xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include <net/xdp.h>
31 #include "i40e.h"
32 #include "i40e_trace.h"
33 #include "i40e_prototype.h"
34 
35 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
36 				u32 td_tag)
37 {
38 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
39 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
40 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
41 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
42 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
43 }
44 
45 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
46 /**
47  * i40e_fdir - Generate a Flow Director descriptor based on fdata
48  * @tx_ring: Tx ring to send buffer on
49  * @fdata: Flow director filter data
50  * @add: Indicate if we are adding a rule or deleting one
51  *
52  **/
53 static void i40e_fdir(struct i40e_ring *tx_ring,
54 		      struct i40e_fdir_filter *fdata, bool add)
55 {
56 	struct i40e_filter_program_desc *fdir_desc;
57 	struct i40e_pf *pf = tx_ring->vsi->back;
58 	u32 flex_ptype, dtype_cmd;
59 	u16 i;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
64 
65 	i++;
66 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
67 
68 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
69 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
70 
71 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
72 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
73 
74 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
75 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
76 
77 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
78 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
79 
80 	/* Use LAN VSI Id if not programmed by user */
81 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
82 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
83 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
84 
85 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
86 
87 	dtype_cmd |= add ?
88 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
89 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
90 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
91 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
92 
93 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
94 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
95 
96 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
97 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
98 
99 	if (fdata->cnt_index) {
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
101 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
102 			     ((u32)fdata->cnt_index <<
103 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
104 	}
105 
106 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
107 	fdir_desc->rsvd = cpu_to_le32(0);
108 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
109 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
110 }
111 
112 #define I40E_FD_CLEAN_DELAY 10
113 /**
114  * i40e_program_fdir_filter - Program a Flow Director filter
115  * @fdir_data: Packet data that will be filter parameters
116  * @raw_packet: the pre-allocated packet buffer for FDir
117  * @pf: The PF pointer
118  * @add: True for add/update, False for remove
119  **/
120 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
121 				    u8 *raw_packet, struct i40e_pf *pf,
122 				    bool add)
123 {
124 	struct i40e_tx_buffer *tx_buf, *first;
125 	struct i40e_tx_desc *tx_desc;
126 	struct i40e_ring *tx_ring;
127 	struct i40e_vsi *vsi;
128 	struct device *dev;
129 	dma_addr_t dma;
130 	u32 td_cmd = 0;
131 	u16 i;
132 
133 	/* find existing FDIR VSI */
134 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
135 	if (!vsi)
136 		return -ENOENT;
137 
138 	tx_ring = vsi->tx_rings[0];
139 	dev = tx_ring->dev;
140 
141 	/* we need two descriptors to add/del a filter and we can wait */
142 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
143 		if (!i)
144 			return -EAGAIN;
145 		msleep_interruptible(1);
146 	}
147 
148 	dma = dma_map_single(dev, raw_packet,
149 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
150 	if (dma_mapping_error(dev, dma))
151 		goto dma_fail;
152 
153 	/* grab the next descriptor */
154 	i = tx_ring->next_to_use;
155 	first = &tx_ring->tx_bi[i];
156 	i40e_fdir(tx_ring, fdir_data, add);
157 
158 	/* Now program a dummy descriptor */
159 	i = tx_ring->next_to_use;
160 	tx_desc = I40E_TX_DESC(tx_ring, i);
161 	tx_buf = &tx_ring->tx_bi[i];
162 
163 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
164 
165 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
166 
167 	/* record length, and DMA address */
168 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
169 	dma_unmap_addr_set(tx_buf, dma, dma);
170 
171 	tx_desc->buffer_addr = cpu_to_le64(dma);
172 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
173 
174 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
175 	tx_buf->raw_buf = (void *)raw_packet;
176 
177 	tx_desc->cmd_type_offset_bsz =
178 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
179 
180 	/* Force memory writes to complete before letting h/w
181 	 * know there are new descriptors to fetch.
182 	 */
183 	wmb();
184 
185 	/* Mark the data descriptor to be watched */
186 	first->next_to_watch = tx_desc;
187 
188 	writel(tx_ring->next_to_use, tx_ring->tail);
189 	return 0;
190 
191 dma_fail:
192 	return -1;
193 }
194 
195 #define IP_HEADER_OFFSET 14
196 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
197 /**
198  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
199  * @vsi: pointer to the targeted VSI
200  * @fd_data: the flow director data required for the FDir descriptor
201  * @add: true adds a filter, false removes it
202  *
203  * Returns 0 if the filters were successfully added or removed
204  **/
205 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
206 				   struct i40e_fdir_filter *fd_data,
207 				   bool add)
208 {
209 	struct i40e_pf *pf = vsi->back;
210 	struct udphdr *udp;
211 	struct iphdr *ip;
212 	u8 *raw_packet;
213 	int ret;
214 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
215 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
216 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
217 
218 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
219 	if (!raw_packet)
220 		return -ENOMEM;
221 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
222 
223 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
224 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
225 	      + sizeof(struct iphdr));
226 
227 	ip->daddr = fd_data->dst_ip;
228 	udp->dest = fd_data->dst_port;
229 	ip->saddr = fd_data->src_ip;
230 	udp->source = fd_data->src_port;
231 
232 	if (fd_data->flex_filter) {
233 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
234 		__be16 pattern = fd_data->flex_word;
235 		u16 off = fd_data->flex_offset;
236 
237 		*((__force __be16 *)(payload + off)) = pattern;
238 	}
239 
240 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
241 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
242 	if (ret) {
243 		dev_info(&pf->pdev->dev,
244 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
245 			 fd_data->pctype, fd_data->fd_id, ret);
246 		/* Free the packet buffer since it wasn't added to the ring */
247 		kfree(raw_packet);
248 		return -EOPNOTSUPP;
249 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
250 		if (add)
251 			dev_info(&pf->pdev->dev,
252 				 "Filter OK for PCTYPE %d loc = %d\n",
253 				 fd_data->pctype, fd_data->fd_id);
254 		else
255 			dev_info(&pf->pdev->dev,
256 				 "Filter deleted for PCTYPE %d loc = %d\n",
257 				 fd_data->pctype, fd_data->fd_id);
258 	}
259 
260 	if (add)
261 		pf->fd_udp4_filter_cnt++;
262 	else
263 		pf->fd_udp4_filter_cnt--;
264 
265 	return 0;
266 }
267 
268 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
269 /**
270  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
271  * @vsi: pointer to the targeted VSI
272  * @fd_data: the flow director data required for the FDir descriptor
273  * @add: true adds a filter, false removes it
274  *
275  * Returns 0 if the filters were successfully added or removed
276  **/
277 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
278 				   struct i40e_fdir_filter *fd_data,
279 				   bool add)
280 {
281 	struct i40e_pf *pf = vsi->back;
282 	struct tcphdr *tcp;
283 	struct iphdr *ip;
284 	u8 *raw_packet;
285 	int ret;
286 	/* Dummy packet */
287 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
288 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
289 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
290 		0x0, 0x72, 0, 0, 0, 0};
291 
292 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
293 	if (!raw_packet)
294 		return -ENOMEM;
295 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
296 
297 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
298 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
299 	      + sizeof(struct iphdr));
300 
301 	ip->daddr = fd_data->dst_ip;
302 	tcp->dest = fd_data->dst_port;
303 	ip->saddr = fd_data->src_ip;
304 	tcp->source = fd_data->src_port;
305 
306 	if (fd_data->flex_filter) {
307 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
308 		__be16 pattern = fd_data->flex_word;
309 		u16 off = fd_data->flex_offset;
310 
311 		*((__force __be16 *)(payload + off)) = pattern;
312 	}
313 
314 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
315 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
316 	if (ret) {
317 		dev_info(&pf->pdev->dev,
318 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
319 			 fd_data->pctype, fd_data->fd_id, ret);
320 		/* Free the packet buffer since it wasn't added to the ring */
321 		kfree(raw_packet);
322 		return -EOPNOTSUPP;
323 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
324 		if (add)
325 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
326 				 fd_data->pctype, fd_data->fd_id);
327 		else
328 			dev_info(&pf->pdev->dev,
329 				 "Filter deleted for PCTYPE %d loc = %d\n",
330 				 fd_data->pctype, fd_data->fd_id);
331 	}
332 
333 	if (add) {
334 		pf->fd_tcp4_filter_cnt++;
335 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
336 		    I40E_DEBUG_FD & pf->hw.debug_mask)
337 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
338 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
339 	} else {
340 		pf->fd_tcp4_filter_cnt--;
341 	}
342 
343 	return 0;
344 }
345 
346 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
347 /**
348  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
349  * a specific flow spec
350  * @vsi: pointer to the targeted VSI
351  * @fd_data: the flow director data required for the FDir descriptor
352  * @add: true adds a filter, false removes it
353  *
354  * Returns 0 if the filters were successfully added or removed
355  **/
356 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
357 				    struct i40e_fdir_filter *fd_data,
358 				    bool add)
359 {
360 	struct i40e_pf *pf = vsi->back;
361 	struct sctphdr *sctp;
362 	struct iphdr *ip;
363 	u8 *raw_packet;
364 	int ret;
365 	/* Dummy packet */
366 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
367 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
368 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
369 
370 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
371 	if (!raw_packet)
372 		return -ENOMEM;
373 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
374 
375 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
376 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
377 	      + sizeof(struct iphdr));
378 
379 	ip->daddr = fd_data->dst_ip;
380 	sctp->dest = fd_data->dst_port;
381 	ip->saddr = fd_data->src_ip;
382 	sctp->source = fd_data->src_port;
383 
384 	if (fd_data->flex_filter) {
385 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
386 		__be16 pattern = fd_data->flex_word;
387 		u16 off = fd_data->flex_offset;
388 
389 		*((__force __be16 *)(payload + off)) = pattern;
390 	}
391 
392 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
393 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
394 	if (ret) {
395 		dev_info(&pf->pdev->dev,
396 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
397 			 fd_data->pctype, fd_data->fd_id, ret);
398 		/* Free the packet buffer since it wasn't added to the ring */
399 		kfree(raw_packet);
400 		return -EOPNOTSUPP;
401 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
402 		if (add)
403 			dev_info(&pf->pdev->dev,
404 				 "Filter OK for PCTYPE %d loc = %d\n",
405 				 fd_data->pctype, fd_data->fd_id);
406 		else
407 			dev_info(&pf->pdev->dev,
408 				 "Filter deleted for PCTYPE %d loc = %d\n",
409 				 fd_data->pctype, fd_data->fd_id);
410 	}
411 
412 	if (add)
413 		pf->fd_sctp4_filter_cnt++;
414 	else
415 		pf->fd_sctp4_filter_cnt--;
416 
417 	return 0;
418 }
419 
420 #define I40E_IP_DUMMY_PACKET_LEN 34
421 /**
422  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
423  * a specific flow spec
424  * @vsi: pointer to the targeted VSI
425  * @fd_data: the flow director data required for the FDir descriptor
426  * @add: true adds a filter, false removes it
427  *
428  * Returns 0 if the filters were successfully added or removed
429  **/
430 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
431 				  struct i40e_fdir_filter *fd_data,
432 				  bool add)
433 {
434 	struct i40e_pf *pf = vsi->back;
435 	struct iphdr *ip;
436 	u8 *raw_packet;
437 	int ret;
438 	int i;
439 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
440 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
441 		0, 0, 0, 0};
442 
443 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
444 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
445 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
446 		if (!raw_packet)
447 			return -ENOMEM;
448 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
449 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
450 
451 		ip->saddr = fd_data->src_ip;
452 		ip->daddr = fd_data->dst_ip;
453 		ip->protocol = 0;
454 
455 		if (fd_data->flex_filter) {
456 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
457 			__be16 pattern = fd_data->flex_word;
458 			u16 off = fd_data->flex_offset;
459 
460 			*((__force __be16 *)(payload + off)) = pattern;
461 		}
462 
463 		fd_data->pctype = i;
464 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
465 		if (ret) {
466 			dev_info(&pf->pdev->dev,
467 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
468 				 fd_data->pctype, fd_data->fd_id, ret);
469 			/* The packet buffer wasn't added to the ring so we
470 			 * need to free it now.
