1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <linux/bpf_trace.h> 6 #include <net/xdp.h> 7 #include "i40e.h" 8 #include "i40e_trace.h" 9 #include "i40e_prototype.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 47 48 /* Use LAN VSI Id if not programmed by user */ 49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 52 53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 54 55 dtype_cmd |= add ? 56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 57 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 59 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 63 64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 66 67 if (fdata->cnt_index) { 68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 70 ((u32)fdata->cnt_index << 71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 72 } 73 74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 75 fdir_desc->rsvd = cpu_to_le32(0); 76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 78 } 79 80 #define I40E_FD_CLEAN_DELAY 10 81 /** 82 * i40e_program_fdir_filter - Program a Flow Director filter 83 * @fdir_data: Packet data that will be filter parameters 84 * @raw_packet: the pre-allocated packet buffer for FDir 85 * @pf: The PF pointer 86 * @add: True for add/update, False for remove 87 **/ 88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 89 u8 *raw_packet, struct i40e_pf *pf, 90 bool add) 91 { 92 struct i40e_tx_buffer *tx_buf, *first; 93 struct i40e_tx_desc *tx_desc; 94 struct i40e_ring *tx_ring; 95 struct i40e_vsi *vsi; 96 struct device *dev; 97 dma_addr_t dma; 98 u32 td_cmd = 0; 99 u16 i; 100 101 /* find existing FDIR VSI */ 102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 103 if (!vsi) 104 return -ENOENT; 105 106 tx_ring = vsi->tx_rings[0]; 107 dev = tx_ring->dev; 108 109 /* we need two descriptors to add/del a filter and we can wait */ 110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 111 if (!i) 112 return -EAGAIN; 113 msleep_interruptible(1); 114 } 115 116 dma = dma_map_single(dev, raw_packet, 117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 118 if (dma_mapping_error(dev, dma)) 119 goto dma_fail; 120 121 /* grab the next descriptor */ 122 i = tx_ring->next_to_use; 123 first = &tx_ring->tx_bi[i]; 124 i40e_fdir(tx_ring, fdir_data, add); 125 126 /* Now program a dummy descriptor */ 127 i = tx_ring->next_to_use; 128 tx_desc = I40E_TX_DESC(tx_ring, i); 129 tx_buf = &tx_ring->tx_bi[i]; 130 131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 132 133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 134 135 /* record length, and DMA address */ 136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 137 dma_unmap_addr_set(tx_buf, dma, dma); 138 139 tx_desc->buffer_addr = cpu_to_le64(dma); 140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 141 142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 143 tx_buf->raw_buf = (void *)raw_packet; 144 145 tx_desc->cmd_type_offset_bsz = 146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 147 148 /* Force memory writes to complete before letting h/w 149 * know there are new descriptors to fetch. 150 */ 151 wmb(); 152 153 /* Mark the data descriptor to be watched */ 154 first->next_to_watch = tx_desc; 155 156 writel(tx_ring->next_to_use, tx_ring->tail); 157 return 0; 158 159 dma_fail: 160 return -1; 161 } 162 163 #define IP_HEADER_OFFSET 14 164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 165 /** 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 167 * @vsi: pointer to the targeted VSI 168 * @fd_data: the flow director data required for the FDir descriptor 169 * @add: true adds a filter, false removes it 170 * 171 * Returns 0 if the filters were successfully added or removed 172 **/ 173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 174 struct i40e_fdir_filter *fd_data, 175 bool add) 176 { 177 struct i40e_pf *pf = vsi->back; 178 struct udphdr *udp; 179 struct iphdr *ip; 180 u8 *raw_packet; 181 int ret; 182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 185 186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 187 if (!raw_packet) 188 return -ENOMEM; 189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 190 191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 193 + sizeof(struct iphdr)); 194 195 ip->daddr = fd_data->dst_ip; 196 udp->dest = fd_data->dst_port; 197 ip->saddr = fd_data->src_ip; 198 udp->source = fd_data->src_port; 199 200 if (fd_data->flex_filter) { 201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 202 __be16 pattern = fd_data->flex_word; 203 u16 off = fd_data->flex_offset; 204 205 *((__force __be16 *)(payload + off)) = pattern; 206 } 207 208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 210 if (ret) { 211 dev_info(&pf->pdev->dev, 212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 213 fd_data->pctype, fd_data->fd_id, ret); 214 /* Free the packet buffer since it wasn't added to the ring */ 215 kfree(raw_packet); 216 return -EOPNOTSUPP; 217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 218 if (add) 219 dev_info(&pf->pdev->dev, 220 "Filter OK for PCTYPE %d loc = %d\n", 221 fd_data->pctype, fd_data->fd_id); 222 else 223 dev_info(&pf->pdev->dev, 224 "Filter deleted for PCTYPE %d loc = %d\n", 225 fd_data->pctype, fd_data->fd_id); 226 } 227 228 if (add) 229 pf->fd_udp4_filter_cnt++; 230 else 231 pf->fd_udp4_filter_cnt--; 232 233 return 0; 234 } 235 236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 237 /** 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 239 * @vsi: pointer to the targeted VSI 240 * @fd_data: the flow director data required for the FDir descriptor 241 * @add: true adds a filter, false removes it 242 * 243 * Returns 0 if the filters were successfully added or removed 244 **/ 245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 246 struct i40e_fdir_filter *fd_data, 247 bool add) 248 { 249 struct i40e_pf *pf = vsi->back; 250 struct tcphdr *tcp; 251 struct iphdr *ip; 252 u8 *raw_packet; 253 int ret; 254 /* Dummy packet */ 255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 258 0x0, 0x72, 0, 0, 0, 0}; 259 260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 261 if (!raw_packet) 262 return -ENOMEM; 263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 264 265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 267 + sizeof(struct iphdr)); 268 269 ip->daddr = fd_data->dst_ip; 270 tcp->dest = fd_data->dst_port; 271 ip->saddr = fd_data->src_ip; 272 tcp->source = fd_data->src_port; 273 274 if (fd_data->flex_filter) { 275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 276 __be16 pattern = fd_data->flex_word; 277 u16 off = fd_data->flex_offset; 278 279 *((__force __be16 *)(payload + off)) = pattern; 280 } 281 282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 284 if (ret) { 285 dev_info(&pf->pdev->dev, 286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 287 fd_data->pctype, fd_data->fd_id, ret); 288 /* Free the packet buffer since it wasn't added to the ring */ 289 kfree(raw_packet); 290 return -EOPNOTSUPP; 291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 292 if (add) 293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 294 fd_data->pctype, fd_data->fd_id); 295 else 296 dev_info(&pf->pdev->dev, 297 "Filter deleted for PCTYPE %d loc = %d\n", 298 fd_data->pctype, fd_data->fd_id); 299 } 300 301 if (add) { 302 pf->fd_tcp4_filter_cnt++; 303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 304 I40E_DEBUG_FD & pf->hw.debug_mask) 305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 307 } else { 308 pf->fd_tcp4_filter_cnt--; 309 } 310 311 return 0; 312 } 313 314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 315 /** 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 317 * a specific flow spec 318 * @vsi: pointer to the targeted VSI 319 * @fd_data: the flow director data required for the FDir descriptor 320 * @add: true adds a filter, false removes it 321 * 322 * Returns 0 if the filters were successfully added or removed 323 **/ 324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 325 struct i40e_fdir_filter *fd_data, 326 bool add) 327 { 328 struct i40e_pf *pf = vsi->back; 329 struct sctphdr *sctp; 330 struct iphdr *ip; 331 u8 *raw_packet; 332 int ret; 333 /* Dummy packet */ 334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 337 338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 339 if (!raw_packet) 340 return -ENOMEM; 341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 342 343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 345 + sizeof(struct iphdr)); 346 347 ip->daddr = fd_data->dst_ip; 348 sctp->dest = fd_data->dst_port; 349 ip->saddr = fd_data->src_ip; 350 sctp->source = fd_data->src_port; 351 352 if (fd_data->flex_filter) { 353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 354 __be16 pattern = fd_data->flex_word; 355 u16 off = fd_data->flex_offset; 356 357 *((__force __be16 *)(payload + off)) = pattern; 358 } 359 360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 362 if (ret) { 363 dev_info(&pf->pdev->dev, 364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 365 fd_data->pctype, fd_data->fd_id, ret); 366 /* Free the packet buffer since it wasn't added to the ring */ 367 kfree(raw_packet); 368 return -EOPNOTSUPP; 369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 370 if (add) 371 dev_info(&pf->pdev->dev, 372 "Filter OK for PCTYPE %d loc = %d\n", 373 fd_data->pctype, fd_data->fd_id); 374 else 375 dev_info(&pf->pdev->dev, 376 "Filter deleted for PCTYPE %d loc = %d\n", 377 fd_data->pctype, fd_data->fd_id); 378 } 379 380 if (add) 381 pf->fd_sctp4_filter_cnt++; 382 else 383 pf->fd_sctp4_filter_cnt--; 384 385 return 0; 386 } 387 388 #define I40E_IP_DUMMY_PACKET_LEN 34 389 /** 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 391 * a specific flow spec 392 * @vsi: pointer to the targeted VSI 393 * @fd_data: the flow director data required for the FDir descriptor 394 * @add: true adds a filter, false removes it 395 * 396 * Returns 0 if the filters were successfully added or removed 397 **/ 398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 399 struct i40e_fdir_filter *fd_data, 400 bool add) 401 { 402 struct i40e_pf *pf = vsi->back; 403 struct iphdr *ip; 404 u8 *raw_packet; 405 int ret; 406 int i; 407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 409 0, 0, 0, 0}; 410 411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 414 if (!raw_packet) 415 return -ENOMEM; 416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 418 419 ip->saddr = fd_data->src_ip; 420 ip->daddr = fd_data->dst_ip; 421 ip->protocol = 0; 422 423 if (fd_data->flex_filter) { 424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 425 __be16 pattern = fd_data->flex_word; 426 u16 off = fd_data->flex_offset; 427 428 *((__force __be16 *)(payload + off)) = pattern; 429 } 430 431 fd_data->pctype = i; 432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 433 if (ret) { 434 dev_info(&pf->pdev->dev, 435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 436 fd_data->pctype, fd_data->fd_id, ret); 437 /* The packet buffer wasn't added to the ring so we 438 * need to free it now. 439 */ 440 kfree(raw_packet); 441 return -EOPNOTSUPP; 442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 443 if (add) 444 dev_info(&pf->pdev->dev, 445 "Filter OK for PCTYPE %d loc = %d\n", 446 fd_data->pctype, fd_data->fd_id); 447 else 448 dev_info(&pf->pdev->dev, 449 "Filter deleted for PCTYPE %d loc = %d\n", 450 fd_data->pctype, fd_data->fd_id); 451 } 452 } 453 454 if (add) 455 pf->fd_ip4_filter_cnt++; 456 else 457 pf->fd_ip4_filter_cnt--; 458 459 return 0; 460 } 461 462 /** 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 464 * @vsi: pointer to the targeted VSI 465 * @input: filter to add or delete 466 * @add: true adds a filter, false removes it 467 * 468 **/ 469 int i40e_add_del_fdir(struct i40e_vsi *vsi, 470 struct i40e_fdir_filter *input, bool add) 471 { 472 struct i40e_pf *pf = vsi->back; 473 int ret; 474 475 switch (input->flow_type & ~FLOW_EXT) { 476 case TCP_V4_FLOW: 477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 478 break; 479 case UDP_V4_FLOW: 480 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 481 break; 482 case SCTP_V4_FLOW: 483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 484 break; 485 case IP_USER_FLOW: 486 switch (input->ip4_proto) { 487 case IPPROTO_TCP: 488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 489 break; 490 case IPPROTO_UDP: 491 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 492 break; 493 case IPPROTO_SCTP: 494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 495 break; 496 case IPPROTO_IP: 497 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 498 break; 499 default: 500 /* We cannot support masking based on protocol */ 501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 502 input->ip4_proto); 503 return -EINVAL; 504 } 505 break; 506 default: 507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 508 input->flow_type); 509 return -EINVAL; 510 } 511 512 /* The buffer allocated here will be normally be freed by 513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 514 * completion. In the event of an error adding the buffer to the FDIR 515 * ring, it will immediately be freed. It may also be freed by 516 * i40e_clean_tx_ring() when closing the VSI. 517 */ 518 return ret; 519 } 520 521 /** 522 * i40e_fd_handle_status - check the Programming Status for FD 523 * @rx_ring: the Rx ring for this descriptor 524 * @qword0_raw: qword0 525 * @qword1: qword1 after le_to_cpu 526 * @prog_id: the id originally used for programming 527 * 528 * This is used to verify if the FD programming or invalidation 529 * requested by SW to the HW is successful or not and take actions accordingly. 530 **/ 531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 532 u64 qword1, u8 prog_id) 533 { 534 struct i40e_pf *pf = rx_ring->vsi->back; 535 struct pci_dev *pdev = pf->pdev; 536 struct i40e_16b_rx_wb_qw0 *qw0; 537 u32 fcnt_prog, fcnt_avail; 538 u32 error; 539 540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; 541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 543 544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 546 if (qw0->hi_dword.fd_id != 0 || 547 (I40E_DEBUG_FD & pf->hw.debug_mask)) 548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 549 pf->fd_inv); 550 551 /* Check if the programming error is for ATR. 552 * If so, auto disable ATR and set a state for 553 * flush in progress. Next time we come here if flush is in 554 * progress do nothing, once flush is complete the state will 555 * be cleared. 