xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include <net/xdp.h>
31 #include "i40e.h"
32 #include "i40e_trace.h"
33 #include "i40e_prototype.h"
34 
35 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
36 				u32 td_tag)
37 {
38 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
39 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
40 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
41 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
42 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
43 }
44 
45 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
46 /**
47  * i40e_fdir - Generate a Flow Director descriptor based on fdata
48  * @tx_ring: Tx ring to send buffer on
49  * @fdata: Flow director filter data
50  * @add: Indicate if we are adding a rule or deleting one
51  *
52  **/
53 static void i40e_fdir(struct i40e_ring *tx_ring,
54 		      struct i40e_fdir_filter *fdata, bool add)
55 {
56 	struct i40e_filter_program_desc *fdir_desc;
57 	struct i40e_pf *pf = tx_ring->vsi->back;
58 	u32 flex_ptype, dtype_cmd;
59 	u16 i;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
64 
65 	i++;
66 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
67 
68 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
69 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
70 
71 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
72 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
73 
74 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
75 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
76 
77 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
78 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
79 
80 	/* Use LAN VSI Id if not programmed by user */
81 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
82 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
83 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
84 
85 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
86 
87 	dtype_cmd |= add ?
88 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
89 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
90 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
91 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
92 
93 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
94 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
95 
96 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
97 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
98 
99 	if (fdata->cnt_index) {
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
101 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
102 			     ((u32)fdata->cnt_index <<
103 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
104 	}
105 
106 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
107 	fdir_desc->rsvd = cpu_to_le32(0);
108 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
109 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
110 }
111 
112 #define I40E_FD_CLEAN_DELAY 10
113 /**
114  * i40e_program_fdir_filter - Program a Flow Director filter
115  * @fdir_data: Packet data that will be filter parameters
116  * @raw_packet: the pre-allocated packet buffer for FDir
117  * @pf: The PF pointer
118  * @add: True for add/update, False for remove
119  **/
120 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
121 				    u8 *raw_packet, struct i40e_pf *pf,
122 				    bool add)
123 {
124 	struct i40e_tx_buffer *tx_buf, *first;
125 	struct i40e_tx_desc *tx_desc;
126 	struct i40e_ring *tx_ring;
127 	struct i40e_vsi *vsi;
128 	struct device *dev;
129 	dma_addr_t dma;
130 	u32 td_cmd = 0;
131 	u16 i;
132 
133 	/* find existing FDIR VSI */
134 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
135 	if (!vsi)
136 		return -ENOENT;
137 
138 	tx_ring = vsi->tx_rings[0];
139 	dev = tx_ring->dev;
140 
141 	/* we need two descriptors to add/del a filter and we can wait */
142 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
143 		if (!i)
144 			return -EAGAIN;
145 		msleep_interruptible(1);
146 	}
147 
148 	dma = dma_map_single(dev, raw_packet,
149 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
150 	if (dma_mapping_error(dev, dma))
151 		goto dma_fail;
152 
153 	/* grab the next descriptor */
154 	i = tx_ring->next_to_use;
155 	first = &tx_ring->tx_bi[i];
156 	i40e_fdir(tx_ring, fdir_data, add);
157 
158 	/* Now program a dummy descriptor */
159 	i = tx_ring->next_to_use;
160 	tx_desc = I40E_TX_DESC(tx_ring, i);
161 	tx_buf = &tx_ring->tx_bi[i];
162 
163 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
164 
165 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
166 
167 	/* record length, and DMA address */
168 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
169 	dma_unmap_addr_set(tx_buf, dma, dma);
170 
171 	tx_desc->buffer_addr = cpu_to_le64(dma);
172 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
173 
174 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
175 	tx_buf->raw_buf = (void *)raw_packet;
176 
177 	tx_desc->cmd_type_offset_bsz =
178 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
179 
180 	/* Force memory writes to complete before letting h/w
181 	 * know there are new descriptors to fetch.
182 	 */
183 	wmb();
184 
185 	/* Mark the data descriptor to be watched */
186 	first->next_to_watch = tx_desc;
187 
188 	writel(tx_ring->next_to_use, tx_ring->tail);
189 	return 0;
190 
191 dma_fail:
192 	return -1;
193 }
194 
195 #define IP_HEADER_OFFSET 14
196 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
197 /**
198  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
199  * @vsi: pointer to the targeted VSI
200  * @fd_data: the flow director data required for the FDir descriptor
201  * @add: true adds a filter, false removes it
202  *
203  * Returns 0 if the filters were successfully added or removed
204  **/
205 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
206 				   struct i40e_fdir_filter *fd_data,
207 				   bool add)
208 {
209 	struct i40e_pf *pf = vsi->back;
210 	struct udphdr *udp;
211 	struct iphdr *ip;
212 	u8 *raw_packet;
213 	int ret;
214 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
215 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
216 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
217 
218 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
219 	if (!raw_packet)
220 		return -ENOMEM;
221 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
222 
223 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
224 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
225 	      + sizeof(struct iphdr));
226 
227 	ip->daddr = fd_data->dst_ip;
228 	udp->dest = fd_data->dst_port;
229 	ip->saddr = fd_data->src_ip;
230 	udp->source = fd_data->src_port;
231 
232 	if (fd_data->flex_filter) {
233 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
234 		__be16 pattern = fd_data->flex_word;
235 		u16 off = fd_data->flex_offset;
236 
237 		*((__force __be16 *)(payload + off)) = pattern;
238 	}
239 
240 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
241 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
242 	if (ret) {
243 		dev_info(&pf->pdev->dev,
244 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
245 			 fd_data->pctype, fd_data->fd_id, ret);
246 		/* Free the packet buffer since it wasn't added to the ring */
247 		kfree(raw_packet);
248 		return -EOPNOTSUPP;
249 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
250 		if (add)
251 			dev_info(&pf->pdev->dev,
252 				 "Filter OK for PCTYPE %d loc = %d\n",
253 				 fd_data->pctype, fd_data->fd_id);
254 		else
255 			dev_info(&pf->pdev->dev,
256 				 "Filter deleted for PCTYPE %d loc = %d\n",
257 				 fd_data->pctype, fd_data->fd_id);
258 	}
259 
260 	if (add)
261 		pf->fd_udp4_filter_cnt++;
262 	else
263 		pf->fd_udp4_filter_cnt--;
264 
265 	return 0;
266 }
267 
268 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
269 /**
270  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
271  * @vsi: pointer to the targeted VSI
272  * @fd_data: the flow director data required for the FDir descriptor
273  * @add: true adds a filter, false removes it
274  *
275  * Returns 0 if the filters were successfully added or removed
276  **/
277 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
278 				   struct i40e_fdir_filter *fd_data,
279 				   bool add)
280 {
281 	struct i40e_pf *pf = vsi->back;
282 	struct tcphdr *tcp;
283 	struct iphdr *ip;
284 	u8 *raw_packet;
285 	int ret;
286 	/* Dummy packet */
287 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
288 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
289 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
290 		0x0, 0x72, 0, 0, 0, 0};
291 
292 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
293 	if (!raw_packet)
294 		return -ENOMEM;
295 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
296 
297 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
298 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
299 	      + sizeof(struct iphdr));
300 
301 	ip->daddr = fd_data->dst_ip;
302 	tcp->dest = fd_data->dst_port;
303 	ip->saddr = fd_data->src_ip;
304 	tcp->source = fd_data->src_port;
305 
306 	if (fd_data->flex_filter) {
307 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
308 		__be16 pattern = fd_data->flex_word;
309 		u16 off = fd_data->flex_offset;
310 
311 		*((__force __be16 *)(payload + off)) = pattern;
312 	}
313 
314 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
315 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
316 	if (ret) {
317 		dev_info(&pf->pdev->dev,
318 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
319 			 fd_data->pctype, fd_data->fd_id, ret);
320 		/* Free the packet buffer since it wasn't added to the ring */
321 		kfree(raw_packet);
322 		return -EOPNOTSUPP;
323 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
324 		if (add)
325 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
326 				 fd_data->pctype, fd_data->fd_id);
327 		else
328 			dev_info(&pf->pdev->dev,
329 				 "Filter deleted for PCTYPE %d loc = %d\n",
330 				 fd_data->pctype, fd_data->fd_id);
331 	}
332 
333 	if (add) {
334 		pf->fd_tcp4_filter_cnt++;
335 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
336 		    I40E_DEBUG_FD & pf->hw.debug_mask)
337 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
338 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
339 	} else {
340 		pf->fd_tcp4_filter_cnt--;
341 	}
342 
343 	return 0;
344 }
345 
346 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
347 /**
348  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
349  * a specific flow spec
350  * @vsi: pointer to the targeted VSI
351  * @fd_data: the flow director data required for the FDir descriptor
352  * @add: true adds a filter, false removes it
353  *
354  * Returns 0 if the filters were successfully added or removed
355  **/
356 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
357 				    struct i40e_fdir_filter *fd_data,
358 				    bool add)
359 {
360 	struct i40e_pf *pf = vsi->back;
361 	struct sctphdr *sctp;
362 	struct iphdr *ip;
363 	u8 *raw_packet;
364 	int ret;
365 	/* Dummy packet */
366 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
367 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
368 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
369 
370 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
371 	if (!raw_packet)
372 		return -ENOMEM;
373 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
374 
375 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
376 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
377 	      + sizeof(struct iphdr));
378 
379 	ip->daddr = fd_data->dst_ip;
380 	sctp->dest = fd_data->dst_port;
381 	ip->saddr = fd_data->src_ip;
382 	sctp->source = fd_data->src_port;
383 
384 	if (fd_data->flex_filter) {
385 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
386 		__be16 pattern = fd_data->flex_word;
387 		u16 off = fd_data->flex_offset;
388 
389 		*((__force __be16 *)(payload + off)) = pattern;
390 	}
391 
392 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
393 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
394 	if (ret) {
395 		dev_info(&pf->pdev->dev,
396 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
397 			 fd_data->pctype, fd_data->fd_id, ret);
398 		/* Free the packet buffer since it wasn't added to the ring */
399 		kfree(raw_packet);
400 		return -EOPNOTSUPP;
401 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
402 		if (add)
403 			dev_info(&pf->pdev->dev,
404 				 "Filter OK for PCTYPE %d loc = %d\n",
405 				 fd_data->pctype, fd_data->fd_id);
406 		else
407 			dev_info(&pf->pdev->dev,
408 				 "Filter deleted for PCTYPE %d loc = %d\n",
409 				 fd_data->pctype, fd_data->fd_id);
410 	}
411 
412 	if (add)
413 		pf->fd_sctp4_filter_cnt++;
414 	else
415 		pf->fd_sctp4_filter_cnt--;
416 
417 	return 0;
418 }
419 
420 #define I40E_IP_DUMMY_PACKET_LEN 34
421 /**
422  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
423  * a specific flow spec
424  * @vsi: pointer to the targeted VSI
425  * @fd_data: the flow director data required for the FDir descriptor
426  * @add: true adds a filter, false removes it
427  *
428  * Returns 0 if the filters were successfully added or removed
429  **/
430 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
431 				  struct i40e_fdir_filter *fd_data,
432 				  bool add)
433 {
434 	struct i40e_pf *pf = vsi->back;
435 	struct iphdr *ip;
436 	u8 *raw_packet;
437 	int ret;
438 	int i;
439 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
440 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
441 		0, 0, 0, 0};
442 
443 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
444 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
445 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
446 		if (!raw_packet)
447 			return -ENOMEM;
448 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
449 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
450 
451 		ip->saddr = fd_data->src_ip;
452 		ip->daddr = fd_data->dst_ip;
453 		ip->protocol = 0;
454 
455 		if (fd_data->flex_filter) {
456 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
457 			__be16 pattern = fd_data->flex_word;
458 			u16 off = fd_data->flex_offset;
459 
460 			*((__force __be16 *)(payload + off)) = pattern;
461 		}
462 
463 		fd_data->pctype = i;
464 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
465 		if (ret) {
466 			dev_info(&pf->pdev->dev,
467 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
468 				 fd_data->pctype, fd_data->fd_id, ret);
469 			/* The packet buffer wasn't added to the ring so we
470 			 * need to free it now.
