ITR completely
2658  * expires via the next_update expiration or we have been through at least
2659  * 3 interrupts.
2660  */
2661 #define ITR_COUNTDOWN_START 3
2662 
2663 /**
2664  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2665  * @vsi: the VSI we care about
2666  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2667  *
2668  **/
2669 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2670 					  struct i40e_q_vector *q_vector)
2671 {
2672 	struct i40e_hw *hw = &vsi->back->hw;
2673 	u32 intval;
2674 
2675 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2676 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2677 		i40e_irq_dynamic_enable_icr0(vsi->back);
2678 		return;
2679 	}
2680 
2681 	/* These will do nothing if dynamic updates are not enabled */
2682 	i40e_update_itr(q_vector, &q_vector->tx);
2683 	i40e_update_itr(q_vector, &q_vector->rx);
2684 
2685 	/* This block of logic allows us to get away with only updating
2686 	 * one ITR value with each interrupt. The idea is to perform a
2687 	 * pseudo-lazy update with the following criteria.
2688 	 *
2689 	 * 1. Rx is given higher priority than Tx if both are in same state
2690 	 * 2. If we must reduce an ITR that is given highest priority.
2691 	 * 3. We then give priority to increasing ITR based on amount.
2692 	 */
2693 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2694 		/* Rx ITR needs to be reduced, this is highest priority */
2695 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2696 					   q_vector->rx.target_itr);
2697 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2698 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2699 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2700 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2701 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2702 		/* Tx ITR needs to be reduced, this is second priority
2703 		 * Tx ITR needs to be increased more than Rx, fourth priority
2704 		 */
2705 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2706 					   q_vector->tx.target_itr);
2707 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2708 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2710 		/* Rx ITR needs to be increased, third priority */
2711 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2712 					   q_vector->rx.target_itr);
2713 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2714 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2715 	} else {
2716 		/* No ITR update, lowest priority */
2717 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2718 		if (q_vector->itr_countdown)
2719 			q_vector->itr_countdown--;
2720 	}
2721 
2722 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2723 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2724 }
2725 
2726 /**
2727  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2728  * @napi: napi struct with our devices info in it
2729  * @budget: amount of work driver is allowed to do this pass, in packets
2730  *
2731  * This function will clean all queues associated with a q_vector.
2732  *
2733  * Returns the amount of work done
2734  **/
2735 int i40e_napi_poll(struct napi_struct *napi, int budget)
2736 {
2737 	struct i40e_q_vector *q_vector =
2738 			       container_of(napi, struct i40e_q_vector, napi);
2739 	struct i40e_vsi *vsi = q_vector->vsi;
2740 	struct i40e_ring *ring;
2741 	bool clean_complete = true;
2742 	bool arm_wb = false;
2743 	int budget_per_ring;
2744 	int work_done = 0;
2745 
2746 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2747 		napi_complete(napi);
2748 		return 0;
2749 	}
2750 
2751 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2752 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2753 	 */
2754 	i40e_for_each_ring(ring, q_vector->tx) {
2755 		bool wd = ring->xsk_pool ?
2756 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2757 			  i40e_clean_tx_irq(vsi, ring, budget);
2758 
2759 		if (!wd) {
2760 			clean_complete = false;
2761 			continue;
2762 		}
2763 		arm_wb |= ring->arm_wb;
2764 		ring->arm_wb = false;
2765 	}
2766 
2767 	/* Handle case where we are called by netpoll with a budget of 0 */
2768 	if (budget <= 0)
2769 		goto tx_only;
2770 
2771 	/* normally we have 1 Rx ring per q_vector */
2772 	if (unlikely(q_vector->num_ringpairs > 1))
2773 		/* We attempt to distribute budget to each Rx queue fairly, but
2774 		 * don't allow the budget to go below 1 because that would exit
2775 		 * polling early.
2776 		 */
2777 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2778 	else
2779 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2780 		budget_per_ring = budget;
2781 
2782 	i40e_for_each_ring(ring, q_vector->rx) {
2783 		int cleaned = ring->xsk_pool ?
2784 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2785 			      i40e_clean_rx_irq(ring, budget_per_ring);
2786 
2787 		work_done += cleaned;
2788 		/* if we clean as many as budgeted, we must not be done */
2789 		if (cleaned >= budget_per_ring)
2790 			clean_complete = false;
2791 	}
2792 
2793 	/* If work not completed, return budget and polling will return */
2794 	if (!clean_complete) {
2795 		int cpu_id = smp_processor_id();
2796 
2797 		/* It is possible that the interrupt affinity has changed but,
2798 		 * if the cpu is pegged at 100%, polling will never exit while
2799 		 * traffic continues and the interrupt will be stuck on this
2800 		 * cpu.  We check to make sure affinity is correct before we
2801 		 * continue to poll, otherwise we must stop polling so the
2802 		 * interrupt can move to the correct cpu.