556 */ 557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 558 return; 559 560 pf->fd_add_err++; 561 /* store the current atr filter count */ 562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 563 564 if (qw0->hi_dword.fd_id == 0 && 565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 566 /* These set_bit() calls aren't atomic with the 567 * test_bit() here, but worse case we potentially 568 * disable ATR and queue a flush right after SB 569 * support is re-enabled. That shouldn't cause an 570 * issue in practice 571 */ 572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 574 } 575 576 /* filter programming failed most likely due to table full */ 577 fcnt_prog = i40e_get_global_fd_count(pf); 578 fcnt_avail = pf->fdir_pf_filter_count; 579 /* If ATR is running fcnt_prog can quickly change, 580 * if we are very close to full, it makes sense to disable 581 * FD ATR/SB and then re-enable it when there is room. 582 */ 583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 586 pf->state)) 587 if (I40E_DEBUG_FD & pf->hw.debug_mask) 588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 589 } 590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 591 if (I40E_DEBUG_FD & pf->hw.debug_mask) 592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 593 qw0->hi_dword.fd_id); 594 } 595 } 596 597 /** 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 599 * @ring: the ring that owns the buffer 600 * @tx_buffer: the buffer to free 601 **/ 602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 603 struct i40e_tx_buffer *tx_buffer) 604 { 605 if (tx_buffer->skb) { 606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 607 kfree(tx_buffer->raw_buf); 608 else if (ring_is_xdp(ring)) 609 xdp_return_frame(tx_buffer->xdpf); 610 else 611 dev_kfree_skb_any(tx_buffer->skb); 612 if (dma_unmap_len(tx_buffer, len)) 613 dma_unmap_single(ring->dev, 614 dma_unmap_addr(tx_buffer, dma), 615 dma_unmap_len(tx_buffer, len), 616 DMA_TO_DEVICE); 617 } else if (dma_unmap_len(tx_buffer, len)) { 618 dma_unmap_page(ring->dev, 619 dma_unmap_addr(tx_buffer, dma), 620 dma_unmap_len(tx_buffer, len), 621 DMA_TO_DEVICE); 622 } 623 624 tx_buffer->next_to_watch = NULL; 625 tx_buffer->skb = NULL; 626 dma_unmap_len_set(tx_buffer, len, 0); 627 /* tx_buffer must be completely set up in the transmit path */ 628 } 629 630 /** 631 * i40e_clean_tx_ring - Free any empty Tx buffers 632 * @tx_ring: ring to be cleaned 633 **/ 634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 635 { 636 unsigned long bi_size; 637 u16 i; 638 639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 640 i40e_xsk_clean_tx_ring(tx_ring); 641 } else { 642 /* ring already cleared, nothing to do */ 643 if (!tx_ring->tx_bi) 644 return; 645 646 /* Free all the Tx ring sk_buffs */ 647 for (i = 0; i < tx_ring->count; i++) 648 i40e_unmap_and_free_tx_resource(tx_ring, 649 &tx_ring->tx_bi[i]); 650 } 651 652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 653 memset(tx_ring->tx_bi, 0, bi_size); 654 655 /* Zero out the descriptor ring */ 656 memset(tx_ring->desc, 0, tx_ring->size); 657 658 tx_ring->next_to_use = 0; 659 tx_ring->next_to_clean = 0; 660 661 if (!tx_ring->netdev) 662 return; 663 664 /* cleanup Tx queue statistics */ 665 netdev_tx_reset_queue(txring_txq(tx_ring)); 666 } 667 668 /** 669 * i40e_free_tx_resources - Free Tx resources per queue 670 * @tx_ring: Tx descriptor ring for a specific queue 671 * 672 * Free all transmit software resources 673 **/ 674 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 675 { 676 i40e_clean_tx_ring(tx_ring); 677 kfree(tx_ring->tx_bi); 678 tx_ring->tx_bi = NULL; 679 680 if (tx_ring->desc) { 681 dma_free_coherent(tx_ring->dev, tx_ring->size, 682 tx_ring->desc, tx_ring->dma); 683 tx_ring->desc = NULL; 684 } 685 } 686 687 /** 688 * i40e_get_tx_pending - how many tx descriptors not processed 689 * @ring: the ring of descriptors 690 * @in_sw: use SW variables 691 * 692 * Since there is no access to the ring head register 693 * in XL710, we need to use our local copies 694 **/ 695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 696 { 697 u32 head, tail; 698 699 if (!in_sw) { 700 head = i40e_get_head(ring); 701 tail = readl(ring->tail); 702 } else { 703 head = ring->next_to_clean; 704 tail = ring->next_to_use; 705 } 706 707 if (head != tail) 708 return (head < tail) ? 709 tail - head : (tail + ring->count - head); 710 711 return 0; 712 } 713 714 /** 715 * i40e_detect_recover_hung - Function to detect and recover hung_queues 716 * @vsi: pointer to vsi struct with tx queues 717 * 718 * VSI has netdev and netdev has TX queues. This function is to check each of 719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 720 **/ 721 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 722 { 723 struct i40e_ring *tx_ring = NULL; 724 struct net_device *netdev; 725 unsigned int i; 726 int packets; 727 728 if (!vsi) 729 return; 730 731 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 732 return; 733 734 netdev = vsi->netdev; 735 if (!netdev) 736 return; 737 738 if (!netif_carrier_ok(netdev)) 739 return; 740 741 for (i = 0; i < vsi->num_queue_pairs; i++) { 742 tx_ring = vsi->tx_rings[i]; 743 if (tx_ring && tx_ring->desc) { 744 /* If packet counter has not changed the queue is 745 * likely stalled, so force an interrupt for this 746 * queue. 747 * 748 * prev_pkt_ctr would be negative if there was no 749 * pending work. 750 */ 751 packets = tx_ring->stats.packets & INT_MAX; 752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 753 i40e_force_wb(vsi, tx_ring->q_vector); 754 continue; 755 } 756 757 /* Memory barrier between read of packet count and call 758 * to i40e_get_tx_pending() 759 */ 760 smp_rmb(); 761 tx_ring->tx_stats.prev_pkt_ctr = 762 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 763 } 764 } 765 } 766 767 /** 768 * i40e_clean_tx_irq - Reclaim resources after transmit completes 769 * @vsi: the VSI we care about 770 * @tx_ring: Tx ring to clean 771 * @napi_budget: Used to determine if we are in netpoll 772 * 773 * Returns true if there's any budget left (e.g. the clean is finished) 774 **/ 775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 776 struct i40e_ring *tx_ring, int napi_budget) 777 { 778 int i = tx_ring->next_to_clean; 779 struct i40e_tx_buffer *tx_buf; 780 struct i40e_tx_desc *tx_head; 781 struct i40e_tx_desc *tx_desc; 782 unsigned int total_bytes = 0, total_packets = 0; 783 unsigned int budget = vsi->work_limit; 784 785 tx_buf = &tx_ring->tx_bi[i]; 786 tx_desc = I40E_TX_DESC(tx_ring, i); 787 i -= tx_ring->count; 788 789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 790 791 do { 792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 793 794 /* if next_to_watch is not set then there is no work pending */ 795 if (!eop_desc) 796 break; 797 798 /* prevent any other reads prior to eop_desc */ 799 smp_rmb(); 800 801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 802 /* we have caught up to head, no work left to do */ 803 if (tx_head == tx_desc) 804 break; 805 806 /* clear next_to_watch to prevent false hangs */ 807 tx_buf->next_to_watch = NULL; 808 809 /* update the statistics for this packet */ 810 total_bytes += tx_buf->bytecount; 811 total_packets += tx_buf->gso_segs; 812 813 /* free the skb/XDP data */ 814 if (ring_is_xdp(tx_ring)) 815 xdp_return_frame(tx_buf->xdpf); 816 else 817 napi_consume_skb(tx_buf->skb, napi_budget); 818 819 /* unmap skb header data */ 820 dma_unmap_single(tx_ring->dev, 821 dma_unmap_addr(tx_buf, dma), 822 dma_unmap_len(tx_buf, len), 823 DMA_TO_DEVICE); 824 825 /* clear tx_buffer data */ 826 tx_buf->skb = NULL; 827 dma_unmap_len_set(tx_buf, len, 0); 828 829 /* unmap remaining buffers */ 830 while (tx_desc != eop_desc) { 831 i40e_trace(clean_tx_irq_unmap, 832 tx_ring, tx_desc, tx_buf); 833 834 tx_buf++; 835 tx_desc++; 836 i++; 837 if (unlikely(!i)) { 838 i -= tx_ring->count; 839 tx_buf = tx_ring->tx_bi; 840 tx_desc = I40E_TX_DESC(tx_ring, 0); 841 } 842 843 /* unmap any remaining paged data */ 844 if (dma_unmap_len(tx_buf, len)) { 845 dma_unmap_page(tx_ring->dev, 846 dma_unmap_addr(tx_buf, dma), 847 dma_unmap_len(tx_buf, len), 848 DMA_TO_DEVICE); 849 dma_unmap_len_set(tx_buf, len, 0); 850 } 851 } 852 853 /* move us one more past the eop_desc for start of next pkt */ 854 tx_buf++; 855 tx_desc++; 856 i++; 857 if (unlikely(!i)) { 858 i -= tx_ring->count; 859 tx_buf = tx_ring->tx_bi; 860 tx_desc = I40E_TX_DESC(tx_ring, 0); 861 } 862 863 prefetch(tx_desc); 864 865 /* update budget accounting */ 866 budget--; 867 } while (likely(budget)); 868 869 i += tx_ring->count; 870 tx_ring->next_to_clean = i; 871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 872 i40e_arm_wb(tx_ring, vsi, budget); 873 874 if (ring_is_xdp(tx_ring)) 875 return !!budget; 876 877 /* notify netdev of completed buffers */ 878 netdev_tx_completed_queue(txring_txq(tx_ring), 879 total_packets, total_bytes); 880 881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 884 /* Make sure that anybody stopping the queue after this 885 * sees the new next_to_clean. 886 */ 887 smp_mb(); 888 if (__netif_subqueue_stopped(tx_ring->netdev, 889 tx_ring->queue_index) && 890 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 891 netif_wake_subqueue(tx_ring->netdev, 892 tx_ring->queue_index); 893 ++tx_ring->tx_stats.restart_queue; 894 } 895 } 896 897 return !!budget; 898 } 899 900 /** 901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 902 * @vsi: the VSI we care about 903 * @q_vector: the vector on which to enable writeback 904 * 905 **/ 906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 907 struct i40e_q_vector *q_vector) 908 { 909 u16 flags = q_vector->tx.ring[0].flags; 910 u32 val; 911 912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 913 return; 914 915 if (q_vector->arm_wb_state) 916 return; 917 918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 921 922 wr32(&vsi->back->hw, 923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 924 val); 925 } else { 926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 928 929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 930 } 931 q_vector->arm_wb_state = true; 932 } 933 934 /** 935 * i40e_force_wb - Issue SW Interrupt so HW does a wb 936 * @vsi: the VSI we care about 937 * @q_vector: the vector on which to force writeback 938 * 939 **/ 940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 941 { 942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 947 /* allow 00 to be written to the index */ 948 949 wr32(&vsi->back->hw, 950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 951 } else { 952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 956 /* allow 00 to be written to the index */ 957 958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 959 } 960 } 961 962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 963 struct i40e_ring_container *rc) 964 { 965 return &q_vector->rx == rc; 966 } 967 968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 969 { 970 unsigned int divisor; 971 972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 973 case I40E_LINK_SPEED_40GB: 974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 975 break; 976 case I40E_LINK_SPEED_25GB: 977 case I40E_LINK_SPEED_20GB: 978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 979 break; 980 default: 981 case I40E_LINK_SPEED_10GB: 982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 983 break; 984 case I40E_LINK_SPEED_1GB: 985 case I40E_LINK_SPEED_100MB: 986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 987 break; 988 } 989 990 return divisor; 991 } 992 993 /** 994 * i40e_update_itr - update the dynamic ITR value based on statistics 995 * @q_vector: structure containing interrupt and ring information 996 * @rc: structure containing ring performance data 997 * 998 * Stores a new ITR value based on packets and byte 999 * counts during the last interrupt. The advantage of per interrupt 1000 * computation is faster updates and more accurate ITR for the current 1001 * traffic pattern. Constants in this function were computed 1002 * based on theoretical maximum wire speed and thresholds were set based 1003 * on testing data as well as attempting to minimize response time 1004 * while increasing bulk throughput. 1005 **/ 1006 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1007 struct i40e_ring_container *rc) 1008 { 1009 unsigned int avg_wire_size, packets, bytes, itr; 1010 unsigned long next_update = jiffies; 1011 1012 /* If we don't have any rings just leave ourselves set for maximum 1013 * possible latency so we take ourselves out of the equation. 1014 */ 1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1016 return; 1017 1018 /* For Rx we want to push the delay up and default to low latency. 1019 * for Tx we want to pull the delay down and default to high latency. 1020 */ 1021 itr = i40e_container_is_rx(q_vector, rc) ? 1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1024 1025 /* If we didn't update within up to 1 - 2 jiffies we can assume 1026 * that either packets are coming in so slow there hasn't been 1027 * any work, or that there is so much work that NAPI is dealing 1028 * with interrupt moderation and we don't need to do anything. 1029 */ 1030 if (time_after(next_update, rc->next_update)) 1031 goto clear_counts; 1032 1033 /* If itr_countdown is set it means we programmed an ITR within 1034 * the last 4 interrupt cycles. This has a side effect of us 1035 * potentially firing an early interrupt. In order to work around 1036 * this we need to throw out any data received for a few 1037 * interrupts following the update. 1038 */ 1039 if (q_vector->itr_countdown) { 1040 itr = rc->target_itr; 1041 goto clear_counts; 1042 } 1043 1044 packets = rc->total_packets; 1045 bytes = rc->total_bytes; 1046 1047 if (i40e_container_is_rx(q_vector, rc)) { 1048 /* If Rx there are 1 to 4 packets and bytes are less than 1049 * 9000 assume insufficient data to use bulk rate limiting 1050 * approach unless Tx is already in bulk rate limiting. We 1051 * are likely latency driven. 