471 			 */
472 			kfree(raw_packet);
473 			return -EOPNOTSUPP;
474 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
475 			if (add)
476 				dev_info(&pf->pdev->dev,
477 					 "Filter OK for PCTYPE %d loc = %d\n",
478 					 fd_data->pctype, fd_data->fd_id);
479 			else
480 				dev_info(&pf->pdev->dev,
481 					 "Filter deleted for PCTYPE %d loc = %d\n",
482 					 fd_data->pctype, fd_data->fd_id);
483 		}
484 	}
485 
486 	if (add)
487 		pf->fd_ip4_filter_cnt++;
488 	else
489 		pf->fd_ip4_filter_cnt--;
490 
491 	return 0;
492 }
493 
494 /**
495  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
496  * @vsi: pointer to the targeted VSI
497  * @cmd: command to get or set RX flow classification rules
498  * @add: true adds a filter, false removes it
499  *
500  **/
501 int i40e_add_del_fdir(struct i40e_vsi *vsi,
502 		      struct i40e_fdir_filter *input, bool add)
503 {
504 	struct i40e_pf *pf = vsi->back;
505 	int ret;
506 
507 	switch (input->flow_type & ~FLOW_EXT) {
508 	case TCP_V4_FLOW:
509 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
510 		break;
511 	case UDP_V4_FLOW:
512 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
513 		break;
514 	case SCTP_V4_FLOW:
515 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
516 		break;
517 	case IP_USER_FLOW:
518 		switch (input->ip4_proto) {
519 		case IPPROTO_TCP:
520 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
521 			break;
522 		case IPPROTO_UDP:
523 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
524 			break;
525 		case IPPROTO_SCTP:
526 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
527 			break;
528 		case IPPROTO_IP:
529 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
530 			break;
531 		default:
532 			/* We cannot support masking based on protocol */
533 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
534 				 input->ip4_proto);
535 			return -EINVAL;
536 		}
537 		break;
538 	default:
539 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
540 			 input->flow_type);
541 		return -EINVAL;
542 	}
543 
544 	/* The buffer allocated here will be normally be freed by
545 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
546 	 * completion. In the event of an error adding the buffer to the FDIR
547 	 * ring, it will immediately be freed. It may also be freed by
548 	 * i40e_clean_tx_ring() when closing the VSI.
549 	 */
550 	return ret;
551 }
552 
553 /**
554  * i40e_fd_handle_status - check the Programming Status for FD
555  * @rx_ring: the Rx ring for this descriptor
556  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
557  * @prog_id: the id originally used for programming
558  *
559  * This is used to verify if the FD programming or invalidation
560  * requested by SW to the HW is successful or not and take actions accordingly.
561  **/
562 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
563 				  union i40e_rx_desc *rx_desc, u8 prog_id)
564 {
565 	struct i40e_pf *pf = rx_ring->vsi->back;
566 	struct pci_dev *pdev = pf->pdev;
567 	u32 fcnt_prog, fcnt_avail;
568 	u32 error;
569 	u64 qw;
570 
571 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
572 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
573 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
574 
575 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
576 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
577 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
578 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
579 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
580 				 pf->fd_inv);
581 
582 		/* Check if the programming error is for ATR.
583 		 * If so, auto disable ATR and set a state for
584 		 * flush in progress. Next time we come here if flush is in
585 		 * progress do nothing, once flush is complete the state will
586 		 * be cleared.
587 		 */
588 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
589 			return;
590 
591 		pf->fd_add_err++;
592 		/* store the current atr filter count */
593 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
594 
595 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
596 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
597 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
598 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
599 		}
600 
601 		/* filter programming failed most likely due to table full */
602 		fcnt_prog = i40e_get_global_fd_count(pf);
603 		fcnt_avail = pf->fdir_pf_filter_count;
604 		/* If ATR is running fcnt_prog can quickly change,
605 		 * if we are very close to full, it makes sense to disable
606 		 * FD ATR/SB and then re-enable it when there is room.
607 		 */
608 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
609 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
610 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
611 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
612 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
613 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
614 			}
615 		}
616 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
617 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
618 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
619 				 rx_desc->wb.qword0.hi_dword.fd_id);
620 	}
621 }
622 
623 /**
624  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
625  * @ring:      the ring that owns the buffer
626  * @tx_buffer: the buffer to free
627  **/
628 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
629 					    struct i40e_tx_buffer *tx_buffer)
630 {
631 	if (tx_buffer->skb) {
632 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
633 			kfree(tx_buffer->raw_buf);
634 		else if (ring_is_xdp(ring))
635 			page_frag_free(tx_buffer->raw_buf);
636 		else
637 			dev_kfree_skb_any(tx_buffer->skb);
638 		if (dma_unmap_len(tx_buffer, len))
639 			dma_unmap_single(ring->dev,
640 					 dma_unmap_addr(tx_buffer, dma),
641 					 dma_unmap_len(tx_buffer, len),
642 					 DMA_TO_DEVICE);
643 	} else if (dma_unmap_len(tx_buffer, len)) {
644 		dma_unmap_page(ring->dev,
645 			       dma_unmap_addr(tx_buffer, dma),
646 			       dma_unmap_len(tx_buffer, len),
647 			       DMA_TO_DEVICE);
648 	}
649 
650 	tx_buffer->next_to_watch = NULL;
651 	tx_buffer->skb = NULL;
652 	dma_unmap_len_set(tx_buffer, len, 0);
653 	/* tx_buffer must be completely set up in the transmit path */
654 }
655 
656 /**
657  * i40e_clean_tx_ring - Free any empty Tx buffers
658  * @tx_ring: ring to be cleaned
659  **/
660 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
661 {
662 	unsigned long bi_size;
663 	u16 i;
664 
665 	/* ring already cleared, nothing to do */
666 	if (!tx_ring->tx_bi)
667 		return;
668 
669 	/* Free all the Tx ring sk_buffs */
670 	for (i = 0; i < tx_ring->count; i++)
671 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
672 
673 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
674 	memset(tx_ring->tx_bi, 0, bi_size);
675 
676 	/* Zero out the descriptor ring */
677 	memset(tx_ring->desc, 0, tx_ring->size);
678 
679 	tx_ring->next_to_use = 0;
680 	tx_ring->next_to_clean = 0;
681 
682 	if (!tx_ring->netdev)
683 		return;
684 
685 	/* cleanup Tx queue statistics */
686 	netdev_tx_reset_queue(txring_txq(tx_ring));
687 }
688 
689 /**
690  * i40e_free_tx_resources - Free Tx resources per queue
691  * @tx_ring: Tx descriptor ring for a specific queue
692  *
693  * Free all transmit software resources
694  **/
695 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
696 {
697 	i40e_clean_tx_ring(tx_ring);
698 	kfree(tx_ring->tx_bi);
699 	tx_ring->tx_bi = NULL;
700 
701 	if (tx_ring->desc) {
702 		dma_free_coherent(tx_ring->dev, tx_ring->size,
703 				  tx_ring->desc, tx_ring->dma);
704 		tx_ring->desc = NULL;
705 	}
706 }
707 
708 /**
709  * i40e_get_tx_pending - how many tx descriptors not processed
710  * @tx_ring: the ring of descriptors
711  *
712  * Since there is no access to the ring head register
713  * in XL710, we need to use our local copies
714  **/
715 u32 i40e_get_tx_pending(struct i40e_ring *ring)
716 {
717 	u32 head, tail;
718 
719 	head = i40e_get_head(ring);
720 	tail = readl(ring->tail);
721 
722 	if (head != tail)
723 		return (head < tail) ?
724 			tail - head : (tail + ring->count - head);
725 
726 	return 0;
727 }
728 
729 /**
730  * i40e_detect_recover_hung - Function to detect and recover hung_queues
731  * @vsi:  pointer to vsi struct with tx queues
732  *
733  * VSI has netdev and netdev has TX queues. This function is to check each of
734  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
735  **/
736 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
737 {
738 	struct i40e_ring *tx_ring = NULL;
739 	struct net_device *netdev;
740 	unsigned int i;
741 	int packets;
742 
743 	if (!vsi)
744 		return;
745 
746 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
747 		return;
748 
749 	netdev = vsi->netdev;
750 	if (!netdev)
751 		return;
752 
753 	if (!netif_carrier_ok(netdev))
754 		return;
755 
756 	for (i = 0; i < vsi->num_queue_pairs; i++) {
757 		tx_ring = vsi->tx_rings[i];
758 		if (tx_ring && tx_ring->desc) {
759 			/* If packet counter has not changed the queue is
760 			 * likely stalled, so force an interrupt for this
761 			 * queue.
762 			 *
763 			 * prev_pkt_ctr would be negative if there was no
764 			 * pending work.
765 			 */
766 			packets = tx_ring->stats.packets & INT_MAX;
767 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
768 				i40e_force_wb(vsi, tx_ring->q_vector);
769 				continue;
770 			}
771 
772 			/* Memory barrier between read of packet count and call
773 			 * to i40e_get_tx_pending()
774 			 */
775 			smp_rmb();
776 			tx_ring->tx_stats.prev_pkt_ctr =
777 			    i40e_get_tx_pending(tx_ring) ? packets : -1;
778 		}
779 	}
780 }
781 
782 #define WB_STRIDE 4
783 
784 /**
785  * i40e_clean_tx_irq - Reclaim resources after transmit completes
786  * @vsi: the VSI we care about
787  * @tx_ring: Tx ring to clean
788  * @napi_budget: Used to determine if we are in netpoll
789  *
790  * Returns true if there's any budget left (e.g. the clean is finished)
791  **/
792 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
793 			      struct i40e_ring *tx_ring, int napi_budget)
794 {
795 	u16 i = tx_ring->next_to_clean;
796 	struct i40e_tx_buffer *tx_buf;
797 	struct i40e_tx_desc *tx_head;
798 	struct i40e_tx_desc *tx_desc;
799 	unsigned int total_bytes = 0, total_packets = 0;
800 	unsigned int budget = vsi->work_limit;
801 
802 	tx_buf = &tx_ring->tx_bi[i];
803 	tx_desc = I40E_TX_DESC(tx_ring, i);
804 	i -= tx_ring->count;
805 
806 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
807 
808 	do {
809 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
810 
811 		/* if next_to_watch is not set then there is no work pending */
812 		if (!eop_desc)
813 			break;
814 
815 		/* prevent any other reads prior to eop_desc */
816 		smp_rmb();
817 
818 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
819 		/* we have caught up to head, no work left to do */
820 		if (tx_head == tx_desc)
821 			break;
822 
823 		/* clear next_to_watch to prevent false hangs */
824 		tx_buf->next_to_watch = NULL;
825 
826 		/* update the statistics for this packet */
827 		total_bytes += tx_buf->bytecount;
828 		total_packets += tx_buf->gso_segs;
829 
830 		/* free the skb/XDP data */
831 		if (ring_is_xdp(tx_ring))
832 			page_frag_free(tx_buf->raw_buf);
833 		else
834 			napi_consume_skb(tx_buf->skb, napi_budget);
835 
836 		/* unmap skb header data */
837 		dma_unmap_single(tx_ring->dev,
838 				 dma_unmap_addr(tx_buf, dma),
839 				 dma_unmap_len(tx_buf, len),
840 				 DMA_TO_DEVICE);
841 
842 		/* clear tx_buffer data */
843 		tx_buf->skb = NULL;
844 		dma_unmap_len_set(tx_buf, len, 0);
845 
846 		/* unmap remaining buffers */
847 		while (tx_desc != eop_desc) {
848 			i40e_trace(clean_tx_irq_unmap,
849 				   tx_ring, tx_desc, tx_buf);
850 
851 			tx_buf++;
852 			tx_desc++;
853 			i++;
854 			if (unlikely(!i)) {
855 				i -= tx_ring->count;
856 				tx_buf = tx_ring->tx_bi;
857 				tx_desc = I40E_TX_DESC(tx_ring, 0);
858 			}
859 
860 			/* unmap any remaining paged data */
861 			if (dma_unmap_len(tx_buf, len)) {
862 				dma_unmap_page(tx_ring->dev,
863 					       dma_unmap_addr(tx_buf, dma),
864 					       dma_unmap_len(tx_buf, len),
865 					       DMA_TO_DEVICE);
866 				dma_unmap_len_set(tx_buf, len, 0);
867 			}
868 		}
869 
870 		/* move us one more past the eop_desc for start of next pkt */
871 		tx_buf++;
872 		tx_desc++;
873 		i++;
874 		if (unlikely(!i)) {
875 			i -= tx_ring->count;
876 			tx_buf = tx_ring->tx_bi;
877 			tx_desc = I40E_TX_DESC(tx_ring, 0);
878 		}
879 
880 		prefetch(tx_desc);
881 
882 		/* update budget accounting */
883 		budget--;
884 	} while (likely(budget));
885 
886 	i += tx_ring->count;
887 	tx_ring->next_to_clean = i;
888 	u64_stats_update_begin(&tx_ring->syncp);
889 	tx_ring->stats.bytes += total_bytes;
890 	tx_ring->stats.packets += total_packets;
891 	u64_stats_update_end(&tx_ring->syncp);
892 	tx_ring->q_vector->tx.total_bytes += total_bytes;
893 	tx_ring->q_vector->tx.total_packets += total_packets;
894 
895 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
896 		/* check to see if there are < 4 descriptors
897 		 * waiting to be written back, then kick the hardware to force
898 		 * them to be written back in case we stay in NAPI.
899 		 * In this mode on X722 we do not enable Interrupt.
900 		 */
901 		unsigned int j = i40e_get_tx_pending(tx_ring);
902 
903 		if (budget &&
904 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
905 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
906 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
907 			tx_ring->arm_wb = true;
908 	}
909 
910 	if (ring_is_xdp(tx_ring))
911 		return !!budget;
912 
913 	/* notify netdev of completed buffers */
914 	netdev_tx_completed_queue(txring_txq(tx_ring),
915 				  total_packets, total_bytes);
916 
917 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
918 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
919 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
920 		/* Make sure that anybody stopping the queue after this
921 		 * sees the new next_to_clean.
