1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <net/busy_poll.h> 6 #include <linux/bpf_trace.h> 7 #include <net/xdp.h> 8 #include "i40e.h" 9 #include "i40e_trace.h" 10 #include "i40e_prototype.h" 11 #include "i40e_txrx_common.h" 12 #include "i40e_xsk.h" 13 14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 15 /** 16 * i40e_fdir - Generate a Flow Director descriptor based on fdata 17 * @tx_ring: Tx ring to send buffer on 18 * @fdata: Flow director filter data 19 * @add: Indicate if we are adding a rule or deleting one 20 * 21 **/ 22 static void i40e_fdir(struct i40e_ring *tx_ring, 23 struct i40e_fdir_filter *fdata, bool add) 24 { 25 struct i40e_filter_program_desc *fdir_desc; 26 struct i40e_pf *pf = tx_ring->vsi->back; 27 u32 flex_ptype, dtype_cmd; 28 u16 i; 29 30 /* grab the next descriptor */ 31 i = tx_ring->next_to_use; 32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 33 34 i++; 35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 36 37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 39 40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 42 43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 45 46 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 47 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 48 49 /* Use LAN VSI Id if not programmed by user */ 50 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 51 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 52 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 53 54 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 55 56 dtype_cmd |= add ? 57 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 58 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 59 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 60 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 61 62 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 63 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 64 65 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 66 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 67 68 if (fdata->cnt_index) { 69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 70 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 71 ((u32)fdata->cnt_index << 72 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 73 } 74 75 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 76 fdir_desc->rsvd = cpu_to_le32(0); 77 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 78 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 79 } 80 81 #define I40E_FD_CLEAN_DELAY 10 82 /** 83 * i40e_program_fdir_filter - Program a Flow Director filter 84 * @fdir_data: Packet data that will be filter parameters 85 * @raw_packet: the pre-allocated packet buffer for FDir 86 * @pf: The PF pointer 87 * @add: True for add/update, False for remove 88 **/ 89 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 90 u8 *raw_packet, struct i40e_pf *pf, 91 bool add) 92 { 93 struct i40e_tx_buffer *tx_buf, *first; 94 struct i40e_tx_desc *tx_desc; 95 struct i40e_ring *tx_ring; 96 struct i40e_vsi *vsi; 97 struct device *dev; 98 dma_addr_t dma; 99 u32 td_cmd = 0; 100 u16 i; 101 102 /* find existing FDIR VSI */ 103 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 104 if (!vsi) 105 return -ENOENT; 106 107 tx_ring = vsi->tx_rings[0]; 108 dev = tx_ring->dev; 109 110 /* we need two descriptors to add/del a filter and we can wait */ 111 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 112 if (!i) 113 return -EAGAIN; 114 msleep_interruptible(1); 115 } 116 117 dma = dma_map_single(dev, raw_packet, 118 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 119 if (dma_mapping_error(dev, dma)) 120 goto dma_fail; 121 122 /* grab the next descriptor */ 123 i = tx_ring->next_to_use; 124 first = &tx_ring->tx_bi[i]; 125 i40e_fdir(tx_ring, fdir_data, add); 126 127 /* Now program a dummy descriptor */ 128 i = tx_ring->next_to_use; 129 tx_desc = I40E_TX_DESC(tx_ring, i); 130 tx_buf = &tx_ring->tx_bi[i]; 131 132 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 133 134 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 135 136 /* record length, and DMA address */ 137 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 138 dma_unmap_addr_set(tx_buf, dma, dma); 139 140 tx_desc->buffer_addr = cpu_to_le64(dma); 141 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 142 143 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 144 tx_buf->raw_buf = (void *)raw_packet; 145 146 tx_desc->cmd_type_offset_bsz = 147 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 148 149 /* Force memory writes to complete before letting h/w 150 * know there are new descriptors to fetch. 151 */ 152 wmb(); 153 154 /* Mark the data descriptor to be watched */ 155 first->next_to_watch = tx_desc; 156 157 writel(tx_ring->next_to_use, tx_ring->tail); 158 return 0; 159 160 dma_fail: 161 return -1; 162 } 163 164 #define IP_HEADER_OFFSET 14 165 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 166 /** 167 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 168 * @vsi: pointer to the targeted VSI 169 * @fd_data: the flow director data required for the FDir descriptor 170 * @add: true adds a filter, false removes it 171 * 172 * Returns 0 if the filters were successfully added or removed 173 **/ 174 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 175 struct i40e_fdir_filter *fd_data, 176 bool add) 177 { 178 struct i40e_pf *pf = vsi->back; 179 struct udphdr *udp; 180 struct iphdr *ip; 181 u8 *raw_packet; 182 int ret; 183 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 184 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 185 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 186 187 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 188 if (!raw_packet) 189 return -ENOMEM; 190 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 191 192 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 193 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 194 + sizeof(struct iphdr)); 195 196 ip->daddr = fd_data->dst_ip; 197 udp->dest = fd_data->dst_port; 198 ip->saddr = fd_data->src_ip; 199 udp->source = fd_data->src_port; 200 201 if (fd_data->flex_filter) { 202 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 203 __be16 pattern = fd_data->flex_word; 204 u16 off = fd_data->flex_offset; 205 206 *((__force __be16 *)(payload + off)) = pattern; 207 } 208 209 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 210 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 211 if (ret) { 212 dev_info(&pf->pdev->dev, 213 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 214 fd_data->pctype, fd_data->fd_id, ret); 215 /* Free the packet buffer since it wasn't added to the ring */ 216 kfree(raw_packet); 217 return -EOPNOTSUPP; 218 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 219 if (add) 220 dev_info(&pf->pdev->dev, 221 "Filter OK for PCTYPE %d loc = %d\n", 222 fd_data->pctype, fd_data->fd_id); 223 else 224 dev_info(&pf->pdev->dev, 225 "Filter deleted for PCTYPE %d loc = %d\n", 226 fd_data->pctype, fd_data->fd_id); 227 } 228 229 if (add) 230 pf->fd_udp4_filter_cnt++; 231 else 232 pf->fd_udp4_filter_cnt--; 233 234 return 0; 235 } 236 237 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 238 /** 239 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 240 * @vsi: pointer to the targeted VSI 241 * @fd_data: the flow director data required for the FDir descriptor 242 * @add: true adds a filter, false removes it 243 * 244 * Returns 0 if the filters were successfully added or removed 245 **/ 246 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 247 struct i40e_fdir_filter *fd_data, 248 bool add) 249 { 250 struct i40e_pf *pf = vsi->back; 251 struct tcphdr *tcp; 252 struct iphdr *ip; 253 u8 *raw_packet; 254 int ret; 255 /* Dummy packet */ 256 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 257 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 258 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 259 0x0, 0x72, 0, 0, 0, 0}; 260 261 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 262 if (!raw_packet) 263 return -ENOMEM; 264 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 265 266 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 267 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 268 + sizeof(struct iphdr)); 269 270 ip->daddr = fd_data->dst_ip; 271 tcp->dest = fd_data->dst_port; 272 ip->saddr = fd_data->src_ip; 273 tcp->source = fd_data->src_port; 274 275 if (fd_data->flex_filter) { 276 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 277 __be16 pattern = fd_data->flex_word; 278 u16 off = fd_data->flex_offset; 279 280 *((__force __be16 *)(payload + off)) = pattern; 281 } 282 283 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 284 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 285 if (ret) { 286 dev_info(&pf->pdev->dev, 287 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 288 fd_data->pctype, fd_data->fd_id, ret); 289 /* Free the packet buffer since it wasn't added to the ring */ 290 kfree(raw_packet); 291 return -EOPNOTSUPP; 292 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 293 if (add) 294 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 295 fd_data->pctype, fd_data->fd_id); 296 else 297 dev_info(&pf->pdev->dev, 298 "Filter deleted for PCTYPE %d loc = %d\n", 299 fd_data->pctype, fd_data->fd_id); 300 } 301 302 if (add) { 303 pf->fd_tcp4_filter_cnt++; 304 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 305 I40E_DEBUG_FD & pf->hw.debug_mask) 306 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 307 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 308 } else { 309 pf->fd_tcp4_filter_cnt--; 310 } 311 312 return 0; 313 } 314 315 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 316 /** 317 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 318 * a specific flow spec 319 * @vsi: pointer to the targeted VSI 320 * @fd_data: the flow director data required for the FDir descriptor 321 * @add: true adds a filter, false removes it 322 * 323 * Returns 0 if the filters were successfully added or removed 324 **/ 325 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 326 struct i40e_fdir_filter *fd_data, 327 bool add) 328 { 329 struct i40e_pf *pf = vsi->back; 330 struct sctphdr *sctp; 331 struct iphdr *ip; 332 u8 *raw_packet; 333 int ret; 334 /* Dummy packet */ 335 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 336 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 337 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 338 339 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 340 if (!raw_packet) 341 return -ENOMEM; 342 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 343 344 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 345 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 346 + sizeof(struct iphdr)); 347 348 ip->daddr = fd_data->dst_ip; 349 sctp->dest = fd_data->dst_port; 350 ip->saddr = fd_data->src_ip; 351 sctp->source = fd_data->src_port; 352 353 if (fd_data->flex_filter) { 354 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 355 __be16 pattern = fd_data->flex_word; 356 u16 off = fd_data->flex_offset; 357 358 *((__force __be16 *)(payload + off)) = pattern; 359 } 360 361 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 362 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 363 if (ret) { 364 dev_info(&pf->pdev->dev, 365 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 366 fd_data->pctype, fd_data->fd_id, ret); 367 /* Free the packet buffer since it wasn't added to the ring */ 368 kfree(raw_packet); 369 return -EOPNOTSUPP; 370 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 371 if (add) 372 dev_info(&pf->pdev->dev, 373 "Filter OK for PCTYPE %d loc = %d\n", 374 fd_data->pctype, fd_data->fd_id); 375 else 376 dev_info(&pf->pdev->dev, 377 "Filter deleted for PCTYPE %d loc = %d\n", 378 fd_data->pctype, fd_data->fd_id); 379 } 380 381 if (add) 382 pf->fd_sctp4_filter_cnt++; 383 else 384 pf->fd_sctp4_filter_cnt--; 385 386 return 0; 387 } 388 389 #define I40E_IP_DUMMY_PACKET_LEN 34 390 /** 391 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 392 * a specific flow spec 393 * @vsi: pointer to the targeted VSI 394 * @fd_data: the flow director data required for the FDir descriptor 395 * @add: true adds a filter, false removes it 396 * 397 * Returns 0 if the filters were successfully added or removed 398 **/ 399 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 400 struct i40e_fdir_filter *fd_data, 401 bool add) 402 { 403 struct i40e_pf *pf = vsi->back; 404 struct iphdr *ip; 405 u8 *raw_packet; 406 int ret; 407 int i; 408 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 409 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 410 0, 0, 0, 0}; 411 412 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 413 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 414 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 415 if (!raw_packet) 416 return -ENOMEM; 417 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 418 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 419 420 ip->saddr = fd_data->src_ip; 421 ip->daddr = fd_data->dst_ip; 422 ip->protocol = 0; 423 424 if (fd_data->flex_filter) { 425 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 426 __be16 pattern = fd_data->flex_word; 427 u16 off = fd_data->flex_offset; 428 429 *((__force __be16 *)(payload + off)) = pattern; 430 } 431 432 fd_data->pctype = i; 433 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 434 if (ret) { 435 dev_info(&pf->pdev->dev, 436 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 437 fd_data->pctype, fd_data->fd_id, ret); 438 /* The packet buffer wasn't added to the ring so we 439 * need to free it now. 440 */ 441 kfree(raw_packet); 442 return -EOPNOTSUPP; 443 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 444 if (add) 445 dev_info(&pf->pdev->dev, 446 "Filter OK for PCTYPE %d loc = %d\n", 447 fd_data->pctype, fd_data->fd_id); 448 else 449 dev_info(&pf->pdev->dev, 450 "Filter deleted for PCTYPE %d loc = %d\n", 451 fd_data->pctype, fd_data->fd_id); 452 } 453 } 454 455 if (add) 456 pf->fd_ip4_filter_cnt++; 457 else 458 pf->fd_ip4_filter_cnt--; 459 460 return 0; 461 } 462 463 /** 464 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 465 * @vsi: pointer to the targeted VSI 466 * @input: filter to add or delete 467 * @add: true adds a filter, false removes it 468 * 469 **/ 470 int i40e_add_del_fdir(struct i40e_vsi *vsi, 471 struct i40e_fdir_filter *input, bool add) 472 { 473 struct i40e_pf *pf = vsi->back; 474 int ret; 475 476 switch (input->flow_type & ~FLOW_EXT) { 477 case TCP_V4_FLOW: 478 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 479 break; 480 case UDP_V4_FLOW: 481 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 482 break; 483 case SCTP_V4_FLOW: 484 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 485 break; 486 case IP_USER_FLOW: 487 switch (input->ip4_proto) { 488 case IPPROTO_TCP: 489 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 490 break; 491 case IPPROTO_UDP: 492 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 493 break; 494 case IPPROTO_SCTP: 495 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 496 break; 497 case IPPROTO_IP: 498 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 499 break; 500 default: 501 /* We cannot support masking based on protocol */ 502 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 503 input->ip4_proto); 504 return -EINVAL; 505 } 506 break; 507 default: 508 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 509 input->flow_type); 510 return -EINVAL; 511 } 512 513 /* The buffer allocated here will be normally be freed by 514 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 515 * completion. In the event of an error adding the buffer to the FDIR 516 * ring, it will immediately be freed. It may also be freed by 517 * i40e_clean_tx_ring() when closing the VSI. 518 */ 519 return ret; 520 } 521 522 /** 523 * i40e_fd_handle_status - check the Programming Status for FD 524 * @rx_ring: the Rx ring for this descriptor 525 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 526 * @prog_id: the id originally used for programming 527 * 528 * This is used to verify if the FD programming or invalidation 529 * requested by SW to the HW is successful or not and take actions accordingly. 