1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <linux/bpf_trace.h> 6 #include <net/xdp.h> 7 #include "i40e.h" 8 #include "i40e_trace.h" 9 #include "i40e_prototype.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 47 48 /* Use LAN VSI Id if not programmed by user */ 49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 52 53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 54 55 dtype_cmd |= add ? 56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 57 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 59 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 63 64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 66 67 if (fdata->cnt_index) { 68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 70 ((u32)fdata->cnt_index << 71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 72 } 73 74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 75 fdir_desc->rsvd = cpu_to_le32(0); 76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 78 } 79 80 #define I40E_FD_CLEAN_DELAY 10 81 /** 82 * i40e_program_fdir_filter - Program a Flow Director filter 83 * @fdir_data: Packet data that will be filter parameters 84 * @raw_packet: the pre-allocated packet buffer for FDir 85 * @pf: The PF pointer 86 * @add: True for add/update, False for remove 87 **/ 88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 89 u8 *raw_packet, struct i40e_pf *pf, 90 bool add) 91 { 92 struct i40e_tx_buffer *tx_buf, *first; 93 struct i40e_tx_desc *tx_desc; 94 struct i40e_ring *tx_ring; 95 struct i40e_vsi *vsi; 96 struct device *dev; 97 dma_addr_t dma; 98 u32 td_cmd = 0; 99 u16 i; 100 101 /* find existing FDIR VSI */ 102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 103 if (!vsi) 104 return -ENOENT; 105 106 tx_ring = vsi->tx_rings[0]; 107 dev = tx_ring->dev; 108 109 /* we need two descriptors to add/del a filter and we can wait */ 110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 111 if (!i) 112 return -EAGAIN; 113 msleep_interruptible(1); 114 } 115 116 dma = dma_map_single(dev, raw_packet, 117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 118 if (dma_mapping_error(dev, dma)) 119 goto dma_fail; 120 121 /* grab the next descriptor */ 122 i = tx_ring->next_to_use; 123 first = &tx_ring->tx_bi[i]; 124 i40e_fdir(tx_ring, fdir_data, add); 125 126 /* Now program a dummy descriptor */ 127 i = tx_ring->next_to_use; 128 tx_desc = I40E_TX_DESC(tx_ring, i); 129 tx_buf = &tx_ring->tx_bi[i]; 130 131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 132 133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 134 135 /* record length, and DMA address */ 136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 137 dma_unmap_addr_set(tx_buf, dma, dma); 138 139 tx_desc->buffer_addr = cpu_to_le64(dma); 140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 141 142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 143 tx_buf->raw_buf = (void *)raw_packet; 144 145 tx_desc->cmd_type_offset_bsz = 146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 147 148 /* Force memory writes to complete before letting h/w 149 * know there are new descriptors to fetch. 150 */ 151 wmb(); 152 153 /* Mark the data descriptor to be watched */ 154 first->next_to_watch = tx_desc; 155 156 writel(tx_ring->next_to_use, tx_ring->tail); 157 return 0; 158 159 dma_fail: 160 return -1; 161 } 162 163 #define IP_HEADER_OFFSET 14 164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 165 /** 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 167 * @vsi: pointer to the targeted VSI 168 * @fd_data: the flow director data required for the FDir descriptor 169 * @add: true adds a filter, false removes it 170 * 171 * Returns 0 if the filters were successfully added or removed 172 **/ 173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 174 struct i40e_fdir_filter *fd_data, 175 bool add) 176 { 177 struct i40e_pf *pf = vsi->back; 178 struct udphdr *udp; 179 struct iphdr *ip; 180 u8 *raw_packet; 181 int ret; 182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 185 186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 187 if (!raw_packet) 188 return -ENOMEM; 189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 190 191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 193 + sizeof(struct iphdr)); 194 195 ip->daddr = fd_data->dst_ip; 196 udp->dest = fd_data->dst_port; 197 ip->saddr = fd_data->src_ip; 198 udp->source = fd_data->src_port; 199 200 if (fd_data->flex_filter) { 201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 202 __be16 pattern = fd_data->flex_word; 203 u16 off = fd_data->flex_offset; 204 205 *((__force __be16 *)(payload + off)) = pattern; 206 } 207 208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 210 if (ret) { 211 dev_info(&pf->pdev->dev, 212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 213 fd_data->pctype, fd_data->fd_id, ret); 214 /* Free the packet buffer since it wasn't added to the ring */ 215 kfree(raw_packet); 216 return -EOPNOTSUPP; 217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 218 if (add) 219 dev_info(&pf->pdev->dev, 220 "Filter OK for PCTYPE %d loc = %d\n", 221 fd_data->pctype, fd_data->fd_id); 222 else 223 dev_info(&pf->pdev->dev, 224 "Filter deleted for PCTYPE %d loc = %d\n", 225 fd_data->pctype, fd_data->fd_id); 226 } 227 228 if (add) 229 pf->fd_udp4_filter_cnt++; 230 else 231 pf->fd_udp4_filter_cnt--; 232 233 return 0; 234 } 235 236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 237 /** 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 239 * @vsi: pointer to the targeted VSI 240 * @fd_data: the flow director data required for the FDir descriptor 241 * @add: true adds a filter, false removes it 242 * 243 * Returns 0 if the filters were successfully added or removed 244 **/ 245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 246 struct i40e_fdir_filter *fd_data, 247 bool add) 248 { 249 struct i40e_pf *pf = vsi->back; 250 struct tcphdr *tcp; 251 struct iphdr *ip; 252 u8 *raw_packet; 253 int ret; 254 /* Dummy packet */ 255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 258 0x0, 0x72, 0, 0, 0, 0}; 259 260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 261 if (!raw_packet) 262 return -ENOMEM; 263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 264 265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 267 + sizeof(struct iphdr)); 268 269 ip->daddr = fd_data->dst_ip; 270 tcp->dest = fd_data->dst_port; 271 ip->saddr = fd_data->src_ip; 272 tcp->source = fd_data->src_port; 273 274 if (fd_data->flex_filter) { 275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 276 __be16 pattern = fd_data->flex_word; 277 u16 off = fd_data->flex_offset; 278 279 *((__force __be16 *)(payload + off)) = pattern; 280 } 281 282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 284 if (ret) { 285 dev_info(&pf->pdev->dev, 286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 287 fd_data->pctype, fd_data->fd_id, ret); 288 /* Free the packet buffer since it wasn't added to the ring */ 289 kfree(raw_packet); 290 return -EOPNOTSUPP; 291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 292 if (add) 293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 294 fd_data->pctype, fd_data->fd_id); 295 else 296 dev_info(&pf->pdev->dev, 297 "Filter deleted for PCTYPE %d loc = %d\n", 298 fd_data->pctype, fd_data->fd_id); 299 } 300 301 if (add) { 302 pf->fd_tcp4_filter_cnt++; 303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 304 I40E_DEBUG_FD & pf->hw.debug_mask) 305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 307 } else { 308 pf->fd_tcp4_filter_cnt--; 309 } 310 311 return 0; 312 } 313 314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 315 /** 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 317 * a specific flow spec 318 * @vsi: pointer to the targeted VSI 319 * @fd_data: the flow director data required for the FDir descriptor 320 * @add: true adds a filter, false removes it 321 * 322 * Returns 0 if the filters were successfully added or removed 323 **/ 324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 325 struct i40e_fdir_filter *fd_data, 326 bool add) 327 { 328 struct i40e_pf *pf = vsi->back; 329 struct sctphdr *sctp; 330 struct iphdr *ip; 331 u8 *raw_packet; 332 int ret; 333 /* Dummy packet */ 334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 337 338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 339 if (!raw_packet) 340 return -ENOMEM; 341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 342 343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 345 + sizeof(struct iphdr)); 346 347 ip->daddr = fd_data->dst_ip; 348 sctp->dest = fd_data->dst_port; 349 ip->saddr = fd_data->src_ip; 350 sctp->source = fd_data->src_port; 351 352 if (fd_data->flex_filter) { 353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 354 __be16 pattern = fd_data->flex_word; 355 u16 off = fd_data->flex_offset; 356 357 *((__force __be16 *)(payload + off)) = pattern; 358 } 359 360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 362 if (ret) { 363 dev_info(&pf->pdev->dev, 364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 365 fd_data->pctype, fd_data->fd_id, ret); 366 /* Free the packet buffer since it wasn't added to the ring */ 367 kfree(raw_packet); 368 return -EOPNOTSUPP; 369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 370 if (add) 371 dev_info(&pf->pdev->dev, 372 "Filter OK for PCTYPE %d loc = %d\n", 373 fd_data->pctype, fd_data->fd_id); 374 else 375 dev_info(&pf->pdev->dev, 376 "Filter deleted for PCTYPE %d loc = %d\n", 377 fd_data->pctype, fd_data->fd_id); 378 } 379 380 if (add) 381 pf->fd_sctp4_filter_cnt++; 382 else 383 pf->fd_sctp4_filter_cnt--; 384 385 return 0; 386 } 387 388 #define I40E_IP_DUMMY_PACKET_LEN 34 389 /** 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 391 * a specific flow spec 392 * @vsi: pointer to the targeted VSI 393 * @fd_data: the flow director data required for the FDir descriptor 394 * @add: true adds a filter, false removes it 395 * 396 * Returns 0 if the filters were successfully added or removed 397 **/ 398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 399 struct i40e_fdir_filter *fd_data, 400 bool add) 401 { 402 struct i40e_pf *pf = vsi->back; 403 struct iphdr *ip; 404 u8 *raw_packet; 405 int ret; 406 int i; 407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 409 0, 0, 0, 0}; 410 411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 414 if (!raw_packet) 415 return -ENOMEM; 416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 418 419 ip->saddr = fd_data->src_ip; 420 ip->daddr = fd_data->dst_ip; 421 ip->protocol = 0; 422 423 if (fd_data->flex_filter) { 424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 425 __be16 pattern = fd_data->flex_word; 426 u16 off = fd_data->flex_offset; 427 428 *((__force __be16 *)(payload + off)) = pattern; 429 } 430 431 fd_data->pctype = i; 432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 433 if (ret) { 434 dev_info(&pf->pdev->dev, 435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 436 fd_data->pctype, fd_data->fd_id, ret); 437 /* The packet buffer wasn't added to the ring so we 438 * need to free it now. 439 */ 440 kfree(raw_packet); 441 return -EOPNOTSUPP; 442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 443 if (add) 444 dev_info(&pf->pdev->dev, 445 "Filter OK for PCTYPE %d loc = %d\n", 446 fd_data->pctype, fd_data->fd_id); 447 else 448 dev_info(&pf->pdev->dev, 449 "Filter deleted for PCTYPE %d loc = %d\n", 450 fd_data->pctype, fd_data->fd_id); 451 } 452 } 453 454 if (add) 455 pf->fd_ip4_filter_cnt++; 456 else 457 pf->fd_ip4_filter_cnt--; 458 459 return 0; 460 } 461 462 /** 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 464 * @vsi: pointer to the targeted VSI 465 * @input: filter to add or delete 466 * @add: true adds a filter, false removes it 467 * 468 **/ 469 int i40e_add_del_fdir(struct i40e_vsi *vsi, 470 struct i40e_fdir_filter *input, bool add) 471 { 472 struct i40e_pf *pf = vsi->back; 473 int ret; 474 475 switch (input->flow_type & ~FLOW_EXT) { 476 case TCP_V4_FLOW: 477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 478 break; 479 case UDP_V4_FLOW: 480 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 481 break; 482 case SCTP_V4_FLOW: 483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 484 break; 485 case IP_USER_FLOW: 486 switch (input->ip4_proto) { 487 case IPPROTO_TCP: 488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 489 break; 490 case IPPROTO_UDP: 491 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 492 break; 493 case IPPROTO_SCTP: 494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 495 break; 496 case IPPROTO_IP: 497 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 498 break; 499 default: 500 /* We cannot support masking based on protocol */ 501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 502 input->ip4_proto); 503 return -EINVAL; 504 } 505 break; 506 default: 507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 508 input->flow_type); 509 return -EINVAL; 510 } 511 512 /* The buffer allocated here will be normally be freed by 513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 514 * completion. In the event of an error adding the buffer to the FDIR 515 * ring, it will immediately be freed. It may also be freed by 516 * i40e_clean_tx_ring() when closing the VSI. 517 */ 518 return ret; 519 } 520 521 /** 522 * i40e_fd_handle_status - check the Programming Status for FD 523 * @rx_ring: the Rx ring for this descriptor 524 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 525 * @prog_id: the id originally used for programming 526 * 527 * This is used to verify if the FD programming or invalidation 528 * requested by SW to the HW is successful or not and take actions accordingly. 529 **/ 530 void i40e_fd_handle_status(struct i40e_ring *rx_ring, 531 union i40e_rx_desc *rx_desc, u8 prog_id) 532 { 533 struct i40e_pf *pf = rx_ring->vsi->back; 534 struct pci_dev *pdev = pf->pdev; 535 u32 fcnt_prog, fcnt_avail; 536 u32 error; 537 u64 qw; 538 539 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 540 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 541 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 542 543 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 544 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 545 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 546 (I40E_DEBUG_FD & pf->hw.debug_mask)) 547 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 548 pf->fd_inv); 549 550 /* Check if the programming error is for ATR. 551 * If so, auto disable ATR and set a state for 552 * flush in progress. Next time we come here if flush is in 553 * progress do nothing, once flush is complete the state will 554 * be cleared. 