2803 		 */
2804 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2805 			/* Tell napi that we are done polling */
2806 			napi_complete_done(napi, work_done);
2807 
2808 			/* Force an interrupt */
2809 			i40e_force_wb(vsi, q_vector);
2810 
2811 			/* Return budget-1 so that polling stops */
2812 			return budget - 1;
2813 		}
2814 tx_only:
2815 		if (arm_wb) {
2816 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2817 			i40e_enable_wb_on_itr(vsi, q_vector);
2818 		}
2819 		return budget;
2820 	}
2821 
2822 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2823 		q_vector->arm_wb_state = false;
2824 
2825 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2826 	 * poll us due to busy-polling
2827 	 */
2828 	if (likely(napi_complete_done(napi, work_done)))
2829 		i40e_update_enable_itr(vsi, q_vector);
2830 
2831 	return min(work_done, budget - 1);
2832 }
2833 
2834 /**
2835  * i40e_atr - Add a Flow Director ATR filter
2836  * @tx_ring:  ring to add programming descriptor to
2837  * @skb:      send buffer
2838  * @tx_flags: send tx flags
2839  **/
2840 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2841 		     u32 tx_flags)
2842 {
2843 	struct i40e_filter_program_desc *fdir_desc;
2844 	struct i40e_pf *pf = tx_ring->vsi->back;
2845 	union {
2846 		unsigned char *network;
2847 		struct iphdr *ipv4;
2848 		struct ipv6hdr *ipv6;
2849 	} hdr;
2850 	struct tcphdr *th;
2851 	unsigned int hlen;
2852 	u32 flex_ptype, dtype_cmd;
2853 	int l4_proto;
2854 	u16 i;
2855 
2856 	/* make sure ATR is enabled */
2857 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2858 		return;
2859 
2860 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2861 		return;
2862 
2863 	/* if sampling is disabled do nothing */
2864 	if (!tx_ring->atr_sample_rate)
2865 		return;
2866 
2867 	/* Currently only IPv4/IPv6 with TCP is supported */
2868 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2869 		return;
2870 
2871 	/* snag network header to get L4 type and address */
2872 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2873 		      skb_inner_network_header(skb) : skb_network_header(skb);
2874 
2875 	/* Note: tx_flags gets modified to reflect inner protocols in
2876 	 * tx_enable_csum function if encap is enabled.
2877 	 */
2878 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2879 		/* access ihl as u8 to avoid unaligned access on ia64 */
2880 		hlen = (hdr.network[0] & 0x0F) << 2;
2881 		l4_proto = hdr.ipv4->protocol;
2882 	} else {
2883 		/* find the start of the innermost ipv6 header */
2884 		unsigned int inner_hlen = hdr.network - skb->data;
2885 		unsigned int h_offset = inner_hlen;
2886 
2887 		/* this function updates h_offset to the end of the header */
2888 		l4_proto =
2889 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2890 		/* hlen will contain our best estimate of the tcp header */
2891 		hlen = h_offset - inner_hlen;
2892 	}
2893 
2894 	if (l4_proto != IPPROTO_TCP)
2895 		return;
2896 
2897 	th = (struct tcphdr *)(hdr.network + hlen);
2898 
2899 	/* Due to lack of space, no more new filters can be programmed */
2900 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2901 		return;
2902 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2903 		/* HW ATR eviction will take care of removing filters on FIN
2904 		 * and RST packets.
2905 		 */
2906 		if (th->fin || th->rst)
2907 			return;
2908 	}
2909 
2910 	tx_ring->atr_count++;
2911 
2912 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2913 	if (!th->fin &&
2914 	    !th->syn &&
2915 	    !th->rst &&
2916 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2917 		return;
2918 
2919 	tx_ring->atr_count = 0;
2920 
2921 	/* grab the next descriptor */
2922 	i = tx_ring->next_to_use;
2923 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2924 
2925 	i++;
2926 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2927 
2928 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2929 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2930 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2931 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2932 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2933 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2934 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2935 
2936 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2937 
2938 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2939 
2940 	dtype_cmd |= (th->fin || th->rst) ?
2941 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2942 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2943 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2944 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2945 
2946 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2947 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2948 
2949 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2950 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2951 
2952 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2953 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2954 		dtype_cmd |=
2955 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2956 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2957 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2958 	else
2959 		dtype_cmd |=
2960 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2961 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2962 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2963 
2964 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2965 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2966 
2967 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2968 	fdir_desc->rsvd = cpu_to_le32(0);
2969 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2970 	fdir_desc->fd_id = cpu_to_le32(0);
2971 }
2972 
2973 /**
2974  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2975  * @skb:     send buffer
2976  * @tx_ring: ring to send buffer on
2977  * @flags:   the tx flags to be set
2978  *
2979  * Checks the skb and set up correspondingly several generic transmit flags
2980  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2981  *
2982  * Returns error code indicate the frame should be dropped upon error and the
2983  * otherwise  returns 0 to indicate the flags has been set properly.