471 			 */
472 			kfree(raw_packet);
473 			return -EOPNOTSUPP;
474 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
475 			if (add)
476 				dev_info(&pf->pdev->dev,
477 					 "Filter OK for PCTYPE %d loc = %d\n",
478 					 fd_data->pctype, fd_data->fd_id);
479 			else
480 				dev_info(&pf->pdev->dev,
481 					 "Filter deleted for PCTYPE %d loc = %d\n",
482 					 fd_data->pctype, fd_data->fd_id);
483 		}
484 	}
485 
486 	if (add)
487 		pf->fd_ip4_filter_cnt++;
488 	else
489 		pf->fd_ip4_filter_cnt--;
490 
491 	return 0;
492 }
493 
494 /**
495  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
496  * @vsi: pointer to the targeted VSI
497  * @cmd: command to get or set RX flow classification rules
498  * @add: true adds a filter, false removes it
499  *
500  **/
501 int i40e_add_del_fdir(struct i40e_vsi *vsi,
502 		      struct i40e_fdir_filter *input, bool add)
503 {
504 	struct i40e_pf *pf = vsi->back;
505 	int ret;
506 
507 	switch (input->flow_type & ~FLOW_EXT) {
508 	case TCP_V4_FLOW:
509 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
510 		break;
511 	case UDP_V4_FLOW:
512 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
513 		break;
514 	case SCTP_V4_FLOW:
515 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
516 		break;
517 	case IP_USER_FLOW:
518 		switch (input->ip4_proto) {
519 		case IPPROTO_TCP:
520 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
521 			break;
522 		case IPPROTO_UDP:
523 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
524 			break;
525 		case IPPROTO_SCTP:
526 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
527 			break;
528 		case IPPROTO_IP:
529 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
530 			break;
531 		default:
532 			/* We cannot support masking based on protocol */
533 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
534 				 input->ip4_proto);
535 			return -EINVAL;
536 		}
537 		break;
538 	default:
539 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
540 			 input->flow_type);
541 		return -EINVAL;
542 	}
543 
544 	/* The buffer allocated here will be normally be freed by
545 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
546 	 * completion. In the event of an error adding the buffer to the FDIR
547 	 * ring, it will immediately be freed. It may also be freed by
548 	 * i40e_clean_tx_ring() when closing the VSI.
549 	 */
550 	return ret;
551 }
552 
553 /**
554  * i40e_fd_handle_status - check the Programming Status for FD
555  * @rx_ring: the Rx ring for this descriptor
556  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
557  * @prog_id: the id originally used for programming
558  *
559  * This is used to verify if the FD programming or invalidation
560  * requested by SW to the HW is successful or not and take actions accordingly.
561  **/
562 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
563 				  union i40e_rx_desc *rx_desc, u8 prog_id)
564 {
565 	struct i40e_pf *pf = rx_ring->vsi->back;
566 	struct pci_dev *pdev = pf->pdev;
567 	u32 fcnt_prog, fcnt_avail;
568 	u32 error;
569 	u64 qw;
570 
571 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
572 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
573 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
574 
575 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
576 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
577 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
578 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
579 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
580 				 pf->fd_inv);
581 
582 		/* Check if the programming error is for ATR.
583 		 * If so, auto disable ATR and set a state for
584 		 * flush in progress. Next time we come here if flush is in
585 		 * progress do nothing, once flush is complete the state will
586 		 * be cleared.
587 		 */
588 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
589 			return;
590 
591 		pf->fd_add_err++;
592 		/* store the current atr filter count */
593 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
594 
595 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
596 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
597 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
598 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
599 		}
600 
601 		/* filter programming failed most likely due to table full */
602 		fcnt_prog = i40e_get_global_fd_count(pf);
603 		fcnt_avail = pf->fdir_pf_filter_count;
604 		/* If ATR is running fcnt_prog can quickly change,
605 		 * if we are very close to full, it makes sense to disable
606 		 * FD ATR/SB and then re-enable it when there is room.
607 		 */
608 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
609 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
610 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
611 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
612 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
613 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
614 			}
615 		}
616 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
617 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
618 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
619 				 rx_desc->wb.qword0.hi_dword.fd_id);
620 	}
621 }
622 
623 /**
624  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
625  * @ring:      the ring that owns the buffer
626  * @tx_buffer: the buffer to free
627  **/
628 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
629 					    struct i40e_tx_buffer *tx_buffer)
630 {
631 	if (tx_buffer->skb) {
632 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
633 			kfree(tx_buffer->raw_buf);
634 		else if (ring_is_xdp(ring))
635 			page_frag_free(tx_buffer->raw_buf);
636 		else
637 			dev_kfree_skb_any(tx_buffer->skb);
638 		if (dma_unmap_len(tx_buffer, len))
639 			dma_unmap_single(ring->dev,
640 					 dma_unmap_addr(tx_buffer, dma),
641 					 dma_unmap_len(tx_buffer, len),
642 					 DMA_TO_DEVICE);
643 	} else if (dma_unmap_len(tx_buffer, len)) {
644 		dma_unmap_page(ring->dev,
645 			       dma_unmap_addr(tx_buffer, dma),
646 			       dma_unmap_len(tx_buffer, len),
647 			       DMA_TO_DEVICE);
648 	}
649 
650 	tx_buffer->next_to_watch = NULL;
651 	tx_buffer->skb = NULL;
652 	dma_unmap_len_set(tx_buffer, len, 0);
653 	/* tx_buffer must be completely set up in the transmit path */
654 }
655 
656 /**
657  * i40e_clean_tx_ring - Free any empty Tx buffers
658  * @tx_ring: ring to be cleaned
659  **/
660 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
661 {
662 	unsigned long bi_size;
663 	u16 i;
664 
665 	/* ring already cleared, nothing to do */
666 	if (!tx_ring->tx_bi)
667 		return;
668 
669 	/* Free all the Tx ring sk_buffs */
670 	for (i = 0; i < tx_ring->count; i++)
671 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
672 
673 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
674 	memset(tx_ring->tx_bi, 0, bi_size);
675 
676 	/* Zero out the descriptor ring */
677 	memset(tx_ring->desc, 0, tx_ring->size);
678 
679 	tx_ring->next_to_use = 0;
680 	tx_ring->next_to_clean = 0;
681 
682 	if (!tx_ring->netdev)
683 		return;
684 
685 	/* cleanup Tx queue statistics */
686 	netdev_tx_reset_queue(txring_txq(tx_ring));
687 }
688 
689 /**
690  * i40e_free_tx_resources - Free Tx resources per queue
691  * @tx_ring: Tx descriptor ring for a specific queue
692  *
693  * Free all transmit software resources
694  **/
695 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
696 {
697 	i40e_clean_tx_ring(tx_ring);
698 	kfree(tx_ring->tx_bi);
699 	tx_ring->tx_bi = NULL;
700 
701 	if (tx_ring->desc) {
702 		dma_free_coherent(tx_ring->dev, tx_ring->size,
703 				  tx_ring->desc, tx_ring->dma);
704 		tx_ring->desc = NULL;
705 	}
706 }
707 
708 /**
709  * i40e_get_tx_pending - how many tx descriptors not processed
710  * @tx_ring: the ring of descriptors
711  *
712  * Since there is no access to the ring head register
713  * in XL710, we need to use our local copies
714  **/
715 u32 i40e_get_tx_pending(struct i40e_ring *ring)
716 {
717 	u32 head, tail;
718 
719 	head = i40e_get_head(ring);
720 	tail = readl(ring->tail);
721 
722 	if (head != tail)
723 		return (head < tail) ?
724 			tail - head : (tail + ring->count - head);
725 
726 	return 0;
727 }
728 
729 #define WB_STRIDE 4
730 
731 /**
732  * i40e_clean_tx_irq - Reclaim resources after transmit completes
733  * @vsi: the VSI we care about
734  * @tx_ring: Tx ring to clean
735  * @napi_budget: Used to determine if we are in netpoll
736  *
737  * Returns true if there's any budget left (e.g. the clean is finished)
738  **/
739 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
740 			      struct i40e_ring *tx_ring, int napi_budget)
741 {
742 	u16 i = tx_ring->next_to_clean;
743 	struct i40e_tx_buffer *tx_buf;
744 	struct i40e_tx_desc *tx_head;
745 	struct i40e_tx_desc *tx_desc;
746 	unsigned int total_bytes = 0, total_packets = 0;
747 	unsigned int budget = vsi->work_limit;
748 
749 	tx_buf = &tx_ring->tx_bi[i];
750 	tx_desc = I40E_TX_DESC(tx_ring, i);
751 	i -= tx_ring->count;
752 
753 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
754 
755 	do {
756 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
757 
758 		/* if next_to_watch is not set then there is no work pending */
759 		if (!eop_desc)
760 			break;
761 
762 		/* prevent any other reads prior to eop_desc */
763 		smp_rmb();
764 
765 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
766 		/* we have caught up to head, no work left to do */
767 		if (tx_head == tx_desc)
768 			break;
769 
770 		/* clear next_to_watch to prevent false hangs */
771 		tx_buf->next_to_watch = NULL;
772 
773 		/* update the statistics for this packet */
774 		total_bytes += tx_buf->bytecount;
775 		total_packets += tx_buf->gso_segs;
776 
777 		/* free the skb/XDP data */
778 		if (ring_is_xdp(tx_ring))
779 			page_frag_free(tx_buf->raw_buf);
780 		else
781 			napi_consume_skb(tx_buf->skb, napi_budget);
782 
783 		/* unmap skb header data */
784 		dma_unmap_single(tx_ring->dev,
785 				 dma_unmap_addr(tx_buf, dma),
786 				 dma_unmap_len(tx_buf, len),
787 				 DMA_TO_DEVICE);
788 
789 		/* clear tx_buffer data */
790 		tx_buf->skb = NULL;
791 		dma_unmap_len_set(tx_buf, len, 0);
792 
793 		/* unmap remaining buffers */
794 		while (tx_desc != eop_desc) {
795 			i40e_trace(clean_tx_irq_unmap,
796 				   tx_ring, tx_desc, tx_buf);
797 
798 			tx_buf++;
799 			tx_desc++;
800 			i++;
801 			if (unlikely(!i)) {
802 				i -= tx_ring->count;
803 				tx_buf = tx_ring->tx_bi;
804 				tx_desc = I40E_TX_DESC(tx_ring, 0);
805 			}
806 
807 			/* unmap any remaining paged data */
808 			if (dma_unmap_len(tx_buf, len)) {
809 				dma_unmap_page(tx_ring->dev,
810 					       dma_unmap_addr(tx_buf, dma),
811 					       dma_unmap_len(tx_buf, len),
812 					       DMA_TO_DEVICE);
813 				dma_unmap_len_set(tx_buf, len, 0);
814 			}
815 		}
816 
817 		/* move us one more past the eop_desc for start of next pkt */
818 		tx_buf++;
819 		tx_desc++;
820 		i++;
821 		if (unlikely(!i)) {
822 			i -= tx_ring->count;
823 			tx_buf = tx_ring->tx_bi;
824 			tx_desc = I40E_TX_DESC(tx_ring, 0);
825 		}
826 
827 		prefetch(tx_desc);
828 
829 		/* update budget accounting */
830 		budget--;
831 	} while (likely(budget));
832 
833 	i += tx_ring->count;
834 	tx_ring->next_to_clean = i;
835 	u64_stats_update_begin(&tx_ring->syncp);
836 	tx_ring->stats.bytes += total_bytes;
837 	tx_ring->stats.packets += total_packets;
838 	u64_stats_update_end(&tx_ring->syncp);
839 	tx_ring->q_vector->tx.total_bytes += total_bytes;
840 	tx_ring->q_vector->tx.total_packets += total_packets;
841 
842 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
843 		/* check to see if there are < 4 descriptors
844 		 * waiting to be written back, then kick the hardware to force
845 		 * them to be written back in case we stay in NAPI.
846 		 * In this mode on X722 we do not enable Interrupt.
847 		 */
848 		unsigned int j = i40e_get_tx_pending(tx_ring);
849 
850 		if (budget &&
851 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
852 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
853 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
854 			tx_ring->arm_wb = true;
855 	}
856 
857 	if (ring_is_xdp(tx_ring))
858 		return !!budget;
859 
860 	/* notify netdev of completed buffers */
861 	netdev_tx_completed_queue(txring_txq(tx_ring),
862 				  total_packets, total_bytes);
863 
864 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
865 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
866 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
867 		/* Make sure that anybody stopping the queue after this
868 		 * sees the new next_to_clean.