555 */ 556 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 557 return; 558 559 pf->fd_add_err++; 560 /* store the current atr filter count */ 561 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 562 563 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 564 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 565 /* These set_bit() calls aren't atomic with the 566 * test_bit() here, but worse case we potentially 567 * disable ATR and queue a flush right after SB 568 * support is re-enabled. That shouldn't cause an 569 * issue in practice 570 */ 571 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 572 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 573 } 574 575 /* filter programming failed most likely due to table full */ 576 fcnt_prog = i40e_get_global_fd_count(pf); 577 fcnt_avail = pf->fdir_pf_filter_count; 578 /* If ATR is running fcnt_prog can quickly change, 579 * if we are very close to full, it makes sense to disable 580 * FD ATR/SB and then re-enable it when there is room. 581 */ 582 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 583 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 584 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 585 pf->state)) 586 if (I40E_DEBUG_FD & pf->hw.debug_mask) 587 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 588 } 589 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 590 if (I40E_DEBUG_FD & pf->hw.debug_mask) 591 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 592 rx_desc->wb.qword0.hi_dword.fd_id); 593 } 594 } 595 596 /** 597 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 598 * @ring: the ring that owns the buffer 599 * @tx_buffer: the buffer to free 600 **/ 601 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 602 struct i40e_tx_buffer *tx_buffer) 603 { 604 if (tx_buffer->skb) { 605 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 606 kfree(tx_buffer->raw_buf); 607 else if (ring_is_xdp(ring)) 608 xdp_return_frame(tx_buffer->xdpf); 609 else 610 dev_kfree_skb_any(tx_buffer->skb); 611 if (dma_unmap_len(tx_buffer, len)) 612 dma_unmap_single(ring->dev, 613 dma_unmap_addr(tx_buffer, dma), 614 dma_unmap_len(tx_buffer, len), 615 DMA_TO_DEVICE); 616 } else if (dma_unmap_len(tx_buffer, len)) { 617 dma_unmap_page(ring->dev, 618 dma_unmap_addr(tx_buffer, dma), 619 dma_unmap_len(tx_buffer, len), 620 DMA_TO_DEVICE); 621 } 622 623 tx_buffer->next_to_watch = NULL; 624 tx_buffer->skb = NULL; 625 dma_unmap_len_set(tx_buffer, len, 0); 626 /* tx_buffer must be completely set up in the transmit path */ 627 } 628 629 /** 630 * i40e_clean_tx_ring - Free any empty Tx buffers 631 * @tx_ring: ring to be cleaned 632 **/ 633 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 634 { 635 unsigned long bi_size; 636 u16 i; 637 638 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) { 639 i40e_xsk_clean_tx_ring(tx_ring); 640 } else { 641 /* ring already cleared, nothing to do */ 642 if (!tx_ring->tx_bi) 643 return; 644 645 /* Free all the Tx ring sk_buffs */ 646 for (i = 0; i < tx_ring->count; i++) 647 i40e_unmap_and_free_tx_resource(tx_ring, 648 &tx_ring->tx_bi[i]); 649 } 650 651 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 652 memset(tx_ring->tx_bi, 0, bi_size); 653 654 /* Zero out the descriptor ring */ 655 memset(tx_ring->desc, 0, tx_ring->size); 656 657 tx_ring->next_to_use = 0; 658 tx_ring->next_to_clean = 0; 659 660 if (!tx_ring->netdev) 661 return; 662 663 /* cleanup Tx queue statistics */ 664 netdev_tx_reset_queue(txring_txq(tx_ring)); 665 } 666 667 /** 668 * i40e_free_tx_resources - Free Tx resources per queue 669 * @tx_ring: Tx descriptor ring for a specific queue 670 * 671 * Free all transmit software resources 672 **/ 673 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 674 { 675 i40e_clean_tx_ring(tx_ring); 676 kfree(tx_ring->tx_bi); 677 tx_ring->tx_bi = NULL; 678 679 if (tx_ring->desc) { 680 dma_free_coherent(tx_ring->dev, tx_ring->size, 681 tx_ring->desc, tx_ring->dma); 682 tx_ring->desc = NULL; 683 } 684 } 685 686 /** 687 * i40e_get_tx_pending - how many tx descriptors not processed 688 * @ring: the ring of descriptors 689 * @in_sw: use SW variables 690 * 691 * Since there is no access to the ring head register 692 * in XL710, we need to use our local copies 693 **/ 694 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 695 { 696 u32 head, tail; 697 698 if (!in_sw) { 699 head = i40e_get_head(ring); 700 tail = readl(ring->tail); 701 } else { 702 head = ring->next_to_clean; 703 tail = ring->next_to_use; 704 } 705 706 if (head != tail) 707 return (head < tail) ? 708 tail - head : (tail + ring->count - head); 709 710 return 0; 711 } 712 713 /** 714 * i40e_detect_recover_hung - Function to detect and recover hung_queues 715 * @vsi: pointer to vsi struct with tx queues 716 * 717 * VSI has netdev and netdev has TX queues. This function is to check each of 718 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 719 **/ 720 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 721 { 722 struct i40e_ring *tx_ring = NULL; 723 struct net_device *netdev; 724 unsigned int i; 725 int packets; 726 727 if (!vsi) 728 return; 729 730 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 731 return; 732 733 netdev = vsi->netdev; 734 if (!netdev) 735 return; 736 737 if (!netif_carrier_ok(netdev)) 738 return; 739 740 for (i = 0; i < vsi->num_queue_pairs; i++) { 741 tx_ring = vsi->tx_rings[i]; 742 if (tx_ring && tx_ring->desc) { 743 /* If packet counter has not changed the queue is 744 * likely stalled, so force an interrupt for this 745 * queue. 746 * 747 * prev_pkt_ctr would be negative if there was no 748 * pending work. 749 */ 750 packets = tx_ring->stats.packets & INT_MAX; 751 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 752 i40e_force_wb(vsi, tx_ring->q_vector); 753 continue; 754 } 755 756 /* Memory barrier between read of packet count and call 757 * to i40e_get_tx_pending() 758 */ 759 smp_rmb(); 760 tx_ring->tx_stats.prev_pkt_ctr = 761 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 762 } 763 } 764 } 765 766 /** 767 * i40e_clean_tx_irq - Reclaim resources after transmit completes 768 * @vsi: the VSI we care about 769 * @tx_ring: Tx ring to clean 770 * @napi_budget: Used to determine if we are in netpoll 771 * 772 * Returns true if there's any budget left (e.g. the clean is finished) 773 **/ 774 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 775 struct i40e_ring *tx_ring, int napi_budget) 776 { 777 u16 i = tx_ring->next_to_clean; 778 struct i40e_tx_buffer *tx_buf; 779 struct i40e_tx_desc *tx_head; 780 struct i40e_tx_desc *tx_desc; 781 unsigned int total_bytes = 0, total_packets = 0; 782 unsigned int budget = vsi->work_limit; 783 784 tx_buf = &tx_ring->tx_bi[i]; 785 tx_desc = I40E_TX_DESC(tx_ring, i); 786 i -= tx_ring->count; 787 788 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 789 790 do { 791 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 792 793 /* if next_to_watch is not set then there is no work pending */ 794 if (!eop_desc) 795 break; 796 797 /* prevent any other reads prior to eop_desc */ 798 smp_rmb(); 799 800 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 801 /* we have caught up to head, no work left to do */ 802 if (tx_head == tx_desc) 803 break; 804 805 /* clear next_to_watch to prevent false hangs */ 806 tx_buf->next_to_watch = NULL; 807 808 /* update the statistics for this packet */ 809 total_bytes += tx_buf->bytecount; 810 total_packets += tx_buf->gso_segs; 811 812 /* free the skb/XDP data */ 813 if (ring_is_xdp(tx_ring)) 814 xdp_return_frame(tx_buf->xdpf); 815 else 816 napi_consume_skb(tx_buf->skb, napi_budget); 817 818 /* unmap skb header data */ 819 dma_unmap_single(tx_ring->dev, 820 dma_unmap_addr(tx_buf, dma), 821 dma_unmap_len(tx_buf, len), 822 DMA_TO_DEVICE); 823 824 /* clear tx_buffer data */ 825 tx_buf->skb = NULL; 826 dma_unmap_len_set(tx_buf, len, 0); 827 828 /* unmap remaining buffers */ 829 while (tx_desc != eop_desc) { 830 i40e_trace(clean_tx_irq_unmap, 831 tx_ring, tx_desc, tx_buf); 832 833 tx_buf++; 834 tx_desc++; 835 i++; 836 if (unlikely(!i)) { 837 i -= tx_ring->count; 838 tx_buf = tx_ring->tx_bi; 839 tx_desc = I40E_TX_DESC(tx_ring, 0); 840 } 841 842 /* unmap any remaining paged data */ 843 if (dma_unmap_len(tx_buf, len)) { 844 dma_unmap_page(tx_ring->dev, 845 dma_unmap_addr(tx_buf, dma), 846 dma_unmap_len(tx_buf, len), 847 DMA_TO_DEVICE); 848 dma_unmap_len_set(tx_buf, len, 0); 849 } 850 } 851 852 /* move us one more past the eop_desc for start of next pkt */ 853 tx_buf++; 854 tx_desc++; 855 i++; 856 if (unlikely(!i)) { 857 i -= tx_ring->count; 858 tx_buf = tx_ring->tx_bi; 859 tx_desc = I40E_TX_DESC(tx_ring, 0); 860 } 861 862 prefetch(tx_desc); 863 864 /* update budget accounting */ 865 budget--; 866 } while (likely(budget)); 867 868 i += tx_ring->count; 869 tx_ring->next_to_clean = i; 870 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 871 i40e_arm_wb(tx_ring, vsi, budget); 872 873 if (ring_is_xdp(tx_ring)) 874 return !!budget; 875 876 /* notify netdev of completed buffers */ 877 netdev_tx_completed_queue(txring_txq(tx_ring), 878 total_packets, total_bytes); 879 880 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 881 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 882 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 883 /* Make sure that anybody stopping the queue after this 884 * sees the new next_to_clean. 885 */ 886 smp_mb(); 887 if (__netif_subqueue_stopped(tx_ring->netdev, 888 tx_ring->queue_index) && 889 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 890 netif_wake_subqueue(tx_ring->netdev, 891 tx_ring->queue_index); 892 ++tx_ring->tx_stats.restart_queue; 893 } 894 } 895 896 return !!budget; 897 } 898 899 /** 900 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 901 * @vsi: the VSI we care about 902 * @q_vector: the vector on which to enable writeback 903 * 904 **/ 905 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 906 struct i40e_q_vector *q_vector) 907 { 908 u16 flags = q_vector->tx.ring[0].flags; 909 u32 val; 910 911 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 912 return; 913 914 if (q_vector->arm_wb_state) 915 return; 916 917 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 918 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 919 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 920 921 wr32(&vsi->back->hw, 922 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 923 val); 924 } else { 925 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 926 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 927 928 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 929 } 930 q_vector->arm_wb_state = true; 931 } 932 933 /** 934 * i40e_force_wb - Issue SW Interrupt so HW does a wb 935 * @vsi: the VSI we care about 936 * @q_vector: the vector on which to force writeback 937 * 938 **/ 939 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 940 { 941 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 942 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 943 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 944 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 945 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 946 /* allow 00 to be written to the index */ 947 948 wr32(&vsi->back->hw, 949 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 950 } else { 951 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 952 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 953 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 954 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 955 /* allow 00 to be written to the index */ 956 957 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 958 } 959 } 960 961 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 962 struct i40e_ring_container *rc) 963 { 964 return &q_vector->rx == rc; 965 } 966 967 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 968 { 969 unsigned int divisor; 970 971 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 972 case I40E_LINK_SPEED_40GB: 973 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 974 break; 975 case I40E_LINK_SPEED_25GB: 976 case I40E_LINK_SPEED_20GB: 977 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 978 break; 979 default: 980 case I40E_LINK_SPEED_10GB: 981 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 982 break; 983 case I40E_LINK_SPEED_1GB: 984 case I40E_LINK_SPEED_100MB: 985 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 986 break; 987 } 988 989 return divisor; 990 } 991 992 /** 993 * i40e_update_itr - update the dynamic ITR value based on statistics 994 * @q_vector: structure containing interrupt and ring information 995 * @rc: structure containing ring performance data 996 * 997 * Stores a new ITR value based on packets and byte 998 * counts during the last interrupt. The advantage of per interrupt 999 * computation is faster updates and more accurate ITR for the current 1000 * traffic pattern. Constants in this function were computed 1001 * based on theoretical maximum wire speed and thresholds were set based 1002 * on testing data as well as attempting to minimize response time 1003 * while increasing bulk throughput. 1004 **/ 1005 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1006 struct i40e_ring_container *rc) 1007 { 1008 unsigned int avg_wire_size, packets, bytes, itr; 1009 unsigned long next_update = jiffies; 1010 1011 /* If we don't have any rings just leave ourselves set for maximum 1012 * possible latency so we take ourselves out of the equation. 1013 */ 1014 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1015 return; 1016 1017 /* For Rx we want to push the delay up and default to low latency. 1018 * for Tx we want to pull the delay down and default to high latency. 1019 */ 1020 itr = i40e_container_is_rx(q_vector, rc) ? 1021 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1022 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1023 1024 /* If we didn't update within up to 1 - 2 jiffies we can assume 1025 * that either packets are coming in so slow there hasn't been 1026 * any work, or that there is so much work that NAPI is dealing 1027 * with interrupt moderation and we don't need to do anything. 