530 **/ 531 void i40e_fd_handle_status(struct i40e_ring *rx_ring, 532 union i40e_rx_desc *rx_desc, u8 prog_id) 533 { 534 struct i40e_pf *pf = rx_ring->vsi->back; 535 struct pci_dev *pdev = pf->pdev; 536 u32 fcnt_prog, fcnt_avail; 537 u32 error; 538 u64 qw; 539 540 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 541 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 543 544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 545 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 546 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 547 (I40E_DEBUG_FD & pf->hw.debug_mask)) 548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 549 pf->fd_inv); 550 551 /* Check if the programming error is for ATR. 552 * If so, auto disable ATR and set a state for 553 * flush in progress. Next time we come here if flush is in 554 * progress do nothing, once flush is complete the state will 555 * be cleared. 556 */ 557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 558 return; 559 560 pf->fd_add_err++; 561 /* store the current atr filter count */ 562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 563 564 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 566 /* These set_bit() calls aren't atomic with the 567 * test_bit() here, but worse case we potentially 568 * disable ATR and queue a flush right after SB 569 * support is re-enabled. That shouldn't cause an 570 * issue in practice 571 */ 572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 574 } 575 576 /* filter programming failed most likely due to table full */ 577 fcnt_prog = i40e_get_global_fd_count(pf); 578 fcnt_avail = pf->fdir_pf_filter_count; 579 /* If ATR is running fcnt_prog can quickly change, 580 * if we are very close to full, it makes sense to disable 581 * FD ATR/SB and then re-enable it when there is room. 582 */ 583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 586 pf->state)) 587 if (I40E_DEBUG_FD & pf->hw.debug_mask) 588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 589 } 590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 591 if (I40E_DEBUG_FD & pf->hw.debug_mask) 592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 593 rx_desc->wb.qword0.hi_dword.fd_id); 594 } 595 } 596 597 /** 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 599 * @ring: the ring that owns the buffer 600 * @tx_buffer: the buffer to free 601 **/ 602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 603 struct i40e_tx_buffer *tx_buffer) 604 { 605 if (tx_buffer->skb) { 606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 607 kfree(tx_buffer->raw_buf); 608 else if (ring_is_xdp(ring)) 609 xdp_return_frame(tx_buffer->xdpf); 610 else 611 dev_kfree_skb_any(tx_buffer->skb); 612 if (dma_unmap_len(tx_buffer, len)) 613 dma_unmap_single(ring->dev, 614 dma_unmap_addr(tx_buffer, dma), 615 dma_unmap_len(tx_buffer, len), 616 DMA_TO_DEVICE); 617 } else if (dma_unmap_len(tx_buffer, len)) { 618 dma_unmap_page(ring->dev, 619 dma_unmap_addr(tx_buffer, dma), 620 dma_unmap_len(tx_buffer, len), 621 DMA_TO_DEVICE); 622 } 623 624 tx_buffer->next_to_watch = NULL; 625 tx_buffer->skb = NULL; 626 dma_unmap_len_set(tx_buffer, len, 0); 627 /* tx_buffer must be completely set up in the transmit path */ 628 } 629 630 /** 631 * i40e_clean_tx_ring - Free any empty Tx buffers 632 * @tx_ring: ring to be cleaned 633 **/ 634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 635 { 636 unsigned long bi_size; 637 u16 i; 638 639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) { 640 i40e_xsk_clean_tx_ring(tx_ring); 641 } else { 642 /* ring already cleared, nothing to do */ 643 if (!tx_ring->tx_bi) 644 return; 645 646 /* Free all the Tx ring sk_buffs */ 647 for (i = 0; i < tx_ring->count; i++) 648 i40e_unmap_and_free_tx_resource(tx_ring, 649 &tx_ring->tx_bi[i]); 650 } 651 652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 653 memset(tx_ring->tx_bi, 0, bi_size); 654 655 /* Zero out the descriptor ring */ 656 memset(tx_ring->desc, 0, tx_ring->size); 657 658 tx_ring->next_to_use = 0; 659 tx_ring->next_to_clean = 0; 660 661 if (!tx_ring->netdev) 662 return; 663 664 /* cleanup Tx queue statistics */ 665 netdev_tx_reset_queue(txring_txq(tx_ring)); 666 } 667 668 /** 669 * i40e_free_tx_resources - Free Tx resources per queue 670 * @tx_ring: Tx descriptor ring for a specific queue 671 * 672 * Free all transmit software resources 673 **/ 674 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 675 { 676 i40e_clean_tx_ring(tx_ring); 677 kfree(tx_ring->tx_bi); 678 tx_ring->tx_bi = NULL; 679 680 if (tx_ring->desc) { 681 dma_free_coherent(tx_ring->dev, tx_ring->size, 682 tx_ring->desc, tx_ring->dma); 683 tx_ring->desc = NULL; 684 } 685 } 686 687 /** 688 * i40e_get_tx_pending - how many tx descriptors not processed 689 * @ring: the ring of descriptors 690 * @in_sw: use SW variables 691 * 692 * Since there is no access to the ring head register 693 * in XL710, we need to use our local copies 694 **/ 695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 696 { 697 u32 head, tail; 698 699 if (!in_sw) { 700 head = i40e_get_head(ring); 701 tail = readl(ring->tail); 702 } else { 703 head = ring->next_to_clean; 704 tail = ring->next_to_use; 705 } 706 707 if (head != tail) 708 return (head < tail) ? 709 tail - head : (tail + ring->count - head); 710 711 return 0; 712 } 713 714 /** 715 * i40e_detect_recover_hung - Function to detect and recover hung_queues 716 * @vsi: pointer to vsi struct with tx queues 717 * 718 * VSI has netdev and netdev has TX queues. This function is to check each of 719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 720 **/ 721 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 722 { 723 struct i40e_ring *tx_ring = NULL; 724 struct net_device *netdev; 725 unsigned int i; 726 int packets; 727 728 if (!vsi) 729 return; 730 731 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 732 return; 733 734 netdev = vsi->netdev; 735 if (!netdev) 736 return; 737 738 if (!netif_carrier_ok(netdev)) 739 return; 740 741 for (i = 0; i < vsi->num_queue_pairs; i++) { 742 tx_ring = vsi->tx_rings[i]; 743 if (tx_ring && tx_ring->desc) { 744 /* If packet counter has not changed the queue is 745 * likely stalled, so force an interrupt for this 746 * queue. 747 * 748 * prev_pkt_ctr would be negative if there was no 749 * pending work. 750 */ 751 packets = tx_ring->stats.packets & INT_MAX; 752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 753 i40e_force_wb(vsi, tx_ring->q_vector); 754 continue; 755 } 756 757 /* Memory barrier between read of packet count and call 758 * to i40e_get_tx_pending() 759 */ 760 smp_rmb(); 761 tx_ring->tx_stats.prev_pkt_ctr = 762 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 763 } 764 } 765 } 766 767 /** 768 * i40e_clean_tx_irq - Reclaim resources after transmit completes 769 * @vsi: the VSI we care about 770 * @tx_ring: Tx ring to clean 771 * @napi_budget: Used to determine if we are in netpoll 772 * 773 * Returns true if there's any budget left (e.g. the clean is finished) 774 **/ 775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 776 struct i40e_ring *tx_ring, int napi_budget) 777 { 778 u16 i = tx_ring->next_to_clean; 779 struct i40e_tx_buffer *tx_buf; 780 struct i40e_tx_desc *tx_head; 781 struct i40e_tx_desc *tx_desc; 782 unsigned int total_bytes = 0, total_packets = 0; 783 unsigned int budget = vsi->work_limit; 784 785 tx_buf = &tx_ring->tx_bi[i]; 786 tx_desc = I40E_TX_DESC(tx_ring, i); 787 i -= tx_ring->count; 788 789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 790 791 do { 792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 793 794 /* if next_to_watch is not set then there is no work pending */ 795 if (!eop_desc) 796 break; 797 798 /* prevent any other reads prior to eop_desc */ 799 smp_rmb(); 800 801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 802 /* we have caught up to head, no work left to do */ 803 if (tx_head == tx_desc) 804 break; 805 806 /* clear next_to_watch to prevent false hangs */ 807 tx_buf->next_to_watch = NULL; 808 809 /* update the statistics for this packet */ 810 total_bytes += tx_buf->bytecount; 811 total_packets += tx_buf->gso_segs; 812 813 /* free the skb/XDP data */ 814 if (ring_is_xdp(tx_ring)) 815 xdp_return_frame(tx_buf->xdpf); 816 else 817 napi_consume_skb(tx_buf->skb, napi_budget); 818 819 /* unmap skb header data */ 820 dma_unmap_single(tx_ring->dev, 821 dma_unmap_addr(tx_buf, dma), 822 dma_unmap_len(tx_buf, len), 823 DMA_TO_DEVICE); 824 825 /* clear tx_buffer data */ 826 tx_buf->skb = NULL; 827 dma_unmap_len_set(tx_buf, len, 0); 828 829 /* unmap remaining buffers */ 830 while (tx_desc != eop_desc) { 831 i40e_trace(clean_tx_irq_unmap, 832 tx_ring, tx_desc, tx_buf); 833 834 tx_buf++; 835 tx_desc++; 836 i++; 837 if (unlikely(!i)) { 838 i -= tx_ring->count; 839 tx_buf = tx_ring->tx_bi; 840 tx_desc = I40E_TX_DESC(tx_ring, 0); 841 } 842 843 /* unmap any remaining paged data */ 844 if (dma_unmap_len(tx_buf, len)) { 845 dma_unmap_page(tx_ring->dev, 846 dma_unmap_addr(tx_buf, dma), 847 dma_unmap_len(tx_buf, len), 848 DMA_TO_DEVICE); 849 dma_unmap_len_set(tx_buf, len, 0); 850 } 851 } 852 853 /* move us one more past the eop_desc for start of next pkt */ 854 tx_buf++; 855 tx_desc++; 856 i++; 857 if (unlikely(!i)) { 858 i -= tx_ring->count; 859 tx_buf = tx_ring->tx_bi; 860 tx_desc = I40E_TX_DESC(tx_ring, 0); 861 } 862 863 prefetch(tx_desc); 864 865 /* update budget accounting */ 866 budget--; 867 } while (likely(budget)); 868 869 i += tx_ring->count; 870 tx_ring->next_to_clean = i; 871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 872 i40e_arm_wb(tx_ring, vsi, budget); 873 874 if (ring_is_xdp(tx_ring)) 875 return !!budget; 876 877 /* notify netdev of completed buffers */ 878 netdev_tx_completed_queue(txring_txq(tx_ring), 879 total_packets, total_bytes); 880 881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 884 /* Make sure that anybody stopping the queue after this 885 * sees the new next_to_clean. 886 */ 887 smp_mb(); 888 if (__netif_subqueue_stopped(tx_ring->netdev, 889 tx_ring->queue_index) && 890 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 891 netif_wake_subqueue(tx_ring->netdev, 892 tx_ring->queue_index); 893 ++tx_ring->tx_stats.restart_queue; 894 } 895 } 896 897 return !!budget; 898 } 899 900 /** 901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 902 * @vsi: the VSI we care about 903 * @q_vector: the vector on which to enable writeback 904 * 905 **/ 906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 907 struct i40e_q_vector *q_vector) 908 { 909 u16 flags = q_vector->tx.ring[0].flags; 910 u32 val; 911 912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 913 return; 914 915 if (q_vector->arm_wb_state) 916 return; 917 918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 921 922 wr32(&vsi->back->hw, 923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 924 val); 925 } else { 926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 928 929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 930 } 931 q_vector->arm_wb_state = true; 932 } 933 934 /** 935 * i40e_force_wb - Issue SW Interrupt so HW does a wb 936 * @vsi: the VSI we care about 937 * @q_vector: the vector on which to force writeback 938 * 939 **/ 940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 941 { 942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 947 /* allow 00 to be written to the index */ 948 949 wr32(&vsi->back->hw, 950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 951 } else { 952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 956 /* allow 00 to be written to the index */ 957 958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 959 } 960 } 961 962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 963 struct i40e_ring_container *rc) 964 { 965 return &q_vector->rx == rc; 966 } 967 968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 969 { 970 unsigned int divisor; 971 972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 973 case I40E_LINK_SPEED_40GB: 974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 975 break; 976 case I40E_LINK_SPEED_25GB: 977 case I40E_LINK_SPEED_20GB: 978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 979 break; 980 default: 981 case I40E_LINK_SPEED_10GB: 982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 983 break; 984 case I40E_LINK_SPEED_1GB: 985 case I40E_LINK_SPEED_100MB: 986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 987 break; 988 } 989 990 return divisor; 991 } 992 993 /** 994 * i40e_update_itr - update the dynamic ITR value based on statistics 995 * @q_vector: structure containing interrupt and ring information 996 * @rc: structure containing ring performance data 997 * 998 * Stores a new ITR value based on packets and byte 999 * counts during the last interrupt. The advantage of per interrupt 1000 * computation is faster updates and more accurate ITR for the current 1001 * traffic pattern. Constants in this function were computed 1002 * based on theoretical maximum wire speed and thresholds were set based 1003 * on testing data as well as attempting to minimize response time 1004 * while increasing bulk throughput. 