922 		 */
923 		smp_mb();
924 		if (__netif_subqueue_stopped(tx_ring->netdev,
925 					     tx_ring->queue_index) &&
926 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
927 			netif_wake_subqueue(tx_ring->netdev,
928 					    tx_ring->queue_index);
929 			++tx_ring->tx_stats.restart_queue;
930 		}
931 	}
932 
933 	return !!budget;
934 }
935 
936 /**
937  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
938  * @vsi: the VSI we care about
939  * @q_vector: the vector on which to enable writeback
940  *
941  **/
942 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
943 				  struct i40e_q_vector *q_vector)
944 {
945 	u16 flags = q_vector->tx.ring[0].flags;
946 	u32 val;
947 
948 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
949 		return;
950 
951 	if (q_vector->arm_wb_state)
952 		return;
953 
954 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
955 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
956 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
957 
958 		wr32(&vsi->back->hw,
959 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
960 		     val);
961 	} else {
962 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
963 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
964 
965 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
966 	}
967 	q_vector->arm_wb_state = true;
968 }
969 
970 /**
971  * i40e_force_wb - Issue SW Interrupt so HW does a wb
972  * @vsi: the VSI we care about
973  * @q_vector: the vector  on which to force writeback
974  *
975  **/
976 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
977 {
978 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
979 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
980 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
981 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
982 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
983 			  /* allow 00 to be written to the index */
984 
985 		wr32(&vsi->back->hw,
986 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
987 	} else {
988 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
989 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
990 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
991 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
992 			/* allow 00 to be written to the index */
993 
994 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
995 	}
996 }
997 
998 /**
999  * i40e_set_new_dynamic_itr - Find new ITR level
1000  * @rc: structure containing ring performance data
1001  *
1002  * Returns true if ITR changed, false if not
1003  *
1004  * Stores a new ITR value based on packets and byte counts during
1005  * the last interrupt.  The advantage of per interrupt computation
1006  * is faster updates and more accurate ITR for the current traffic
1007  * pattern.  Constants in this function were computed based on
1008  * theoretical maximum wire speed and thresholds were set based on
1009  * testing data as well as attempting to minimize response time
1010  * while increasing bulk throughput.
1011  **/
1012 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
1013 {
1014 	enum i40e_latency_range new_latency_range = rc->latency_range;
1015 	u32 new_itr = rc->itr;
1016 	int bytes_per_usec;
1017 	unsigned int usecs, estimated_usecs;
1018 
1019 	if (rc->total_packets == 0 || !rc->itr)
1020 		return false;
1021 
1022 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
1023 	bytes_per_usec = rc->total_bytes / usecs;
1024 
1025 	/* The calculations in this algorithm depend on interrupts actually
1026 	 * firing at the ITR rate. This may not happen if the packet rate is
1027 	 * really low, or if we've been napi polling. Check to make sure
1028 	 * that's not the case before we continue.
1029 	 */
1030 	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
1031 	if (estimated_usecs > usecs) {
1032 		new_latency_range = I40E_LOW_LATENCY;
1033 		goto reset_latency;
1034 	}
1035 
1036 	/* simple throttlerate management
1037 	 *   0-10MB/s   lowest (50000 ints/s)
1038 	 *  10-20MB/s   low    (20000 ints/s)
1039 	 *  20-1249MB/s bulk   (18000 ints/s)
1040 	 *
1041 	 * The math works out because the divisor is in 10^(-6) which
1042 	 * turns the bytes/us input value into MB/s values, but
1043 	 * make sure to use usecs, as the register values written
1044 	 * are in 2 usec increments in the ITR registers, and make sure
1045 	 * to use the smoothed values that the countdown timer gives us.
1046 	 */
1047 	switch (new_latency_range) {
1048 	case I40E_LOWEST_LATENCY:
1049 		if (bytes_per_usec > 10)
1050 			new_latency_range = I40E_LOW_LATENCY;
1051 		break;
1052 	case I40E_LOW_LATENCY:
1053 		if (bytes_per_usec > 20)
1054 			new_latency_range = I40E_BULK_LATENCY;
1055 		else if (bytes_per_usec <= 10)
1056 			new_latency_range = I40E_LOWEST_LATENCY;
1057 		break;
1058 	case I40E_BULK_LATENCY:
1059 	default:
1060 		if (bytes_per_usec <= 20)
1061 			new_latency_range = I40E_LOW_LATENCY;
1062 		break;
1063 	}
1064 
1065 reset_latency:
1066 	rc->latency_range = new_latency_range;
1067 
1068 	switch (new_latency_range) {
1069 	case I40E_LOWEST_LATENCY:
1070 		new_itr = I40E_ITR_50K;
1071 		break;
1072 	case I40E_LOW_LATENCY:
1073 		new_itr = I40E_ITR_20K;
1074 		break;
1075 	case I40E_BULK_LATENCY:
1076 		new_itr = I40E_ITR_18K;
1077 		break;
1078 	default:
1079 		break;
1080 	}
1081 
1082 	rc->total_bytes = 0;
1083 	rc->total_packets = 0;
1084 	rc->last_itr_update = jiffies;
1085 
1086 	if (new_itr != rc->itr) {
1087 		rc->itr = new_itr;
1088 		return true;
1089 	}
1090 	return false;
1091 }
1092 
1093 /**
1094  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1095  * @rx_ring: rx descriptor ring to store buffers on
1096  * @old_buff: donor buffer to have page reused
1097  *
1098  * Synchronizes page for reuse by the adapter
1099  **/
1100 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1101 			       struct i40e_rx_buffer *old_buff)
1102 {
1103 	struct i40e_rx_buffer *new_buff;
1104 	u16 nta = rx_ring->next_to_alloc;
1105 
1106 	new_buff = &rx_ring->rx_bi[nta];
1107 
1108 	/* update, and store next to alloc */
1109 	nta++;
1110 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1111 
1112 	/* transfer page from old buffer to new buffer */
1113 	new_buff->dma		= old_buff->dma;
1114 	new_buff->page		= old_buff->page;
1115 	new_buff->page_offset	= old_buff->page_offset;
1116 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1117 }
1118 
1119 /**
1120  * i40e_rx_is_programming_status - check for programming status descriptor
1121  * @qw: qword representing status_error_len in CPU ordering
1122  *
1123  * The value of in the descriptor length field indicate if this
1124  * is a programming status descriptor for flow director or FCoE
1125  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1126  * it is a packet descriptor.
1127  **/
1128 static inline bool i40e_rx_is_programming_status(u64 qw)
1129 {
1130 	/* The Rx filter programming status and SPH bit occupy the same
1131 	 * spot in the descriptor. Since we don't support packet split we
1132 	 * can just reuse the bit as an indication that this is a
1133 	 * programming status descriptor.
1134 	 */
1135 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1136 }
1137 
1138 /**
1139  * i40e_clean_programming_status - clean the programming status descriptor
1140  * @rx_ring: the rx ring that has this descriptor
1141  * @rx_desc: the rx descriptor written back by HW
1142  * @qw: qword representing status_error_len in CPU ordering
1143  *
1144  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1145  * status being successful or not and take actions accordingly. FCoE should
1146  * handle its context/filter programming/invalidation status and take actions.
1147  *
1148  **/
1149 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1150 					  union i40e_rx_desc *rx_desc,
1151 					  u64 qw)
1152 {
1153 	struct i40e_rx_buffer *rx_buffer;
1154 	u32 ntc = rx_ring->next_to_clean;
1155 	u8 id;
1156 
1157 	/* fetch, update, and store next to clean */
1158 	rx_buffer = &rx_ring->rx_bi[ntc++];
1159 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1160 	rx_ring->next_to_clean = ntc;
1161 
1162 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1163 
1164 	/* place unused page back on the ring */
1165 	i40e_reuse_rx_page(rx_ring, rx_buffer);
1166 	rx_ring->rx_stats.page_reuse_count++;
1167 
1168 	/* clear contents of buffer_info */
1169 	rx_buffer->page = NULL;
1170 
1171 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1172 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1173 
1174 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1175 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1176 }
1177 
1178 /**
1179  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1180  * @tx_ring: the tx ring to set up
1181  *
1182  * Return 0 on success, negative on error
1183  **/
1184 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1185 {
1186 	struct device *dev = tx_ring->dev;
1187 	int bi_size;
1188 
1189 	if (!dev)
1190 		return -ENOMEM;
1191 
1192 	/* warn if we are about to overwrite the pointer */
1193 	WARN_ON(tx_ring->tx_bi);
1194 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1195 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1196 	if (!tx_ring->tx_bi)
1197 		goto err;
1198 
1199 	u64_stats_init(&tx_ring->syncp);
1200 
1201 	/* round up to nearest 4K */
1202 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1203 	/* add u32 for head writeback, align after this takes care of
1204 	 * guaranteeing this is at least one cache line in size
1205 	 */
1206 	tx_ring->size += sizeof(u32);
1207 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1208 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1209 					   &tx_ring->dma, GFP_KERNEL);
1210 	if (!tx_ring->desc) {
1211 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1212 			 tx_ring->size);
1213 		goto err;
1214 	}
1215 
1216 	tx_ring->next_to_use = 0;
1217 	tx_ring->next_to_clean = 0;
1218 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1219 	return 0;
1220 
1221 err:
1222 	kfree(tx_ring->tx_bi);
1223 	tx_ring->tx_bi = NULL;
1224 	return -ENOMEM;
1225 }
1226 
1227 /**
1228  * i40e_clean_rx_ring - Free Rx buffers
1229  * @rx_ring: ring to be cleaned
1230  **/
1231 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1232 {
1233 	unsigned long bi_size;
1234 	u16 i;
1235 
1236 	/* ring already cleared, nothing to do */
1237 	if (!rx_ring->rx_bi)
1238 		return;
1239 
1240 	if (rx_ring->skb) {
1241 		dev_kfree_skb(rx_ring->skb);
1242 		rx_ring->skb = NULL;
1243 	}
1244 
1245 	/* Free all the Rx ring sk_buffs */
1246 	for (i = 0; i < rx_ring->count; i++) {
1247 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1248 
1249 		if (!rx_bi->page)
1250 			continue;
1251 
1252 		/* Invalidate cache lines that may have been written to by
1253 		 * device so that we avoid corrupting memory.
1254 		 */
1255 		dma_sync_single_range_for_cpu(rx_ring->dev,
1256 					      rx_bi->dma,
1257 					      rx_bi->page_offset,
1258 					      rx_ring->rx_buf_len,
1259 					      DMA_FROM_DEVICE);
1260 
1261 		/* free resources associated with mapping */
1262 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1263 				     i40e_rx_pg_size(rx_ring),
1264 				     DMA_FROM_DEVICE,
1265 				     I40E_RX_DMA_ATTR);
1266 
1267 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1268 
1269 		rx_bi->page = NULL;
1270 		rx_bi->page_offset = 0;
1271 	}
1272 
1273 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1274 	memset(rx_ring->rx_bi, 0, bi_size);
1275 
1276 	/* Zero out the descriptor ring */
1277 	memset(rx_ring->desc, 0, rx_ring->size);
1278 
1279 	rx_ring->next_to_alloc = 0;
1280 	rx_ring->next_to_clean = 0;
1281 	rx_ring->next_to_use = 0;
1282 }
1283 
1284 /**
1285  * i40e_free_rx_resources - Free Rx resources
1286  * @rx_ring: ring to clean the resources from
1287  *
1288  * Free all receive software resources
1289  **/
1290 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1291 {
1292 	i40e_clean_rx_ring(rx_ring);
1293 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1294 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1295 	rx_ring->xdp_prog = NULL;
1296 	kfree(rx_ring->rx_bi);
1297 	rx_ring->rx_bi = NULL;
1298 
1299 	if (rx_ring->desc) {
1300 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1301 				  rx_ring->desc, rx_ring->dma);
1302 		rx_ring->desc = NULL;
1303 	}
1304 }
1305 
1306 /**
1307  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1308  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1309  *
1310  * Returns 0 on success, negative on failure
1311  **/
1312 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1313 {
1314 	struct device *dev = rx_ring->dev;
1315 	int err = -ENOMEM;
1316 	int bi_size;
1317 
1318 	/* warn if we are about to overwrite the pointer */
1319 	WARN_ON(rx_ring->rx_bi);
1320 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1321 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1322 	if (!rx_ring->rx_bi)
1323 		goto err;
1324 
1325 	u64_stats_init(&rx_ring->syncp);
1326 
1327 	/* Round up to nearest 4K */
1328 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1329 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1330 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1331 					   &rx_ring->dma, GFP_KERNEL);
1332 
1333 	if (!rx_ring->desc) {
1334 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1335 			 rx_ring->size);
1336 		goto err;
1337 	}
1338 
1339 	rx_ring->next_to_alloc = 0;
1340 	rx_ring->next_to_clean = 0;
1341 	rx_ring->next_to_use = 0;
1342 
1343 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1344 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1345 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1346 				       rx_ring->queue_index);
1347 		if (err < 0)
1348 			goto err;
1349 	}
1350 
1351 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1352 
1353 	return 0;
1354 err:
1355 	kfree(rx_ring->rx_bi);
1356 	rx_ring->rx_bi = NULL;
1357 	return err;
1358 }
1359 
1360 /**
1361  * i40e_release_rx_desc - Store the new tail and head values
1362  * @rx_ring: ring to bump
1363  * @val: new head index
1364  **/
1365 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1366 {
1367 	rx_ring->next_to_use = val;
1368 
1369 	/* update next to alloc since we have filled the ring */
1370 	rx_ring->next_to_alloc = val;
1371 
1372 	/* Force memory writes to complete before letting h/w
1373 	 * know there are new descriptors to fetch.  (Only
1374 	 * applicable for weak-ordered memory model archs,
1375 	 * such as IA-64).