869 		 */
870 		smp_mb();
871 		if (__netif_subqueue_stopped(tx_ring->netdev,
872 					     tx_ring->queue_index) &&
873 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
874 			netif_wake_subqueue(tx_ring->netdev,
875 					    tx_ring->queue_index);
876 			++tx_ring->tx_stats.restart_queue;
877 		}
878 	}
879 
880 	return !!budget;
881 }
882 
883 /**
884  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
885  * @vsi: the VSI we care about
886  * @q_vector: the vector on which to enable writeback
887  *
888  **/
889 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
890 				  struct i40e_q_vector *q_vector)
891 {
892 	u16 flags = q_vector->tx.ring[0].flags;
893 	u32 val;
894 
895 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
896 		return;
897 
898 	if (q_vector->arm_wb_state)
899 		return;
900 
901 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
902 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
903 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
904 
905 		wr32(&vsi->back->hw,
906 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
907 		     val);
908 	} else {
909 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
910 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
911 
912 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
913 	}
914 	q_vector->arm_wb_state = true;
915 }
916 
917 /**
918  * i40e_force_wb - Issue SW Interrupt so HW does a wb
919  * @vsi: the VSI we care about
920  * @q_vector: the vector  on which to force writeback
921  *
922  **/
923 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
924 {
925 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
926 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
927 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
928 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
929 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
930 			  /* allow 00 to be written to the index */
931 
932 		wr32(&vsi->back->hw,
933 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
934 					 vsi->base_vector - 1), val);
935 	} else {
936 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
937 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
938 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
939 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
940 			/* allow 00 to be written to the index */
941 
942 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
943 	}
944 }
945 
946 /**
947  * i40e_set_new_dynamic_itr - Find new ITR level
948  * @rc: structure containing ring performance data
949  *
950  * Returns true if ITR changed, false if not
951  *
952  * Stores a new ITR value based on packets and byte counts during
953  * the last interrupt.  The advantage of per interrupt computation
954  * is faster updates and more accurate ITR for the current traffic
955  * pattern.  Constants in this function were computed based on
956  * theoretical maximum wire speed and thresholds were set based on
957  * testing data as well as attempting to minimize response time
958  * while increasing bulk throughput.
959  **/
960 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
961 {
962 	enum i40e_latency_range new_latency_range = rc->latency_range;
963 	u32 new_itr = rc->itr;
964 	int bytes_per_usec;
965 	unsigned int usecs, estimated_usecs;
966 
967 	if (rc->total_packets == 0 || !rc->itr)
968 		return false;
969 
970 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
971 	bytes_per_usec = rc->total_bytes / usecs;
972 
973 	/* The calculations in this algorithm depend on interrupts actually
974 	 * firing at the ITR rate. This may not happen if the packet rate is
975 	 * really low, or if we've been napi polling. Check to make sure
976 	 * that's not the case before we continue.
977 	 */
978 	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
979 	if (estimated_usecs > usecs) {
980 		new_latency_range = I40E_LOW_LATENCY;
981 		goto reset_latency;
982 	}
983 
984 	/* simple throttlerate management
985 	 *   0-10MB/s   lowest (50000 ints/s)
986 	 *  10-20MB/s   low    (20000 ints/s)
987 	 *  20-1249MB/s bulk   (18000 ints/s)
988 	 *
989 	 * The math works out because the divisor is in 10^(-6) which
990 	 * turns the bytes/us input value into MB/s values, but
991 	 * make sure to use usecs, as the register values written
992 	 * are in 2 usec increments in the ITR registers, and make sure
993 	 * to use the smoothed values that the countdown timer gives us.
994 	 */
995 	switch (new_latency_range) {
996 	case I40E_LOWEST_LATENCY:
997 		if (bytes_per_usec > 10)
998 			new_latency_range = I40E_LOW_LATENCY;
999 		break;
1000 	case I40E_LOW_LATENCY:
1001 		if (bytes_per_usec > 20)
1002 			new_latency_range = I40E_BULK_LATENCY;
1003 		else if (bytes_per_usec <= 10)
1004 			new_latency_range = I40E_LOWEST_LATENCY;
1005 		break;
1006 	case I40E_BULK_LATENCY:
1007 	default:
1008 		if (bytes_per_usec <= 20)
1009 			new_latency_range = I40E_LOW_LATENCY;
1010 		break;
1011 	}
1012 
1013 reset_latency:
1014 	rc->latency_range = new_latency_range;
1015 
1016 	switch (new_latency_range) {
1017 	case I40E_LOWEST_LATENCY:
1018 		new_itr = I40E_ITR_50K;
1019 		break;
1020 	case I40E_LOW_LATENCY:
1021 		new_itr = I40E_ITR_20K;
1022 		break;
1023 	case I40E_BULK_LATENCY:
1024 		new_itr = I40E_ITR_18K;
1025 		break;
1026 	default:
1027 		break;
1028 	}
1029 
1030 	rc->total_bytes = 0;
1031 	rc->total_packets = 0;
1032 	rc->last_itr_update = jiffies;
1033 
1034 	if (new_itr != rc->itr) {
1035 		rc->itr = new_itr;
1036 		return true;
1037 	}
1038 	return false;
1039 }
1040 
1041 /**
1042  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1043  * @rx_ring: rx descriptor ring to store buffers on
1044  * @old_buff: donor buffer to have page reused
1045  *
1046  * Synchronizes page for reuse by the adapter
1047  **/
1048 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1049 			       struct i40e_rx_buffer *old_buff)
1050 {
1051 	struct i40e_rx_buffer *new_buff;
1052 	u16 nta = rx_ring->next_to_alloc;
1053 
1054 	new_buff = &rx_ring->rx_bi[nta];
1055 
1056 	/* update, and store next to alloc */
1057 	nta++;
1058 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1059 
1060 	/* transfer page from old buffer to new buffer */
1061 	new_buff->dma		= old_buff->dma;
1062 	new_buff->page		= old_buff->page;
1063 	new_buff->page_offset	= old_buff->page_offset;
1064 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1065 }
1066 
1067 /**
1068  * i40e_rx_is_programming_status - check for programming status descriptor
1069  * @qw: qword representing status_error_len in CPU ordering
1070  *
1071  * The value of in the descriptor length field indicate if this
1072  * is a programming status descriptor for flow director or FCoE
1073  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1074  * it is a packet descriptor.
1075  **/
1076 static inline bool i40e_rx_is_programming_status(u64 qw)
1077 {
1078 	/* The Rx filter programming status and SPH bit occupy the same
1079 	 * spot in the descriptor. Since we don't support packet split we
1080 	 * can just reuse the bit as an indication that this is a
1081 	 * programming status descriptor.
1082 	 */
1083 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1084 }
1085 
1086 /**
1087  * i40e_clean_programming_status - clean the programming status descriptor
1088  * @rx_ring: the rx ring that has this descriptor
1089  * @rx_desc: the rx descriptor written back by HW
1090  * @qw: qword representing status_error_len in CPU ordering
1091  *
1092  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1093  * status being successful or not and take actions accordingly. FCoE should
1094  * handle its context/filter programming/invalidation status and take actions.
1095  *
1096  **/
1097 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1098 					  union i40e_rx_desc *rx_desc,
1099 					  u64 qw)
1100 {
1101 	struct i40e_rx_buffer *rx_buffer;
1102 	u32 ntc = rx_ring->next_to_clean;
1103 	u8 id;
1104 
1105 	/* fetch, update, and store next to clean */
1106 	rx_buffer = &rx_ring->rx_bi[ntc++];
1107 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1108 	rx_ring->next_to_clean = ntc;
1109 
1110 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1111 
1112 	/* place unused page back on the ring */
1113 	i40e_reuse_rx_page(rx_ring, rx_buffer);
1114 	rx_ring->rx_stats.page_reuse_count++;
1115 
1116 	/* clear contents of buffer_info */
1117 	rx_buffer->page = NULL;
1118 
1119 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1120 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1121 
1122 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1123 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1124 }
1125 
1126 /**
1127  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1128  * @tx_ring: the tx ring to set up
1129  *
1130  * Return 0 on success, negative on error
1131  **/
1132 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1133 {
1134 	struct device *dev = tx_ring->dev;
1135 	int bi_size;
1136 
1137 	if (!dev)
1138 		return -ENOMEM;
1139 
1140 	/* warn if we are about to overwrite the pointer */
1141 	WARN_ON(tx_ring->tx_bi);
1142 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1143 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1144 	if (!tx_ring->tx_bi)
1145 		goto err;
1146 
1147 	u64_stats_init(&tx_ring->syncp);
1148 
1149 	/* round up to nearest 4K */
1150 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1151 	/* add u32 for head writeback, align after this takes care of
1152 	 * guaranteeing this is at least one cache line in size
1153 	 */
1154 	tx_ring->size += sizeof(u32);
1155 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1156 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1157 					   &tx_ring->dma, GFP_KERNEL);
1158 	if (!tx_ring->desc) {
1159 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1160 			 tx_ring->size);
1161 		goto err;
1162 	}
1163 
1164 	tx_ring->next_to_use = 0;
1165 	tx_ring->next_to_clean = 0;
1166 	return 0;
1167 
1168 err:
1169 	kfree(tx_ring->tx_bi);
1170 	tx_ring->tx_bi = NULL;
1171 	return -ENOMEM;
1172 }
1173 
1174 /**
1175  * i40e_clean_rx_ring - Free Rx buffers
1176  * @rx_ring: ring to be cleaned
1177  **/
1178 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1179 {
1180 	unsigned long bi_size;
1181 	u16 i;
1182 
1183 	/* ring already cleared, nothing to do */
1184 	if (!rx_ring->rx_bi)
1185 		return;
1186 
1187 	if (rx_ring->skb) {
1188 		dev_kfree_skb(rx_ring->skb);
1189 		rx_ring->skb = NULL;
1190 	}
1191 
1192 	/* Free all the Rx ring sk_buffs */
1193 	for (i = 0; i < rx_ring->count; i++) {
1194 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1195 
1196 		if (!rx_bi->page)
1197 			continue;
1198 
1199 		/* Invalidate cache lines that may have been written to by
1200 		 * device so that we avoid corrupting memory.
1201 		 */
1202 		dma_sync_single_range_for_cpu(rx_ring->dev,
1203 					      rx_bi->dma,
1204 					      rx_bi->page_offset,
1205 					      rx_ring->rx_buf_len,
1206 					      DMA_FROM_DEVICE);
1207 
1208 		/* free resources associated with mapping */
1209 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1210 				     i40e_rx_pg_size(rx_ring),
1211 				     DMA_FROM_DEVICE,
1212 				     I40E_RX_DMA_ATTR);
1213 
1214 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1215 
1216 		rx_bi->page = NULL;
1217 		rx_bi->page_offset = 0;
1218 	}
1219 
1220 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1221 	memset(rx_ring->rx_bi, 0, bi_size);
1222 
1223 	/* Zero out the descriptor ring */
1224 	memset(rx_ring->desc, 0, rx_ring->size);
1225 
1226 	rx_ring->next_to_alloc = 0;
1227 	rx_ring->next_to_clean = 0;
1228 	rx_ring->next_to_use = 0;
1229 }
1230 
1231 /**
1232  * i40e_free_rx_resources - Free Rx resources
1233  * @rx_ring: ring to clean the resources from
1234  *
1235  * Free all receive software resources
1236  **/
1237 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1238 {
1239 	i40e_clean_rx_ring(rx_ring);
1240 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1241 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1242 	rx_ring->xdp_prog = NULL;
1243 	kfree(rx_ring->rx_bi);
1244 	rx_ring->rx_bi = NULL;
1245 
1246 	if (rx_ring->desc) {
1247 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1248 				  rx_ring->desc, rx_ring->dma);
1249 		rx_ring->desc = NULL;
1250 	}
1251 }
1252 
1253 /**
1254  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1255  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1256  *
1257  * Returns 0 on success, negative on failure
1258  **/
1259 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1260 {
1261 	struct device *dev = rx_ring->dev;
1262 	int err = -ENOMEM;
1263 	int bi_size;
1264 
1265 	/* warn if we are about to overwrite the pointer */
1266 	WARN_ON(rx_ring->rx_bi);
1267 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1268 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1269 	if (!rx_ring->rx_bi)
1270 		goto err;
1271 
1272 	u64_stats_init(&rx_ring->syncp);
1273 
1274 	/* Round up to nearest 4K */
1275 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1276 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1277 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1278 					   &rx_ring->dma, GFP_KERNEL);
1279 
1280 	if (!rx_ring->desc) {
1281 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1282 			 rx_ring->size);
1283 		goto err;
1284 	}
1285 
1286 	rx_ring->next_to_alloc = 0;
1287 	rx_ring->next_to_clean = 0;
1288 	rx_ring->next_to_use = 0;
1289 
1290 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1291 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1292 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1293 				       rx_ring->queue_index);
1294 		if (err < 0)
1295 			goto err;
1296 	}
1297 
1298 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1299 
1300 	return 0;
1301 err:
1302 	kfree(rx_ring->rx_bi);
1303 	rx_ring->rx_bi = NULL;
1304 	return err;
1305 }
1306 
1307 /**
1308  * i40e_release_rx_desc - Store the new tail and head values
1309  * @rx_ring: ring to bump
1310  * @val: new head index
1311  **/
1312 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1313 {
1314 	rx_ring->next_to_use = val;
1315 
1316 	/* update next to alloc since we have filled the ring */
1317 	rx_ring->next_to_alloc = val;
1318 
1319 	/* Force memory writes to complete before letting h/w
1320 	 * know there are new descriptors to fetch.  (Only
1321 	 * applicable for weak-ordered memory model archs,
1322 	 * such as IA-64).