1005 **/ 1006 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1007 struct i40e_ring_container *rc) 1008 { 1009 unsigned int avg_wire_size, packets, bytes, itr; 1010 unsigned long next_update = jiffies; 1011 1012 /* If we don't have any rings just leave ourselves set for maximum 1013 * possible latency so we take ourselves out of the equation. 1014 */ 1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1016 return; 1017 1018 /* For Rx we want to push the delay up and default to low latency. 1019 * for Tx we want to pull the delay down and default to high latency. 1020 */ 1021 itr = i40e_container_is_rx(q_vector, rc) ? 1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1024 1025 /* If we didn't update within up to 1 - 2 jiffies we can assume 1026 * that either packets are coming in so slow there hasn't been 1027 * any work, or that there is so much work that NAPI is dealing 1028 * with interrupt moderation and we don't need to do anything. 1029 */ 1030 if (time_after(next_update, rc->next_update)) 1031 goto clear_counts; 1032 1033 /* If itr_countdown is set it means we programmed an ITR within 1034 * the last 4 interrupt cycles. This has a side effect of us 1035 * potentially firing an early interrupt. In order to work around 1036 * this we need to throw out any data received for a few 1037 * interrupts following the update. 1038 */ 1039 if (q_vector->itr_countdown) { 1040 itr = rc->target_itr; 1041 goto clear_counts; 1042 } 1043 1044 packets = rc->total_packets; 1045 bytes = rc->total_bytes; 1046 1047 if (i40e_container_is_rx(q_vector, rc)) { 1048 /* If Rx there are 1 to 4 packets and bytes are less than 1049 * 9000 assume insufficient data to use bulk rate limiting 1050 * approach unless Tx is already in bulk rate limiting. We 1051 * are likely latency driven. 1052 */ 1053 if (packets && packets < 4 && bytes < 9000 && 1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1055 itr = I40E_ITR_ADAPTIVE_LATENCY; 1056 goto adjust_by_size; 1057 } 1058 } else if (packets < 4) { 1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1060 * bulk mode and we are receiving 4 or fewer packets just 1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1062 * that the Rx can relax. 1063 */ 1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1065 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1066 I40E_ITR_ADAPTIVE_MAX_USECS) 1067 goto clear_counts; 1068 } else if (packets > 32) { 1069 /* If we have processed over 32 packets in a single interrupt 1070 * for Tx assume we need to switch over to "bulk" mode. 1071 */ 1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1073 } 1074 1075 /* We have no packets to actually measure against. This means 1076 * either one of the other queues on this vector is active or 1077 * we are a Tx queue doing TSO with too high of an interrupt rate. 1078 * 1079 * Between 4 and 56 we can assume that our current interrupt delay 1080 * is only slightly too low. As such we should increase it by a small 1081 * fixed amount. 1082 */ 1083 if (packets < 56) { 1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1086 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1088 } 1089 goto clear_counts; 1090 } 1091 1092 if (packets <= 256) { 1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1094 itr &= I40E_ITR_MASK; 1095 1096 /* Between 56 and 112 is our "goldilocks" zone where we are 1097 * working out "just right". Just report that our current 1098 * ITR is good for us. 1099 */ 1100 if (packets <= 112) 1101 goto clear_counts; 1102 1103 /* If packet count is 128 or greater we are likely looking 1104 * at a slight overrun of the delay we want. Try halving 1105 * our delay to see if that will cut the number of packets 1106 * in half per interrupt. 1107 */ 1108 itr /= 2; 1109 itr &= I40E_ITR_MASK; 1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1112 1113 goto clear_counts; 1114 } 1115 1116 /* The paths below assume we are dealing with a bulk ITR since 1117 * number of packets is greater than 256. We are just going to have 1118 * to compute a value and try to bring the count under control, 1119 * though for smaller packet sizes there isn't much we can do as 1120 * NAPI polling will likely be kicking in sooner rather than later. 1121 */ 1122 itr = I40E_ITR_ADAPTIVE_BULK; 1123 1124 adjust_by_size: 1125 /* If packet counts are 256 or greater we can assume we have a gross 1126 * overestimation of what the rate should be. Instead of trying to fine 1127 * tune it just use the formula below to try and dial in an exact value 1128 * give the current packet size of the frame. 1129 */ 1130 avg_wire_size = bytes / packets; 1131 1132 /* The following is a crude approximation of: 1133 * wmem_default / (size + overhead) = desired_pkts_per_int 1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1136 * 1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1139 * formula down to 1140 * 1141 * (170 * (size + 24)) / (size + 640) = ITR 1142 * 1143 * We first do some math on the packet size and then finally bitshift 1144 * by 8 after rounding up. We also have to account for PCIe link speed 1145 * difference as ITR scales based on this. 1146 */ 1147 if (avg_wire_size <= 60) { 1148 /* Start at 250k ints/sec */ 1149 avg_wire_size = 4096; 1150 } else if (avg_wire_size <= 380) { 1151 /* 250K ints/sec to 60K ints/sec */ 1152 avg_wire_size *= 40; 1153 avg_wire_size += 1696; 1154 } else if (avg_wire_size <= 1084) { 1155 /* 60K ints/sec to 36K ints/sec */ 1156 avg_wire_size *= 15; 1157 avg_wire_size += 11452; 1158 } else if (avg_wire_size <= 1980) { 1159 /* 36K ints/sec to 30K ints/sec */ 1160 avg_wire_size *= 5; 1161 avg_wire_size += 22420; 1162 } else { 1163 /* plateau at a limit of 30K ints/sec */ 1164 avg_wire_size = 32256; 1165 } 1166 1167 /* If we are in low latency mode halve our delay which doubles the 1168 * rate to somewhere between 100K to 16K ints/sec 1169 */ 1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1171 avg_wire_size /= 2; 1172 1173 /* Resultant value is 256 times larger than it needs to be. This 1174 * gives us room to adjust the value as needed to either increase 1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1176 * 1177 * Use addition as we have already recorded the new latency flag 1178 * for the ITR value. 1179 */ 1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1181 I40E_ITR_ADAPTIVE_MIN_INC; 1182 1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1184 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1186 } 1187 1188 clear_counts: 1189 /* write back value */ 1190 rc->target_itr = itr; 1191 1192 /* next update should occur within next jiffy */ 1193 rc->next_update = next_update + 1; 1194 1195 rc->total_bytes = 0; 1196 rc->total_packets = 0; 1197 } 1198 1199 /** 1200 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1201 * @rx_ring: rx descriptor ring to store buffers on 1202 * @old_buff: donor buffer to have page reused 1203 * 1204 * Synchronizes page for reuse by the adapter 1205 **/ 1206 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1207 struct i40e_rx_buffer *old_buff) 1208 { 1209 struct i40e_rx_buffer *new_buff; 1210 u16 nta = rx_ring->next_to_alloc; 1211 1212 new_buff = &rx_ring->rx_bi[nta]; 1213 1214 /* update, and store next to alloc */ 1215 nta++; 1216 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1217 1218 /* transfer page from old buffer to new buffer */ 1219 new_buff->dma = old_buff->dma; 1220 new_buff->page = old_buff->page; 1221 new_buff->page_offset = old_buff->page_offset; 1222 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1223 1224 rx_ring->rx_stats.page_reuse_count++; 1225 1226 /* clear contents of buffer_info */ 1227 old_buff->page = NULL; 1228 } 1229 1230 /** 1231 * i40e_rx_is_programming_status - check for programming status descriptor 1232 * @qw: qword representing status_error_len in CPU ordering 1233 * 1234 * The value of in the descriptor length field indicate if this 1235 * is a programming status descriptor for flow director or FCoE 1236 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise 1237 * it is a packet descriptor. 1238 **/ 1239 static inline bool i40e_rx_is_programming_status(u64 qw) 1240 { 1241 /* The Rx filter programming status and SPH bit occupy the same 1242 * spot in the descriptor. Since we don't support packet split we 1243 * can just reuse the bit as an indication that this is a 1244 * programming status descriptor. 1245 */ 1246 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK; 1247 } 1248 1249 /** 1250 * i40e_clean_programming_status - try clean the programming status descriptor 1251 * @rx_ring: the rx ring that has this descriptor 1252 * @rx_desc: the rx descriptor written back by HW 1253 * @qw: qword representing status_error_len in CPU ordering 1254 * 1255 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1256 * status being successful or not and take actions accordingly. FCoE should 1257 * handle its context/filter programming/invalidation status and take actions. 1258 * 1259 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1260 **/ 1261 struct i40e_rx_buffer *i40e_clean_programming_status( 1262 struct i40e_ring *rx_ring, 1263 union i40e_rx_desc *rx_desc, 1264 u64 qw) 1265 { 1266 struct i40e_rx_buffer *rx_buffer; 1267 u32 ntc; 1268 u8 id; 1269 1270 if (!i40e_rx_is_programming_status(qw)) 1271 return NULL; 1272 1273 ntc = rx_ring->next_to_clean; 1274 1275 /* fetch, update, and store next to clean */ 1276 rx_buffer = &rx_ring->rx_bi[ntc++]; 1277 ntc = (ntc < rx_ring->count) ? ntc : 0; 1278 rx_ring->next_to_clean = ntc; 1279 1280 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1281 1282 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1283 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1284 1285 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1286 i40e_fd_handle_status(rx_ring, rx_desc, id); 1287 1288 return rx_buffer; 1289 } 1290 1291 /** 1292 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1293 * @tx_ring: the tx ring to set up 1294 * 1295 * Return 0 on success, negative on error 1296 **/ 1297 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1298 { 1299 struct device *dev = tx_ring->dev; 1300 int bi_size; 1301 1302 if (!dev) 1303 return -ENOMEM; 1304 1305 /* warn if we are about to overwrite the pointer */ 1306 WARN_ON(tx_ring->tx_bi); 1307 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1308 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1309 if (!tx_ring->tx_bi) 1310 goto err; 1311 1312 u64_stats_init(&tx_ring->syncp); 1313 1314 /* round up to nearest 4K */ 1315 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1316 /* add u32 for head writeback, align after this takes care of 1317 * guaranteeing this is at least one cache line in size 1318 */ 1319 tx_ring->size += sizeof(u32); 1320 tx_ring->size = ALIGN(tx_ring->size, 4096); 1321 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1322 &tx_ring->dma, GFP_KERNEL); 1323 if (!tx_ring->desc) { 1324 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1325 tx_ring->size); 1326 goto err; 1327 } 1328 1329 tx_ring->next_to_use = 0; 1330 tx_ring->next_to_clean = 0; 1331 tx_ring->tx_stats.prev_pkt_ctr = -1; 1332 return 0; 1333 1334 err: 1335 kfree(tx_ring->tx_bi); 1336 tx_ring->tx_bi = NULL; 1337 return -ENOMEM; 1338 } 1339 1340 /** 1341 * i40e_clean_rx_ring - Free Rx buffers 1342 * @rx_ring: ring to be cleaned 1343 **/ 1344 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1345 { 1346 unsigned long bi_size; 1347 u16 i; 1348 1349 /* ring already cleared, nothing to do */ 1350 if (!rx_ring->rx_bi) 1351 return; 1352 1353 if (rx_ring->skb) { 1354 dev_kfree_skb(rx_ring->skb); 1355 rx_ring->skb = NULL; 1356 } 1357 1358 if (rx_ring->xsk_umem) { 1359 i40e_xsk_clean_rx_ring(rx_ring); 1360 goto skip_free; 1361 } 1362 1363 /* Free all the Rx ring sk_buffs */ 1364 for (i = 0; i < rx_ring->count; i++) { 1365 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 1366 1367 if (!rx_bi->page) 1368 continue; 1369 1370 /* Invalidate cache lines that may have been written to by 1371 * device so that we avoid corrupting memory. 1372 */ 1373 dma_sync_single_range_for_cpu(rx_ring->dev, 1374 rx_bi->dma, 1375 rx_bi->page_offset, 1376 rx_ring->rx_buf_len, 1377 DMA_FROM_DEVICE); 1378 1379 /* free resources associated with mapping */ 1380 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1381 i40e_rx_pg_size(rx_ring), 1382 DMA_FROM_DEVICE, 1383 I40E_RX_DMA_ATTR); 1384 1385 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1386 1387 rx_bi->page = NULL; 1388 rx_bi->page_offset = 0; 1389 } 1390 1391 skip_free: 1392 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1393 memset(rx_ring->rx_bi, 0, bi_size); 1394 1395 /* Zero out the descriptor ring */ 1396 memset(rx_ring->desc, 0, rx_ring->size); 1397 1398 rx_ring->next_to_alloc = 0; 1399 rx_ring->next_to_clean = 0; 1400 rx_ring->next_to_use = 0; 1401 } 1402 1403 /** 1404 * i40e_free_rx_resources - Free Rx resources 1405 * @rx_ring: ring to clean the resources from 1406 * 1407 * Free all receive software resources 1408 **/ 1409 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1410 { 1411 i40e_clean_rx_ring(rx_ring); 1412 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1413 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1414 rx_ring->xdp_prog = NULL; 1415 kfree(rx_ring->rx_bi); 1416 rx_ring->rx_bi = NULL; 1417 1418 if (rx_ring->desc) { 1419 dma_free_coherent(rx_ring->dev, rx_ring->size, 1420 rx_ring->desc, rx_ring->dma); 1421 rx_ring->desc = NULL; 1422 } 1423 } 1424 1425 /** 1426 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1427 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1428 * 1429 * Returns 0 on success, negative on failure 1430 **/ 1431 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1432 { 1433 struct device *dev = rx_ring->dev; 1434 int err = -ENOMEM; 1435 int bi_size; 1436 1437 /* warn if we are about to overwrite the pointer */ 1438 WARN_ON(rx_ring->rx_bi); 1439 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1440 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1441 if (!rx_ring->rx_bi) 1442 goto err; 1443 1444 u64_stats_init(&rx_ring->syncp); 1445 1446 /* Round up to nearest 4K */ 1447 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1448 rx_ring->size = ALIGN(rx_ring->size, 4096); 1449 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1450 &rx_ring->dma, GFP_KERNEL); 1451 1452 if (!rx_ring->desc) { 1453 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1454 rx_ring->size); 1455 goto err; 1456 } 1457 1458 rx_ring->next_to_alloc = 0; 1459 rx_ring->next_to_clean = 0; 1460 rx_ring->next_to_use = 0; 1461 1462 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1463 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1464 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1465 rx_ring->queue_index); 1466 if (err < 0) 1467 goto err; 1468 } 1469 1470 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1471 1472 return 0; 1473 err: 1474 kfree(rx_ring->rx_bi); 1475 rx_ring->rx_bi = NULL; 1476 return err; 1477 } 1478 1479 /** 1480 * i40e_release_rx_desc - Store the new tail and head values 1481 * @rx_ring: ring to bump 1482 * @val: new head index 1483 **/ 1484 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1485 { 1486 rx_ring->next_to_use = val; 1487 1488 /* update next to alloc since we have filled the ring */ 1489 rx_ring->next_to_alloc = val; 1490 1491 /* Force memory writes to complete before letting h/w 1492 * know there are new descriptors to fetch. (Only 1493 * applicable for weak-ordered memory model archs, 1494 * such as IA-64). 