1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <net/busy_poll.h>
6 #include <linux/bpf_trace.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39 
40 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42 
43 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45 
46 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
47 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
48 
49 	/* Use LAN VSI Id if not programmed by user */
50 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
51 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
52 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
53 
54 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
55 
56 	dtype_cmd |= add ?
57 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
58 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
59 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
60 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
61 
62 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
63 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
64 
65 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
66 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
67 
68 	if (fdata->cnt_index) {
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
70 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
71 			     ((u32)fdata->cnt_index <<
72 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
73 	}
74 
75 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
76 	fdir_desc->rsvd = cpu_to_le32(0);
77 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
78 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
79 }
80 
81 #define I40E_FD_CLEAN_DELAY 10
82 /**
83  * i40e_program_fdir_filter - Program a Flow Director filter
84  * @fdir_data: Packet data that will be filter parameters
85  * @raw_packet: the pre-allocated packet buffer for FDir
86  * @pf: The PF pointer
87  * @add: True for add/update, False for remove
88  **/
89 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
90 				    u8 *raw_packet, struct i40e_pf *pf,
91 				    bool add)
92 {
93 	struct i40e_tx_buffer *tx_buf, *first;
94 	struct i40e_tx_desc *tx_desc;
95 	struct i40e_ring *tx_ring;
96 	struct i40e_vsi *vsi;
97 	struct device *dev;
98 	dma_addr_t dma;
99 	u32 td_cmd = 0;
100 	u16 i;
101 
102 	/* find existing FDIR VSI */
103 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
104 	if (!vsi)
105 		return -ENOENT;
106 
107 	tx_ring = vsi->tx_rings[0];
108 	dev = tx_ring->dev;
109 
110 	/* we need two descriptors to add/del a filter and we can wait */
111 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
112 		if (!i)
113 			return -EAGAIN;
114 		msleep_interruptible(1);
115 	}
116 
117 	dma = dma_map_single(dev, raw_packet,
118 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
119 	if (dma_mapping_error(dev, dma))
120 		goto dma_fail;
121 
122 	/* grab the next descriptor */
123 	i = tx_ring->next_to_use;
124 	first = &tx_ring->tx_bi[i];
125 	i40e_fdir(tx_ring, fdir_data, add);
126 
127 	/* Now program a dummy descriptor */
128 	i = tx_ring->next_to_use;
129 	tx_desc = I40E_TX_DESC(tx_ring, i);
130 	tx_buf = &tx_ring->tx_bi[i];
131 
132 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
133 
134 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
135 
136 	/* record length, and DMA address */
137 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
138 	dma_unmap_addr_set(tx_buf, dma, dma);
139 
140 	tx_desc->buffer_addr = cpu_to_le64(dma);
141 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
142 
143 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
144 	tx_buf->raw_buf = (void *)raw_packet;
145 
146 	tx_desc->cmd_type_offset_bsz =
147 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
148 
149 	/* Force memory writes to complete before letting h/w
150 	 * know there are new descriptors to fetch.
151 	 */
152 	wmb();
153 
154 	/* Mark the data descriptor to be watched */
155 	first->next_to_watch = tx_desc;
156 
157 	writel(tx_ring->next_to_use, tx_ring->tail);
158 	return 0;
159 
160 dma_fail:
161 	return -1;
162 }
163 
164 #define IP_HEADER_OFFSET 14
165 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
166 /**
167  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
168  * @vsi: pointer to the targeted VSI
169  * @fd_data: the flow director data required for the FDir descriptor
170  * @add: true adds a filter, false removes it
171  *
172  * Returns 0 if the filters were successfully added or removed
173  **/
174 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
175 				   struct i40e_fdir_filter *fd_data,
176 				   bool add)
177 {
178 	struct i40e_pf *pf = vsi->back;
179 	struct udphdr *udp;
180 	struct iphdr *ip;
181 	u8 *raw_packet;
182 	int ret;
183 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
184 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
185 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
186 
187 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
188 	if (!raw_packet)
189 		return -ENOMEM;
190 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
191 
192 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
193 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
194 	      + sizeof(struct iphdr));
195 
196 	ip->daddr = fd_data->dst_ip;
197 	udp->dest = fd_data->dst_port;
198 	ip->saddr = fd_data->src_ip;
199 	udp->source = fd_data->src_port;
200 
201 	if (fd_data->flex_filter) {
202 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
203 		__be16 pattern = fd_data->flex_word;
204 		u16 off = fd_data->flex_offset;
205 
206 		*((__force __be16 *)(payload + off)) = pattern;
207 	}
208 
209 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
210 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
211 	if (ret) {
212 		dev_info(&pf->pdev->dev,
213 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
214 			 fd_data->pctype, fd_data->fd_id, ret);
215 		/* Free the packet buffer since it wasn't added to the ring */
216 		kfree(raw_packet);
217 		return -EOPNOTSUPP;
218 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
219 		if (add)
220 			dev_info(&pf->pdev->dev,
221 				 "Filter OK for PCTYPE %d loc = %d\n",
222 				 fd_data->pctype, fd_data->fd_id);
223 		else
224 			dev_info(&pf->pdev->dev,
225 				 "Filter deleted for PCTYPE %d loc = %d\n",
226 				 fd_data->pctype, fd_data->fd_id);
227 	}
228 
229 	if (add)
230 		pf->fd_udp4_filter_cnt++;
231 	else
232 		pf->fd_udp4_filter_cnt--;
233 
234 	return 0;
235 }
236 
237 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
238 /**
239  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
240  * @vsi: pointer to the targeted VSI
241  * @fd_data: the flow director data required for the FDir descriptor
242  * @add: true adds a filter, false removes it
243  *
244  * Returns 0 if the filters were successfully added or removed
245  **/
246 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
247 				   struct i40e_fdir_filter *fd_data,
248 				   bool add)
249 {
250 	struct i40e_pf *pf = vsi->back;
251 	struct tcphdr *tcp;
252 	struct iphdr *ip;
253 	u8 *raw_packet;
254 	int ret;
255 	/* Dummy packet */
256 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
257 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
258 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
259 		0x0, 0x72, 0, 0, 0, 0};
260 
261 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
262 	if (!raw_packet)
263 		return -ENOMEM;
264 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
265 
266 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
267 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
268 	      + sizeof(struct iphdr));
269 
270 	ip->daddr = fd_data->dst_ip;
271 	tcp->dest = fd_data->dst_port;
272 	ip->saddr = fd_data->src_ip;
273 	tcp->source = fd_data->src_port;
274 
275 	if (fd_data->flex_filter) {
276 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
277 		__be16 pattern = fd_data->flex_word;
278 		u16 off = fd_data->flex_offset;
279 
280 		*((__force __be16 *)(payload + off)) = pattern;
281 	}
282 
283 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
284 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
285 	if (ret) {
286 		dev_info(&pf->pdev->dev,
287 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
288 			 fd_data->pctype, fd_data->fd_id, ret);
289 		/* Free the packet buffer since it wasn't added to the ring */
290 		kfree(raw_packet);
291 		return -EOPNOTSUPP;
292 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
293 		if (add)
294 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
295 				 fd_data->pctype, fd_data->fd_id);
296 		else
297 			dev_info(&pf->pdev->dev,
298 				 "Filter deleted for PCTYPE %d loc = %d\n",
299 				 fd_data->pctype, fd_data->fd_id);
300 	}
301 
302 	if (add) {
303 		pf->fd_tcp4_filter_cnt++;
304 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
305 		    I40E_DEBUG_FD & pf->hw.debug_mask)
306 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
307 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
308 	} else {
309 		pf->fd_tcp4_filter_cnt--;
310 	}
311 
312 	return 0;
313 }
314 
315 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
316 /**
317  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
318  * a specific flow spec
319  * @vsi: pointer to the targeted VSI
320  * @fd_data: the flow director data required for the FDir descriptor
321  * @add: true adds a filter, false removes it
322  *
323  * Returns 0 if the filters were successfully added or removed
324  **/
325 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
326 				    struct i40e_fdir_filter *fd_data,
327 				    bool add)
328 {
329 	struct i40e_pf *pf = vsi->back;
330 	struct sctphdr *sctp;
331 	struct iphdr *ip;
332 	u8 *raw_packet;
333 	int ret;
334 	/* Dummy packet */
335 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
336 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
337 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
338 
339 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
340 	if (!raw_packet)
341 		return -ENOMEM;
342 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
343 
344 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
345 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
346 	      + sizeof(struct iphdr));
347 
348 	ip->daddr = fd_data->dst_ip;
349 	sctp->dest = fd_data->dst_port;
350 	ip->saddr = fd_data->src_ip;
351 	sctp->source = fd_data->src_port;
352 
353 	if (fd_data->flex_filter) {
354 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
355 		__be16 pattern = fd_data->flex_word;
356 		u16 off = fd_data->flex_offset;
357 
358 		*((__force __be16 *)(payload + off)) = pattern;
359 	}
360 
361 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
362 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
363 	if (ret) {
364 		dev_info(&pf->pdev->dev,
365 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
366 			 fd_data->pctype, fd_data->fd_id, ret);
367 		/* Free the packet buffer since it wasn't added to the ring */
368 		kfree(raw_packet);
369 		return -EOPNOTSUPP;
370 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
371 		if (add)
372 			dev_info(&pf->pdev->dev,
373 				 "Filter OK for PCTYPE %d loc = %d\n",
374 				 fd_data->pctype, fd_data->fd_id);
375 		else
376 			dev_info(&pf->pdev->dev,
377 				 "Filter deleted for PCTYPE %d loc = %d\n",
378 				 fd_data->pctype, fd_data->fd_id);
379 	}
380 
381 	if (add)
382 		pf->fd_sctp4_filter_cnt++;
383 	else
384 		pf->fd_sctp4_filter_cnt--;
385 
386 	return 0;
387 }
388 
389 #define I40E_IP_DUMMY_PACKET_LEN 34
390 /**
391  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
392  * a specific flow spec
393  * @vsi: pointer to the targeted VSI
394  * @fd_data: the flow director data required for the FDir descriptor
395  * @add: true adds a filter, false removes it
396  *
397  * Returns 0 if the filters were successfully added or removed
398  **/
399 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
400 				  struct i40e_fdir_filter *fd_data,
401 				  bool add)
402 {
403 	struct i40e_pf *pf = vsi->back;
404 	struct iphdr *ip;
405 	u8 *raw_packet;
406 	int ret;
407 	int i;
408 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
409 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
410 		0, 0, 0, 0};
411 
412 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
413 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
414 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
415 		if (!raw_packet)
416 			return -ENOMEM;
417 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
418 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
419 
420 		ip->saddr = fd_data->src_ip;
421 		ip->daddr = fd_data->dst_ip;
422 		ip->protocol = 0;
423 
424 		if (fd_data->flex_filter) {
425 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
426 			__be16 pattern = fd_data->flex_word;
427 			u16 off = fd_data->flex_offset;
428 
429 			*((__force __be16 *)(payload + off)) = pattern;
430 		}
431 
432 		fd_data->pctype = i;
433 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
434 		if (ret) {
435 			dev_info(&pf->pdev->dev,
436 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
437 				 fd_data->pctype, fd_data->fd_id, ret);
438 			/* The packet buffer wasn't added to the ring so we
439 			 * need to free it now.
440 			 */
441 			kfree(raw_packet);
442 			return -EOPNOTSUPP;
443 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
444 			if (add)
445 				dev_info(&pf->pdev->dev,
446 					 "Filter OK for PCTYPE %d loc = %d\n",
447 					 fd_data->pctype, fd_data->fd_id);
448 			else
449 				dev_info(&pf->pdev->dev,
450 					 "Filter deleted for PCTYPE %d loc = %d\n",
451 					 fd_data->pctype, fd_data->fd_id);
452 		}
453 	}
454 
455 	if (add)
456 		pf->fd_ip4_filter_cnt++;
457 	else
458 		pf->fd_ip4_filter_cnt--;
459 
460 	return 0;
461 }
462 
463 /**
464  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
465  * @vsi: pointer to the targeted VSI
466  * @input: filter to add or delete
467  * @add: true adds a filter, false removes it
468  *
469  **/
470 int i40e_add_del_fdir(struct i40e_vsi *vsi,
471 		      struct i40e_fdir_filter *input, bool add)
472 {
473 	struct i40e_pf *pf = vsi->back;
474 	int ret;
475 
476 	switch (input->flow_type & ~FLOW_EXT) {
477 	case TCP_V4_FLOW:
478 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
479 		break;
480 	case UDP_V4_FLOW:
481 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
482 		break;
483 	case SCTP_V4_FLOW:
484 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
485 		break;
486 	case IP_USER_FLOW:
487 		switch (input->ip4_proto) {
488 		case IPPROTO_TCP:
489 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
490 			break;
491 		case IPPROTO_UDP:
492 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
493 			break;
494 		case IPPROTO_SCTP:
495 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
496 			break;
497 		case IPPROTO_IP:
498 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
499 			break;
500 		default:
501 			/* We cannot support masking based on protocol */
502 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
503 				 input->ip4_proto);
504 			return -EINVAL;
505 		}
506 		break;
507 	default:
508 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
509 			 input->flow_type);
510 		return -EINVAL;
511 	}
512 
513 	/* The buffer allocated here will be normally be freed by
514 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
515 	 * completion. In the event of an error adding the buffer to the FDIR
516 	 * ring, it will immediately be freed. It may also be freed by
517 	 * i40e_clean_tx_ring() when closing the VSI.