1052 */ 1053 if (packets && packets < 4 && bytes < 9000 && 1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1055 itr = I40E_ITR_ADAPTIVE_LATENCY; 1056 goto adjust_by_size; 1057 } 1058 } else if (packets < 4) { 1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1060 * bulk mode and we are receiving 4 or fewer packets just 1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1062 * that the Rx can relax. 1063 */ 1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1065 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1066 I40E_ITR_ADAPTIVE_MAX_USECS) 1067 goto clear_counts; 1068 } else if (packets > 32) { 1069 /* If we have processed over 32 packets in a single interrupt 1070 * for Tx assume we need to switch over to "bulk" mode. 1071 */ 1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1073 } 1074 1075 /* We have no packets to actually measure against. This means 1076 * either one of the other queues on this vector is active or 1077 * we are a Tx queue doing TSO with too high of an interrupt rate. 1078 * 1079 * Between 4 and 56 we can assume that our current interrupt delay 1080 * is only slightly too low. As such we should increase it by a small 1081 * fixed amount. 1082 */ 1083 if (packets < 56) { 1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1086 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1088 } 1089 goto clear_counts; 1090 } 1091 1092 if (packets <= 256) { 1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1094 itr &= I40E_ITR_MASK; 1095 1096 /* Between 56 and 112 is our "goldilocks" zone where we are 1097 * working out "just right". Just report that our current 1098 * ITR is good for us. 1099 */ 1100 if (packets <= 112) 1101 goto clear_counts; 1102 1103 /* If packet count is 128 or greater we are likely looking 1104 * at a slight overrun of the delay we want. Try halving 1105 * our delay to see if that will cut the number of packets 1106 * in half per interrupt. 1107 */ 1108 itr /= 2; 1109 itr &= I40E_ITR_MASK; 1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1112 1113 goto clear_counts; 1114 } 1115 1116 /* The paths below assume we are dealing with a bulk ITR since 1117 * number of packets is greater than 256. We are just going to have 1118 * to compute a value and try to bring the count under control, 1119 * though for smaller packet sizes there isn't much we can do as 1120 * NAPI polling will likely be kicking in sooner rather than later. 1121 */ 1122 itr = I40E_ITR_ADAPTIVE_BULK; 1123 1124 adjust_by_size: 1125 /* If packet counts are 256 or greater we can assume we have a gross 1126 * overestimation of what the rate should be. Instead of trying to fine 1127 * tune it just use the formula below to try and dial in an exact value 1128 * give the current packet size of the frame. 1129 */ 1130 avg_wire_size = bytes / packets; 1131 1132 /* The following is a crude approximation of: 1133 * wmem_default / (size + overhead) = desired_pkts_per_int 1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1136 * 1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1139 * formula down to 1140 * 1141 * (170 * (size + 24)) / (size + 640) = ITR 1142 * 1143 * We first do some math on the packet size and then finally bitshift 1144 * by 8 after rounding up. We also have to account for PCIe link speed 1145 * difference as ITR scales based on this. 1146 */ 1147 if (avg_wire_size <= 60) { 1148 /* Start at 250k ints/sec */ 1149 avg_wire_size = 4096; 1150 } else if (avg_wire_size <= 380) { 1151 /* 250K ints/sec to 60K ints/sec */ 1152 avg_wire_size *= 40; 1153 avg_wire_size += 1696; 1154 } else if (avg_wire_size <= 1084) { 1155 /* 60K ints/sec to 36K ints/sec */ 1156 avg_wire_size *= 15; 1157 avg_wire_size += 11452; 1158 } else if (avg_wire_size <= 1980) { 1159 /* 36K ints/sec to 30K ints/sec */ 1160 avg_wire_size *= 5; 1161 avg_wire_size += 22420; 1162 } else { 1163 /* plateau at a limit of 30K ints/sec */ 1164 avg_wire_size = 32256; 1165 } 1166 1167 /* If we are in low latency mode halve our delay which doubles the 1168 * rate to somewhere between 100K to 16K ints/sec 1169 */ 1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1171 avg_wire_size /= 2; 1172 1173 /* Resultant value is 256 times larger than it needs to be. This 1174 * gives us room to adjust the value as needed to either increase 1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1176 * 1177 * Use addition as we have already recorded the new latency flag 1178 * for the ITR value. 1179 */ 1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1181 I40E_ITR_ADAPTIVE_MIN_INC; 1182 1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1184 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1186 } 1187 1188 clear_counts: 1189 /* write back value */ 1190 rc->target_itr = itr; 1191 1192 /* next update should occur within next jiffy */ 1193 rc->next_update = next_update + 1; 1194 1195 rc->total_bytes = 0; 1196 rc->total_packets = 0; 1197 } 1198 1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1200 { 1201 return &rx_ring->rx_bi[idx]; 1202 } 1203 1204 /** 1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1206 * @rx_ring: rx descriptor ring to store buffers on 1207 * @old_buff: donor buffer to have page reused 1208 * 1209 * Synchronizes page for reuse by the adapter 1210 **/ 1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1212 struct i40e_rx_buffer *old_buff) 1213 { 1214 struct i40e_rx_buffer *new_buff; 1215 u16 nta = rx_ring->next_to_alloc; 1216 1217 new_buff = i40e_rx_bi(rx_ring, nta); 1218 1219 /* update, and store next to alloc */ 1220 nta++; 1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1222 1223 /* transfer page from old buffer to new buffer */ 1224 new_buff->dma = old_buff->dma; 1225 new_buff->page = old_buff->page; 1226 new_buff->page_offset = old_buff->page_offset; 1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1228 1229 rx_ring->rx_stats.page_reuse_count++; 1230 1231 /* clear contents of buffer_info */ 1232 old_buff->page = NULL; 1233 } 1234 1235 /** 1236 * i40e_clean_programming_status - clean the programming status descriptor 1237 * @rx_ring: the rx ring that has this descriptor 1238 * @qword0_raw: qword0 1239 * @qword1: qword1 representing status_error_len in CPU ordering 1240 * 1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1242 * status being successful or not and take actions accordingly. FCoE should 1243 * handle its context/filter programming/invalidation status and take actions. 1244 * 1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1246 **/ 1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1248 u64 qword1) 1249 { 1250 u8 id; 1251 1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1254 1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1257 } 1258 1259 /** 1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1261 * @tx_ring: the tx ring to set up 1262 * 1263 * Return 0 on success, negative on error 1264 **/ 1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1266 { 1267 struct device *dev = tx_ring->dev; 1268 int bi_size; 1269 1270 if (!dev) 1271 return -ENOMEM; 1272 1273 /* warn if we are about to overwrite the pointer */ 1274 WARN_ON(tx_ring->tx_bi); 1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1277 if (!tx_ring->tx_bi) 1278 goto err; 1279 1280 u64_stats_init(&tx_ring->syncp); 1281 1282 /* round up to nearest 4K */ 1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1284 /* add u32 for head writeback, align after this takes care of 1285 * guaranteeing this is at least one cache line in size 1286 */ 1287 tx_ring->size += sizeof(u32); 1288 tx_ring->size = ALIGN(tx_ring->size, 4096); 1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1290 &tx_ring->dma, GFP_KERNEL); 1291 if (!tx_ring->desc) { 1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1293 tx_ring->size); 1294 goto err; 1295 } 1296 1297 tx_ring->next_to_use = 0; 1298 tx_ring->next_to_clean = 0; 1299 tx_ring->tx_stats.prev_pkt_ctr = -1; 1300 return 0; 1301 1302 err: 1303 kfree(tx_ring->tx_bi); 1304 tx_ring->tx_bi = NULL; 1305 return -ENOMEM; 1306 } 1307 1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring) 1309 { 1310 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count; 1311 1312 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL); 1313 return rx_ring->rx_bi ? 0 : -ENOMEM; 1314 } 1315 1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1317 { 1318 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1319 } 1320 1321 /** 1322 * i40e_clean_rx_ring - Free Rx buffers 1323 * @rx_ring: ring to be cleaned 1324 **/ 1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1326 { 1327 u16 i; 1328 1329 /* ring already cleared, nothing to do */ 1330 if (!rx_ring->rx_bi) 1331 return; 1332 1333 if (rx_ring->skb) { 1334 dev_kfree_skb(rx_ring->skb); 1335 rx_ring->skb = NULL; 1336 } 1337 1338 if (rx_ring->xsk_pool) { 1339 i40e_xsk_clean_rx_ring(rx_ring); 1340 goto skip_free; 1341 } 1342 1343 /* Free all the Rx ring sk_buffs */ 1344 for (i = 0; i < rx_ring->count; i++) { 1345 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1346 1347 if (!rx_bi->page) 1348 continue; 1349 1350 /* Invalidate cache lines that may have been written to by 1351 * device so that we avoid corrupting memory. 1352 */ 1353 dma_sync_single_range_for_cpu(rx_ring->dev, 1354 rx_bi->dma, 1355 rx_bi->page_offset, 1356 rx_ring->rx_buf_len, 1357 DMA_FROM_DEVICE); 1358 1359 /* free resources associated with mapping */ 1360 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1361 i40e_rx_pg_size(rx_ring), 1362 DMA_FROM_DEVICE, 1363 I40E_RX_DMA_ATTR); 1364 1365 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1366 1367 rx_bi->page = NULL; 1368 rx_bi->page_offset = 0; 1369 } 1370 1371 skip_free: 1372 if (rx_ring->xsk_pool) 1373 i40e_clear_rx_bi_zc(rx_ring); 1374 else 1375 i40e_clear_rx_bi(rx_ring); 1376 1377 /* Zero out the descriptor ring */ 1378 memset(rx_ring->desc, 0, rx_ring->size); 1379 1380 rx_ring->next_to_alloc = 0; 1381 rx_ring->next_to_clean = 0; 1382 rx_ring->next_to_use = 0; 1383 } 1384 1385 /** 1386 * i40e_free_rx_resources - Free Rx resources 1387 * @rx_ring: ring to clean the resources from 1388 * 1389 * Free all receive software resources 1390 **/ 1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1392 { 1393 i40e_clean_rx_ring(rx_ring); 1394 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1396 rx_ring->xdp_prog = NULL; 1397 kfree(rx_ring->rx_bi); 1398 rx_ring->rx_bi = NULL; 1399 1400 if (rx_ring->desc) { 1401 dma_free_coherent(rx_ring->dev, rx_ring->size, 1402 rx_ring->desc, rx_ring->dma); 1403 rx_ring->desc = NULL; 1404 } 1405 } 1406 1407 /** 1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1410 * 1411 * Returns 0 on success, negative on failure 1412 **/ 1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1414 { 1415 struct device *dev = rx_ring->dev; 1416 int err; 1417 1418 u64_stats_init(&rx_ring->syncp); 1419 1420 /* Round up to nearest 4K */ 1421 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); 1422 rx_ring->size = ALIGN(rx_ring->size, 4096); 1423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1424 &rx_ring->dma, GFP_KERNEL); 1425 1426 if (!rx_ring->desc) { 1427 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1428 rx_ring->size); 1429 return -ENOMEM; 1430 } 1431 1432 rx_ring->next_to_alloc = 0; 1433 rx_ring->next_to_clean = 0; 1434 rx_ring->next_to_use = 0; 1435 1436 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1437 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1438 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1439 rx_ring->queue_index); 1440 if (err < 0) 1441 return err; 1442 } 1443 1444 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1445 1446 return 0; 1447 } 1448 1449 /** 1450 * i40e_release_rx_desc - Store the new tail and head values 1451 * @rx_ring: ring to bump 1452 * @val: new head index 1453 **/ 1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1455 { 1456 rx_ring->next_to_use = val; 1457 1458 /* update next to alloc since we have filled the ring */ 1459 rx_ring->next_to_alloc = val; 1460 1461 /* Force memory writes to complete before letting h/w 1462 * know there are new descriptors to fetch. (Only 1463 * applicable for weak-ordered memory model archs, 1464 * such as IA-64). 1465 */ 1466 wmb(); 1467 writel(val, rx_ring->tail); 1468 } 1469 1470 /** 1471 * i40e_rx_offset - Return expected offset into page to access data 1472 * @rx_ring: Ring we are requesting offset of 1473 * 1474 * Returns the offset value for ring into the data buffer. 1475 */ 1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1477 { 1478 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1479 } 1480 1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1482 unsigned int size) 1483 { 1484 unsigned int truesize; 1485 1486 #if (PAGE_SIZE < 8192) 1487 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1488 #else 1489 truesize = i40e_rx_offset(rx_ring) ? 1490 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) + 1491 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1492 SKB_DATA_ALIGN(size); 1493 #endif 1494 return truesize; 1495 } 1496 1497 /** 1498 * i40e_alloc_mapped_page - recycle or make a new page 1499 * @rx_ring: ring to use 1500 * @bi: rx_buffer struct to modify 1501 * 1502 * Returns true if the page was successfully allocated or 1503 * reused. 