1495 */ 1496 wmb(); 1497 writel(val, rx_ring->tail); 1498 } 1499 1500 /** 1501 * i40e_rx_offset - Return expected offset into page to access data 1502 * @rx_ring: Ring we are requesting offset of 1503 * 1504 * Returns the offset value for ring into the data buffer. 1505 */ 1506 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1507 { 1508 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1509 } 1510 1511 /** 1512 * i40e_alloc_mapped_page - recycle or make a new page 1513 * @rx_ring: ring to use 1514 * @bi: rx_buffer struct to modify 1515 * 1516 * Returns true if the page was successfully allocated or 1517 * reused. 1518 **/ 1519 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1520 struct i40e_rx_buffer *bi) 1521 { 1522 struct page *page = bi->page; 1523 dma_addr_t dma; 1524 1525 /* since we are recycling buffers we should seldom need to alloc */ 1526 if (likely(page)) { 1527 rx_ring->rx_stats.page_reuse_count++; 1528 return true; 1529 } 1530 1531 /* alloc new page for storage */ 1532 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1533 if (unlikely(!page)) { 1534 rx_ring->rx_stats.alloc_page_failed++; 1535 return false; 1536 } 1537 1538 /* map page for use */ 1539 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1540 i40e_rx_pg_size(rx_ring), 1541 DMA_FROM_DEVICE, 1542 I40E_RX_DMA_ATTR); 1543 1544 /* if mapping failed free memory back to system since 1545 * there isn't much point in holding memory we can't use 1546 */ 1547 if (dma_mapping_error(rx_ring->dev, dma)) { 1548 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1549 rx_ring->rx_stats.alloc_page_failed++; 1550 return false; 1551 } 1552 1553 bi->dma = dma; 1554 bi->page = page; 1555 bi->page_offset = i40e_rx_offset(rx_ring); 1556 page_ref_add(page, USHRT_MAX - 1); 1557 bi->pagecnt_bias = USHRT_MAX; 1558 1559 return true; 1560 } 1561 1562 /** 1563 * i40e_receive_skb - Send a completed packet up the stack 1564 * @rx_ring: rx ring in play 1565 * @skb: packet to send up 1566 * @vlan_tag: vlan tag for packet 1567 **/ 1568 void i40e_receive_skb(struct i40e_ring *rx_ring, 1569 struct sk_buff *skb, u16 vlan_tag) 1570 { 1571 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1572 1573 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1574 (vlan_tag & VLAN_VID_MASK)) 1575 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1576 1577 napi_gro_receive(&q_vector->napi, skb); 1578 } 1579 1580 /** 1581 * i40e_alloc_rx_buffers - Replace used receive buffers 1582 * @rx_ring: ring to place buffers on 1583 * @cleaned_count: number of buffers to replace 1584 * 1585 * Returns false if all allocations were successful, true if any fail 1586 **/ 1587 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1588 { 1589 u16 ntu = rx_ring->next_to_use; 1590 union i40e_rx_desc *rx_desc; 1591 struct i40e_rx_buffer *bi; 1592 1593 /* do nothing if no valid netdev defined */ 1594 if (!rx_ring->netdev || !cleaned_count) 1595 return false; 1596 1597 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1598 bi = &rx_ring->rx_bi[ntu]; 1599 1600 do { 1601 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1602 goto no_buffers; 1603 1604 /* sync the buffer for use by the device */ 1605 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1606 bi->page_offset, 1607 rx_ring->rx_buf_len, 1608 DMA_FROM_DEVICE); 1609 1610 /* Refresh the desc even if buffer_addrs didn't change 1611 * because each write-back erases this info. 1612 */ 1613 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1614 1615 rx_desc++; 1616 bi++; 1617 ntu++; 1618 if (unlikely(ntu == rx_ring->count)) { 1619 rx_desc = I40E_RX_DESC(rx_ring, 0); 1620 bi = rx_ring->rx_bi; 1621 ntu = 0; 1622 } 1623 1624 /* clear the status bits for the next_to_use descriptor */ 1625 rx_desc->wb.qword1.status_error_len = 0; 1626 1627 cleaned_count--; 1628 } while (cleaned_count); 1629 1630 if (rx_ring->next_to_use != ntu) 1631 i40e_release_rx_desc(rx_ring, ntu); 1632 1633 return false; 1634 1635 no_buffers: 1636 if (rx_ring->next_to_use != ntu) 1637 i40e_release_rx_desc(rx_ring, ntu); 1638 1639 /* make sure to come back via polling to try again after 1640 * allocation failure 1641 */ 1642 return true; 1643 } 1644 1645 /** 1646 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1647 * @vsi: the VSI we care about 1648 * @skb: skb currently being received and modified 1649 * @rx_desc: the receive descriptor 1650 **/ 1651 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1652 struct sk_buff *skb, 1653 union i40e_rx_desc *rx_desc) 1654 { 1655 struct i40e_rx_ptype_decoded decoded; 1656 u32 rx_error, rx_status; 1657 bool ipv4, ipv6; 1658 u8 ptype; 1659 u64 qword; 1660 1661 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1662 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1663 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1664 I40E_RXD_QW1_ERROR_SHIFT; 1665 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1666 I40E_RXD_QW1_STATUS_SHIFT; 1667 decoded = decode_rx_desc_ptype(ptype); 1668 1669 skb->ip_summed = CHECKSUM_NONE; 1670 1671 skb_checksum_none_assert(skb); 1672 1673 /* Rx csum enabled and ip headers found? */ 1674 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1675 return; 1676 1677 /* did the hardware decode the packet and checksum? */ 1678 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1679 return; 1680 1681 /* both known and outer_ip must be set for the below code to work */ 1682 if (!(decoded.known && decoded.outer_ip)) 1683 return; 1684 1685 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1686 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1687 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1688 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1689 1690 if (ipv4 && 1691 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1692 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1693 goto checksum_fail; 1694 1695 /* likely incorrect csum if alternate IP extension headers found */ 1696 if (ipv6 && 1697 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1698 /* don't increment checksum err here, non-fatal err */ 1699 return; 1700 1701 /* there was some L4 error, count error and punt packet to the stack */ 1702 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1703 goto checksum_fail; 1704 1705 /* handle packets that were not able to be checksummed due 1706 * to arrival speed, in this case the stack can compute 1707 * the csum. 1708 */ 1709 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1710 return; 1711 1712 /* If there is an outer header present that might contain a checksum 1713 * we need to bump the checksum level by 1 to reflect the fact that 1714 * we are indicating we validated the inner checksum. 1715 */ 1716 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1717 skb->csum_level = 1; 1718 1719 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1720 switch (decoded.inner_prot) { 1721 case I40E_RX_PTYPE_INNER_PROT_TCP: 1722 case I40E_RX_PTYPE_INNER_PROT_UDP: 1723 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1724 skb->ip_summed = CHECKSUM_UNNECESSARY; 1725 /* fall though */ 1726 default: 1727 break; 1728 } 1729 1730 return; 1731 1732 checksum_fail: 1733 vsi->back->hw_csum_rx_error++; 1734 } 1735 1736 /** 1737 * i40e_ptype_to_htype - get a hash type 1738 * @ptype: the ptype value from the descriptor 1739 * 1740 * Returns a hash type to be used by skb_set_hash 1741 **/ 1742 static inline int i40e_ptype_to_htype(u8 ptype) 1743 { 1744 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1745 1746 if (!decoded.known) 1747 return PKT_HASH_TYPE_NONE; 1748 1749 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1750 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1751 return PKT_HASH_TYPE_L4; 1752 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1753 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1754 return PKT_HASH_TYPE_L3; 1755 else 1756 return PKT_HASH_TYPE_L2; 1757 } 1758 1759 /** 1760 * i40e_rx_hash - set the hash value in the skb 1761 * @ring: descriptor ring 1762 * @rx_desc: specific descriptor 1763 * @skb: skb currently being received and modified 1764 * @rx_ptype: Rx packet type 1765 **/ 1766 static inline void i40e_rx_hash(struct i40e_ring *ring, 1767 union i40e_rx_desc *rx_desc, 1768 struct sk_buff *skb, 1769 u8 rx_ptype) 1770 { 1771 u32 hash; 1772 const __le64 rss_mask = 1773 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1774 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1775 1776 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1777 return; 1778 1779 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1780 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1781 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1782 } 1783 } 1784 1785 /** 1786 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1787 * @rx_ring: rx descriptor ring packet is being transacted on 1788 * @rx_desc: pointer to the EOP Rx descriptor 1789 * @skb: pointer to current skb being populated 1790 * @rx_ptype: the packet type decoded by hardware 1791 * 1792 * This function checks the ring, descriptor, and packet information in 1793 * order to populate the hash, checksum, VLAN, protocol, and 1794 * other fields within the skb. 1795 **/ 1796 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1797 union i40e_rx_desc *rx_desc, struct sk_buff *skb, 1798 u8 rx_ptype) 1799 { 1800 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1801 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1802 I40E_RXD_QW1_STATUS_SHIFT; 1803 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1804 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1805 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1806 1807 if (unlikely(tsynvalid)) 1808 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1809 1810 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1811 1812 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1813 1814 skb_record_rx_queue(skb, rx_ring->queue_index); 1815 1816 /* modifies the skb - consumes the enet header */ 1817 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1818 } 1819 1820 /** 1821 * i40e_cleanup_headers - Correct empty headers 1822 * @rx_ring: rx descriptor ring packet is being transacted on 1823 * @skb: pointer to current skb being fixed 1824 * @rx_desc: pointer to the EOP Rx descriptor 1825 * 1826 * Also address the case where we are pulling data in on pages only 1827 * and as such no data is present in the skb header. 1828 * 1829 * In addition if skb is not at least 60 bytes we need to pad it so that 1830 * it is large enough to qualify as a valid Ethernet frame. 1831 * 1832 * Returns true if an error was encountered and skb was freed. 1833 **/ 1834 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1835 union i40e_rx_desc *rx_desc) 1836 1837 { 1838 /* XDP packets use error pointer so abort at this point */ 1839 if (IS_ERR(skb)) 1840 return true; 1841 1842 /* ERR_MASK will only have valid bits if EOP set, and 1843 * what we are doing here is actually checking 1844 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1845 * the error field 1846 */ 1847 if (unlikely(i40e_test_staterr(rx_desc, 1848 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1849 dev_kfree_skb_any(skb); 1850 return true; 1851 } 1852 1853 /* if eth_skb_pad returns an error the skb was freed */ 1854 if (eth_skb_pad(skb)) 1855 return true; 1856 1857 return false; 1858 } 1859 1860 /** 1861 * i40e_page_is_reusable - check if any reuse is possible 1862 * @page: page struct to check 1863 * 1864 * A page is not reusable if it was allocated under low memory 1865 * conditions, or it's not in the same NUMA node as this CPU. 1866 */ 1867 static inline bool i40e_page_is_reusable(struct page *page) 1868 { 1869 return (page_to_nid(page) == numa_mem_id()) && 1870 !page_is_pfmemalloc(page); 1871 } 1872 1873 /** 1874 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1875 * the adapter for another receive 1876 * 1877 * @rx_buffer: buffer containing the page 1878 * 1879 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1880 * an unused region in the page. 1881 * 1882 * For small pages, @truesize will be a constant value, half the size 1883 * of the memory at page. We'll attempt to alternate between high and 1884 * low halves of the page, with one half ready for use by the hardware 1885 * and the other half being consumed by the stack. We use the page 1886 * ref count to determine whether the stack has finished consuming the 1887 * portion of this page that was passed up with a previous packet. If 1888 * the page ref count is >1, we'll assume the "other" half page is 1889 * still busy, and this page cannot be reused. 1890 * 1891 * For larger pages, @truesize will be the actual space used by the 1892 * received packet (adjusted upward to an even multiple of the cache 1893 * line size). This will advance through the page by the amount 1894 * actually consumed by the received packets while there is still 1895 * space for a buffer. Each region of larger pages will be used at 1896 * most once, after which the page will not be reused. 1897 * 1898 * In either case, if the page is reusable its refcount is increased. 1899 **/ 1900 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1901 { 1902 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1903 struct page *page = rx_buffer->page; 1904 1905 /* Is any reuse possible? */ 1906 if (unlikely(!i40e_page_is_reusable(page))) 1907 return false; 1908 1909 #if (PAGE_SIZE < 8192) 1910 /* if we are only owner of page we can reuse it */ 1911 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1912 return false; 1913 #else 1914 #define I40E_LAST_OFFSET \ 1915 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1916 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1917 return false; 1918 #endif 1919 1920 /* If we have drained the page fragment pool we need to update 1921 * the pagecnt_bias and page count so that we fully restock the 1922 * number of references the driver holds. 