1376 	 */
1377 	wmb();
1378 	writel(val, rx_ring->tail);
1379 }
1380 
1381 /**
1382  * i40e_rx_offset - Return expected offset into page to access data
1383  * @rx_ring: Ring we are requesting offset of
1384  *
1385  * Returns the offset value for ring into the data buffer.
1386  */
1387 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1388 {
1389 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1390 }
1391 
1392 /**
1393  * i40e_alloc_mapped_page - recycle or make a new page
1394  * @rx_ring: ring to use
1395  * @bi: rx_buffer struct to modify
1396  *
1397  * Returns true if the page was successfully allocated or
1398  * reused.
1399  **/
1400 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1401 				   struct i40e_rx_buffer *bi)
1402 {
1403 	struct page *page = bi->page;
1404 	dma_addr_t dma;
1405 
1406 	/* since we are recycling buffers we should seldom need to alloc */
1407 	if (likely(page)) {
1408 		rx_ring->rx_stats.page_reuse_count++;
1409 		return true;
1410 	}
1411 
1412 	/* alloc new page for storage */
1413 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1414 	if (unlikely(!page)) {
1415 		rx_ring->rx_stats.alloc_page_failed++;
1416 		return false;
1417 	}
1418 
1419 	/* map page for use */
1420 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1421 				 i40e_rx_pg_size(rx_ring),
1422 				 DMA_FROM_DEVICE,
1423 				 I40E_RX_DMA_ATTR);
1424 
1425 	/* if mapping failed free memory back to system since
1426 	 * there isn't much point in holding memory we can't use
1427 	 */
1428 	if (dma_mapping_error(rx_ring->dev, dma)) {
1429 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1430 		rx_ring->rx_stats.alloc_page_failed++;
1431 		return false;
1432 	}
1433 
1434 	bi->dma = dma;
1435 	bi->page = page;
1436 	bi->page_offset = i40e_rx_offset(rx_ring);
1437 
1438 	/* initialize pagecnt_bias to 1 representing we fully own page */
1439 	bi->pagecnt_bias = 1;
1440 
1441 	return true;
1442 }
1443 
1444 /**
1445  * i40e_receive_skb - Send a completed packet up the stack
1446  * @rx_ring:  rx ring in play
1447  * @skb: packet to send up
1448  * @vlan_tag: vlan tag for packet
1449  **/
1450 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1451 			     struct sk_buff *skb, u16 vlan_tag)
1452 {
1453 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1454 
1455 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1456 	    (vlan_tag & VLAN_VID_MASK))
1457 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1458 
1459 	napi_gro_receive(&q_vector->napi, skb);
1460 }
1461 
1462 /**
1463  * i40e_alloc_rx_buffers - Replace used receive buffers
1464  * @rx_ring: ring to place buffers on
1465  * @cleaned_count: number of buffers to replace
1466  *
1467  * Returns false if all allocations were successful, true if any fail
1468  **/
1469 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1470 {
1471 	u16 ntu = rx_ring->next_to_use;
1472 	union i40e_rx_desc *rx_desc;
1473 	struct i40e_rx_buffer *bi;
1474 
1475 	/* do nothing if no valid netdev defined */
1476 	if (!rx_ring->netdev || !cleaned_count)
1477 		return false;
1478 
1479 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1480 	bi = &rx_ring->rx_bi[ntu];
1481 
1482 	do {
1483 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1484 			goto no_buffers;
1485 
1486 		/* sync the buffer for use by the device */
1487 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1488 						 bi->page_offset,
1489 						 rx_ring->rx_buf_len,
1490 						 DMA_FROM_DEVICE);
1491 
1492 		/* Refresh the desc even if buffer_addrs didn't change
1493 		 * because each write-back erases this info.
1494 		 */
1495 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1496 
1497 		rx_desc++;
1498 		bi++;
1499 		ntu++;
1500 		if (unlikely(ntu == rx_ring->count)) {
1501 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1502 			bi = rx_ring->rx_bi;
1503 			ntu = 0;
1504 		}
1505 
1506 		/* clear the status bits for the next_to_use descriptor */
1507 		rx_desc->wb.qword1.status_error_len = 0;
1508 
1509 		cleaned_count--;
1510 	} while (cleaned_count);
1511 
1512 	if (rx_ring->next_to_use != ntu)
1513 		i40e_release_rx_desc(rx_ring, ntu);
1514 
1515 	return false;
1516 
1517 no_buffers:
1518 	if (rx_ring->next_to_use != ntu)
1519 		i40e_release_rx_desc(rx_ring, ntu);
1520 
1521 	/* make sure to come back via polling to try again after
1522 	 * allocation failure
1523 	 */
1524 	return true;
1525 }
1526 
1527 /**
1528  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1529  * @vsi: the VSI we care about
1530  * @skb: skb currently being received and modified
1531  * @rx_desc: the receive descriptor
1532  **/
1533 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1534 				    struct sk_buff *skb,
1535 				    union i40e_rx_desc *rx_desc)
1536 {
1537 	struct i40e_rx_ptype_decoded decoded;
1538 	u32 rx_error, rx_status;
1539 	bool ipv4, ipv6;
1540 	u8 ptype;
1541 	u64 qword;
1542 
1543 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1544 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1545 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1546 		   I40E_RXD_QW1_ERROR_SHIFT;
1547 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1548 		    I40E_RXD_QW1_STATUS_SHIFT;
1549 	decoded = decode_rx_desc_ptype(ptype);
1550 
1551 	skb->ip_summed = CHECKSUM_NONE;
1552 
1553 	skb_checksum_none_assert(skb);
1554 
1555 	/* Rx csum enabled and ip headers found? */
1556 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1557 		return;
1558 
1559 	/* did the hardware decode the packet and checksum? */
1560 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1561 		return;
1562 
1563 	/* both known and outer_ip must be set for the below code to work */
1564 	if (!(decoded.known && decoded.outer_ip))
1565 		return;
1566 
1567 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1568 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1569 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1570 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1571 
1572 	if (ipv4 &&
1573 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1574 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1575 		goto checksum_fail;
1576 
1577 	/* likely incorrect csum if alternate IP extension headers found */
1578 	if (ipv6 &&
1579 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1580 		/* don't increment checksum err here, non-fatal err */
1581 		return;
1582 
1583 	/* there was some L4 error, count error and punt packet to the stack */
1584 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1585 		goto checksum_fail;
1586 
1587 	/* handle packets that were not able to be checksummed due
1588 	 * to arrival speed, in this case the stack can compute
1589 	 * the csum.
1590 	 */
1591 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1592 		return;
1593 
1594 	/* If there is an outer header present that might contain a checksum
1595 	 * we need to bump the checksum level by 1 to reflect the fact that
1596 	 * we are indicating we validated the inner checksum.
1597 	 */
1598 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1599 		skb->csum_level = 1;
1600 
1601 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1602 	switch (decoded.inner_prot) {
1603 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1604 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1605 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1606 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1607 		/* fall though */
1608 	default:
1609 		break;
1610 	}
1611 
1612 	return;
1613 
1614 checksum_fail:
1615 	vsi->back->hw_csum_rx_error++;
1616 }
1617 
1618 /**
1619  * i40e_ptype_to_htype - get a hash type
1620  * @ptype: the ptype value from the descriptor
1621  *
1622  * Returns a hash type to be used by skb_set_hash
1623  **/
1624 static inline int i40e_ptype_to_htype(u8 ptype)
1625 {
1626 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1627 
1628 	if (!decoded.known)
1629 		return PKT_HASH_TYPE_NONE;
1630 
1631 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1632 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1633 		return PKT_HASH_TYPE_L4;
1634 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1635 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1636 		return PKT_HASH_TYPE_L3;
1637 	else
1638 		return PKT_HASH_TYPE_L2;
1639 }
1640 
1641 /**
1642  * i40e_rx_hash - set the hash value in the skb
1643  * @ring: descriptor ring
1644  * @rx_desc: specific descriptor
1645  **/
1646 static inline void i40e_rx_hash(struct i40e_ring *ring,
1647 				union i40e_rx_desc *rx_desc,
1648 				struct sk_buff *skb,
1649 				u8 rx_ptype)
1650 {
1651 	u32 hash;
1652 	const __le64 rss_mask =
1653 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1654 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1655 
1656 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1657 		return;
1658 
1659 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1660 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1661 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1662 	}
1663 }
1664 
1665 /**
1666  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1667  * @rx_ring: rx descriptor ring packet is being transacted on
1668  * @rx_desc: pointer to the EOP Rx descriptor
1669  * @skb: pointer to current skb being populated
1670  * @rx_ptype: the packet type decoded by hardware
1671  *
1672  * This function checks the ring, descriptor, and packet information in
1673  * order to populate the hash, checksum, VLAN, protocol, and
1674  * other fields within the skb.
1675  **/
1676 static inline
1677 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1678 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1679 			     u8 rx_ptype)
1680 {
1681 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1682 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1683 			I40E_RXD_QW1_STATUS_SHIFT;
1684 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1685 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1686 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1687 
1688 	if (unlikely(tsynvalid))
1689 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1690 
1691 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1692 
1693 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1694 
1695 	skb_record_rx_queue(skb, rx_ring->queue_index);
1696 
1697 	/* modifies the skb - consumes the enet header */
1698 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1699 }
1700 
1701 /**
1702  * i40e_cleanup_headers - Correct empty headers
1703  * @rx_ring: rx descriptor ring packet is being transacted on
1704  * @skb: pointer to current skb being fixed
1705  * @rx_desc: pointer to the EOP Rx descriptor
1706  *
1707  * Also address the case where we are pulling data in on pages only
1708  * and as such no data is present in the skb header.
1709  *
1710  * In addition if skb is not at least 60 bytes we need to pad it so that
1711  * it is large enough to qualify as a valid Ethernet frame.
1712  *
1713  * Returns true if an error was encountered and skb was freed.
1714  **/
1715 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1716 				 union i40e_rx_desc *rx_desc)
1717 
1718 {
1719 	/* XDP packets use error pointer so abort at this point */
1720 	if (IS_ERR(skb))
1721 		return true;
1722 
1723 	/* ERR_MASK will only have valid bits if EOP set, and
1724 	 * what we are doing here is actually checking
1725 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1726 	 * the error field
1727 	 */
1728 	if (unlikely(i40e_test_staterr(rx_desc,
1729 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1730 		dev_kfree_skb_any(skb);
1731 		return true;
1732 	}
1733 
1734 	/* if eth_skb_pad returns an error the skb was freed */
1735 	if (eth_skb_pad(skb))
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
1741 /**
1742  * i40e_page_is_reusable - check if any reuse is possible
1743  * @page: page struct to check
1744  *
1745  * A page is not reusable if it was allocated under low memory
1746  * conditions, or it's not in the same NUMA node as this CPU.
1747  */
1748 static inline bool i40e_page_is_reusable(struct page *page)
1749 {
1750 	return (page_to_nid(page) == numa_mem_id()) &&
1751 		!page_is_pfmemalloc(page);
1752 }
1753 
1754 /**
1755  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1756  * the adapter for another receive
1757  *
1758  * @rx_buffer: buffer containing the page
1759  *
1760  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1761  * an unused region in the page.
1762  *
1763  * For small pages, @truesize will be a constant value, half the size
1764  * of the memory at page.  We'll attempt to alternate between high and
1765  * low halves of the page, with one half ready for use by the hardware
1766  * and the other half being consumed by the stack.  We use the page
1767  * ref count to determine whether the stack has finished consuming the
1768  * portion of this page that was passed up with a previous packet.  If
1769  * the page ref count is >1, we'll assume the "other" half page is
1770  * still busy, and this page cannot be reused.
1771  *
1772  * For larger pages, @truesize will be the actual space used by the
1773  * received packet (adjusted upward to an even multiple of the cache
1774  * line size).  This will advance through the page by the amount
1775  * actually consumed by the received packets while there is still
1776  * space for a buffer.  Each region of larger pages will be used at
1777  * most once, after which the page will not be reused.
1778  *
1779  * In either case, if the page is reusable its refcount is increased.