2984  **/
2985 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2986 					     struct i40e_ring *tx_ring,
2987 					     u32 *flags)
2988 {
2989 	__be16 protocol = skb->protocol;
2990 	u32  tx_flags = 0;
2991 
2992 	if (protocol == htons(ETH_P_8021Q) &&
2993 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2994 		/* When HW VLAN acceleration is turned off by the user the
2995 		 * stack sets the protocol to 8021q so that the driver
2996 		 * can take any steps required to support the SW only
2997 		 * VLAN handling.  In our case the driver doesn't need
2998 		 * to take any further steps so just set the protocol
2999 		 * to the encapsulated ethertype.
3000 		 */
3001 		skb->protocol = vlan_get_protocol(skb);
3002 		goto out;
3003 	}
3004 
3005 	/* if we have a HW VLAN tag being added, default to the HW one */
3006 	if (skb_vlan_tag_present(skb)) {
3007 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3008 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3009 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3010 	} else if (protocol == htons(ETH_P_8021Q)) {
3011 		struct vlan_hdr *vhdr, _vhdr;
3012 
3013 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3014 		if (!vhdr)
3015 			return -EINVAL;
3016 
3017 		protocol = vhdr->h_vlan_encapsulated_proto;
3018 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3019 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3020 	}
3021 
3022 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3023 		goto out;
3024 
3025 	/* Insert 802.1p priority into VLAN header */
3026 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3027 	    (skb->priority != TC_PRIO_CONTROL)) {
3028 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3029 		tx_flags |= (skb->priority & 0x7) <<
3030 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3031 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3032 			struct vlan_ethhdr *vhdr;
3033 			int rc;
3034 
3035 			rc = skb_cow_head(skb, 0);
3036 			if (rc < 0)
3037 				return rc;
3038 			vhdr = (struct vlan_ethhdr *)skb->data;
3039 			vhdr->h_vlan_TCI = htons(tx_flags >>
3040 						 I40E_TX_FLAGS_VLAN_SHIFT);
3041 		} else {
3042 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3043 		}
3044 	}
3045 
3046 out:
3047 	*flags = tx_flags;
3048 	return 0;
3049 }
3050 
3051 /**
3052  * i40e_tso - set up the tso context descriptor
3053  * @first:    pointer to first Tx buffer for xmit
3054  * @hdr_len:  ptr to the size of the packet header
3055  * @cd_type_cmd_tso_mss: Quad Word 1
3056  *
3057  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3058  **/
3059 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3060 		    u64 *cd_type_cmd_tso_mss)
3061 {
3062 	struct sk_buff *skb = first->skb;
3063 	u64 cd_cmd, cd_tso_len, cd_mss;
3064 	union {
3065 		struct iphdr *v4;
3066 		struct ipv6hdr *v6;
3067 		unsigned char *hdr;
3068 	} ip;
3069 	union {
3070 		struct tcphdr *tcp;
3071 		struct udphdr *udp;
3072 		unsigned char *hdr;
3073 	} l4;
3074 	u32 paylen, l4_offset;
3075 	u16 gso_segs, gso_size;
3076 	int err;
3077 
3078 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3079 		return 0;
3080 
3081 	if (!skb_is_gso(skb))
3082 		return 0;
3083 
3084 	err = skb_cow_head(skb, 0);
3085 	if (err < 0)
3086 		return err;
3087 
3088 	ip.hdr = skb_network_header(skb);
3089 	l4.hdr = skb_transport_header(skb);
3090 
3091 	/* initialize outer IP header fields */
3092 	if (ip.v4->version == 4) {
3093 		ip.v4->tot_len = 0;
3094 		ip.v4->check = 0;
3095 	} else {
3096 		ip.v6->payload_len = 0;
3097 	}
3098 
3099 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3100 					 SKB_GSO_GRE_CSUM |
3101 					 SKB_GSO_IPXIP4 |
3102 					 SKB_GSO_IPXIP6 |
3103 					 SKB_GSO_UDP_TUNNEL |
3104 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3105 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3106 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3107 			l4.udp->len = 0;
3108 
3109 			/* determine offset of outer transport header */
3110 			l4_offset = l4.hdr - skb->data;
3111 
3112 			/* remove payload length from outer checksum */
3113 			paylen = skb->len - l4_offset;
3114 			csum_replace_by_diff(&l4.udp->check,
3115 					     (__force __wsum)htonl(paylen));
3116 		}
3117 
3118 		/* reset pointers to inner headers */
3119 		ip.hdr = skb_inner_network_header(skb);
3120 		l4.hdr = skb_inner_transport_header(skb);
3121 
3122 		/* initialize inner IP header fields */
3123 		if (ip.v4->version == 4) {
3124 			ip.v4->tot_len = 0;
3125 			ip.v4->check = 0;
3126 		} else {
3127 			ip.v6->payload_len = 0;
3128 		}
3129 	}
3130 
3131 	/* determine offset of inner transport header */
3132 	l4_offset = l4.hdr - skb->data;
3133 
3134 	/* remove payload length from inner checksum */
3135 	paylen = skb->len - l4_offset;
3136 
3137 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3138 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3139 		/* compute length of segmentation header */
3140 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3141 	} else {
3142 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3143 		/* compute length of segmentation header */
3144 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3145 	}
3146 
3147 	/* pull values out of skb_shinfo */
3148 	gso_size = skb_shinfo(skb)->gso_size;
3149 	gso_segs = skb_shinfo(skb)->gso_segs;
3150 
3151 	/* update GSO size and bytecount with header size */
3152 	first->gso_segs = gso_segs;
3153 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3154 
3155 	/* find the field values */
3156 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3157 	cd_tso_len = skb->len - *hdr_len;
3158 	cd_mss = gso_size;
