1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47 
48 	/* Use LAN VSI Id if not programmed by user */
49 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52 
53 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 
55 	dtype_cmd |= add ?
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63 
64 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66 
67 	if (fdata->cnt_index) {
68 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 			     ((u32)fdata->cnt_index <<
71 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 	}
73 
74 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 	fdir_desc->rsvd = cpu_to_le32(0);
76 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79 
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82  * i40e_program_fdir_filter - Program a Flow Director filter
83  * @fdir_data: Packet data that will be filter parameters
84  * @raw_packet: the pre-allocated packet buffer for FDir
85  * @pf: The PF pointer
86  * @add: True for add/update, False for remove
87  **/
88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 				    u8 *raw_packet, struct i40e_pf *pf,
90 				    bool add)
91 {
92 	struct i40e_tx_buffer *tx_buf, *first;
93 	struct i40e_tx_desc *tx_desc;
94 	struct i40e_ring *tx_ring;
95 	struct i40e_vsi *vsi;
96 	struct device *dev;
97 	dma_addr_t dma;
98 	u32 td_cmd = 0;
99 	u16 i;
100 
101 	/* find existing FDIR VSI */
102 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 	if (!vsi)
104 		return -ENOENT;
105 
106 	tx_ring = vsi->tx_rings[0];
107 	dev = tx_ring->dev;
108 
109 	/* we need two descriptors to add/del a filter and we can wait */
110 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 		if (!i)
112 			return -EAGAIN;
113 		msleep_interruptible(1);
114 	}
115 
116 	dma = dma_map_single(dev, raw_packet,
117 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 	if (dma_mapping_error(dev, dma))
119 		goto dma_fail;
120 
121 	/* grab the next descriptor */
122 	i = tx_ring->next_to_use;
123 	first = &tx_ring->tx_bi[i];
124 	i40e_fdir(tx_ring, fdir_data, add);
125 
126 	/* Now program a dummy descriptor */
127 	i = tx_ring->next_to_use;
128 	tx_desc = I40E_TX_DESC(tx_ring, i);
129 	tx_buf = &tx_ring->tx_bi[i];
130 
131 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132 
133 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134 
135 	/* record length, and DMA address */
136 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 	dma_unmap_addr_set(tx_buf, dma, dma);
138 
139 	tx_desc->buffer_addr = cpu_to_le64(dma);
140 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141 
142 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 	tx_buf->raw_buf = (void *)raw_packet;
144 
145 	tx_desc->cmd_type_offset_bsz =
146 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 
148 	/* Force memory writes to complete before letting h/w
149 	 * know there are new descriptors to fetch.
150 	 */
151 	wmb();
152 
153 	/* Mark the data descriptor to be watched */
154 	first->next_to_watch = tx_desc;
155 
156 	writel(tx_ring->next_to_use, tx_ring->tail);
157 	return 0;
158 
159 dma_fail:
160 	return -1;
161 }
162 
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167  * @vsi: pointer to the targeted VSI
168  * @fd_data: the flow director data required for the FDir descriptor
169  * @add: true adds a filter, false removes it
170  *
171  * Returns 0 if the filters were successfully added or removed
172  **/
173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 				   struct i40e_fdir_filter *fd_data,
175 				   bool add)
176 {
177 	struct i40e_pf *pf = vsi->back;
178 	struct udphdr *udp;
179 	struct iphdr *ip;
180 	u8 *raw_packet;
181 	int ret;
182 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185 
186 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 	if (!raw_packet)
188 		return -ENOMEM;
189 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190 
191 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 	      + sizeof(struct iphdr));
194 
195 	ip->daddr = fd_data->dst_ip;
196 	udp->dest = fd_data->dst_port;
197 	ip->saddr = fd_data->src_ip;
198 	udp->source = fd_data->src_port;
199 
200 	if (fd_data->flex_filter) {
201 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 		__be16 pattern = fd_data->flex_word;
203 		u16 off = fd_data->flex_offset;
204 
205 		*((__force __be16 *)(payload + off)) = pattern;
206 	}
207 
208 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 	if (ret) {
211 		dev_info(&pf->pdev->dev,
212 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 			 fd_data->pctype, fd_data->fd_id, ret);
214 		/* Free the packet buffer since it wasn't added to the ring */
215 		kfree(raw_packet);
216 		return -EOPNOTSUPP;
217 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 		if (add)
219 			dev_info(&pf->pdev->dev,
220 				 "Filter OK for PCTYPE %d loc = %d\n",
221 				 fd_data->pctype, fd_data->fd_id);
222 		else
223 			dev_info(&pf->pdev->dev,
224 				 "Filter deleted for PCTYPE %d loc = %d\n",
225 				 fd_data->pctype, fd_data->fd_id);
226 	}
227 
228 	if (add)
229 		pf->fd_udp4_filter_cnt++;
230 	else
231 		pf->fd_udp4_filter_cnt--;
232 
233 	return 0;
234 }
235 
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239  * @vsi: pointer to the targeted VSI
240  * @fd_data: the flow director data required for the FDir descriptor
241  * @add: true adds a filter, false removes it
242  *
243  * Returns 0 if the filters were successfully added or removed
244  **/
245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 				   struct i40e_fdir_filter *fd_data,
247 				   bool add)
248 {
249 	struct i40e_pf *pf = vsi->back;
250 	struct tcphdr *tcp;
251 	struct iphdr *ip;
252 	u8 *raw_packet;
253 	int ret;
254 	/* Dummy packet */
255 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 		0x0, 0x72, 0, 0, 0, 0};
259 
260 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 	if (!raw_packet)
262 		return -ENOMEM;
263 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264 
265 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 	      + sizeof(struct iphdr));
268 
269 	ip->daddr = fd_data->dst_ip;
270 	tcp->dest = fd_data->dst_port;
271 	ip->saddr = fd_data->src_ip;
272 	tcp->source = fd_data->src_port;
273 
274 	if (fd_data->flex_filter) {
275 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 		__be16 pattern = fd_data->flex_word;
277 		u16 off = fd_data->flex_offset;
278 
279 		*((__force __be16 *)(payload + off)) = pattern;
280 	}
281 
282 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 	if (ret) {
285 		dev_info(&pf->pdev->dev,
286 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 			 fd_data->pctype, fd_data->fd_id, ret);
288 		/* Free the packet buffer since it wasn't added to the ring */
289 		kfree(raw_packet);
290 		return -EOPNOTSUPP;
291 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 		if (add)
293 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 				 fd_data->pctype, fd_data->fd_id);
295 		else
296 			dev_info(&pf->pdev->dev,
297 				 "Filter deleted for PCTYPE %d loc = %d\n",
298 				 fd_data->pctype, fd_data->fd_id);
299 	}
300 
301 	if (add) {
302 		pf->fd_tcp4_filter_cnt++;
303 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 		    I40E_DEBUG_FD & pf->hw.debug_mask)
305 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 	} else {
308 		pf->fd_tcp4_filter_cnt--;
309 	}
310 
311 	return 0;
312 }
313 
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317  * a specific flow spec
318  * @vsi: pointer to the targeted VSI
319  * @fd_data: the flow director data required for the FDir descriptor
320  * @add: true adds a filter, false removes it
321  *
322  * Returns 0 if the filters were successfully added or removed
323  **/
324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 				    struct i40e_fdir_filter *fd_data,
326 				    bool add)
327 {
328 	struct i40e_pf *pf = vsi->back;
329 	struct sctphdr *sctp;