1780  **/
1781 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1782 {
1783 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1784 	struct page *page = rx_buffer->page;
1785 
1786 	/* Is any reuse possible? */
1787 	if (unlikely(!i40e_page_is_reusable(page)))
1788 		return false;
1789 
1790 #if (PAGE_SIZE < 8192)
1791 	/* if we are only owner of page we can reuse it */
1792 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1793 		return false;
1794 #else
1795 #define I40E_LAST_OFFSET \
1796 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1797 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1798 		return false;
1799 #endif
1800 
1801 	/* If we have drained the page fragment pool we need to update
1802 	 * the pagecnt_bias and page count so that we fully restock the
1803 	 * number of references the driver holds.
1804 	 */
1805 	if (unlikely(!pagecnt_bias)) {
1806 		page_ref_add(page, USHRT_MAX);
1807 		rx_buffer->pagecnt_bias = USHRT_MAX;
1808 	}
1809 
1810 	return true;
1811 }
1812 
1813 /**
1814  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1815  * @rx_ring: rx descriptor ring to transact packets on
1816  * @rx_buffer: buffer containing page to add
1817  * @skb: sk_buff to place the data into
1818  * @size: packet length from rx_desc
1819  *
1820  * This function will add the data contained in rx_buffer->page to the skb.
1821  * It will just attach the page as a frag to the skb.
1822  *
1823  * The function will then update the page offset.
1824  **/
1825 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1826 			     struct i40e_rx_buffer *rx_buffer,
1827 			     struct sk_buff *skb,
1828 			     unsigned int size)
1829 {
1830 #if (PAGE_SIZE < 8192)
1831 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1832 #else
1833 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1834 #endif
1835 
1836 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1837 			rx_buffer->page_offset, size, truesize);
1838 
1839 	/* page is being used so we must update the page offset */
1840 #if (PAGE_SIZE < 8192)
1841 	rx_buffer->page_offset ^= truesize;
1842 #else
1843 	rx_buffer->page_offset += truesize;
1844 #endif
1845 }
1846 
1847 /**
1848  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1849  * @rx_ring: rx descriptor ring to transact packets on
1850  * @size: size of buffer to add to skb
1851  *
1852  * This function will pull an Rx buffer from the ring and synchronize it
1853  * for use by the CPU.
1854  */
1855 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1856 						 const unsigned int size)
1857 {
1858 	struct i40e_rx_buffer *rx_buffer;
1859 
1860 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1861 	prefetchw(rx_buffer->page);
1862 
1863 	/* we are reusing so sync this buffer for CPU use */
1864 	dma_sync_single_range_for_cpu(rx_ring->dev,
1865 				      rx_buffer->dma,
1866 				      rx_buffer->page_offset,
1867 				      size,
1868 				      DMA_FROM_DEVICE);
1869 
1870 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1871 	rx_buffer->pagecnt_bias--;
1872 
1873 	return rx_buffer;
1874 }
1875 
1876 /**
1877  * i40e_construct_skb - Allocate skb and populate it
1878  * @rx_ring: rx descriptor ring to transact packets on
1879  * @rx_buffer: rx buffer to pull data from
1880  * @xdp: xdp_buff pointing to the data
1881  *
1882  * This function allocates an skb.  It then populates it with the page
1883  * data from the current receive descriptor, taking care to set up the
1884  * skb correctly.
1885  */
1886 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1887 					  struct i40e_rx_buffer *rx_buffer,
1888 					  struct xdp_buff *xdp)
1889 {
1890 	unsigned int size = xdp->data_end - xdp->data;
1891 #if (PAGE_SIZE < 8192)
1892 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1893 #else
1894 	unsigned int truesize = SKB_DATA_ALIGN(size);
1895 #endif
1896 	unsigned int headlen;
1897 	struct sk_buff *skb;
1898 
1899 	/* prefetch first cache line of first page */
1900 	prefetch(xdp->data);
1901 #if L1_CACHE_BYTES < 128
1902 	prefetch(xdp->data + L1_CACHE_BYTES);
1903 #endif
1904 
1905 	/* allocate a skb to store the frags */
1906 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1907 			       I40E_RX_HDR_SIZE,
1908 			       GFP_ATOMIC | __GFP_NOWARN);
1909 	if (unlikely(!skb))
1910 		return NULL;
1911 
1912 	/* Determine available headroom for copy */
1913 	headlen = size;
1914 	if (headlen > I40E_RX_HDR_SIZE)
1915 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1916 
1917 	/* align pull length to size of long to optimize memcpy performance */
1918 	memcpy(__skb_put(skb, headlen), xdp->data,
1919 	       ALIGN(headlen, sizeof(long)));
1920 
1921 	/* update all of the pointers */
1922 	size -= headlen;
1923 	if (size) {
1924 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1925 				rx_buffer->page_offset + headlen,
1926 				size, truesize);
1927 
1928 		/* buffer is used by skb, update page_offset */
1929 #if (PAGE_SIZE < 8192)
1930 		rx_buffer->page_offset ^= truesize;
1931 #else
1932 		rx_buffer->page_offset += truesize;
1933 #endif
1934 	} else {
1935 		/* buffer is unused, reset bias back to rx_buffer */
1936 		rx_buffer->pagecnt_bias++;
1937 	}
1938 
1939 	return skb;
1940 }
1941 
1942 /**
1943  * i40e_build_skb - Build skb around an existing buffer
1944  * @rx_ring: Rx descriptor ring to transact packets on
1945  * @rx_buffer: Rx buffer to pull data from
1946  * @xdp: xdp_buff pointing to the data
1947  *
1948  * This function builds an skb around an existing Rx buffer, taking care
1949  * to set up the skb correctly and avoid any memcpy overhead.
1950  */
1951 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1952 				      struct i40e_rx_buffer *rx_buffer,
1953 				      struct xdp_buff *xdp)
1954 {
1955 	unsigned int size = xdp->data_end - xdp->data;
1956 #if (PAGE_SIZE < 8192)
1957 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1958 #else
1959 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1960 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1961 #endif
1962 	struct sk_buff *skb;
1963 
1964 	/* prefetch first cache line of first page */
1965 	prefetch(xdp->data);
1966 #if L1_CACHE_BYTES < 128
1967 	prefetch(xdp->data + L1_CACHE_BYTES);
1968 #endif
1969 	/* build an skb around the page buffer */
1970 	skb = build_skb(xdp->data_hard_start, truesize);
1971 	if (unlikely(!skb))
1972 		return NULL;
1973 
1974 	/* update pointers within the skb to store the data */
1975 	skb_reserve(skb, I40E_SKB_PAD);
1976 	__skb_put(skb, size);
1977 
1978 	/* buffer is used by skb, update page_offset */
1979 #if (PAGE_SIZE < 8192)
1980 	rx_buffer->page_offset ^= truesize;
1981 #else
1982 	rx_buffer->page_offset += truesize;
1983 #endif
1984 
1985 	return skb;
1986 }
1987 
1988 /**
1989  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1990  * @rx_ring: rx descriptor ring to transact packets on
1991  * @rx_buffer: rx buffer to pull data from
1992  *
1993  * This function will clean up the contents of the rx_buffer.  It will
1994  * either recycle the bufer or unmap it and free the associated resources.
1995  */
1996 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1997 			       struct i40e_rx_buffer *rx_buffer)
1998 {
1999 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2000 		/* hand second half of page back to the ring */
2001 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2002 		rx_ring->rx_stats.page_reuse_count++;
2003 	} else {
2004 		/* we are not reusing the buffer so unmap it */
2005 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2006 				     i40e_rx_pg_size(rx_ring),
2007 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2008 		__page_frag_cache_drain(rx_buffer->page,
2009 					rx_buffer->pagecnt_bias);
2010 	}
2011 
2012 	/* clear contents of buffer_info */
2013 	rx_buffer->page = NULL;
2014 }
2015 
2016 /**
2017  * i40e_is_non_eop - process handling of non-EOP buffers
2018  * @rx_ring: Rx ring being processed
2019  * @rx_desc: Rx descriptor for current buffer
2020  * @skb: Current socket buffer containing buffer in progress
2021  *
2022  * This function updates next to clean.  If the buffer is an EOP buffer
2023  * this function exits returning false, otherwise it will place the
2024  * sk_buff in the next buffer to be chained and return true indicating
2025  * that this is in fact a non-EOP buffer.
2026  **/
2027 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2028 			    union i40e_rx_desc *rx_desc,
2029 			    struct sk_buff *skb)
2030 {
2031 	u32 ntc = rx_ring->next_to_clean + 1;
2032 
2033 	/* fetch, update, and store next to clean */
2034 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2035 	rx_ring->next_to_clean = ntc;
2036 
2037 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2038 
2039 	/* if we are the last buffer then there is nothing else to do */
2040 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2041 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2042 		return false;
2043 
2044 	rx_ring->rx_stats.non_eop_descs++;
2045 
2046 	return true;
2047 }
2048 
2049 #define I40E_XDP_PASS 0
2050 #define I40E_XDP_CONSUMED 1
2051 #define I40E_XDP_TX 2
2052 
2053 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2054 			      struct i40e_ring *xdp_ring);
2055 
2056 /**
2057  * i40e_run_xdp - run an XDP program
2058  * @rx_ring: Rx ring being processed
2059  * @xdp: XDP buffer containing the frame
2060  **/
2061 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2062 				    struct xdp_buff *xdp)
2063 {
2064 	int result = I40E_XDP_PASS;
2065 	struct i40e_ring *xdp_ring;
2066 	struct bpf_prog *xdp_prog;
2067 	u32 act;
2068 
2069 	rcu_read_lock();
2070 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2071 
2072 	if (!xdp_prog)
2073 		goto xdp_out;
2074 
2075 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2076 	switch (act) {
2077 	case XDP_PASS:
2078 		break;
2079 	case XDP_TX:
2080 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2081 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2082 		break;
2083 	default:
2084 		bpf_warn_invalid_xdp_action(act);
2085 	case XDP_ABORTED:
2086 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2087 		/* fallthrough -- handle aborts by dropping packet */
2088 	case XDP_DROP:
2089 		result = I40E_XDP_CONSUMED;
2090 		break;
2091 	}
2092 xdp_out:
2093 	rcu_read_unlock();
2094 	return ERR_PTR(-result);
2095 }
2096 
2097 /**
2098  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2099  * @rx_ring: Rx ring
2100  * @rx_buffer: Rx buffer to adjust
2101  * @size: Size of adjustment
2102  **/
2103 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2104 				struct i40e_rx_buffer *rx_buffer,
2105 				unsigned int size)
2106 {
2107 #if (PAGE_SIZE < 8192)
2108 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2109 
2110 	rx_buffer->page_offset ^= truesize;
2111 #else
2112 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2113 
2114 	rx_buffer->page_offset += truesize;
2115 #endif
2116 }
2117 
2118 /**
2119  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2120  * @rx_ring: rx descriptor ring to transact packets on
2121  * @budget: Total limit on number of packets to process
2122  *
2123  * This function provides a "bounce buffer" approach to Rx interrupt
2124  * processing.  The advantage to this is that on systems that have
2125  * expensive overhead for IOMMU access this provides a means of avoiding
2126  * it by maintaining the mapping of the page to the system.
2127  *
2128  * Returns amount of work completed
2129  **/
2130 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2131 {
2132 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2133 	struct sk_buff *skb = rx_ring->skb;
2134 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2135 	bool failure = false, xdp_xmit = false;
2136 	struct xdp_buff xdp;
2137 
2138 	xdp.rxq = &rx_ring->xdp_rxq;
2139 
2140 	while (likely(total_rx_packets < (unsigned int)budget)) {
2141 		struct i40e_rx_buffer *rx_buffer;
2142 		union i40e_rx_desc *rx_desc;
2143 		unsigned int size;
2144 		u16 vlan_tag;
2145 		u8 rx_ptype;
2146 		u64 qword;
2147 
2148 		/* return some buffers to hardware, one at a time is too slow */
2149 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2150 			failure = failure ||
2151 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2152 			cleaned_count = 0;
2153 		}
2154 
2155 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2156 
2157 		/* status_error_len will always be zero for unused descriptors
2158 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2159 		 * which is always zero because packet split isn't used, if the
2160 		 * hardware wrote DD then the length will be non-zero
2161 		 */
2162 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2163 
2164 		/* This memory barrier is needed to keep us from reading
2165 		 * any other fields out of the rx_desc until we have
2166 		 * verified the descriptor has been written back.