3159 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3160 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3161 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3162 	return 1;
3163 }
3164 
3165 /**
3166  * i40e_tsyn - set up the tsyn context descriptor
3167  * @tx_ring:  ptr to the ring to send
3168  * @skb:      ptr to the skb we're sending
3169  * @tx_flags: the collected send information
3170  * @cd_type_cmd_tso_mss: Quad Word 1
3171  *
3172  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3173  **/
3174 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3175 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3176 {
3177 	struct i40e_pf *pf;
3178 
3179 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3180 		return 0;
3181 
3182 	/* Tx timestamps cannot be sampled when doing TSO */
3183 	if (tx_flags & I40E_TX_FLAGS_TSO)
3184 		return 0;
3185 
3186 	/* only timestamp the outbound packet if the user has requested it and
3187 	 * we are not already transmitting a packet to be timestamped
3188 	 */
3189 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3190 	if (!(pf->flags & I40E_FLAG_PTP))
3191 		return 0;
3192 
3193 	if (pf->ptp_tx &&
3194 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3195 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3196 		pf->ptp_tx_start = jiffies;
3197 		pf->ptp_tx_skb = skb_get(skb);
3198 	} else {
3199 		pf->tx_hwtstamp_skipped++;
3200 		return 0;
3201 	}
3202 
3203 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3204 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3205 
3206 	return 1;
3207 }
3208 
3209 /**
3210  * i40e_tx_enable_csum - Enable Tx checksum offloads
3211  * @skb: send buffer
3212  * @tx_flags: pointer to Tx flags currently set
3213  * @td_cmd: Tx descriptor command bits to set
3214  * @td_offset: Tx descriptor header offsets to set
3215  * @tx_ring: Tx descriptor ring
3216  * @cd_tunneling: ptr to context desc bits
3217  **/
3218 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3219 			       u32 *td_cmd, u32 *td_offset,
3220 			       struct i40e_ring *tx_ring,
3221 			       u32 *cd_tunneling)
3222 {
3223 	union {
3224 		struct iphdr *v4;
3225 		struct ipv6hdr *v6;
3226 		unsigned char *hdr;
3227 	} ip;
3228 	union {
3229 		struct tcphdr *tcp;
3230 		struct udphdr *udp;
3231 		unsigned char *hdr;
3232 	} l4;
3233 	unsigned char *exthdr;
3234 	u32 offset, cmd = 0;
3235 	__be16 frag_off;
3236 	u8 l4_proto = 0;
3237 
3238 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3239 		return 0;
3240 
3241 	ip.hdr = skb_network_header(skb);
3242 	l4.hdr = skb_transport_header(skb);
3243 
3244 	/* compute outer L2 header size */
3245 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3246 
3247 	if (skb->encapsulation) {
3248 		u32 tunnel = 0;
3249 		/* define outer network header type */
3250 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3251 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3252 				  I40E_TX_CTX_EXT_IP_IPV4 :
3253 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3254 
3255 			l4_proto = ip.v4->protocol;
3256 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3257 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3258 
3259 			exthdr = ip.hdr + sizeof(*ip.v6);
3260 			l4_proto = ip.v6->nexthdr;
3261 			if (l4.hdr != exthdr)
3262 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3263 						 &l4_proto, &frag_off);
3264 		}
3265 
3266 		/* define outer transport */
3267 		switch (l4_proto) {
3268 		case IPPROTO_UDP:
3269 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3270 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3271 			break;
3272 		case IPPROTO_GRE:
3273 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3274 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3275 			break;
3276 		case IPPROTO_IPIP:
3277 		case IPPROTO_IPV6:
3278 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3279 			l4.hdr = skb_inner_network_header(skb);
3280 			break;
3281 		default:
3282 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3283 				return -1;
3284 
3285 			skb_checksum_help(skb);
3286 			return 0;
3287 		}
3288 
3289 		/* compute outer L3 header size */
3290 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3291 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3292 
3293 		/* switch IP header pointer from outer to inner header */
3294 		ip.hdr = skb_inner_network_header(skb);
3295 
3296 		/* compute tunnel header size */
3297 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3298 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3299 
3300 		/* indicate if we need to offload outer UDP header */
3301 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3302 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3303 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3304 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3305 
3306 		/* record tunnel offload values */
3307 		*cd_tunneling |= tunnel;
3308 
3309 		/* switch L4 header pointer from outer to inner */
3310 		l4.hdr = skb_inner_transport_header(skb);
3311 		l4_proto = 0;
3312 
3313 		/* reset type as we transition from outer to inner headers */
3314 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3315 		if (ip.v4->version == 4)
3316 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3317 		if (ip.v6->version == 6)
3318 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3319 	}
3320 
3321 	/* Enable IP checksum offloads */
3322 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3323 		l4_proto = ip.v4->protocol;
3324 		/* the stack computes the IP header already, the only time we
3325 		 * need the hardware to recompute it is in the case of TSO.