1923 */ 1924 if (unlikely(pagecnt_bias == 1)) { 1925 page_ref_add(page, USHRT_MAX - 1); 1926 rx_buffer->pagecnt_bias = USHRT_MAX; 1927 } 1928 1929 return true; 1930 } 1931 1932 /** 1933 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1934 * @rx_ring: rx descriptor ring to transact packets on 1935 * @rx_buffer: buffer containing page to add 1936 * @skb: sk_buff to place the data into 1937 * @size: packet length from rx_desc 1938 * 1939 * This function will add the data contained in rx_buffer->page to the skb. 1940 * It will just attach the page as a frag to the skb. 1941 * 1942 * The function will then update the page offset. 1943 **/ 1944 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1945 struct i40e_rx_buffer *rx_buffer, 1946 struct sk_buff *skb, 1947 unsigned int size) 1948 { 1949 #if (PAGE_SIZE < 8192) 1950 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1951 #else 1952 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1953 #endif 1954 1955 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1956 rx_buffer->page_offset, size, truesize); 1957 1958 /* page is being used so we must update the page offset */ 1959 #if (PAGE_SIZE < 8192) 1960 rx_buffer->page_offset ^= truesize; 1961 #else 1962 rx_buffer->page_offset += truesize; 1963 #endif 1964 } 1965 1966 /** 1967 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1968 * @rx_ring: rx descriptor ring to transact packets on 1969 * @size: size of buffer to add to skb 1970 * 1971 * This function will pull an Rx buffer from the ring and synchronize it 1972 * for use by the CPU. 1973 */ 1974 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1975 const unsigned int size) 1976 { 1977 struct i40e_rx_buffer *rx_buffer; 1978 1979 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1980 prefetchw(rx_buffer->page); 1981 1982 /* we are reusing so sync this buffer for CPU use */ 1983 dma_sync_single_range_for_cpu(rx_ring->dev, 1984 rx_buffer->dma, 1985 rx_buffer->page_offset, 1986 size, 1987 DMA_FROM_DEVICE); 1988 1989 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1990 rx_buffer->pagecnt_bias--; 1991 1992 return rx_buffer; 1993 } 1994 1995 /** 1996 * i40e_construct_skb - Allocate skb and populate it 1997 * @rx_ring: rx descriptor ring to transact packets on 1998 * @rx_buffer: rx buffer to pull data from 1999 * @xdp: xdp_buff pointing to the data 2000 * 2001 * This function allocates an skb. It then populates it with the page 2002 * data from the current receive descriptor, taking care to set up the 2003 * skb correctly. 2004 */ 2005 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2006 struct i40e_rx_buffer *rx_buffer, 2007 struct xdp_buff *xdp) 2008 { 2009 unsigned int size = xdp->data_end - xdp->data; 2010 #if (PAGE_SIZE < 8192) 2011 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2012 #else 2013 unsigned int truesize = SKB_DATA_ALIGN(size); 2014 #endif 2015 unsigned int headlen; 2016 struct sk_buff *skb; 2017 2018 /* prefetch first cache line of first page */ 2019 prefetch(xdp->data); 2020 #if L1_CACHE_BYTES < 128 2021 prefetch(xdp->data + L1_CACHE_BYTES); 2022 #endif 2023 /* Note, we get here by enabling legacy-rx via: 2024 * 2025 * ethtool --set-priv-flags <dev> legacy-rx on 2026 * 2027 * In this mode, we currently get 0 extra XDP headroom as 2028 * opposed to having legacy-rx off, where we process XDP 2029 * packets going to stack via i40e_build_skb(). The latter 2030 * provides us currently with 192 bytes of headroom. 2031 * 2032 * For i40e_construct_skb() mode it means that the 2033 * xdp->data_meta will always point to xdp->data, since 2034 * the helper cannot expand the head. Should this ever 2035 * change in future for legacy-rx mode on, then lets also 2036 * add xdp->data_meta handling here. 2037 */ 2038 2039 /* allocate a skb to store the frags */ 2040 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2041 I40E_RX_HDR_SIZE, 2042 GFP_ATOMIC | __GFP_NOWARN); 2043 if (unlikely(!skb)) 2044 return NULL; 2045 2046 /* Determine available headroom for copy */ 2047 headlen = size; 2048 if (headlen > I40E_RX_HDR_SIZE) 2049 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE); 2050 2051 /* align pull length to size of long to optimize memcpy performance */ 2052 memcpy(__skb_put(skb, headlen), xdp->data, 2053 ALIGN(headlen, sizeof(long))); 2054 2055 /* update all of the pointers */ 2056 size -= headlen; 2057 if (size) { 2058 skb_add_rx_frag(skb, 0, rx_buffer->page, 2059 rx_buffer->page_offset + headlen, 2060 size, truesize); 2061 2062 /* buffer is used by skb, update page_offset */ 2063 #if (PAGE_SIZE < 8192) 2064 rx_buffer->page_offset ^= truesize; 2065 #else 2066 rx_buffer->page_offset += truesize; 2067 #endif 2068 } else { 2069 /* buffer is unused, reset bias back to rx_buffer */ 2070 rx_buffer->pagecnt_bias++; 2071 } 2072 2073 return skb; 2074 } 2075 2076 /** 2077 * i40e_build_skb - Build skb around an existing buffer 2078 * @rx_ring: Rx descriptor ring to transact packets on 2079 * @rx_buffer: Rx buffer to pull data from 2080 * @xdp: xdp_buff pointing to the data 2081 * 2082 * This function builds an skb around an existing Rx buffer, taking care 2083 * to set up the skb correctly and avoid any memcpy overhead. 2084 */ 2085 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2086 struct i40e_rx_buffer *rx_buffer, 2087 struct xdp_buff *xdp) 2088 { 2089 unsigned int metasize = xdp->data - xdp->data_meta; 2090 #if (PAGE_SIZE < 8192) 2091 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2092 #else 2093 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2094 SKB_DATA_ALIGN(xdp->data_end - 2095 xdp->data_hard_start); 2096 #endif 2097 struct sk_buff *skb; 2098 2099 /* Prefetch first cache line of first page. If xdp->data_meta 2100 * is unused, this points exactly as xdp->data, otherwise we 2101 * likely have a consumer accessing first few bytes of meta 2102 * data, and then actual data. 2103 */ 2104 prefetch(xdp->data_meta); 2105 #if L1_CACHE_BYTES < 128 2106 prefetch(xdp->data_meta + L1_CACHE_BYTES); 2107 #endif 2108 /* build an skb around the page buffer */ 2109 skb = build_skb(xdp->data_hard_start, truesize); 2110 if (unlikely(!skb)) 2111 return NULL; 2112 2113 /* update pointers within the skb to store the data */ 2114 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2115 __skb_put(skb, xdp->data_end - xdp->data); 2116 if (metasize) 2117 skb_metadata_set(skb, metasize); 2118 2119 /* buffer is used by skb, update page_offset */ 2120 #if (PAGE_SIZE < 8192) 2121 rx_buffer->page_offset ^= truesize; 2122 #else 2123 rx_buffer->page_offset += truesize; 2124 #endif 2125 2126 return skb; 2127 } 2128 2129 /** 2130 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2131 * @rx_ring: rx descriptor ring to transact packets on 2132 * @rx_buffer: rx buffer to pull data from 2133 * 2134 * This function will clean up the contents of the rx_buffer. It will 2135 * either recycle the buffer or unmap it and free the associated resources. 2136 */ 2137 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2138 struct i40e_rx_buffer *rx_buffer) 2139 { 2140 if (i40e_can_reuse_rx_page(rx_buffer)) { 2141 /* hand second half of page back to the ring */ 2142 i40e_reuse_rx_page(rx_ring, rx_buffer); 2143 } else { 2144 /* we are not reusing the buffer so unmap it */ 2145 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2146 i40e_rx_pg_size(rx_ring), 2147 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2148 __page_frag_cache_drain(rx_buffer->page, 2149 rx_buffer->pagecnt_bias); 2150 /* clear contents of buffer_info */ 2151 rx_buffer->page = NULL; 2152 } 2153 } 2154 2155 /** 2156 * i40e_is_non_eop - process handling of non-EOP buffers 2157 * @rx_ring: Rx ring being processed 2158 * @rx_desc: Rx descriptor for current buffer 2159 * @skb: Current socket buffer containing buffer in progress 2160 * 2161 * This function updates next to clean. If the buffer is an EOP buffer 2162 * this function exits returning false, otherwise it will place the 2163 * sk_buff in the next buffer to be chained and return true indicating 2164 * that this is in fact a non-EOP buffer. 2165 **/ 2166 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2167 union i40e_rx_desc *rx_desc, 2168 struct sk_buff *skb) 2169 { 2170 u32 ntc = rx_ring->next_to_clean + 1; 2171 2172 /* fetch, update, and store next to clean */ 2173 ntc = (ntc < rx_ring->count) ? ntc : 0; 2174 rx_ring->next_to_clean = ntc; 2175 2176 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2177 2178 /* if we are the last buffer then there is nothing else to do */ 2179 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2180 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2181 return false; 2182 2183 rx_ring->rx_stats.non_eop_descs++; 2184 2185 return true; 2186 } 2187 2188 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2189 struct i40e_ring *xdp_ring); 2190 2191 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2192 { 2193 struct xdp_frame *xdpf = convert_to_xdp_frame(xdp); 2194 2195 if (unlikely(!xdpf)) 2196 return I40E_XDP_CONSUMED; 2197 2198 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2199 } 2200 2201 /** 2202 * i40e_run_xdp - run an XDP program 2203 * @rx_ring: Rx ring being processed 2204 * @xdp: XDP buffer containing the frame 2205 **/ 2206 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2207 struct xdp_buff *xdp) 2208 { 2209 int err, result = I40E_XDP_PASS; 2210 struct i40e_ring *xdp_ring; 2211 struct bpf_prog *xdp_prog; 2212 u32 act; 2213 2214 rcu_read_lock(); 2215 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2216 2217 if (!xdp_prog) 2218 goto xdp_out; 2219 2220 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2221 2222 act = bpf_prog_run_xdp(xdp_prog, xdp); 2223 switch (act) { 2224 case XDP_PASS: 2225 break; 2226 case XDP_TX: 2227 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2228 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2229 break; 2230 case XDP_REDIRECT: 2231 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2232 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 2233 break; 2234 default: 2235 bpf_warn_invalid_xdp_action(act); 2236 /* fall through */ 2237 case XDP_ABORTED: 2238 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2239 /* fall through -- handle aborts by dropping packet */ 2240 case XDP_DROP: 2241 result = I40E_XDP_CONSUMED; 2242 break; 2243 } 2244 xdp_out: 2245 rcu_read_unlock(); 2246 return ERR_PTR(-result); 2247 } 2248 2249 /** 2250 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2251 * @rx_ring: Rx ring 2252 * @rx_buffer: Rx buffer to adjust 2253 * @size: Size of adjustment 2254 **/ 2255 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2256 struct i40e_rx_buffer *rx_buffer, 2257 unsigned int size) 2258 { 2259 #if (PAGE_SIZE < 8192) 2260 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2261 2262 rx_buffer->page_offset ^= truesize; 2263 #else 2264 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size); 2265 2266 rx_buffer->page_offset += truesize; 2267 #endif 2268 } 2269 2270 /** 2271 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2272 * @xdp_ring: XDP Tx ring 2273 * 2274 * This function updates the XDP Tx ring tail register. 2275 **/ 2276 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2277 { 2278 /* Force memory writes to complete before letting h/w 2279 * know there are new descriptors to fetch. 2280 */ 2281 wmb(); 2282 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2283 } 2284 2285 /** 2286 * i40e_update_rx_stats - Update Rx ring statistics 2287 * @rx_ring: rx descriptor ring 2288 * @total_rx_bytes: number of bytes received 2289 * @total_rx_packets: number of packets received 2290 * 2291 * This function updates the Rx ring statistics. 2292 **/ 2293 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2294 unsigned int total_rx_bytes, 2295 unsigned int total_rx_packets) 2296 { 2297 u64_stats_update_begin(&rx_ring->syncp); 2298 rx_ring->stats.packets += total_rx_packets; 2299 rx_ring->stats.bytes += total_rx_bytes; 2300 u64_stats_update_end(&rx_ring->syncp); 2301 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2302 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2303 } 2304 2305 /** 2306 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2307 * @rx_ring: Rx ring 2308 * @xdp_res: Result of the receive batch 2309 * 2310 * This function bumps XDP Tx tail and/or flush redirect map, and 2311 * should be called when a batch of packets has been processed in the 2312 * napi loop. 2313 **/ 2314 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2315 { 2316 if (xdp_res & I40E_XDP_REDIR) 2317 xdp_do_flush_map(); 2318 2319 if (xdp_res & I40E_XDP_TX) { 2320 struct i40e_ring *xdp_ring = 2321 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2322 2323 i40e_xdp_ring_update_tail(xdp_ring); 2324 } 2325 } 2326 2327 /** 2328 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2329 * @rx_ring: rx descriptor ring to transact packets on 2330 * @budget: Total limit on number of packets to process 2331 * 2332 * This function provides a "bounce buffer" approach to Rx interrupt 2333 * processing. The advantage to this is that on systems that have 2334 * expensive overhead for IOMMU access this provides a means of avoiding 2335 * it by maintaining the mapping of the page to the system. 