1504 **/ 1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1506 struct i40e_rx_buffer *bi) 1507 { 1508 struct page *page = bi->page; 1509 dma_addr_t dma; 1510 1511 /* since we are recycling buffers we should seldom need to alloc */ 1512 if (likely(page)) { 1513 rx_ring->rx_stats.page_reuse_count++; 1514 return true; 1515 } 1516 1517 /* alloc new page for storage */ 1518 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1519 if (unlikely(!page)) { 1520 rx_ring->rx_stats.alloc_page_failed++; 1521 return false; 1522 } 1523 1524 /* map page for use */ 1525 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1526 i40e_rx_pg_size(rx_ring), 1527 DMA_FROM_DEVICE, 1528 I40E_RX_DMA_ATTR); 1529 1530 /* if mapping failed free memory back to system since 1531 * there isn't much point in holding memory we can't use 1532 */ 1533 if (dma_mapping_error(rx_ring->dev, dma)) { 1534 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1535 rx_ring->rx_stats.alloc_page_failed++; 1536 return false; 1537 } 1538 1539 bi->dma = dma; 1540 bi->page = page; 1541 bi->page_offset = i40e_rx_offset(rx_ring); 1542 page_ref_add(page, USHRT_MAX - 1); 1543 bi->pagecnt_bias = USHRT_MAX; 1544 1545 return true; 1546 } 1547 1548 /** 1549 * i40e_alloc_rx_buffers - Replace used receive buffers 1550 * @rx_ring: ring to place buffers on 1551 * @cleaned_count: number of buffers to replace 1552 * 1553 * Returns false if all allocations were successful, true if any fail 1554 **/ 1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1556 { 1557 u16 ntu = rx_ring->next_to_use; 1558 union i40e_rx_desc *rx_desc; 1559 struct i40e_rx_buffer *bi; 1560 1561 /* do nothing if no valid netdev defined */ 1562 if (!rx_ring->netdev || !cleaned_count) 1563 return false; 1564 1565 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1566 bi = i40e_rx_bi(rx_ring, ntu); 1567 1568 do { 1569 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1570 goto no_buffers; 1571 1572 /* sync the buffer for use by the device */ 1573 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1574 bi->page_offset, 1575 rx_ring->rx_buf_len, 1576 DMA_FROM_DEVICE); 1577 1578 /* Refresh the desc even if buffer_addrs didn't change 1579 * because each write-back erases this info. 1580 */ 1581 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1582 1583 rx_desc++; 1584 bi++; 1585 ntu++; 1586 if (unlikely(ntu == rx_ring->count)) { 1587 rx_desc = I40E_RX_DESC(rx_ring, 0); 1588 bi = i40e_rx_bi(rx_ring, 0); 1589 ntu = 0; 1590 } 1591 1592 /* clear the status bits for the next_to_use descriptor */ 1593 rx_desc->wb.qword1.status_error_len = 0; 1594 1595 cleaned_count--; 1596 } while (cleaned_count); 1597 1598 if (rx_ring->next_to_use != ntu) 1599 i40e_release_rx_desc(rx_ring, ntu); 1600 1601 return false; 1602 1603 no_buffers: 1604 if (rx_ring->next_to_use != ntu) 1605 i40e_release_rx_desc(rx_ring, ntu); 1606 1607 /* make sure to come back via polling to try again after 1608 * allocation failure 1609 */ 1610 return true; 1611 } 1612 1613 /** 1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1615 * @vsi: the VSI we care about 1616 * @skb: skb currently being received and modified 1617 * @rx_desc: the receive descriptor 1618 **/ 1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1620 struct sk_buff *skb, 1621 union i40e_rx_desc *rx_desc) 1622 { 1623 struct i40e_rx_ptype_decoded decoded; 1624 u32 rx_error, rx_status; 1625 bool ipv4, ipv6; 1626 u8 ptype; 1627 u64 qword; 1628 1629 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1630 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1631 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1632 I40E_RXD_QW1_ERROR_SHIFT; 1633 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1634 I40E_RXD_QW1_STATUS_SHIFT; 1635 decoded = decode_rx_desc_ptype(ptype); 1636 1637 skb->ip_summed = CHECKSUM_NONE; 1638 1639 skb_checksum_none_assert(skb); 1640 1641 /* Rx csum enabled and ip headers found? */ 1642 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1643 return; 1644 1645 /* did the hardware decode the packet and checksum? */ 1646 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1647 return; 1648 1649 /* both known and outer_ip must be set for the below code to work */ 1650 if (!(decoded.known && decoded.outer_ip)) 1651 return; 1652 1653 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1654 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1655 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1656 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1657 1658 if (ipv4 && 1659 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1660 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1661 goto checksum_fail; 1662 1663 /* likely incorrect csum if alternate IP extension headers found */ 1664 if (ipv6 && 1665 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1666 /* don't increment checksum err here, non-fatal err */ 1667 return; 1668 1669 /* there was some L4 error, count error and punt packet to the stack */ 1670 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1671 goto checksum_fail; 1672 1673 /* handle packets that were not able to be checksummed due 1674 * to arrival speed, in this case the stack can compute 1675 * the csum. 1676 */ 1677 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1678 return; 1679 1680 /* If there is an outer header present that might contain a checksum 1681 * we need to bump the checksum level by 1 to reflect the fact that 1682 * we are indicating we validated the inner checksum. 1683 */ 1684 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1685 skb->csum_level = 1; 1686 1687 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1688 switch (decoded.inner_prot) { 1689 case I40E_RX_PTYPE_INNER_PROT_TCP: 1690 case I40E_RX_PTYPE_INNER_PROT_UDP: 1691 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1692 skb->ip_summed = CHECKSUM_UNNECESSARY; 1693 fallthrough; 1694 default: 1695 break; 1696 } 1697 1698 return; 1699 1700 checksum_fail: 1701 vsi->back->hw_csum_rx_error++; 1702 } 1703 1704 /** 1705 * i40e_ptype_to_htype - get a hash type 1706 * @ptype: the ptype value from the descriptor 1707 * 1708 * Returns a hash type to be used by skb_set_hash 1709 **/ 1710 static inline int i40e_ptype_to_htype(u8 ptype) 1711 { 1712 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1713 1714 if (!decoded.known) 1715 return PKT_HASH_TYPE_NONE; 1716 1717 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1719 return PKT_HASH_TYPE_L4; 1720 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1721 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1722 return PKT_HASH_TYPE_L3; 1723 else 1724 return PKT_HASH_TYPE_L2; 1725 } 1726 1727 /** 1728 * i40e_rx_hash - set the hash value in the skb 1729 * @ring: descriptor ring 1730 * @rx_desc: specific descriptor 1731 * @skb: skb currently being received and modified 1732 * @rx_ptype: Rx packet type 1733 **/ 1734 static inline void i40e_rx_hash(struct i40e_ring *ring, 1735 union i40e_rx_desc *rx_desc, 1736 struct sk_buff *skb, 1737 u8 rx_ptype) 1738 { 1739 u32 hash; 1740 const __le64 rss_mask = 1741 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1742 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1743 1744 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1745 return; 1746 1747 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1748 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1749 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1750 } 1751 } 1752 1753 /** 1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1755 * @rx_ring: rx descriptor ring packet is being transacted on 1756 * @rx_desc: pointer to the EOP Rx descriptor 1757 * @skb: pointer to current skb being populated 1758 * 1759 * This function checks the ring, descriptor, and packet information in 1760 * order to populate the hash, checksum, VLAN, protocol, and 1761 * other fields within the skb. 1762 **/ 1763 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1764 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1765 { 1766 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1767 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1768 I40E_RXD_QW1_STATUS_SHIFT; 1769 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1770 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1771 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1772 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1773 I40E_RXD_QW1_PTYPE_SHIFT; 1774 1775 if (unlikely(tsynvalid)) 1776 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1777 1778 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1779 1780 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1781 1782 skb_record_rx_queue(skb, rx_ring->queue_index); 1783 1784 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1785 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1786 1787 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1788 le16_to_cpu(vlan_tag)); 1789 } 1790 1791 /* modifies the skb - consumes the enet header */ 1792 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1793 } 1794 1795 /** 1796 * i40e_cleanup_headers - Correct empty headers 1797 * @rx_ring: rx descriptor ring packet is being transacted on 1798 * @skb: pointer to current skb being fixed 1799 * @rx_desc: pointer to the EOP Rx descriptor 1800 * 1801 * Also address the case where we are pulling data in on pages only 1802 * and as such no data is present in the skb header. 1803 * 1804 * In addition if skb is not at least 60 bytes we need to pad it so that 1805 * it is large enough to qualify as a valid Ethernet frame. 1806 * 1807 * Returns true if an error was encountered and skb was freed. 1808 **/ 1809 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1810 union i40e_rx_desc *rx_desc) 1811 1812 { 1813 /* XDP packets use error pointer so abort at this point */ 1814 if (IS_ERR(skb)) 1815 return true; 1816 1817 /* ERR_MASK will only have valid bits if EOP set, and 1818 * what we are doing here is actually checking 1819 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1820 * the error field 1821 */ 1822 if (unlikely(i40e_test_staterr(rx_desc, 1823 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1824 dev_kfree_skb_any(skb); 1825 return true; 1826 } 1827 1828 /* if eth_skb_pad returns an error the skb was freed */ 1829 if (eth_skb_pad(skb)) 1830 return true; 1831 1832 return false; 1833 } 1834 1835 /** 1836 * i40e_page_is_reusable - check if any reuse is possible 1837 * @page: page struct to check 1838 * 1839 * A page is not reusable if it was allocated under low memory 1840 * conditions, or it's not in the same NUMA node as this CPU. 1841 */ 1842 static inline bool i40e_page_is_reusable(struct page *page) 1843 { 1844 return (page_to_nid(page) == numa_mem_id()) && 1845 !page_is_pfmemalloc(page); 1846 } 1847 1848 /** 1849 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1850 * the adapter for another receive 1851 * 1852 * @rx_buffer: buffer containing the page 1853 * 1854 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1855 * an unused region in the page. 1856 * 1857 * For small pages, @truesize will be a constant value, half the size 1858 * of the memory at page. We'll attempt to alternate between high and 1859 * low halves of the page, with one half ready for use by the hardware 1860 * and the other half being consumed by the stack. We use the page 1861 * ref count to determine whether the stack has finished consuming the 1862 * portion of this page that was passed up with a previous packet. If 1863 * the page ref count is >1, we'll assume the "other" half page is 1864 * still busy, and this page cannot be reused. 1865 * 1866 * For larger pages, @truesize will be the actual space used by the 1867 * received packet (adjusted upward to an even multiple of the cache 1868 * line size). This will advance through the page by the amount 1869 * actually consumed by the received packets while there is still 1870 * space for a buffer. Each region of larger pages will be used at 1871 * most once, after which the page will not be reused. 1872 * 1873 * In either case, if the page is reusable its refcount is increased. 1874 **/ 1875 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1876 { 1877 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1878 struct page *page = rx_buffer->page; 1879 1880 /* Is any reuse possible? */ 1881 if (unlikely(!i40e_page_is_reusable(page))) 1882 return false; 1883 1884 #if (PAGE_SIZE < 8192) 1885 /* if we are only owner of page we can reuse it */ 1886 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1887 return false; 1888 #else 1889 #define I40E_LAST_OFFSET \ 1890 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1891 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1892 return false; 1893 #endif 1894 1895 /* If we have drained the page fragment pool we need to update 1896 * the pagecnt_bias and page count so that we fully restock the 1897 * number of references the driver holds. 1898 */ 1899 if (unlikely(pagecnt_bias == 1)) { 1900 page_ref_add(page, USHRT_MAX - 1); 1901 rx_buffer->pagecnt_bias = USHRT_MAX; 1902 } 1903 1904 return true; 1905 } 1906 1907 /** 1908 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1909 * @rx_ring: rx descriptor ring to transact packets on 1910 * @rx_buffer: buffer containing page to add 1911 * @skb: sk_buff to place the data into 1912 * @size: packet length from rx_desc 1913 * 1914 * This function will add the data contained in rx_buffer->page to the skb. 1915 * It will just attach the page as a frag to the skb. 1916 * 1917 * The function will then update the page offset. 1918 **/ 1919 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1920 struct i40e_rx_buffer *rx_buffer, 1921 struct sk_buff *skb, 1922 unsigned int size) 1923 { 1924 #if (PAGE_SIZE < 8192) 1925 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1926 #else 1927 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1928 #endif 1929 1930 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1931 rx_buffer->page_offset, size, truesize); 1932 1933 /* page is being used so we must update the page offset */ 1934 #if (PAGE_SIZE < 8192) 1935 rx_buffer->page_offset ^= truesize; 1936 #else 1937 rx_buffer->page_offset += truesize; 1938 #endif 1939 } 1940 1941 /** 1942 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1943 * @rx_ring: rx descriptor ring to transact packets on 1944 * @size: size of buffer to add to skb 1945 * 1946 * This function will pull an Rx buffer from the ring and synchronize it 1947 * for use by the CPU. 1948 */ 1949 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1950 const unsigned int size) 1951 { 1952 struct i40e_rx_buffer *rx_buffer; 1953 1954 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 1955 prefetch_page_address(rx_buffer->page); 1956 1957 /* we are reusing so sync this buffer for CPU use */ 1958 dma_sync_single_range_for_cpu(rx_ring->dev, 1959 rx_buffer->dma, 1960 rx_buffer->page_offset, 1961 size, 1962 DMA_FROM_DEVICE); 1963 1964 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1965 rx_buffer->pagecnt_bias--; 1966 1967 return rx_buffer; 1968 } 1969 1970 /** 1971 * i40e_construct_skb - Allocate skb and populate it 1972 * @rx_ring: rx descriptor ring to transact packets on 1973 * @rx_buffer: rx buffer to pull data from 1974 * @xdp: xdp_buff pointing to the data 1975 * 1976 * This function allocates an skb. It then populates it with the page 1977 * data from the current receive descriptor, taking care to set up the 1978 * skb correctly. 