3326 		 */
3327 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3328 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3329 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3330 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3331 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3332 
3333 		exthdr = ip.hdr + sizeof(*ip.v6);
3334 		l4_proto = ip.v6->nexthdr;
3335 		if (l4.hdr != exthdr)
3336 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3337 					 &l4_proto, &frag_off);
3338 	}
3339 
3340 	/* compute inner L3 header size */
3341 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3342 
3343 	/* Enable L4 checksum offloads */
3344 	switch (l4_proto) {
3345 	case IPPROTO_TCP:
3346 		/* enable checksum offloads */
3347 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3348 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3349 		break;
3350 	case IPPROTO_SCTP:
3351 		/* enable SCTP checksum offload */
3352 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3353 		offset |= (sizeof(struct sctphdr) >> 2) <<
3354 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3355 		break;
3356 	case IPPROTO_UDP:
3357 		/* enable UDP checksum offload */
3358 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3359 		offset |= (sizeof(struct udphdr) >> 2) <<
3360 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3361 		break;
3362 	default:
3363 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3364 			return -1;
3365 		skb_checksum_help(skb);
3366 		return 0;
3367 	}
3368 
3369 	*td_cmd |= cmd;
3370 	*td_offset |= offset;
3371 
3372 	return 1;
3373 }
3374 
3375 /**
3376  * i40e_create_tx_ctx Build the Tx context descriptor
3377  * @tx_ring:  ring to create the descriptor on
3378  * @cd_type_cmd_tso_mss: Quad Word 1
3379  * @cd_tunneling: Quad Word 0 - bits 0-31
3380  * @cd_l2tag2: Quad Word 0 - bits 32-63
3381  **/
3382 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3383 			       const u64 cd_type_cmd_tso_mss,
3384 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3385 {
3386 	struct i40e_tx_context_desc *context_desc;
3387 	int i = tx_ring->next_to_use;
3388 
3389 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3390 	    !cd_tunneling && !cd_l2tag2)
3391 		return;
3392 
3393 	/* grab the next descriptor */
3394 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3395 
3396 	i++;
3397 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3398 
3399 	/* cpu_to_le32 and assign to struct fields */
3400 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3401 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3402 	context_desc->rsvd = cpu_to_le16(0);
3403 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3404 }
3405 
3406 /**
3407  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3408  * @tx_ring: the ring to be checked
3409  * @size:    the size buffer we want to assure is available
3410  *
3411  * Returns -EBUSY if a stop is needed, else 0
3412  **/
3413 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3414 {
3415 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3416 	/* Memory barrier before checking head and tail */
3417 	smp_mb();
3418 
3419 	/* Check again in a case another CPU has just made room available. */
3420 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3421 		return -EBUSY;
3422 
3423 	/* A reprieve! - use start_queue because it doesn't call schedule */
3424 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3425 	++tx_ring->tx_stats.restart_queue;
3426 	return 0;
3427 }
3428 
3429 /**
3430  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3431  * @skb:      send buffer
3432  *
3433  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3434  * and so we need to figure out the cases where we need to linearize the skb.
3435  *
3436  * For TSO we need to count the TSO header and segment payload separately.
3437  * As such we need to check cases where we have 7 fragments or more as we
3438  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3439  * the segment payload in the first descriptor, and another 7 for the
3440  * fragments.
3441  **/
3442 bool __i40e_chk_linearize(struct sk_buff *skb)
3443 {
3444 	const skb_frag_t *frag, *stale;
3445 	int nr_frags, sum;
3446 
3447 	/* no need to check if number of frags is less than 7 */
3448 	nr_frags = skb_shinfo(skb)->nr_frags;
3449 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3450 		return false;
3451 
3452 	/* We need to walk through the list and validate that each group
3453 	 * of 6 fragments totals at least gso_size.