2336 * 2337 * Returns amount of work completed 2338 **/ 2339 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2340 { 2341 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2342 struct sk_buff *skb = rx_ring->skb; 2343 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2344 unsigned int xdp_xmit = 0; 2345 bool failure = false; 2346 struct xdp_buff xdp; 2347 2348 xdp.rxq = &rx_ring->xdp_rxq; 2349 2350 while (likely(total_rx_packets < (unsigned int)budget)) { 2351 struct i40e_rx_buffer *rx_buffer; 2352 union i40e_rx_desc *rx_desc; 2353 unsigned int size; 2354 u16 vlan_tag; 2355 u8 rx_ptype; 2356 u64 qword; 2357 2358 /* return some buffers to hardware, one at a time is too slow */ 2359 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2360 failure = failure || 2361 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2362 cleaned_count = 0; 2363 } 2364 2365 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2366 2367 /* status_error_len will always be zero for unused descriptors 2368 * because it's cleared in cleanup, and overlaps with hdr_addr 2369 * which is always zero because packet split isn't used, if the 2370 * hardware wrote DD then the length will be non-zero 2371 */ 2372 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2373 2374 /* This memory barrier is needed to keep us from reading 2375 * any other fields out of the rx_desc until we have 2376 * verified the descriptor has been written back. 2377 */ 2378 dma_rmb(); 2379 2380 rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc, 2381 qword); 2382 if (unlikely(rx_buffer)) { 2383 i40e_reuse_rx_page(rx_ring, rx_buffer); 2384 cleaned_count++; 2385 continue; 2386 } 2387 2388 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2389 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2390 if (!size) 2391 break; 2392 2393 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2394 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2395 2396 /* retrieve a buffer from the ring */ 2397 if (!skb) { 2398 xdp.data = page_address(rx_buffer->page) + 2399 rx_buffer->page_offset; 2400 xdp.data_meta = xdp.data; 2401 xdp.data_hard_start = xdp.data - 2402 i40e_rx_offset(rx_ring); 2403 xdp.data_end = xdp.data + size; 2404 2405 skb = i40e_run_xdp(rx_ring, &xdp); 2406 } 2407 2408 if (IS_ERR(skb)) { 2409 unsigned int xdp_res = -PTR_ERR(skb); 2410 2411 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2412 xdp_xmit |= xdp_res; 2413 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2414 } else { 2415 rx_buffer->pagecnt_bias++; 2416 } 2417 total_rx_bytes += size; 2418 total_rx_packets++; 2419 } else if (skb) { 2420 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2421 } else if (ring_uses_build_skb(rx_ring)) { 2422 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2423 } else { 2424 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2425 } 2426 2427 /* exit if we failed to retrieve a buffer */ 2428 if (!skb) { 2429 rx_ring->rx_stats.alloc_buff_failed++; 2430 rx_buffer->pagecnt_bias++; 2431 break; 2432 } 2433 2434 i40e_put_rx_buffer(rx_ring, rx_buffer); 2435 cleaned_count++; 2436 2437 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2438 continue; 2439 2440 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2441 skb = NULL; 2442 continue; 2443 } 2444 2445 /* probably a little skewed due to removing CRC */ 2446 total_rx_bytes += skb->len; 2447 2448 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2449 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 2450 I40E_RXD_QW1_PTYPE_SHIFT; 2451 2452 /* populate checksum, VLAN, and protocol */ 2453 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 2454 2455 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 2456 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 2457 2458 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2459 i40e_receive_skb(rx_ring, skb, vlan_tag); 2460 skb = NULL; 2461 2462 /* update budget accounting */ 2463 total_rx_packets++; 2464 } 2465 2466 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2467 rx_ring->skb = skb; 2468 2469 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2470 2471 /* guarantee a trip back through this routine if there was a failure */ 2472 return failure ? budget : (int)total_rx_packets; 2473 } 2474 2475 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2476 { 2477 u32 val; 2478 2479 /* We don't bother with setting the CLEARPBA bit as the data sheet 2480 * points out doing so is "meaningless since it was already 2481 * auto-cleared". The auto-clearing happens when the interrupt is 2482 * asserted. 2483 * 2484 * Hardware errata 28 for also indicates that writing to a 2485 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2486 * an event in the PBA anyway so we need to rely on the automask 2487 * to hold pending events for us until the interrupt is re-enabled 2488 * 2489 * The itr value is reported in microseconds, and the register 2490 * value is recorded in 2 microsecond units. For this reason we 2491 * only need to shift by the interval shift - 1 instead of the 2492 * full value. 2493 */ 2494 itr &= I40E_ITR_MASK; 2495 2496 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2497 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2498 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2499 2500 return val; 2501 } 2502 2503 /* a small macro to shorten up some long lines */ 2504 #define INTREG I40E_PFINT_DYN_CTLN 2505 2506 /* The act of updating the ITR will cause it to immediately trigger. In order 2507 * to prevent this from throwing off adaptive update statistics we defer the 2508 * update so that it can only happen so often. So after either Tx or Rx are 2509 * updated we make the adaptive scheme wait until either the ITR completely 2510 * expires via the next_update expiration or we have been through at least 2511 * 3 interrupts. 2512 */ 2513 #define ITR_COUNTDOWN_START 3 2514 2515 /** 2516 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2517 * @vsi: the VSI we care about 2518 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2519 * 2520 **/ 2521 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2522 struct i40e_q_vector *q_vector) 2523 { 2524 struct i40e_hw *hw = &vsi->back->hw; 2525 u32 intval; 2526 2527 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2528 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2529 i40e_irq_dynamic_enable_icr0(vsi->back); 2530 return; 2531 } 2532 2533 /* These will do nothing if dynamic updates are not enabled */ 2534 i40e_update_itr(q_vector, &q_vector->tx); 2535 i40e_update_itr(q_vector, &q_vector->rx); 2536 2537 /* This block of logic allows us to get away with only updating 2538 * one ITR value with each interrupt. The idea is to perform a 2539 * pseudo-lazy update with the following criteria. 2540 * 2541 * 1. Rx is given higher priority than Tx if both are in same state 2542 * 2. If we must reduce an ITR that is given highest priority. 2543 * 3. We then give priority to increasing ITR based on amount. 2544 */ 2545 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2546 /* Rx ITR needs to be reduced, this is highest priority */ 2547 intval = i40e_buildreg_itr(I40E_RX_ITR, 2548 q_vector->rx.target_itr); 2549 q_vector->rx.current_itr = q_vector->rx.target_itr; 2550 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2551 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2552 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2553 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2554 /* Tx ITR needs to be reduced, this is second priority 2555 * Tx ITR needs to be increased more than Rx, fourth priority 2556 */ 2557 intval = i40e_buildreg_itr(I40E_TX_ITR, 2558 q_vector->tx.target_itr); 2559 q_vector->tx.current_itr = q_vector->tx.target_itr; 2560 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2561 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2562 /* Rx ITR needs to be increased, third priority */ 2563 intval = i40e_buildreg_itr(I40E_RX_ITR, 2564 q_vector->rx.target_itr); 2565 q_vector->rx.current_itr = q_vector->rx.target_itr; 2566 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2567 } else { 2568 /* No ITR update, lowest priority */ 2569 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2570 if (q_vector->itr_countdown) 2571 q_vector->itr_countdown--; 2572 } 2573 2574 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2575 wr32(hw, INTREG(q_vector->reg_idx), intval); 2576 } 2577 2578 /** 2579 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2580 * @napi: napi struct with our devices info in it 2581 * @budget: amount of work driver is allowed to do this pass, in packets 2582 * 2583 * This function will clean all queues associated with a q_vector. 2584 * 2585 * Returns the amount of work done 2586 **/ 2587 int i40e_napi_poll(struct napi_struct *napi, int budget) 2588 { 2589 struct i40e_q_vector *q_vector = 2590 container_of(napi, struct i40e_q_vector, napi); 2591 struct i40e_vsi *vsi = q_vector->vsi; 2592 struct i40e_ring *ring; 2593 bool clean_complete = true; 2594 bool arm_wb = false; 2595 int budget_per_ring; 2596 int work_done = 0; 2597 2598 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2599 napi_complete(napi); 2600 return 0; 2601 } 2602 2603 /* Since the actual Tx work is minimal, we can give the Tx a larger 2604 * budget and be more aggressive about cleaning up the Tx descriptors. 2605 */ 2606 i40e_for_each_ring(ring, q_vector->tx) { 2607 bool wd = ring->xsk_umem ? 2608 i40e_clean_xdp_tx_irq(vsi, ring, budget) : 2609 i40e_clean_tx_irq(vsi, ring, budget); 2610 2611 if (!wd) { 2612 clean_complete = false; 2613 continue; 2614 } 2615 arm_wb |= ring->arm_wb; 2616 ring->arm_wb = false; 2617 } 2618 2619 /* Handle case where we are called by netpoll with a budget of 0 */ 2620 if (budget <= 0) 2621 goto tx_only; 2622 2623 /* We attempt to distribute budget to each Rx queue fairly, but don't 2624 * allow the budget to go below 1 because that would exit polling early. 2625 */ 2626 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 2627 2628 i40e_for_each_ring(ring, q_vector->rx) { 2629 int cleaned = ring->xsk_umem ? 2630 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2631 i40e_clean_rx_irq(ring, budget_per_ring); 2632 2633 work_done += cleaned; 2634 /* if we clean as many as budgeted, we must not be done */ 2635 if (cleaned >= budget_per_ring) 2636 clean_complete = false; 2637 } 2638 2639 /* If work not completed, return budget and polling will return */ 2640 if (!clean_complete) { 2641 int cpu_id = smp_processor_id(); 2642 2643 /* It is possible that the interrupt affinity has changed but, 2644 * if the cpu is pegged at 100%, polling will never exit while 2645 * traffic continues and the interrupt will be stuck on this 2646 * cpu. We check to make sure affinity is correct before we 2647 * continue to poll, otherwise we must stop polling so the 2648 * interrupt can move to the correct cpu. 2649 */ 2650 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2651 /* Tell napi that we are done polling */ 2652 napi_complete_done(napi, work_done); 2653 2654 /* Force an interrupt */ 2655 i40e_force_wb(vsi, q_vector); 2656 2657 /* Return budget-1 so that polling stops */ 2658 return budget - 1; 2659 } 2660 tx_only: 2661 if (arm_wb) { 2662 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2663 i40e_enable_wb_on_itr(vsi, q_vector); 2664 } 2665 return budget; 2666 } 2667 2668 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2669 q_vector->arm_wb_state = false; 2670 2671 /* Work is done so exit the polling mode and re-enable the interrupt */ 2672 napi_complete_done(napi, work_done); 2673 2674 i40e_update_enable_itr(vsi, q_vector); 2675 2676 return min(work_done, budget - 1); 2677 } 2678 2679 /** 2680 * i40e_atr - Add a Flow Director ATR filter 2681 * @tx_ring: ring to add programming descriptor to 2682 * @skb: send buffer 2683 * @tx_flags: send tx flags 2684 **/ 2685 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2686 u32 tx_flags) 2687 { 2688 struct i40e_filter_program_desc *fdir_desc; 2689 struct i40e_pf *pf = tx_ring->vsi->back; 2690 union { 2691 unsigned char *network; 2692 struct iphdr *ipv4; 2693 struct ipv6hdr *ipv6; 2694 } hdr; 2695 struct tcphdr *th; 2696 unsigned int hlen; 2697 u32 flex_ptype, dtype_cmd; 2698 int l4_proto; 2699 u16 i; 2700 2701 /* make sure ATR is enabled */ 2702 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2703 return; 2704 2705 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2706 return; 2707 2708 /* if sampling is disabled do nothing */ 2709 if (!tx_ring->atr_sample_rate) 2710 return; 2711 2712 /* Currently only IPv4/IPv6 with TCP is supported */ 2713 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2714 return; 2715 2716 /* snag network header to get L4 type and address */ 2717 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2718 skb_inner_network_header(skb) : skb_network_header(skb); 2719 2720 /* Note: tx_flags gets modified to reflect inner protocols in 2721 * tx_enable_csum function if encap is enabled. 2722 */ 2723 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2724 /* access ihl as u8 to avoid unaligned access on ia64 */ 2725 hlen = (hdr.network[0] & 0x0F) << 2; 2726 l4_proto = hdr.ipv4->protocol; 2727 } else { 2728 /* find the start of the innermost ipv6 header */ 2729 unsigned int inner_hlen = hdr.network - skb->data; 2730 unsigned int h_offset = inner_hlen; 2731 2732 /* this function updates h_offset to the end of the header */ 2733 l4_proto = 2734 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2735 /* hlen will contain our best estimate of the tcp header */ 2736 hlen = h_offset - inner_hlen; 2737 } 2738 2739 if (l4_proto != IPPROTO_TCP) 2740 return; 2741 2742 th = (struct tcphdr *)(hdr.network + hlen); 2743 2744 /* Due to lack of space, no more new filters can be programmed */ 2745 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2746 return; 2747 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2748 /* HW ATR eviction will take care of removing filters on FIN 2749 * and RST packets. 2750 */ 2751 if (th->fin || th->rst) 2752 return; 2753 } 2754 2755 tx_ring->atr_count++; 2756 2757 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2758 if (!th->fin && 2759 !th->syn && 2760 !th->rst && 2761 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2762 return; 2763 2764 tx_ring->atr_count = 0; 2765 2766 /* grab the next descriptor */ 2767 i = tx_ring->next_to_use; 2768 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2769 2770 i++; 2771 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2772 2773 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2774 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2775 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2776 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2777 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2778 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2779 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2780 2781 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2782 2783 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2784 2785 dtype_cmd |= (th->fin || th->rst) ? 