1028 */ 1029 if (time_after(next_update, rc->next_update)) 1030 goto clear_counts; 1031 1032 /* If itr_countdown is set it means we programmed an ITR within 1033 * the last 4 interrupt cycles. This has a side effect of us 1034 * potentially firing an early interrupt. In order to work around 1035 * this we need to throw out any data received for a few 1036 * interrupts following the update. 1037 */ 1038 if (q_vector->itr_countdown) { 1039 itr = rc->target_itr; 1040 goto clear_counts; 1041 } 1042 1043 packets = rc->total_packets; 1044 bytes = rc->total_bytes; 1045 1046 if (i40e_container_is_rx(q_vector, rc)) { 1047 /* If Rx there are 1 to 4 packets and bytes are less than 1048 * 9000 assume insufficient data to use bulk rate limiting 1049 * approach unless Tx is already in bulk rate limiting. We 1050 * are likely latency driven. 1051 */ 1052 if (packets && packets < 4 && bytes < 9000 && 1053 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1054 itr = I40E_ITR_ADAPTIVE_LATENCY; 1055 goto adjust_by_size; 1056 } 1057 } else if (packets < 4) { 1058 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1059 * bulk mode and we are receiving 4 or fewer packets just 1060 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1061 * that the Rx can relax. 1062 */ 1063 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1064 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1065 I40E_ITR_ADAPTIVE_MAX_USECS) 1066 goto clear_counts; 1067 } else if (packets > 32) { 1068 /* If we have processed over 32 packets in a single interrupt 1069 * for Tx assume we need to switch over to "bulk" mode. 1070 */ 1071 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1072 } 1073 1074 /* We have no packets to actually measure against. This means 1075 * either one of the other queues on this vector is active or 1076 * we are a Tx queue doing TSO with too high of an interrupt rate. 1077 * 1078 * Between 4 and 56 we can assume that our current interrupt delay 1079 * is only slightly too low. As such we should increase it by a small 1080 * fixed amount. 1081 */ 1082 if (packets < 56) { 1083 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1084 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1085 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1086 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1087 } 1088 goto clear_counts; 1089 } 1090 1091 if (packets <= 256) { 1092 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1093 itr &= I40E_ITR_MASK; 1094 1095 /* Between 56 and 112 is our "goldilocks" zone where we are 1096 * working out "just right". Just report that our current 1097 * ITR is good for us. 1098 */ 1099 if (packets <= 112) 1100 goto clear_counts; 1101 1102 /* If packet count is 128 or greater we are likely looking 1103 * at a slight overrun of the delay we want. Try halving 1104 * our delay to see if that will cut the number of packets 1105 * in half per interrupt. 1106 */ 1107 itr /= 2; 1108 itr &= I40E_ITR_MASK; 1109 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1110 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1111 1112 goto clear_counts; 1113 } 1114 1115 /* The paths below assume we are dealing with a bulk ITR since 1116 * number of packets is greater than 256. We are just going to have 1117 * to compute a value and try to bring the count under control, 1118 * though for smaller packet sizes there isn't much we can do as 1119 * NAPI polling will likely be kicking in sooner rather than later. 1120 */ 1121 itr = I40E_ITR_ADAPTIVE_BULK; 1122 1123 adjust_by_size: 1124 /* If packet counts are 256 or greater we can assume we have a gross 1125 * overestimation of what the rate should be. Instead of trying to fine 1126 * tune it just use the formula below to try and dial in an exact value 1127 * give the current packet size of the frame. 1128 */ 1129 avg_wire_size = bytes / packets; 1130 1131 /* The following is a crude approximation of: 1132 * wmem_default / (size + overhead) = desired_pkts_per_int 1133 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1134 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1135 * 1136 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1137 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1138 * formula down to 1139 * 1140 * (170 * (size + 24)) / (size + 640) = ITR 1141 * 1142 * We first do some math on the packet size and then finally bitshift 1143 * by 8 after rounding up. We also have to account for PCIe link speed 1144 * difference as ITR scales based on this. 1145 */ 1146 if (avg_wire_size <= 60) { 1147 /* Start at 250k ints/sec */ 1148 avg_wire_size = 4096; 1149 } else if (avg_wire_size <= 380) { 1150 /* 250K ints/sec to 60K ints/sec */ 1151 avg_wire_size *= 40; 1152 avg_wire_size += 1696; 1153 } else if (avg_wire_size <= 1084) { 1154 /* 60K ints/sec to 36K ints/sec */ 1155 avg_wire_size *= 15; 1156 avg_wire_size += 11452; 1157 } else if (avg_wire_size <= 1980) { 1158 /* 36K ints/sec to 30K ints/sec */ 1159 avg_wire_size *= 5; 1160 avg_wire_size += 22420; 1161 } else { 1162 /* plateau at a limit of 30K ints/sec */ 1163 avg_wire_size = 32256; 1164 } 1165 1166 /* If we are in low latency mode halve our delay which doubles the 1167 * rate to somewhere between 100K to 16K ints/sec 1168 */ 1169 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1170 avg_wire_size /= 2; 1171 1172 /* Resultant value is 256 times larger than it needs to be. This 1173 * gives us room to adjust the value as needed to either increase 1174 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1175 * 1176 * Use addition as we have already recorded the new latency flag 1177 * for the ITR value. 1178 */ 1179 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1180 I40E_ITR_ADAPTIVE_MIN_INC; 1181 1182 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1183 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1184 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1185 } 1186 1187 clear_counts: 1188 /* write back value */ 1189 rc->target_itr = itr; 1190 1191 /* next update should occur within next jiffy */ 1192 rc->next_update = next_update + 1; 1193 1194 rc->total_bytes = 0; 1195 rc->total_packets = 0; 1196 } 1197 1198 /** 1199 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1200 * @rx_ring: rx descriptor ring to store buffers on 1201 * @old_buff: donor buffer to have page reused 1202 * 1203 * Synchronizes page for reuse by the adapter 1204 **/ 1205 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1206 struct i40e_rx_buffer *old_buff) 1207 { 1208 struct i40e_rx_buffer *new_buff; 1209 u16 nta = rx_ring->next_to_alloc; 1210 1211 new_buff = &rx_ring->rx_bi[nta]; 1212 1213 /* update, and store next to alloc */ 1214 nta++; 1215 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1216 1217 /* transfer page from old buffer to new buffer */ 1218 new_buff->dma = old_buff->dma; 1219 new_buff->page = old_buff->page; 1220 new_buff->page_offset = old_buff->page_offset; 1221 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1222 1223 rx_ring->rx_stats.page_reuse_count++; 1224 1225 /* clear contents of buffer_info */ 1226 old_buff->page = NULL; 1227 } 1228 1229 /** 1230 * i40e_rx_is_programming_status - check for programming status descriptor 1231 * @qw: qword representing status_error_len in CPU ordering 1232 * 1233 * The value of in the descriptor length field indicate if this 1234 * is a programming status descriptor for flow director or FCoE 1235 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise 1236 * it is a packet descriptor. 1237 **/ 1238 static inline bool i40e_rx_is_programming_status(u64 qw) 1239 { 1240 /* The Rx filter programming status and SPH bit occupy the same 1241 * spot in the descriptor. Since we don't support packet split we 1242 * can just reuse the bit as an indication that this is a 1243 * programming status descriptor. 1244 */ 1245 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK; 1246 } 1247 1248 /** 1249 * i40e_clean_programming_status - try clean the programming status descriptor 1250 * @rx_ring: the rx ring that has this descriptor 1251 * @rx_desc: the rx descriptor written back by HW 1252 * @qw: qword representing status_error_len in CPU ordering 1253 * 1254 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1255 * status being successful or not and take actions accordingly. FCoE should 1256 * handle its context/filter programming/invalidation status and take actions. 1257 * 1258 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1259 **/ 1260 struct i40e_rx_buffer *i40e_clean_programming_status( 1261 struct i40e_ring *rx_ring, 1262 union i40e_rx_desc *rx_desc, 1263 u64 qw) 1264 { 1265 struct i40e_rx_buffer *rx_buffer; 1266 u32 ntc; 1267 u8 id; 1268 1269 if (!i40e_rx_is_programming_status(qw)) 1270 return NULL; 1271 1272 ntc = rx_ring->next_to_clean; 1273 1274 /* fetch, update, and store next to clean */ 1275 rx_buffer = &rx_ring->rx_bi[ntc++]; 1276 ntc = (ntc < rx_ring->count) ? ntc : 0; 1277 rx_ring->next_to_clean = ntc; 1278 1279 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1280 1281 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1282 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1283 1284 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1285 i40e_fd_handle_status(rx_ring, rx_desc, id); 1286 1287 return rx_buffer; 1288 } 1289 1290 /** 1291 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1292 * @tx_ring: the tx ring to set up 1293 * 1294 * Return 0 on success, negative on error 1295 **/ 1296 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1297 { 1298 struct device *dev = tx_ring->dev; 1299 int bi_size; 1300 1301 if (!dev) 1302 return -ENOMEM; 1303 1304 /* warn if we are about to overwrite the pointer */ 1305 WARN_ON(tx_ring->tx_bi); 1306 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1307 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1308 if (!tx_ring->tx_bi) 1309 goto err; 1310 1311 u64_stats_init(&tx_ring->syncp); 1312 1313 /* round up to nearest 4K */ 1314 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1315 /* add u32 for head writeback, align after this takes care of 1316 * guaranteeing this is at least one cache line in size 1317 */ 1318 tx_ring->size += sizeof(u32); 1319 tx_ring->size = ALIGN(tx_ring->size, 4096); 1320 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1321 &tx_ring->dma, GFP_KERNEL); 1322 if (!tx_ring->desc) { 1323 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1324 tx_ring->size); 1325 goto err; 1326 } 1327 1328 tx_ring->next_to_use = 0; 1329 tx_ring->next_to_clean = 0; 1330 tx_ring->tx_stats.prev_pkt_ctr = -1; 1331 return 0; 1332 1333 err: 1334 kfree(tx_ring->tx_bi); 1335 tx_ring->tx_bi = NULL; 1336 return -ENOMEM; 1337 } 1338 1339 /** 1340 * i40e_clean_rx_ring - Free Rx buffers 1341 * @rx_ring: ring to be cleaned 1342 **/ 1343 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1344 { 1345 unsigned long bi_size; 1346 u16 i; 1347 1348 /* ring already cleared, nothing to do */ 1349 if (!rx_ring->rx_bi) 1350 return; 1351 1352 if (rx_ring->skb) { 1353 dev_kfree_skb(rx_ring->skb); 1354 rx_ring->skb = NULL; 1355 } 1356 1357 if (rx_ring->xsk_umem) { 1358 i40e_xsk_clean_rx_ring(rx_ring); 1359 goto skip_free; 1360 } 1361 1362 /* Free all the Rx ring sk_buffs */ 1363 for (i = 0; i < rx_ring->count; i++) { 1364 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 1365 1366 if (!rx_bi->page) 1367 continue; 1368 1369 /* Invalidate cache lines that may have been written to by 1370 * device so that we avoid corrupting memory. 1371 */ 1372 dma_sync_single_range_for_cpu(rx_ring->dev, 1373 rx_bi->dma, 1374 rx_bi->page_offset, 1375 rx_ring->rx_buf_len, 1376 DMA_FROM_DEVICE); 1377 1378 /* free resources associated with mapping */ 1379 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1380 i40e_rx_pg_size(rx_ring), 1381 DMA_FROM_DEVICE, 1382 I40E_RX_DMA_ATTR); 1383 1384 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1385 1386 rx_bi->page = NULL; 1387 rx_bi->page_offset = 0; 1388 } 1389 1390 skip_free: 1391 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1392 memset(rx_ring->rx_bi, 0, bi_size); 1393 1394 /* Zero out the descriptor ring */ 1395 memset(rx_ring->desc, 0, rx_ring->size); 1396 1397 rx_ring->next_to_alloc = 0; 1398 rx_ring->next_to_clean = 0; 1399 rx_ring->next_to_use = 0; 1400 } 1401 1402 /** 1403 * i40e_free_rx_resources - Free Rx resources 1404 * @rx_ring: ring to clean the resources from 1405 * 1406 * Free all receive software resources 1407 **/ 1408 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1409 { 1410 i40e_clean_rx_ring(rx_ring); 1411 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1412 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1413 rx_ring->xdp_prog = NULL; 1414 kfree(rx_ring->rx_bi); 1415 rx_ring->rx_bi = NULL; 1416 1417 if (rx_ring->desc) { 1418 dma_free_coherent(rx_ring->dev, rx_ring->size, 1419 rx_ring->desc, rx_ring->dma); 1420 rx_ring->desc = NULL; 1421 } 1422 } 1423 1424 /** 1425 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1426 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1427 * 1428 * Returns 0 on success, negative on failure 1429 **/ 1430 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1431 { 1432 struct device *dev = rx_ring->dev; 1433 int err = -ENOMEM; 1434 int bi_size; 1435 1436 /* warn if we are about to overwrite the pointer */ 1437 WARN_ON(rx_ring->rx_bi); 1438 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1439 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1440 if (!rx_ring->rx_bi) 1441 goto err; 1442 1443 u64_stats_init(&rx_ring->syncp); 1444 1445 /* Round up to nearest 4K */ 1446 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1447 rx_ring->size = ALIGN(rx_ring->size, 4096); 1448 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1449 &rx_ring->dma, GFP_KERNEL); 1450 1451 if (!rx_ring->desc) { 1452 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1453 rx_ring->size); 1454 goto err; 1455 } 1456 1457 rx_ring->next_to_alloc = 0; 1458 rx_ring->next_to_clean = 0; 1459 rx_ring->next_to_use = 0; 1460 1461 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1462 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1463 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1464 rx_ring->queue_index); 1465 if (err < 0) 1466 goto err; 1467 } 1468 1469 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1470 1471 return 0; 1472 err: 1473 kfree(rx_ring->rx_bi); 1474 rx_ring->rx_bi = NULL; 1475 return err; 1476 } 1477 1478 /** 1479 * i40e_release_rx_desc - Store the new tail and head values 1480 * @rx_ring: ring to bump 1481 * @val: new head index 1482 **/ 1483 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1484 { 1485 rx_ring->next_to_use = val; 1486 1487 /* update next to alloc since we have filled the ring */ 1488 rx_ring->next_to_alloc = val; 1489 1490 /* Force memory writes to complete before letting h/w 1491 * know there are new descriptors to fetch. (Only 1492 * applicable for weak-ordered memory model archs, 1493 * such as IA-64). 