3454 	 */
3455 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3456 	frag = &skb_shinfo(skb)->frags[0];
3457 
3458 	/* Initialize size to the negative value of gso_size minus 1.  We
3459 	 * use this as the worst case scenerio in which the frag ahead
3460 	 * of us only provides one byte which is why we are limited to 6
3461 	 * descriptors for a single transmit as the header and previous
3462 	 * fragment are already consuming 2 descriptors.
3463 	 */
3464 	sum = 1 - skb_shinfo(skb)->gso_size;
3465 
3466 	/* Add size of frags 0 through 4 to create our initial sum */
3467 	sum += skb_frag_size(frag++);
3468 	sum += skb_frag_size(frag++);
3469 	sum += skb_frag_size(frag++);
3470 	sum += skb_frag_size(frag++);
3471 	sum += skb_frag_size(frag++);
3472 
3473 	/* Walk through fragments adding latest fragment, testing it, and
3474 	 * then removing stale fragments from the sum.
3475 	 */
3476 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3477 		int stale_size = skb_frag_size(stale);
3478 
3479 		sum += skb_frag_size(frag++);
3480 
3481 		/* The stale fragment may present us with a smaller
3482 		 * descriptor than the actual fragment size. To account
3483 		 * for that we need to remove all the data on the front and
3484 		 * figure out what the remainder would be in the last
3485 		 * descriptor associated with the fragment.
3486 		 */
3487 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3488 			int align_pad = -(skb_frag_off(stale)) &
3489 					(I40E_MAX_READ_REQ_SIZE - 1);
3490 
3491 			sum -= align_pad;
3492 			stale_size -= align_pad;
3493 
3494 			do {
3495 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3496 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3497 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3498 		}
3499 
3500 		/* if sum is negative we failed to make sufficient progress */
3501 		if (sum < 0)
3502 			return true;
3503 
3504 		if (!nr_frags--)
3505 			break;
3506 
3507 		sum -= stale_size;
3508 	}
3509 
3510 	return false;
3511 }
3512 
3513 /**
3514  * i40e_tx_map - Build the Tx descriptor
3515  * @tx_ring:  ring to send buffer on
3516  * @skb:      send buffer
3517  * @first:    first buffer info buffer to use
3518  * @tx_flags: collected send information
3519  * @hdr_len:  size of the packet header
3520  * @td_cmd:   the command field in the descriptor
3521  * @td_offset: offset for checksum or crc
3522  *
3523  * Returns 0 on success, -1 on failure to DMA
3524  **/
3525 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3526 			      struct i40e_tx_buffer *first, u32 tx_flags,
3527 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3528 {
3529 	unsigned int data_len = skb->data_len;
3530 	unsigned int size = skb_headlen(skb);
3531 	skb_frag_t *frag;
3532 	struct i40e_tx_buffer *tx_bi;
3533 	struct i40e_tx_desc *tx_desc;
3534 	u16 i = tx_ring->next_to_use;
3535 	u32 td_tag = 0;
3536 	dma_addr_t dma;
3537 	u16 desc_count = 1;
3538 
3539 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3540 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3541 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3542 			 I40E_TX_FLAGS_VLAN_SHIFT;
3543 	}
3544 
3545 	first->tx_flags = tx_flags;
3546 
3547 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3548 
3549 	tx_desc = I40E_TX_DESC(tx_ring, i);
3550 	tx_bi = first;
3551 
3552 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3553 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3554 
3555 		if (dma_mapping_error(tx_ring->dev, dma))
3556 			goto dma_error;
3557 
3558 		/* record length, and DMA address */
3559 		dma_unmap_len_set(tx_bi, len, size);
3560 		dma_unmap_addr_set(tx_bi, dma, dma);
3561 
3562 		/* align size to end of page */
3563 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3564 		tx_desc->buffer_addr = cpu_to_le64(dma);
3565 
3566 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3567 			tx_desc->cmd_type_offset_bsz =
3568 				build_ctob(td_cmd, td_offset,
3569 					   max_data, td_tag);
3570 
3571 			tx_desc++;
3572 			i++;
3573 			desc_count++;
3574 
3575 			if (i == tx_ring->count) {
3576 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3577 				i = 0;
3578 			}
3579 
3580 			dma += max_data;
3581 			size -= max_data;
3582 
3583 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3584 			tx_desc->buffer_addr = cpu_to_le64(dma);
3585 		}
3586 
3587 		if (likely(!data_len))
3588 			break;
3589 
3590 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3591 							  size, td_tag);
3592 
3593 		tx_desc++;
3594 		i++;
3595 		desc_count++;
3596 
3597 		if (i == tx_ring->count) {
3598 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3599 			i = 0;
3600 		}
3601 
3602 		size = skb_frag_size(frag);
3603 		data_len -= size;
3604 
3605 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3606 				       DMA_TO_DEVICE);
3607 
3608 		tx_bi = &tx_ring->tx_bi[i];
3609 	}
3610 
3611 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3612 
3613 	i++;
3614 	if (i == tx_ring->count)
3615 		i = 0;
3616 
3617 	tx_ring->next_to_use = i;
3618 
3619 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3620 
3621 	/* write last descriptor with EOP bit */
3622 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3623 
3624 	/* We OR these values together to check both against 4 (WB_STRIDE)
3625 	 * below. This is safe since we don't re-use desc_count afterwards.