1979 */ 1980 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 1981 struct i40e_rx_buffer *rx_buffer, 1982 struct xdp_buff *xdp) 1983 { 1984 unsigned int size = xdp->data_end - xdp->data; 1985 #if (PAGE_SIZE < 8192) 1986 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1987 #else 1988 unsigned int truesize = SKB_DATA_ALIGN(size); 1989 #endif 1990 unsigned int headlen; 1991 struct sk_buff *skb; 1992 1993 /* prefetch first cache line of first page */ 1994 net_prefetch(xdp->data); 1995 1996 /* Note, we get here by enabling legacy-rx via: 1997 * 1998 * ethtool --set-priv-flags <dev> legacy-rx on 1999 * 2000 * In this mode, we currently get 0 extra XDP headroom as 2001 * opposed to having legacy-rx off, where we process XDP 2002 * packets going to stack via i40e_build_skb(). The latter 2003 * provides us currently with 192 bytes of headroom. 2004 * 2005 * For i40e_construct_skb() mode it means that the 2006 * xdp->data_meta will always point to xdp->data, since 2007 * the helper cannot expand the head. Should this ever 2008 * change in future for legacy-rx mode on, then lets also 2009 * add xdp->data_meta handling here. 2010 */ 2011 2012 /* allocate a skb to store the frags */ 2013 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2014 I40E_RX_HDR_SIZE, 2015 GFP_ATOMIC | __GFP_NOWARN); 2016 if (unlikely(!skb)) 2017 return NULL; 2018 2019 /* Determine available headroom for copy */ 2020 headlen = size; 2021 if (headlen > I40E_RX_HDR_SIZE) 2022 headlen = eth_get_headlen(skb->dev, xdp->data, 2023 I40E_RX_HDR_SIZE); 2024 2025 /* align pull length to size of long to optimize memcpy performance */ 2026 memcpy(__skb_put(skb, headlen), xdp->data, 2027 ALIGN(headlen, sizeof(long))); 2028 2029 /* update all of the pointers */ 2030 size -= headlen; 2031 if (size) { 2032 skb_add_rx_frag(skb, 0, rx_buffer->page, 2033 rx_buffer->page_offset + headlen, 2034 size, truesize); 2035 2036 /* buffer is used by skb, update page_offset */ 2037 #if (PAGE_SIZE < 8192) 2038 rx_buffer->page_offset ^= truesize; 2039 #else 2040 rx_buffer->page_offset += truesize; 2041 #endif 2042 } else { 2043 /* buffer is unused, reset bias back to rx_buffer */ 2044 rx_buffer->pagecnt_bias++; 2045 } 2046 2047 return skb; 2048 } 2049 2050 /** 2051 * i40e_build_skb - Build skb around an existing buffer 2052 * @rx_ring: Rx descriptor ring to transact packets on 2053 * @rx_buffer: Rx buffer to pull data from 2054 * @xdp: xdp_buff pointing to the data 2055 * 2056 * This function builds an skb around an existing Rx buffer, taking care 2057 * to set up the skb correctly and avoid any memcpy overhead. 2058 */ 2059 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2060 struct i40e_rx_buffer *rx_buffer, 2061 struct xdp_buff *xdp) 2062 { 2063 unsigned int metasize = xdp->data - xdp->data_meta; 2064 #if (PAGE_SIZE < 8192) 2065 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2066 #else 2067 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2068 SKB_DATA_ALIGN(xdp->data_end - 2069 xdp->data_hard_start); 2070 #endif 2071 struct sk_buff *skb; 2072 2073 /* Prefetch first cache line of first page. If xdp->data_meta 2074 * is unused, this points exactly as xdp->data, otherwise we 2075 * likely have a consumer accessing first few bytes of meta 2076 * data, and then actual data. 2077 */ 2078 net_prefetch(xdp->data_meta); 2079 2080 /* build an skb around the page buffer */ 2081 skb = build_skb(xdp->data_hard_start, truesize); 2082 if (unlikely(!skb)) 2083 return NULL; 2084 2085 /* update pointers within the skb to store the data */ 2086 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2087 __skb_put(skb, xdp->data_end - xdp->data); 2088 if (metasize) 2089 skb_metadata_set(skb, metasize); 2090 2091 /* buffer is used by skb, update page_offset */ 2092 #if (PAGE_SIZE < 8192) 2093 rx_buffer->page_offset ^= truesize; 2094 #else 2095 rx_buffer->page_offset += truesize; 2096 #endif 2097 2098 return skb; 2099 } 2100 2101 /** 2102 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2103 * @rx_ring: rx descriptor ring to transact packets on 2104 * @rx_buffer: rx buffer to pull data from 2105 * 2106 * This function will clean up the contents of the rx_buffer. It will 2107 * either recycle the buffer or unmap it and free the associated resources. 2108 */ 2109 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2110 struct i40e_rx_buffer *rx_buffer) 2111 { 2112 if (i40e_can_reuse_rx_page(rx_buffer)) { 2113 /* hand second half of page back to the ring */ 2114 i40e_reuse_rx_page(rx_ring, rx_buffer); 2115 } else { 2116 /* we are not reusing the buffer so unmap it */ 2117 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2118 i40e_rx_pg_size(rx_ring), 2119 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2120 __page_frag_cache_drain(rx_buffer->page, 2121 rx_buffer->pagecnt_bias); 2122 /* clear contents of buffer_info */ 2123 rx_buffer->page = NULL; 2124 } 2125 } 2126 2127 /** 2128 * i40e_is_non_eop - process handling of non-EOP buffers 2129 * @rx_ring: Rx ring being processed 2130 * @rx_desc: Rx descriptor for current buffer 2131 * @skb: Current socket buffer containing buffer in progress 2132 * 2133 * This function updates next to clean. If the buffer is an EOP buffer 2134 * this function exits returning false, otherwise it will place the 2135 * sk_buff in the next buffer to be chained and return true indicating 2136 * that this is in fact a non-EOP buffer. 2137 **/ 2138 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2139 union i40e_rx_desc *rx_desc, 2140 struct sk_buff *skb) 2141 { 2142 u32 ntc = rx_ring->next_to_clean + 1; 2143 2144 /* fetch, update, and store next to clean */ 2145 ntc = (ntc < rx_ring->count) ? ntc : 0; 2146 rx_ring->next_to_clean = ntc; 2147 2148 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2149 2150 /* if we are the last buffer then there is nothing else to do */ 2151 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2152 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2153 return false; 2154 2155 rx_ring->rx_stats.non_eop_descs++; 2156 2157 return true; 2158 } 2159 2160 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2161 struct i40e_ring *xdp_ring); 2162 2163 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2164 { 2165 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2166 2167 if (unlikely(!xdpf)) 2168 return I40E_XDP_CONSUMED; 2169 2170 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2171 } 2172 2173 /** 2174 * i40e_run_xdp - run an XDP program 2175 * @rx_ring: Rx ring being processed 2176 * @xdp: XDP buffer containing the frame 2177 **/ 2178 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2179 struct xdp_buff *xdp) 2180 { 2181 int err, result = I40E_XDP_PASS; 2182 struct i40e_ring *xdp_ring; 2183 struct bpf_prog *xdp_prog; 2184 u32 act; 2185 2186 rcu_read_lock(); 2187 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2188 2189 if (!xdp_prog) 2190 goto xdp_out; 2191 2192 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2193 2194 act = bpf_prog_run_xdp(xdp_prog, xdp); 2195 switch (act) { 2196 case XDP_PASS: 2197 break; 2198 case XDP_TX: 2199 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2200 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2201 break; 2202 case XDP_REDIRECT: 2203 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2204 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 2205 break; 2206 default: 2207 bpf_warn_invalid_xdp_action(act); 2208 fallthrough; 2209 case XDP_ABORTED: 2210 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2211 fallthrough; /* handle aborts by dropping packet */ 2212 case XDP_DROP: 2213 result = I40E_XDP_CONSUMED; 2214 break; 2215 } 2216 xdp_out: 2217 rcu_read_unlock(); 2218 return ERR_PTR(-result); 2219 } 2220 2221 /** 2222 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2223 * @rx_ring: Rx ring 2224 * @rx_buffer: Rx buffer to adjust 2225 * @size: Size of adjustment 2226 **/ 2227 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2228 struct i40e_rx_buffer *rx_buffer, 2229 unsigned int size) 2230 { 2231 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size); 2232 2233 #if (PAGE_SIZE < 8192) 2234 rx_buffer->page_offset ^= truesize; 2235 #else 2236 rx_buffer->page_offset += truesize; 2237 #endif 2238 } 2239 2240 /** 2241 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2242 * @xdp_ring: XDP Tx ring 2243 * 2244 * This function updates the XDP Tx ring tail register. 2245 **/ 2246 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2247 { 2248 /* Force memory writes to complete before letting h/w 2249 * know there are new descriptors to fetch. 2250 */ 2251 wmb(); 2252 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2253 } 2254 2255 /** 2256 * i40e_update_rx_stats - Update Rx ring statistics 2257 * @rx_ring: rx descriptor ring 2258 * @total_rx_bytes: number of bytes received 2259 * @total_rx_packets: number of packets received 2260 * 2261 * This function updates the Rx ring statistics. 2262 **/ 2263 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2264 unsigned int total_rx_bytes, 2265 unsigned int total_rx_packets) 2266 { 2267 u64_stats_update_begin(&rx_ring->syncp); 2268 rx_ring->stats.packets += total_rx_packets; 2269 rx_ring->stats.bytes += total_rx_bytes; 2270 u64_stats_update_end(&rx_ring->syncp); 2271 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2272 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2273 } 2274 2275 /** 2276 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2277 * @rx_ring: Rx ring 2278 * @xdp_res: Result of the receive batch 2279 * 2280 * This function bumps XDP Tx tail and/or flush redirect map, and 2281 * should be called when a batch of packets has been processed in the 2282 * napi loop. 2283 **/ 2284 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2285 { 2286 if (xdp_res & I40E_XDP_REDIR) 2287 xdp_do_flush_map(); 2288 2289 if (xdp_res & I40E_XDP_TX) { 2290 struct i40e_ring *xdp_ring = 2291 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2292 2293 i40e_xdp_ring_update_tail(xdp_ring); 2294 } 2295 } 2296 2297 /** 2298 * i40e_inc_ntc: Advance the next_to_clean index 2299 * @rx_ring: Rx ring 2300 **/ 2301 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 2302 { 2303 u32 ntc = rx_ring->next_to_clean + 1; 2304 2305 ntc = (ntc < rx_ring->count) ? ntc : 0; 2306 rx_ring->next_to_clean = ntc; 2307 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2308 } 2309 2310 /** 2311 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2312 * @rx_ring: rx descriptor ring to transact packets on 2313 * @budget: Total limit on number of packets to process 2314 * 2315 * This function provides a "bounce buffer" approach to Rx interrupt 2316 * processing. The advantage to this is that on systems that have 2317 * expensive overhead for IOMMU access this provides a means of avoiding 2318 * it by maintaining the mapping of the page to the system. 2319 * 2320 * Returns amount of work completed 2321 **/ 2322 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2323 { 2324 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2325 struct sk_buff *skb = rx_ring->skb; 2326 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2327 unsigned int xdp_xmit = 0; 2328 bool failure = false; 2329 struct xdp_buff xdp; 2330 2331 #if (PAGE_SIZE < 8192) 2332 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0); 2333 #endif 2334 xdp.rxq = &rx_ring->xdp_rxq; 2335 2336 while (likely(total_rx_packets < (unsigned int)budget)) { 2337 struct i40e_rx_buffer *rx_buffer; 2338 union i40e_rx_desc *rx_desc; 2339 unsigned int size; 2340 u64 qword; 2341 2342 /* return some buffers to hardware, one at a time is too slow */ 2343 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2344 failure = failure || 2345 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2346 cleaned_count = 0; 2347 } 2348 2349 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2350 2351 /* status_error_len will always be zero for unused descriptors 2352 * because it's cleared in cleanup, and overlaps with hdr_addr 2353 * which is always zero because packet split isn't used, if the 2354 * hardware wrote DD then the length will be non-zero 2355 */ 2356 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2357 2358 /* This memory barrier is needed to keep us from reading 2359 * any other fields out of the rx_desc until we have 2360 * verified the descriptor has been written back. 2361 */ 2362 dma_rmb(); 2363 2364 if (i40e_rx_is_programming_status(qword)) { 2365 i40e_clean_programming_status(rx_ring, 2366 rx_desc->raw.qword[0], 2367 qword); 2368 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2369 i40e_inc_ntc(rx_ring); 2370 i40e_reuse_rx_page(rx_ring, rx_buffer); 2371 cleaned_count++; 2372 continue; 2373 } 2374 2375 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2376 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2377 if (!size) 2378 break; 2379 2380 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2381 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2382 2383 /* retrieve a buffer from the ring */ 2384 if (!skb) { 2385 xdp.data = page_address(rx_buffer->page) + 2386 rx_buffer->page_offset; 2387 xdp.data_meta = xdp.data; 2388 xdp.data_hard_start = xdp.data - 2389 i40e_rx_offset(rx_ring); 2390 xdp.data_end = xdp.data + size; 2391 #if (PAGE_SIZE > 4096) 2392 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2393 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2394 #endif 2395 skb = i40e_run_xdp(rx_ring, &xdp); 2396 } 2397 2398 if (IS_ERR(skb)) { 2399 unsigned int xdp_res = -PTR_ERR(skb); 2400 2401 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2402 xdp_xmit |= xdp_res; 2403 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2404 } else { 2405 rx_buffer->pagecnt_bias++; 2406 } 2407 total_rx_bytes += size; 2408 total_rx_packets++; 2409 } else if (skb) { 2410 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2411 } else if (ring_uses_build_skb(rx_ring)) { 2412 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2413 } else { 2414 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2415 } 2416 2417 /* exit if we failed to retrieve a buffer */ 2418 if (!skb) { 2419 rx_ring->rx_stats.alloc_buff_failed++; 2420 rx_buffer->pagecnt_bias++; 2421 break; 2422 } 2423 2424 i40e_put_rx_buffer(rx_ring, rx_buffer); 2425 cleaned_count++; 2426 2427 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2428 continue; 2429 2430 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2431 skb = NULL; 2432 continue; 2433 } 2434 2435 /* probably a little skewed due to removing CRC */ 2436 total_rx_bytes += skb->len; 2437 2438 /* populate checksum, VLAN, and protocol */ 2439 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2440 2441 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2442 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2443 skb = NULL; 2444 2445 /* update budget accounting */ 2446 total_rx_packets++; 2447 } 2448 2449 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2450 rx_ring->skb = skb; 2451 2452 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2453 2454 /* guarantee a trip back through this routine if there was a failure */ 2455 return failure ? budget : (int)total_rx_packets; 2456 } 2457 2458 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2459 { 2460 u32 val; 2461 2462 /* We don't bother with setting the CLEARPBA bit as the data sheet 2463 * points out doing so is "meaningless since it was already 2464 * auto-cleared". The auto-clearing happens when the interrupt is 2465 * asserted. 