330 	struct iphdr *ip;
331 	u8 *raw_packet;
332 	int ret;
333 	/* Dummy packet */
334 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337 
338 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 	if (!raw_packet)
340 		return -ENOMEM;
341 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342 
343 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 	      + sizeof(struct iphdr));
346 
347 	ip->daddr = fd_data->dst_ip;
348 	sctp->dest = fd_data->dst_port;
349 	ip->saddr = fd_data->src_ip;
350 	sctp->source = fd_data->src_port;
351 
352 	if (fd_data->flex_filter) {
353 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 		__be16 pattern = fd_data->flex_word;
355 		u16 off = fd_data->flex_offset;
356 
357 		*((__force __be16 *)(payload + off)) = pattern;
358 	}
359 
360 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 	if (ret) {
363 		dev_info(&pf->pdev->dev,
364 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 			 fd_data->pctype, fd_data->fd_id, ret);
366 		/* Free the packet buffer since it wasn't added to the ring */
367 		kfree(raw_packet);
368 		return -EOPNOTSUPP;
369 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 		if (add)
371 			dev_info(&pf->pdev->dev,
372 				 "Filter OK for PCTYPE %d loc = %d\n",
373 				 fd_data->pctype, fd_data->fd_id);
374 		else
375 			dev_info(&pf->pdev->dev,
376 				 "Filter deleted for PCTYPE %d loc = %d\n",
377 				 fd_data->pctype, fd_data->fd_id);
378 	}
379 
380 	if (add)
381 		pf->fd_sctp4_filter_cnt++;
382 	else
383 		pf->fd_sctp4_filter_cnt--;
384 
385 	return 0;
386 }
387 
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391  * a specific flow spec
392  * @vsi: pointer to the targeted VSI
393  * @fd_data: the flow director data required for the FDir descriptor
394  * @add: true adds a filter, false removes it
395  *
396  * Returns 0 if the filters were successfully added or removed
397  **/
398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 				  struct i40e_fdir_filter *fd_data,
400 				  bool add)
401 {
402 	struct i40e_pf *pf = vsi->back;
403 	struct iphdr *ip;
404 	u8 *raw_packet;
405 	int ret;
406 	int i;
407 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 		0, 0, 0, 0};
410 
411 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 		if (!raw_packet)
415 			return -ENOMEM;
416 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418 
419 		ip->saddr = fd_data->src_ip;
420 		ip->daddr = fd_data->dst_ip;
421 		ip->protocol = 0;
422 
423 		if (fd_data->flex_filter) {
424 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 			__be16 pattern = fd_data->flex_word;
426 			u16 off = fd_data->flex_offset;
427 
428 			*((__force __be16 *)(payload + off)) = pattern;
429 		}
430 
431 		fd_data->pctype = i;
432 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 		if (ret) {
434 			dev_info(&pf->pdev->dev,
435 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 				 fd_data->pctype, fd_data->fd_id, ret);
437 			/* The packet buffer wasn't added to the ring so we
438 			 * need to free it now.
439 			 */
440 			kfree(raw_packet);
441 			return -EOPNOTSUPP;
442 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 			if (add)
444 				dev_info(&pf->pdev->dev,
445 					 "Filter OK for PCTYPE %d loc = %d\n",
446 					 fd_data->pctype, fd_data->fd_id);
447 			else
448 				dev_info(&pf->pdev->dev,
449 					 "Filter deleted for PCTYPE %d loc = %d\n",
450 					 fd_data->pctype, fd_data->fd_id);
451 		}
452 	}
453 
454 	if (add)
455 		pf->fd_ip4_filter_cnt++;
456 	else
457 		pf->fd_ip4_filter_cnt--;
458 
459 	return 0;
460 }
461 
462 /**
463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464  * @vsi: pointer to the targeted VSI
465  * @input: filter to add or delete
466  * @add: true adds a filter, false removes it
467  *
468  **/
469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 		      struct i40e_fdir_filter *input, bool add)
471 {
472 	struct i40e_pf *pf = vsi->back;
473 	int ret;
474 
475 	switch (input->flow_type & ~FLOW_EXT) {
476 	case TCP_V4_FLOW:
477 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 		break;
479 	case UDP_V4_FLOW:
480 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 		break;
482 	case SCTP_V4_FLOW:
483 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 		break;
485 	case IP_USER_FLOW:
486 		switch (input->ip4_proto) {
487 		case IPPROTO_TCP:
488 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 			break;
490 		case IPPROTO_UDP:
491 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 			break;
493 		case IPPROTO_SCTP:
494 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 			break;
496 		case IPPROTO_IP:
497 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 			break;
499 		default:
500 			/* We cannot support masking based on protocol */
501 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 				 input->ip4_proto);
503 			return -EINVAL;
504 		}
505 		break;
506 	default:
507 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 			 input->flow_type);
509 		return -EINVAL;
510 	}
511 
512 	/* The buffer allocated here will be normally be freed by
513 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 	 * completion. In the event of an error adding the buffer to the FDIR
515 	 * ring, it will immediately be freed. It may also be freed by
516 	 * i40e_clean_tx_ring() when closing the VSI.
517 	 */
518 	return ret;
519 }
520 
521 /**
522  * i40e_fd_handle_status - check the Programming Status for FD
523  * @rx_ring: the Rx ring for this descriptor
524  * @qword0_raw: qword0
525  * @qword1: qword1 after le_to_cpu
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 				  u64 qword1, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	struct i40e_32b_rx_wb_qw0 *qw0;
537 	u32 fcnt_prog, fcnt_avail;
538 	u32 error;
539 
540 	qw0 = (struct i40e_32b_rx_wb_qw0 *)&qword0_raw;
541 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 		if (qw0->hi_dword.fd_id != 0 ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if (qw0->hi_dword.fd_id == 0 &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 qw0->hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
640 		i40e_xsk_clean_tx_ring(tx_ring);
641 	} else {
642 		/* ring already cleared, nothing to do */
643 		if (!tx_ring->tx_bi)
644 			return;
645 
646 		/* Free all the Tx ring sk_buffs */
647 		for (i = 0; i < tx_ring->count; i++)
648 			i40e_unmap_and_free_tx_resource(tx_ring,
649 							&tx_ring->tx_bi[i]);
650 	}
651 
652 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 	memset(tx_ring->tx_bi, 0, bi_size);
654 
655 	/* Zero out the descriptor ring */
656 	memset(tx_ring->desc, 0, tx_ring->size);
657 
658 	tx_ring->next_to_use = 0;
659 	tx_ring->next_to_clean = 0;
660 
661 	if (!tx_ring->netdev)
662 		return;
663 
664 	/* cleanup Tx queue statistics */
665 	netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667 
668 /**
669  * i40e_free_tx_resources - Free Tx resources per queue
670  * @tx_ring: Tx descriptor ring for a specific queue
671  *
672  * Free all transmit software resources
673  **/
674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 	i40e_clean_tx_ring(tx_ring);
677 	kfree(tx_ring->tx_bi);
678 	tx_ring->tx_bi = NULL;
679 
680 	if (tx_ring->desc) {
681 		dma_free_coherent(tx_ring->dev, tx_ring->size,
682 				  tx_ring->desc, tx_ring->dma);
683 		tx_ring->desc = NULL;
684 	}
685 }
686 
687 /**
688  * i40e_get_tx_pending - how many tx descriptors not processed
689  * @ring: the ring of descriptors
690  * @in_sw: use SW variables
691  *
692  * Since there is no access to the ring head register
693  * in XL710, we need to use our local copies
694  **/
695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 	u32 head, tail;
698 
699 	if (!in_sw) {
700 		head = i40e_get_head(ring);
701 		tail = readl(ring->tail);
702 	} else {
703 		head = ring->next_to_clean;
704 		tail = ring->next_to_use;
705 	}
706 
707 	if (head != tail)
708 		return (head < tail) ?