1323 	 */
1324 	wmb();
1325 	writel(val, rx_ring->tail);
1326 }
1327 
1328 /**
1329  * i40e_rx_offset - Return expected offset into page to access data
1330  * @rx_ring: Ring we are requesting offset of
1331  *
1332  * Returns the offset value for ring into the data buffer.
1333  */
1334 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1335 {
1336 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1337 }
1338 
1339 /**
1340  * i40e_alloc_mapped_page - recycle or make a new page
1341  * @rx_ring: ring to use
1342  * @bi: rx_buffer struct to modify
1343  *
1344  * Returns true if the page was successfully allocated or
1345  * reused.
1346  **/
1347 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1348 				   struct i40e_rx_buffer *bi)
1349 {
1350 	struct page *page = bi->page;
1351 	dma_addr_t dma;
1352 
1353 	/* since we are recycling buffers we should seldom need to alloc */
1354 	if (likely(page)) {
1355 		rx_ring->rx_stats.page_reuse_count++;
1356 		return true;
1357 	}
1358 
1359 	/* alloc new page for storage */
1360 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1361 	if (unlikely(!page)) {
1362 		rx_ring->rx_stats.alloc_page_failed++;
1363 		return false;
1364 	}
1365 
1366 	/* map page for use */
1367 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1368 				 i40e_rx_pg_size(rx_ring),
1369 				 DMA_FROM_DEVICE,
1370 				 I40E_RX_DMA_ATTR);
1371 
1372 	/* if mapping failed free memory back to system since
1373 	 * there isn't much point in holding memory we can't use
1374 	 */
1375 	if (dma_mapping_error(rx_ring->dev, dma)) {
1376 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1377 		rx_ring->rx_stats.alloc_page_failed++;
1378 		return false;
1379 	}
1380 
1381 	bi->dma = dma;
1382 	bi->page = page;
1383 	bi->page_offset = i40e_rx_offset(rx_ring);
1384 
1385 	/* initialize pagecnt_bias to 1 representing we fully own page */
1386 	bi->pagecnt_bias = 1;
1387 
1388 	return true;
1389 }
1390 
1391 /**
1392  * i40e_receive_skb - Send a completed packet up the stack
1393  * @rx_ring:  rx ring in play
1394  * @skb: packet to send up
1395  * @vlan_tag: vlan tag for packet
1396  **/
1397 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1398 			     struct sk_buff *skb, u16 vlan_tag)
1399 {
1400 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1401 
1402 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1403 	    (vlan_tag & VLAN_VID_MASK))
1404 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1405 
1406 	napi_gro_receive(&q_vector->napi, skb);
1407 }
1408 
1409 /**
1410  * i40e_alloc_rx_buffers - Replace used receive buffers
1411  * @rx_ring: ring to place buffers on
1412  * @cleaned_count: number of buffers to replace
1413  *
1414  * Returns false if all allocations were successful, true if any fail
1415  **/
1416 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1417 {
1418 	u16 ntu = rx_ring->next_to_use;
1419 	union i40e_rx_desc *rx_desc;
1420 	struct i40e_rx_buffer *bi;
1421 
1422 	/* do nothing if no valid netdev defined */
1423 	if (!rx_ring->netdev || !cleaned_count)
1424 		return false;
1425 
1426 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1427 	bi = &rx_ring->rx_bi[ntu];
1428 
1429 	do {
1430 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1431 			goto no_buffers;
1432 
1433 		/* sync the buffer for use by the device */
1434 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1435 						 bi->page_offset,
1436 						 rx_ring->rx_buf_len,
1437 						 DMA_FROM_DEVICE);
1438 
1439 		/* Refresh the desc even if buffer_addrs didn't change
1440 		 * because each write-back erases this info.
1441 		 */
1442 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1443 
1444 		rx_desc++;
1445 		bi++;
1446 		ntu++;
1447 		if (unlikely(ntu == rx_ring->count)) {
1448 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1449 			bi = rx_ring->rx_bi;
1450 			ntu = 0;
1451 		}
1452 
1453 		/* clear the status bits for the next_to_use descriptor */
1454 		rx_desc->wb.qword1.status_error_len = 0;
1455 
1456 		cleaned_count--;
1457 	} while (cleaned_count);
1458 
1459 	if (rx_ring->next_to_use != ntu)
1460 		i40e_release_rx_desc(rx_ring, ntu);
1461 
1462 	return false;
1463 
1464 no_buffers:
1465 	if (rx_ring->next_to_use != ntu)
1466 		i40e_release_rx_desc(rx_ring, ntu);
1467 
1468 	/* make sure to come back via polling to try again after
1469 	 * allocation failure
1470 	 */
1471 	return true;
1472 }
1473 
1474 /**
1475  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1476  * @vsi: the VSI we care about
1477  * @skb: skb currently being received and modified
1478  * @rx_desc: the receive descriptor
1479  **/
1480 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1481 				    struct sk_buff *skb,
1482 				    union i40e_rx_desc *rx_desc)
1483 {
1484 	struct i40e_rx_ptype_decoded decoded;
1485 	u32 rx_error, rx_status;
1486 	bool ipv4, ipv6;
1487 	u8 ptype;
1488 	u64 qword;
1489 
1490 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1491 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1492 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1493 		   I40E_RXD_QW1_ERROR_SHIFT;
1494 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1495 		    I40E_RXD_QW1_STATUS_SHIFT;
1496 	decoded = decode_rx_desc_ptype(ptype);
1497 
1498 	skb->ip_summed = CHECKSUM_NONE;
1499 
1500 	skb_checksum_none_assert(skb);
1501 
1502 	/* Rx csum enabled and ip headers found? */
1503 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1504 		return;
1505 
1506 	/* did the hardware decode the packet and checksum? */
1507 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1508 		return;
1509 
1510 	/* both known and outer_ip must be set for the below code to work */
1511 	if (!(decoded.known && decoded.outer_ip))
1512 		return;
1513 
1514 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1515 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1516 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1517 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1518 
1519 	if (ipv4 &&
1520 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1521 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1522 		goto checksum_fail;
1523 
1524 	/* likely incorrect csum if alternate IP extension headers found */
1525 	if (ipv6 &&
1526 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1527 		/* don't increment checksum err here, non-fatal err */
1528 		return;
1529 
1530 	/* there was some L4 error, count error and punt packet to the stack */
1531 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1532 		goto checksum_fail;
1533 
1534 	/* handle packets that were not able to be checksummed due
1535 	 * to arrival speed, in this case the stack can compute
1536 	 * the csum.
1537 	 */
1538 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1539 		return;
1540 
1541 	/* If there is an outer header present that might contain a checksum
1542 	 * we need to bump the checksum level by 1 to reflect the fact that
1543 	 * we are indicating we validated the inner checksum.
1544 	 */
1545 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1546 		skb->csum_level = 1;
1547 
1548 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1549 	switch (decoded.inner_prot) {
1550 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1551 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1552 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1553 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 		/* fall though */
1555 	default:
1556 		break;
1557 	}
1558 
1559 	return;
1560 
1561 checksum_fail:
1562 	vsi->back->hw_csum_rx_error++;
1563 }
1564 
1565 /**
1566  * i40e_ptype_to_htype - get a hash type
1567  * @ptype: the ptype value from the descriptor
1568  *
1569  * Returns a hash type to be used by skb_set_hash
1570  **/
1571 static inline int i40e_ptype_to_htype(u8 ptype)
1572 {
1573 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1574 
1575 	if (!decoded.known)
1576 		return PKT_HASH_TYPE_NONE;
1577 
1578 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1579 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1580 		return PKT_HASH_TYPE_L4;
1581 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1582 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1583 		return PKT_HASH_TYPE_L3;
1584 	else
1585 		return PKT_HASH_TYPE_L2;
1586 }
1587 
1588 /**
1589  * i40e_rx_hash - set the hash value in the skb
1590  * @ring: descriptor ring
1591  * @rx_desc: specific descriptor
1592  **/
1593 static inline void i40e_rx_hash(struct i40e_ring *ring,
1594 				union i40e_rx_desc *rx_desc,
1595 				struct sk_buff *skb,
1596 				u8 rx_ptype)
1597 {
1598 	u32 hash;
1599 	const __le64 rss_mask =
1600 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1601 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1602 
1603 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1604 		return;
1605 
1606 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1607 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1608 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1609 	}
1610 }
1611 
1612 /**
1613  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1614  * @rx_ring: rx descriptor ring packet is being transacted on
1615  * @rx_desc: pointer to the EOP Rx descriptor
1616  * @skb: pointer to current skb being populated
1617  * @rx_ptype: the packet type decoded by hardware
1618  *
1619  * This function checks the ring, descriptor, and packet information in
1620  * order to populate the hash, checksum, VLAN, protocol, and
1621  * other fields within the skb.
1622  **/
1623 static inline
1624 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1625 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1626 			     u8 rx_ptype)
1627 {
1628 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1629 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1630 			I40E_RXD_QW1_STATUS_SHIFT;
1631 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1632 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1633 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1634 
1635 	if (unlikely(tsynvalid))
1636 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1637 
1638 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1639 
1640 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1641 
1642 	skb_record_rx_queue(skb, rx_ring->queue_index);
1643 
1644 	/* modifies the skb - consumes the enet header */
1645 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1646 }
1647 
1648 /**
1649  * i40e_cleanup_headers - Correct empty headers
1650  * @rx_ring: rx descriptor ring packet is being transacted on
1651  * @skb: pointer to current skb being fixed
1652  * @rx_desc: pointer to the EOP Rx descriptor
1653  *
1654  * Also address the case where we are pulling data in on pages only
1655  * and as such no data is present in the skb header.
1656  *
1657  * In addition if skb is not at least 60 bytes we need to pad it so that
1658  * it is large enough to qualify as a valid Ethernet frame.
1659  *
1660  * Returns true if an error was encountered and skb was freed.
1661  **/
1662 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1663 				 union i40e_rx_desc *rx_desc)
1664 
1665 {
1666 	/* XDP packets use error pointer so abort at this point */
1667 	if (IS_ERR(skb))
1668 		return true;
1669 
1670 	/* ERR_MASK will only have valid bits if EOP set, and
1671 	 * what we are doing here is actually checking
1672 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1673 	 * the error field
1674 	 */
1675 	if (unlikely(i40e_test_staterr(rx_desc,
1676 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1677 		dev_kfree_skb_any(skb);
1678 		return true;
1679 	}
1680 
1681 	/* if eth_skb_pad returns an error the skb was freed */
1682 	if (eth_skb_pad(skb))
1683 		return true;
1684 
1685 	return false;
1686 }
1687 
1688 /**
1689  * i40e_page_is_reusable - check if any reuse is possible
1690  * @page: page struct to check
1691  *
1692  * A page is not reusable if it was allocated under low memory
1693  * conditions, or it's not in the same NUMA node as this CPU.
1694  */
1695 static inline bool i40e_page_is_reusable(struct page *page)
1696 {
1697 	return (page_to_nid(page) == numa_mem_id()) &&
1698 		!page_is_pfmemalloc(page);
1699 }
1700 
1701 /**
1702  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1703  * the adapter for another receive
1704  *
1705  * @rx_buffer: buffer containing the page
1706  *
1707  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1708  * an unused region in the page.
1709  *
1710  * For small pages, @truesize will be a constant value, half the size
1711  * of the memory at page.  We'll attempt to alternate between high and
1712  * low halves of the page, with one half ready for use by the hardware
1713  * and the other half being consumed by the stack.  We use the page
1714  * ref count to determine whether the stack has finished consuming the
1715  * portion of this page that was passed up with a previous packet.  If
1716  * the page ref count is >1, we'll assume the "other" half page is
1717  * still busy, and this page cannot be reused.
1718  *
1719  * For larger pages, @truesize will be the actual space used by the
1720  * received packet (adjusted upward to an even multiple of the cache
1721  * line size).  This will advance through the page by the amount
1722  * actually consumed by the received packets while there is still
1723  * space for a buffer.  Each region of larger pages will be used at
1724  * most once, after which the page will not be reused.
1725  *
1726  * In either case, if the page is reusable its refcount is increased.
1727  **/
1728 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1729 {
1730 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1731 	struct page *page = rx_buffer->page;
1732 
1733 	/* Is any reuse possible? */
1734 	if (unlikely(!i40e_page_is_reusable(page)))
1735 		return false;
1736 
1737 #if (PAGE_SIZE < 8192)
1738 	/* if we are only owner of page we can reuse it */
1739 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1740 		return false;
1741 #else
1742 #define I40E_LAST_OFFSET \
1743 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1744 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1745 		return false;
1746 #endif
1747 
1748 	/* If we have drained the page fragment pool we need to update
1749 	 * the pagecnt_bias and page count so that we fully restock the
1750 	 * number of references the driver holds.