2466 * 2467 * Hardware errata 28 for also indicates that writing to a 2468 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2469 * an event in the PBA anyway so we need to rely on the automask 2470 * to hold pending events for us until the interrupt is re-enabled 2471 * 2472 * The itr value is reported in microseconds, and the register 2473 * value is recorded in 2 microsecond units. For this reason we 2474 * only need to shift by the interval shift - 1 instead of the 2475 * full value. 2476 */ 2477 itr &= I40E_ITR_MASK; 2478 2479 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2480 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2481 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2482 2483 return val; 2484 } 2485 2486 /* a small macro to shorten up some long lines */ 2487 #define INTREG I40E_PFINT_DYN_CTLN 2488 2489 /* The act of updating the ITR will cause it to immediately trigger. In order 2490 * to prevent this from throwing off adaptive update statistics we defer the 2491 * update so that it can only happen so often. So after either Tx or Rx are 2492 * updated we make the adaptive scheme wait until either the ITR completely 2493 * expires via the next_update expiration or we have been through at least 2494 * 3 interrupts. 2495 */ 2496 #define ITR_COUNTDOWN_START 3 2497 2498 /** 2499 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2500 * @vsi: the VSI we care about 2501 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2502 * 2503 **/ 2504 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2505 struct i40e_q_vector *q_vector) 2506 { 2507 struct i40e_hw *hw = &vsi->back->hw; 2508 u32 intval; 2509 2510 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2511 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2512 i40e_irq_dynamic_enable_icr0(vsi->back); 2513 return; 2514 } 2515 2516 /* These will do nothing if dynamic updates are not enabled */ 2517 i40e_update_itr(q_vector, &q_vector->tx); 2518 i40e_update_itr(q_vector, &q_vector->rx); 2519 2520 /* This block of logic allows us to get away with only updating 2521 * one ITR value with each interrupt. The idea is to perform a 2522 * pseudo-lazy update with the following criteria. 2523 * 2524 * 1. Rx is given higher priority than Tx if both are in same state 2525 * 2. If we must reduce an ITR that is given highest priority. 2526 * 3. We then give priority to increasing ITR based on amount. 2527 */ 2528 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2529 /* Rx ITR needs to be reduced, this is highest priority */ 2530 intval = i40e_buildreg_itr(I40E_RX_ITR, 2531 q_vector->rx.target_itr); 2532 q_vector->rx.current_itr = q_vector->rx.target_itr; 2533 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2534 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2535 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2536 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2537 /* Tx ITR needs to be reduced, this is second priority 2538 * Tx ITR needs to be increased more than Rx, fourth priority 2539 */ 2540 intval = i40e_buildreg_itr(I40E_TX_ITR, 2541 q_vector->tx.target_itr); 2542 q_vector->tx.current_itr = q_vector->tx.target_itr; 2543 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2544 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2545 /* Rx ITR needs to be increased, third priority */ 2546 intval = i40e_buildreg_itr(I40E_RX_ITR, 2547 q_vector->rx.target_itr); 2548 q_vector->rx.current_itr = q_vector->rx.target_itr; 2549 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2550 } else { 2551 /* No ITR update, lowest priority */ 2552 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2553 if (q_vector->itr_countdown) 2554 q_vector->itr_countdown--; 2555 } 2556 2557 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2558 wr32(hw, INTREG(q_vector->reg_idx), intval); 2559 } 2560 2561 /** 2562 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2563 * @napi: napi struct with our devices info in it 2564 * @budget: amount of work driver is allowed to do this pass, in packets 2565 * 2566 * This function will clean all queues associated with a q_vector. 2567 * 2568 * Returns the amount of work done 2569 **/ 2570 int i40e_napi_poll(struct napi_struct *napi, int budget) 2571 { 2572 struct i40e_q_vector *q_vector = 2573 container_of(napi, struct i40e_q_vector, napi); 2574 struct i40e_vsi *vsi = q_vector->vsi; 2575 struct i40e_ring *ring; 2576 bool clean_complete = true; 2577 bool arm_wb = false; 2578 int budget_per_ring; 2579 int work_done = 0; 2580 2581 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2582 napi_complete(napi); 2583 return 0; 2584 } 2585 2586 /* Since the actual Tx work is minimal, we can give the Tx a larger 2587 * budget and be more aggressive about cleaning up the Tx descriptors. 2588 */ 2589 i40e_for_each_ring(ring, q_vector->tx) { 2590 bool wd = ring->xsk_pool ? 2591 i40e_clean_xdp_tx_irq(vsi, ring) : 2592 i40e_clean_tx_irq(vsi, ring, budget); 2593 2594 if (!wd) { 2595 clean_complete = false; 2596 continue; 2597 } 2598 arm_wb |= ring->arm_wb; 2599 ring->arm_wb = false; 2600 } 2601 2602 /* Handle case where we are called by netpoll with a budget of 0 */ 2603 if (budget <= 0) 2604 goto tx_only; 2605 2606 /* normally we have 1 Rx ring per q_vector */ 2607 if (unlikely(q_vector->num_ringpairs > 1)) 2608 /* We attempt to distribute budget to each Rx queue fairly, but 2609 * don't allow the budget to go below 1 because that would exit 2610 * polling early. 2611 */ 2612 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2613 else 2614 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2615 budget_per_ring = budget; 2616 2617 i40e_for_each_ring(ring, q_vector->rx) { 2618 int cleaned = ring->xsk_pool ? 2619 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2620 i40e_clean_rx_irq(ring, budget_per_ring); 2621 2622 work_done += cleaned; 2623 /* if we clean as many as budgeted, we must not be done */ 2624 if (cleaned >= budget_per_ring) 2625 clean_complete = false; 2626 } 2627 2628 /* If work not completed, return budget and polling will return */ 2629 if (!clean_complete) { 2630 int cpu_id = smp_processor_id(); 2631 2632 /* It is possible that the interrupt affinity has changed but, 2633 * if the cpu is pegged at 100%, polling will never exit while 2634 * traffic continues and the interrupt will be stuck on this 2635 * cpu. We check to make sure affinity is correct before we 2636 * continue to poll, otherwise we must stop polling so the 2637 * interrupt can move to the correct cpu. 2638 */ 2639 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2640 /* Tell napi that we are done polling */ 2641 napi_complete_done(napi, work_done); 2642 2643 /* Force an interrupt */ 2644 i40e_force_wb(vsi, q_vector); 2645 2646 /* Return budget-1 so that polling stops */ 2647 return budget - 1; 2648 } 2649 tx_only: 2650 if (arm_wb) { 2651 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2652 i40e_enable_wb_on_itr(vsi, q_vector); 2653 } 2654 return budget; 2655 } 2656 2657 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2658 q_vector->arm_wb_state = false; 2659 2660 /* Exit the polling mode, but don't re-enable interrupts if stack might 2661 * poll us due to busy-polling 2662 */ 2663 if (likely(napi_complete_done(napi, work_done))) 2664 i40e_update_enable_itr(vsi, q_vector); 2665 2666 return min(work_done, budget - 1); 2667 } 2668 2669 /** 2670 * i40e_atr - Add a Flow Director ATR filter 2671 * @tx_ring: ring to add programming descriptor to 2672 * @skb: send buffer 2673 * @tx_flags: send tx flags 2674 **/ 2675 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2676 u32 tx_flags) 2677 { 2678 struct i40e_filter_program_desc *fdir_desc; 2679 struct i40e_pf *pf = tx_ring->vsi->back; 2680 union { 2681 unsigned char *network; 2682 struct iphdr *ipv4; 2683 struct ipv6hdr *ipv6; 2684 } hdr; 2685 struct tcphdr *th; 2686 unsigned int hlen; 2687 u32 flex_ptype, dtype_cmd; 2688 int l4_proto; 2689 u16 i; 2690 2691 /* make sure ATR is enabled */ 2692 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2693 return; 2694 2695 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2696 return; 2697 2698 /* if sampling is disabled do nothing */ 2699 if (!tx_ring->atr_sample_rate) 2700 return; 2701 2702 /* Currently only IPv4/IPv6 with TCP is supported */ 2703 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2704 return; 2705 2706 /* snag network header to get L4 type and address */ 2707 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2708 skb_inner_network_header(skb) : skb_network_header(skb); 2709 2710 /* Note: tx_flags gets modified to reflect inner protocols in 2711 * tx_enable_csum function if encap is enabled. 2712 */ 2713 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2714 /* access ihl as u8 to avoid unaligned access on ia64 */ 2715 hlen = (hdr.network[0] & 0x0F) << 2; 2716 l4_proto = hdr.ipv4->protocol; 2717 } else { 2718 /* find the start of the innermost ipv6 header */ 2719 unsigned int inner_hlen = hdr.network - skb->data; 2720 unsigned int h_offset = inner_hlen; 2721 2722 /* this function updates h_offset to the end of the header */ 2723 l4_proto = 2724 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2725 /* hlen will contain our best estimate of the tcp header */ 2726 hlen = h_offset - inner_hlen; 2727 } 2728 2729 if (l4_proto != IPPROTO_TCP) 2730 return; 2731 2732 th = (struct tcphdr *)(hdr.network + hlen); 2733 2734 /* Due to lack of space, no more new filters can be programmed */ 2735 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2736 return; 2737 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2738 /* HW ATR eviction will take care of removing filters on FIN 2739 * and RST packets. 2740 */ 2741 if (th->fin || th->rst) 2742 return; 2743 } 2744 2745 tx_ring->atr_count++; 2746 2747 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2748 if (!th->fin && 2749 !th->syn && 2750 !th->rst && 2751 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2752 return; 2753 2754 tx_ring->atr_count = 0; 2755 2756 /* grab the next descriptor */ 2757 i = tx_ring->next_to_use; 2758 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2759 2760 i++; 2761 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2762 2763 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2764 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2765 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2766 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2767 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2768 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2769 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2770 2771 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2772 2773 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2774 2775 dtype_cmd |= (th->fin || th->rst) ? 2776 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2777 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2778 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2779 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2780 2781 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2782 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2783 2784 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2785 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2786 2787 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2788 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2789 dtype_cmd |= 2790 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2791 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2792 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2793 else 2794 dtype_cmd |= 2795 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2796 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2797 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2798 2799 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2800 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2801 2802 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2803 fdir_desc->rsvd = cpu_to_le32(0); 2804 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2805 fdir_desc->fd_id = cpu_to_le32(0); 2806 } 2807 2808 /** 2809 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2810 * @skb: send buffer 2811 * @tx_ring: ring to send buffer on 2812 * @flags: the tx flags to be set 2813 * 2814 * Checks the skb and set up correspondingly several generic transmit flags 2815 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2816 * 2817 * Returns error code indicate the frame should be dropped upon error and the 2818 * otherwise returns 0 to indicate the flags has been set properly. 