518 	 */
519 	return ret;
520 }
521 
522 /**
523  * i40e_fd_handle_status - check the Programming Status for FD
524  * @rx_ring: the Rx ring for this descriptor
525  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
531 void i40e_fd_handle_status(struct i40e_ring *rx_ring,
532 			   union i40e_rx_desc *rx_desc, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	u32 fcnt_prog, fcnt_avail;
537 	u32 error;
538 	u64 qw;
539 
540 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
541 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
546 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 rx_desc->wb.qword0.hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
640 		i40e_xsk_clean_tx_ring(tx_ring);
641 	} else {
642 		/* ring already cleared, nothing to do */
643 		if (!tx_ring->tx_bi)
644 			return;
645 
646 		/* Free all the Tx ring sk_buffs */
647 		for (i = 0; i < tx_ring->count; i++)
648 			i40e_unmap_and_free_tx_resource(tx_ring,
649 							&tx_ring->tx_bi[i]);
650 	}
651 
652 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 	memset(tx_ring->tx_bi, 0, bi_size);
654 
655 	/* Zero out the descriptor ring */
656 	memset(tx_ring->desc, 0, tx_ring->size);
657 
658 	tx_ring->next_to_use = 0;
659 	tx_ring->next_to_clean = 0;
660 
661 	if (!tx_ring->netdev)
662 		return;
663 
664 	/* cleanup Tx queue statistics */
665 	netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667 
668 /**
669  * i40e_free_tx_resources - Free Tx resources per queue
670  * @tx_ring: Tx descriptor ring for a specific queue
671  *
672  * Free all transmit software resources
673  **/
674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 	i40e_clean_tx_ring(tx_ring);
677 	kfree(tx_ring->tx_bi);
678 	tx_ring->tx_bi = NULL;
679 
680 	if (tx_ring->desc) {
681 		dma_free_coherent(tx_ring->dev, tx_ring->size,
682 				  tx_ring->desc, tx_ring->dma);
683 		tx_ring->desc = NULL;
684 	}
685 }
686 
687 /**
688  * i40e_get_tx_pending - how many tx descriptors not processed
689  * @ring: the ring of descriptors
690  * @in_sw: use SW variables
691  *
692  * Since there is no access to the ring head register
693  * in XL710, we need to use our local copies
694  **/
695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 	u32 head, tail;
698 
699 	if (!in_sw) {
700 		head = i40e_get_head(ring);
701 		tail = readl(ring->tail);
702 	} else {
703 		head = ring->next_to_clean;
704 		tail = ring->next_to_use;
705 	}
706 
707 	if (head != tail)
708 		return (head < tail) ?
709 			tail - head : (tail + ring->count - head);
710 
711 	return 0;
712 }
713 
714 /**
715  * i40e_detect_recover_hung - Function to detect and recover hung_queues
716  * @vsi:  pointer to vsi struct with tx queues
717  *
718  * VSI has netdev and netdev has TX queues. This function is to check each of
719  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720  **/
721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 	struct i40e_ring *tx_ring = NULL;
724 	struct net_device *netdev;
725 	unsigned int i;
726 	int packets;
727 
728 	if (!vsi)
729 		return;
730 
731 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 		return;
733 
734 	netdev = vsi->netdev;
735 	if (!netdev)
736 		return;
737 
738 	if (!netif_carrier_ok(netdev))
739 		return;
740 
741 	for (i = 0; i < vsi->num_queue_pairs; i++) {
742 		tx_ring = vsi->tx_rings[i];
743 		if (tx_ring && tx_ring->desc) {
744 			/* If packet counter has not changed the queue is
745 			 * likely stalled, so force an interrupt for this
746 			 * queue.
747 			 *
748 			 * prev_pkt_ctr would be negative if there was no
749 			 * pending work.
750 			 */
751 			packets = tx_ring->stats.packets & INT_MAX;
752 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 				i40e_force_wb(vsi, tx_ring->q_vector);
754 				continue;
755 			}
756 
757 			/* Memory barrier between read of packet count and call
758 			 * to i40e_get_tx_pending()
759 			 */
760 			smp_rmb();
761 			tx_ring->tx_stats.prev_pkt_ctr =
762 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 		}
764 	}
765 }
766 
767 /**
768  * i40e_clean_tx_irq - Reclaim resources after transmit completes
769  * @vsi: the VSI we care about
770  * @tx_ring: Tx ring to clean
771  * @napi_budget: Used to determine if we are in netpoll
772  *
773  * Returns true if there's any budget left (e.g. the clean is finished)
774  **/
775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 			      struct i40e_ring *tx_ring, int napi_budget)
777 {
778 	u16 i = tx_ring->next_to_clean;
779 	struct i40e_tx_buffer *tx_buf;
780 	struct i40e_tx_desc *tx_head;
781 	struct i40e_tx_desc *tx_desc;
782 	unsigned int total_bytes = 0, total_packets = 0;
783 	unsigned int budget = vsi->work_limit;
784 
785 	tx_buf = &tx_ring->tx_bi[i];
786 	tx_desc = I40E_TX_DESC(tx_ring, i);
787 	i -= tx_ring->count;
788 
789 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790 
791 	do {
792 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793 
794 		/* if next_to_watch is not set then there is no work pending */
795 		if (!eop_desc)
796 			break;
797 
798 		/* prevent any other reads prior to eop_desc */
799 		smp_rmb();
800 
801 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 		/* we have caught up to head, no work left to do */
803 		if (tx_head == tx_desc)
804 			break;
805 
806 		/* clear next_to_watch to prevent false hangs */
807 		tx_buf->next_to_watch = NULL;
808 
809 		/* update the statistics for this packet */
810 		total_bytes += tx_buf->bytecount;
811 		total_packets += tx_buf->gso_segs;
812 
813 		/* free the skb/XDP data */
814 		if (ring_is_xdp(tx_ring))
815 			xdp_return_frame(tx_buf->xdpf);
816 		else
817 			napi_consume_skb(tx_buf->skb, napi_budget);
818 
819 		/* unmap skb header data */
820 		dma_unmap_single(tx_ring->dev,
821 				 dma_unmap_addr(tx_buf, dma),
822 				 dma_unmap_len(tx_buf, len),
823 				 DMA_TO_DEVICE);
824 
825 		/* clear tx_buffer data */
826 		tx_buf->skb = NULL;
827 		dma_unmap_len_set(tx_buf, len, 0);
828 
829 		/* unmap remaining buffers */
830 		while (tx_desc != eop_desc) {
831 			i40e_trace(clean_tx_irq_unmap,
832 				   tx_ring, tx_desc, tx_buf);
833 
834 			tx_buf++;
835 			tx_desc++;
836 			i++;
837 			if (unlikely(!i)) {
838 				i -= tx_ring->count;
839 				tx_buf = tx_ring->tx_bi;
840 				tx_desc = I40E_TX_DESC(tx_ring, 0);
841 			}
842 
843 			/* unmap any remaining paged data */
844 			if (dma_unmap_len(tx_buf, len)) {
845 				dma_unmap_page(tx_ring->dev,
846 					       dma_unmap_addr(tx_buf, dma),
847 					       dma_unmap_len(tx_buf, len),
848 					       DMA_TO_DEVICE);
849 				dma_unmap_len_set(tx_buf, len, 0);
850 			}
851 		}
852 
853 		/* move us one more past the eop_desc for start of next pkt */
854 		tx_buf++;
855 		tx_desc++;
856 		i++;
857 		if (unlikely(!i)) {
858 			i -= tx_ring->count;
859 			tx_buf = tx_ring->tx_bi;
860 			tx_desc = I40E_TX_DESC(tx_ring, 0);
861 		}
862 
863 		prefetch(tx_desc);
864 
865 		/* update budget accounting */
866 		budget--;
867 	} while (likely(budget));
868 
869 	i += tx_ring->count;
870 	tx_ring->next_to_clean = i;
871 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 	i40e_arm_wb(tx_ring, vsi, budget);
873 
874 	if (ring_is_xdp(tx_ring))
875 		return !!budget;
876 
877 	/* notify netdev of completed buffers */
878 	netdev_tx_completed_queue(txring_txq(tx_ring),
879 				  total_packets, total_bytes);
880 
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 		/* Make sure that anybody stopping the queue after this
885 		 * sees the new next_to_clean.
886 		 */
887 		smp_mb();
888 		if (__netif_subqueue_stopped(tx_ring->netdev,
889 					     tx_ring->queue_index) &&
890 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 			netif_wake_subqueue(tx_ring->netdev,
892 					    tx_ring->queue_index);
893 			++tx_ring->tx_stats.restart_queue;
894 		}
895 	}
896 
897 	return !!budget;
898 }
899 
900 /**
901  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902  * @vsi: the VSI we care about
903  * @q_vector: the vector on which to enable writeback
904  *
905  **/
906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 				  struct i40e_q_vector *q_vector)
908 {
909 	u16 flags = q_vector->tx.ring[0].flags;
910 	u32 val;
911 
912 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 		return;
914 
915 	if (q_vector->arm_wb_state)
916 		return;
917 
918 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921 
922 		wr32(&vsi->back->hw,
923 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 		     val);
925 	} else {
926 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928 
929 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 	}
931 	q_vector->arm_wb_state = true;
932 }
933 
934 /**
935  * i40e_force_wb - Issue SW Interrupt so HW does a wb
936  * @vsi: the VSI we care about
937  * @q_vector: the vector  on which to force writeback
938  *
939  **/
940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 			  /* allow 00 to be written to the index */
948 
949 		wr32(&vsi->back->hw,
950 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 	} else {
952 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 			/* allow 00 to be written to the index */
957 
958 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 	}
960 }
961 
962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 					struct i40e_ring_container *rc)
964 {
965 	return &q_vector->rx == rc;
966 }
967 
968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 	unsigned int divisor;
971 
972 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 	case I40E_LINK_SPEED_40GB:
974 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 		break;
976 	case I40E_LINK_SPEED_25GB:
977 	case I40E_LINK_SPEED_20GB:
978 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 		break;
980 	default:
981 	case I40E_LINK_SPEED_10GB:
982 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 		break;
984 	case I40E_LINK_SPEED_1GB:
985 	case I40E_LINK_SPEED_100MB:
986 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 		break;
988 	}
989 
990 	return divisor;
991 }
992 
993 /**
994  * i40e_update_itr - update the dynamic ITR value based on statistics
995  * @q_vector: structure containing interrupt and ring information
996  * @rc: structure containing ring performance data
997  *
998  * Stores a new ITR value based on packets and byte
999  * counts during the last interrupt.  The advantage of per interrupt
1000  * computation is faster updates and more accurate ITR for the current
1001  * traffic pattern.  Constants in this function were computed
1002  * based on theoretical maximum wire speed and thresholds were set based
1003  * on testing data as well as attempting to minimize response time
1004  * while increasing bulk throughput.
1005  **/
1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 			    struct i40e_ring_container *rc)
1008 {
1009 	unsigned int avg_wire_size, packets, bytes, itr;
1010 	unsigned long next_update = jiffies;
1011 
1012 	/* If we don't have any rings just leave ourselves set for maximum
1013 	 * possible latency so we take ourselves out of the equation.
1014 	 */
1015 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 		return;
1017 
1018 	/* For Rx we want to push the delay up and default to low latency.
1019 	 * for Tx we want to pull the delay down and default to high latency.
1020 	 */
1021 	itr = i40e_container_is_rx(q_vector, rc) ?
1022 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024 
1025 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026 	 * that either packets are coming in so slow there hasn't been
1027 	 * any work, or that there is so much work that NAPI is dealing
1028 	 * with interrupt moderation and we don't need to do anything.
1029 	 */
1030 	if (time_after(next_update, rc->next_update))
1031 		goto clear_counts;
1032 
1033 	/* If itr_countdown is set it means we programmed an ITR within
1034 	 * the last 4 interrupt cycles. This has a side effect of us
1035 	 * potentially firing an early interrupt. In order to work around
1036 	 * this we need to throw out any data received for a few
1037 	 * interrupts following the update.
1038 	 */
1039 	if (q_vector->itr_countdown) {
1040 		itr = rc->target_itr;
1041 		goto clear_counts;
1042 	}
1043 
1044 	packets = rc->total_packets;
1045 	bytes = rc->total_bytes;
1046 
1047 	if (i40e_container_is_rx(q_vector, rc)) {
1048 		/* If Rx there are 1 to 4 packets and bytes are less than
1049 		 * 9000 assume insufficient data to use bulk rate limiting
1050 		 * approach unless Tx is already in bulk rate limiting. We
1051 		 * are likely latency driven.
1052 		 */
1053 		if (packets && packets < 4 && bytes < 9000 &&
1054 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 			goto adjust_by_size;
1057 		}
1058 	} else if (packets < 4) {
1059 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 		 * bulk mode and we are receiving 4 or fewer packets just
1061 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 		 * that the Rx can relax.
1063 		 */
1064 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067 			goto clear_counts;
1068 	} else if (packets > 32) {
1069 		/* If we have processed over 32 packets in a single interrupt
1070 		 * for Tx assume we need to switch over to "bulk" mode.
1071 		 */
1072 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 	}
1074 
1075 	/* We have no packets to actually measure against. This means
1076 	 * either one of the other queues on this vector is active or
1077 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 	 *
1079 	 * Between 4 and 56 we can assume that our current interrupt delay
1080 	 * is only slightly too low. As such we should increase it by a small
1081 	 * fixed amount.
1082 	 */
1083 	if (packets < 56) {
1084 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 		}
1089 		goto clear_counts;
1090 	}
1091 
1092 	if (packets <= 256) {
1093 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 		itr &= I40E_ITR_MASK;
1095 
1096 		/* Between 56 and 112 is our "goldilocks" zone where we are
1097 		 * working out "just right". Just report that our current
1098 		 * ITR is good for us.