1751 	 */
1752 	if (unlikely(!pagecnt_bias)) {
1753 		page_ref_add(page, USHRT_MAX);
1754 		rx_buffer->pagecnt_bias = USHRT_MAX;
1755 	}
1756 
1757 	return true;
1758 }
1759 
1760 /**
1761  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1762  * @rx_ring: rx descriptor ring to transact packets on
1763  * @rx_buffer: buffer containing page to add
1764  * @skb: sk_buff to place the data into
1765  * @size: packet length from rx_desc
1766  *
1767  * This function will add the data contained in rx_buffer->page to the skb.
1768  * It will just attach the page as a frag to the skb.
1769  *
1770  * The function will then update the page offset.
1771  **/
1772 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1773 			     struct i40e_rx_buffer *rx_buffer,
1774 			     struct sk_buff *skb,
1775 			     unsigned int size)
1776 {
1777 #if (PAGE_SIZE < 8192)
1778 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1779 #else
1780 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1781 #endif
1782 
1783 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1784 			rx_buffer->page_offset, size, truesize);
1785 
1786 	/* page is being used so we must update the page offset */
1787 #if (PAGE_SIZE < 8192)
1788 	rx_buffer->page_offset ^= truesize;
1789 #else
1790 	rx_buffer->page_offset += truesize;
1791 #endif
1792 }
1793 
1794 /**
1795  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1796  * @rx_ring: rx descriptor ring to transact packets on
1797  * @size: size of buffer to add to skb
1798  *
1799  * This function will pull an Rx buffer from the ring and synchronize it
1800  * for use by the CPU.
1801  */
1802 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1803 						 const unsigned int size)
1804 {
1805 	struct i40e_rx_buffer *rx_buffer;
1806 
1807 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1808 	prefetchw(rx_buffer->page);
1809 
1810 	/* we are reusing so sync this buffer for CPU use */
1811 	dma_sync_single_range_for_cpu(rx_ring->dev,
1812 				      rx_buffer->dma,
1813 				      rx_buffer->page_offset,
1814 				      size,
1815 				      DMA_FROM_DEVICE);
1816 
1817 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1818 	rx_buffer->pagecnt_bias--;
1819 
1820 	return rx_buffer;
1821 }
1822 
1823 /**
1824  * i40e_construct_skb - Allocate skb and populate it
1825  * @rx_ring: rx descriptor ring to transact packets on
1826  * @rx_buffer: rx buffer to pull data from
1827  * @xdp: xdp_buff pointing to the data
1828  *
1829  * This function allocates an skb.  It then populates it with the page
1830  * data from the current receive descriptor, taking care to set up the
1831  * skb correctly.
1832  */
1833 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1834 					  struct i40e_rx_buffer *rx_buffer,
1835 					  struct xdp_buff *xdp)
1836 {
1837 	unsigned int size = xdp->data_end - xdp->data;
1838 #if (PAGE_SIZE < 8192)
1839 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1840 #else
1841 	unsigned int truesize = SKB_DATA_ALIGN(size);
1842 #endif
1843 	unsigned int headlen;
1844 	struct sk_buff *skb;
1845 
1846 	/* prefetch first cache line of first page */
1847 	prefetch(xdp->data);
1848 #if L1_CACHE_BYTES < 128
1849 	prefetch(xdp->data + L1_CACHE_BYTES);
1850 #endif
1851 
1852 	/* allocate a skb to store the frags */
1853 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1854 			       I40E_RX_HDR_SIZE,
1855 			       GFP_ATOMIC | __GFP_NOWARN);
1856 	if (unlikely(!skb))
1857 		return NULL;
1858 
1859 	/* Determine available headroom for copy */
1860 	headlen = size;
1861 	if (headlen > I40E_RX_HDR_SIZE)
1862 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1863 
1864 	/* align pull length to size of long to optimize memcpy performance */
1865 	memcpy(__skb_put(skb, headlen), xdp->data,
1866 	       ALIGN(headlen, sizeof(long)));
1867 
1868 	/* update all of the pointers */
1869 	size -= headlen;
1870 	if (size) {
1871 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1872 				rx_buffer->page_offset + headlen,
1873 				size, truesize);
1874 
1875 		/* buffer is used by skb, update page_offset */
1876 #if (PAGE_SIZE < 8192)
1877 		rx_buffer->page_offset ^= truesize;
1878 #else
1879 		rx_buffer->page_offset += truesize;
1880 #endif
1881 	} else {
1882 		/* buffer is unused, reset bias back to rx_buffer */
1883 		rx_buffer->pagecnt_bias++;
1884 	}
1885 
1886 	return skb;
1887 }
1888 
1889 /**
1890  * i40e_build_skb - Build skb around an existing buffer
1891  * @rx_ring: Rx descriptor ring to transact packets on
1892  * @rx_buffer: Rx buffer to pull data from
1893  * @xdp: xdp_buff pointing to the data
1894  *
1895  * This function builds an skb around an existing Rx buffer, taking care
1896  * to set up the skb correctly and avoid any memcpy overhead.
1897  */
1898 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1899 				      struct i40e_rx_buffer *rx_buffer,
1900 				      struct xdp_buff *xdp)
1901 {
1902 	unsigned int size = xdp->data_end - xdp->data;
1903 #if (PAGE_SIZE < 8192)
1904 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1905 #else
1906 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1907 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1908 #endif
1909 	struct sk_buff *skb;
1910 
1911 	/* prefetch first cache line of first page */
1912 	prefetch(xdp->data);
1913 #if L1_CACHE_BYTES < 128
1914 	prefetch(xdp->data + L1_CACHE_BYTES);
1915 #endif
1916 	/* build an skb around the page buffer */
1917 	skb = build_skb(xdp->data_hard_start, truesize);
1918 	if (unlikely(!skb))
1919 		return NULL;
1920 
1921 	/* update pointers within the skb to store the data */
1922 	skb_reserve(skb, I40E_SKB_PAD);
1923 	__skb_put(skb, size);
1924 
1925 	/* buffer is used by skb, update page_offset */
1926 #if (PAGE_SIZE < 8192)
1927 	rx_buffer->page_offset ^= truesize;
1928 #else
1929 	rx_buffer->page_offset += truesize;
1930 #endif
1931 
1932 	return skb;
1933 }
1934 
1935 /**
1936  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1937  * @rx_ring: rx descriptor ring to transact packets on
1938  * @rx_buffer: rx buffer to pull data from
1939  *
1940  * This function will clean up the contents of the rx_buffer.  It will
1941  * either recycle the bufer or unmap it and free the associated resources.
1942  */
1943 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1944 			       struct i40e_rx_buffer *rx_buffer)
1945 {
1946 	if (i40e_can_reuse_rx_page(rx_buffer)) {
1947 		/* hand second half of page back to the ring */
1948 		i40e_reuse_rx_page(rx_ring, rx_buffer);
1949 		rx_ring->rx_stats.page_reuse_count++;
1950 	} else {
1951 		/* we are not reusing the buffer so unmap it */
1952 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1953 				     i40e_rx_pg_size(rx_ring),
1954 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1955 		__page_frag_cache_drain(rx_buffer->page,
1956 					rx_buffer->pagecnt_bias);
1957 	}
1958 
1959 	/* clear contents of buffer_info */
1960 	rx_buffer->page = NULL;
1961 }
1962 
1963 /**
1964  * i40e_is_non_eop - process handling of non-EOP buffers
1965  * @rx_ring: Rx ring being processed
1966  * @rx_desc: Rx descriptor for current buffer
1967  * @skb: Current socket buffer containing buffer in progress
1968  *
1969  * This function updates next to clean.  If the buffer is an EOP buffer
1970  * this function exits returning false, otherwise it will place the
1971  * sk_buff in the next buffer to be chained and return true indicating
1972  * that this is in fact a non-EOP buffer.
1973  **/
1974 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1975 			    union i40e_rx_desc *rx_desc,
1976 			    struct sk_buff *skb)
1977 {
1978 	u32 ntc = rx_ring->next_to_clean + 1;
1979 
1980 	/* fetch, update, and store next to clean */
1981 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1982 	rx_ring->next_to_clean = ntc;
1983 
1984 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1985 
1986 	/* if we are the last buffer then there is nothing else to do */
1987 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1988 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1989 		return false;
1990 
1991 	rx_ring->rx_stats.non_eop_descs++;
1992 
1993 	return true;
1994 }
1995 
1996 #define I40E_XDP_PASS 0
1997 #define I40E_XDP_CONSUMED 1
1998 #define I40E_XDP_TX 2
1999 
2000 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2001 			      struct i40e_ring *xdp_ring);
2002 
2003 /**
2004  * i40e_run_xdp - run an XDP program
2005  * @rx_ring: Rx ring being processed
2006  * @xdp: XDP buffer containing the frame
2007  **/
2008 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2009 				    struct xdp_buff *xdp)
2010 {
2011 	int result = I40E_XDP_PASS;
2012 	struct i40e_ring *xdp_ring;
2013 	struct bpf_prog *xdp_prog;
2014 	u32 act;
2015 
2016 	rcu_read_lock();
2017 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2018 
2019 	if (!xdp_prog)
2020 		goto xdp_out;
2021 
2022 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2023 	switch (act) {
2024 	case XDP_PASS:
2025 		break;
2026 	case XDP_TX:
2027 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2028 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2029 		break;
2030 	default:
2031 		bpf_warn_invalid_xdp_action(act);
2032 	case XDP_ABORTED:
2033 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2034 		/* fallthrough -- handle aborts by dropping packet */
2035 	case XDP_DROP:
2036 		result = I40E_XDP_CONSUMED;
2037 		break;
2038 	}
2039 xdp_out:
2040 	rcu_read_unlock();
2041 	return ERR_PTR(-result);
2042 }
2043 
2044 /**
2045  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2046  * @rx_ring: Rx ring
2047  * @rx_buffer: Rx buffer to adjust
2048  * @size: Size of adjustment
2049  **/
2050 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2051 				struct i40e_rx_buffer *rx_buffer,
2052 				unsigned int size)
2053 {
2054 #if (PAGE_SIZE < 8192)
2055 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2056 
2057 	rx_buffer->page_offset ^= truesize;
2058 #else
2059 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2060 
2061 	rx_buffer->page_offset += truesize;
2062 #endif
2063 }
2064 
2065 /**
2066  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2067  * @rx_ring: rx descriptor ring to transact packets on
2068  * @budget: Total limit on number of packets to process
2069  *
2070  * This function provides a "bounce buffer" approach to Rx interrupt
2071  * processing.  The advantage to this is that on systems that have
2072  * expensive overhead for IOMMU access this provides a means of avoiding
2073  * it by maintaining the mapping of the page to the system.
2074  *
2075  * Returns amount of work completed
2076  **/
2077 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2078 {
2079 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2080 	struct sk_buff *skb = rx_ring->skb;
2081 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2082 	bool failure = false, xdp_xmit = false;
2083 	struct xdp_buff xdp;
2084 
2085 	xdp.rxq = &rx_ring->xdp_rxq;
2086 
2087 	while (likely(total_rx_packets < (unsigned int)budget)) {
2088 		struct i40e_rx_buffer *rx_buffer;
2089 		union i40e_rx_desc *rx_desc;
2090 		unsigned int size;
2091 		u16 vlan_tag;
2092 		u8 rx_ptype;
2093 		u64 qword;
2094 
2095 		/* return some buffers to hardware, one at a time is too slow */
2096 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2097 			failure = failure ||
2098 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2099 			cleaned_count = 0;
2100 		}
2101 
2102 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2103 
2104 		/* status_error_len will always be zero for unused descriptors
2105 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2106 		 * which is always zero because packet split isn't used, if the
2107 		 * hardware wrote DD then the length will be non-zero
2108 		 */
2109 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2110 
2111 		/* This memory barrier is needed to keep us from reading
2112 		 * any other fields out of the rx_desc until we have
2113 		 * verified the descriptor has been written back.