709 			tail - head : (tail + ring->count - head);
710 
711 	return 0;
712 }
713 
714 /**
715  * i40e_detect_recover_hung - Function to detect and recover hung_queues
716  * @vsi:  pointer to vsi struct with tx queues
717  *
718  * VSI has netdev and netdev has TX queues. This function is to check each of
719  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720  **/
721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 	struct i40e_ring *tx_ring = NULL;
724 	struct net_device *netdev;
725 	unsigned int i;
726 	int packets;
727 
728 	if (!vsi)
729 		return;
730 
731 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 		return;
733 
734 	netdev = vsi->netdev;
735 	if (!netdev)
736 		return;
737 
738 	if (!netif_carrier_ok(netdev))
739 		return;
740 
741 	for (i = 0; i < vsi->num_queue_pairs; i++) {
742 		tx_ring = vsi->tx_rings[i];
743 		if (tx_ring && tx_ring->desc) {
744 			/* If packet counter has not changed the queue is
745 			 * likely stalled, so force an interrupt for this
746 			 * queue.
747 			 *
748 			 * prev_pkt_ctr would be negative if there was no
749 			 * pending work.
750 			 */
751 			packets = tx_ring->stats.packets & INT_MAX;
752 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 				i40e_force_wb(vsi, tx_ring->q_vector);
754 				continue;
755 			}
756 
757 			/* Memory barrier between read of packet count and call
758 			 * to i40e_get_tx_pending()
759 			 */
760 			smp_rmb();
761 			tx_ring->tx_stats.prev_pkt_ctr =
762 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 		}
764 	}
765 }
766 
767 /**
768  * i40e_clean_tx_irq - Reclaim resources after transmit completes
769  * @vsi: the VSI we care about
770  * @tx_ring: Tx ring to clean
771  * @napi_budget: Used to determine if we are in netpoll
772  *
773  * Returns true if there's any budget left (e.g. the clean is finished)
774  **/
775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 			      struct i40e_ring *tx_ring, int napi_budget)
777 {
778 	int i = tx_ring->next_to_clean;
779 	struct i40e_tx_buffer *tx_buf;
780 	struct i40e_tx_desc *tx_head;
781 	struct i40e_tx_desc *tx_desc;
782 	unsigned int total_bytes = 0, total_packets = 0;
783 	unsigned int budget = vsi->work_limit;
784 
785 	tx_buf = &tx_ring->tx_bi[i];
786 	tx_desc = I40E_TX_DESC(tx_ring, i);
787 	i -= tx_ring->count;
788 
789 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790 
791 	do {
792 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793 
794 		/* if next_to_watch is not set then there is no work pending */
795 		if (!eop_desc)
796 			break;
797 
798 		/* prevent any other reads prior to eop_desc */
799 		smp_rmb();
800 
801 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 		/* we have caught up to head, no work left to do */
803 		if (tx_head == tx_desc)
804 			break;
805 
806 		/* clear next_to_watch to prevent false hangs */
807 		tx_buf->next_to_watch = NULL;
808 
809 		/* update the statistics for this packet */
810 		total_bytes += tx_buf->bytecount;
811 		total_packets += tx_buf->gso_segs;
812 
813 		/* free the skb/XDP data */
814 		if (ring_is_xdp(tx_ring))
815 			xdp_return_frame(tx_buf->xdpf);
816 		else
817 			napi_consume_skb(tx_buf->skb, napi_budget);
818 
819 		/* unmap skb header data */
820 		dma_unmap_single(tx_ring->dev,
821 				 dma_unmap_addr(tx_buf, dma),
822 				 dma_unmap_len(tx_buf, len),
823 				 DMA_TO_DEVICE);
824 
825 		/* clear tx_buffer data */
826 		tx_buf->skb = NULL;
827 		dma_unmap_len_set(tx_buf, len, 0);
828 
829 		/* unmap remaining buffers */
830 		while (tx_desc != eop_desc) {
831 			i40e_trace(clean_tx_irq_unmap,
832 				   tx_ring, tx_desc, tx_buf);
833 
834 			tx_buf++;
835 			tx_desc++;
836 			i++;
837 			if (unlikely(!i)) {
838 				i -= tx_ring->count;
839 				tx_buf = tx_ring->tx_bi;
840 				tx_desc = I40E_TX_DESC(tx_ring, 0);
841 			}
842 
843 			/* unmap any remaining paged data */
844 			if (dma_unmap_len(tx_buf, len)) {
845 				dma_unmap_page(tx_ring->dev,
846 					       dma_unmap_addr(tx_buf, dma),
847 					       dma_unmap_len(tx_buf, len),
848 					       DMA_TO_DEVICE);
849 				dma_unmap_len_set(tx_buf, len, 0);
850 			}
851 		}
852 
853 		/* move us one more past the eop_desc for start of next pkt */
854 		tx_buf++;
855 		tx_desc++;
856 		i++;
857 		if (unlikely(!i)) {
858 			i -= tx_ring->count;
859 			tx_buf = tx_ring->tx_bi;
860 			tx_desc = I40E_TX_DESC(tx_ring, 0);
861 		}
862 
863 		prefetch(tx_desc);
864 
865 		/* update budget accounting */
866 		budget--;
867 	} while (likely(budget));
868 
869 	i += tx_ring->count;
870 	tx_ring->next_to_clean = i;
871 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 	i40e_arm_wb(tx_ring, vsi, budget);
873 
874 	if (ring_is_xdp(tx_ring))
875 		return !!budget;
876 
877 	/* notify netdev of completed buffers */
878 	netdev_tx_completed_queue(txring_txq(tx_ring),
879 				  total_packets, total_bytes);
880 
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 		/* Make sure that anybody stopping the queue after this
885 		 * sees the new next_to_clean.