1099 		 */
1100 		if (packets <= 112)
1101 			goto clear_counts;
1102 
1103 		/* If packet count is 128 or greater we are likely looking
1104 		 * at a slight overrun of the delay we want. Try halving
1105 		 * our delay to see if that will cut the number of packets
1106 		 * in half per interrupt.
1107 		 */
1108 		itr /= 2;
1109 		itr &= I40E_ITR_MASK;
1110 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112 
1113 		goto clear_counts;
1114 	}
1115 
1116 	/* The paths below assume we are dealing with a bulk ITR since
1117 	 * number of packets is greater than 256. We are just going to have
1118 	 * to compute a value and try to bring the count under control,
1119 	 * though for smaller packet sizes there isn't much we can do as
1120 	 * NAPI polling will likely be kicking in sooner rather than later.
1121 	 */
1122 	itr = I40E_ITR_ADAPTIVE_BULK;
1123 
1124 adjust_by_size:
1125 	/* If packet counts are 256 or greater we can assume we have a gross
1126 	 * overestimation of what the rate should be. Instead of trying to fine
1127 	 * tune it just use the formula below to try and dial in an exact value
1128 	 * give the current packet size of the frame.
1129 	 */
1130 	avg_wire_size = bytes / packets;
1131 
1132 	/* The following is a crude approximation of:
1133 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 	 *
1137 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 	 * formula down to
1140 	 *
1141 	 *  (170 * (size + 24)) / (size + 640) = ITR
1142 	 *
1143 	 * We first do some math on the packet size and then finally bitshift
1144 	 * by 8 after rounding up. We also have to account for PCIe link speed
1145 	 * difference as ITR scales based on this.
1146 	 */
1147 	if (avg_wire_size <= 60) {
1148 		/* Start at 250k ints/sec */
1149 		avg_wire_size = 4096;
1150 	} else if (avg_wire_size <= 380) {
1151 		/* 250K ints/sec to 60K ints/sec */
1152 		avg_wire_size *= 40;
1153 		avg_wire_size += 1696;
1154 	} else if (avg_wire_size <= 1084) {
1155 		/* 60K ints/sec to 36K ints/sec */
1156 		avg_wire_size *= 15;
1157 		avg_wire_size += 11452;
1158 	} else if (avg_wire_size <= 1980) {
1159 		/* 36K ints/sec to 30K ints/sec */
1160 		avg_wire_size *= 5;
1161 		avg_wire_size += 22420;
1162 	} else {
1163 		/* plateau at a limit of 30K ints/sec */
1164 		avg_wire_size = 32256;
1165 	}
1166 
1167 	/* If we are in low latency mode halve our delay which doubles the
1168 	 * rate to somewhere between 100K to 16K ints/sec
1169 	 */
1170 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 		avg_wire_size /= 2;
1172 
1173 	/* Resultant value is 256 times larger than it needs to be. This
1174 	 * gives us room to adjust the value as needed to either increase
1175 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 	 *
1177 	 * Use addition as we have already recorded the new latency flag
1178 	 * for the ITR value.
1179 	 */
1180 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 	       I40E_ITR_ADAPTIVE_MIN_INC;
1182 
1183 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 	}
1187 
1188 clear_counts:
1189 	/* write back value */
1190 	rc->target_itr = itr;
1191 
1192 	/* next update should occur within next jiffy */
1193 	rc->next_update = next_update + 1;
1194 
1195 	rc->total_bytes = 0;
1196 	rc->total_packets = 0;
1197 }
1198 
1199 /**
1200  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1201  * @rx_ring: rx descriptor ring to store buffers on
1202  * @old_buff: donor buffer to have page reused
1203  *
1204  * Synchronizes page for reuse by the adapter
1205  **/
1206 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1207 			       struct i40e_rx_buffer *old_buff)
1208 {
1209 	struct i40e_rx_buffer *new_buff;
1210 	u16 nta = rx_ring->next_to_alloc;
1211 
1212 	new_buff = &rx_ring->rx_bi[nta];
1213 
1214 	/* update, and store next to alloc */
1215 	nta++;
1216 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1217 
1218 	/* transfer page from old buffer to new buffer */
1219 	new_buff->dma		= old_buff->dma;
1220 	new_buff->page		= old_buff->page;
1221 	new_buff->page_offset	= old_buff->page_offset;
1222 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1223 
1224 	rx_ring->rx_stats.page_reuse_count++;
1225 
1226 	/* clear contents of buffer_info */
1227 	old_buff->page = NULL;
1228 }
1229 
1230 /**
1231  * i40e_rx_is_programming_status - check for programming status descriptor
1232  * @qw: qword representing status_error_len in CPU ordering
1233  *
1234  * The value of in the descriptor length field indicate if this
1235  * is a programming status descriptor for flow director or FCoE
1236  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1237  * it is a packet descriptor.
1238  **/
1239 static inline bool i40e_rx_is_programming_status(u64 qw)
1240 {
1241 	/* The Rx filter programming status and SPH bit occupy the same
1242 	 * spot in the descriptor. Since we don't support packet split we
1243 	 * can just reuse the bit as an indication that this is a
1244 	 * programming status descriptor.
1245 	 */
1246 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1247 }
1248 
1249 /**
1250  * i40e_clean_programming_status - try clean the programming status descriptor
1251  * @rx_ring: the rx ring that has this descriptor
1252  * @rx_desc: the rx descriptor written back by HW
1253  * @qw: qword representing status_error_len in CPU ordering
1254  *
1255  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1256  * status being successful or not and take actions accordingly. FCoE should
1257  * handle its context/filter programming/invalidation status and take actions.
1258  *
1259  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1260  **/
1261 struct i40e_rx_buffer *i40e_clean_programming_status(
1262 	struct i40e_ring *rx_ring,
1263 	union i40e_rx_desc *rx_desc,
1264 	u64 qw)
1265 {
1266 	struct i40e_rx_buffer *rx_buffer;
1267 	u32 ntc;
1268 	u8 id;
1269 
1270 	if (!i40e_rx_is_programming_status(qw))
1271 		return NULL;
1272 
1273 	ntc = rx_ring->next_to_clean;
1274 
1275 	/* fetch, update, and store next to clean */
1276 	rx_buffer = &rx_ring->rx_bi[ntc++];
1277 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1278 	rx_ring->next_to_clean = ntc;
1279 
1280 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1281 
1282 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1283 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1284 
1285 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1286 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1287 
1288 	return rx_buffer;
1289 }
1290 
1291 /**
1292  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1293  * @tx_ring: the tx ring to set up
1294  *
1295  * Return 0 on success, negative on error
1296  **/
1297 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1298 {
1299 	struct device *dev = tx_ring->dev;
1300 	int bi_size;
1301 
1302 	if (!dev)
1303 		return -ENOMEM;
1304 
1305 	/* warn if we are about to overwrite the pointer */
1306 	WARN_ON(tx_ring->tx_bi);
1307 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1308 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1309 	if (!tx_ring->tx_bi)
1310 		goto err;
1311 
1312 	u64_stats_init(&tx_ring->syncp);
1313 
1314 	/* round up to nearest 4K */
1315 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1316 	/* add u32 for head writeback, align after this takes care of
1317 	 * guaranteeing this is at least one cache line in size
1318 	 */
1319 	tx_ring->size += sizeof(u32);
1320 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1321 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1322 					   &tx_ring->dma, GFP_KERNEL);
1323 	if (!tx_ring->desc) {
1324 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1325 			 tx_ring->size);
1326 		goto err;
1327 	}
1328 
1329 	tx_ring->next_to_use = 0;
1330 	tx_ring->next_to_clean = 0;
1331 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1332 	return 0;
1333 
1334 err:
1335 	kfree(tx_ring->tx_bi);
1336 	tx_ring->tx_bi = NULL;
1337 	return -ENOMEM;
1338 }
1339 
1340 /**
1341  * i40e_clean_rx_ring - Free Rx buffers
1342  * @rx_ring: ring to be cleaned
1343  **/
1344 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1345 {
1346 	unsigned long bi_size;
1347 	u16 i;
1348 
1349 	/* ring already cleared, nothing to do */
1350 	if (!rx_ring->rx_bi)
1351 		return;
1352 
1353 	if (rx_ring->skb) {
1354 		dev_kfree_skb(rx_ring->skb);
1355 		rx_ring->skb = NULL;
1356 	}
1357 
1358 	if (rx_ring->xsk_umem) {
1359 		i40e_xsk_clean_rx_ring(rx_ring);
1360 		goto skip_free;
1361 	}
1362 
1363 	/* Free all the Rx ring sk_buffs */
1364 	for (i = 0; i < rx_ring->count; i++) {
1365 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1366 
1367 		if (!rx_bi->page)
1368 			continue;
1369 
1370 		/* Invalidate cache lines that may have been written to by
1371 		 * device so that we avoid corrupting memory.
1372 		 */
1373 		dma_sync_single_range_for_cpu(rx_ring->dev,
1374 					      rx_bi->dma,
1375 					      rx_bi->page_offset,
1376 					      rx_ring->rx_buf_len,
1377 					      DMA_FROM_DEVICE);
1378 
1379 		/* free resources associated with mapping */
1380 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1381 				     i40e_rx_pg_size(rx_ring),
1382 				     DMA_FROM_DEVICE,
1383 				     I40E_RX_DMA_ATTR);
1384 
1385 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1386 
1387 		rx_bi->page = NULL;
1388 		rx_bi->page_offset = 0;
1389 	}
1390 
1391 skip_free:
1392 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1393 	memset(rx_ring->rx_bi, 0, bi_size);
1394 
1395 	/* Zero out the descriptor ring */
1396 	memset(rx_ring->desc, 0, rx_ring->size);
1397 
1398 	rx_ring->next_to_alloc = 0;
1399 	rx_ring->next_to_clean = 0;
1400 	rx_ring->next_to_use = 0;
1401 }
1402 
1403 /**
1404  * i40e_free_rx_resources - Free Rx resources
1405  * @rx_ring: ring to clean the resources from
1406  *
1407  * Free all receive software resources
1408  **/
1409 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1410 {
1411 	i40e_clean_rx_ring(rx_ring);
1412 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1413 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1414 	rx_ring->xdp_prog = NULL;
1415 	kfree(rx_ring->rx_bi);
1416 	rx_ring->rx_bi = NULL;
1417 
1418 	if (rx_ring->desc) {
1419 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1420 				  rx_ring->desc, rx_ring->dma);
1421 		rx_ring->desc = NULL;
1422 	}
1423 }
1424 
1425 /**
1426  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1427  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1428  *
1429  * Returns 0 on success, negative on failure
1430  **/
1431 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1432 {
1433 	struct device *dev = rx_ring->dev;
1434 	int err = -ENOMEM;
1435 	int bi_size;
1436 
1437 	/* warn if we are about to overwrite the pointer */
1438 	WARN_ON(rx_ring->rx_bi);
1439 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1440 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1441 	if (!rx_ring->rx_bi)
1442 		goto err;
1443 
1444 	u64_stats_init(&rx_ring->syncp);
1445 
1446 	/* Round up to nearest 4K */
1447 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1448 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1449 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1450 					   &rx_ring->dma, GFP_KERNEL);
1451 
1452 	if (!rx_ring->desc) {
1453 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1454 			 rx_ring->size);
1455 		goto err;
1456 	}
1457 
1458 	rx_ring->next_to_alloc = 0;
1459 	rx_ring->next_to_clean = 0;
1460 	rx_ring->next_to_use = 0;
1461 
1462 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1463 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1464 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1465 				       rx_ring->queue_index);
1466 		if (err < 0)
1467 			goto err;
1468 	}
1469 
1470 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1471 
1472 	return 0;
1473 err:
1474 	kfree(rx_ring->rx_bi);
1475 	rx_ring->rx_bi = NULL;
1476 	return err;
1477 }
1478 
1479 /**
1480  * i40e_release_rx_desc - Store the new tail and head values
1481  * @rx_ring: ring to bump
1482  * @val: new head index
1483  **/
1484 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1485 {
1486 	rx_ring->next_to_use = val;
1487 
1488 	/* update next to alloc since we have filled the ring */
1489 	rx_ring->next_to_alloc = val;
1490 
1491 	/* Force memory writes to complete before letting h/w
1492 	 * know there are new descriptors to fetch.  (Only
1493 	 * applicable for weak-ordered memory model archs,
1494 	 * such as IA-64).
1495 	 */
1496 	wmb();
1497 	writel(val, rx_ring->tail);
1498 }
1499 
1500 /**
1501  * i40e_rx_offset - Return expected offset into page to access data
1502  * @rx_ring: Ring we are requesting offset of
1503  *
1504  * Returns the offset value for ring into the data buffer.
1505  */
1506 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1507 {
1508 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1509 }
1510 
1511 /**
1512  * i40e_alloc_mapped_page - recycle or make a new page
1513  * @rx_ring: ring to use
1514  * @bi: rx_buffer struct to modify
1515  *
1516  * Returns true if the page was successfully allocated or
1517  * reused.