1494 */ 1495 wmb(); 1496 writel(val, rx_ring->tail); 1497 } 1498 1499 /** 1500 * i40e_rx_offset - Return expected offset into page to access data 1501 * @rx_ring: Ring we are requesting offset of 1502 * 1503 * Returns the offset value for ring into the data buffer. 1504 */ 1505 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1506 { 1507 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1508 } 1509 1510 /** 1511 * i40e_alloc_mapped_page - recycle or make a new page 1512 * @rx_ring: ring to use 1513 * @bi: rx_buffer struct to modify 1514 * 1515 * Returns true if the page was successfully allocated or 1516 * reused. 1517 **/ 1518 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1519 struct i40e_rx_buffer *bi) 1520 { 1521 struct page *page = bi->page; 1522 dma_addr_t dma; 1523 1524 /* since we are recycling buffers we should seldom need to alloc */ 1525 if (likely(page)) { 1526 rx_ring->rx_stats.page_reuse_count++; 1527 return true; 1528 } 1529 1530 /* alloc new page for storage */ 1531 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1532 if (unlikely(!page)) { 1533 rx_ring->rx_stats.alloc_page_failed++; 1534 return false; 1535 } 1536 1537 /* map page for use */ 1538 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1539 i40e_rx_pg_size(rx_ring), 1540 DMA_FROM_DEVICE, 1541 I40E_RX_DMA_ATTR); 1542 1543 /* if mapping failed free memory back to system since 1544 * there isn't much point in holding memory we can't use 1545 */ 1546 if (dma_mapping_error(rx_ring->dev, dma)) { 1547 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1548 rx_ring->rx_stats.alloc_page_failed++; 1549 return false; 1550 } 1551 1552 bi->dma = dma; 1553 bi->page = page; 1554 bi->page_offset = i40e_rx_offset(rx_ring); 1555 page_ref_add(page, USHRT_MAX - 1); 1556 bi->pagecnt_bias = USHRT_MAX; 1557 1558 return true; 1559 } 1560 1561 /** 1562 * i40e_alloc_rx_buffers - Replace used receive buffers 1563 * @rx_ring: ring to place buffers on 1564 * @cleaned_count: number of buffers to replace 1565 * 1566 * Returns false if all allocations were successful, true if any fail 1567 **/ 1568 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1569 { 1570 u16 ntu = rx_ring->next_to_use; 1571 union i40e_rx_desc *rx_desc; 1572 struct i40e_rx_buffer *bi; 1573 1574 /* do nothing if no valid netdev defined */ 1575 if (!rx_ring->netdev || !cleaned_count) 1576 return false; 1577 1578 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1579 bi = &rx_ring->rx_bi[ntu]; 1580 1581 do { 1582 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1583 goto no_buffers; 1584 1585 /* sync the buffer for use by the device */ 1586 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1587 bi->page_offset, 1588 rx_ring->rx_buf_len, 1589 DMA_FROM_DEVICE); 1590 1591 /* Refresh the desc even if buffer_addrs didn't change 1592 * because each write-back erases this info. 1593 */ 1594 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1595 1596 rx_desc++; 1597 bi++; 1598 ntu++; 1599 if (unlikely(ntu == rx_ring->count)) { 1600 rx_desc = I40E_RX_DESC(rx_ring, 0); 1601 bi = rx_ring->rx_bi; 1602 ntu = 0; 1603 } 1604 1605 /* clear the status bits for the next_to_use descriptor */ 1606 rx_desc->wb.qword1.status_error_len = 0; 1607 1608 cleaned_count--; 1609 } while (cleaned_count); 1610 1611 if (rx_ring->next_to_use != ntu) 1612 i40e_release_rx_desc(rx_ring, ntu); 1613 1614 return false; 1615 1616 no_buffers: 1617 if (rx_ring->next_to_use != ntu) 1618 i40e_release_rx_desc(rx_ring, ntu); 1619 1620 /* make sure to come back via polling to try again after 1621 * allocation failure 1622 */ 1623 return true; 1624 } 1625 1626 /** 1627 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1628 * @vsi: the VSI we care about 1629 * @skb: skb currently being received and modified 1630 * @rx_desc: the receive descriptor 1631 **/ 1632 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1633 struct sk_buff *skb, 1634 union i40e_rx_desc *rx_desc) 1635 { 1636 struct i40e_rx_ptype_decoded decoded; 1637 u32 rx_error, rx_status; 1638 bool ipv4, ipv6; 1639 u8 ptype; 1640 u64 qword; 1641 1642 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1643 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1644 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1645 I40E_RXD_QW1_ERROR_SHIFT; 1646 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1647 I40E_RXD_QW1_STATUS_SHIFT; 1648 decoded = decode_rx_desc_ptype(ptype); 1649 1650 skb->ip_summed = CHECKSUM_NONE; 1651 1652 skb_checksum_none_assert(skb); 1653 1654 /* Rx csum enabled and ip headers found? */ 1655 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1656 return; 1657 1658 /* did the hardware decode the packet and checksum? */ 1659 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1660 return; 1661 1662 /* both known and outer_ip must be set for the below code to work */ 1663 if (!(decoded.known && decoded.outer_ip)) 1664 return; 1665 1666 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1667 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1668 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1669 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1670 1671 if (ipv4 && 1672 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1673 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1674 goto checksum_fail; 1675 1676 /* likely incorrect csum if alternate IP extension headers found */ 1677 if (ipv6 && 1678 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1679 /* don't increment checksum err here, non-fatal err */ 1680 return; 1681 1682 /* there was some L4 error, count error and punt packet to the stack */ 1683 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1684 goto checksum_fail; 1685 1686 /* handle packets that were not able to be checksummed due 1687 * to arrival speed, in this case the stack can compute 1688 * the csum. 1689 */ 1690 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1691 return; 1692 1693 /* If there is an outer header present that might contain a checksum 1694 * we need to bump the checksum level by 1 to reflect the fact that 1695 * we are indicating we validated the inner checksum. 1696 */ 1697 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1698 skb->csum_level = 1; 1699 1700 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1701 switch (decoded.inner_prot) { 1702 case I40E_RX_PTYPE_INNER_PROT_TCP: 1703 case I40E_RX_PTYPE_INNER_PROT_UDP: 1704 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1705 skb->ip_summed = CHECKSUM_UNNECESSARY; 1706 /* fall though */ 1707 default: 1708 break; 1709 } 1710 1711 return; 1712 1713 checksum_fail: 1714 vsi->back->hw_csum_rx_error++; 1715 } 1716 1717 /** 1718 * i40e_ptype_to_htype - get a hash type 1719 * @ptype: the ptype value from the descriptor 1720 * 1721 * Returns a hash type to be used by skb_set_hash 1722 **/ 1723 static inline int i40e_ptype_to_htype(u8 ptype) 1724 { 1725 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1726 1727 if (!decoded.known) 1728 return PKT_HASH_TYPE_NONE; 1729 1730 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1731 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1732 return PKT_HASH_TYPE_L4; 1733 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1734 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1735 return PKT_HASH_TYPE_L3; 1736 else 1737 return PKT_HASH_TYPE_L2; 1738 } 1739 1740 /** 1741 * i40e_rx_hash - set the hash value in the skb 1742 * @ring: descriptor ring 1743 * @rx_desc: specific descriptor 1744 * @skb: skb currently being received and modified 1745 * @rx_ptype: Rx packet type 1746 **/ 1747 static inline void i40e_rx_hash(struct i40e_ring *ring, 1748 union i40e_rx_desc *rx_desc, 1749 struct sk_buff *skb, 1750 u8 rx_ptype) 1751 { 1752 u32 hash; 1753 const __le64 rss_mask = 1754 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1755 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1756 1757 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1758 return; 1759 1760 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1761 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1762 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1763 } 1764 } 1765 1766 /** 1767 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1768 * @rx_ring: rx descriptor ring packet is being transacted on 1769 * @rx_desc: pointer to the EOP Rx descriptor 1770 * @skb: pointer to current skb being populated 1771 * @rx_ptype: the packet type decoded by hardware 1772 * 1773 * This function checks the ring, descriptor, and packet information in 1774 * order to populate the hash, checksum, VLAN, protocol, and 1775 * other fields within the skb. 1776 **/ 1777 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1778 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1779 { 1780 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1781 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1782 I40E_RXD_QW1_STATUS_SHIFT; 1783 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1784 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1785 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1786 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1787 I40E_RXD_QW1_PTYPE_SHIFT; 1788 1789 if (unlikely(tsynvalid)) 1790 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1791 1792 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1793 1794 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1795 1796 skb_record_rx_queue(skb, rx_ring->queue_index); 1797 1798 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1799 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1800 1801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1802 le16_to_cpu(vlan_tag)); 1803 } 1804 1805 /* modifies the skb - consumes the enet header */ 1806 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1807 } 1808 1809 /** 1810 * i40e_cleanup_headers - Correct empty headers 1811 * @rx_ring: rx descriptor ring packet is being transacted on 1812 * @skb: pointer to current skb being fixed 1813 * @rx_desc: pointer to the EOP Rx descriptor 1814 * 1815 * Also address the case where we are pulling data in on pages only 1816 * and as such no data is present in the skb header. 1817 * 1818 * In addition if skb is not at least 60 bytes we need to pad it so that 1819 * it is large enough to qualify as a valid Ethernet frame. 1820 * 1821 * Returns true if an error was encountered and skb was freed. 1822 **/ 1823 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1824 union i40e_rx_desc *rx_desc) 1825 1826 { 1827 /* XDP packets use error pointer so abort at this point */ 1828 if (IS_ERR(skb)) 1829 return true; 1830 1831 /* ERR_MASK will only have valid bits if EOP set, and 1832 * what we are doing here is actually checking 1833 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1834 * the error field 1835 */ 1836 if (unlikely(i40e_test_staterr(rx_desc, 1837 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1838 dev_kfree_skb_any(skb); 1839 return true; 1840 } 1841 1842 /* if eth_skb_pad returns an error the skb was freed */ 1843 if (eth_skb_pad(skb)) 1844 return true; 1845 1846 return false; 1847 } 1848 1849 /** 1850 * i40e_page_is_reusable - check if any reuse is possible 1851 * @page: page struct to check 1852 * 1853 * A page is not reusable if it was allocated under low memory 1854 * conditions, or it's not in the same NUMA node as this CPU. 1855 */ 1856 static inline bool i40e_page_is_reusable(struct page *page) 1857 { 1858 return (page_to_nid(page) == numa_mem_id()) && 1859 !page_is_pfmemalloc(page); 1860 } 1861 1862 /** 1863 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1864 * the adapter for another receive 1865 * 1866 * @rx_buffer: buffer containing the page 1867 * 1868 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1869 * an unused region in the page. 1870 * 1871 * For small pages, @truesize will be a constant value, half the size 1872 * of the memory at page. We'll attempt to alternate between high and 1873 * low halves of the page, with one half ready for use by the hardware 1874 * and the other half being consumed by the stack. We use the page 1875 * ref count to determine whether the stack has finished consuming the 1876 * portion of this page that was passed up with a previous packet. If 1877 * the page ref count is >1, we'll assume the "other" half page is 1878 * still busy, and this page cannot be reused. 1879 * 1880 * For larger pages, @truesize will be the actual space used by the 1881 * received packet (adjusted upward to an even multiple of the cache 1882 * line size). This will advance through the page by the amount 1883 * actually consumed by the received packets while there is still 1884 * space for a buffer. Each region of larger pages will be used at 1885 * most once, after which the page will not be reused. 1886 * 1887 * In either case, if the page is reusable its refcount is increased. 1888 **/ 1889 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1890 { 1891 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1892 struct page *page = rx_buffer->page; 1893 1894 /* Is any reuse possible? */ 1895 if (unlikely(!i40e_page_is_reusable(page))) 1896 return false; 1897 1898 #if (PAGE_SIZE < 8192) 1899 /* if we are only owner of page we can reuse it */ 1900 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1901 return false; 1902 #else 1903 #define I40E_LAST_OFFSET \ 1904 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1905 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1906 return false; 1907 #endif 1908 1909 /* If we have drained the page fragment pool we need to update 1910 * the pagecnt_bias and page count so that we fully restock the 1911 * number of references the driver holds. 