886 		 */
887 		smp_mb();
888 		if (__netif_subqueue_stopped(tx_ring->netdev,
889 					     tx_ring->queue_index) &&
890 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 			netif_wake_subqueue(tx_ring->netdev,
892 					    tx_ring->queue_index);
893 			++tx_ring->tx_stats.restart_queue;
894 		}
895 	}
896 
897 	return !!budget;
898 }
899 
900 /**
901  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902  * @vsi: the VSI we care about
903  * @q_vector: the vector on which to enable writeback
904  *
905  **/
906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 				  struct i40e_q_vector *q_vector)
908 {
909 	u16 flags = q_vector->tx.ring[0].flags;
910 	u32 val;
911 
912 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 		return;
914 
915 	if (q_vector->arm_wb_state)
916 		return;
917 
918 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921 
922 		wr32(&vsi->back->hw,
923 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 		     val);
925 	} else {
926 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928 
929 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 	}
931 	q_vector->arm_wb_state = true;
932 }
933 
934 /**
935  * i40e_force_wb - Issue SW Interrupt so HW does a wb
936  * @vsi: the VSI we care about
937  * @q_vector: the vector  on which to force writeback
938  *
939  **/
940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 			  /* allow 00 to be written to the index */
948 
949 		wr32(&vsi->back->hw,
950 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 	} else {
952 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 			/* allow 00 to be written to the index */
957 
958 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 	}
960 }
961 
962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 					struct i40e_ring_container *rc)
964 {
965 	return &q_vector->rx == rc;
966 }
967 
968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 	unsigned int divisor;
971 
972 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 	case I40E_LINK_SPEED_40GB:
974 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 		break;
976 	case I40E_LINK_SPEED_25GB:
977 	case I40E_LINK_SPEED_20GB:
978 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 		break;
980 	default:
981 	case I40E_LINK_SPEED_10GB:
982 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 		break;
984 	case I40E_LINK_SPEED_1GB:
985 	case I40E_LINK_SPEED_100MB:
986 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 		break;
988 	}
989 
990 	return divisor;
991 }
992 
993 /**
994  * i40e_update_itr - update the dynamic ITR value based on statistics
995  * @q_vector: structure containing interrupt and ring information
996  * @rc: structure containing ring performance data
997  *
998  * Stores a new ITR value based on packets and byte
999  * counts during the last interrupt.  The advantage of per interrupt
1000  * computation is faster updates and more accurate ITR for the current
1001  * traffic pattern.  Constants in this function were computed
1002  * based on theoretical maximum wire speed and thresholds were set based
1003  * on testing data as well as attempting to minimize response time
1004  * while increasing bulk throughput.
1005  **/
1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 			    struct i40e_ring_container *rc)
1008 {
1009 	unsigned int avg_wire_size, packets, bytes, itr;
1010 	unsigned long next_update = jiffies;
1011 
1012 	/* If we don't have any rings just leave ourselves set for maximum
1013 	 * possible latency so we take ourselves out of the equation.
1014 	 */
1015 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 		return;
1017 
1018 	/* For Rx we want to push the delay up and default to low latency.
1019 	 * for Tx we want to pull the delay down and default to high latency.
1020 	 */
1021 	itr = i40e_container_is_rx(q_vector, rc) ?
1022 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024 
1025 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026 	 * that either packets are coming in so slow there hasn't been
1027 	 * any work, or that there is so much work that NAPI is dealing
1028 	 * with interrupt moderation and we don't need to do anything.
1029 	 */
1030 	if (time_after(next_update, rc->next_update))
1031 		goto clear_counts;
1032 
1033 	/* If itr_countdown is set it means we programmed an ITR within
1034 	 * the last 4 interrupt cycles. This has a side effect of us
1035 	 * potentially firing an early interrupt. In order to work around
1036 	 * this we need to throw out any data received for a few
1037 	 * interrupts following the update.
1038 	 */
1039 	if (q_vector->itr_countdown) {
1040 		itr = rc->target_itr;
1041 		goto clear_counts;
1042 	}
1043 
1044 	packets = rc->total_packets;
1045 	bytes = rc->total_bytes;
1046 
1047 	if (i40e_container_is_rx(q_vector, rc)) {
1048 		/* If Rx there are 1 to 4 packets and bytes are less than
1049 		 * 9000 assume insufficient data to use bulk rate limiting
1050 		 * approach unless Tx is already in bulk rate limiting. We
1051 		 * are likely latency driven.
1052 		 */
1053 		if (packets && packets < 4 && bytes < 9000 &&
1054 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 			goto adjust_by_size;
1057 		}
1058 	} else if (packets < 4) {
1059 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 		 * bulk mode and we are receiving 4 or fewer packets just
1061 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 		 * that the Rx can relax.
1063 		 */
1064 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067 			goto clear_counts;
1068 	} else if (packets > 32) {
1069 		/* If we have processed over 32 packets in a single interrupt
1070 		 * for Tx assume we need to switch over to "bulk" mode.
1071 		 */
1072 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 	}
1074 
1075 	/* We have no packets to actually measure against. This means
1076 	 * either one of the other queues on this vector is active or
1077 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 	 *
1079 	 * Between 4 and 56 we can assume that our current interrupt delay
1080 	 * is only slightly too low. As such we should increase it by a small
1081 	 * fixed amount.
1082 	 */
1083 	if (packets < 56) {
1084 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 		}
1089 		goto clear_counts;
1090 	}
1091 
1092 	if (packets <= 256) {
1093 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 		itr &= I40E_ITR_MASK;
1095 
1096 		/* Between 56 and 112 is our "goldilocks" zone where we are
1097 		 * working out "just right". Just report that our current
1098 		 * ITR is good for us.
1099 		 */
1100 		if (packets <= 112)
1101 			goto clear_counts;
1102 
1103 		/* If packet count is 128 or greater we are likely looking
1104 		 * at a slight overrun of the delay we want. Try halving
1105 		 * our delay to see if that will cut the number of packets
1106 		 * in half per interrupt.
1107 		 */
1108 		itr /= 2;
1109 		itr &= I40E_ITR_MASK;
1110 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112 
1113 		goto clear_counts;
1114 	}
1115 
1116 	/* The paths below assume we are dealing with a bulk ITR since
1117 	 * number of packets is greater than 256. We are just going to have
1118 	 * to compute a value and try to bring the count under control,
1119 	 * though for smaller packet sizes there isn't much we can do as
1120 	 * NAPI polling will likely be kicking in sooner rather than later.
1121 	 */
1122 	itr = I40E_ITR_ADAPTIVE_BULK;
1123 
1124 adjust_by_size:
1125 	/* If packet counts are 256 or greater we can assume we have a gross
1126 	 * overestimation of what the rate should be. Instead of trying to fine
1127 	 * tune it just use the formula below to try and dial in an exact value
1128 	 * give the current packet size of the frame.
1129 	 */
1130 	avg_wire_size = bytes / packets;
1131 
1132 	/* The following is a crude approximation of:
1133 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 	 *
1137 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 	 * formula down to
1140 	 *
1141 	 *  (170 * (size + 24)) / (size + 640) = ITR
1142 	 *
1143 	 * We first do some math on the packet size and then finally bitshift
1144 	 * by 8 after rounding up. We also have to account for PCIe link speed
1145 	 * difference as ITR scales based on this.