1518  **/
1519 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1520 				   struct i40e_rx_buffer *bi)
1521 {
1522 	struct page *page = bi->page;
1523 	dma_addr_t dma;
1524 
1525 	/* since we are recycling buffers we should seldom need to alloc */
1526 	if (likely(page)) {
1527 		rx_ring->rx_stats.page_reuse_count++;
1528 		return true;
1529 	}
1530 
1531 	/* alloc new page for storage */
1532 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1533 	if (unlikely(!page)) {
1534 		rx_ring->rx_stats.alloc_page_failed++;
1535 		return false;
1536 	}
1537 
1538 	/* map page for use */
1539 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1540 				 i40e_rx_pg_size(rx_ring),
1541 				 DMA_FROM_DEVICE,
1542 				 I40E_RX_DMA_ATTR);
1543 
1544 	/* if mapping failed free memory back to system since
1545 	 * there isn't much point in holding memory we can't use
1546 	 */
1547 	if (dma_mapping_error(rx_ring->dev, dma)) {
1548 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1549 		rx_ring->rx_stats.alloc_page_failed++;
1550 		return false;
1551 	}
1552 
1553 	bi->dma = dma;
1554 	bi->page = page;
1555 	bi->page_offset = i40e_rx_offset(rx_ring);
1556 	page_ref_add(page, USHRT_MAX - 1);
1557 	bi->pagecnt_bias = USHRT_MAX;
1558 
1559 	return true;
1560 }
1561 
1562 /**
1563  * i40e_receive_skb - Send a completed packet up the stack
1564  * @rx_ring:  rx ring in play
1565  * @skb: packet to send up
1566  * @vlan_tag: vlan tag for packet
1567  **/
1568 void i40e_receive_skb(struct i40e_ring *rx_ring,
1569 		      struct sk_buff *skb, u16 vlan_tag)
1570 {
1571 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1572 
1573 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1574 	    (vlan_tag & VLAN_VID_MASK))
1575 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1576 
1577 	napi_gro_receive(&q_vector->napi, skb);
1578 }
1579 
1580 /**
1581  * i40e_alloc_rx_buffers - Replace used receive buffers
1582  * @rx_ring: ring to place buffers on
1583  * @cleaned_count: number of buffers to replace
1584  *
1585  * Returns false if all allocations were successful, true if any fail
1586  **/
1587 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1588 {
1589 	u16 ntu = rx_ring->next_to_use;
1590 	union i40e_rx_desc *rx_desc;
1591 	struct i40e_rx_buffer *bi;
1592 
1593 	/* do nothing if no valid netdev defined */
1594 	if (!rx_ring->netdev || !cleaned_count)
1595 		return false;
1596 
1597 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1598 	bi = &rx_ring->rx_bi[ntu];
1599 
1600 	do {
1601 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1602 			goto no_buffers;
1603 
1604 		/* sync the buffer for use by the device */
1605 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1606 						 bi->page_offset,
1607 						 rx_ring->rx_buf_len,
1608 						 DMA_FROM_DEVICE);
1609 
1610 		/* Refresh the desc even if buffer_addrs didn't change
1611 		 * because each write-back erases this info.
1612 		 */
1613 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1614 
1615 		rx_desc++;
1616 		bi++;
1617 		ntu++;
1618 		if (unlikely(ntu == rx_ring->count)) {
1619 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1620 			bi = rx_ring->rx_bi;
1621 			ntu = 0;
1622 		}
1623 
1624 		/* clear the status bits for the next_to_use descriptor */
1625 		rx_desc->wb.qword1.status_error_len = 0;
1626 
1627 		cleaned_count--;
1628 	} while (cleaned_count);
1629 
1630 	if (rx_ring->next_to_use != ntu)
1631 		i40e_release_rx_desc(rx_ring, ntu);
1632 
1633 	return false;
1634 
1635 no_buffers:
1636 	if (rx_ring->next_to_use != ntu)
1637 		i40e_release_rx_desc(rx_ring, ntu);
1638 
1639 	/* make sure to come back via polling to try again after
1640 	 * allocation failure
1641 	 */
1642 	return true;
1643 }
1644 
1645 /**
1646  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1647  * @vsi: the VSI we care about
1648  * @skb: skb currently being received and modified
1649  * @rx_desc: the receive descriptor
1650  **/
1651 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1652 				    struct sk_buff *skb,
1653 				    union i40e_rx_desc *rx_desc)
1654 {
1655 	struct i40e_rx_ptype_decoded decoded;
1656 	u32 rx_error, rx_status;
1657 	bool ipv4, ipv6;
1658 	u8 ptype;
1659 	u64 qword;
1660 
1661 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1662 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1663 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1664 		   I40E_RXD_QW1_ERROR_SHIFT;
1665 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1666 		    I40E_RXD_QW1_STATUS_SHIFT;
1667 	decoded = decode_rx_desc_ptype(ptype);
1668 
1669 	skb->ip_summed = CHECKSUM_NONE;
1670 
1671 	skb_checksum_none_assert(skb);
1672 
1673 	/* Rx csum enabled and ip headers found? */
1674 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1675 		return;
1676 
1677 	/* did the hardware decode the packet and checksum? */
1678 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1679 		return;
1680 
1681 	/* both known and outer_ip must be set for the below code to work */
1682 	if (!(decoded.known && decoded.outer_ip))
1683 		return;
1684 
1685 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1686 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1687 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1688 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1689 
1690 	if (ipv4 &&
1691 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1692 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1693 		goto checksum_fail;
1694 
1695 	/* likely incorrect csum if alternate IP extension headers found */
1696 	if (ipv6 &&
1697 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1698 		/* don't increment checksum err here, non-fatal err */
1699 		return;
1700 
1701 	/* there was some L4 error, count error and punt packet to the stack */
1702 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1703 		goto checksum_fail;
1704 
1705 	/* handle packets that were not able to be checksummed due
1706 	 * to arrival speed, in this case the stack can compute
1707 	 * the csum.
1708 	 */
1709 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1710 		return;
1711 
1712 	/* If there is an outer header present that might contain a checksum
1713 	 * we need to bump the checksum level by 1 to reflect the fact that
1714 	 * we are indicating we validated the inner checksum.
1715 	 */
1716 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1717 		skb->csum_level = 1;
1718 
1719 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1720 	switch (decoded.inner_prot) {
1721 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1722 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1723 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1724 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 		/* fall though */
1726 	default:
1727 		break;
1728 	}
1729 
1730 	return;
1731 
1732 checksum_fail:
1733 	vsi->back->hw_csum_rx_error++;
1734 }
1735 
1736 /**
1737  * i40e_ptype_to_htype - get a hash type
1738  * @ptype: the ptype value from the descriptor
1739  *
1740  * Returns a hash type to be used by skb_set_hash
1741  **/
1742 static inline int i40e_ptype_to_htype(u8 ptype)
1743 {
1744 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1745 
1746 	if (!decoded.known)
1747 		return PKT_HASH_TYPE_NONE;
1748 
1749 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1750 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1751 		return PKT_HASH_TYPE_L4;
1752 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1753 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1754 		return PKT_HASH_TYPE_L3;
1755 	else
1756 		return PKT_HASH_TYPE_L2;
1757 }
1758 
1759 /**
1760  * i40e_rx_hash - set the hash value in the skb
1761  * @ring: descriptor ring
1762  * @rx_desc: specific descriptor
1763  * @skb: skb currently being received and modified
1764  * @rx_ptype: Rx packet type
1765  **/
1766 static inline void i40e_rx_hash(struct i40e_ring *ring,
1767 				union i40e_rx_desc *rx_desc,
1768 				struct sk_buff *skb,
1769 				u8 rx_ptype)
1770 {
1771 	u32 hash;
1772 	const __le64 rss_mask =
1773 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1774 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1775 
1776 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1777 		return;
1778 
1779 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1780 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1781 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1782 	}
1783 }
1784 
1785 /**
1786  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1787  * @rx_ring: rx descriptor ring packet is being transacted on
1788  * @rx_desc: pointer to the EOP Rx descriptor
1789  * @skb: pointer to current skb being populated
1790  * @rx_ptype: the packet type decoded by hardware
1791  *
1792  * This function checks the ring, descriptor, and packet information in
1793  * order to populate the hash, checksum, VLAN, protocol, and
1794  * other fields within the skb.
1795  **/
1796 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1797 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1798 			     u8 rx_ptype)
1799 {
1800 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1801 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1802 			I40E_RXD_QW1_STATUS_SHIFT;
1803 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1804 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1805 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1806 
1807 	if (unlikely(tsynvalid))
1808 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1809 
1810 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1811 
1812 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1813 
1814 	skb_record_rx_queue(skb, rx_ring->queue_index);
1815 
1816 	/* modifies the skb - consumes the enet header */
1817 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1818 }
1819 
1820 /**
1821  * i40e_cleanup_headers - Correct empty headers
1822  * @rx_ring: rx descriptor ring packet is being transacted on
1823  * @skb: pointer to current skb being fixed
1824  * @rx_desc: pointer to the EOP Rx descriptor
1825  *
1826  * Also address the case where we are pulling data in on pages only
1827  * and as such no data is present in the skb header.
1828  *
1829  * In addition if skb is not at least 60 bytes we need to pad it so that
1830  * it is large enough to qualify as a valid Ethernet frame.
1831  *
1832  * Returns true if an error was encountered and skb was freed.
1833  **/
1834 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1835 				 union i40e_rx_desc *rx_desc)
1836 
1837 {
1838 	/* XDP packets use error pointer so abort at this point */
1839 	if (IS_ERR(skb))
1840 		return true;
1841 
1842 	/* ERR_MASK will only have valid bits if EOP set, and
1843 	 * what we are doing here is actually checking
1844 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1845 	 * the error field
1846 	 */
1847 	if (unlikely(i40e_test_staterr(rx_desc,
1848 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1849 		dev_kfree_skb_any(skb);
1850 		return true;
1851 	}
1852 
1853 	/* if eth_skb_pad returns an error the skb was freed */
1854 	if (eth_skb_pad(skb))
1855 		return true;
1856 
1857 	return false;
1858 }
1859 
1860 /**
1861  * i40e_page_is_reusable - check if any reuse is possible
1862  * @page: page struct to check
1863  *
1864  * A page is not reusable if it was allocated under low memory
1865  * conditions, or it's not in the same NUMA node as this CPU.
1866  */
1867 static inline bool i40e_page_is_reusable(struct page *page)
1868 {
1869 	return (page_to_nid(page) == numa_mem_id()) &&
1870 		!page_is_pfmemalloc(page);
1871 }
1872 
1873 /**
1874  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1875  * the adapter for another receive
1876  *
1877  * @rx_buffer: buffer containing the page
1878  *
1879  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1880  * an unused region in the page.
1881  *
1882  * For small pages, @truesize will be a constant value, half the size
1883  * of the memory at page.  We'll attempt to alternate between high and
1884  * low halves of the page, with one half ready for use by the hardware
1885  * and the other half being consumed by the stack.  We use the page
1886  * ref count to determine whether the stack has finished consuming the
1887  * portion of this page that was passed up with a previous packet.  If
1888  * the page ref count is >1, we'll assume the "other" half page is
1889  * still busy, and this page cannot be reused.
1890  *
1891  * For larger pages, @truesize will be the actual space used by the
1892  * received packet (adjusted upward to an even multiple of the cache
1893  * line size).  This will advance through the page by the amount
1894  * actually consumed by the received packets while there is still
1895  * space for a buffer.  Each region of larger pages will be used at
1896  * most once, after which the page will not be reused.
1897  *
1898  * In either case, if the page is reusable its refcount is increased.
1899  **/
1900 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1901 {
1902 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1903 	struct page *page = rx_buffer->page;
1904 
1905 	/* Is any reuse possible? */
1906 	if (unlikely(!i40e_page_is_reusable(page)))
1907 		return false;
1908 
1909 #if (PAGE_SIZE < 8192)
1910 	/* if we are only owner of page we can reuse it */
1911 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1912 		return false;
1913 #else
1914 #define I40E_LAST_OFFSET \
1915 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1916 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1917 		return false;
1918 #endif
1919 
1920 	/* If we have drained the page fragment pool we need to update
1921 	 * the pagecnt_bias and page count so that we fully restock the
1922 	 * number of references the driver holds.
1923 	 */
1924 	if (unlikely(pagecnt_bias == 1)) {
1925 		page_ref_add(page, USHRT_MAX - 1);
1926 		rx_buffer->pagecnt_bias = USHRT_MAX;
1927 	}
1928 
1929 	return true;
1930 }
1931 
1932 /**
1933  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1934  * @rx_ring: rx descriptor ring to transact packets on
1935  * @rx_buffer: buffer containing page to add
1936  * @skb: sk_buff to place the data into
1937  * @size: packet length from rx_desc
1938  *
1939  * This function will add the data contained in rx_buffer->page to the skb.
1940  * It will just attach the page as a frag to the skb.
1941  *
1942  * The function will then update the page offset.
1943  **/
1944 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1945 			     struct i40e_rx_buffer *rx_buffer,
1946 			     struct sk_buff *skb,
1947 			     unsigned int size)
1948 {
1949 #if (PAGE_SIZE < 8192)
1950 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1951 #else
1952 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1953 #endif
1954 
1955 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1956 			rx_buffer->page_offset, size, truesize);
1957 
1958 	/* page is being used so we must update the page offset */
1959 #if (PAGE_SIZE < 8192)
1960 	rx_buffer->page_offset ^= truesize;
1961 #else
1962 	rx_buffer->page_offset += truesize;
1963 #endif
1964 }
1965 
1966 /**
1967  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1968  * @rx_ring: rx descriptor ring to transact packets on
1969  * @size: size of buffer to add to skb
1970  *
1971  * This function will pull an Rx buffer from the ring and synchronize it
1972  * for use by the CPU.