1912 */ 1913 if (unlikely(pagecnt_bias == 1)) { 1914 page_ref_add(page, USHRT_MAX - 1); 1915 rx_buffer->pagecnt_bias = USHRT_MAX; 1916 } 1917 1918 return true; 1919 } 1920 1921 /** 1922 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1923 * @rx_ring: rx descriptor ring to transact packets on 1924 * @rx_buffer: buffer containing page to add 1925 * @skb: sk_buff to place the data into 1926 * @size: packet length from rx_desc 1927 * 1928 * This function will add the data contained in rx_buffer->page to the skb. 1929 * It will just attach the page as a frag to the skb. 1930 * 1931 * The function will then update the page offset. 1932 **/ 1933 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1934 struct i40e_rx_buffer *rx_buffer, 1935 struct sk_buff *skb, 1936 unsigned int size) 1937 { 1938 #if (PAGE_SIZE < 8192) 1939 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1940 #else 1941 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1942 #endif 1943 1944 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1945 rx_buffer->page_offset, size, truesize); 1946 1947 /* page is being used so we must update the page offset */ 1948 #if (PAGE_SIZE < 8192) 1949 rx_buffer->page_offset ^= truesize; 1950 #else 1951 rx_buffer->page_offset += truesize; 1952 #endif 1953 } 1954 1955 /** 1956 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1957 * @rx_ring: rx descriptor ring to transact packets on 1958 * @size: size of buffer to add to skb 1959 * 1960 * This function will pull an Rx buffer from the ring and synchronize it 1961 * for use by the CPU. 1962 */ 1963 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1964 const unsigned int size) 1965 { 1966 struct i40e_rx_buffer *rx_buffer; 1967 1968 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1969 prefetchw(rx_buffer->page); 1970 1971 /* we are reusing so sync this buffer for CPU use */ 1972 dma_sync_single_range_for_cpu(rx_ring->dev, 1973 rx_buffer->dma, 1974 rx_buffer->page_offset, 1975 size, 1976 DMA_FROM_DEVICE); 1977 1978 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1979 rx_buffer->pagecnt_bias--; 1980 1981 return rx_buffer; 1982 } 1983 1984 /** 1985 * i40e_construct_skb - Allocate skb and populate it 1986 * @rx_ring: rx descriptor ring to transact packets on 1987 * @rx_buffer: rx buffer to pull data from 1988 * @xdp: xdp_buff pointing to the data 1989 * 1990 * This function allocates an skb. It then populates it with the page 1991 * data from the current receive descriptor, taking care to set up the 1992 * skb correctly. 1993 */ 1994 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 1995 struct i40e_rx_buffer *rx_buffer, 1996 struct xdp_buff *xdp) 1997 { 1998 unsigned int size = xdp->data_end - xdp->data; 1999 #if (PAGE_SIZE < 8192) 2000 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2001 #else 2002 unsigned int truesize = SKB_DATA_ALIGN(size); 2003 #endif 2004 unsigned int headlen; 2005 struct sk_buff *skb; 2006 2007 /* prefetch first cache line of first page */ 2008 prefetch(xdp->data); 2009 #if L1_CACHE_BYTES < 128 2010 prefetch(xdp->data + L1_CACHE_BYTES); 2011 #endif 2012 /* Note, we get here by enabling legacy-rx via: 2013 * 2014 * ethtool --set-priv-flags <dev> legacy-rx on 2015 * 2016 * In this mode, we currently get 0 extra XDP headroom as 2017 * opposed to having legacy-rx off, where we process XDP 2018 * packets going to stack via i40e_build_skb(). The latter 2019 * provides us currently with 192 bytes of headroom. 2020 * 2021 * For i40e_construct_skb() mode it means that the 2022 * xdp->data_meta will always point to xdp->data, since 2023 * the helper cannot expand the head. Should this ever 2024 * change in future for legacy-rx mode on, then lets also 2025 * add xdp->data_meta handling here. 2026 */ 2027 2028 /* allocate a skb to store the frags */ 2029 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2030 I40E_RX_HDR_SIZE, 2031 GFP_ATOMIC | __GFP_NOWARN); 2032 if (unlikely(!skb)) 2033 return NULL; 2034 2035 /* Determine available headroom for copy */ 2036 headlen = size; 2037 if (headlen > I40E_RX_HDR_SIZE) 2038 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE); 2039 2040 /* align pull length to size of long to optimize memcpy performance */ 2041 memcpy(__skb_put(skb, headlen), xdp->data, 2042 ALIGN(headlen, sizeof(long))); 2043 2044 /* update all of the pointers */ 2045 size -= headlen; 2046 if (size) { 2047 skb_add_rx_frag(skb, 0, rx_buffer->page, 2048 rx_buffer->page_offset + headlen, 2049 size, truesize); 2050 2051 /* buffer is used by skb, update page_offset */ 2052 #if (PAGE_SIZE < 8192) 2053 rx_buffer->page_offset ^= truesize; 2054 #else 2055 rx_buffer->page_offset += truesize; 2056 #endif 2057 } else { 2058 /* buffer is unused, reset bias back to rx_buffer */ 2059 rx_buffer->pagecnt_bias++; 2060 } 2061 2062 return skb; 2063 } 2064 2065 /** 2066 * i40e_build_skb - Build skb around an existing buffer 2067 * @rx_ring: Rx descriptor ring to transact packets on 2068 * @rx_buffer: Rx buffer to pull data from 2069 * @xdp: xdp_buff pointing to the data 2070 * 2071 * This function builds an skb around an existing Rx buffer, taking care 2072 * to set up the skb correctly and avoid any memcpy overhead. 2073 */ 2074 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2075 struct i40e_rx_buffer *rx_buffer, 2076 struct xdp_buff *xdp) 2077 { 2078 unsigned int metasize = xdp->data - xdp->data_meta; 2079 #if (PAGE_SIZE < 8192) 2080 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2081 #else 2082 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2083 SKB_DATA_ALIGN(xdp->data_end - 2084 xdp->data_hard_start); 2085 #endif 2086 struct sk_buff *skb; 2087 2088 /* Prefetch first cache line of first page. If xdp->data_meta 2089 * is unused, this points exactly as xdp->data, otherwise we 2090 * likely have a consumer accessing first few bytes of meta 2091 * data, and then actual data. 2092 */ 2093 prefetch(xdp->data_meta); 2094 #if L1_CACHE_BYTES < 128 2095 prefetch(xdp->data_meta + L1_CACHE_BYTES); 2096 #endif 2097 /* build an skb around the page buffer */ 2098 skb = build_skb(xdp->data_hard_start, truesize); 2099 if (unlikely(!skb)) 2100 return NULL; 2101 2102 /* update pointers within the skb to store the data */ 2103 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2104 __skb_put(skb, xdp->data_end - xdp->data); 2105 if (metasize) 2106 skb_metadata_set(skb, metasize); 2107 2108 /* buffer is used by skb, update page_offset */ 2109 #if (PAGE_SIZE < 8192) 2110 rx_buffer->page_offset ^= truesize; 2111 #else 2112 rx_buffer->page_offset += truesize; 2113 #endif 2114 2115 return skb; 2116 } 2117 2118 /** 2119 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2120 * @rx_ring: rx descriptor ring to transact packets on 2121 * @rx_buffer: rx buffer to pull data from 2122 * 2123 * This function will clean up the contents of the rx_buffer. It will 2124 * either recycle the buffer or unmap it and free the associated resources. 2125 */ 2126 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2127 struct i40e_rx_buffer *rx_buffer) 2128 { 2129 if (i40e_can_reuse_rx_page(rx_buffer)) { 2130 /* hand second half of page back to the ring */ 2131 i40e_reuse_rx_page(rx_ring, rx_buffer); 2132 } else { 2133 /* we are not reusing the buffer so unmap it */ 2134 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2135 i40e_rx_pg_size(rx_ring), 2136 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2137 __page_frag_cache_drain(rx_buffer->page, 2138 rx_buffer->pagecnt_bias); 2139 /* clear contents of buffer_info */ 2140 rx_buffer->page = NULL; 2141 } 2142 } 2143 2144 /** 2145 * i40e_is_non_eop - process handling of non-EOP buffers 2146 * @rx_ring: Rx ring being processed 2147 * @rx_desc: Rx descriptor for current buffer 2148 * @skb: Current socket buffer containing buffer in progress 2149 * 2150 * This function updates next to clean. If the buffer is an EOP buffer 2151 * this function exits returning false, otherwise it will place the 2152 * sk_buff in the next buffer to be chained and return true indicating 2153 * that this is in fact a non-EOP buffer. 2154 **/ 2155 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2156 union i40e_rx_desc *rx_desc, 2157 struct sk_buff *skb) 2158 { 2159 u32 ntc = rx_ring->next_to_clean + 1; 2160 2161 /* fetch, update, and store next to clean */ 2162 ntc = (ntc < rx_ring->count) ? ntc : 0; 2163 rx_ring->next_to_clean = ntc; 2164 2165 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2166 2167 /* if we are the last buffer then there is nothing else to do */ 2168 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2169 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2170 return false; 2171 2172 rx_ring->rx_stats.non_eop_descs++; 2173 2174 return true; 2175 } 2176 2177 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2178 struct i40e_ring *xdp_ring); 2179 2180 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2181 { 2182 struct xdp_frame *xdpf = convert_to_xdp_frame(xdp); 2183 2184 if (unlikely(!xdpf)) 2185 return I40E_XDP_CONSUMED; 2186 2187 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2188 } 2189 2190 /** 2191 * i40e_run_xdp - run an XDP program 2192 * @rx_ring: Rx ring being processed 2193 * @xdp: XDP buffer containing the frame 2194 **/ 2195 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2196 struct xdp_buff *xdp) 2197 { 2198 int err, result = I40E_XDP_PASS; 2199 struct i40e_ring *xdp_ring; 2200 struct bpf_prog *xdp_prog; 2201 u32 act; 2202 2203 rcu_read_lock(); 2204 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2205 2206 if (!xdp_prog) 2207 goto xdp_out; 2208 2209 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2210 2211 act = bpf_prog_run_xdp(xdp_prog, xdp); 2212 switch (act) { 2213 case XDP_PASS: 2214 break; 2215 case XDP_TX: 2216 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2217 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2218 break; 2219 case XDP_REDIRECT: 2220 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2221 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 2222 break; 2223 default: 2224 bpf_warn_invalid_xdp_action(act); 2225 /* fall through */ 2226 case XDP_ABORTED: 2227 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2228 /* fall through -- handle aborts by dropping packet */ 2229 case XDP_DROP: 2230 result = I40E_XDP_CONSUMED; 2231 break; 2232 } 2233 xdp_out: 2234 rcu_read_unlock(); 2235 return ERR_PTR(-result); 2236 } 2237 2238 /** 2239 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2240 * @rx_ring: Rx ring 2241 * @rx_buffer: Rx buffer to adjust 2242 * @size: Size of adjustment 2243 **/ 2244 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2245 struct i40e_rx_buffer *rx_buffer, 2246 unsigned int size) 2247 { 2248 #if (PAGE_SIZE < 8192) 2249 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2250 2251 rx_buffer->page_offset ^= truesize; 2252 #else 2253 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size); 2254 2255 rx_buffer->page_offset += truesize; 2256 #endif 2257 } 2258 2259 /** 2260 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2261 * @xdp_ring: XDP Tx ring 2262 * 2263 * This function updates the XDP Tx ring tail register. 2264 **/ 2265 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2266 { 2267 /* Force memory writes to complete before letting h/w 2268 * know there are new descriptors to fetch. 2269 */ 2270 wmb(); 2271 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2272 } 2273 2274 /** 2275 * i40e_update_rx_stats - Update Rx ring statistics 2276 * @rx_ring: rx descriptor ring 2277 * @total_rx_bytes: number of bytes received 2278 * @total_rx_packets: number of packets received 2279 * 2280 * This function updates the Rx ring statistics. 2281 **/ 2282 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2283 unsigned int total_rx_bytes, 2284 unsigned int total_rx_packets) 2285 { 2286 u64_stats_update_begin(&rx_ring->syncp); 2287 rx_ring->stats.packets += total_rx_packets; 2288 rx_ring->stats.bytes += total_rx_bytes; 2289 u64_stats_update_end(&rx_ring->syncp); 2290 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2291 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2292 } 2293 2294 /** 2295 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2296 * @rx_ring: Rx ring 2297 * @xdp_res: Result of the receive batch 2298 * 2299 * This function bumps XDP Tx tail and/or flush redirect map, and 2300 * should be called when a batch of packets has been processed in the 2301 * napi loop. 2302 **/ 2303 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2304 { 2305 if (xdp_res & I40E_XDP_REDIR) 2306 xdp_do_flush_map(); 2307 2308 if (xdp_res & I40E_XDP_TX) { 2309 struct i40e_ring *xdp_ring = 2310 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2311 2312 i40e_xdp_ring_update_tail(xdp_ring); 2313 } 2314 } 2315 2316 /** 2317 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2318 * @rx_ring: rx descriptor ring to transact packets on 2319 * @budget: Total limit on number of packets to process 2320 * 2321 * This function provides a "bounce buffer" approach to Rx interrupt 2322 * processing. The advantage to this is that on systems that have 2323 * expensive overhead for IOMMU access this provides a means of avoiding 2324 * it by maintaining the mapping of the page to the system. 