2114 		 */
2115 		dma_rmb();
2116 
2117 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2118 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2119 			cleaned_count++;
2120 			continue;
2121 		}
2122 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2123 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2124 		if (!size)
2125 			break;
2126 
2127 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2128 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2129 
2130 		/* retrieve a buffer from the ring */
2131 		if (!skb) {
2132 			xdp.data = page_address(rx_buffer->page) +
2133 				   rx_buffer->page_offset;
2134 			xdp_set_data_meta_invalid(&xdp);
2135 			xdp.data_hard_start = xdp.data -
2136 					      i40e_rx_offset(rx_ring);
2137 			xdp.data_end = xdp.data + size;
2138 
2139 			skb = i40e_run_xdp(rx_ring, &xdp);
2140 		}
2141 
2142 		if (IS_ERR(skb)) {
2143 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2144 				xdp_xmit = true;
2145 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2146 			} else {
2147 				rx_buffer->pagecnt_bias++;
2148 			}
2149 			total_rx_bytes += size;
2150 			total_rx_packets++;
2151 		} else if (skb) {
2152 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2153 		} else if (ring_uses_build_skb(rx_ring)) {
2154 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2155 		} else {
2156 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2157 		}
2158 
2159 		/* exit if we failed to retrieve a buffer */
2160 		if (!skb) {
2161 			rx_ring->rx_stats.alloc_buff_failed++;
2162 			rx_buffer->pagecnt_bias++;
2163 			break;
2164 		}
2165 
2166 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2167 		cleaned_count++;
2168 
2169 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2170 			continue;
2171 
2172 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2173 			skb = NULL;
2174 			continue;
2175 		}
2176 
2177 		/* probably a little skewed due to removing CRC */
2178 		total_rx_bytes += skb->len;
2179 
2180 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2181 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2182 			   I40E_RXD_QW1_PTYPE_SHIFT;
2183 
2184 		/* populate checksum, VLAN, and protocol */
2185 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2186 
2187 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2188 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2189 
2190 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2191 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2192 		skb = NULL;
2193 
2194 		/* update budget accounting */
2195 		total_rx_packets++;
2196 	}
2197 
2198 	if (xdp_xmit) {
2199 		struct i40e_ring *xdp_ring;
2200 
2201 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2202 
2203 		/* Force memory writes to complete before letting h/w
2204 		 * know there are new descriptors to fetch.
2205 		 */
2206 		wmb();
2207 
2208 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2209 	}
2210 
2211 	rx_ring->skb = skb;
2212 
2213 	u64_stats_update_begin(&rx_ring->syncp);
2214 	rx_ring->stats.packets += total_rx_packets;
2215 	rx_ring->stats.bytes += total_rx_bytes;
2216 	u64_stats_update_end(&rx_ring->syncp);
2217 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2218 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2219 
2220 	/* guarantee a trip back through this routine if there was a failure */
2221 	return failure ? budget : (int)total_rx_packets;
2222 }
2223 
2224 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2225 {
2226 	u32 val;
2227 
2228 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2229 	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2230 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2231 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2232 
2233 	return val;
2234 }
2235 
2236 /* a small macro to shorten up some long lines */
2237 #define INTREG I40E_PFINT_DYN_CTLN
2238 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2239 {
2240 	return vsi->rx_rings[idx]->rx_itr_setting;
2241 }
2242 
2243 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2244 {
2245 	return vsi->tx_rings[idx]->tx_itr_setting;
2246 }
2247 
2248 /**
2249  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2250  * @vsi: the VSI we care about
2251  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2252  *
2253  **/
2254 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2255 					  struct i40e_q_vector *q_vector)
2256 {
2257 	struct i40e_hw *hw = &vsi->back->hw;
2258 	bool rx = false, tx = false;
2259 	u32 rxval, txval;
2260 	int vector;
2261 	int idx = q_vector->v_idx;
2262 	int rx_itr_setting, tx_itr_setting;
2263 
2264 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2265 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2266 		i40e_irq_dynamic_enable_icr0(vsi->back);
2267 		return;
2268 	}
2269 
2270 	vector = (q_vector->v_idx + vsi->base_vector);
2271 
2272 	/* avoid dynamic calculation if in countdown mode OR if
2273 	 * all dynamic is disabled
2274 	 */
2275 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2276 
2277 	rx_itr_setting = get_rx_itr(vsi, idx);
2278 	tx_itr_setting = get_tx_itr(vsi, idx);
2279 
2280 	if (q_vector->itr_countdown > 0 ||
2281 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2282 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2283 		goto enable_int;
2284 	}
2285 
2286 	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
2287 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2288 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2289 	}
2290 
2291 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2292 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2293 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2294 	}
2295 
2296 	if (rx || tx) {
2297 		/* get the higher of the two ITR adjustments and
2298 		 * use the same value for both ITR registers
2299 		 * when in adaptive mode (Rx and/or Tx)
2300 		 */
2301 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2302 
2303 		q_vector->tx.itr = q_vector->rx.itr = itr;
2304 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2305 		tx = true;
2306 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2307 		rx = true;
2308 	}
2309 
2310 	/* only need to enable the interrupt once, but need
2311 	 * to possibly update both ITR values
2312 	 */
2313 	if (rx) {
2314 		/* set the INTENA_MSK_MASK so that this first write
2315 		 * won't actually enable the interrupt, instead just
2316 		 * updating the ITR (it's bit 31 PF and VF)
2317 		 */
2318 		rxval |= BIT(31);
2319 		/* don't check _DOWN because interrupt isn't being enabled */
2320 		wr32(hw, INTREG(vector - 1), rxval);
2321 	}
2322 
2323 enable_int:
2324 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2325 		wr32(hw, INTREG(vector - 1), txval);
2326 
2327 	if (q_vector->itr_countdown)
2328 		q_vector->itr_countdown--;
2329 	else
2330 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2331 }
2332 
2333 /**
2334  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2335  * @napi: napi struct with our devices info in it
2336  * @budget: amount of work driver is allowed to do this pass, in packets
2337  *
2338  * This function will clean all queues associated with a q_vector.
2339  *
2340  * Returns the amount of work done
2341  **/
2342 int i40e_napi_poll(struct napi_struct *napi, int budget)
2343 {
2344 	struct i40e_q_vector *q_vector =
2345 			       container_of(napi, struct i40e_q_vector, napi);
2346 	struct i40e_vsi *vsi = q_vector->vsi;
2347 	struct i40e_ring *ring;
2348 	bool clean_complete = true;
2349 	bool arm_wb = false;
2350 	int budget_per_ring;
2351 	int work_done = 0;
2352 
2353 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2354 		napi_complete(napi);
2355 		return 0;
2356 	}
2357 
2358 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2359 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2360 	 */
2361 	i40e_for_each_ring(ring, q_vector->tx) {
2362 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2363 			clean_complete = false;
2364 			continue;
2365 		}
2366 		arm_wb |= ring->arm_wb;
2367 		ring->arm_wb = false;
2368 	}
2369 
2370 	/* Handle case where we are called by netpoll with a budget of 0 */
2371 	if (budget <= 0)
2372 		goto tx_only;
2373 
2374 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2375 	 * allow the budget to go below 1 because that would exit polling early.
2376 	 */
2377 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2378 
2379 	i40e_for_each_ring(ring, q_vector->rx) {
2380 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2381 
2382 		work_done += cleaned;
2383 		/* if we clean as many as budgeted, we must not be done */
2384 		if (cleaned >= budget_per_ring)
2385 			clean_complete = false;
2386 	}
2387 
2388 	/* If work not completed, return budget and polling will return */
2389 	if (!clean_complete) {
2390 		int cpu_id = smp_processor_id();
2391 
2392 		/* It is possible that the interrupt affinity has changed but,
2393 		 * if the cpu is pegged at 100%, polling will never exit while
2394 		 * traffic continues and the interrupt will be stuck on this
2395 		 * cpu.  We check to make sure affinity is correct before we
2396 		 * continue to poll, otherwise we must stop polling so the
2397 		 * interrupt can move to the correct cpu.
2398 		 */
2399 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2400 			/* Tell napi that we are done polling */
2401 			napi_complete_done(napi, work_done);
2402 
2403 			/* Force an interrupt */
2404 			i40e_force_wb(vsi, q_vector);
2405 
2406 			/* Return budget-1 so that polling stops */
2407 			return budget - 1;
2408 		}
2409 tx_only:
2410 		if (arm_wb) {
2411 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2412 			i40e_enable_wb_on_itr(vsi, q_vector);
2413 		}
2414 		return budget;
2415 	}
2416 
2417 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2418 		q_vector->arm_wb_state = false;
2419 
2420 	/* Work is done so exit the polling mode and re-enable the interrupt */
2421 	napi_complete_done(napi, work_done);
2422 
2423 	i40e_update_enable_itr(vsi, q_vector);
2424 
2425 	return min(work_done, budget - 1);
2426 }
2427 
2428 /**
2429  * i40e_atr - Add a Flow Director ATR filter
2430  * @tx_ring:  ring to add programming descriptor to
2431  * @skb:      send buffer
2432  * @tx_flags: send tx flags
2433  **/
2434 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2435 		     u32 tx_flags)
2436 {
2437 	struct i40e_filter_program_desc *fdir_desc;
2438 	struct i40e_pf *pf = tx_ring->vsi->back;
2439 	union {
2440 		unsigned char *network;
2441 		struct iphdr *ipv4;
2442 		struct ipv6hdr *ipv6;
2443 	} hdr;
2444 	struct tcphdr *th;
2445 	unsigned int hlen;
2446 	u32 flex_ptype, dtype_cmd;
2447 	int l4_proto;
2448 	u16 i;
2449 
2450 	/* make sure ATR is enabled */
2451 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2452 		return;
2453 
2454 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2455 		return;
2456 
2457 	/* if sampling is disabled do nothing */
2458 	if (!tx_ring->atr_sample_rate)
2459 		return;
2460 
2461 	/* Currently only IPv4/IPv6 with TCP is supported */
2462 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2463 		return;
2464 
2465 	/* snag network header to get L4 type and address */
2466 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2467 		      skb_inner_network_header(skb) : skb_network_header(skb);
2468 
2469 	/* Note: tx_flags gets modified to reflect inner protocols in
2470 	 * tx_enable_csum function if encap is enabled.
2471 	 */
2472 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2473 		/* access ihl as u8 to avoid unaligned access on ia64 */
2474 		hlen = (hdr.network[0] & 0x0F) << 2;
2475 		l4_proto = hdr.ipv4->protocol;
2476 	} else {
2477 		/* find the start of the innermost ipv6 header */
2478 		unsigned int inner_hlen = hdr.network - skb->data;
2479 		unsigned int h_offset = inner_hlen;
2480 
2481 		/* this function updates h_offset to the end of the header */
2482 		l4_proto =
2483 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2484 		/* hlen will contain our best estimate of the tcp header */
2485 		hlen = h_offset - inner_hlen;
2486 	}
2487 
2488 	if (l4_proto != IPPROTO_TCP)
2489 		return;
2490 
2491 	th = (struct tcphdr *)(hdr.network + hlen);
2492 
2493 	/* Due to lack of space, no more new filters can be programmed */
2494 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2495 		return;
2496 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2497 		/* HW ATR eviction will take care of removing filters on FIN
2498 		 * and RST packets.
2499 		 */
2500 		if (th->fin || th->rst)
2501 			return;
2502 	}
2503 
2504 	tx_ring->atr_count++;
2505 
2506 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2507 	if (!th->fin &&
2508 	    !th->syn &&
2509 	    !th->rst &&
2510 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2511 		return;
2512 
2513 	tx_ring->atr_count = 0;
2514 
2515 	/* grab the next descriptor */
2516 	i = tx_ring->next_to_use;
2517 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2518 
2519 	i++;
2520 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2521 
2522 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2523 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2524 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2525 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2526 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2527 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2528 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2529 
2530 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2531 
2532 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2533 
2534 	dtype_cmd |= (th->fin || th->rst) ?
2535 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2536 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2537 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2538 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2539 
2540 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2541 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2542 
2543 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2544 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2545 
2546 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2547 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2548 		dtype_cmd |=
2549 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2550 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2551 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2552 	else
2553 		dtype_cmd |=
2554 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2555 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2556 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2557 
2558 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2559 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2560 
2561 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2562 	fdir_desc->rsvd = cpu_to_le32(0);
2563 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2564 	fdir_desc->fd_id = cpu_to_le32(0);
2565 }
2566 
2567 /**
2568  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2569  * @skb:     send buffer
2570  * @tx_ring: ring to send buffer on
2571  * @flags:   the tx flags to be set
2572  *
2573  * Checks the skb and set up correspondingly several generic transmit flags
2574  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2575  *
2576  * Returns error code indicate the frame should be dropped upon error and the
2577  * otherwise  returns 0 to indicate the flags has been set properly.
2578  **/
2579 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2580 					     struct i40e_ring *tx_ring,
2581 					     u32 *flags)
2582 {
2583 	__be16 protocol = skb->protocol;
2584 	u32  tx_flags = 0;
2585 
2586 	if (protocol == htons(ETH_P_8021Q) &&
2587 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2588 		/* When HW VLAN acceleration is turned off by the user the
2589 		 * stack sets the protocol to 8021q so that the driver
2590 		 * can take any steps required to support the SW only
2591 		 * VLAN handling.  In our case the driver doesn't need
2592 		 * to take any further steps so just set the protocol
2593 		 * to the encapsulated ethertype.