1973  */
1974 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1975 						 const unsigned int size)
1976 {
1977 	struct i40e_rx_buffer *rx_buffer;
1978 
1979 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1980 	prefetchw(rx_buffer->page);
1981 
1982 	/* we are reusing so sync this buffer for CPU use */
1983 	dma_sync_single_range_for_cpu(rx_ring->dev,
1984 				      rx_buffer->dma,
1985 				      rx_buffer->page_offset,
1986 				      size,
1987 				      DMA_FROM_DEVICE);
1988 
1989 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1990 	rx_buffer->pagecnt_bias--;
1991 
1992 	return rx_buffer;
1993 }
1994 
1995 /**
1996  * i40e_construct_skb - Allocate skb and populate it
1997  * @rx_ring: rx descriptor ring to transact packets on
1998  * @rx_buffer: rx buffer to pull data from
1999  * @xdp: xdp_buff pointing to the data
2000  *
2001  * This function allocates an skb.  It then populates it with the page
2002  * data from the current receive descriptor, taking care to set up the
2003  * skb correctly.
2004  */
2005 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2006 					  struct i40e_rx_buffer *rx_buffer,
2007 					  struct xdp_buff *xdp)
2008 {
2009 	unsigned int size = xdp->data_end - xdp->data;
2010 #if (PAGE_SIZE < 8192)
2011 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2012 #else
2013 	unsigned int truesize = SKB_DATA_ALIGN(size);
2014 #endif
2015 	unsigned int headlen;
2016 	struct sk_buff *skb;
2017 
2018 	/* prefetch first cache line of first page */
2019 	prefetch(xdp->data);
2020 #if L1_CACHE_BYTES < 128
2021 	prefetch(xdp->data + L1_CACHE_BYTES);
2022 #endif
2023 	/* Note, we get here by enabling legacy-rx via:
2024 	 *
2025 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2026 	 *
2027 	 * In this mode, we currently get 0 extra XDP headroom as
2028 	 * opposed to having legacy-rx off, where we process XDP
2029 	 * packets going to stack via i40e_build_skb(). The latter
2030 	 * provides us currently with 192 bytes of headroom.
2031 	 *
2032 	 * For i40e_construct_skb() mode it means that the
2033 	 * xdp->data_meta will always point to xdp->data, since
2034 	 * the helper cannot expand the head. Should this ever
2035 	 * change in future for legacy-rx mode on, then lets also
2036 	 * add xdp->data_meta handling here.
2037 	 */
2038 
2039 	/* allocate a skb to store the frags */
2040 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2041 			       I40E_RX_HDR_SIZE,
2042 			       GFP_ATOMIC | __GFP_NOWARN);
2043 	if (unlikely(!skb))
2044 		return NULL;
2045 
2046 	/* Determine available headroom for copy */
2047 	headlen = size;
2048 	if (headlen > I40E_RX_HDR_SIZE)
2049 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2050 
2051 	/* align pull length to size of long to optimize memcpy performance */
2052 	memcpy(__skb_put(skb, headlen), xdp->data,
2053 	       ALIGN(headlen, sizeof(long)));
2054 
2055 	/* update all of the pointers */
2056 	size -= headlen;
2057 	if (size) {
2058 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2059 				rx_buffer->page_offset + headlen,
2060 				size, truesize);
2061 
2062 		/* buffer is used by skb, update page_offset */
2063 #if (PAGE_SIZE < 8192)
2064 		rx_buffer->page_offset ^= truesize;
2065 #else
2066 		rx_buffer->page_offset += truesize;
2067 #endif
2068 	} else {
2069 		/* buffer is unused, reset bias back to rx_buffer */
2070 		rx_buffer->pagecnt_bias++;
2071 	}
2072 
2073 	return skb;
2074 }
2075 
2076 /**
2077  * i40e_build_skb - Build skb around an existing buffer
2078  * @rx_ring: Rx descriptor ring to transact packets on
2079  * @rx_buffer: Rx buffer to pull data from
2080  * @xdp: xdp_buff pointing to the data
2081  *
2082  * This function builds an skb around an existing Rx buffer, taking care
2083  * to set up the skb correctly and avoid any memcpy overhead.
2084  */
2085 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2086 				      struct i40e_rx_buffer *rx_buffer,
2087 				      struct xdp_buff *xdp)
2088 {
2089 	unsigned int metasize = xdp->data - xdp->data_meta;
2090 #if (PAGE_SIZE < 8192)
2091 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2092 #else
2093 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2094 				SKB_DATA_ALIGN(xdp->data_end -
2095 					       xdp->data_hard_start);
2096 #endif
2097 	struct sk_buff *skb;
2098 
2099 	/* Prefetch first cache line of first page. If xdp->data_meta
2100 	 * is unused, this points exactly as xdp->data, otherwise we
2101 	 * likely have a consumer accessing first few bytes of meta
2102 	 * data, and then actual data.
2103 	 */
2104 	prefetch(xdp->data_meta);
2105 #if L1_CACHE_BYTES < 128
2106 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2107 #endif
2108 	/* build an skb around the page buffer */
2109 	skb = build_skb(xdp->data_hard_start, truesize);
2110 	if (unlikely(!skb))
2111 		return NULL;
2112 
2113 	/* update pointers within the skb to store the data */
2114 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2115 	__skb_put(skb, xdp->data_end - xdp->data);
2116 	if (metasize)
2117 		skb_metadata_set(skb, metasize);
2118 
2119 	/* buffer is used by skb, update page_offset */
2120 #if (PAGE_SIZE < 8192)
2121 	rx_buffer->page_offset ^= truesize;
2122 #else
2123 	rx_buffer->page_offset += truesize;
2124 #endif
2125 
2126 	return skb;
2127 }
2128 
2129 /**
2130  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2131  * @rx_ring: rx descriptor ring to transact packets on
2132  * @rx_buffer: rx buffer to pull data from
2133  *
2134  * This function will clean up the contents of the rx_buffer.  It will
2135  * either recycle the buffer or unmap it and free the associated resources.
2136  */
2137 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2138 			       struct i40e_rx_buffer *rx_buffer)
2139 {
2140 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2141 		/* hand second half of page back to the ring */
2142 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2143 	} else {
2144 		/* we are not reusing the buffer so unmap it */
2145 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2146 				     i40e_rx_pg_size(rx_ring),
2147 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2148 		__page_frag_cache_drain(rx_buffer->page,
2149 					rx_buffer->pagecnt_bias);
2150 		/* clear contents of buffer_info */
2151 		rx_buffer->page = NULL;
2152 	}
2153 }
2154 
2155 /**
2156  * i40e_is_non_eop - process handling of non-EOP buffers
2157  * @rx_ring: Rx ring being processed
2158  * @rx_desc: Rx descriptor for current buffer
2159  * @skb: Current socket buffer containing buffer in progress
2160  *
2161  * This function updates next to clean.  If the buffer is an EOP buffer
2162  * this function exits returning false, otherwise it will place the
2163  * sk_buff in the next buffer to be chained and return true indicating
2164  * that this is in fact a non-EOP buffer.
2165  **/
2166 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2167 			    union i40e_rx_desc *rx_desc,
2168 			    struct sk_buff *skb)
2169 {
2170 	u32 ntc = rx_ring->next_to_clean + 1;
2171 
2172 	/* fetch, update, and store next to clean */
2173 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2174 	rx_ring->next_to_clean = ntc;
2175 
2176 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2177 
2178 	/* if we are the last buffer then there is nothing else to do */
2179 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2180 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2181 		return false;
2182 
2183 	rx_ring->rx_stats.non_eop_descs++;
2184 
2185 	return true;
2186 }
2187 
2188 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2189 			      struct i40e_ring *xdp_ring);
2190 
2191 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2192 {
2193 	struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2194 
2195 	if (unlikely(!xdpf))
2196 		return I40E_XDP_CONSUMED;
2197 
2198 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2199 }
2200 
2201 /**
2202  * i40e_run_xdp - run an XDP program
2203  * @rx_ring: Rx ring being processed
2204  * @xdp: XDP buffer containing the frame
2205  **/
2206 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2207 				    struct xdp_buff *xdp)
2208 {
2209 	int err, result = I40E_XDP_PASS;
2210 	struct i40e_ring *xdp_ring;
2211 	struct bpf_prog *xdp_prog;
2212 	u32 act;
2213 
2214 	rcu_read_lock();
2215 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2216 
2217 	if (!xdp_prog)
2218 		goto xdp_out;
2219 
2220 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2221 
2222 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2223 	switch (act) {
2224 	case XDP_PASS:
2225 		break;
2226 	case XDP_TX:
2227 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2228 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2229 		break;
2230 	case XDP_REDIRECT:
2231 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2232 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2233 		break;
2234 	default:
2235 		bpf_warn_invalid_xdp_action(act);
2236 		/* fall through */
2237 	case XDP_ABORTED:
2238 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2239 		/* fall through -- handle aborts by dropping packet */
2240 	case XDP_DROP:
2241 		result = I40E_XDP_CONSUMED;
2242 		break;
2243 	}
2244 xdp_out:
2245 	rcu_read_unlock();
2246 	return ERR_PTR(-result);
2247 }
2248 
2249 /**
2250  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2251  * @rx_ring: Rx ring
2252  * @rx_buffer: Rx buffer to adjust
2253  * @size: Size of adjustment
2254  **/
2255 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2256 				struct i40e_rx_buffer *rx_buffer,
2257 				unsigned int size)
2258 {
2259 #if (PAGE_SIZE < 8192)
2260 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2261 
2262 	rx_buffer->page_offset ^= truesize;
2263 #else
2264 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2265 
2266 	rx_buffer->page_offset += truesize;
2267 #endif
2268 }
2269 
2270 /**
2271  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2272  * @xdp_ring: XDP Tx ring
2273  *
2274  * This function updates the XDP Tx ring tail register.
2275  **/
2276 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2277 {
2278 	/* Force memory writes to complete before letting h/w
2279 	 * know there are new descriptors to fetch.
2280 	 */
2281 	wmb();
2282 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2283 }
2284 
2285 /**
2286  * i40e_update_rx_stats - Update Rx ring statistics
2287  * @rx_ring: rx descriptor ring
2288  * @total_rx_bytes: number of bytes received
2289  * @total_rx_packets: number of packets received
2290  *
2291  * This function updates the Rx ring statistics.
2292  **/
2293 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2294 			  unsigned int total_rx_bytes,
2295 			  unsigned int total_rx_packets)
2296 {
2297 	u64_stats_update_begin(&rx_ring->syncp);
2298 	rx_ring->stats.packets += total_rx_packets;
2299 	rx_ring->stats.bytes += total_rx_bytes;
2300 	u64_stats_update_end(&rx_ring->syncp);
2301 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2302 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2303 }
2304 
2305 /**
2306  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2307  * @rx_ring: Rx ring
2308  * @xdp_res: Result of the receive batch
2309  *
2310  * This function bumps XDP Tx tail and/or flush redirect map, and
2311  * should be called when a batch of packets has been processed in the
2312  * napi loop.
2313  **/
2314 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2315 {
2316 	if (xdp_res & I40E_XDP_REDIR)
2317 		xdp_do_flush_map();
2318 
2319 	if (xdp_res & I40E_XDP_TX) {
2320 		struct i40e_ring *xdp_ring =
2321 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2322 
2323 		i40e_xdp_ring_update_tail(xdp_ring);
2324 	}
2325 }
2326 
2327 /**
2328  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2329  * @rx_ring: rx descriptor ring to transact packets on
2330  * @budget: Total limit on number of packets to process
2331  *
2332  * This function provides a "bounce buffer" approach to Rx interrupt
2333  * processing.  The advantage to this is that on systems that have
2334  * expensive overhead for IOMMU access this provides a means of avoiding
2335  * it by maintaining the mapping of the page to the system.
2336  *
2337  * Returns amount of work completed
2338  **/
2339 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2340 {
2341 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2342 	struct sk_buff *skb = rx_ring->skb;
2343 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2344 	unsigned int xdp_xmit = 0;
2345 	bool failure = false;
2346 	struct xdp_buff xdp;
2347 
2348 	xdp.rxq = &rx_ring->xdp_rxq;
2349 
2350 	while (likely(total_rx_packets < (unsigned int)budget)) {
2351 		struct i40e_rx_buffer *rx_buffer;
2352 		union i40e_rx_desc *rx_desc;
2353 		unsigned int size;
2354 		u16 vlan_tag;
2355 		u8 rx_ptype;
2356 		u64 qword;
2357 
2358 		/* return some buffers to hardware, one at a time is too slow */
2359 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2360 			failure = failure ||
2361 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2362 			cleaned_count = 0;
2363 		}
2364 
2365 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2366 
2367 		/* status_error_len will always be zero for unused descriptors
2368 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2369 		 * which is always zero because packet split isn't used, if the
2370 		 * hardware wrote DD then the length will be non-zero
2371 		 */
2372 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2373 
2374 		/* This memory barrier is needed to keep us from reading
2375 		 * any other fields out of the rx_desc until we have
2376 		 * verified the descriptor has been written back.