2167 		 */
2168 		dma_rmb();
2169 
2170 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2171 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2172 			cleaned_count++;
2173 			continue;
2174 		}
2175 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2176 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2177 		if (!size)
2178 			break;
2179 
2180 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2181 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2182 
2183 		/* retrieve a buffer from the ring */
2184 		if (!skb) {
2185 			xdp.data = page_address(rx_buffer->page) +
2186 				   rx_buffer->page_offset;
2187 			xdp_set_data_meta_invalid(&xdp);
2188 			xdp.data_hard_start = xdp.data -
2189 					      i40e_rx_offset(rx_ring);
2190 			xdp.data_end = xdp.data + size;
2191 
2192 			skb = i40e_run_xdp(rx_ring, &xdp);
2193 		}
2194 
2195 		if (IS_ERR(skb)) {
2196 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2197 				xdp_xmit = true;
2198 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2199 			} else {
2200 				rx_buffer->pagecnt_bias++;
2201 			}
2202 			total_rx_bytes += size;
2203 			total_rx_packets++;
2204 		} else if (skb) {
2205 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2206 		} else if (ring_uses_build_skb(rx_ring)) {
2207 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2208 		} else {
2209 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2210 		}
2211 
2212 		/* exit if we failed to retrieve a buffer */
2213 		if (!skb) {
2214 			rx_ring->rx_stats.alloc_buff_failed++;
2215 			rx_buffer->pagecnt_bias++;
2216 			break;
2217 		}
2218 
2219 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2220 		cleaned_count++;
2221 
2222 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2223 			continue;
2224 
2225 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2226 			skb = NULL;
2227 			continue;
2228 		}
2229 
2230 		/* probably a little skewed due to removing CRC */
2231 		total_rx_bytes += skb->len;
2232 
2233 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2234 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2235 			   I40E_RXD_QW1_PTYPE_SHIFT;
2236 
2237 		/* populate checksum, VLAN, and protocol */
2238 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2239 
2240 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2241 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2242 
2243 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2244 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2245 		skb = NULL;
2246 
2247 		/* update budget accounting */
2248 		total_rx_packets++;
2249 	}
2250 
2251 	if (xdp_xmit) {
2252 		struct i40e_ring *xdp_ring;
2253 
2254 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2255 
2256 		/* Force memory writes to complete before letting h/w
2257 		 * know there are new descriptors to fetch.
2258 		 */
2259 		wmb();
2260 
2261 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2262 	}
2263 
2264 	rx_ring->skb = skb;
2265 
2266 	u64_stats_update_begin(&rx_ring->syncp);
2267 	rx_ring->stats.packets += total_rx_packets;
2268 	rx_ring->stats.bytes += total_rx_bytes;
2269 	u64_stats_update_end(&rx_ring->syncp);
2270 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2271 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2272 
2273 	/* guarantee a trip back through this routine if there was a failure */
2274 	return failure ? budget : (int)total_rx_packets;
2275 }
2276 
2277 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2278 {
2279 	u32 val;
2280 
2281 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2282 	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2283 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2284 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2285 
2286 	return val;
2287 }
2288 
2289 /* a small macro to shorten up some long lines */
2290 #define INTREG I40E_PFINT_DYN_CTLN
2291 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2292 {
2293 	return vsi->rx_rings[idx]->rx_itr_setting;
2294 }
2295 
2296 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2297 {
2298 	return vsi->tx_rings[idx]->tx_itr_setting;
2299 }
2300 
2301 /**
2302  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2303  * @vsi: the VSI we care about
2304  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2305  *
2306  **/
2307 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2308 					  struct i40e_q_vector *q_vector)
2309 {
2310 	struct i40e_hw *hw = &vsi->back->hw;
2311 	bool rx = false, tx = false;
2312 	u32 rxval, txval;
2313 	int idx = q_vector->v_idx;
2314 	int rx_itr_setting, tx_itr_setting;
2315 
2316 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2317 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2318 		i40e_irq_dynamic_enable_icr0(vsi->back);
2319 		return;
2320 	}
2321 
2322 	/* avoid dynamic calculation if in countdown mode OR if
2323 	 * all dynamic is disabled
2324 	 */
2325 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2326 
2327 	rx_itr_setting = get_rx_itr(vsi, idx);
2328 	tx_itr_setting = get_tx_itr(vsi, idx);
2329 
2330 	if (q_vector->itr_countdown > 0 ||
2331 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2332 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2333 		goto enable_int;
2334 	}
2335 
2336 	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
2337 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2338 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2339 	}
2340 
2341 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2342 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2343 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2344 	}
2345 
2346 	if (rx || tx) {
2347 		/* get the higher of the two ITR adjustments and
2348 		 * use the same value for both ITR registers
2349 		 * when in adaptive mode (Rx and/or Tx)
2350 		 */
2351 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2352 
2353 		q_vector->tx.itr = q_vector->rx.itr = itr;
2354 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2355 		tx = true;
2356 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2357 		rx = true;
2358 	}
2359 
2360 	/* only need to enable the interrupt once, but need
2361 	 * to possibly update both ITR values
2362 	 */
2363 	if (rx) {
2364 		/* set the INTENA_MSK_MASK so that this first write
2365 		 * won't actually enable the interrupt, instead just
2366 		 * updating the ITR (it's bit 31 PF and VF)
2367 		 */
2368 		rxval |= BIT(31);
2369 		/* don't check _DOWN because interrupt isn't being enabled */
2370 		wr32(hw, INTREG(q_vector->reg_idx), rxval);
2371 	}
2372 
2373 enable_int:
2374 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2375 		wr32(hw, INTREG(q_vector->reg_idx), txval);
2376 
2377 	if (q_vector->itr_countdown)
2378 		q_vector->itr_countdown--;
2379 	else
2380 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2381 }
2382 
2383 /**
2384  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2385  * @napi: napi struct with our devices info in it
2386  * @budget: amount of work driver is allowed to do this pass, in packets
2387  *
2388  * This function will clean all queues associated with a q_vector.
2389  *
2390  * Returns the amount of work done
2391  **/
2392 int i40e_napi_poll(struct napi_struct *napi, int budget)
2393 {
2394 	struct i40e_q_vector *q_vector =
2395 			       container_of(napi, struct i40e_q_vector, napi);
2396 	struct i40e_vsi *vsi = q_vector->vsi;
2397 	struct i40e_ring *ring;
2398 	bool clean_complete = true;
2399 	bool arm_wb = false;
2400 	int budget_per_ring;
2401 	int work_done = 0;
2402 
2403 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2404 		napi_complete(napi);
2405 		return 0;
2406 	}
2407 
2408 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2409 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2410 	 */
2411 	i40e_for_each_ring(ring, q_vector->tx) {
2412 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2413 			clean_complete = false;
2414 			continue;
2415 		}
2416 		arm_wb |= ring->arm_wb;
2417 		ring->arm_wb = false;
2418 	}
2419 
2420 	/* Handle case where we are called by netpoll with a budget of 0 */
2421 	if (budget <= 0)
2422 		goto tx_only;
2423 
2424 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2425 	 * allow the budget to go below 1 because that would exit polling early.
2426 	 */
2427 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2428 
2429 	i40e_for_each_ring(ring, q_vector->rx) {
2430 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2431 
2432 		work_done += cleaned;
2433 		/* if we clean as many as budgeted, we must not be done */
2434 		if (cleaned >= budget_per_ring)
2435 			clean_complete = false;
2436 	}
2437 
2438 	/* If work not completed, return budget and polling will return */
2439 	if (!clean_complete) {
2440 		int cpu_id = smp_processor_id();
2441 
2442 		/* It is possible that the interrupt affinity has changed but,
2443 		 * if the cpu is pegged at 100%, polling will never exit while
2444 		 * traffic continues and the interrupt will be stuck on this
2445 		 * cpu.  We check to make sure affinity is correct before we
2446 		 * continue to poll, otherwise we must stop polling so the
2447 		 * interrupt can move to the correct cpu.
2448 		 */
2449 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2450 			/* Tell napi that we are done polling */
2451 			napi_complete_done(napi, work_done);
2452 
2453 			/* Force an interrupt */
2454 			i40e_force_wb(vsi, q_vector);
2455 
2456 			/* Return budget-1 so that polling stops */
2457 			return budget - 1;
2458 		}
2459 tx_only:
2460 		if (arm_wb) {
2461 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2462 			i40e_enable_wb_on_itr(vsi, q_vector);
2463 		}
2464 		return budget;
2465 	}
2466 
2467 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2468 		q_vector->arm_wb_state = false;
2469 
2470 	/* Work is done so exit the polling mode and re-enable the interrupt */
2471 	napi_complete_done(napi, work_done);
2472 
2473 	i40e_update_enable_itr(vsi, q_vector);
2474 
2475 	return min(work_done, budget - 1);
2476 }
2477 
2478 /**
2479  * i40e_atr - Add a Flow Director ATR filter
2480  * @tx_ring:  ring to add programming descriptor to
2481  * @skb:      send buffer
2482  * @tx_flags: send tx flags
2483  **/
2484 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2485 		     u32 tx_flags)
2486 {
2487 	struct i40e_filter_program_desc *fdir_desc;
2488 	struct i40e_pf *pf = tx_ring->vsi->back;
2489 	union {
2490 		unsigned char *network;
2491 		struct iphdr *ipv4;
2492 		struct ipv6hdr *ipv6;
2493 	} hdr;
2494 	struct tcphdr *th;
2495 	unsigned int hlen;
2496 	u32 flex_ptype, dtype_cmd;
2497 	int l4_proto;
2498 	u16 i;
2499 
2500 	/* make sure ATR is enabled */
2501 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2502 		return;
2503 
2504 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2505 		return;
2506 
2507 	/* if sampling is disabled do nothing */
2508 	if (!tx_ring->atr_sample_rate)
2509 		return;
2510 
2511 	/* Currently only IPv4/IPv6 with TCP is supported */
2512 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2513 		return;
2514 
2515 	/* snag network header to get L4 type and address */
2516 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2517 		      skb_inner_network_header(skb) : skb_network_header(skb);
2518 
2519 	/* Note: tx_flags gets modified to reflect inner protocols in
2520 	 * tx_enable_csum function if encap is enabled.
2521 	 */
2522 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2523 		/* access ihl as u8 to avoid unaligned access on ia64 */
2524 		hlen = (hdr.network[0] & 0x0F) << 2;
2525 		l4_proto = hdr.ipv4->protocol;
2526 	} else {
2527 		/* find the start of the innermost ipv6 header */
2528 		unsigned int inner_hlen = hdr.network - skb->data;
2529 		unsigned int h_offset = inner_hlen;
2530 
2531 		/* this function updates h_offset to the end of the header */
2532 		l4_proto =
2533 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2534 		/* hlen will contain our best estimate of the tcp header */
2535 		hlen = h_offset - inner_hlen;
2536 	}
2537 
2538 	if (l4_proto != IPPROTO_TCP)
2539 		return;
2540 
2541 	th = (struct tcphdr *)(hdr.network + hlen);
2542 
2543 	/* Due to lack of space, no more new filters can be programmed */
2544 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2545 		return;
2546 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2547 		/* HW ATR eviction will take care of removing filters on FIN
2548 		 * and RST packets.
2549 		 */
2550 		if (th->fin || th->rst)
2551 			return;
2552 	}
2553 
2554 	tx_ring->atr_count++;
2555 
2556 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2557 	if (!th->fin &&
2558 	    !th->syn &&
2559 	    !th->rst &&
2560 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2561 		return;
2562 
2563 	tx_ring->atr_count = 0;
2564 
2565 	/* grab the next descriptor */
2566 	i = tx_ring->next_to_use;
2567 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2568 
2569 	i++;
2570 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2571 
2572 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2573 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2574 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2575 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2576 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2577 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2578 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2579 
2580 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2581 
2582 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2583 
2584 	dtype_cmd |= (th->fin || th->rst) ?
2585 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2586 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2587 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2588 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2589 
2590 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2591 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2592 
2593 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2594 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2595 
2596 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2597 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2598 		dtype_cmd |=
2599 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2600 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2601 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2602 	else
2603 		dtype_cmd |=
2604 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2605 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2606 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2607 
2608 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2609 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2610 
2611 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2612 	fdir_desc->rsvd = cpu_to_le32(0);
2613 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2614 	fdir_desc->fd_id = cpu_to_le32(0);
2615 }
2616 
2617 /**
2618  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2619  * @skb:     send buffer
2620  * @tx_ring: ring to send buffer on
2621  * @flags:   the tx flags to be set
2622  *
2623  * Checks the skb and set up correspondingly several generic transmit flags
2624  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2625  *
2626  * Returns error code indicate the frame should be dropped upon error and the
2627  * otherwise  returns 0 to indicate the flags has been set properly.
2628  **/
2629 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2630 					     struct i40e_ring *tx_ring,
2631 					     u32 *flags)
2632 {
2633 	__be16 protocol = skb->protocol;
2634 	u32  tx_flags = 0;
2635 
2636 	if (protocol == htons(ETH_P_8021Q) &&
2637 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2638 		/* When HW VLAN acceleration is turned off by the user the
2639 		 * stack sets the protocol to 8021q so that the driver
2640 		 * can take any steps required to support the SW only
2641 		 * VLAN handling.  In our case the driver doesn't need
2642 		 * to take any further steps so just set the protocol
2643 		 * to the encapsulated ethertype.