2594 		 */
2595 		skb->protocol = vlan_get_protocol(skb);
2596 		goto out;
2597 	}
2598 
2599 	/* if we have a HW VLAN tag being added, default to the HW one */
2600 	if (skb_vlan_tag_present(skb)) {
2601 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2602 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2603 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2604 	} else if (protocol == htons(ETH_P_8021Q)) {
2605 		struct vlan_hdr *vhdr, _vhdr;
2606 
2607 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2608 		if (!vhdr)
2609 			return -EINVAL;
2610 
2611 		protocol = vhdr->h_vlan_encapsulated_proto;
2612 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2613 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2614 	}
2615 
2616 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2617 		goto out;
2618 
2619 	/* Insert 802.1p priority into VLAN header */
2620 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2621 	    (skb->priority != TC_PRIO_CONTROL)) {
2622 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2623 		tx_flags |= (skb->priority & 0x7) <<
2624 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2625 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2626 			struct vlan_ethhdr *vhdr;
2627 			int rc;
2628 
2629 			rc = skb_cow_head(skb, 0);
2630 			if (rc < 0)
2631 				return rc;
2632 			vhdr = (struct vlan_ethhdr *)skb->data;
2633 			vhdr->h_vlan_TCI = htons(tx_flags >>
2634 						 I40E_TX_FLAGS_VLAN_SHIFT);
2635 		} else {
2636 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2637 		}
2638 	}
2639 
2640 out:
2641 	*flags = tx_flags;
2642 	return 0;
2643 }
2644 
2645 /**
2646  * i40e_tso - set up the tso context descriptor
2647  * @first:    pointer to first Tx buffer for xmit
2648  * @hdr_len:  ptr to the size of the packet header
2649  * @cd_type_cmd_tso_mss: Quad Word 1
2650  *
2651  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2652  **/
2653 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2654 		    u64 *cd_type_cmd_tso_mss)
2655 {
2656 	struct sk_buff *skb = first->skb;
2657 	u64 cd_cmd, cd_tso_len, cd_mss;
2658 	union {
2659 		struct iphdr *v4;
2660 		struct ipv6hdr *v6;
2661 		unsigned char *hdr;
2662 	} ip;
2663 	union {
2664 		struct tcphdr *tcp;
2665 		struct udphdr *udp;
2666 		unsigned char *hdr;
2667 	} l4;
2668 	u32 paylen, l4_offset;
2669 	u16 gso_segs, gso_size;
2670 	int err;
2671 
2672 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2673 		return 0;
2674 
2675 	if (!skb_is_gso(skb))
2676 		return 0;
2677 
2678 	err = skb_cow_head(skb, 0);
2679 	if (err < 0)
2680 		return err;
2681 
2682 	ip.hdr = skb_network_header(skb);
2683 	l4.hdr = skb_transport_header(skb);
2684 
2685 	/* initialize outer IP header fields */
2686 	if (ip.v4->version == 4) {
2687 		ip.v4->tot_len = 0;
2688 		ip.v4->check = 0;
2689 	} else {
2690 		ip.v6->payload_len = 0;
2691 	}
2692 
2693 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2694 					 SKB_GSO_GRE_CSUM |
2695 					 SKB_GSO_IPXIP4 |
2696 					 SKB_GSO_IPXIP6 |
2697 					 SKB_GSO_UDP_TUNNEL |
2698 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2699 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2700 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2701 			l4.udp->len = 0;
2702 
2703 			/* determine offset of outer transport header */
2704 			l4_offset = l4.hdr - skb->data;
2705 
2706 			/* remove payload length from outer checksum */
2707 			paylen = skb->len - l4_offset;
2708 			csum_replace_by_diff(&l4.udp->check,
2709 					     (__force __wsum)htonl(paylen));
2710 		}
2711 
2712 		/* reset pointers to inner headers */
2713 		ip.hdr = skb_inner_network_header(skb);
2714 		l4.hdr = skb_inner_transport_header(skb);
2715 
2716 		/* initialize inner IP header fields */
2717 		if (ip.v4->version == 4) {
2718 			ip.v4->tot_len = 0;
2719 			ip.v4->check = 0;
2720 		} else {
2721 			ip.v6->payload_len = 0;
2722 		}
2723 	}
2724 
2725 	/* determine offset of inner transport header */
2726 	l4_offset = l4.hdr - skb->data;
2727 
2728 	/* remove payload length from inner checksum */
2729 	paylen = skb->len - l4_offset;
2730 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2731 
2732 	/* compute length of segmentation header */
2733 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2734 
2735 	/* pull values out of skb_shinfo */
2736 	gso_size = skb_shinfo(skb)->gso_size;
2737 	gso_segs = skb_shinfo(skb)->gso_segs;
2738 
2739 	/* update GSO size and bytecount with header size */
2740 	first->gso_segs = gso_segs;
2741 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2742 
2743 	/* find the field values */
2744 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2745 	cd_tso_len = skb->len - *hdr_len;
2746 	cd_mss = gso_size;
2747 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2748 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2749 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2750 	return 1;
2751 }
2752 
2753 /**
2754  * i40e_tsyn - set up the tsyn context descriptor
2755  * @tx_ring:  ptr to the ring to send
2756  * @skb:      ptr to the skb we're sending
2757  * @tx_flags: the collected send information
2758  * @cd_type_cmd_tso_mss: Quad Word 1
2759  *
2760  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2761  **/
2762 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2763 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2764 {
2765 	struct i40e_pf *pf;
2766 
2767 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2768 		return 0;
2769 
2770 	/* Tx timestamps cannot be sampled when doing TSO */
2771 	if (tx_flags & I40E_TX_FLAGS_TSO)
2772 		return 0;
2773 
2774 	/* only timestamp the outbound packet if the user has requested it and
2775 	 * we are not already transmitting a packet to be timestamped
2776 	 */
2777 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2778 	if (!(pf->flags & I40E_FLAG_PTP))
2779 		return 0;
2780 
2781 	if (pf->ptp_tx &&
2782 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2783 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2784 		pf->ptp_tx_start = jiffies;
2785 		pf->ptp_tx_skb = skb_get(skb);
2786 	} else {
2787 		pf->tx_hwtstamp_skipped++;
2788 		return 0;
2789 	}
2790 
2791 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2792 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2793 
2794 	return 1;
2795 }
2796 
2797 /**
2798  * i40e_tx_enable_csum - Enable Tx checksum offloads
2799  * @skb: send buffer
2800  * @tx_flags: pointer to Tx flags currently set
2801  * @td_cmd: Tx descriptor command bits to set
2802  * @td_offset: Tx descriptor header offsets to set
2803  * @tx_ring: Tx descriptor ring
2804  * @cd_tunneling: ptr to context desc bits
2805  **/
2806 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2807 			       u32 *td_cmd, u32 *td_offset,
2808 			       struct i40e_ring *tx_ring,
2809 			       u32 *cd_tunneling)
2810 {
2811 	union {
2812 		struct iphdr *v4;
2813 		struct ipv6hdr *v6;
2814 		unsigned char *hdr;
2815 	} ip;
2816 	union {
2817 		struct tcphdr *tcp;
2818 		struct udphdr *udp;
2819 		unsigned char *hdr;
2820 	} l4;
2821 	unsigned char *exthdr;
2822 	u32 offset, cmd = 0;
2823 	__be16 frag_off;
2824 	u8 l4_proto = 0;
2825 
2826 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2827 		return 0;
2828 
2829 	ip.hdr = skb_network_header(skb);
2830 	l4.hdr = skb_transport_header(skb);
2831 
2832 	/* compute outer L2 header size */
2833 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2834 
2835 	if (skb->encapsulation) {
2836 		u32 tunnel = 0;
2837 		/* define outer network header type */
2838 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2839 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2840 				  I40E_TX_CTX_EXT_IP_IPV4 :
2841 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2842 
2843 			l4_proto = ip.v4->protocol;
2844 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2845 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2846 
2847 			exthdr = ip.hdr + sizeof(*ip.v6);
2848 			l4_proto = ip.v6->nexthdr;
2849 			if (l4.hdr != exthdr)
2850 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2851 						 &l4_proto, &frag_off);
2852 		}
2853 
2854 		/* define outer transport */
2855 		switch (l4_proto) {
2856 		case IPPROTO_UDP:
2857 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2858 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2859 			break;
2860 		case IPPROTO_GRE:
2861 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2862 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2863 			break;
2864 		case IPPROTO_IPIP:
2865 		case IPPROTO_IPV6:
2866 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2867 			l4.hdr = skb_inner_network_header(skb);
2868 			break;
2869 		default:
2870 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2871 				return -1;
2872 
2873 			skb_checksum_help(skb);
2874 			return 0;
2875 		}
2876 
2877 		/* compute outer L3 header size */
2878 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2879 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2880 
2881 		/* switch IP header pointer from outer to inner header */
2882 		ip.hdr = skb_inner_network_header(skb);
2883 
2884 		/* compute tunnel header size */
2885 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2886 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2887 
2888 		/* indicate if we need to offload outer UDP header */
2889 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2890 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2891 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2892 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2893 
2894 		/* record tunnel offload values */
2895 		*cd_tunneling |= tunnel;
2896 
2897 		/* switch L4 header pointer from outer to inner */
2898 		l4.hdr = skb_inner_transport_header(skb);
2899 		l4_proto = 0;
2900 
2901 		/* reset type as we transition from outer to inner headers */
2902 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2903 		if (ip.v4->version == 4)
2904 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2905 		if (ip.v6->version == 6)
2906 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2907 	}
2908 
2909 	/* Enable IP checksum offloads */
2910 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2911 		l4_proto = ip.v4->protocol;
2912 		/* the stack computes the IP header already, the only time we
2913 		 * need the hardware to recompute it is in the case of TSO.
2914 		 */
2915 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2916 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2917 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2918 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2919 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2920 
2921 		exthdr = ip.hdr + sizeof(*ip.v6);
2922 		l4_proto = ip.v6->nexthdr;
2923 		if (l4.hdr != exthdr)
2924 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2925 					 &l4_proto, &frag_off);
2926 	}
2927 
2928 	/* compute inner L3 header size */
2929 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2930 
2931 	/* Enable L4 checksum offloads */
2932 	switch (l4_proto) {
2933 	case IPPROTO_TCP:
2934 		/* enable checksum offloads */
2935 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2936 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2937 		break;
2938 	case IPPROTO_SCTP:
2939 		/* enable SCTP checksum offload */
2940 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2941 		offset |= (sizeof(struct sctphdr) >> 2) <<
2942 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2943 		break;
2944 	case IPPROTO_UDP:
2945 		/* enable UDP checksum offload */
2946 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2947 		offset |= (sizeof(struct udphdr) >> 2) <<
2948 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2949 		break;
2950 	default:
2951 		if (*tx_flags & I40E_TX_FLAGS_TSO)
2952 			return -1;
2953 		skb_checksum_help(skb);
2954 		return 0;
2955 	}
2956 
2957 	*td_cmd |= cmd;
2958 	*td_offset |= offset;
2959 
2960 	return 1;
2961 }
2962 
2963 /**
2964  * i40e_create_tx_ctx Build the Tx context descriptor
2965  * @tx_ring:  ring to create the descriptor on
2966  * @cd_type_cmd_tso_mss: Quad Word 1
2967  * @cd_tunneling: Quad Word 0 - bits 0-31
2968  * @cd_l2tag2: Quad Word 0 - bits 32-63
2969  **/
2970 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2971 			       const u64 cd_type_cmd_tso_mss,
2972 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2973 {
2974 	struct i40e_tx_context_desc *context_desc;
2975 	int i = tx_ring->next_to_use;
2976 
2977 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2978 	    !cd_tunneling && !cd_l2tag2)
2979 		return;
2980 
2981 	/* grab the next descriptor */
2982 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2983 
2984 	i++;
2985 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2986 
2987 	/* cpu_to_le32 and assign to struct fields */
2988 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2989 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2990 	context_desc->rsvd = cpu_to_le16(0);
2991 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2992 }
2993 
2994 /**
2995  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2996  * @tx_ring: the ring to be checked
2997  * @size:    the size buffer we want to assure is available
2998  *
2999  * Returns -EBUSY if a stop is needed, else 0
3000  **/
3001 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3002 {
3003 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3004 	/* Memory barrier before checking head and tail */
3005 	smp_mb();
3006 
3007 	/* Check again in a case another CPU has just made room available. */
3008 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3009 		return -EBUSY;
3010 
3011 	/* A reprieve! - use start_queue because it doesn't call schedule */
3012 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3013 	++tx_ring->tx_stats.restart_queue;
3014 	return 0;
3015 }
3016 
3017 /**
3018  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3019  * @skb:      send buffer
3020  *
3021  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3022  * and so we need to figure out the cases where we need to linearize the skb.
3023  *
3024  * For TSO we need to count the TSO header and segment payload separately.
3025  * As such we need to check cases where we have 7 fragments or more as we
3026  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3027  * the segment payload in the first descriptor, and another 7 for the
3028  * fragments.