2377 		 */
2378 		dma_rmb();
2379 
2380 		rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2381 							  qword);
2382 		if (unlikely(rx_buffer)) {
2383 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2384 			cleaned_count++;
2385 			continue;
2386 		}
2387 
2388 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2389 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2390 		if (!size)
2391 			break;
2392 
2393 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2394 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2395 
2396 		/* retrieve a buffer from the ring */
2397 		if (!skb) {
2398 			xdp.data = page_address(rx_buffer->page) +
2399 				   rx_buffer->page_offset;
2400 			xdp.data_meta = xdp.data;
2401 			xdp.data_hard_start = xdp.data -
2402 					      i40e_rx_offset(rx_ring);
2403 			xdp.data_end = xdp.data + size;
2404 
2405 			skb = i40e_run_xdp(rx_ring, &xdp);
2406 		}
2407 
2408 		if (IS_ERR(skb)) {
2409 			unsigned int xdp_res = -PTR_ERR(skb);
2410 
2411 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2412 				xdp_xmit |= xdp_res;
2413 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2414 			} else {
2415 				rx_buffer->pagecnt_bias++;
2416 			}
2417 			total_rx_bytes += size;
2418 			total_rx_packets++;
2419 		} else if (skb) {
2420 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2421 		} else if (ring_uses_build_skb(rx_ring)) {
2422 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2423 		} else {
2424 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2425 		}
2426 
2427 		/* exit if we failed to retrieve a buffer */
2428 		if (!skb) {
2429 			rx_ring->rx_stats.alloc_buff_failed++;
2430 			rx_buffer->pagecnt_bias++;
2431 			break;
2432 		}
2433 
2434 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2435 		cleaned_count++;
2436 
2437 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2438 			continue;
2439 
2440 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2441 			skb = NULL;
2442 			continue;
2443 		}
2444 
2445 		/* probably a little skewed due to removing CRC */
2446 		total_rx_bytes += skb->len;
2447 
2448 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2449 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2450 			   I40E_RXD_QW1_PTYPE_SHIFT;
2451 
2452 		/* populate checksum, VLAN, and protocol */
2453 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2454 
2455 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2456 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2457 
2458 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2459 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2460 		skb = NULL;
2461 
2462 		/* update budget accounting */
2463 		total_rx_packets++;
2464 	}
2465 
2466 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2467 	rx_ring->skb = skb;
2468 
2469 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2470 
2471 	/* guarantee a trip back through this routine if there was a failure */
2472 	return failure ? budget : (int)total_rx_packets;
2473 }
2474 
2475 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2476 {
2477 	u32 val;
2478 
2479 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2480 	 * points out doing so is "meaningless since it was already
2481 	 * auto-cleared". The auto-clearing happens when the interrupt is
2482 	 * asserted.
2483 	 *
2484 	 * Hardware errata 28 for also indicates that writing to a
2485 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2486 	 * an event in the PBA anyway so we need to rely on the automask
2487 	 * to hold pending events for us until the interrupt is re-enabled
2488 	 *
2489 	 * The itr value is reported in microseconds, and the register
2490 	 * value is recorded in 2 microsecond units. For this reason we
2491 	 * only need to shift by the interval shift - 1 instead of the
2492 	 * full value.
2493 	 */
2494 	itr &= I40E_ITR_MASK;
2495 
2496 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2497 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2498 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2499 
2500 	return val;
2501 }
2502 
2503 /* a small macro to shorten up some long lines */
2504 #define INTREG I40E_PFINT_DYN_CTLN
2505 
2506 /* The act of updating the ITR will cause it to immediately trigger. In order
2507  * to prevent this from throwing off adaptive update statistics we defer the
2508  * update so that it can only happen so often. So after either Tx or Rx are
2509  * updated we make the adaptive scheme wait until either the ITR completely
2510  * expires via the next_update expiration or we have been through at least
2511  * 3 interrupts.
2512  */
2513 #define ITR_COUNTDOWN_START 3
2514 
2515 /**
2516  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2517  * @vsi: the VSI we care about
2518  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2519  *
2520  **/
2521 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2522 					  struct i40e_q_vector *q_vector)
2523 {
2524 	struct i40e_hw *hw = &vsi->back->hw;
2525 	u32 intval;
2526 
2527 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2528 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2529 		i40e_irq_dynamic_enable_icr0(vsi->back);
2530 		return;
2531 	}
2532 
2533 	/* These will do nothing if dynamic updates are not enabled */
2534 	i40e_update_itr(q_vector, &q_vector->tx);
2535 	i40e_update_itr(q_vector, &q_vector->rx);
2536 
2537 	/* This block of logic allows us to get away with only updating
2538 	 * one ITR value with each interrupt. The idea is to perform a
2539 	 * pseudo-lazy update with the following criteria.
2540 	 *
2541 	 * 1. Rx is given higher priority than Tx if both are in same state
2542 	 * 2. If we must reduce an ITR that is given highest priority.
2543 	 * 3. We then give priority to increasing ITR based on amount.
2544 	 */
2545 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2546 		/* Rx ITR needs to be reduced, this is highest priority */
2547 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2548 					   q_vector->rx.target_itr);
2549 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2550 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2551 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2552 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2553 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2554 		/* Tx ITR needs to be reduced, this is second priority
2555 		 * Tx ITR needs to be increased more than Rx, fourth priority
2556 		 */
2557 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2558 					   q_vector->tx.target_itr);
2559 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2560 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2561 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2562 		/* Rx ITR needs to be increased, third priority */
2563 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2564 					   q_vector->rx.target_itr);
2565 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2566 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2567 	} else {
2568 		/* No ITR update, lowest priority */
2569 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2570 		if (q_vector->itr_countdown)
2571 			q_vector->itr_countdown--;
2572 	}
2573 
2574 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2575 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2576 }
2577 
2578 /**
2579  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2580  * @napi: napi struct with our devices info in it
2581  * @budget: amount of work driver is allowed to do this pass, in packets
2582  *
2583  * This function will clean all queues associated with a q_vector.
2584  *
2585  * Returns the amount of work done
2586  **/
2587 int i40e_napi_poll(struct napi_struct *napi, int budget)
2588 {
2589 	struct i40e_q_vector *q_vector =
2590 			       container_of(napi, struct i40e_q_vector, napi);
2591 	struct i40e_vsi *vsi = q_vector->vsi;
2592 	struct i40e_ring *ring;
2593 	bool clean_complete = true;
2594 	bool arm_wb = false;
2595 	int budget_per_ring;
2596 	int work_done = 0;
2597 
2598 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2599 		napi_complete(napi);
2600 		return 0;
2601 	}
2602 
2603 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2604 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2605 	 */
2606 	i40e_for_each_ring(ring, q_vector->tx) {
2607 		bool wd = ring->xsk_umem ?
2608 			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2609 			  i40e_clean_tx_irq(vsi, ring, budget);
2610 
2611 		if (!wd) {
2612 			clean_complete = false;
2613 			continue;
2614 		}
2615 		arm_wb |= ring->arm_wb;
2616 		ring->arm_wb = false;
2617 	}
2618 
2619 	/* Handle case where we are called by netpoll with a budget of 0 */
2620 	if (budget <= 0)
2621 		goto tx_only;
2622 
2623 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2624 	 * allow the budget to go below 1 because that would exit polling early.
2625 	 */
2626 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2627 
2628 	i40e_for_each_ring(ring, q_vector->rx) {
2629 		int cleaned = ring->xsk_umem ?
2630 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2631 			      i40e_clean_rx_irq(ring, budget_per_ring);
2632 
2633 		work_done += cleaned;
2634 		/* if we clean as many as budgeted, we must not be done */
2635 		if (cleaned >= budget_per_ring)
2636 			clean_complete = false;
2637 	}
2638 
2639 	/* If work not completed, return budget and polling will return */
2640 	if (!clean_complete) {
2641 		int cpu_id = smp_processor_id();
2642 
2643 		/* It is possible that the interrupt affinity has changed but,
2644 		 * if the cpu is pegged at 100%, polling will never exit while
2645 		 * traffic continues and the interrupt will be stuck on this
2646 		 * cpu.  We check to make sure affinity is correct before we
2647 		 * continue to poll, otherwise we must stop polling so the
2648 		 * interrupt can move to the correct cpu.
2649 		 */
2650 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2651 			/* Tell napi that we are done polling */
2652 			napi_complete_done(napi, work_done);
2653 
2654 			/* Force an interrupt */
2655 			i40e_force_wb(vsi, q_vector);
2656 
2657 			/* Return budget-1 so that polling stops */
2658 			return budget - 1;
2659 		}
2660 tx_only:
2661 		if (arm_wb) {
2662 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2663 			i40e_enable_wb_on_itr(vsi, q_vector);
2664 		}
2665 		return budget;
2666 	}
2667 
2668 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2669 		q_vector->arm_wb_state = false;
2670 
2671 	/* Work is done so exit the polling mode and re-enable the interrupt */
2672 	napi_complete_done(napi, work_done);
2673 
2674 	i40e_update_enable_itr(vsi, q_vector);
2675 
2676 	return min(work_done, budget - 1);
2677 }
2678 
2679 /**
2680  * i40e_atr - Add a Flow Director ATR filter
2681  * @tx_ring:  ring to add programming descriptor to
2682  * @skb:      send buffer
2683  * @tx_flags: send tx flags
2684  **/
2685 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686 		     u32 tx_flags)
2687 {
2688 	struct i40e_filter_program_desc *fdir_desc;
2689 	struct i40e_pf *pf = tx_ring->vsi->back;
2690 	union {
2691 		unsigned char *network;
2692 		struct iphdr *ipv4;
2693 		struct ipv6hdr *ipv6;
2694 	} hdr;
2695 	struct tcphdr *th;
2696 	unsigned int hlen;
2697 	u32 flex_ptype, dtype_cmd;
2698 	int l4_proto;
2699 	u16 i;
2700 
2701 	/* make sure ATR is enabled */
2702 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2703 		return;
2704 
2705 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2706 		return;
2707 
2708 	/* if sampling is disabled do nothing */
2709 	if (!tx_ring->atr_sample_rate)
2710 		return;
2711 
2712 	/* Currently only IPv4/IPv6 with TCP is supported */
2713 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2714 		return;
2715 
2716 	/* snag network header to get L4 type and address */
2717 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2718 		      skb_inner_network_header(skb) : skb_network_header(skb);
2719 
2720 	/* Note: tx_flags gets modified to reflect inner protocols in
2721 	 * tx_enable_csum function if encap is enabled.
2722 	 */
2723 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2724 		/* access ihl as u8 to avoid unaligned access on ia64 */
2725 		hlen = (hdr.network[0] & 0x0F) << 2;
2726 		l4_proto = hdr.ipv4->protocol;
2727 	} else {
2728 		/* find the start of the innermost ipv6 header */
2729 		unsigned int inner_hlen = hdr.network - skb->data;
2730 		unsigned int h_offset = inner_hlen;
2731 
2732 		/* this function updates h_offset to the end of the header */
2733 		l4_proto =
2734 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2735 		/* hlen will contain our best estimate of the tcp header */
2736 		hlen = h_offset - inner_hlen;
2737 	}
2738 
2739 	if (l4_proto != IPPROTO_TCP)
2740 		return;
2741 
2742 	th = (struct tcphdr *)(hdr.network + hlen);
2743 
2744 	/* Due to lack of space, no more new filters can be programmed */
2745 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2746 		return;
2747 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2748 		/* HW ATR eviction will take care of removing filters on FIN
2749 		 * and RST packets.
2750 		 */
2751 		if (th->fin || th->rst)
2752 			return;
2753 	}
2754 
2755 	tx_ring->atr_count++;
2756 
2757 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2758 	if (!th->fin &&
2759 	    !th->syn &&
2760 	    !th->rst &&
2761 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2762 		return;
2763 
2764 	tx_ring->atr_count = 0;
2765 
2766 	/* grab the next descriptor */
2767 	i = tx_ring->next_to_use;
2768 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2769 
2770 	i++;
2771 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2772 
2773 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2774 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2775 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2776 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2777 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2778 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2779 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2780 
2781 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2782 
2783 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2784 
2785 	dtype_cmd |= (th->fin || th->rst) ?
2786 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2787 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2788 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2789 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2790 
2791 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2792 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2793 
2794 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2795 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2796 
2797 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2798 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2799 		dtype_cmd |=
2800 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2801 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2802 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2803 	else
2804 		dtype_cmd |=
2805 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2806 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2807 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2808 
2809 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2810 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2811 
2812 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2813 	fdir_desc->rsvd = cpu_to_le32(0);
2814 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2815 	fdir_desc->fd_id = cpu_to_le32(0);
2816 }
2817 
2818 /**
2819  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2820  * @skb:     send buffer
2821  * @tx_ring: ring to send buffer on
2822  * @flags:   the tx flags to be set
2823  *
2824  * Checks the skb and set up correspondingly several generic transmit flags
2825  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2826  *
2827  * Returns error code indicate the frame should be dropped upon error and the
2828  * otherwise  returns 0 to indicate the flags has been set properly.
2829  **/
2830 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2831 					     struct i40e_ring *tx_ring,
2832 					     u32 *flags)
2833 {
2834 	__be16 protocol = skb->protocol;
2835 	u32  tx_flags = 0;
2836 
2837 	if (protocol == htons(ETH_P_8021Q) &&
2838 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2839 		/* When HW VLAN acceleration is turned off by the user the
2840 		 * stack sets the protocol to 8021q so that the driver
2841 		 * can take any steps required to support the SW only
2842 		 * VLAN handling.  In our case the driver doesn't need
2843 		 * to take any further steps so just set the protocol
2844 		 * to the encapsulated ethertype.