1146 	 */
1147 	if (avg_wire_size <= 60) {
1148 		/* Start at 250k ints/sec */
1149 		avg_wire_size = 4096;
1150 	} else if (avg_wire_size <= 380) {
1151 		/* 250K ints/sec to 60K ints/sec */
1152 		avg_wire_size *= 40;
1153 		avg_wire_size += 1696;
1154 	} else if (avg_wire_size <= 1084) {
1155 		/* 60K ints/sec to 36K ints/sec */
1156 		avg_wire_size *= 15;
1157 		avg_wire_size += 11452;
1158 	} else if (avg_wire_size <= 1980) {
1159 		/* 36K ints/sec to 30K ints/sec */
1160 		avg_wire_size *= 5;
1161 		avg_wire_size += 22420;
1162 	} else {
1163 		/* plateau at a limit of 30K ints/sec */
1164 		avg_wire_size = 32256;
1165 	}
1166 
1167 	/* If we are in low latency mode halve our delay which doubles the
1168 	 * rate to somewhere between 100K to 16K ints/sec
1169 	 */
1170 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 		avg_wire_size /= 2;
1172 
1173 	/* Resultant value is 256 times larger than it needs to be. This
1174 	 * gives us room to adjust the value as needed to either increase
1175 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 	 *
1177 	 * Use addition as we have already recorded the new latency flag
1178 	 * for the ITR value.
1179 	 */
1180 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 	       I40E_ITR_ADAPTIVE_MIN_INC;
1182 
1183 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 	}
1187 
1188 clear_counts:
1189 	/* write back value */
1190 	rc->target_itr = itr;
1191 
1192 	/* next update should occur within next jiffy */
1193 	rc->next_update = next_update + 1;
1194 
1195 	rc->total_bytes = 0;
1196 	rc->total_packets = 0;
1197 }
1198 
1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 	return &rx_ring->rx_bi[idx];
1202 }
1203 
1204 /**
1205  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206  * @rx_ring: rx descriptor ring to store buffers on
1207  * @old_buff: donor buffer to have page reused
1208  *
1209  * Synchronizes page for reuse by the adapter
1210  **/
1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 			       struct i40e_rx_buffer *old_buff)
1213 {
1214 	struct i40e_rx_buffer *new_buff;
1215 	u16 nta = rx_ring->next_to_alloc;
1216 
1217 	new_buff = i40e_rx_bi(rx_ring, nta);
1218 
1219 	/* update, and store next to alloc */
1220 	nta++;
1221 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222 
1223 	/* transfer page from old buffer to new buffer */
1224 	new_buff->dma		= old_buff->dma;
1225 	new_buff->page		= old_buff->page;
1226 	new_buff->page_offset	= old_buff->page_offset;
1227 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1228 
1229 	rx_ring->rx_stats.page_reuse_count++;
1230 
1231 	/* clear contents of buffer_info */
1232 	old_buff->page = NULL;
1233 }
1234 
1235 /**
1236  * i40e_clean_programming_status - clean the programming status descriptor
1237  * @rx_ring: the rx ring that has this descriptor
1238  * @qword0_raw: qword0
1239  * @qword1: qword1 representing status_error_len in CPU ordering
1240  *
1241  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242  * status being successful or not and take actions accordingly. FCoE should
1243  * handle its context/filter programming/invalidation status and take actions.
1244  *
1245  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246  **/
1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 				   u64 qword1)
1249 {
1250 	u8 id;
1251 
1252 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254 
1255 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258 
1259 /**
1260  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261  * @tx_ring: the tx ring to set up
1262  *
1263  * Return 0 on success, negative on error
1264  **/
1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 	struct device *dev = tx_ring->dev;
1268 	int bi_size;
1269 
1270 	if (!dev)
1271 		return -ENOMEM;
1272 
1273 	/* warn if we are about to overwrite the pointer */
1274 	WARN_ON(tx_ring->tx_bi);
1275 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 	if (!tx_ring->tx_bi)
1278 		goto err;
1279 
1280 	u64_stats_init(&tx_ring->syncp);
1281 
1282 	/* round up to nearest 4K */
1283 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 	/* add u32 for head writeback, align after this takes care of
1285 	 * guaranteeing this is at least one cache line in size
1286 	 */
1287 	tx_ring->size += sizeof(u32);
1288 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 					   &tx_ring->dma, GFP_KERNEL);
1291 	if (!tx_ring->desc) {
1292 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 			 tx_ring->size);
1294 		goto err;
1295 	}
1296 
1297 	tx_ring->next_to_use = 0;
1298 	tx_ring->next_to_clean = 0;
1299 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 	return 0;
1301 
1302 err:
1303 	kfree(tx_ring->tx_bi);
1304 	tx_ring->tx_bi = NULL;
1305 	return -ENOMEM;
1306 }
1307 
1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311 
1312 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1314 }
1315 
1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317 {
1318 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319 }
1320 
1321 /**
1322  * i40e_clean_rx_ring - Free Rx buffers
1323  * @rx_ring: ring to be cleaned
1324  **/
1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326 {
1327 	u16 i;
1328 
1329 	/* ring already cleared, nothing to do */
1330 	if (!rx_ring->rx_bi)
1331 		return;
1332 
1333 	if (rx_ring->skb) {
1334 		dev_kfree_skb(rx_ring->skb);
1335 		rx_ring->skb = NULL;
1336 	}
1337 
1338 	if (rx_ring->xsk_umem) {
1339 		i40e_xsk_clean_rx_ring(rx_ring);
1340 		goto skip_free;
1341 	}
1342 
1343 	/* Free all the Rx ring sk_buffs */
1344 	for (i = 0; i < rx_ring->count; i++) {
1345 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346 
1347 		if (!rx_bi->page)
1348 			continue;
1349 
1350 		/* Invalidate cache lines that may have been written to by
1351 		 * device so that we avoid corrupting memory.
1352 		 */
1353 		dma_sync_single_range_for_cpu(rx_ring->dev,
1354 					      rx_bi->dma,
1355 					      rx_bi->page_offset,
1356 					      rx_ring->rx_buf_len,
1357 					      DMA_FROM_DEVICE);
1358 
1359 		/* free resources associated with mapping */
1360 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361 				     i40e_rx_pg_size(rx_ring),
1362 				     DMA_FROM_DEVICE,
1363 				     I40E_RX_DMA_ATTR);
1364 
1365 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366 
1367 		rx_bi->page = NULL;
1368 		rx_bi->page_offset = 0;
1369 	}
1370 
1371 skip_free:
1372 	if (rx_ring->xsk_umem)
1373 		i40e_clear_rx_bi_zc(rx_ring);
1374 	else
1375 		i40e_clear_rx_bi(rx_ring);
1376 
1377 	/* Zero out the descriptor ring */
1378 	memset(rx_ring->desc, 0, rx_ring->size);
1379 
1380 	rx_ring->next_to_alloc = 0;
1381 	rx_ring->next_to_clean = 0;
1382 	rx_ring->next_to_use = 0;
1383 }
1384 
1385 /**
1386  * i40e_free_rx_resources - Free Rx resources
1387  * @rx_ring: ring to clean the resources from
1388  *
1389  * Free all receive software resources
1390  **/
1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392 {
1393 	i40e_clean_rx_ring(rx_ring);
1394 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396 	rx_ring->xdp_prog = NULL;
1397 	kfree(rx_ring->rx_bi);
1398 	rx_ring->rx_bi = NULL;
1399 
1400 	if (rx_ring->desc) {
1401 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1402 				  rx_ring->desc, rx_ring->dma);
1403 		rx_ring->desc = NULL;
1404 	}
1405 }
1406 
1407 /**
1408  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410  *
1411  * Returns 0 on success, negative on failure
1412  **/
1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414 {
1415 	struct device *dev = rx_ring->dev;
1416 	int err;
1417 
1418 	u64_stats_init(&rx_ring->syncp);
1419 
1420 	/* Round up to nearest 4K */
1421 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1422 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1423 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424 					   &rx_ring->dma, GFP_KERNEL);
1425 
1426 	if (!rx_ring->desc) {
1427 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428 			 rx_ring->size);
1429 		return -ENOMEM;
1430 	}
1431 
1432 	rx_ring->next_to_alloc = 0;
1433 	rx_ring->next_to_clean = 0;
1434 	rx_ring->next_to_use = 0;
1435 
1436 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1437 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439 				       rx_ring->queue_index);
1440 		if (err < 0)
1441 			return err;
1442 	}
1443 
1444 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  * i40e_release_rx_desc - Store the new tail and head values
1451  * @rx_ring: ring to bump
1452  * @val: new head index
1453  **/
1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455 {
1456 	rx_ring->next_to_use = val;
1457 
1458 	/* update next to alloc since we have filled the ring */
1459 	rx_ring->next_to_alloc = val;
1460 
1461 	/* Force memory writes to complete before letting h/w
1462 	 * know there are new descriptors to fetch.  (Only
1463 	 * applicable for weak-ordered memory model archs,
1464 	 * such as IA-64).