2819 **/ 2820 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2821 struct i40e_ring *tx_ring, 2822 u32 *flags) 2823 { 2824 __be16 protocol = skb->protocol; 2825 u32 tx_flags = 0; 2826 2827 if (protocol == htons(ETH_P_8021Q) && 2828 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2829 /* When HW VLAN acceleration is turned off by the user the 2830 * stack sets the protocol to 8021q so that the driver 2831 * can take any steps required to support the SW only 2832 * VLAN handling. In our case the driver doesn't need 2833 * to take any further steps so just set the protocol 2834 * to the encapsulated ethertype. 2835 */ 2836 skb->protocol = vlan_get_protocol(skb); 2837 goto out; 2838 } 2839 2840 /* if we have a HW VLAN tag being added, default to the HW one */ 2841 if (skb_vlan_tag_present(skb)) { 2842 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2843 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2844 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2845 } else if (protocol == htons(ETH_P_8021Q)) { 2846 struct vlan_hdr *vhdr, _vhdr; 2847 2848 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2849 if (!vhdr) 2850 return -EINVAL; 2851 2852 protocol = vhdr->h_vlan_encapsulated_proto; 2853 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2854 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2855 } 2856 2857 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2858 goto out; 2859 2860 /* Insert 802.1p priority into VLAN header */ 2861 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2862 (skb->priority != TC_PRIO_CONTROL)) { 2863 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2864 tx_flags |= (skb->priority & 0x7) << 2865 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2866 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2867 struct vlan_ethhdr *vhdr; 2868 int rc; 2869 2870 rc = skb_cow_head(skb, 0); 2871 if (rc < 0) 2872 return rc; 2873 vhdr = (struct vlan_ethhdr *)skb->data; 2874 vhdr->h_vlan_TCI = htons(tx_flags >> 2875 I40E_TX_FLAGS_VLAN_SHIFT); 2876 } else { 2877 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2878 } 2879 } 2880 2881 out: 2882 *flags = tx_flags; 2883 return 0; 2884 } 2885 2886 /** 2887 * i40e_tso - set up the tso context descriptor 2888 * @first: pointer to first Tx buffer for xmit 2889 * @hdr_len: ptr to the size of the packet header 2890 * @cd_type_cmd_tso_mss: Quad Word 1 2891 * 2892 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2893 **/ 2894 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2895 u64 *cd_type_cmd_tso_mss) 2896 { 2897 struct sk_buff *skb = first->skb; 2898 u64 cd_cmd, cd_tso_len, cd_mss; 2899 union { 2900 struct iphdr *v4; 2901 struct ipv6hdr *v6; 2902 unsigned char *hdr; 2903 } ip; 2904 union { 2905 struct tcphdr *tcp; 2906 struct udphdr *udp; 2907 unsigned char *hdr; 2908 } l4; 2909 u32 paylen, l4_offset; 2910 u16 gso_segs, gso_size; 2911 int err; 2912 2913 if (skb->ip_summed != CHECKSUM_PARTIAL) 2914 return 0; 2915 2916 if (!skb_is_gso(skb)) 2917 return 0; 2918 2919 err = skb_cow_head(skb, 0); 2920 if (err < 0) 2921 return err; 2922 2923 ip.hdr = skb_network_header(skb); 2924 l4.hdr = skb_transport_header(skb); 2925 2926 /* initialize outer IP header fields */ 2927 if (ip.v4->version == 4) { 2928 ip.v4->tot_len = 0; 2929 ip.v4->check = 0; 2930 } else { 2931 ip.v6->payload_len = 0; 2932 } 2933 2934 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2935 SKB_GSO_GRE_CSUM | 2936 SKB_GSO_IPXIP4 | 2937 SKB_GSO_IPXIP6 | 2938 SKB_GSO_UDP_TUNNEL | 2939 SKB_GSO_UDP_TUNNEL_CSUM)) { 2940 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2941 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2942 l4.udp->len = 0; 2943 2944 /* determine offset of outer transport header */ 2945 l4_offset = l4.hdr - skb->data; 2946 2947 /* remove payload length from outer checksum */ 2948 paylen = skb->len - l4_offset; 2949 csum_replace_by_diff(&l4.udp->check, 2950 (__force __wsum)htonl(paylen)); 2951 } 2952 2953 /* reset pointers to inner headers */ 2954 ip.hdr = skb_inner_network_header(skb); 2955 l4.hdr = skb_inner_transport_header(skb); 2956 2957 /* initialize inner IP header fields */ 2958 if (ip.v4->version == 4) { 2959 ip.v4->tot_len = 0; 2960 ip.v4->check = 0; 2961 } else { 2962 ip.v6->payload_len = 0; 2963 } 2964 } 2965 2966 /* determine offset of inner transport header */ 2967 l4_offset = l4.hdr - skb->data; 2968 2969 /* remove payload length from inner checksum */ 2970 paylen = skb->len - l4_offset; 2971 2972 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2973 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 2974 /* compute length of segmentation header */ 2975 *hdr_len = sizeof(*l4.udp) + l4_offset; 2976 } else { 2977 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2978 /* compute length of segmentation header */ 2979 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2980 } 2981 2982 /* pull values out of skb_shinfo */ 2983 gso_size = skb_shinfo(skb)->gso_size; 2984 gso_segs = skb_shinfo(skb)->gso_segs; 2985 2986 /* update GSO size and bytecount with header size */ 2987 first->gso_segs = gso_segs; 2988 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2989 2990 /* find the field values */ 2991 cd_cmd = I40E_TX_CTX_DESC_TSO; 2992 cd_tso_len = skb->len - *hdr_len; 2993 cd_mss = gso_size; 2994 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2995 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2996 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2997 return 1; 2998 } 2999 3000 /** 3001 * i40e_tsyn - set up the tsyn context descriptor 3002 * @tx_ring: ptr to the ring to send 3003 * @skb: ptr to the skb we're sending 3004 * @tx_flags: the collected send information 3005 * @cd_type_cmd_tso_mss: Quad Word 1 3006 * 3007 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3008 **/ 3009 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3010 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3011 { 3012 struct i40e_pf *pf; 3013 3014 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3015 return 0; 3016 3017 /* Tx timestamps cannot be sampled when doing TSO */ 3018 if (tx_flags & I40E_TX_FLAGS_TSO) 3019 return 0; 3020 3021 /* only timestamp the outbound packet if the user has requested it and 3022 * we are not already transmitting a packet to be timestamped 3023 */ 3024 pf = i40e_netdev_to_pf(tx_ring->netdev); 3025 if (!(pf->flags & I40E_FLAG_PTP)) 3026 return 0; 3027 3028 if (pf->ptp_tx && 3029 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3030 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3031 pf->ptp_tx_start = jiffies; 3032 pf->ptp_tx_skb = skb_get(skb); 3033 } else { 3034 pf->tx_hwtstamp_skipped++; 3035 return 0; 3036 } 3037 3038 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3039 I40E_TXD_CTX_QW1_CMD_SHIFT; 3040 3041 return 1; 3042 } 3043 3044 /** 3045 * i40e_tx_enable_csum - Enable Tx checksum offloads 3046 * @skb: send buffer 3047 * @tx_flags: pointer to Tx flags currently set 3048 * @td_cmd: Tx descriptor command bits to set 3049 * @td_offset: Tx descriptor header offsets to set 3050 * @tx_ring: Tx descriptor ring 3051 * @cd_tunneling: ptr to context desc bits 3052 **/ 3053 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3054 u32 *td_cmd, u32 *td_offset, 3055 struct i40e_ring *tx_ring, 3056 u32 *cd_tunneling) 3057 { 3058 union { 3059 struct iphdr *v4; 3060 struct ipv6hdr *v6; 3061 unsigned char *hdr; 3062 } ip; 3063 union { 3064 struct tcphdr *tcp; 3065 struct udphdr *udp; 3066 unsigned char *hdr; 3067 } l4; 3068 unsigned char *exthdr; 3069 u32 offset, cmd = 0; 3070 __be16 frag_off; 3071 u8 l4_proto = 0; 3072 3073 if (skb->ip_summed != CHECKSUM_PARTIAL) 3074 return 0; 3075 3076 ip.hdr = skb_network_header(skb); 3077 l4.hdr = skb_transport_header(skb); 3078 3079 /* compute outer L2 header size */ 3080 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3081 3082 if (skb->encapsulation) { 3083 u32 tunnel = 0; 3084 /* define outer network header type */ 3085 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3086 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3087 I40E_TX_CTX_EXT_IP_IPV4 : 3088 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3089 3090 l4_proto = ip.v4->protocol; 3091 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3092 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3093 3094 exthdr = ip.hdr + sizeof(*ip.v6); 3095 l4_proto = ip.v6->nexthdr; 3096 if (l4.hdr != exthdr) 3097 ipv6_skip_exthdr(skb, exthdr - skb->data, 3098 &l4_proto, &frag_off); 3099 } 3100 3101 /* define outer transport */ 3102 switch (l4_proto) { 3103 case IPPROTO_UDP: 3104 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3105 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3106 break; 3107 case IPPROTO_GRE: 3108 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3109 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3110 break; 3111 case IPPROTO_IPIP: 3112 case IPPROTO_IPV6: 3113 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3114 l4.hdr = skb_inner_network_header(skb); 3115 break; 3116 default: 3117 if (*tx_flags & I40E_TX_FLAGS_TSO) 3118 return -1; 3119 3120 skb_checksum_help(skb); 3121 return 0; 3122 } 3123 3124 /* compute outer L3 header size */ 3125 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3126 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3127 3128 /* switch IP header pointer from outer to inner header */ 3129 ip.hdr = skb_inner_network_header(skb); 3130 3131 /* compute tunnel header size */ 3132 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3133 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3134 3135 /* indicate if we need to offload outer UDP header */ 3136 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3137 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3138 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3139 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3140 3141 /* record tunnel offload values */ 3142 *cd_tunneling |= tunnel; 3143 3144 /* switch L4 header pointer from outer to inner */ 3145 l4.hdr = skb_inner_transport_header(skb); 3146 l4_proto = 0; 3147 3148 /* reset type as we transition from outer to inner headers */ 3149 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3150 if (ip.v4->version == 4) 3151 *tx_flags |= I40E_TX_FLAGS_IPV4; 3152 if (ip.v6->version == 6) 3153 *tx_flags |= I40E_TX_FLAGS_IPV6; 3154 } 3155 3156 /* Enable IP checksum offloads */ 3157 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3158 l4_proto = ip.v4->protocol; 3159 /* the stack computes the IP header already, the only time we 3160 * need the hardware to recompute it is in the case of TSO. 3161 */ 3162 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3163 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3164 I40E_TX_DESC_CMD_IIPT_IPV4; 3165 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3166 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3167 3168 exthdr = ip.hdr + sizeof(*ip.v6); 3169 l4_proto = ip.v6->nexthdr; 3170 if (l4.hdr != exthdr) 3171 ipv6_skip_exthdr(skb, exthdr - skb->data, 3172 &l4_proto, &frag_off); 3173 } 3174 3175 /* compute inner L3 header size */ 3176 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3177 3178 /* Enable L4 checksum offloads */ 3179 switch (l4_proto) { 3180 case IPPROTO_TCP: 3181 /* enable checksum offloads */ 3182 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3183 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3184 break; 3185 case IPPROTO_SCTP: 3186 /* enable SCTP checksum offload */ 3187 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3188 offset |= (sizeof(struct sctphdr) >> 2) << 3189 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3190 break; 3191 case IPPROTO_UDP: 3192 /* enable UDP checksum offload */ 3193 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3194 offset |= (sizeof(struct udphdr) >> 2) << 3195 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3196 break; 3197 default: 3198 if (*tx_flags & I40E_TX_FLAGS_TSO) 3199 return -1; 3200 skb_checksum_help(skb); 3201 return 0; 3202 } 3203 3204 *td_cmd |= cmd; 3205 *td_offset |= offset; 3206 3207 return 1; 3208 } 3209 3210 /** 3211 * i40e_create_tx_ctx Build the Tx context descriptor 3212 * @tx_ring: ring to create the descriptor on 3213 * @cd_type_cmd_tso_mss: Quad Word 1 3214 * @cd_tunneling: Quad Word 0 - bits 0-31 3215 * @cd_l2tag2: Quad Word 0 - bits 32-63 3216 **/ 3217 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3218 const u64 cd_type_cmd_tso_mss, 3219 const u32 cd_tunneling, const u32 cd_l2tag2) 3220 { 3221 struct i40e_tx_context_desc *context_desc; 3222 int i = tx_ring->next_to_use; 3223 3224 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3225 !cd_tunneling && !cd_l2tag2) 3226 return; 3227 3228 /* grab the next descriptor */ 3229 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3230 3231 i++; 3232 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3233 3234 /* cpu_to_le32 and assign to struct fields */ 3235 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3236 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3237 context_desc->rsvd = cpu_to_le16(0); 3238 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3239 } 3240 3241 /** 3242 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3243 * @tx_ring: the ring to be checked 3244 * @size: the size buffer we want to assure is available 3245 * 3246 * Returns -EBUSY if a stop is needed, else 0 3247 **/ 3248 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3249 { 3250 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3251 /* Memory barrier before checking head and tail */ 3252 smp_mb(); 3253 3254 /* Check again in a case another CPU has just made room available. */ 3255 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3256 return -EBUSY; 3257 3258 /* A reprieve! - use start_queue because it doesn't call schedule */ 3259 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3260 ++tx_ring->tx_stats.restart_queue; 3261 return 0; 3262 } 3263 3264 /** 3265 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3266 * @skb: send buffer 3267 * 3268 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3269 * and so we need to figure out the cases where we need to linearize the skb. 3270 * 3271 * For TSO we need to count the TSO header and segment payload separately. 