2845 		 */
2846 		skb->protocol = vlan_get_protocol(skb);
2847 		goto out;
2848 	}
2849 
2850 	/* if we have a HW VLAN tag being added, default to the HW one */
2851 	if (skb_vlan_tag_present(skb)) {
2852 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2853 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2854 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2855 	} else if (protocol == htons(ETH_P_8021Q)) {
2856 		struct vlan_hdr *vhdr, _vhdr;
2857 
2858 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2859 		if (!vhdr)
2860 			return -EINVAL;
2861 
2862 		protocol = vhdr->h_vlan_encapsulated_proto;
2863 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2864 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2865 	}
2866 
2867 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2868 		goto out;
2869 
2870 	/* Insert 802.1p priority into VLAN header */
2871 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2872 	    (skb->priority != TC_PRIO_CONTROL)) {
2873 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2874 		tx_flags |= (skb->priority & 0x7) <<
2875 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2876 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2877 			struct vlan_ethhdr *vhdr;
2878 			int rc;
2879 
2880 			rc = skb_cow_head(skb, 0);
2881 			if (rc < 0)
2882 				return rc;
2883 			vhdr = (struct vlan_ethhdr *)skb->data;
2884 			vhdr->h_vlan_TCI = htons(tx_flags >>
2885 						 I40E_TX_FLAGS_VLAN_SHIFT);
2886 		} else {
2887 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2888 		}
2889 	}
2890 
2891 out:
2892 	*flags = tx_flags;
2893 	return 0;
2894 }
2895 
2896 /**
2897  * i40e_tso - set up the tso context descriptor
2898  * @first:    pointer to first Tx buffer for xmit
2899  * @hdr_len:  ptr to the size of the packet header
2900  * @cd_type_cmd_tso_mss: Quad Word 1
2901  *
2902  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2903  **/
2904 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2905 		    u64 *cd_type_cmd_tso_mss)
2906 {
2907 	struct sk_buff *skb = first->skb;
2908 	u64 cd_cmd, cd_tso_len, cd_mss;
2909 	union {
2910 		struct iphdr *v4;
2911 		struct ipv6hdr *v6;
2912 		unsigned char *hdr;
2913 	} ip;
2914 	union {
2915 		struct tcphdr *tcp;
2916 		struct udphdr *udp;
2917 		unsigned char *hdr;
2918 	} l4;
2919 	u32 paylen, l4_offset;
2920 	u16 gso_segs, gso_size;
2921 	int err;
2922 
2923 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2924 		return 0;
2925 
2926 	if (!skb_is_gso(skb))
2927 		return 0;
2928 
2929 	err = skb_cow_head(skb, 0);
2930 	if (err < 0)
2931 		return err;
2932 
2933 	ip.hdr = skb_network_header(skb);
2934 	l4.hdr = skb_transport_header(skb);
2935 
2936 	/* initialize outer IP header fields */
2937 	if (ip.v4->version == 4) {
2938 		ip.v4->tot_len = 0;
2939 		ip.v4->check = 0;
2940 	} else {
2941 		ip.v6->payload_len = 0;
2942 	}
2943 
2944 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2945 					 SKB_GSO_GRE_CSUM |
2946 					 SKB_GSO_IPXIP4 |
2947 					 SKB_GSO_IPXIP6 |
2948 					 SKB_GSO_UDP_TUNNEL |
2949 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2950 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2951 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2952 			l4.udp->len = 0;
2953 
2954 			/* determine offset of outer transport header */
2955 			l4_offset = l4.hdr - skb->data;
2956 
2957 			/* remove payload length from outer checksum */
2958 			paylen = skb->len - l4_offset;
2959 			csum_replace_by_diff(&l4.udp->check,
2960 					     (__force __wsum)htonl(paylen));
2961 		}
2962 
2963 		/* reset pointers to inner headers */
2964 		ip.hdr = skb_inner_network_header(skb);
2965 		l4.hdr = skb_inner_transport_header(skb);
2966 
2967 		/* initialize inner IP header fields */
2968 		if (ip.v4->version == 4) {
2969 			ip.v4->tot_len = 0;
2970 			ip.v4->check = 0;
2971 		} else {
2972 			ip.v6->payload_len = 0;
2973 		}
2974 	}
2975 
2976 	/* determine offset of inner transport header */
2977 	l4_offset = l4.hdr - skb->data;
2978 
2979 	/* remove payload length from inner checksum */
2980 	paylen = skb->len - l4_offset;
2981 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2982 
2983 	/* compute length of segmentation header */
2984 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2985 
2986 	/* pull values out of skb_shinfo */
2987 	gso_size = skb_shinfo(skb)->gso_size;
2988 	gso_segs = skb_shinfo(skb)->gso_segs;
2989 
2990 	/* update GSO size and bytecount with header size */
2991 	first->gso_segs = gso_segs;
2992 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2993 
2994 	/* find the field values */
2995 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2996 	cd_tso_len = skb->len - *hdr_len;
2997 	cd_mss = gso_size;
2998 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2999 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3000 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3001 	return 1;
3002 }
3003 
3004 /**
3005  * i40e_tsyn - set up the tsyn context descriptor
3006  * @tx_ring:  ptr to the ring to send
3007  * @skb:      ptr to the skb we're sending
3008  * @tx_flags: the collected send information
3009  * @cd_type_cmd_tso_mss: Quad Word 1
3010  *
3011  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3012  **/
3013 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3014 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3015 {
3016 	struct i40e_pf *pf;
3017 
3018 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3019 		return 0;
3020 
3021 	/* Tx timestamps cannot be sampled when doing TSO */
3022 	if (tx_flags & I40E_TX_FLAGS_TSO)
3023 		return 0;
3024 
3025 	/* only timestamp the outbound packet if the user has requested it and
3026 	 * we are not already transmitting a packet to be timestamped
3027 	 */
3028 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3029 	if (!(pf->flags & I40E_FLAG_PTP))
3030 		return 0;
3031 
3032 	if (pf->ptp_tx &&
3033 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3034 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3035 		pf->ptp_tx_start = jiffies;
3036 		pf->ptp_tx_skb = skb_get(skb);
3037 	} else {
3038 		pf->tx_hwtstamp_skipped++;
3039 		return 0;
3040 	}
3041 
3042 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3043 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3044 
3045 	return 1;
3046 }
3047 
3048 /**
3049  * i40e_tx_enable_csum - Enable Tx checksum offloads
3050  * @skb: send buffer
3051  * @tx_flags: pointer to Tx flags currently set
3052  * @td_cmd: Tx descriptor command bits to set
3053  * @td_offset: Tx descriptor header offsets to set
3054  * @tx_ring: Tx descriptor ring
3055  * @cd_tunneling: ptr to context desc bits
3056  **/
3057 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3058 			       u32 *td_cmd, u32 *td_offset,
3059 			       struct i40e_ring *tx_ring,
3060 			       u32 *cd_tunneling)
3061 {
3062 	union {
3063 		struct iphdr *v4;
3064 		struct ipv6hdr *v6;
3065 		unsigned char *hdr;
3066 	} ip;
3067 	union {
3068 		struct tcphdr *tcp;
3069 		struct udphdr *udp;
3070 		unsigned char *hdr;
3071 	} l4;
3072 	unsigned char *exthdr;
3073 	u32 offset, cmd = 0;
3074 	__be16 frag_off;
3075 	u8 l4_proto = 0;
3076 
3077 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3078 		return 0;
3079 
3080 	ip.hdr = skb_network_header(skb);
3081 	l4.hdr = skb_transport_header(skb);
3082 
3083 	/* compute outer L2 header size */
3084 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3085 
3086 	if (skb->encapsulation) {
3087 		u32 tunnel = 0;
3088 		/* define outer network header type */
3089 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3090 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3091 				  I40E_TX_CTX_EXT_IP_IPV4 :
3092 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3093 
3094 			l4_proto = ip.v4->protocol;
3095 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3096 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3097 
3098 			exthdr = ip.hdr + sizeof(*ip.v6);
3099 			l4_proto = ip.v6->nexthdr;
3100 			if (l4.hdr != exthdr)
3101 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3102 						 &l4_proto, &frag_off);
3103 		}
3104 
3105 		/* define outer transport */
3106 		switch (l4_proto) {
3107 		case IPPROTO_UDP:
3108 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3109 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3110 			break;
3111 		case IPPROTO_GRE:
3112 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3113 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3114 			break;
3115 		case IPPROTO_IPIP:
3116 		case IPPROTO_IPV6:
3117 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3118 			l4.hdr = skb_inner_network_header(skb);
3119 			break;
3120 		default:
3121 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3122 				return -1;
3123 
3124 			skb_checksum_help(skb);
3125 			return 0;
3126 		}
3127 
3128 		/* compute outer L3 header size */
3129 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3130 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3131 
3132 		/* switch IP header pointer from outer to inner header */
3133 		ip.hdr = skb_inner_network_header(skb);
3134 
3135 		/* compute tunnel header size */
3136 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3137 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3138 
3139 		/* indicate if we need to offload outer UDP header */
3140 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3141 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3142 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3143 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3144 
3145 		/* record tunnel offload values */
3146 		*cd_tunneling |= tunnel;
3147 
3148 		/* switch L4 header pointer from outer to inner */
3149 		l4.hdr = skb_inner_transport_header(skb);
3150 		l4_proto = 0;
3151 
3152 		/* reset type as we transition from outer to inner headers */
3153 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3154 		if (ip.v4->version == 4)
3155 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3156 		if (ip.v6->version == 6)
3157 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3158 	}
3159 
3160 	/* Enable IP checksum offloads */
3161 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3162 		l4_proto = ip.v4->protocol;
3163 		/* the stack computes the IP header already, the only time we
3164 		 * need the hardware to recompute it is in the case of TSO.
3165 		 */
3166 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3167 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3168 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3169 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3170 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3171 
3172 		exthdr = ip.hdr + sizeof(*ip.v6);
3173 		l4_proto = ip.v6->nexthdr;
3174 		if (l4.hdr != exthdr)
3175 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3176 					 &l4_proto, &frag_off);
3177 	}
3178 
3179 	/* compute inner L3 header size */
3180 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3181 
3182 	/* Enable L4 checksum offloads */
3183 	switch (l4_proto) {
3184 	case IPPROTO_TCP:
3185 		/* enable checksum offloads */
3186 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3187 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3188 		break;
3189 	case IPPROTO_SCTP:
3190 		/* enable SCTP checksum offload */
3191 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3192 		offset |= (sizeof(struct sctphdr) >> 2) <<
3193 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3194 		break;
3195 	case IPPROTO_UDP:
3196 		/* enable UDP checksum offload */
3197 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3198 		offset |= (sizeof(struct udphdr) >> 2) <<
3199 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3200 		break;
3201 	default:
3202 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3203 			return -1;
3204 		skb_checksum_help(skb);
3205 		return 0;
3206 	}
3207 
3208 	*td_cmd |= cmd;
3209 	*td_offset |= offset;
3210 
3211 	return 1;
3212 }
3213 
3214 /**
3215  * i40e_create_tx_ctx Build the Tx context descriptor
3216  * @tx_ring:  ring to create the descriptor on
3217  * @cd_type_cmd_tso_mss: Quad Word 1
3218  * @cd_tunneling: Quad Word 0 - bits 0-31
3219  * @cd_l2tag2: Quad Word 0 - bits 32-63
3220  **/
3221 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3222 			       const u64 cd_type_cmd_tso_mss,
3223 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3224 {
3225 	struct i40e_tx_context_desc *context_desc;
3226 	int i = tx_ring->next_to_use;
3227 
3228 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3229 	    !cd_tunneling && !cd_l2tag2)
3230 		return;
3231 
3232 	/* grab the next descriptor */
3233 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3234 
3235 	i++;
3236 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3237 
3238 	/* cpu_to_le32 and assign to struct fields */
3239 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3240 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3241 	context_desc->rsvd = cpu_to_le16(0);
3242 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3243 }
3244 
3245 /**
3246  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3247  * @tx_ring: the ring to be checked
3248  * @size:    the size buffer we want to assure is available
3249  *
3250  * Returns -EBUSY if a stop is needed, else 0
3251  **/
3252 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3253 {
3254 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3255 	/* Memory barrier before checking head and tail */
3256 	smp_mb();
3257 
3258 	/* Check again in a case another CPU has just made room available. */
3259 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3260 		return -EBUSY;
3261 
3262 	/* A reprieve! - use start_queue because it doesn't call schedule */
3263 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3264 	++tx_ring->tx_stats.restart_queue;
3265 	return 0;
3266 }
3267 
3268 /**
3269  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3270  * @skb:      send buffer
3271  *
3272  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3273  * and so we need to figure out the cases where we need to linearize the skb.
3274  *
3275  * For TSO we need to count the TSO header and segment payload separately.
3276  * As such we need to check cases where we have 7 fragments or more as we
3277  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3278  * the segment payload in the first descriptor, and another 7 for the
3279  * fragments.
3280  **/
3281 bool __i40e_chk_linearize(struct sk_buff *skb)
3282 {
3283 	const struct skb_frag_struct *frag, *stale;
3284 	int nr_frags, sum;
3285 
3286 	/* no need to check if number of frags is less than 7 */
3287 	nr_frags = skb_shinfo(skb)->nr_frags;
3288 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3289 		return false;
3290 
3291 	/* We need to walk through the list and validate that each group
3292 	 * of 6 fragments totals at least gso_size.
3293 	 */
3294 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3295 	frag = &skb_shinfo(skb)->frags[0];
3296 
3297 	/* Initialize size to the negative value of gso_size minus 1.  We
3298 	 * use this as the worst case scenerio in which the frag ahead
3299 	 * of us only provides one byte which is why we are limited to 6
3300 	 * descriptors for a single transmit as the header and previous
3301 	 * fragment are already consuming 2 descriptors.
3302 	 */
3303 	sum = 1 - skb_shinfo(skb)->gso_size;
3304 
3305 	/* Add size of frags 0 through 4 to create our initial sum */
3306 	sum += skb_frag_size(frag++);
3307 	sum += skb_frag_size(frag++);
3308 	sum += skb_frag_size(frag++);
3309 	sum += skb_frag_size(frag++);
3310 	sum += skb_frag_size(frag++);
3311 
3312 	/* Walk through fragments adding latest fragment, testing it, and
3313 	 * then removing stale fragments from the sum.