2786 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2787 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2788 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2789 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2790 2791 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2792 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2793 2794 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2795 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2796 2797 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2798 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2799 dtype_cmd |= 2800 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2801 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2802 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2803 else 2804 dtype_cmd |= 2805 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2806 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2807 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2808 2809 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2810 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2811 2812 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2813 fdir_desc->rsvd = cpu_to_le32(0); 2814 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2815 fdir_desc->fd_id = cpu_to_le32(0); 2816 } 2817 2818 /** 2819 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2820 * @skb: send buffer 2821 * @tx_ring: ring to send buffer on 2822 * @flags: the tx flags to be set 2823 * 2824 * Checks the skb and set up correspondingly several generic transmit flags 2825 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2826 * 2827 * Returns error code indicate the frame should be dropped upon error and the 2828 * otherwise returns 0 to indicate the flags has been set properly. 2829 **/ 2830 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2831 struct i40e_ring *tx_ring, 2832 u32 *flags) 2833 { 2834 __be16 protocol = skb->protocol; 2835 u32 tx_flags = 0; 2836 2837 if (protocol == htons(ETH_P_8021Q) && 2838 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2839 /* When HW VLAN acceleration is turned off by the user the 2840 * stack sets the protocol to 8021q so that the driver 2841 * can take any steps required to support the SW only 2842 * VLAN handling. In our case the driver doesn't need 2843 * to take any further steps so just set the protocol 2844 * to the encapsulated ethertype. 2845 */ 2846 skb->protocol = vlan_get_protocol(skb); 2847 goto out; 2848 } 2849 2850 /* if we have a HW VLAN tag being added, default to the HW one */ 2851 if (skb_vlan_tag_present(skb)) { 2852 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2853 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2854 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2855 } else if (protocol == htons(ETH_P_8021Q)) { 2856 struct vlan_hdr *vhdr, _vhdr; 2857 2858 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2859 if (!vhdr) 2860 return -EINVAL; 2861 2862 protocol = vhdr->h_vlan_encapsulated_proto; 2863 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2864 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2865 } 2866 2867 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2868 goto out; 2869 2870 /* Insert 802.1p priority into VLAN header */ 2871 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2872 (skb->priority != TC_PRIO_CONTROL)) { 2873 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2874 tx_flags |= (skb->priority & 0x7) << 2875 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2876 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2877 struct vlan_ethhdr *vhdr; 2878 int rc; 2879 2880 rc = skb_cow_head(skb, 0); 2881 if (rc < 0) 2882 return rc; 2883 vhdr = (struct vlan_ethhdr *)skb->data; 2884 vhdr->h_vlan_TCI = htons(tx_flags >> 2885 I40E_TX_FLAGS_VLAN_SHIFT); 2886 } else { 2887 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2888 } 2889 } 2890 2891 out: 2892 *flags = tx_flags; 2893 return 0; 2894 } 2895 2896 /** 2897 * i40e_tso - set up the tso context descriptor 2898 * @first: pointer to first Tx buffer for xmit 2899 * @hdr_len: ptr to the size of the packet header 2900 * @cd_type_cmd_tso_mss: Quad Word 1 2901 * 2902 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2903 **/ 2904 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2905 u64 *cd_type_cmd_tso_mss) 2906 { 2907 struct sk_buff *skb = first->skb; 2908 u64 cd_cmd, cd_tso_len, cd_mss; 2909 union { 2910 struct iphdr *v4; 2911 struct ipv6hdr *v6; 2912 unsigned char *hdr; 2913 } ip; 2914 union { 2915 struct tcphdr *tcp; 2916 struct udphdr *udp; 2917 unsigned char *hdr; 2918 } l4; 2919 u32 paylen, l4_offset; 2920 u16 gso_segs, gso_size; 2921 int err; 2922 2923 if (skb->ip_summed != CHECKSUM_PARTIAL) 2924 return 0; 2925 2926 if (!skb_is_gso(skb)) 2927 return 0; 2928 2929 err = skb_cow_head(skb, 0); 2930 if (err < 0) 2931 return err; 2932 2933 ip.hdr = skb_network_header(skb); 2934 l4.hdr = skb_transport_header(skb); 2935 2936 /* initialize outer IP header fields */ 2937 if (ip.v4->version == 4) { 2938 ip.v4->tot_len = 0; 2939 ip.v4->check = 0; 2940 } else { 2941 ip.v6->payload_len = 0; 2942 } 2943 2944 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2945 SKB_GSO_GRE_CSUM | 2946 SKB_GSO_IPXIP4 | 2947 SKB_GSO_IPXIP6 | 2948 SKB_GSO_UDP_TUNNEL | 2949 SKB_GSO_UDP_TUNNEL_CSUM)) { 2950 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2951 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2952 l4.udp->len = 0; 2953 2954 /* determine offset of outer transport header */ 2955 l4_offset = l4.hdr - skb->data; 2956 2957 /* remove payload length from outer checksum */ 2958 paylen = skb->len - l4_offset; 2959 csum_replace_by_diff(&l4.udp->check, 2960 (__force __wsum)htonl(paylen)); 2961 } 2962 2963 /* reset pointers to inner headers */ 2964 ip.hdr = skb_inner_network_header(skb); 2965 l4.hdr = skb_inner_transport_header(skb); 2966 2967 /* initialize inner IP header fields */ 2968 if (ip.v4->version == 4) { 2969 ip.v4->tot_len = 0; 2970 ip.v4->check = 0; 2971 } else { 2972 ip.v6->payload_len = 0; 2973 } 2974 } 2975 2976 /* determine offset of inner transport header */ 2977 l4_offset = l4.hdr - skb->data; 2978 2979 /* remove payload length from inner checksum */ 2980 paylen = skb->len - l4_offset; 2981 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2982 2983 /* compute length of segmentation header */ 2984 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2985 2986 /* pull values out of skb_shinfo */ 2987 gso_size = skb_shinfo(skb)->gso_size; 2988 gso_segs = skb_shinfo(skb)->gso_segs; 2989 2990 /* update GSO size and bytecount with header size */ 2991 first->gso_segs = gso_segs; 2992 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2993 2994 /* find the field values */ 2995 cd_cmd = I40E_TX_CTX_DESC_TSO; 2996 cd_tso_len = skb->len - *hdr_len; 2997 cd_mss = gso_size; 2998 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2999 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 3000 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 3001 return 1; 3002 } 3003 3004 /** 3005 * i40e_tsyn - set up the tsyn context descriptor 3006 * @tx_ring: ptr to the ring to send 3007 * @skb: ptr to the skb we're sending 3008 * @tx_flags: the collected send information 3009 * @cd_type_cmd_tso_mss: Quad Word 1 3010 * 3011 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3012 **/ 3013 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3014 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3015 { 3016 struct i40e_pf *pf; 3017 3018 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3019 return 0; 3020 3021 /* Tx timestamps cannot be sampled when doing TSO */ 3022 if (tx_flags & I40E_TX_FLAGS_TSO) 3023 return 0; 3024 3025 /* only timestamp the outbound packet if the user has requested it and 3026 * we are not already transmitting a packet to be timestamped 3027 */ 3028 pf = i40e_netdev_to_pf(tx_ring->netdev); 3029 if (!(pf->flags & I40E_FLAG_PTP)) 3030 return 0; 3031 3032 if (pf->ptp_tx && 3033 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3034 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3035 pf->ptp_tx_start = jiffies; 3036 pf->ptp_tx_skb = skb_get(skb); 3037 } else { 3038 pf->tx_hwtstamp_skipped++; 3039 return 0; 3040 } 3041 3042 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3043 I40E_TXD_CTX_QW1_CMD_SHIFT; 3044 3045 return 1; 3046 } 3047 3048 /** 3049 * i40e_tx_enable_csum - Enable Tx checksum offloads 3050 * @skb: send buffer 3051 * @tx_flags: pointer to Tx flags currently set 3052 * @td_cmd: Tx descriptor command bits to set 3053 * @td_offset: Tx descriptor header offsets to set 3054 * @tx_ring: Tx descriptor ring 3055 * @cd_tunneling: ptr to context desc bits 3056 **/ 3057 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3058 u32 *td_cmd, u32 *td_offset, 3059 struct i40e_ring *tx_ring, 3060 u32 *cd_tunneling) 3061 { 3062 union { 3063 struct iphdr *v4; 3064 struct ipv6hdr *v6; 3065 unsigned char *hdr; 3066 } ip; 3067 union { 3068 struct tcphdr *tcp; 3069 struct udphdr *udp; 3070 unsigned char *hdr; 3071 } l4; 3072 unsigned char *exthdr; 3073 u32 offset, cmd = 0; 3074 __be16 frag_off; 3075 u8 l4_proto = 0; 3076 3077 if (skb->ip_summed != CHECKSUM_PARTIAL) 3078 return 0; 3079 3080 ip.hdr = skb_network_header(skb); 3081 l4.hdr = skb_transport_header(skb); 3082 3083 /* compute outer L2 header size */ 3084 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3085 3086 if (skb->encapsulation) { 3087 u32 tunnel = 0; 3088 /* define outer network header type */ 3089 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3090 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3091 I40E_TX_CTX_EXT_IP_IPV4 : 3092 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3093 3094 l4_proto = ip.v4->protocol; 3095 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3096 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3097 3098 exthdr = ip.hdr + sizeof(*ip.v6); 3099 l4_proto = ip.v6->nexthdr; 3100 if (l4.hdr != exthdr) 3101 ipv6_skip_exthdr(skb, exthdr - skb->data, 3102 &l4_proto, &frag_off); 3103 } 3104 3105 /* define outer transport */ 3106 switch (l4_proto) { 3107 case IPPROTO_UDP: 3108 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3109 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3110 break; 3111 case IPPROTO_GRE: 3112 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3113 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3114 break; 3115 case IPPROTO_IPIP: 3116 case IPPROTO_IPV6: 3117 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3118 l4.hdr = skb_inner_network_header(skb); 3119 break; 3120 default: 3121 if (*tx_flags & I40E_TX_FLAGS_TSO) 3122 return -1; 3123 3124 skb_checksum_help(skb); 3125 return 0; 3126 } 3127 3128 /* compute outer L3 header size */ 3129 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3130 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3131 3132 /* switch IP header pointer from outer to inner header */ 3133 ip.hdr = skb_inner_network_header(skb); 3134 3135 /* compute tunnel header size */ 3136 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3137 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3138 3139 /* indicate if we need to offload outer UDP header */ 3140 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3141 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3142 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3143 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3144 3145 /* record tunnel offload values */ 3146 *cd_tunneling |= tunnel; 3147 3148 /* switch L4 header pointer from outer to inner */ 3149 l4.hdr = skb_inner_transport_header(skb); 3150 l4_proto = 0; 3151 3152 /* reset type as we transition from outer to inner headers */ 3153 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3154 if (ip.v4->version == 4) 3155 *tx_flags |= I40E_TX_FLAGS_IPV4; 3156 if (ip.v6->version == 6) 3157 *tx_flags |= I40E_TX_FLAGS_IPV6; 3158 } 3159 3160 /* Enable IP checksum offloads */ 3161 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3162 l4_proto = ip.v4->protocol; 3163 /* the stack computes the IP header already, the only time we 3164 * need the hardware to recompute it is in the case of TSO. 3165 */ 3166 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3167 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3168 I40E_TX_DESC_CMD_IIPT_IPV4; 3169 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3170 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3171 3172 exthdr = ip.hdr + sizeof(*ip.v6); 3173 l4_proto = ip.v6->nexthdr; 3174 if (l4.hdr != exthdr) 3175 ipv6_skip_exthdr(skb, exthdr - skb->data, 3176 &l4_proto, &frag_off); 3177 } 3178 3179 /* compute inner L3 header size */ 3180 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3181 3182 /* Enable L4 checksum offloads */ 3183 switch (l4_proto) { 3184 case IPPROTO_TCP: 3185 /* enable checksum offloads */ 3186 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3187 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3188 break; 3189 case IPPROTO_SCTP: 3190 /* enable SCTP checksum offload */ 3191 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3192 offset |= (sizeof(struct sctphdr) >> 2) << 3193 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3194 break; 3195 case IPPROTO_UDP: 3196 /* enable UDP checksum offload */ 3197 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3198 offset |= (sizeof(struct udphdr) >> 2) << 3199 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3200 break; 3201 default: 3202 if (*tx_flags & I40E_TX_FLAGS_TSO) 3203 return -1; 3204 skb_checksum_help(skb); 3205 return 0; 3206 } 3207 3208 *td_cmd |= cmd; 3209 *td_offset |= offset; 3210 3211 return 1; 3212 } 3213 3214 /** 3215 * i40e_create_tx_ctx Build the Tx context descriptor 3216 * @tx_ring: ring to create the descriptor on 3217 * @cd_type_cmd_tso_mss: Quad Word 1 3218 * @cd_tunneling: Quad Word 0 - bits 0-31 3219 * @cd_l2tag2: Quad Word 0 - bits 32-63 3220 **/ 3221 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3222 const u64 cd_type_cmd_tso_mss, 3223 const u32 cd_tunneling, const u32 cd_l2tag2) 3224 { 3225 struct i40e_tx_context_desc *context_desc; 3226 int i = tx_ring->next_to_use; 3227 3228 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3229 !cd_tunneling && !cd_l2tag2) 3230 return; 3231 3232 /* grab the next descriptor */ 3233 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3234 3235 i++; 3236 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3237 3238 /* cpu_to_le32 and assign to struct fields */ 3239 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3240 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3241 context_desc->rsvd = cpu_to_le16(0); 3242 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3243 } 3244 3245 /** 3246 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3247 * @tx_ring: the ring to be checked 3248 * @size: the size buffer we want to assure is available 3249 * 3250 * Returns -EBUSY if a stop is needed, else 0 3251 **/ 3252 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3253 { 3254 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3255 /* Memory barrier before checking head and tail */ 3256 smp_mb(); 3257 3258 /* Check again in a case another CPU has just made room available. */ 3259 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3260 return -EBUSY; 3261 3262 /* A reprieve! - use start_queue because it doesn't call schedule */ 3263 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3264 ++tx_ring->tx_stats.restart_queue; 3265 return 0; 3266 } 3267 3268 /** 3269 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3270 * @skb: send buffer 3271 * 3272 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3273 * and so we need to figure out the cases where we need to linearize the skb. 3274 * 3275 * For TSO we need to count the TSO header and segment payload separately. 