3626 	 */
3627 	desc_count |= ++tx_ring->packet_stride;
3628 
3629 	if (desc_count >= WB_STRIDE) {
3630 		/* write last descriptor with RS bit set */
3631 		td_cmd |= I40E_TX_DESC_CMD_RS;
3632 		tx_ring->packet_stride = 0;
3633 	}
3634 
3635 	tx_desc->cmd_type_offset_bsz =
3636 			build_ctob(td_cmd, td_offset, size, td_tag);
3637 
3638 	skb_tx_timestamp(skb);
3639 
3640 	/* Force memory writes to complete before letting h/w know there
3641 	 * are new descriptors to fetch.
3642 	 *
3643 	 * We also use this memory barrier to make certain all of the
3644 	 * status bits have been updated before next_to_watch is written.
3645 	 */
3646 	wmb();
3647 
3648 	/* set next_to_watch value indicating a packet is present */
3649 	first->next_to_watch = tx_desc;
3650 
3651 	/* notify HW of packet */
3652 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3653 		writel(i, tx_ring->tail);
3654 	}
3655 
3656 	return 0;
3657 
3658 dma_error:
3659 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3660 
3661 	/* clear dma mappings for failed tx_bi map */
3662 	for (;;) {
3663 		tx_bi = &tx_ring->tx_bi[i];
3664 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3665 		if (tx_bi == first)
3666 			break;
3667 		if (i == 0)
3668 			i = tx_ring->count;
3669 		i--;
3670 	}
3671 
3672 	tx_ring->next_to_use = i;
3673 
3674 	return -1;
3675 }
3676 
3677 /**
3678  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3679  * @xdpf: data to transmit
3680  * @xdp_ring: XDP Tx ring
3681  **/
3682 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3683 			      struct i40e_ring *xdp_ring)
3684 {
3685 	u16 i = xdp_ring->next_to_use;
3686 	struct i40e_tx_buffer *tx_bi;
3687 	struct i40e_tx_desc *tx_desc;
3688 	void *data = xdpf->data;
3689 	u32 size = xdpf->len;
3690 	dma_addr_t dma;
3691 
3692 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3693 		xdp_ring->tx_stats.tx_busy++;
3694 		return I40E_XDP_CONSUMED;
3695 	}
3696 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3697 	if (dma_mapping_error(xdp_ring->dev, dma))
3698 		return I40E_XDP_CONSUMED;
3699 
3700 	tx_bi = &xdp_ring->tx_bi[i];
3701 	tx_bi->bytecount = size;
3702 	tx_bi->gso_segs = 1;
3703 	tx_bi->xdpf = xdpf;
3704 
3705 	/* record length, and DMA address */
3706 	dma_unmap_len_set(tx_bi, len, size);
3707 	dma_unmap_addr_set(tx_bi, dma, dma);
3708 
3709 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3710 	tx_desc->buffer_addr = cpu_to_le64(dma);
3711 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3712 						  | I40E_TXD_CMD,
3713 						  0, size, 0);
3714 
3715 	/* Make certain all of the status bits have been updated
3716 	 * before next_to_watch is written.
3717 	 */
3718 	smp_wmb();
3719 
3720 	xdp_ring->xdp_tx_active++;
3721 	i++;
3722 	if (i == xdp_ring->count)
3723 		i = 0;
3724 
3725 	tx_bi->next_to_watch = tx_desc;
3726 	xdp_ring->next_to_use = i;
3727 
3728 	return I40E_XDP_TX;
3729 }
3730 
3731 /**
3732  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3733  * @skb:     send buffer
3734  * @tx_ring: ring to send buffer on
3735  *
3736  * Returns NETDEV_TX_OK if sent, else an error code
3737  **/
3738 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3739 					struct i40e_ring *tx_ring)
3740 {
3741 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3742 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3743 	struct i40e_tx_buffer *first;
3744 	u32 td_offset = 0;
3745 	u32 tx_flags = 0;
3746 	__be16 protocol;
3747 	u32 td_cmd = 0;
3748 	u8 hdr_len = 0;
3749 	int tso, count;
3750 	int tsyn;
3751 
3752 	/* prefetch the data, we'll need it later */
3753 	prefetch(skb->data);
3754 
3755 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3756 
3757 	count = i40e_xmit_descriptor_count(skb);
3758 	if (i40e_chk_linearize(skb, count)) {
3759 		if (__skb_linearize(skb)) {
3760 			dev_kfree_skb_any(skb);
3761 			return NETDEV_TX_OK;
3762 		}
3763 		count = i40e_txd_use_count(skb->len);
3764 		tx_ring->tx_stats.tx_linearize++;
3765 	}
3766 
3767 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3768 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3769 	 *       + 4 desc gap to avoid the cache line where head is,
3770 	 *       + 1 desc for context descriptor,
3771 	 * otherwise try next time
3772 	 */
3773 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3774 		tx_ring->tx_stats.tx_busy++;
3775 		return NETDEV_TX_BUSY;
3776 	}
3777 