3314 	 */
3315 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3316 		int stale_size = skb_frag_size(stale);
3317 
3318 		sum += skb_frag_size(frag++);
3319 
3320 		/* The stale fragment may present us with a smaller
3321 		 * descriptor than the actual fragment size. To account
3322 		 * for that we need to remove all the data on the front and
3323 		 * figure out what the remainder would be in the last
3324 		 * descriptor associated with the fragment.
3325 		 */
3326 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3327 			int align_pad = -(stale->page_offset) &
3328 					(I40E_MAX_READ_REQ_SIZE - 1);
3329 
3330 			sum -= align_pad;
3331 			stale_size -= align_pad;
3332 
3333 			do {
3334 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3335 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3336 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3337 		}
3338 
3339 		/* if sum is negative we failed to make sufficient progress */
3340 		if (sum < 0)
3341 			return true;
3342 
3343 		if (!nr_frags--)
3344 			break;
3345 
3346 		sum -= stale_size;
3347 	}
3348 
3349 	return false;
3350 }
3351 
3352 /**
3353  * i40e_tx_map - Build the Tx descriptor
3354  * @tx_ring:  ring to send buffer on
3355  * @skb:      send buffer
3356  * @first:    first buffer info buffer to use
3357  * @tx_flags: collected send information
3358  * @hdr_len:  size of the packet header
3359  * @td_cmd:   the command field in the descriptor
3360  * @td_offset: offset for checksum or crc
3361  *
3362  * Returns 0 on success, -1 on failure to DMA
3363  **/
3364 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3365 			      struct i40e_tx_buffer *first, u32 tx_flags,
3366 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3367 {
3368 	unsigned int data_len = skb->data_len;
3369 	unsigned int size = skb_headlen(skb);
3370 	struct skb_frag_struct *frag;
3371 	struct i40e_tx_buffer *tx_bi;
3372 	struct i40e_tx_desc *tx_desc;
3373 	u16 i = tx_ring->next_to_use;
3374 	u32 td_tag = 0;
3375 	dma_addr_t dma;
3376 	u16 desc_count = 1;
3377 
3378 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3379 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3380 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3381 			 I40E_TX_FLAGS_VLAN_SHIFT;
3382 	}
3383 
3384 	first->tx_flags = tx_flags;
3385 
3386 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3387 
3388 	tx_desc = I40E_TX_DESC(tx_ring, i);
3389 	tx_bi = first;
3390 
3391 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3392 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3393 
3394 		if (dma_mapping_error(tx_ring->dev, dma))
3395 			goto dma_error;
3396 
3397 		/* record length, and DMA address */
3398 		dma_unmap_len_set(tx_bi, len, size);
3399 		dma_unmap_addr_set(tx_bi, dma, dma);
3400 
3401 		/* align size to end of page */
3402 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3403 		tx_desc->buffer_addr = cpu_to_le64(dma);
3404 
3405 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3406 			tx_desc->cmd_type_offset_bsz =
3407 				build_ctob(td_cmd, td_offset,
3408 					   max_data, td_tag);
3409 
3410 			tx_desc++;
3411 			i++;
3412 			desc_count++;
3413 
3414 			if (i == tx_ring->count) {
3415 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3416 				i = 0;
3417 			}
3418 
3419 			dma += max_data;
3420 			size -= max_data;
3421 
3422 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3423 			tx_desc->buffer_addr = cpu_to_le64(dma);
3424 		}
3425 
3426 		if (likely(!data_len))
3427 			break;
3428 
3429 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3430 							  size, td_tag);
3431 
3432 		tx_desc++;
3433 		i++;
3434 		desc_count++;
3435 
3436 		if (i == tx_ring->count) {
3437 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3438 			i = 0;
3439 		}
3440 
3441 		size = skb_frag_size(frag);
3442 		data_len -= size;
3443 
3444 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3445 				       DMA_TO_DEVICE);
3446 
3447 		tx_bi = &tx_ring->tx_bi[i];
3448 	}
3449 
3450 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3451 
3452 	i++;
3453 	if (i == tx_ring->count)
3454 		i = 0;
3455 
3456 	tx_ring->next_to_use = i;
3457 
3458 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3459 
3460 	/* write last descriptor with EOP bit */
3461 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3462 
3463 	/* We OR these values together to check both against 4 (WB_STRIDE)
3464 	 * below. This is safe since we don't re-use desc_count afterwards.
3465 	 */
3466 	desc_count |= ++tx_ring->packet_stride;
3467 
3468 	if (desc_count >= WB_STRIDE) {
3469 		/* write last descriptor with RS bit set */
3470 		td_cmd |= I40E_TX_DESC_CMD_RS;
3471 		tx_ring->packet_stride = 0;
3472 	}
3473 
3474 	tx_desc->cmd_type_offset_bsz =
3475 			build_ctob(td_cmd, td_offset, size, td_tag);
3476 
3477 	/* Force memory writes to complete before letting h/w know there
3478 	 * are new descriptors to fetch.
3479 	 *
3480 	 * We also use this memory barrier to make certain all of the
3481 	 * status bits have been updated before next_to_watch is written.
3482 	 */
3483 	wmb();
3484 
3485 	/* set next_to_watch value indicating a packet is present */
3486 	first->next_to_watch = tx_desc;
3487 
3488 	/* notify HW of packet */
3489 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3490 		writel(i, tx_ring->tail);
3491 
3492 		/* we need this if more than one processor can write to our tail
3493 		 * at a time, it synchronizes IO on IA64/Altix systems
3494 		 */
3495 		mmiowb();
3496 	}
3497 
3498 	return 0;
3499 
3500 dma_error:
3501 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3502 
3503 	/* clear dma mappings for failed tx_bi map */
3504 	for (;;) {
3505 		tx_bi = &tx_ring->tx_bi[i];
3506 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3507 		if (tx_bi == first)
3508 			break;
3509 		if (i == 0)
3510 			i = tx_ring->count;
3511 		i--;
3512 	}
3513 
3514 	tx_ring->next_to_use = i;
3515 
3516 	return -1;
3517 }
3518 
3519 /**
3520  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3521  * @xdp: data to transmit
3522  * @xdp_ring: XDP Tx ring
3523  **/
3524 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3525 			      struct i40e_ring *xdp_ring)
3526 {
3527 	u16 i = xdp_ring->next_to_use;
3528 	struct i40e_tx_buffer *tx_bi;
3529 	struct i40e_tx_desc *tx_desc;
3530 	u32 size = xdpf->len;
3531 	dma_addr_t dma;
3532 
3533 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3534 		xdp_ring->tx_stats.tx_busy++;
3535 		return I40E_XDP_CONSUMED;
3536 	}
3537 
3538 	dma = dma_map_single(xdp_ring->dev, xdpf->data, size, DMA_TO_DEVICE);
3539 	if (dma_mapping_error(xdp_ring->dev, dma))
3540 		return I40E_XDP_CONSUMED;
3541 
3542 	tx_bi = &xdp_ring->tx_bi[i];
3543 	tx_bi->bytecount = size;
3544 	tx_bi->gso_segs = 1;
3545 	tx_bi->xdpf = xdpf;
3546 
3547 	/* record length, and DMA address */
3548 	dma_unmap_len_set(tx_bi, len, size);
3549 	dma_unmap_addr_set(tx_bi, dma, dma);
3550 
3551 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3552 	tx_desc->buffer_addr = cpu_to_le64(dma);
3553 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3554 						  | I40E_TXD_CMD,
3555 						  0, size, 0);
3556 
3557 	/* Make certain all of the status bits have been updated
3558 	 * before next_to_watch is written.
3559 	 */
3560 	smp_wmb();
3561 
3562 	i++;
3563 	if (i == xdp_ring->count)
3564 		i = 0;
3565 
3566 	tx_bi->next_to_watch = tx_desc;
3567 	xdp_ring->next_to_use = i;
3568 
3569 	return I40E_XDP_TX;
3570 }
3571 
3572 /**
3573  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3574  * @skb:     send buffer
3575  * @tx_ring: ring to send buffer on
3576  *
3577  * Returns NETDEV_TX_OK if sent, else an error code
3578  **/
3579 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3580 					struct i40e_ring *tx_ring)
3581 {
3582 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3583 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3584 	struct i40e_tx_buffer *first;
3585 	u32 td_offset = 0;
3586 	u32 tx_flags = 0;
3587 	__be16 protocol;
3588 	u32 td_cmd = 0;
3589 	u8 hdr_len = 0;
3590 	int tso, count;
3591 	int tsyn;
3592 
3593 	/* prefetch the data, we'll need it later */
3594 	prefetch(skb->data);
3595 
3596 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3597 
3598 	count = i40e_xmit_descriptor_count(skb);
3599 	if (i40e_chk_linearize(skb, count)) {
3600 		if (__skb_linearize(skb)) {
3601 			dev_kfree_skb_any(skb);
3602 			return NETDEV_TX_OK;
3603 		}
3604 		count = i40e_txd_use_count(skb->len);
3605 		tx_ring->tx_stats.tx_linearize++;
3606 	}
3607 
3608 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3609 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3610 	 *       + 4 desc gap to avoid the cache line where head is,
3611 	 *       + 1 desc for context descriptor,
3612 	 * otherwise try next time
3613 	 */
3614 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3615 		tx_ring->tx_stats.tx_busy++;
3616 		return NETDEV_TX_BUSY;
3617 	}
3618 
3619 	/* record the location of the first descriptor for this packet */
3620 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3621 	first->skb = skb;
3622 	first->bytecount = skb->len;
3623 	first->gso_segs = 1;
3624 
3625 	/* prepare the xmit flags */
3626 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3627 		goto out_drop;
3628 
3629 	/* obtain protocol of skb */
3630 	protocol = vlan_get_protocol(skb);
3631 
3632 	/* setup IPv4/IPv6 offloads */
3633 	if (protocol == htons(ETH_P_IP))
3634 		tx_flags |= I40E_TX_FLAGS_IPV4;
3635 	else if (protocol == htons(ETH_P_IPV6))
3636 		tx_flags |= I40E_TX_FLAGS_IPV6;
3637 
3638 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3639 
3640 	if (tso < 0)
3641 		goto out_drop;
3642 	else if (tso)
3643 		tx_flags |= I40E_TX_FLAGS_TSO;
3644 
3645 	/* Always offload the checksum, since it's in the data descriptor */
3646 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3647 				  tx_ring, &cd_tunneling);
3648 	if (tso < 0)
3649 		goto out_drop;
3650 
3651 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3652 
3653 	if (tsyn)
3654 		tx_flags |= I40E_TX_FLAGS_TSYN;
3655 
3656 	skb_tx_timestamp(skb);
3657 
3658 	/* always enable CRC insertion offload */
3659 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3660 
3661 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3662 			   cd_tunneling, cd_l2tag2);
3663 
3664 	/* Add Flow Director ATR if it's enabled.
3665 	 *
3666 	 * NOTE: this must always be directly before the data descriptor.
3667 	 */
3668 	i40e_atr(tx_ring, skb, tx_flags);
3669 
3670 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3671 			td_cmd, td_offset))
3672 		goto cleanup_tx_tstamp;
3673 
3674 	return NETDEV_TX_OK;
3675 
3676 out_drop:
3677 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3678 	dev_kfree_skb_any(first->skb);
3679 	first->skb = NULL;
3680 cleanup_tx_tstamp:
3681 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3682 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3683 
3684 		dev_kfree_skb_any(pf->ptp_tx_skb);
3685 		pf->ptp_tx_skb = NULL;
3686 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3687 	}
3688 
3689 	return NETDEV_TX_OK;
3690 }
3691 
3692 /**
3693  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3694  * @skb:    send buffer
3695  * @netdev: network interface device structure
3696  *
3697  * Returns NETDEV_TX_OK if sent, else an error code
3698  **/
3699 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3700 {
3701 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3702 	struct i40e_vsi *vsi = np->vsi;
3703 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3704 
3705 	/* hardware can't handle really short frames, hardware padding works
3706 	 * beyond this point
3707 	 */
3708 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3709 		return NETDEV_TX_OK;
3710 
3711 	return i40e_xmit_frame_ring(skb, tx_ring);
3712 }
3713 
3714 /**
3715  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3716  * @dev: netdev
3717  * @xdp: XDP buffer
3718  *
3719  * Returns number of frames successfully sent. Frames that fail are
3720  * free'ed via XDP return API.
3721  *
3722  * For error cases, a negative errno code is returned and no-frames
3723  * are transmitted (caller must handle freeing frames).
3724  **/
3725 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3726 		  u32 flags)
3727 {
3728 	struct i40e_netdev_priv *np = netdev_priv(dev);
3729 	unsigned int queue_index = smp_processor_id();
3730 	struct i40e_vsi *vsi = np->vsi;
3731 	struct i40e_ring *xdp_ring;
3732 	int drops = 0;
3733 	int i;
3734 
3735 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3736 		return -ENETDOWN;
3737 
3738 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3739 		return -ENXIO;
3740 
3741 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3742 		return -EINVAL;
3743 
3744 	xdp_ring = vsi->xdp_rings[queue_index];
3745 
3746 	for (i = 0; i < n; i++) {
3747 		struct xdp_frame *xdpf = frames[i];
3748 		int err;
3749 
3750 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3751 		if (err != I40E_XDP_TX) {
3752 			xdp_return_frame_rx_napi(xdpf);
3753 			drops++;
3754 		}
3755 	}
3756 
3757 	if (unlikely(flags & XDP_XMIT_FLUSH))
3758 		i40e_xdp_ring_update_tail(xdp_ring);
3759 
3760 	return n - drops;
3761 }
3762