3272 * As such we need to check cases where we have 7 fragments or more as we 3273 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3274 * the segment payload in the first descriptor, and another 7 for the 3275 * fragments. 3276 **/ 3277 bool __i40e_chk_linearize(struct sk_buff *skb) 3278 { 3279 const skb_frag_t *frag, *stale; 3280 int nr_frags, sum; 3281 3282 /* no need to check if number of frags is less than 7 */ 3283 nr_frags = skb_shinfo(skb)->nr_frags; 3284 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3285 return false; 3286 3287 /* We need to walk through the list and validate that each group 3288 * of 6 fragments totals at least gso_size. 3289 */ 3290 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3291 frag = &skb_shinfo(skb)->frags[0]; 3292 3293 /* Initialize size to the negative value of gso_size minus 1. We 3294 * use this as the worst case scenerio in which the frag ahead 3295 * of us only provides one byte which is why we are limited to 6 3296 * descriptors for a single transmit as the header and previous 3297 * fragment are already consuming 2 descriptors. 3298 */ 3299 sum = 1 - skb_shinfo(skb)->gso_size; 3300 3301 /* Add size of frags 0 through 4 to create our initial sum */ 3302 sum += skb_frag_size(frag++); 3303 sum += skb_frag_size(frag++); 3304 sum += skb_frag_size(frag++); 3305 sum += skb_frag_size(frag++); 3306 sum += skb_frag_size(frag++); 3307 3308 /* Walk through fragments adding latest fragment, testing it, and 3309 * then removing stale fragments from the sum. 3310 */ 3311 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3312 int stale_size = skb_frag_size(stale); 3313 3314 sum += skb_frag_size(frag++); 3315 3316 /* The stale fragment may present us with a smaller 3317 * descriptor than the actual fragment size. To account 3318 * for that we need to remove all the data on the front and 3319 * figure out what the remainder would be in the last 3320 * descriptor associated with the fragment. 3321 */ 3322 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3323 int align_pad = -(skb_frag_off(stale)) & 3324 (I40E_MAX_READ_REQ_SIZE - 1); 3325 3326 sum -= align_pad; 3327 stale_size -= align_pad; 3328 3329 do { 3330 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3331 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3332 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3333 } 3334 3335 /* if sum is negative we failed to make sufficient progress */ 3336 if (sum < 0) 3337 return true; 3338 3339 if (!nr_frags--) 3340 break; 3341 3342 sum -= stale_size; 3343 } 3344 3345 return false; 3346 } 3347 3348 /** 3349 * i40e_tx_map - Build the Tx descriptor 3350 * @tx_ring: ring to send buffer on 3351 * @skb: send buffer 3352 * @first: first buffer info buffer to use 3353 * @tx_flags: collected send information 3354 * @hdr_len: size of the packet header 3355 * @td_cmd: the command field in the descriptor 3356 * @td_offset: offset for checksum or crc 3357 * 3358 * Returns 0 on success, -1 on failure to DMA 3359 **/ 3360 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3361 struct i40e_tx_buffer *first, u32 tx_flags, 3362 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3363 { 3364 unsigned int data_len = skb->data_len; 3365 unsigned int size = skb_headlen(skb); 3366 skb_frag_t *frag; 3367 struct i40e_tx_buffer *tx_bi; 3368 struct i40e_tx_desc *tx_desc; 3369 u16 i = tx_ring->next_to_use; 3370 u32 td_tag = 0; 3371 dma_addr_t dma; 3372 u16 desc_count = 1; 3373 3374 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3375 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3376 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3377 I40E_TX_FLAGS_VLAN_SHIFT; 3378 } 3379 3380 first->tx_flags = tx_flags; 3381 3382 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3383 3384 tx_desc = I40E_TX_DESC(tx_ring, i); 3385 tx_bi = first; 3386 3387 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3388 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3389 3390 if (dma_mapping_error(tx_ring->dev, dma)) 3391 goto dma_error; 3392 3393 /* record length, and DMA address */ 3394 dma_unmap_len_set(tx_bi, len, size); 3395 dma_unmap_addr_set(tx_bi, dma, dma); 3396 3397 /* align size to end of page */ 3398 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3399 tx_desc->buffer_addr = cpu_to_le64(dma); 3400 3401 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3402 tx_desc->cmd_type_offset_bsz = 3403 build_ctob(td_cmd, td_offset, 3404 max_data, td_tag); 3405 3406 tx_desc++; 3407 i++; 3408 desc_count++; 3409 3410 if (i == tx_ring->count) { 3411 tx_desc = I40E_TX_DESC(tx_ring, 0); 3412 i = 0; 3413 } 3414 3415 dma += max_data; 3416 size -= max_data; 3417 3418 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3419 tx_desc->buffer_addr = cpu_to_le64(dma); 3420 } 3421 3422 if (likely(!data_len)) 3423 break; 3424 3425 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3426 size, td_tag); 3427 3428 tx_desc++; 3429 i++; 3430 desc_count++; 3431 3432 if (i == tx_ring->count) { 3433 tx_desc = I40E_TX_DESC(tx_ring, 0); 3434 i = 0; 3435 } 3436 3437 size = skb_frag_size(frag); 3438 data_len -= size; 3439 3440 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3441 DMA_TO_DEVICE); 3442 3443 tx_bi = &tx_ring->tx_bi[i]; 3444 } 3445 3446 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3447 3448 i++; 3449 if (i == tx_ring->count) 3450 i = 0; 3451 3452 tx_ring->next_to_use = i; 3453 3454 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3455 3456 /* write last descriptor with EOP bit */ 3457 td_cmd |= I40E_TX_DESC_CMD_EOP; 3458 3459 /* We OR these values together to check both against 4 (WB_STRIDE) 3460 * below. This is safe since we don't re-use desc_count afterwards. 3461 */ 3462 desc_count |= ++tx_ring->packet_stride; 3463 3464 if (desc_count >= WB_STRIDE) { 3465 /* write last descriptor with RS bit set */ 3466 td_cmd |= I40E_TX_DESC_CMD_RS; 3467 tx_ring->packet_stride = 0; 3468 } 3469 3470 tx_desc->cmd_type_offset_bsz = 3471 build_ctob(td_cmd, td_offset, size, td_tag); 3472 3473 skb_tx_timestamp(skb); 3474 3475 /* Force memory writes to complete before letting h/w know there 3476 * are new descriptors to fetch. 3477 * 3478 * We also use this memory barrier to make certain all of the 3479 * status bits have been updated before next_to_watch is written. 3480 */ 3481 wmb(); 3482 3483 /* set next_to_watch value indicating a packet is present */ 3484 first->next_to_watch = tx_desc; 3485 3486 /* notify HW of packet */ 3487 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3488 writel(i, tx_ring->tail); 3489 } 3490 3491 return 0; 3492 3493 dma_error: 3494 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3495 3496 /* clear dma mappings for failed tx_bi map */ 3497 for (;;) { 3498 tx_bi = &tx_ring->tx_bi[i]; 3499 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3500 if (tx_bi == first) 3501 break; 3502 if (i == 0) 3503 i = tx_ring->count; 3504 i--; 3505 } 3506 3507 tx_ring->next_to_use = i; 3508 3509 return -1; 3510 } 3511 3512 /** 3513 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3514 * @xdpf: data to transmit 3515 * @xdp_ring: XDP Tx ring 3516 **/ 3517 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3518 struct i40e_ring *xdp_ring) 3519 { 3520 u16 i = xdp_ring->next_to_use; 3521 struct i40e_tx_buffer *tx_bi; 3522 struct i40e_tx_desc *tx_desc; 3523 void *data = xdpf->data; 3524 u32 size = xdpf->len; 3525 dma_addr_t dma; 3526 3527 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3528 xdp_ring->tx_stats.tx_busy++; 3529 return I40E_XDP_CONSUMED; 3530 } 3531 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3532 if (dma_mapping_error(xdp_ring->dev, dma)) 3533 return I40E_XDP_CONSUMED; 3534 3535 tx_bi = &xdp_ring->tx_bi[i]; 3536 tx_bi->bytecount = size; 3537 tx_bi->gso_segs = 1; 3538 tx_bi->xdpf = xdpf; 3539 3540 /* record length, and DMA address */ 3541 dma_unmap_len_set(tx_bi, len, size); 3542 dma_unmap_addr_set(tx_bi, dma, dma); 3543 3544 tx_desc = I40E_TX_DESC(xdp_ring, i); 3545 tx_desc->buffer_addr = cpu_to_le64(dma); 3546 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3547 | I40E_TXD_CMD, 3548 0, size, 0); 3549 3550 /* Make certain all of the status bits have been updated 3551 * before next_to_watch is written. 3552 */ 3553 smp_wmb(); 3554 3555 xdp_ring->xdp_tx_active++; 3556 i++; 3557 if (i == xdp_ring->count) 3558 i = 0; 3559 3560 tx_bi->next_to_watch = tx_desc; 3561 xdp_ring->next_to_use = i; 3562 3563 return I40E_XDP_TX; 3564 } 3565 3566 /** 3567 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3568 * @skb: send buffer 3569 * @tx_ring: ring to send buffer on 3570 * 3571 * Returns NETDEV_TX_OK if sent, else an error code 3572 **/ 3573 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3574 struct i40e_ring *tx_ring) 3575 { 3576 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3577 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3578 struct i40e_tx_buffer *first; 3579 u32 td_offset = 0; 3580 u32 tx_flags = 0; 3581 __be16 protocol; 3582 u32 td_cmd = 0; 3583 u8 hdr_len = 0; 3584 int tso, count; 3585 int tsyn; 3586 3587 /* prefetch the data, we'll need it later */ 3588 prefetch(skb->data); 3589 3590 i40e_trace(xmit_frame_ring, skb, tx_ring); 3591 3592 count = i40e_xmit_descriptor_count(skb); 3593 if (i40e_chk_linearize(skb, count)) { 3594 if (__skb_linearize(skb)) { 3595 dev_kfree_skb_any(skb); 3596 return NETDEV_TX_OK; 3597 } 3598 count = i40e_txd_use_count(skb->len); 3599 tx_ring->tx_stats.tx_linearize++; 3600 } 3601 3602 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3603 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3604 * + 4 desc gap to avoid the cache line where head is, 3605 * + 1 desc for context descriptor, 3606 * otherwise try next time 3607 */ 3608 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3609 tx_ring->tx_stats.tx_busy++; 3610 return NETDEV_TX_BUSY; 3611 } 3612 3613 /* record the location of the first descriptor for this packet */ 3614 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3615 first->skb = skb; 3616 first->bytecount = skb->len; 3617 first->gso_segs = 1; 3618 3619 /* prepare the xmit flags */ 3620 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3621 goto out_drop; 3622 3623 /* obtain protocol of skb */ 3624 protocol = vlan_get_protocol(skb); 3625 3626 /* setup IPv4/IPv6 offloads */ 3627 if (protocol == htons(ETH_P_IP)) 3628 tx_flags |= I40E_TX_FLAGS_IPV4; 3629 else if (protocol == htons(ETH_P_IPV6)) 3630 tx_flags |= I40E_TX_FLAGS_IPV6; 3631 3632 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3633 3634 if (tso < 0) 3635 goto out_drop; 3636 else if (tso) 3637 tx_flags |= I40E_TX_FLAGS_TSO; 3638 3639 /* Always offload the checksum, since it's in the data descriptor */ 3640 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3641 tx_ring, &cd_tunneling); 3642 if (tso < 0) 3643 goto out_drop; 3644 3645 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3646 3647 if (tsyn) 3648 tx_flags |= I40E_TX_FLAGS_TSYN; 3649 3650 /* always enable CRC insertion offload */ 3651 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3652 3653 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3654 cd_tunneling, cd_l2tag2); 3655 3656 /* Add Flow Director ATR if it's enabled. 3657 * 3658 * NOTE: this must always be directly before the data descriptor. 3659 */ 3660 i40e_atr(tx_ring, skb, tx_flags); 3661 3662 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3663 td_cmd, td_offset)) 3664 goto cleanup_tx_tstamp; 3665 3666 return NETDEV_TX_OK; 3667 3668 out_drop: 3669 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3670 dev_kfree_skb_any(first->skb); 3671 first->skb = NULL; 3672 cleanup_tx_tstamp: 3673 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3674 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3675 3676 dev_kfree_skb_any(pf->ptp_tx_skb); 3677 pf->ptp_tx_skb = NULL; 3678 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3679 } 3680 3681 return NETDEV_TX_OK; 3682 } 3683 3684 /** 3685 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3686 * @skb: send buffer 3687 * @netdev: network interface device structure 3688 * 3689 * Returns NETDEV_TX_OK if sent, else an error code 3690 **/ 3691 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3692 { 3693 struct i40e_netdev_priv *np = netdev_priv(netdev); 3694 struct i40e_vsi *vsi = np->vsi; 3695 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3696 3697 /* hardware can't handle really short frames, hardware padding works 3698 * beyond this point 3699 */ 3700 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3701 return NETDEV_TX_OK; 3702 3703 return i40e_xmit_frame_ring(skb, tx_ring); 3704 } 3705 3706 /** 3707 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3708 * @dev: netdev 3709 * @n: number of frames 3710 * @frames: array of XDP buffer pointers 3711 * @flags: XDP extra info 3712 * 3713 * Returns number of frames successfully sent. Frames that fail are 3714 * free'ed via XDP return API. 3715 * 3716 * For error cases, a negative errno code is returned and no-frames 3717 * are transmitted (caller must handle freeing frames). 3718 **/ 3719 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3720 u32 flags) 3721 { 3722 struct i40e_netdev_priv *np = netdev_priv(dev); 3723 unsigned int queue_index = smp_processor_id(); 3724 struct i40e_vsi *vsi = np->vsi; 3725 struct i40e_pf *pf = vsi->back; 3726 struct i40e_ring *xdp_ring; 3727 int drops = 0; 3728 int i; 3729 3730 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3731 return -ENETDOWN; 3732 3733 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 3734 test_bit(__I40E_CONFIG_BUSY, pf->state)) 3735 return -ENXIO; 3736 3737 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3738 return -EINVAL; 3739 3740 xdp_ring = vsi->xdp_rings[queue_index]; 3741 3742 for (i = 0; i < n; i++) { 3743 struct xdp_frame *xdpf = frames[i]; 3744 int err; 3745 3746 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3747 if (err != I40E_XDP_TX) { 3748 xdp_return_frame_rx_napi(xdpf); 3749 drops++; 3750 } 3751 } 3752 3753 if (unlikely(flags & XDP_XMIT_FLUSH)) 3754 i40e_xdp_ring_update_tail(xdp_ring); 3755 3756 return n - drops; 3757 } 3758