2325 * 2326 * Returns amount of work completed 2327 **/ 2328 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2329 { 2330 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2331 struct sk_buff *skb = rx_ring->skb; 2332 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2333 unsigned int xdp_xmit = 0; 2334 bool failure = false; 2335 struct xdp_buff xdp; 2336 2337 xdp.rxq = &rx_ring->xdp_rxq; 2338 2339 while (likely(total_rx_packets < (unsigned int)budget)) { 2340 struct i40e_rx_buffer *rx_buffer; 2341 union i40e_rx_desc *rx_desc; 2342 unsigned int size; 2343 u64 qword; 2344 2345 /* return some buffers to hardware, one at a time is too slow */ 2346 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2347 failure = failure || 2348 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2349 cleaned_count = 0; 2350 } 2351 2352 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2353 2354 /* status_error_len will always be zero for unused descriptors 2355 * because it's cleared in cleanup, and overlaps with hdr_addr 2356 * which is always zero because packet split isn't used, if the 2357 * hardware wrote DD then the length will be non-zero 2358 */ 2359 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2360 2361 /* This memory barrier is needed to keep us from reading 2362 * any other fields out of the rx_desc until we have 2363 * verified the descriptor has been written back. 2364 */ 2365 dma_rmb(); 2366 2367 rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc, 2368 qword); 2369 if (unlikely(rx_buffer)) { 2370 i40e_reuse_rx_page(rx_ring, rx_buffer); 2371 cleaned_count++; 2372 continue; 2373 } 2374 2375 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2376 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2377 if (!size) 2378 break; 2379 2380 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2381 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2382 2383 /* retrieve a buffer from the ring */ 2384 if (!skb) { 2385 xdp.data = page_address(rx_buffer->page) + 2386 rx_buffer->page_offset; 2387 xdp.data_meta = xdp.data; 2388 xdp.data_hard_start = xdp.data - 2389 i40e_rx_offset(rx_ring); 2390 xdp.data_end = xdp.data + size; 2391 2392 skb = i40e_run_xdp(rx_ring, &xdp); 2393 } 2394 2395 if (IS_ERR(skb)) { 2396 unsigned int xdp_res = -PTR_ERR(skb); 2397 2398 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2399 xdp_xmit |= xdp_res; 2400 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2401 } else { 2402 rx_buffer->pagecnt_bias++; 2403 } 2404 total_rx_bytes += size; 2405 total_rx_packets++; 2406 } else if (skb) { 2407 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2408 } else if (ring_uses_build_skb(rx_ring)) { 2409 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2410 } else { 2411 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2412 } 2413 2414 /* exit if we failed to retrieve a buffer */ 2415 if (!skb) { 2416 rx_ring->rx_stats.alloc_buff_failed++; 2417 rx_buffer->pagecnt_bias++; 2418 break; 2419 } 2420 2421 i40e_put_rx_buffer(rx_ring, rx_buffer); 2422 cleaned_count++; 2423 2424 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2425 continue; 2426 2427 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2428 skb = NULL; 2429 continue; 2430 } 2431 2432 /* probably a little skewed due to removing CRC */ 2433 total_rx_bytes += skb->len; 2434 2435 /* populate checksum, VLAN, and protocol */ 2436 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2437 2438 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2439 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2440 skb = NULL; 2441 2442 /* update budget accounting */ 2443 total_rx_packets++; 2444 } 2445 2446 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2447 rx_ring->skb = skb; 2448 2449 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2450 2451 /* guarantee a trip back through this routine if there was a failure */ 2452 return failure ? budget : (int)total_rx_packets; 2453 } 2454 2455 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2456 { 2457 u32 val; 2458 2459 /* We don't bother with setting the CLEARPBA bit as the data sheet 2460 * points out doing so is "meaningless since it was already 2461 * auto-cleared". The auto-clearing happens when the interrupt is 2462 * asserted. 2463 * 2464 * Hardware errata 28 for also indicates that writing to a 2465 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2466 * an event in the PBA anyway so we need to rely on the automask 2467 * to hold pending events for us until the interrupt is re-enabled 2468 * 2469 * The itr value is reported in microseconds, and the register 2470 * value is recorded in 2 microsecond units. For this reason we 2471 * only need to shift by the interval shift - 1 instead of the 2472 * full value. 2473 */ 2474 itr &= I40E_ITR_MASK; 2475 2476 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2477 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2478 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2479 2480 return val; 2481 } 2482 2483 /* a small macro to shorten up some long lines */ 2484 #define INTREG I40E_PFINT_DYN_CTLN 2485 2486 /* The act of updating the ITR will cause it to immediately trigger. In order 2487 * to prevent this from throwing off adaptive update statistics we defer the 2488 * update so that it can only happen so often. So after either Tx or Rx are 2489 * updated we make the adaptive scheme wait until either the ITR completely 2490 * expires via the next_update expiration or we have been through at least 2491 * 3 interrupts. 2492 */ 2493 #define ITR_COUNTDOWN_START 3 2494 2495 /** 2496 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2497 * @vsi: the VSI we care about 2498 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2499 * 2500 **/ 2501 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2502 struct i40e_q_vector *q_vector) 2503 { 2504 struct i40e_hw *hw = &vsi->back->hw; 2505 u32 intval; 2506 2507 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2508 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2509 i40e_irq_dynamic_enable_icr0(vsi->back); 2510 return; 2511 } 2512 2513 /* These will do nothing if dynamic updates are not enabled */ 2514 i40e_update_itr(q_vector, &q_vector->tx); 2515 i40e_update_itr(q_vector, &q_vector->rx); 2516 2517 /* This block of logic allows us to get away with only updating 2518 * one ITR value with each interrupt. The idea is to perform a 2519 * pseudo-lazy update with the following criteria. 2520 * 2521 * 1. Rx is given higher priority than Tx if both are in same state 2522 * 2. If we must reduce an ITR that is given highest priority. 2523 * 3. We then give priority to increasing ITR based on amount. 2524 */ 2525 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2526 /* Rx ITR needs to be reduced, this is highest priority */ 2527 intval = i40e_buildreg_itr(I40E_RX_ITR, 2528 q_vector->rx.target_itr); 2529 q_vector->rx.current_itr = q_vector->rx.target_itr; 2530 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2531 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2532 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2533 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2534 /* Tx ITR needs to be reduced, this is second priority 2535 * Tx ITR needs to be increased more than Rx, fourth priority 2536 */ 2537 intval = i40e_buildreg_itr(I40E_TX_ITR, 2538 q_vector->tx.target_itr); 2539 q_vector->tx.current_itr = q_vector->tx.target_itr; 2540 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2541 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2542 /* Rx ITR needs to be increased, third priority */ 2543 intval = i40e_buildreg_itr(I40E_RX_ITR, 2544 q_vector->rx.target_itr); 2545 q_vector->rx.current_itr = q_vector->rx.target_itr; 2546 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2547 } else { 2548 /* No ITR update, lowest priority */ 2549 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2550 if (q_vector->itr_countdown) 2551 q_vector->itr_countdown--; 2552 } 2553 2554 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2555 wr32(hw, INTREG(q_vector->reg_idx), intval); 2556 } 2557 2558 /** 2559 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2560 * @napi: napi struct with our devices info in it 2561 * @budget: amount of work driver is allowed to do this pass, in packets 2562 * 2563 * This function will clean all queues associated with a q_vector. 2564 * 2565 * Returns the amount of work done 2566 **/ 2567 int i40e_napi_poll(struct napi_struct *napi, int budget) 2568 { 2569 struct i40e_q_vector *q_vector = 2570 container_of(napi, struct i40e_q_vector, napi); 2571 struct i40e_vsi *vsi = q_vector->vsi; 2572 struct i40e_ring *ring; 2573 bool clean_complete = true; 2574 bool arm_wb = false; 2575 int budget_per_ring; 2576 int work_done = 0; 2577 2578 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2579 napi_complete(napi); 2580 return 0; 2581 } 2582 2583 /* Since the actual Tx work is minimal, we can give the Tx a larger 2584 * budget and be more aggressive about cleaning up the Tx descriptors. 2585 */ 2586 i40e_for_each_ring(ring, q_vector->tx) { 2587 bool wd = ring->xsk_umem ? 2588 i40e_clean_xdp_tx_irq(vsi, ring, budget) : 2589 i40e_clean_tx_irq(vsi, ring, budget); 2590 2591 if (!wd) { 2592 clean_complete = false; 2593 continue; 2594 } 2595 arm_wb |= ring->arm_wb; 2596 ring->arm_wb = false; 2597 } 2598 2599 /* Handle case where we are called by netpoll with a budget of 0 */ 2600 if (budget <= 0) 2601 goto tx_only; 2602 2603 /* We attempt to distribute budget to each Rx queue fairly, but don't 2604 * allow the budget to go below 1 because that would exit polling early. 2605 */ 2606 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 2607 2608 i40e_for_each_ring(ring, q_vector->rx) { 2609 int cleaned = ring->xsk_umem ? 2610 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2611 i40e_clean_rx_irq(ring, budget_per_ring); 2612 2613 work_done += cleaned; 2614 /* if we clean as many as budgeted, we must not be done */ 2615 if (cleaned >= budget_per_ring) 2616 clean_complete = false; 2617 } 2618 2619 /* If work not completed, return budget and polling will return */ 2620 if (!clean_complete) { 2621 int cpu_id = smp_processor_id(); 2622 2623 /* It is possible that the interrupt affinity has changed but, 2624 * if the cpu is pegged at 100%, polling will never exit while 2625 * traffic continues and the interrupt will be stuck on this 2626 * cpu. We check to make sure affinity is correct before we 2627 * continue to poll, otherwise we must stop polling so the 2628 * interrupt can move to the correct cpu. 2629 */ 2630 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2631 /* Tell napi that we are done polling */ 2632 napi_complete_done(napi, work_done); 2633 2634 /* Force an interrupt */ 2635 i40e_force_wb(vsi, q_vector); 2636 2637 /* Return budget-1 so that polling stops */ 2638 return budget - 1; 2639 } 2640 tx_only: 2641 if (arm_wb) { 2642 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2643 i40e_enable_wb_on_itr(vsi, q_vector); 2644 } 2645 return budget; 2646 } 2647 2648 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2649 q_vector->arm_wb_state = false; 2650 2651 /* Exit the polling mode, but don't re-enable interrupts if stack might 2652 * poll us due to busy-polling 2653 */ 2654 if (likely(napi_complete_done(napi, work_done))) 2655 i40e_update_enable_itr(vsi, q_vector); 2656 2657 return min(work_done, budget - 1); 2658 } 2659 2660 /** 2661 * i40e_atr - Add a Flow Director ATR filter 2662 * @tx_ring: ring to add programming descriptor to 2663 * @skb: send buffer 2664 * @tx_flags: send tx flags 2665 **/ 2666 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2667 u32 tx_flags) 2668 { 2669 struct i40e_filter_program_desc *fdir_desc; 2670 struct i40e_pf *pf = tx_ring->vsi->back; 2671 union { 2672 unsigned char *network; 2673 struct iphdr *ipv4; 2674 struct ipv6hdr *ipv6; 2675 } hdr; 2676 struct tcphdr *th; 2677 unsigned int hlen; 2678 u32 flex_ptype, dtype_cmd; 2679 int l4_proto; 2680 u16 i; 2681 2682 /* make sure ATR is enabled */ 2683 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2684 return; 2685 2686 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2687 return; 2688 2689 /* if sampling is disabled do nothing */ 2690 if (!tx_ring->atr_sample_rate) 2691 return; 2692 2693 /* Currently only IPv4/IPv6 with TCP is supported */ 2694 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2695 return; 2696 2697 /* snag network header to get L4 type and address */ 2698 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2699 skb_inner_network_header(skb) : skb_network_header(skb); 2700 2701 /* Note: tx_flags gets modified to reflect inner protocols in 2702 * tx_enable_csum function if encap is enabled. 2703 */ 2704 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2705 /* access ihl as u8 to avoid unaligned access on ia64 */ 2706 hlen = (hdr.network[0] & 0x0F) << 2; 2707 l4_proto = hdr.ipv4->protocol; 2708 } else { 2709 /* find the start of the innermost ipv6 header */ 2710 unsigned int inner_hlen = hdr.network - skb->data; 2711 unsigned int h_offset = inner_hlen; 2712 2713 /* this function updates h_offset to the end of the header */ 2714 l4_proto = 2715 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2716 /* hlen will contain our best estimate of the tcp header */ 2717 hlen = h_offset - inner_hlen; 2718 } 2719 2720 if (l4_proto != IPPROTO_TCP) 2721 return; 2722 2723 th = (struct tcphdr *)(hdr.network + hlen); 2724 2725 /* Due to lack of space, no more new filters can be programmed */ 2726 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2727 return; 2728 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2729 /* HW ATR eviction will take care of removing filters on FIN 2730 * and RST packets. 2731 */ 2732 if (th->fin || th->rst) 2733 return; 2734 } 2735 2736 tx_ring->atr_count++; 2737 2738 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2739 if (!th->fin && 2740 !th->syn && 2741 !th->rst && 2742 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2743 return; 2744 2745 tx_ring->atr_count = 0; 2746 2747 /* grab the next descriptor */ 2748 i = tx_ring->next_to_use; 2749 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2750 2751 i++; 2752 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2753 2754 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2755 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2756 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2757 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2758 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2759 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2760 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2761 2762 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2763 2764 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2765 2766 dtype_cmd |= (th->fin || th->rst) ? 2767 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2768 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2769 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2770 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2771 2772 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2773 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2774 2775 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2776 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2777 2778 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2779 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2780 dtype_cmd |= 2781 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2782 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2783 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2784 else 2785 dtype_cmd |= 2786 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2787 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2788 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2789 2790 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2791 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2792 2793 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2794 fdir_desc->rsvd = cpu_to_le32(0); 2795 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2796 fdir_desc->fd_id = cpu_to_le32(0); 2797 } 2798 2799 /** 2800 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2801 * @skb: send buffer 2802 * @tx_ring: ring to send buffer on 2803 * @flags: the tx flags to be set 2804 * 2805 * Checks the skb and set up correspondingly several generic transmit flags 2806 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2807 * 2808 * Returns error code indicate the frame should be dropped upon error and the 2809 * otherwise returns 0 to indicate the flags has been set properly. 