1465 	 */
1466 	wmb();
1467 	writel(val, rx_ring->tail);
1468 }
1469 
1470 /**
1471  * i40e_rx_offset - Return expected offset into page to access data
1472  * @rx_ring: Ring we are requesting offset of
1473  *
1474  * Returns the offset value for ring into the data buffer.
1475  */
1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477 {
1478 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479 }
1480 
1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482 					   unsigned int size)
1483 {
1484 	unsigned int truesize;
1485 
1486 #if (PAGE_SIZE < 8192)
1487 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488 #else
1489 	truesize = i40e_rx_offset(rx_ring) ?
1490 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492 		SKB_DATA_ALIGN(size);
1493 #endif
1494 	return truesize;
1495 }
1496 
1497 /**
1498  * i40e_alloc_mapped_page - recycle or make a new page
1499  * @rx_ring: ring to use
1500  * @bi: rx_buffer struct to modify
1501  *
1502  * Returns true if the page was successfully allocated or
1503  * reused.
1504  **/
1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506 				   struct i40e_rx_buffer *bi)
1507 {
1508 	struct page *page = bi->page;
1509 	dma_addr_t dma;
1510 
1511 	/* since we are recycling buffers we should seldom need to alloc */
1512 	if (likely(page)) {
1513 		rx_ring->rx_stats.page_reuse_count++;
1514 		return true;
1515 	}
1516 
1517 	/* alloc new page for storage */
1518 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519 	if (unlikely(!page)) {
1520 		rx_ring->rx_stats.alloc_page_failed++;
1521 		return false;
1522 	}
1523 
1524 	/* map page for use */
1525 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526 				 i40e_rx_pg_size(rx_ring),
1527 				 DMA_FROM_DEVICE,
1528 				 I40E_RX_DMA_ATTR);
1529 
1530 	/* if mapping failed free memory back to system since
1531 	 * there isn't much point in holding memory we can't use
1532 	 */
1533 	if (dma_mapping_error(rx_ring->dev, dma)) {
1534 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1535 		rx_ring->rx_stats.alloc_page_failed++;
1536 		return false;
1537 	}
1538 
1539 	bi->dma = dma;
1540 	bi->page = page;
1541 	bi->page_offset = i40e_rx_offset(rx_ring);
1542 	page_ref_add(page, USHRT_MAX - 1);
1543 	bi->pagecnt_bias = USHRT_MAX;
1544 
1545 	return true;
1546 }
1547 
1548 /**
1549  * i40e_alloc_rx_buffers - Replace used receive buffers
1550  * @rx_ring: ring to place buffers on
1551  * @cleaned_count: number of buffers to replace
1552  *
1553  * Returns false if all allocations were successful, true if any fail
1554  **/
1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556 {
1557 	u16 ntu = rx_ring->next_to_use;
1558 	union i40e_rx_desc *rx_desc;
1559 	struct i40e_rx_buffer *bi;
1560 
1561 	/* do nothing if no valid netdev defined */
1562 	if (!rx_ring->netdev || !cleaned_count)
1563 		return false;
1564 
1565 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566 	bi = i40e_rx_bi(rx_ring, ntu);
1567 
1568 	do {
1569 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1570 			goto no_buffers;
1571 
1572 		/* sync the buffer for use by the device */
1573 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574 						 bi->page_offset,
1575 						 rx_ring->rx_buf_len,
1576 						 DMA_FROM_DEVICE);
1577 
1578 		/* Refresh the desc even if buffer_addrs didn't change
1579 		 * because each write-back erases this info.
1580 		 */
1581 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582 
1583 		rx_desc++;
1584 		bi++;
1585 		ntu++;
1586 		if (unlikely(ntu == rx_ring->count)) {
1587 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1588 			bi = i40e_rx_bi(rx_ring, 0);
1589 			ntu = 0;
1590 		}
1591 
1592 		/* clear the status bits for the next_to_use descriptor */
1593 		rx_desc->wb.qword1.status_error_len = 0;
1594 
1595 		cleaned_count--;
1596 	} while (cleaned_count);
1597 
1598 	if (rx_ring->next_to_use != ntu)
1599 		i40e_release_rx_desc(rx_ring, ntu);
1600 
1601 	return false;
1602 
1603 no_buffers:
1604 	if (rx_ring->next_to_use != ntu)
1605 		i40e_release_rx_desc(rx_ring, ntu);
1606 
1607 	/* make sure to come back via polling to try again after
1608 	 * allocation failure
1609 	 */
1610 	return true;
1611 }
1612 
1613 /**
1614  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615  * @vsi: the VSI we care about
1616  * @skb: skb currently being received and modified
1617  * @rx_desc: the receive descriptor
1618  **/
1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620 				    struct sk_buff *skb,
1621 				    union i40e_rx_desc *rx_desc)
1622 {
1623 	struct i40e_rx_ptype_decoded decoded;
1624 	u32 rx_error, rx_status;
1625 	bool ipv4, ipv6;
1626 	u8 ptype;
1627 	u64 qword;
1628 
1629 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632 		   I40E_RXD_QW1_ERROR_SHIFT;
1633 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634 		    I40E_RXD_QW1_STATUS_SHIFT;
1635 	decoded = decode_rx_desc_ptype(ptype);
1636 
1637 	skb->ip_summed = CHECKSUM_NONE;
1638 
1639 	skb_checksum_none_assert(skb);
1640 
1641 	/* Rx csum enabled and ip headers found? */
1642 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643 		return;
1644 
1645 	/* did the hardware decode the packet and checksum? */
1646 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647 		return;
1648 
1649 	/* both known and outer_ip must be set for the below code to work */
1650 	if (!(decoded.known && decoded.outer_ip))
1651 		return;
1652 
1653 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657 
1658 	if (ipv4 &&
1659 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661 		goto checksum_fail;
1662 
1663 	/* likely incorrect csum if alternate IP extension headers found */
1664 	if (ipv6 &&
1665 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666 		/* don't increment checksum err here, non-fatal err */
1667 		return;
1668 
1669 	/* there was some L4 error, count error and punt packet to the stack */
1670 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671 		goto checksum_fail;
1672 
1673 	/* handle packets that were not able to be checksummed due
1674 	 * to arrival speed, in this case the stack can compute
1675 	 * the csum.