2644 		 */
2645 		skb->protocol = vlan_get_protocol(skb);
2646 		goto out;
2647 	}
2648 
2649 	/* if we have a HW VLAN tag being added, default to the HW one */
2650 	if (skb_vlan_tag_present(skb)) {
2651 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2652 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2653 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2654 	} else if (protocol == htons(ETH_P_8021Q)) {
2655 		struct vlan_hdr *vhdr, _vhdr;
2656 
2657 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2658 		if (!vhdr)
2659 			return -EINVAL;
2660 
2661 		protocol = vhdr->h_vlan_encapsulated_proto;
2662 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2663 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2664 	}
2665 
2666 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2667 		goto out;
2668 
2669 	/* Insert 802.1p priority into VLAN header */
2670 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2671 	    (skb->priority != TC_PRIO_CONTROL)) {
2672 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2673 		tx_flags |= (skb->priority & 0x7) <<
2674 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2675 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2676 			struct vlan_ethhdr *vhdr;
2677 			int rc;
2678 
2679 			rc = skb_cow_head(skb, 0);
2680 			if (rc < 0)
2681 				return rc;
2682 			vhdr = (struct vlan_ethhdr *)skb->data;
2683 			vhdr->h_vlan_TCI = htons(tx_flags >>
2684 						 I40E_TX_FLAGS_VLAN_SHIFT);
2685 		} else {
2686 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2687 		}
2688 	}
2689 
2690 out:
2691 	*flags = tx_flags;
2692 	return 0;
2693 }
2694 
2695 /**
2696  * i40e_tso - set up the tso context descriptor
2697  * @first:    pointer to first Tx buffer for xmit
2698  * @hdr_len:  ptr to the size of the packet header
2699  * @cd_type_cmd_tso_mss: Quad Word 1
2700  *
2701  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2702  **/
2703 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2704 		    u64 *cd_type_cmd_tso_mss)
2705 {
2706 	struct sk_buff *skb = first->skb;
2707 	u64 cd_cmd, cd_tso_len, cd_mss;
2708 	union {
2709 		struct iphdr *v4;
2710 		struct ipv6hdr *v6;
2711 		unsigned char *hdr;
2712 	} ip;
2713 	union {
2714 		struct tcphdr *tcp;
2715 		struct udphdr *udp;
2716 		unsigned char *hdr;
2717 	} l4;
2718 	u32 paylen, l4_offset;
2719 	u16 gso_segs, gso_size;
2720 	int err;
2721 
2722 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2723 		return 0;
2724 
2725 	if (!skb_is_gso(skb))
2726 		return 0;
2727 
2728 	err = skb_cow_head(skb, 0);
2729 	if (err < 0)
2730 		return err;
2731 
2732 	ip.hdr = skb_network_header(skb);
2733 	l4.hdr = skb_transport_header(skb);
2734 
2735 	/* initialize outer IP header fields */
2736 	if (ip.v4->version == 4) {
2737 		ip.v4->tot_len = 0;
2738 		ip.v4->check = 0;
2739 	} else {
2740 		ip.v6->payload_len = 0;
2741 	}
2742 
2743 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2744 					 SKB_GSO_GRE_CSUM |
2745 					 SKB_GSO_IPXIP4 |
2746 					 SKB_GSO_IPXIP6 |
2747 					 SKB_GSO_UDP_TUNNEL |
2748 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2749 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2750 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2751 			l4.udp->len = 0;
2752 
2753 			/* determine offset of outer transport header */
2754 			l4_offset = l4.hdr - skb->data;
2755 
2756 			/* remove payload length from outer checksum */
2757 			paylen = skb->len - l4_offset;
2758 			csum_replace_by_diff(&l4.udp->check,
2759 					     (__force __wsum)htonl(paylen));
2760 		}
2761 
2762 		/* reset pointers to inner headers */
2763 		ip.hdr = skb_inner_network_header(skb);
2764 		l4.hdr = skb_inner_transport_header(skb);
2765 
2766 		/* initialize inner IP header fields */
2767 		if (ip.v4->version == 4) {
2768 			ip.v4->tot_len = 0;
2769 			ip.v4->check = 0;
2770 		} else {
2771 			ip.v6->payload_len = 0;
2772 		}
2773 	}
2774 
2775 	/* determine offset of inner transport header */
2776 	l4_offset = l4.hdr - skb->data;
2777 
2778 	/* remove payload length from inner checksum */
2779 	paylen = skb->len - l4_offset;
2780 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2781 
2782 	/* compute length of segmentation header */
2783 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2784 
2785 	/* pull values out of skb_shinfo */
2786 	gso_size = skb_shinfo(skb)->gso_size;
2787 	gso_segs = skb_shinfo(skb)->gso_segs;
2788 
2789 	/* update GSO size and bytecount with header size */
2790 	first->gso_segs = gso_segs;
2791 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2792 
2793 	/* find the field values */
2794 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2795 	cd_tso_len = skb->len - *hdr_len;
2796 	cd_mss = gso_size;
2797 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2798 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2799 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2800 	return 1;
2801 }
2802 
2803 /**
2804  * i40e_tsyn - set up the tsyn context descriptor
2805  * @tx_ring:  ptr to the ring to send
2806  * @skb:      ptr to the skb we're sending
2807  * @tx_flags: the collected send information
2808  * @cd_type_cmd_tso_mss: Quad Word 1
2809  *
2810  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2811  **/
2812 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2813 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2814 {
2815 	struct i40e_pf *pf;
2816 
2817 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2818 		return 0;
2819 
2820 	/* Tx timestamps cannot be sampled when doing TSO */
2821 	if (tx_flags & I40E_TX_FLAGS_TSO)
2822 		return 0;
2823 
2824 	/* only timestamp the outbound packet if the user has requested it and
2825 	 * we are not already transmitting a packet to be timestamped
2826 	 */
2827 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2828 	if (!(pf->flags & I40E_FLAG_PTP))
2829 		return 0;
2830 
2831 	if (pf->ptp_tx &&
2832 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2833 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2834 		pf->ptp_tx_start = jiffies;
2835 		pf->ptp_tx_skb = skb_get(skb);
2836 	} else {
2837 		pf->tx_hwtstamp_skipped++;
2838 		return 0;
2839 	}
2840 
2841 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2842 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2843 
2844 	return 1;
2845 }
2846 
2847 /**
2848  * i40e_tx_enable_csum - Enable Tx checksum offloads
2849  * @skb: send buffer
2850  * @tx_flags: pointer to Tx flags currently set
2851  * @td_cmd: Tx descriptor command bits to set
2852  * @td_offset: Tx descriptor header offsets to set
2853  * @tx_ring: Tx descriptor ring
2854  * @cd_tunneling: ptr to context desc bits
2855  **/
2856 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2857 			       u32 *td_cmd, u32 *td_offset,
2858 			       struct i40e_ring *tx_ring,
2859 			       u32 *cd_tunneling)
2860 {
2861 	union {
2862 		struct iphdr *v4;
2863 		struct ipv6hdr *v6;
2864 		unsigned char *hdr;
2865 	} ip;
2866 	union {
2867 		struct tcphdr *tcp;
2868 		struct udphdr *udp;
2869 		unsigned char *hdr;
2870 	} l4;
2871 	unsigned char *exthdr;
2872 	u32 offset, cmd = 0;
2873 	__be16 frag_off;
2874 	u8 l4_proto = 0;
2875 
2876 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2877 		return 0;
2878 
2879 	ip.hdr = skb_network_header(skb);
2880 	l4.hdr = skb_transport_header(skb);
2881 
2882 	/* compute outer L2 header size */
2883 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2884 
2885 	if (skb->encapsulation) {
2886 		u32 tunnel = 0;
2887 		/* define outer network header type */
2888 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2889 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2890 				  I40E_TX_CTX_EXT_IP_IPV4 :
2891 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2892 
2893 			l4_proto = ip.v4->protocol;
2894 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2895 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2896 
2897 			exthdr = ip.hdr + sizeof(*ip.v6);
2898 			l4_proto = ip.v6->nexthdr;
2899 			if (l4.hdr != exthdr)
2900 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2901 						 &l4_proto, &frag_off);
2902 		}
2903 
2904 		/* define outer transport */
2905 		switch (l4_proto) {
2906 		case IPPROTO_UDP:
2907 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2908 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2909 			break;
2910 		case IPPROTO_GRE:
2911 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2912 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2913 			break;
2914 		case IPPROTO_IPIP:
2915 		case IPPROTO_IPV6:
2916 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2917 			l4.hdr = skb_inner_network_header(skb);
2918 			break;
2919 		default:
2920 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2921 				return -1;
2922 
2923 			skb_checksum_help(skb);
2924 			return 0;
2925 		}
2926 
2927 		/* compute outer L3 header size */
2928 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2929 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2930 
2931 		/* switch IP header pointer from outer to inner header */
2932 		ip.hdr = skb_inner_network_header(skb);
2933 
2934 		/* compute tunnel header size */
2935 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2936 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2937 
2938 		/* indicate if we need to offload outer UDP header */
2939 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2940 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2941 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2942 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2943 
2944 		/* record tunnel offload values */
2945 		*cd_tunneling |= tunnel;
2946 
2947 		/* switch L4 header pointer from outer to inner */
2948 		l4.hdr = skb_inner_transport_header(skb);
2949 		l4_proto = 0;
2950 
2951 		/* reset type as we transition from outer to inner headers */
2952 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2953 		if (ip.v4->version == 4)
2954 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2955 		if (ip.v6->version == 6)
2956 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2957 	}
2958 
2959 	/* Enable IP checksum offloads */
2960 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2961 		l4_proto = ip.v4->protocol;
2962 		/* the stack computes the IP header already, the only time we
2963 		 * need the hardware to recompute it is in the case of TSO.
2964 		 */
2965 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2966 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2967 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2968 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2969 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2970 
2971 		exthdr = ip.hdr + sizeof(*ip.v6);
2972 		l4_proto = ip.v6->nexthdr;
2973 		if (l4.hdr != exthdr)
2974 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2975 					 &l4_proto, &frag_off);
2976 	}
2977 
2978 	/* compute inner L3 header size */
2979 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2980 
2981 	/* Enable L4 checksum offloads */
2982 	switch (l4_proto) {
2983 	case IPPROTO_TCP:
2984 		/* enable checksum offloads */
2985 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2986 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2987 		break;
2988 	case IPPROTO_SCTP:
2989 		/* enable SCTP checksum offload */
2990 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2991 		offset |= (sizeof(struct sctphdr) >> 2) <<
2992 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2993 		break;
2994 	case IPPROTO_UDP:
2995 		/* enable UDP checksum offload */
2996 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2997 		offset |= (sizeof(struct udphdr) >> 2) <<
2998 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2999 		break;
3000 	default:
3001 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3002 			return -1;
3003 		skb_checksum_help(skb);
3004 		return 0;
3005 	}
3006 
3007 	*td_cmd |= cmd;
3008 	*td_offset |= offset;
3009 
3010 	return 1;
3011 }
3012 
3013 /**
3014  * i40e_create_tx_ctx Build the Tx context descriptor
3015  * @tx_ring:  ring to create the descriptor on
3016  * @cd_type_cmd_tso_mss: Quad Word 1
3017  * @cd_tunneling: Quad Word 0 - bits 0-31
3018  * @cd_l2tag2: Quad Word 0 - bits 32-63
3019  **/
3020 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3021 			       const u64 cd_type_cmd_tso_mss,
3022 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3023 {
3024 	struct i40e_tx_context_desc *context_desc;
3025 	int i = tx_ring->next_to_use;
3026 
3027 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3028 	    !cd_tunneling && !cd_l2tag2)
3029 		return;
3030 
3031 	/* grab the next descriptor */
3032 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3033 
3034 	i++;
3035 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3036 
3037 	/* cpu_to_le32 and assign to struct fields */
3038 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3039 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3040 	context_desc->rsvd = cpu_to_le16(0);
3041 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3042 }
3043 
3044 /**
3045  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3046  * @tx_ring: the ring to be checked
3047  * @size:    the size buffer we want to assure is available
3048  *
3049  * Returns -EBUSY if a stop is needed, else 0
3050  **/
3051 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3052 {
3053 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3054 	/* Memory barrier before checking head and tail */
3055 	smp_mb();
3056 
3057 	/* Check again in a case another CPU has just made room available. */
3058 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3059 		return -EBUSY;
3060 
3061 	/* A reprieve! - use start_queue because it doesn't call schedule */
3062 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3063 	++tx_ring->tx_stats.restart_queue;
3064 	return 0;
3065 }
3066 
3067 /**
3068  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3069  * @skb:      send buffer
3070  *
3071  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3072  * and so we need to figure out the cases where we need to linearize the skb.
3073  *
3074  * For TSO we need to count the TSO header and segment payload separately.
3075  * As such we need to check cases where we have 7 fragments or more as we
3076  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3077  * the segment payload in the first descriptor, and another 7 for the
3078  * fragments.
3079  **/
3080 bool __i40e_chk_linearize(struct sk_buff *skb)
3081 {
3082 	const struct skb_frag_struct *frag, *stale;
3083 	int nr_frags, sum;
3084 
3085 	/* no need to check if number of frags is less than 7 */
3086 	nr_frags = skb_shinfo(skb)->nr_frags;
3087 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3088 		return false;
3089 
3090 	/* We need to walk through the list and validate that each group
3091 	 * of 6 fragments totals at least gso_size.