2810 **/ 2811 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2812 struct i40e_ring *tx_ring, 2813 u32 *flags) 2814 { 2815 __be16 protocol = skb->protocol; 2816 u32 tx_flags = 0; 2817 2818 if (protocol == htons(ETH_P_8021Q) && 2819 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2820 /* When HW VLAN acceleration is turned off by the user the 2821 * stack sets the protocol to 8021q so that the driver 2822 * can take any steps required to support the SW only 2823 * VLAN handling. In our case the driver doesn't need 2824 * to take any further steps so just set the protocol 2825 * to the encapsulated ethertype. 2826 */ 2827 skb->protocol = vlan_get_protocol(skb); 2828 goto out; 2829 } 2830 2831 /* if we have a HW VLAN tag being added, default to the HW one */ 2832 if (skb_vlan_tag_present(skb)) { 2833 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2834 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2835 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2836 } else if (protocol == htons(ETH_P_8021Q)) { 2837 struct vlan_hdr *vhdr, _vhdr; 2838 2839 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2840 if (!vhdr) 2841 return -EINVAL; 2842 2843 protocol = vhdr->h_vlan_encapsulated_proto; 2844 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2845 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2846 } 2847 2848 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2849 goto out; 2850 2851 /* Insert 802.1p priority into VLAN header */ 2852 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2853 (skb->priority != TC_PRIO_CONTROL)) { 2854 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2855 tx_flags |= (skb->priority & 0x7) << 2856 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2857 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2858 struct vlan_ethhdr *vhdr; 2859 int rc; 2860 2861 rc = skb_cow_head(skb, 0); 2862 if (rc < 0) 2863 return rc; 2864 vhdr = (struct vlan_ethhdr *)skb->data; 2865 vhdr->h_vlan_TCI = htons(tx_flags >> 2866 I40E_TX_FLAGS_VLAN_SHIFT); 2867 } else { 2868 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2869 } 2870 } 2871 2872 out: 2873 *flags = tx_flags; 2874 return 0; 2875 } 2876 2877 /** 2878 * i40e_tso - set up the tso context descriptor 2879 * @first: pointer to first Tx buffer for xmit 2880 * @hdr_len: ptr to the size of the packet header 2881 * @cd_type_cmd_tso_mss: Quad Word 1 2882 * 2883 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2884 **/ 2885 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2886 u64 *cd_type_cmd_tso_mss) 2887 { 2888 struct sk_buff *skb = first->skb; 2889 u64 cd_cmd, cd_tso_len, cd_mss; 2890 union { 2891 struct iphdr *v4; 2892 struct ipv6hdr *v6; 2893 unsigned char *hdr; 2894 } ip; 2895 union { 2896 struct tcphdr *tcp; 2897 struct udphdr *udp; 2898 unsigned char *hdr; 2899 } l4; 2900 u32 paylen, l4_offset; 2901 u16 gso_segs, gso_size; 2902 int err; 2903 2904 if (skb->ip_summed != CHECKSUM_PARTIAL) 2905 return 0; 2906 2907 if (!skb_is_gso(skb)) 2908 return 0; 2909 2910 err = skb_cow_head(skb, 0); 2911 if (err < 0) 2912 return err; 2913 2914 ip.hdr = skb_network_header(skb); 2915 l4.hdr = skb_transport_header(skb); 2916 2917 /* initialize outer IP header fields */ 2918 if (ip.v4->version == 4) { 2919 ip.v4->tot_len = 0; 2920 ip.v4->check = 0; 2921 } else { 2922 ip.v6->payload_len = 0; 2923 } 2924 2925 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2926 SKB_GSO_GRE_CSUM | 2927 SKB_GSO_IPXIP4 | 2928 SKB_GSO_IPXIP6 | 2929 SKB_GSO_UDP_TUNNEL | 2930 SKB_GSO_UDP_TUNNEL_CSUM)) { 2931 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2932 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2933 l4.udp->len = 0; 2934 2935 /* determine offset of outer transport header */ 2936 l4_offset = l4.hdr - skb->data; 2937 2938 /* remove payload length from outer checksum */ 2939 paylen = skb->len - l4_offset; 2940 csum_replace_by_diff(&l4.udp->check, 2941 (__force __wsum)htonl(paylen)); 2942 } 2943 2944 /* reset pointers to inner headers */ 2945 ip.hdr = skb_inner_network_header(skb); 2946 l4.hdr = skb_inner_transport_header(skb); 2947 2948 /* initialize inner IP header fields */ 2949 if (ip.v4->version == 4) { 2950 ip.v4->tot_len = 0; 2951 ip.v4->check = 0; 2952 } else { 2953 ip.v6->payload_len = 0; 2954 } 2955 } 2956 2957 /* determine offset of inner transport header */ 2958 l4_offset = l4.hdr - skb->data; 2959 2960 /* remove payload length from inner checksum */ 2961 paylen = skb->len - l4_offset; 2962 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2963 2964 /* compute length of segmentation header */ 2965 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2966 2967 /* pull values out of skb_shinfo */ 2968 gso_size = skb_shinfo(skb)->gso_size; 2969 gso_segs = skb_shinfo(skb)->gso_segs; 2970 2971 /* update GSO size and bytecount with header size */ 2972 first->gso_segs = gso_segs; 2973 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2974 2975 /* find the field values */ 2976 cd_cmd = I40E_TX_CTX_DESC_TSO; 2977 cd_tso_len = skb->len - *hdr_len; 2978 cd_mss = gso_size; 2979 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2980 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2981 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2982 return 1; 2983 } 2984 2985 /** 2986 * i40e_tsyn - set up the tsyn context descriptor 2987 * @tx_ring: ptr to the ring to send 2988 * @skb: ptr to the skb we're sending 2989 * @tx_flags: the collected send information 2990 * @cd_type_cmd_tso_mss: Quad Word 1 2991 * 2992 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2993 **/ 2994 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2995 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2996 { 2997 struct i40e_pf *pf; 2998 2999 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3000 return 0; 3001 3002 /* Tx timestamps cannot be sampled when doing TSO */ 3003 if (tx_flags & I40E_TX_FLAGS_TSO) 3004 return 0; 3005 3006 /* only timestamp the outbound packet if the user has requested it and 3007 * we are not already transmitting a packet to be timestamped 3008 */ 3009 pf = i40e_netdev_to_pf(tx_ring->netdev); 3010 if (!(pf->flags & I40E_FLAG_PTP)) 3011 return 0; 3012 3013 if (pf->ptp_tx && 3014 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3015 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3016 pf->ptp_tx_start = jiffies; 3017 pf->ptp_tx_skb = skb_get(skb); 3018 } else { 3019 pf->tx_hwtstamp_skipped++; 3020 return 0; 3021 } 3022 3023 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3024 I40E_TXD_CTX_QW1_CMD_SHIFT; 3025 3026 return 1; 3027 } 3028 3029 /** 3030 * i40e_tx_enable_csum - Enable Tx checksum offloads 3031 * @skb: send buffer 3032 * @tx_flags: pointer to Tx flags currently set 3033 * @td_cmd: Tx descriptor command bits to set 3034 * @td_offset: Tx descriptor header offsets to set 3035 * @tx_ring: Tx descriptor ring 3036 * @cd_tunneling: ptr to context desc bits 3037 **/ 3038 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3039 u32 *td_cmd, u32 *td_offset, 3040 struct i40e_ring *tx_ring, 3041 u32 *cd_tunneling) 3042 { 3043 union { 3044 struct iphdr *v4; 3045 struct ipv6hdr *v6; 3046 unsigned char *hdr; 3047 } ip; 3048 union { 3049 struct tcphdr *tcp; 3050 struct udphdr *udp; 3051 unsigned char *hdr; 3052 } l4; 3053 unsigned char *exthdr; 3054 u32 offset, cmd = 0; 3055 __be16 frag_off; 3056 u8 l4_proto = 0; 3057 3058 if (skb->ip_summed != CHECKSUM_PARTIAL) 3059 return 0; 3060 3061 ip.hdr = skb_network_header(skb); 3062 l4.hdr = skb_transport_header(skb); 3063 3064 /* compute outer L2 header size */ 3065 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3066 3067 if (skb->encapsulation) { 3068 u32 tunnel = 0; 3069 /* define outer network header type */ 3070 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3071 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3072 I40E_TX_CTX_EXT_IP_IPV4 : 3073 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3074 3075 l4_proto = ip.v4->protocol; 3076 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3077 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3078 3079 exthdr = ip.hdr + sizeof(*ip.v6); 3080 l4_proto = ip.v6->nexthdr; 3081 if (l4.hdr != exthdr) 3082 ipv6_skip_exthdr(skb, exthdr - skb->data, 3083 &l4_proto, &frag_off); 3084 } 3085 3086 /* define outer transport */ 3087 switch (l4_proto) { 3088 case IPPROTO_UDP: 3089 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3090 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3091 break; 3092 case IPPROTO_GRE: 3093 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3094 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3095 break; 3096 case IPPROTO_IPIP: 3097 case IPPROTO_IPV6: 3098 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3099 l4.hdr = skb_inner_network_header(skb); 3100 break; 3101 default: 3102 if (*tx_flags & I40E_TX_FLAGS_TSO) 3103 return -1; 3104 3105 skb_checksum_help(skb); 3106 return 0; 3107 } 3108 3109 /* compute outer L3 header size */ 3110 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3111 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3112 3113 /* switch IP header pointer from outer to inner header */ 3114 ip.hdr = skb_inner_network_header(skb); 3115 3116 /* compute tunnel header size */ 3117 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3118 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3119 3120 /* indicate if we need to offload outer UDP header */ 3121 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3122 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3123 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3124 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3125 3126 /* record tunnel offload values */ 3127 *cd_tunneling |= tunnel; 3128 3129 /* switch L4 header pointer from outer to inner */ 3130 l4.hdr = skb_inner_transport_header(skb); 3131 l4_proto = 0; 3132 3133 /* reset type as we transition from outer to inner headers */ 3134 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3135 if (ip.v4->version == 4) 3136 *tx_flags |= I40E_TX_FLAGS_IPV4; 3137 if (ip.v6->version == 6) 3138 *tx_flags |= I40E_TX_FLAGS_IPV6; 3139 } 3140 3141 /* Enable IP checksum offloads */ 3142 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3143 l4_proto = ip.v4->protocol; 3144 /* the stack computes the IP header already, the only time we 3145 * need the hardware to recompute it is in the case of TSO. 3146 */ 3147 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3148 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3149 I40E_TX_DESC_CMD_IIPT_IPV4; 3150 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3151 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3152 3153 exthdr = ip.hdr + sizeof(*ip.v6); 3154 l4_proto = ip.v6->nexthdr; 3155 if (l4.hdr != exthdr) 3156 ipv6_skip_exthdr(skb, exthdr - skb->data, 3157 &l4_proto, &frag_off); 3158 } 3159 3160 /* compute inner L3 header size */ 3161 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3162 3163 /* Enable L4 checksum offloads */ 3164 switch (l4_proto) { 3165 case IPPROTO_TCP: 3166 /* enable checksum offloads */ 3167 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3168 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3169 break; 3170 case IPPROTO_SCTP: 3171 /* enable SCTP checksum offload */ 3172 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3173 offset |= (sizeof(struct sctphdr) >> 2) << 3174 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3175 break; 3176 case IPPROTO_UDP: 3177 /* enable UDP checksum offload */ 3178 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3179 offset |= (sizeof(struct udphdr) >> 2) << 3180 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3181 break; 3182 default: 3183 if (*tx_flags & I40E_TX_FLAGS_TSO) 3184 return -1; 3185 skb_checksum_help(skb); 3186 return 0; 3187 } 3188 3189 *td_cmd |= cmd; 3190 *td_offset |= offset; 3191 3192 return 1; 3193 } 3194 3195 /** 3196 * i40e_create_tx_ctx Build the Tx context descriptor 3197 * @tx_ring: ring to create the descriptor on 3198 * @cd_type_cmd_tso_mss: Quad Word 1 3199 * @cd_tunneling: Quad Word 0 - bits 0-31 3200 * @cd_l2tag2: Quad Word 0 - bits 32-63 3201 **/ 3202 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3203 const u64 cd_type_cmd_tso_mss, 3204 const u32 cd_tunneling, const u32 cd_l2tag2) 3205 { 3206 struct i40e_tx_context_desc *context_desc; 3207 int i = tx_ring->next_to_use; 3208 3209 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3210 !cd_tunneling && !cd_l2tag2) 3211 return; 3212 3213 /* grab the next descriptor */ 3214 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3215 3216 i++; 3217 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3218 3219 /* cpu_to_le32 and assign to struct fields */ 3220 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3221 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3222 context_desc->rsvd = cpu_to_le16(0); 3223 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3224 } 3225 3226 /** 3227 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3228 * @tx_ring: the ring to be checked 3229 * @size: the size buffer we want to assure is available 3230 * 3231 * Returns -EBUSY if a stop is needed, else 0 3232 **/ 3233 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3234 { 3235 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3236 /* Memory barrier before checking head and tail */ 3237 smp_mb(); 3238 3239 /* Check again in a case another CPU has just made room available. */ 3240 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3241 return -EBUSY; 3242 3243 /* A reprieve! - use start_queue because it doesn't call schedule */ 3244 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3245 ++tx_ring->tx_stats.restart_queue; 3246 return 0; 3247 } 3248 3249 /** 3250 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3251 * @skb: send buffer 3252 * 3253 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3254 * and so we need to figure out the cases where we need to linearize the skb. 3255 * 3256 * For TSO we need to count the TSO header and segment payload separately. 