3778 	/* record the location of the first descriptor for this packet */
3779 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3780 	first->skb = skb;
3781 	first->bytecount = skb->len;
3782 	first->gso_segs = 1;
3783 
3784 	/* prepare the xmit flags */
3785 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3786 		goto out_drop;
3787 
3788 	/* obtain protocol of skb */
3789 	protocol = vlan_get_protocol(skb);
3790 
3791 	/* setup IPv4/IPv6 offloads */
3792 	if (protocol == htons(ETH_P_IP))
3793 		tx_flags |= I40E_TX_FLAGS_IPV4;
3794 	else if (protocol == htons(ETH_P_IPV6))
3795 		tx_flags |= I40E_TX_FLAGS_IPV6;
3796 
3797 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3798 
3799 	if (tso < 0)
3800 		goto out_drop;
3801 	else if (tso)
3802 		tx_flags |= I40E_TX_FLAGS_TSO;
3803 
3804 	/* Always offload the checksum, since it's in the data descriptor */
3805 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3806 				  tx_ring, &cd_tunneling);
3807 	if (tso < 0)
3808 		goto out_drop;
3809 
3810 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3811 
3812 	if (tsyn)
3813 		tx_flags |= I40E_TX_FLAGS_TSYN;
3814 
3815 	/* always enable CRC insertion offload */
3816 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3817 
3818 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3819 			   cd_tunneling, cd_l2tag2);
3820 
3821 	/* Add Flow Director ATR if it's enabled.
3822 	 *
3823 	 * NOTE: this must always be directly before the data descriptor.
3824 	 */
3825 	i40e_atr(tx_ring, skb, tx_flags);
3826 
3827 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3828 			td_cmd, td_offset))
3829 		goto cleanup_tx_tstamp;
3830 
3831 	return NETDEV_TX_OK;
3832 
3833 out_drop:
3834 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3835 	dev_kfree_skb_any(first->skb);
3836 	first->skb = NULL;
3837 cleanup_tx_tstamp:
3838 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3839 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3840 
3841 		dev_kfree_skb_any(pf->ptp_tx_skb);
3842 		pf->ptp_tx_skb = NULL;
3843 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3844 	}
3845 
3846 	return NETDEV_TX_OK;
3847 }
3848 
3849 /**
3850  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3851  * @skb:    send buffer
3852  * @netdev: network interface device structure
3853  *
3854  * Returns NETDEV_TX_OK if sent, else an error code
3855  **/
3856 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3857 {
3858 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3859 	struct i40e_vsi *vsi = np->vsi;
3860 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3861 
3862 	/* hardware can't handle really short frames, hardware padding works
3863 	 * beyond this point
3864 	 */
3865 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3866 		return NETDEV_TX_OK;
3867 
3868 	return i40e_xmit_frame_ring(skb, tx_ring);
3869 }
3870 
3871 /**
3872  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3873  * @dev: netdev
3874  * @n: number of frames
3875  * @frames: array of XDP buffer pointers
3876  * @flags: XDP extra info
3877  *
3878  * Returns number of frames successfully sent. Frames that fail are
3879  * free'ed via XDP return API.
3880  *
3881  * For error cases, a negative errno code is returned and no-frames
3882  * are transmitted (caller must handle freeing frames).
3883  **/
3884 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3885 		  u32 flags)
3886 {
3887 	struct i40e_netdev_priv *np = netdev_priv(dev);
3888 	unsigned int queue_index = smp_processor_id();
3889 	struct i40e_vsi *vsi = np->vsi;
3890 	struct i40e_pf *pf = vsi->back;
3891 	struct i40e_ring *xdp_ring;
3892 	int drops = 0;
3893 	int i;
3894 
3895 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3896 		return -ENETDOWN;
3897 
3898 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3899 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3900 		return -ENXIO;
3901 
3902 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3903 		return -EINVAL;
3904 
3905 	xdp_ring = vsi->xdp_rings[queue_index];
3906 
3907 	for (i = 0; i < n; i++) {
3908 		struct xdp_frame *xdpf = frames[i];
3909 		int err;
3910 
3911 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3912 		if (err != I40E_XDP_TX) {
3913 			xdp_return_frame_rx_napi(xdpf);
3914 			drops++;
3915 		}
3916 	}
3917 
3918 	if (unlikely(flags & XDP_XMIT_FLUSH))
3919 		i40e_xdp_ring_update_tail(xdp_ring);
3920 
3921 	return n - drops;
3922 }
3923