3092 	 */
3093 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3094 	frag = &skb_shinfo(skb)->frags[0];
3095 
3096 	/* Initialize size to the negative value of gso_size minus 1.  We
3097 	 * use this as the worst case scenerio in which the frag ahead
3098 	 * of us only provides one byte which is why we are limited to 6
3099 	 * descriptors for a single transmit as the header and previous
3100 	 * fragment are already consuming 2 descriptors.
3101 	 */
3102 	sum = 1 - skb_shinfo(skb)->gso_size;
3103 
3104 	/* Add size of frags 0 through 4 to create our initial sum */
3105 	sum += skb_frag_size(frag++);
3106 	sum += skb_frag_size(frag++);
3107 	sum += skb_frag_size(frag++);
3108 	sum += skb_frag_size(frag++);
3109 	sum += skb_frag_size(frag++);
3110 
3111 	/* Walk through fragments adding latest fragment, testing it, and
3112 	 * then removing stale fragments from the sum.
3113 	 */
3114 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3115 		int stale_size = skb_frag_size(stale);
3116 
3117 		sum += skb_frag_size(frag++);
3118 
3119 		/* The stale fragment may present us with a smaller
3120 		 * descriptor than the actual fragment size. To account
3121 		 * for that we need to remove all the data on the front and
3122 		 * figure out what the remainder would be in the last
3123 		 * descriptor associated with the fragment.
3124 		 */
3125 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3126 			int align_pad = -(stale->page_offset) &
3127 					(I40E_MAX_READ_REQ_SIZE - 1);
3128 
3129 			sum -= align_pad;
3130 			stale_size -= align_pad;
3131 
3132 			do {
3133 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3134 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3135 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3136 		}
3137 
3138 		/* if sum is negative we failed to make sufficient progress */
3139 		if (sum < 0)
3140 			return true;
3141 
3142 		if (!nr_frags--)
3143 			break;
3144 
3145 		sum -= stale_size;
3146 	}
3147 
3148 	return false;
3149 }
3150 
3151 /**
3152  * i40e_tx_map - Build the Tx descriptor
3153  * @tx_ring:  ring to send buffer on
3154  * @skb:      send buffer
3155  * @first:    first buffer info buffer to use
3156  * @tx_flags: collected send information
3157  * @hdr_len:  size of the packet header
3158  * @td_cmd:   the command field in the descriptor
3159  * @td_offset: offset for checksum or crc
3160  *
3161  * Returns 0 on success, -1 on failure to DMA
3162  **/
3163 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3164 			      struct i40e_tx_buffer *first, u32 tx_flags,
3165 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3166 {
3167 	unsigned int data_len = skb->data_len;
3168 	unsigned int size = skb_headlen(skb);
3169 	struct skb_frag_struct *frag;
3170 	struct i40e_tx_buffer *tx_bi;
3171 	struct i40e_tx_desc *tx_desc;
3172 	u16 i = tx_ring->next_to_use;
3173 	u32 td_tag = 0;
3174 	dma_addr_t dma;
3175 	u16 desc_count = 1;
3176 
3177 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3178 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3179 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3180 			 I40E_TX_FLAGS_VLAN_SHIFT;
3181 	}
3182 
3183 	first->tx_flags = tx_flags;
3184 
3185 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3186 
3187 	tx_desc = I40E_TX_DESC(tx_ring, i);
3188 	tx_bi = first;
3189 
3190 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3191 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3192 
3193 		if (dma_mapping_error(tx_ring->dev, dma))
3194 			goto dma_error;
3195 
3196 		/* record length, and DMA address */
3197 		dma_unmap_len_set(tx_bi, len, size);
3198 		dma_unmap_addr_set(tx_bi, dma, dma);
3199 
3200 		/* align size to end of page */
3201 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3202 		tx_desc->buffer_addr = cpu_to_le64(dma);
3203 
3204 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3205 			tx_desc->cmd_type_offset_bsz =
3206 				build_ctob(td_cmd, td_offset,
3207 					   max_data, td_tag);
3208 
3209 			tx_desc++;
3210 			i++;
3211 			desc_count++;
3212 
3213 			if (i == tx_ring->count) {
3214 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3215 				i = 0;
3216 			}
3217 
3218 			dma += max_data;
3219 			size -= max_data;
3220 
3221 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3222 			tx_desc->buffer_addr = cpu_to_le64(dma);
3223 		}
3224 
3225 		if (likely(!data_len))
3226 			break;
3227 
3228 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3229 							  size, td_tag);
3230 
3231 		tx_desc++;
3232 		i++;
3233 		desc_count++;
3234 
3235 		if (i == tx_ring->count) {
3236 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3237 			i = 0;
3238 		}
3239 
3240 		size = skb_frag_size(frag);
3241 		data_len -= size;
3242 
3243 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3244 				       DMA_TO_DEVICE);
3245 
3246 		tx_bi = &tx_ring->tx_bi[i];
3247 	}
3248 
3249 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3250 
3251 	i++;
3252 	if (i == tx_ring->count)
3253 		i = 0;
3254 
3255 	tx_ring->next_to_use = i;
3256 
3257 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3258 
3259 	/* write last descriptor with EOP bit */
3260 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3261 
3262 	/* We OR these values together to check both against 4 (WB_STRIDE)
3263 	 * below. This is safe since we don't re-use desc_count afterwards.
3264 	 */
3265 	desc_count |= ++tx_ring->packet_stride;
3266 
3267 	if (desc_count >= WB_STRIDE) {
3268 		/* write last descriptor with RS bit set */
3269 		td_cmd |= I40E_TX_DESC_CMD_RS;
3270 		tx_ring->packet_stride = 0;
3271 	}
3272 
3273 	tx_desc->cmd_type_offset_bsz =
3274 			build_ctob(td_cmd, td_offset, size, td_tag);
3275 
3276 	/* Force memory writes to complete before letting h/w know there
3277 	 * are new descriptors to fetch.
3278 	 *
3279 	 * We also use this memory barrier to make certain all of the
3280 	 * status bits have been updated before next_to_watch is written.
3281 	 */
3282 	wmb();
3283 
3284 	/* set next_to_watch value indicating a packet is present */
3285 	first->next_to_watch = tx_desc;
3286 
3287 	/* notify HW of packet */
3288 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3289 		writel(i, tx_ring->tail);
3290 
3291 		/* we need this if more than one processor can write to our tail
3292 		 * at a time, it synchronizes IO on IA64/Altix systems
3293 		 */
3294 		mmiowb();
3295 	}
3296 
3297 	return 0;
3298 
3299 dma_error:
3300 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3301 
3302 	/* clear dma mappings for failed tx_bi map */
3303 	for (;;) {
3304 		tx_bi = &tx_ring->tx_bi[i];
3305 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3306 		if (tx_bi == first)
3307 			break;
3308 		if (i == 0)
3309 			i = tx_ring->count;
3310 		i--;
3311 	}
3312 
3313 	tx_ring->next_to_use = i;
3314 
3315 	return -1;
3316 }
3317 
3318 /**
3319  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3320  * @xdp: data to transmit
3321  * @xdp_ring: XDP Tx ring
3322  **/
3323 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3324 			      struct i40e_ring *xdp_ring)
3325 {
3326 	u32 size = xdp->data_end - xdp->data;
3327 	u16 i = xdp_ring->next_to_use;
3328 	struct i40e_tx_buffer *tx_bi;
3329 	struct i40e_tx_desc *tx_desc;
3330 	dma_addr_t dma;
3331 
3332 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3333 		xdp_ring->tx_stats.tx_busy++;
3334 		return I40E_XDP_CONSUMED;
3335 	}
3336 
3337 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3338 	if (dma_mapping_error(xdp_ring->dev, dma))
3339 		return I40E_XDP_CONSUMED;
3340 
3341 	tx_bi = &xdp_ring->tx_bi[i];
3342 	tx_bi->bytecount = size;
3343 	tx_bi->gso_segs = 1;
3344 	tx_bi->raw_buf = xdp->data;
3345 
3346 	/* record length, and DMA address */
3347 	dma_unmap_len_set(tx_bi, len, size);
3348 	dma_unmap_addr_set(tx_bi, dma, dma);
3349 
3350 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3351 	tx_desc->buffer_addr = cpu_to_le64(dma);
3352 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3353 						  | I40E_TXD_CMD,
3354 						  0, size, 0);
3355 
3356 	/* Make certain all of the status bits have been updated
3357 	 * before next_to_watch is written.
3358 	 */
3359 	smp_wmb();
3360 
3361 	i++;
3362 	if (i == xdp_ring->count)
3363 		i = 0;
3364 
3365 	tx_bi->next_to_watch = tx_desc;
3366 	xdp_ring->next_to_use = i;
3367 
3368 	return I40E_XDP_TX;
3369 }
3370 
3371 /**
3372  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3373  * @skb:     send buffer
3374  * @tx_ring: ring to send buffer on
3375  *
3376  * Returns NETDEV_TX_OK if sent, else an error code
3377  **/
3378 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3379 					struct i40e_ring *tx_ring)
3380 {
3381 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3382 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3383 	struct i40e_tx_buffer *first;
3384 	u32 td_offset = 0;
3385 	u32 tx_flags = 0;
3386 	__be16 protocol;
3387 	u32 td_cmd = 0;
3388 	u8 hdr_len = 0;
3389 	int tso, count;
3390 	int tsyn;
3391 
3392 	/* prefetch the data, we'll need it later */
3393 	prefetch(skb->data);
3394 
3395 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3396 
3397 	count = i40e_xmit_descriptor_count(skb);
3398 	if (i40e_chk_linearize(skb, count)) {
3399 		if (__skb_linearize(skb)) {
3400 			dev_kfree_skb_any(skb);
3401 			return NETDEV_TX_OK;
3402 		}
3403 		count = i40e_txd_use_count(skb->len);
3404 		tx_ring->tx_stats.tx_linearize++;
3405 	}
3406 
3407 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3408 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3409 	 *       + 4 desc gap to avoid the cache line where head is,
3410 	 *       + 1 desc for context descriptor,
3411 	 * otherwise try next time
3412 	 */
3413 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3414 		tx_ring->tx_stats.tx_busy++;
3415 		return NETDEV_TX_BUSY;
3416 	}
3417 
3418 	/* record the location of the first descriptor for this packet */
3419 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3420 	first->skb = skb;
3421 	first->bytecount = skb->len;
3422 	first->gso_segs = 1;
3423 
3424 	/* prepare the xmit flags */
3425 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3426 		goto out_drop;
3427 
3428 	/* obtain protocol of skb */
3429 	protocol = vlan_get_protocol(skb);
3430 
3431 	/* setup IPv4/IPv6 offloads */
3432 	if (protocol == htons(ETH_P_IP))
3433 		tx_flags |= I40E_TX_FLAGS_IPV4;
3434 	else if (protocol == htons(ETH_P_IPV6))
3435 		tx_flags |= I40E_TX_FLAGS_IPV6;
3436 
3437 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3438 
3439 	if (tso < 0)
3440 		goto out_drop;
3441 	else if (tso)
3442 		tx_flags |= I40E_TX_FLAGS_TSO;
3443 
3444 	/* Always offload the checksum, since it's in the data descriptor */
3445 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3446 				  tx_ring, &cd_tunneling);
3447 	if (tso < 0)
3448 		goto out_drop;
3449 
3450 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3451 
3452 	if (tsyn)
3453 		tx_flags |= I40E_TX_FLAGS_TSYN;
3454 
3455 	skb_tx_timestamp(skb);
3456 
3457 	/* always enable CRC insertion offload */
3458 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3459 
3460 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3461 			   cd_tunneling, cd_l2tag2);
3462 
3463 	/* Add Flow Director ATR if it's enabled.
3464 	 *
3465 	 * NOTE: this must always be directly before the data descriptor.
3466 	 */
3467 	i40e_atr(tx_ring, skb, tx_flags);
3468 
3469 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3470 			td_cmd, td_offset))
3471 		goto cleanup_tx_tstamp;
3472 
3473 	return NETDEV_TX_OK;
3474 
3475 out_drop:
3476 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3477 	dev_kfree_skb_any(first->skb);
3478 	first->skb = NULL;
3479 cleanup_tx_tstamp:
3480 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3481 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3482 
3483 		dev_kfree_skb_any(pf->ptp_tx_skb);
3484 		pf->ptp_tx_skb = NULL;
3485 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3486 	}
3487 
3488 	return NETDEV_TX_OK;
3489 }
3490 
3491 /**
3492  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3493  * @skb:    send buffer
3494  * @netdev: network interface device structure
3495  *
3496  * Returns NETDEV_TX_OK if sent, else an error code
3497  **/
3498 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3499 {
3500 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3501 	struct i40e_vsi *vsi = np->vsi;
3502 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3503 
3504 	/* hardware can't handle really short frames, hardware padding works
3505 	 * beyond this point
3506 	 */
3507 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3508 		return NETDEV_TX_OK;
3509 
3510 	return i40e_xmit_frame_ring(skb, tx_ring);
3511 }
3512