3276 * As such we need to check cases where we have 7 fragments or more as we 3277 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3278 * the segment payload in the first descriptor, and another 7 for the 3279 * fragments. 3280 **/ 3281 bool __i40e_chk_linearize(struct sk_buff *skb) 3282 { 3283 const struct skb_frag_struct *frag, *stale; 3284 int nr_frags, sum; 3285 3286 /* no need to check if number of frags is less than 7 */ 3287 nr_frags = skb_shinfo(skb)->nr_frags; 3288 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3289 return false; 3290 3291 /* We need to walk through the list and validate that each group 3292 * of 6 fragments totals at least gso_size. 3293 */ 3294 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3295 frag = &skb_shinfo(skb)->frags[0]; 3296 3297 /* Initialize size to the negative value of gso_size minus 1. We 3298 * use this as the worst case scenerio in which the frag ahead 3299 * of us only provides one byte which is why we are limited to 6 3300 * descriptors for a single transmit as the header and previous 3301 * fragment are already consuming 2 descriptors. 3302 */ 3303 sum = 1 - skb_shinfo(skb)->gso_size; 3304 3305 /* Add size of frags 0 through 4 to create our initial sum */ 3306 sum += skb_frag_size(frag++); 3307 sum += skb_frag_size(frag++); 3308 sum += skb_frag_size(frag++); 3309 sum += skb_frag_size(frag++); 3310 sum += skb_frag_size(frag++); 3311 3312 /* Walk through fragments adding latest fragment, testing it, and 3313 * then removing stale fragments from the sum. 3314 */ 3315 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3316 int stale_size = skb_frag_size(stale); 3317 3318 sum += skb_frag_size(frag++); 3319 3320 /* The stale fragment may present us with a smaller 3321 * descriptor than the actual fragment size. To account 3322 * for that we need to remove all the data on the front and 3323 * figure out what the remainder would be in the last 3324 * descriptor associated with the fragment. 3325 */ 3326 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3327 int align_pad = -(stale->page_offset) & 3328 (I40E_MAX_READ_REQ_SIZE - 1); 3329 3330 sum -= align_pad; 3331 stale_size -= align_pad; 3332 3333 do { 3334 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3335 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3336 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3337 } 3338 3339 /* if sum is negative we failed to make sufficient progress */ 3340 if (sum < 0) 3341 return true; 3342 3343 if (!nr_frags--) 3344 break; 3345 3346 sum -= stale_size; 3347 } 3348 3349 return false; 3350 } 3351 3352 /** 3353 * i40e_tx_map - Build the Tx descriptor 3354 * @tx_ring: ring to send buffer on 3355 * @skb: send buffer 3356 * @first: first buffer info buffer to use 3357 * @tx_flags: collected send information 3358 * @hdr_len: size of the packet header 3359 * @td_cmd: the command field in the descriptor 3360 * @td_offset: offset for checksum or crc 3361 * 3362 * Returns 0 on success, -1 on failure to DMA 3363 **/ 3364 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3365 struct i40e_tx_buffer *first, u32 tx_flags, 3366 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3367 { 3368 unsigned int data_len = skb->data_len; 3369 unsigned int size = skb_headlen(skb); 3370 struct skb_frag_struct *frag; 3371 struct i40e_tx_buffer *tx_bi; 3372 struct i40e_tx_desc *tx_desc; 3373 u16 i = tx_ring->next_to_use; 3374 u32 td_tag = 0; 3375 dma_addr_t dma; 3376 u16 desc_count = 1; 3377 3378 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3379 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3380 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3381 I40E_TX_FLAGS_VLAN_SHIFT; 3382 } 3383 3384 first->tx_flags = tx_flags; 3385 3386 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3387 3388 tx_desc = I40E_TX_DESC(tx_ring, i); 3389 tx_bi = first; 3390 3391 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3392 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3393 3394 if (dma_mapping_error(tx_ring->dev, dma)) 3395 goto dma_error; 3396 3397 /* record length, and DMA address */ 3398 dma_unmap_len_set(tx_bi, len, size); 3399 dma_unmap_addr_set(tx_bi, dma, dma); 3400 3401 /* align size to end of page */ 3402 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3403 tx_desc->buffer_addr = cpu_to_le64(dma); 3404 3405 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3406 tx_desc->cmd_type_offset_bsz = 3407 build_ctob(td_cmd, td_offset, 3408 max_data, td_tag); 3409 3410 tx_desc++; 3411 i++; 3412 desc_count++; 3413 3414 if (i == tx_ring->count) { 3415 tx_desc = I40E_TX_DESC(tx_ring, 0); 3416 i = 0; 3417 } 3418 3419 dma += max_data; 3420 size -= max_data; 3421 3422 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3423 tx_desc->buffer_addr = cpu_to_le64(dma); 3424 } 3425 3426 if (likely(!data_len)) 3427 break; 3428 3429 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3430 size, td_tag); 3431 3432 tx_desc++; 3433 i++; 3434 desc_count++; 3435 3436 if (i == tx_ring->count) { 3437 tx_desc = I40E_TX_DESC(tx_ring, 0); 3438 i = 0; 3439 } 3440 3441 size = skb_frag_size(frag); 3442 data_len -= size; 3443 3444 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3445 DMA_TO_DEVICE); 3446 3447 tx_bi = &tx_ring->tx_bi[i]; 3448 } 3449 3450 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3451 3452 i++; 3453 if (i == tx_ring->count) 3454 i = 0; 3455 3456 tx_ring->next_to_use = i; 3457 3458 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3459 3460 /* write last descriptor with EOP bit */ 3461 td_cmd |= I40E_TX_DESC_CMD_EOP; 3462 3463 /* We OR these values together to check both against 4 (WB_STRIDE) 3464 * below. This is safe since we don't re-use desc_count afterwards. 3465 */ 3466 desc_count |= ++tx_ring->packet_stride; 3467 3468 if (desc_count >= WB_STRIDE) { 3469 /* write last descriptor with RS bit set */ 3470 td_cmd |= I40E_TX_DESC_CMD_RS; 3471 tx_ring->packet_stride = 0; 3472 } 3473 3474 tx_desc->cmd_type_offset_bsz = 3475 build_ctob(td_cmd, td_offset, size, td_tag); 3476 3477 /* Force memory writes to complete before letting h/w know there 3478 * are new descriptors to fetch. 3479 * 3480 * We also use this memory barrier to make certain all of the 3481 * status bits have been updated before next_to_watch is written. 3482 */ 3483 wmb(); 3484 3485 /* set next_to_watch value indicating a packet is present */ 3486 first->next_to_watch = tx_desc; 3487 3488 /* notify HW of packet */ 3489 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 3490 writel(i, tx_ring->tail); 3491 3492 /* we need this if more than one processor can write to our tail 3493 * at a time, it synchronizes IO on IA64/Altix systems 3494 */ 3495 mmiowb(); 3496 } 3497 3498 return 0; 3499 3500 dma_error: 3501 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3502 3503 /* clear dma mappings for failed tx_bi map */ 3504 for (;;) { 3505 tx_bi = &tx_ring->tx_bi[i]; 3506 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3507 if (tx_bi == first) 3508 break; 3509 if (i == 0) 3510 i = tx_ring->count; 3511 i--; 3512 } 3513 3514 tx_ring->next_to_use = i; 3515 3516 return -1; 3517 } 3518 3519 /** 3520 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3521 * @xdp: data to transmit 3522 * @xdp_ring: XDP Tx ring 3523 **/ 3524 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3525 struct i40e_ring *xdp_ring) 3526 { 3527 u16 i = xdp_ring->next_to_use; 3528 struct i40e_tx_buffer *tx_bi; 3529 struct i40e_tx_desc *tx_desc; 3530 u32 size = xdpf->len; 3531 dma_addr_t dma; 3532 3533 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3534 xdp_ring->tx_stats.tx_busy++; 3535 return I40E_XDP_CONSUMED; 3536 } 3537 3538 dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE); 3539 if (dma_mapping_error(xdp_ring->dev, dma)) 3540 return I40E_XDP_CONSUMED; 3541 3542 tx_bi = &xdp_ring->tx_bi[i]; 3543 tx_bi->bytecount = size; 3544 tx_bi->gso_segs = 1; 3545 tx_bi->xdpf = xdpf; 3546 3547 /* record length, and DMA address */ 3548 dma_unmap_len_set(tx_bi, len, size); 3549 dma_unmap_addr_set(tx_bi, dma, dma); 3550 3551 tx_desc = I40E_TX_DESC(xdp_ring, i); 3552 tx_desc->buffer_addr = cpu_to_le64(dma); 3553 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3554 | I40E_TXD_CMD, 3555 0, size, 0); 3556 3557 /* Make certain all of the status bits have been updated 3558 * before next_to_watch is written. 3559 */ 3560 smp_wmb(); 3561 3562 i++; 3563 if (i == xdp_ring->count) 3564 i = 0; 3565 3566 tx_bi->next_to_watch = tx_desc; 3567 xdp_ring->next_to_use = i; 3568 3569 return I40E_XDP_TX; 3570 } 3571 3572 /** 3573 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3574 * @skb: send buffer 3575 * @tx_ring: ring to send buffer on 3576 * 3577 * Returns NETDEV_TX_OK if sent, else an error code 3578 **/ 3579 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3580 struct i40e_ring *tx_ring) 3581 { 3582 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3583 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3584 struct i40e_tx_buffer *first; 3585 u32 td_offset = 0; 3586 u32 tx_flags = 0; 3587 __be16 protocol; 3588 u32 td_cmd = 0; 3589 u8 hdr_len = 0; 3590 int tso, count; 3591 int tsyn; 3592 3593 /* prefetch the data, we'll need it later */ 3594 prefetch(skb->data); 3595 3596 i40e_trace(xmit_frame_ring, skb, tx_ring); 3597 3598 count = i40e_xmit_descriptor_count(skb); 3599 if (i40e_chk_linearize(skb, count)) { 3600 if (__skb_linearize(skb)) { 3601 dev_kfree_skb_any(skb); 3602 return NETDEV_TX_OK; 3603 } 3604 count = i40e_txd_use_count(skb->len); 3605 tx_ring->tx_stats.tx_linearize++; 3606 } 3607 3608 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3609 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3610 * + 4 desc gap to avoid the cache line where head is, 3611 * + 1 desc for context descriptor, 3612 * otherwise try next time 3613 */ 3614 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3615 tx_ring->tx_stats.tx_busy++; 3616 return NETDEV_TX_BUSY; 3617 } 3618 3619 /* record the location of the first descriptor for this packet */ 3620 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3621 first->skb = skb; 3622 first->bytecount = skb->len; 3623 first->gso_segs = 1; 3624 3625 /* prepare the xmit flags */ 3626 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3627 goto out_drop; 3628 3629 /* obtain protocol of skb */ 3630 protocol = vlan_get_protocol(skb); 3631 3632 /* setup IPv4/IPv6 offloads */ 3633 if (protocol == htons(ETH_P_IP)) 3634 tx_flags |= I40E_TX_FLAGS_IPV4; 3635 else if (protocol == htons(ETH_P_IPV6)) 3636 tx_flags |= I40E_TX_FLAGS_IPV6; 3637 3638 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3639 3640 if (tso < 0) 3641 goto out_drop; 3642 else if (tso) 3643 tx_flags |= I40E_TX_FLAGS_TSO; 3644 3645 /* Always offload the checksum, since it's in the data descriptor */ 3646 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3647 tx_ring, &cd_tunneling); 3648 if (tso < 0) 3649 goto out_drop; 3650 3651 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3652 3653 if (tsyn) 3654 tx_flags |= I40E_TX_FLAGS_TSYN; 3655 3656 skb_tx_timestamp(skb); 3657 3658 /* always enable CRC insertion offload */ 3659 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3660 3661 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3662 cd_tunneling, cd_l2tag2); 3663 3664 /* Add Flow Director ATR if it's enabled. 3665 * 3666 * NOTE: this must always be directly before the data descriptor. 3667 */ 3668 i40e_atr(tx_ring, skb, tx_flags); 3669 3670 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3671 td_cmd, td_offset)) 3672 goto cleanup_tx_tstamp; 3673 3674 return NETDEV_TX_OK; 3675 3676 out_drop: 3677 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3678 dev_kfree_skb_any(first->skb); 3679 first->skb = NULL; 3680 cleanup_tx_tstamp: 3681 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3682 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3683 3684 dev_kfree_skb_any(pf->ptp_tx_skb); 3685 pf->ptp_tx_skb = NULL; 3686 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3687 } 3688 3689 return NETDEV_TX_OK; 3690 } 3691 3692 /** 3693 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3694 * @skb: send buffer 3695 * @netdev: network interface device structure 3696 * 3697 * Returns NETDEV_TX_OK if sent, else an error code 3698 **/ 3699 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3700 { 3701 struct i40e_netdev_priv *np = netdev_priv(netdev); 3702 struct i40e_vsi *vsi = np->vsi; 3703 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3704 3705 /* hardware can't handle really short frames, hardware padding works 3706 * beyond this point 3707 */ 3708 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3709 return NETDEV_TX_OK; 3710 3711 return i40e_xmit_frame_ring(skb, tx_ring); 3712 } 3713 3714 /** 3715 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3716 * @dev: netdev 3717 * @xdp: XDP buffer 3718 * 3719 * Returns number of frames successfully sent. Frames that fail are 3720 * free'ed via XDP return API. 3721 * 3722 * For error cases, a negative errno code is returned and no-frames 3723 * are transmitted (caller must handle freeing frames). 3724 **/ 3725 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3726 u32 flags) 3727 { 3728 struct i40e_netdev_priv *np = netdev_priv(dev); 3729 unsigned int queue_index = smp_processor_id(); 3730 struct i40e_vsi *vsi = np->vsi; 3731 struct i40e_ring *xdp_ring; 3732 int drops = 0; 3733 int i; 3734 3735 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3736 return -ENETDOWN; 3737 3738 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs) 3739 return -ENXIO; 3740 3741 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3742 return -EINVAL; 3743 3744 xdp_ring = vsi->xdp_rings[queue_index]; 3745 3746 for (i = 0; i < n; i++) { 3747 struct xdp_frame *xdpf = frames[i]; 3748 int err; 3749 3750 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3751 if (err != I40E_XDP_TX) { 3752 xdp_return_frame_rx_napi(xdpf); 3753 drops++; 3754 } 3755 } 3756 3757 if (unlikely(flags & XDP_XMIT_FLUSH)) 3758 i40e_xdp_ring_update_tail(xdp_ring); 3759 3760 return n - drops; 3761 } 3762