1676 	 */
1677 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678 		return;
1679 
1680 	/* If there is an outer header present that might contain a checksum
1681 	 * we need to bump the checksum level by 1 to reflect the fact that
1682 	 * we are indicating we validated the inner checksum.
1683 	 */
1684 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685 		skb->csum_level = 1;
1686 
1687 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688 	switch (decoded.inner_prot) {
1689 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1690 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1691 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 		/* fall though */
1694 	default:
1695 		break;
1696 	}
1697 
1698 	return;
1699 
1700 checksum_fail:
1701 	vsi->back->hw_csum_rx_error++;
1702 }
1703 
1704 /**
1705  * i40e_ptype_to_htype - get a hash type
1706  * @ptype: the ptype value from the descriptor
1707  *
1708  * Returns a hash type to be used by skb_set_hash
1709  **/
1710 static inline int i40e_ptype_to_htype(u8 ptype)
1711 {
1712 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713 
1714 	if (!decoded.known)
1715 		return PKT_HASH_TYPE_NONE;
1716 
1717 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719 		return PKT_HASH_TYPE_L4;
1720 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722 		return PKT_HASH_TYPE_L3;
1723 	else
1724 		return PKT_HASH_TYPE_L2;
1725 }
1726 
1727 /**
1728  * i40e_rx_hash - set the hash value in the skb
1729  * @ring: descriptor ring
1730  * @rx_desc: specific descriptor
1731  * @skb: skb currently being received and modified
1732  * @rx_ptype: Rx packet type
1733  **/
1734 static inline void i40e_rx_hash(struct i40e_ring *ring,
1735 				union i40e_rx_desc *rx_desc,
1736 				struct sk_buff *skb,
1737 				u8 rx_ptype)
1738 {
1739 	u32 hash;
1740 	const __le64 rss_mask =
1741 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743 
1744 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1745 		return;
1746 
1747 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750 	}
1751 }
1752 
1753 /**
1754  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755  * @rx_ring: rx descriptor ring packet is being transacted on
1756  * @rx_desc: pointer to the EOP Rx descriptor
1757  * @skb: pointer to current skb being populated
1758  * @rx_ptype: the packet type decoded by hardware
1759  *
1760  * This function checks the ring, descriptor, and packet information in
1761  * order to populate the hash, checksum, VLAN, protocol, and
1762  * other fields within the skb.
1763  **/
1764 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1765 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1766 {
1767 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1769 			I40E_RXD_QW1_STATUS_SHIFT;
1770 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1771 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1772 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1773 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1774 		      I40E_RXD_QW1_PTYPE_SHIFT;
1775 
1776 	if (unlikely(tsynvalid))
1777 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1778 
1779 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1780 
1781 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1782 
1783 	skb_record_rx_queue(skb, rx_ring->queue_index);
1784 
1785 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1786 		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1787 
1788 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1789 				       le16_to_cpu(vlan_tag));
1790 	}
1791 
1792 	/* modifies the skb - consumes the enet header */
1793 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1794 }
1795 
1796 /**
1797  * i40e_cleanup_headers - Correct empty headers
1798  * @rx_ring: rx descriptor ring packet is being transacted on
1799  * @skb: pointer to current skb being fixed
1800  * @rx_desc: pointer to the EOP Rx descriptor
1801  *
1802  * Also address the case where we are pulling data in on pages only
1803  * and as such no data is present in the skb header.
1804  *
1805  * In addition if skb is not at least 60 bytes we need to pad it so that
1806  * it is large enough to qualify as a valid Ethernet frame.
1807  *
1808  * Returns true if an error was encountered and skb was freed.
1809  **/
1810 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1811 				 union i40e_rx_desc *rx_desc)
1812 
1813 {
1814 	/* XDP packets use error pointer so abort at this point */
1815 	if (IS_ERR(skb))
1816 		return true;
1817 
1818 	/* ERR_MASK will only have valid bits if EOP set, and
1819 	 * what we are doing here is actually checking
1820 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1821 	 * the error field
1822 	 */
1823 	if (unlikely(i40e_test_staterr(rx_desc,
1824 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1825 		dev_kfree_skb_any(skb);
1826 		return true;
1827 	}
1828 
1829 	/* if eth_skb_pad returns an error the skb was freed */
1830 	if (eth_skb_pad(skb))
1831 		return true;
1832 
1833 	return false;
1834 }
1835 
1836 /**
1837  * i40e_page_is_reusable - check if any reuse is possible
1838  * @page: page struct to check
1839  *
1840  * A page is not reusable if it was allocated under low memory
1841  * conditions, or it's not in the same NUMA node as this CPU.
1842  */
1843 static inline bool i40e_page_is_reusable(struct page *page)
1844 {
1845 	return (page_to_nid(page) == numa_mem_id()) &&
1846 		!page_is_pfmemalloc(page);
1847 }
1848 
1849 /**
1850  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1851  * the adapter for another receive
1852  *
1853  * @rx_buffer: buffer containing the page
1854  *
1855  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1856  * an unused region in the page.
1857  *
1858  * For small pages, @truesize will be a constant value, half the size
1859  * of the memory at page.  We'll attempt to alternate between high and
1860  * low halves of the page, with one half ready for use by the hardware
1861  * and the other half being consumed by the stack.  We use the page
1862  * ref count to determine whether the stack has finished consuming the
1863  * portion of this page that was passed up with a previous packet.  If
1864  * the page ref count is >1, we'll assume the "other" half page is
1865  * still busy, and this page cannot be reused.
1866  *
1867  * For larger pages, @truesize will be the actual space used by the
1868  * received packet (adjusted upward to an even multiple of the cache
1869  * line size).  This will advance through the page by the amount
1870  * actually consumed by the received packets while there is still
1871  * space for a buffer.  Each region of larger pages will be used at
1872  * most once, after which the page will not be reused.
1873  *
1874  * In either case, if the page is reusable its refcount is increased.
1875  **/
1876 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1877 {
1878 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1879 	struct page *page = rx_buffer->page;
1880 
1881 	/* Is any reuse possible? */
1882 	if (unlikely(!i40e_page_is_reusable(page)))
1883 		return false;
1884 
1885 #if (PAGE_SIZE < 8192)
1886 	/* if we are only owner of page we can reuse it */
1887 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1888 		return false;
1889 #else
1890 #define I40E_LAST_OFFSET \
1891 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1892 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1893 		return false;
1894 #endif
1895 
1896 	/* If we have drained the page fragment pool we need to update
1897 	 * the pagecnt_bias and page count so that we fully restock the
1898 	 * number of references the driver holds.