3257 * As such we need to check cases where we have 7 fragments or more as we 3258 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3259 * the segment payload in the first descriptor, and another 7 for the 3260 * fragments. 3261 **/ 3262 bool __i40e_chk_linearize(struct sk_buff *skb) 3263 { 3264 const struct skb_frag_struct *frag, *stale; 3265 int nr_frags, sum; 3266 3267 /* no need to check if number of frags is less than 7 */ 3268 nr_frags = skb_shinfo(skb)->nr_frags; 3269 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3270 return false; 3271 3272 /* We need to walk through the list and validate that each group 3273 * of 6 fragments totals at least gso_size. 3274 */ 3275 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3276 frag = &skb_shinfo(skb)->frags[0]; 3277 3278 /* Initialize size to the negative value of gso_size minus 1. We 3279 * use this as the worst case scenerio in which the frag ahead 3280 * of us only provides one byte which is why we are limited to 6 3281 * descriptors for a single transmit as the header and previous 3282 * fragment are already consuming 2 descriptors. 3283 */ 3284 sum = 1 - skb_shinfo(skb)->gso_size; 3285 3286 /* Add size of frags 0 through 4 to create our initial sum */ 3287 sum += skb_frag_size(frag++); 3288 sum += skb_frag_size(frag++); 3289 sum += skb_frag_size(frag++); 3290 sum += skb_frag_size(frag++); 3291 sum += skb_frag_size(frag++); 3292 3293 /* Walk through fragments adding latest fragment, testing it, and 3294 * then removing stale fragments from the sum. 3295 */ 3296 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3297 int stale_size = skb_frag_size(stale); 3298 3299 sum += skb_frag_size(frag++); 3300 3301 /* The stale fragment may present us with a smaller 3302 * descriptor than the actual fragment size. To account 3303 * for that we need to remove all the data on the front and 3304 * figure out what the remainder would be in the last 3305 * descriptor associated with the fragment. 3306 */ 3307 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3308 int align_pad = -(stale->page_offset) & 3309 (I40E_MAX_READ_REQ_SIZE - 1); 3310 3311 sum -= align_pad; 3312 stale_size -= align_pad; 3313 3314 do { 3315 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3316 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3317 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3318 } 3319 3320 /* if sum is negative we failed to make sufficient progress */ 3321 if (sum < 0) 3322 return true; 3323 3324 if (!nr_frags--) 3325 break; 3326 3327 sum -= stale_size; 3328 } 3329 3330 return false; 3331 } 3332 3333 /** 3334 * i40e_tx_map - Build the Tx descriptor 3335 * @tx_ring: ring to send buffer on 3336 * @skb: send buffer 3337 * @first: first buffer info buffer to use 3338 * @tx_flags: collected send information 3339 * @hdr_len: size of the packet header 3340 * @td_cmd: the command field in the descriptor 3341 * @td_offset: offset for checksum or crc 3342 * 3343 * Returns 0 on success, -1 on failure to DMA 3344 **/ 3345 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3346 struct i40e_tx_buffer *first, u32 tx_flags, 3347 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3348 { 3349 unsigned int data_len = skb->data_len; 3350 unsigned int size = skb_headlen(skb); 3351 struct skb_frag_struct *frag; 3352 struct i40e_tx_buffer *tx_bi; 3353 struct i40e_tx_desc *tx_desc; 3354 u16 i = tx_ring->next_to_use; 3355 u32 td_tag = 0; 3356 dma_addr_t dma; 3357 u16 desc_count = 1; 3358 3359 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3360 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3361 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3362 I40E_TX_FLAGS_VLAN_SHIFT; 3363 } 3364 3365 first->tx_flags = tx_flags; 3366 3367 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3368 3369 tx_desc = I40E_TX_DESC(tx_ring, i); 3370 tx_bi = first; 3371 3372 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3373 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3374 3375 if (dma_mapping_error(tx_ring->dev, dma)) 3376 goto dma_error; 3377 3378 /* record length, and DMA address */ 3379 dma_unmap_len_set(tx_bi, len, size); 3380 dma_unmap_addr_set(tx_bi, dma, dma); 3381 3382 /* align size to end of page */ 3383 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3384 tx_desc->buffer_addr = cpu_to_le64(dma); 3385 3386 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3387 tx_desc->cmd_type_offset_bsz = 3388 build_ctob(td_cmd, td_offset, 3389 max_data, td_tag); 3390 3391 tx_desc++; 3392 i++; 3393 desc_count++; 3394 3395 if (i == tx_ring->count) { 3396 tx_desc = I40E_TX_DESC(tx_ring, 0); 3397 i = 0; 3398 } 3399 3400 dma += max_data; 3401 size -= max_data; 3402 3403 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3404 tx_desc->buffer_addr = cpu_to_le64(dma); 3405 } 3406 3407 if (likely(!data_len)) 3408 break; 3409 3410 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3411 size, td_tag); 3412 3413 tx_desc++; 3414 i++; 3415 desc_count++; 3416 3417 if (i == tx_ring->count) { 3418 tx_desc = I40E_TX_DESC(tx_ring, 0); 3419 i = 0; 3420 } 3421 3422 size = skb_frag_size(frag); 3423 data_len -= size; 3424 3425 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3426 DMA_TO_DEVICE); 3427 3428 tx_bi = &tx_ring->tx_bi[i]; 3429 } 3430 3431 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3432 3433 i++; 3434 if (i == tx_ring->count) 3435 i = 0; 3436 3437 tx_ring->next_to_use = i; 3438 3439 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3440 3441 /* write last descriptor with EOP bit */ 3442 td_cmd |= I40E_TX_DESC_CMD_EOP; 3443 3444 /* We OR these values together to check both against 4 (WB_STRIDE) 3445 * below. This is safe since we don't re-use desc_count afterwards. 3446 */ 3447 desc_count |= ++tx_ring->packet_stride; 3448 3449 if (desc_count >= WB_STRIDE) { 3450 /* write last descriptor with RS bit set */ 3451 td_cmd |= I40E_TX_DESC_CMD_RS; 3452 tx_ring->packet_stride = 0; 3453 } 3454 3455 tx_desc->cmd_type_offset_bsz = 3456 build_ctob(td_cmd, td_offset, size, td_tag); 3457 3458 skb_tx_timestamp(skb); 3459 3460 /* Force memory writes to complete before letting h/w know there 3461 * are new descriptors to fetch. 3462 * 3463 * We also use this memory barrier to make certain all of the 3464 * status bits have been updated before next_to_watch is written. 3465 */ 3466 wmb(); 3467 3468 /* set next_to_watch value indicating a packet is present */ 3469 first->next_to_watch = tx_desc; 3470 3471 /* notify HW of packet */ 3472 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 3473 writel(i, tx_ring->tail); 3474 3475 /* we need this if more than one processor can write to our tail 3476 * at a time, it synchronizes IO on IA64/Altix systems 3477 */ 3478 mmiowb(); 3479 } 3480 3481 return 0; 3482 3483 dma_error: 3484 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3485 3486 /* clear dma mappings for failed tx_bi map */ 3487 for (;;) { 3488 tx_bi = &tx_ring->tx_bi[i]; 3489 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3490 if (tx_bi == first) 3491 break; 3492 if (i == 0) 3493 i = tx_ring->count; 3494 i--; 3495 } 3496 3497 tx_ring->next_to_use = i; 3498 3499 return -1; 3500 } 3501 3502 /** 3503 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3504 * @xdp: data to transmit 3505 * @xdp_ring: XDP Tx ring 3506 **/ 3507 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3508 struct i40e_ring *xdp_ring) 3509 { 3510 u16 i = xdp_ring->next_to_use; 3511 struct i40e_tx_buffer *tx_bi; 3512 struct i40e_tx_desc *tx_desc; 3513 void *data = xdpf->data; 3514 u32 size = xdpf->len; 3515 dma_addr_t dma; 3516 3517 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3518 xdp_ring->tx_stats.tx_busy++; 3519 return I40E_XDP_CONSUMED; 3520 } 3521 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3522 if (dma_mapping_error(xdp_ring->dev, dma)) 3523 return I40E_XDP_CONSUMED; 3524 3525 tx_bi = &xdp_ring->tx_bi[i]; 3526 tx_bi->bytecount = size; 3527 tx_bi->gso_segs = 1; 3528 tx_bi->xdpf = xdpf; 3529 3530 /* record length, and DMA address */ 3531 dma_unmap_len_set(tx_bi, len, size); 3532 dma_unmap_addr_set(tx_bi, dma, dma); 3533 3534 tx_desc = I40E_TX_DESC(xdp_ring, i); 3535 tx_desc->buffer_addr = cpu_to_le64(dma); 3536 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3537 | I40E_TXD_CMD, 3538 0, size, 0); 3539 3540 /* Make certain all of the status bits have been updated 3541 * before next_to_watch is written. 3542 */ 3543 smp_wmb(); 3544 3545 i++; 3546 if (i == xdp_ring->count) 3547 i = 0; 3548 3549 tx_bi->next_to_watch = tx_desc; 3550 xdp_ring->next_to_use = i; 3551 3552 return I40E_XDP_TX; 3553 } 3554 3555 /** 3556 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3557 * @skb: send buffer 3558 * @tx_ring: ring to send buffer on 3559 * 3560 * Returns NETDEV_TX_OK if sent, else an error code 3561 **/ 3562 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3563 struct i40e_ring *tx_ring) 3564 { 3565 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3566 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3567 struct i40e_tx_buffer *first; 3568 u32 td_offset = 0; 3569 u32 tx_flags = 0; 3570 __be16 protocol; 3571 u32 td_cmd = 0; 3572 u8 hdr_len = 0; 3573 int tso, count; 3574 int tsyn; 3575 3576 /* prefetch the data, we'll need it later */ 3577 prefetch(skb->data); 3578 3579 i40e_trace(xmit_frame_ring, skb, tx_ring); 3580 3581 count = i40e_xmit_descriptor_count(skb); 3582 if (i40e_chk_linearize(skb, count)) { 3583 if (__skb_linearize(skb)) { 3584 dev_kfree_skb_any(skb); 3585 return NETDEV_TX_OK; 3586 } 3587 count = i40e_txd_use_count(skb->len); 3588 tx_ring->tx_stats.tx_linearize++; 3589 } 3590 3591 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3592 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3593 * + 4 desc gap to avoid the cache line where head is, 3594 * + 1 desc for context descriptor, 3595 * otherwise try next time 3596 */ 3597 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3598 tx_ring->tx_stats.tx_busy++; 3599 return NETDEV_TX_BUSY; 3600 } 3601 3602 /* record the location of the first descriptor for this packet */ 3603 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3604 first->skb = skb; 3605 first->bytecount = skb->len; 3606 first->gso_segs = 1; 3607 3608 /* prepare the xmit flags */ 3609 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3610 goto out_drop; 3611 3612 /* obtain protocol of skb */ 3613 protocol = vlan_get_protocol(skb); 3614 3615 /* setup IPv4/IPv6 offloads */ 3616 if (protocol == htons(ETH_P_IP)) 3617 tx_flags |= I40E_TX_FLAGS_IPV4; 3618 else if (protocol == htons(ETH_P_IPV6)) 3619 tx_flags |= I40E_TX_FLAGS_IPV6; 3620 3621 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3622 3623 if (tso < 0) 3624 goto out_drop; 3625 else if (tso) 3626 tx_flags |= I40E_TX_FLAGS_TSO; 3627 3628 /* Always offload the checksum, since it's in the data descriptor */ 3629 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3630 tx_ring, &cd_tunneling); 3631 if (tso < 0) 3632 goto out_drop; 3633 3634 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3635 3636 if (tsyn) 3637 tx_flags |= I40E_TX_FLAGS_TSYN; 3638 3639 /* always enable CRC insertion offload */ 3640 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3641 3642 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3643 cd_tunneling, cd_l2tag2); 3644 3645 /* Add Flow Director ATR if it's enabled. 3646 * 3647 * NOTE: this must always be directly before the data descriptor. 3648 */ 3649 i40e_atr(tx_ring, skb, tx_flags); 3650 3651 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3652 td_cmd, td_offset)) 3653 goto cleanup_tx_tstamp; 3654 3655 return NETDEV_TX_OK; 3656 3657 out_drop: 3658 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3659 dev_kfree_skb_any(first->skb); 3660 first->skb = NULL; 3661 cleanup_tx_tstamp: 3662 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3663 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3664 3665 dev_kfree_skb_any(pf->ptp_tx_skb); 3666 pf->ptp_tx_skb = NULL; 3667 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3668 } 3669 3670 return NETDEV_TX_OK; 3671 } 3672 3673 /** 3674 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3675 * @skb: send buffer 3676 * @netdev: network interface device structure 3677 * 3678 * Returns NETDEV_TX_OK if sent, else an error code 3679 **/ 3680 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3681 { 3682 struct i40e_netdev_priv *np = netdev_priv(netdev); 3683 struct i40e_vsi *vsi = np->vsi; 3684 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3685 3686 /* hardware can't handle really short frames, hardware padding works 3687 * beyond this point 3688 */ 3689 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3690 return NETDEV_TX_OK; 3691 3692 return i40e_xmit_frame_ring(skb, tx_ring); 3693 } 3694 3695 /** 3696 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3697 * @dev: netdev 3698 * @xdp: XDP buffer 3699 * 3700 * Returns number of frames successfully sent. Frames that fail are 3701 * free'ed via XDP return API. 3702 * 3703 * For error cases, a negative errno code is returned and no-frames 3704 * are transmitted (caller must handle freeing frames). 3705 **/ 3706 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3707 u32 flags) 3708 { 3709 struct i40e_netdev_priv *np = netdev_priv(dev); 3710 unsigned int queue_index = smp_processor_id(); 3711 struct i40e_vsi *vsi = np->vsi; 3712 struct i40e_ring *xdp_ring; 3713 int drops = 0; 3714 int i; 3715 3716 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3717 return -ENETDOWN; 3718 3719 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs) 3720 return -ENXIO; 3721 3722 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3723 return -EINVAL; 3724 3725 xdp_ring = vsi->xdp_rings[queue_index]; 3726 3727 for (i = 0; i < n; i++) { 3728 struct xdp_frame *xdpf = frames[i]; 3729 int err; 3730 3731 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3732 if (err != I40E_XDP_TX) { 3733 xdp_return_frame_rx_napi(xdpf); 3734 drops++; 3735 } 3736 } 3737 3738 if (unlikely(flags & XDP_XMIT_FLUSH)) 3739 i40e_xdp_ring_update_tail(xdp_ring); 3740 3741 return n - drops; 3742 } 3743