3029  **/
3030 bool __i40e_chk_linearize(struct sk_buff *skb)
3031 {
3032 	const struct skb_frag_struct *frag, *stale;
3033 	int nr_frags, sum;
3034 
3035 	/* no need to check if number of frags is less than 7 */
3036 	nr_frags = skb_shinfo(skb)->nr_frags;
3037 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3038 		return false;
3039 
3040 	/* We need to walk through the list and validate that each group
3041 	 * of 6 fragments totals at least gso_size.
3042 	 */
3043 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3044 	frag = &skb_shinfo(skb)->frags[0];
3045 
3046 	/* Initialize size to the negative value of gso_size minus 1.  We
3047 	 * use this as the worst case scenerio in which the frag ahead
3048 	 * of us only provides one byte which is why we are limited to 6
3049 	 * descriptors for a single transmit as the header and previous
3050 	 * fragment are already consuming 2 descriptors.
3051 	 */
3052 	sum = 1 - skb_shinfo(skb)->gso_size;
3053 
3054 	/* Add size of frags 0 through 4 to create our initial sum */
3055 	sum += skb_frag_size(frag++);
3056 	sum += skb_frag_size(frag++);
3057 	sum += skb_frag_size(frag++);
3058 	sum += skb_frag_size(frag++);
3059 	sum += skb_frag_size(frag++);
3060 
3061 	/* Walk through fragments adding latest fragment, testing it, and
3062 	 * then removing stale fragments from the sum.
3063 	 */
3064 	stale = &skb_shinfo(skb)->frags[0];
3065 	for (;;) {
3066 		sum += skb_frag_size(frag++);
3067 
3068 		/* if sum is negative we failed to make sufficient progress */
3069 		if (sum < 0)
3070 			return true;
3071 
3072 		if (!nr_frags--)
3073 			break;
3074 
3075 		sum -= skb_frag_size(stale++);
3076 	}
3077 
3078 	return false;
3079 }
3080 
3081 /**
3082  * i40e_tx_map - Build the Tx descriptor
3083  * @tx_ring:  ring to send buffer on
3084  * @skb:      send buffer
3085  * @first:    first buffer info buffer to use
3086  * @tx_flags: collected send information
3087  * @hdr_len:  size of the packet header
3088  * @td_cmd:   the command field in the descriptor
3089  * @td_offset: offset for checksum or crc
3090  *
3091  * Returns 0 on success, -1 on failure to DMA
3092  **/
3093 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3094 			      struct i40e_tx_buffer *first, u32 tx_flags,
3095 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3096 {
3097 	unsigned int data_len = skb->data_len;
3098 	unsigned int size = skb_headlen(skb);
3099 	struct skb_frag_struct *frag;
3100 	struct i40e_tx_buffer *tx_bi;
3101 	struct i40e_tx_desc *tx_desc;
3102 	u16 i = tx_ring->next_to_use;
3103 	u32 td_tag = 0;
3104 	dma_addr_t dma;
3105 	u16 desc_count = 1;
3106 
3107 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3108 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3109 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3110 			 I40E_TX_FLAGS_VLAN_SHIFT;
3111 	}
3112 
3113 	first->tx_flags = tx_flags;
3114 
3115 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3116 
3117 	tx_desc = I40E_TX_DESC(tx_ring, i);
3118 	tx_bi = first;
3119 
3120 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3121 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3122 
3123 		if (dma_mapping_error(tx_ring->dev, dma))
3124 			goto dma_error;
3125 
3126 		/* record length, and DMA address */
3127 		dma_unmap_len_set(tx_bi, len, size);
3128 		dma_unmap_addr_set(tx_bi, dma, dma);
3129 
3130 		/* align size to end of page */
3131 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3132 		tx_desc->buffer_addr = cpu_to_le64(dma);
3133 
3134 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3135 			tx_desc->cmd_type_offset_bsz =
3136 				build_ctob(td_cmd, td_offset,
3137 					   max_data, td_tag);
3138 
3139 			tx_desc++;
3140 			i++;
3141 			desc_count++;
3142 
3143 			if (i == tx_ring->count) {
3144 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3145 				i = 0;
3146 			}
3147 
3148 			dma += max_data;
3149 			size -= max_data;
3150 
3151 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3152 			tx_desc->buffer_addr = cpu_to_le64(dma);
3153 		}
3154 
3155 		if (likely(!data_len))
3156 			break;
3157 
3158 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3159 							  size, td_tag);
3160 
3161 		tx_desc++;
3162 		i++;
3163 		desc_count++;
3164 
3165 		if (i == tx_ring->count) {
3166 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3167 			i = 0;
3168 		}
3169 
3170 		size = skb_frag_size(frag);
3171 		data_len -= size;
3172 
3173 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3174 				       DMA_TO_DEVICE);
3175 
3176 		tx_bi = &tx_ring->tx_bi[i];
3177 	}
3178 
3179 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3180 
3181 	i++;
3182 	if (i == tx_ring->count)
3183 		i = 0;
3184 
3185 	tx_ring->next_to_use = i;
3186 
3187 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3188 
3189 	/* write last descriptor with EOP bit */
3190 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3191 
3192 	/* We OR these values together to check both against 4 (WB_STRIDE)
3193 	 * below. This is safe since we don't re-use desc_count afterwards.
3194 	 */
3195 	desc_count |= ++tx_ring->packet_stride;
3196 
3197 	if (desc_count >= WB_STRIDE) {
3198 		/* write last descriptor with RS bit set */
3199 		td_cmd |= I40E_TX_DESC_CMD_RS;
3200 		tx_ring->packet_stride = 0;
3201 	}
3202 
3203 	tx_desc->cmd_type_offset_bsz =
3204 			build_ctob(td_cmd, td_offset, size, td_tag);
3205 
3206 	/* Force memory writes to complete before letting h/w know there
3207 	 * are new descriptors to fetch.
3208 	 *
3209 	 * We also use this memory barrier to make certain all of the
3210 	 * status bits have been updated before next_to_watch is written.
3211 	 */
3212 	wmb();
3213 
3214 	/* set next_to_watch value indicating a packet is present */
3215 	first->next_to_watch = tx_desc;
3216 
3217 	/* notify HW of packet */
3218 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3219 		writel(i, tx_ring->tail);
3220 
3221 		/* we need this if more than one processor can write to our tail
3222 		 * at a time, it synchronizes IO on IA64/Altix systems
3223 		 */
3224 		mmiowb();
3225 	}
3226 
3227 	return 0;
3228 
3229 dma_error:
3230 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3231 
3232 	/* clear dma mappings for failed tx_bi map */
3233 	for (;;) {
3234 		tx_bi = &tx_ring->tx_bi[i];
3235 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3236 		if (tx_bi == first)
3237 			break;
3238 		if (i == 0)
3239 			i = tx_ring->count;
3240 		i--;
3241 	}
3242 
3243 	tx_ring->next_to_use = i;
3244 
3245 	return -1;
3246 }
3247 
3248 /**
3249  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3250  * @xdp: data to transmit
3251  * @xdp_ring: XDP Tx ring
3252  **/
3253 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3254 			      struct i40e_ring *xdp_ring)
3255 {
3256 	u32 size = xdp->data_end - xdp->data;
3257 	u16 i = xdp_ring->next_to_use;
3258 	struct i40e_tx_buffer *tx_bi;
3259 	struct i40e_tx_desc *tx_desc;
3260 	dma_addr_t dma;
3261 
3262 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3263 		xdp_ring->tx_stats.tx_busy++;
3264 		return I40E_XDP_CONSUMED;
3265 	}
3266 
3267 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3268 	if (dma_mapping_error(xdp_ring->dev, dma))
3269 		return I40E_XDP_CONSUMED;
3270 
3271 	tx_bi = &xdp_ring->tx_bi[i];
3272 	tx_bi->bytecount = size;
3273 	tx_bi->gso_segs = 1;
3274 	tx_bi->raw_buf = xdp->data;
3275 
3276 	/* record length, and DMA address */
3277 	dma_unmap_len_set(tx_bi, len, size);
3278 	dma_unmap_addr_set(tx_bi, dma, dma);
3279 
3280 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3281 	tx_desc->buffer_addr = cpu_to_le64(dma);
3282 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3283 						  | I40E_TXD_CMD,
3284 						  0, size, 0);
3285 
3286 	/* Make certain all of the status bits have been updated
3287 	 * before next_to_watch is written.
3288 	 */
3289 	smp_wmb();
3290 
3291 	i++;
3292 	if (i == xdp_ring->count)
3293 		i = 0;
3294 
3295 	tx_bi->next_to_watch = tx_desc;
3296 	xdp_ring->next_to_use = i;
3297 
3298 	return I40E_XDP_TX;
3299 }
3300 
3301 /**
3302  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3303  * @skb:     send buffer
3304  * @tx_ring: ring to send buffer on
3305  *
3306  * Returns NETDEV_TX_OK if sent, else an error code
3307  **/
3308 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3309 					struct i40e_ring *tx_ring)
3310 {
3311 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3312 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3313 	struct i40e_tx_buffer *first;
3314 	u32 td_offset = 0;
3315 	u32 tx_flags = 0;
3316 	__be16 protocol;
3317 	u32 td_cmd = 0;
3318 	u8 hdr_len = 0;
3319 	int tso, count;
3320 	int tsyn;
3321 
3322 	/* prefetch the data, we'll need it later */
3323 	prefetch(skb->data);
3324 
3325 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3326 
3327 	count = i40e_xmit_descriptor_count(skb);
3328 	if (i40e_chk_linearize(skb, count)) {
3329 		if (__skb_linearize(skb)) {
3330 			dev_kfree_skb_any(skb);
3331 			return NETDEV_TX_OK;
3332 		}
3333 		count = i40e_txd_use_count(skb->len);
3334 		tx_ring->tx_stats.tx_linearize++;
3335 	}
3336 
3337 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3338 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3339 	 *       + 4 desc gap to avoid the cache line where head is,
3340 	 *       + 1 desc for context descriptor,
3341 	 * otherwise try next time
3342 	 */
3343 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3344 		tx_ring->tx_stats.tx_busy++;
3345 		return NETDEV_TX_BUSY;
3346 	}
3347 
3348 	/* record the location of the first descriptor for this packet */
3349 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3350 	first->skb = skb;
3351 	first->bytecount = skb->len;
3352 	first->gso_segs = 1;
3353 
3354 	/* prepare the xmit flags */
3355 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3356 		goto out_drop;
3357 
3358 	/* obtain protocol of skb */
3359 	protocol = vlan_get_protocol(skb);
3360 
3361 	/* setup IPv4/IPv6 offloads */
3362 	if (protocol == htons(ETH_P_IP))
3363 		tx_flags |= I40E_TX_FLAGS_IPV4;
3364 	else if (protocol == htons(ETH_P_IPV6))
3365 		tx_flags |= I40E_TX_FLAGS_IPV6;
3366 
3367 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3368 
3369 	if (tso < 0)
3370 		goto out_drop;
3371 	else if (tso)
3372 		tx_flags |= I40E_TX_FLAGS_TSO;
3373 
3374 	/* Always offload the checksum, since it's in the data descriptor */
3375 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3376 				  tx_ring, &cd_tunneling);
3377 	if (tso < 0)
3378 		goto out_drop;
3379 
3380 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3381 
3382 	if (tsyn)
3383 		tx_flags |= I40E_TX_FLAGS_TSYN;
3384 
3385 	skb_tx_timestamp(skb);
3386 
3387 	/* always enable CRC insertion offload */
3388 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3389 
3390 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3391 			   cd_tunneling, cd_l2tag2);
3392 
3393 	/* Add Flow Director ATR if it's enabled.
3394 	 *
3395 	 * NOTE: this must always be directly before the data descriptor.
3396 	 */
3397 	i40e_atr(tx_ring, skb, tx_flags);
3398 
3399 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3400 			td_cmd, td_offset))
3401 		goto cleanup_tx_tstamp;
3402 
3403 	return NETDEV_TX_OK;
3404 
3405 out_drop:
3406 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3407 	dev_kfree_skb_any(first->skb);
3408 	first->skb = NULL;
3409 cleanup_tx_tstamp:
3410 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3411 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3412 
3413 		dev_kfree_skb_any(pf->ptp_tx_skb);
3414 		pf->ptp_tx_skb = NULL;
3415 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3416 	}
3417 
3418 	return NETDEV_TX_OK;
3419 }
3420 
3421 /**
3422  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3423  * @skb:    send buffer
3424  * @netdev: network interface device structure
3425  *
3426  * Returns NETDEV_TX_OK if sent, else an error code
3427  **/
3428 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3429 {
3430 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3431 	struct i40e_vsi *vsi = np->vsi;
3432 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3433 
3434 	/* hardware can't handle really short frames, hardware padding works
3435 	 * beyond this point
3436 	 */
3437 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3438 		return NETDEV_TX_OK;
3439 
3440 	return i40e_xmit_frame_ring(skb, tx_ring);
3441 }
3442