1899 	 */
1900 	if (unlikely(pagecnt_bias == 1)) {
1901 		page_ref_add(page, USHRT_MAX - 1);
1902 		rx_buffer->pagecnt_bias = USHRT_MAX;
1903 	}
1904 
1905 	return true;
1906 }
1907 
1908 /**
1909  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1910  * @rx_ring: rx descriptor ring to transact packets on
1911  * @rx_buffer: buffer containing page to add
1912  * @skb: sk_buff to place the data into
1913  * @size: packet length from rx_desc
1914  *
1915  * This function will add the data contained in rx_buffer->page to the skb.
1916  * It will just attach the page as a frag to the skb.
1917  *
1918  * The function will then update the page offset.
1919  **/
1920 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1921 			     struct i40e_rx_buffer *rx_buffer,
1922 			     struct sk_buff *skb,
1923 			     unsigned int size)
1924 {
1925 #if (PAGE_SIZE < 8192)
1926 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1927 #else
1928 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1929 #endif
1930 
1931 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 			rx_buffer->page_offset, size, truesize);
1933 
1934 	/* page is being used so we must update the page offset */
1935 #if (PAGE_SIZE < 8192)
1936 	rx_buffer->page_offset ^= truesize;
1937 #else
1938 	rx_buffer->page_offset += truesize;
1939 #endif
1940 }
1941 
1942 /**
1943  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1944  * @rx_ring: rx descriptor ring to transact packets on
1945  * @size: size of buffer to add to skb
1946  *
1947  * This function will pull an Rx buffer from the ring and synchronize it
1948  * for use by the CPU.
1949  */
1950 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1951 						 const unsigned int size)
1952 {
1953 	struct i40e_rx_buffer *rx_buffer;
1954 
1955 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1956 	prefetchw(rx_buffer->page);
1957 
1958 	/* we are reusing so sync this buffer for CPU use */
1959 	dma_sync_single_range_for_cpu(rx_ring->dev,
1960 				      rx_buffer->dma,
1961 				      rx_buffer->page_offset,
1962 				      size,
1963 				      DMA_FROM_DEVICE);
1964 
1965 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1966 	rx_buffer->pagecnt_bias--;
1967 
1968 	return rx_buffer;
1969 }
1970 
1971 /**
1972  * i40e_construct_skb - Allocate skb and populate it
1973  * @rx_ring: rx descriptor ring to transact packets on
1974  * @rx_buffer: rx buffer to pull data from
1975  * @xdp: xdp_buff pointing to the data
1976  *
1977  * This function allocates an skb.  It then populates it with the page
1978  * data from the current receive descriptor, taking care to set up the
1979  * skb correctly.
1980  */
1981 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1982 					  struct i40e_rx_buffer *rx_buffer,
1983 					  struct xdp_buff *xdp)
1984 {
1985 	unsigned int size = xdp->data_end - xdp->data;
1986 #if (PAGE_SIZE < 8192)
1987 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1988 #else
1989 	unsigned int truesize = SKB_DATA_ALIGN(size);
1990 #endif
1991 	unsigned int headlen;
1992 	struct sk_buff *skb;
1993 
1994 	/* prefetch first cache line of first page */
1995 	prefetch(xdp->data);
1996 #if L1_CACHE_BYTES < 128
1997 	prefetch(xdp->data + L1_CACHE_BYTES);
1998 #endif
1999 	/* Note, we get here by enabling legacy-rx via:
2000 	 *
2001 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2002 	 *
2003 	 * In this mode, we currently get 0 extra XDP headroom as
2004 	 * opposed to having legacy-rx off, where we process XDP
2005 	 * packets going to stack via i40e_build_skb(). The latter
2006 	 * provides us currently with 192 bytes of headroom.
2007 	 *
2008 	 * For i40e_construct_skb() mode it means that the
2009 	 * xdp->data_meta will always point to xdp->data, since
2010 	 * the helper cannot expand the head. Should this ever
2011 	 * change in future for legacy-rx mode on, then lets also
2012 	 * add xdp->data_meta handling here.
2013 	 */
2014 
2015 	/* allocate a skb to store the frags */
2016 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017 			       I40E_RX_HDR_SIZE,
2018 			       GFP_ATOMIC | __GFP_NOWARN);
2019 	if (unlikely(!skb))
2020 		return NULL;
2021 
2022 	/* Determine available headroom for copy */
2023 	headlen = size;
2024 	if (headlen > I40E_RX_HDR_SIZE)
2025 		headlen = eth_get_headlen(skb->dev, xdp->data,
2026 					  I40E_RX_HDR_SIZE);
2027 
2028 	/* align pull length to size of long to optimize memcpy performance */
2029 	memcpy(__skb_put(skb, headlen), xdp->data,
2030 	       ALIGN(headlen, sizeof(long)));
2031 
2032 	/* update all of the pointers */
2033 	size -= headlen;
2034 	if (size) {
2035 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2036 				rx_buffer->page_offset + headlen,
2037 				size, truesize);
2038 
2039 		/* buffer is used by skb, update page_offset */
2040 #if (PAGE_SIZE < 8192)
2041 		rx_buffer->page_offset ^= truesize;
2042 #else
2043 		rx_buffer->page_offset += truesize;
2044 #endif
2045 	} else {
2046 		/* buffer is unused, reset bias back to rx_buffer */
2047 		rx_buffer->pagecnt_bias++;
2048 	}
2049 
2050 	return skb;
2051 }
2052 
2053 /**
2054  * i40e_build_skb - Build skb around an existing buffer
2055  * @rx_ring: Rx descriptor ring to transact packets on
2056  * @rx_buffer: Rx buffer to pull data from
2057  * @xdp: xdp_buff pointing to the data
2058  *
2059  * This function builds an skb around an existing Rx buffer, taking care
2060  * to set up the skb correctly and avoid any memcpy overhead.
2061  */
2062 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063 				      struct i40e_rx_buffer *rx_buffer,
2064 				      struct xdp_buff *xdp)
2065 {
2066 	unsigned int metasize = xdp->data - xdp->data_meta;
2067 #if (PAGE_SIZE < 8192)
2068 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069 #else
2070 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071 				SKB_DATA_ALIGN(xdp->data_end -
2072 					       xdp->data_hard_start);
2073 #endif
2074 	struct sk_buff *skb;
2075 
2076 	/* Prefetch first cache line of first page. If xdp->data_meta
2077 	 * is unused, this points exactly as xdp->data, otherwise we
2078 	 * likely have a consumer accessing first few bytes of meta
2079 	 * data, and then actual data.
2080 	 */
2081 	prefetch(xdp->data_meta);
2082 #if L1_CACHE_BYTES < 128
2083 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
2084 #endif
2085 	/* build an skb around the page buffer */
2086 	skb = build_skb(xdp->data_hard_start, truesize);
2087 	if (unlikely(!skb))
2088 		return NULL;
2089 
2090 	/* update pointers within the skb to store the data */
2091 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2092 	__skb_put(skb, xdp->data_end - xdp->data);
2093 	if (metasize)
2094 		skb_metadata_set(skb, metasize);
2095 
2096 	/* buffer is used by skb, update page_offset */
2097 #if (PAGE_SIZE < 8192)
2098 	rx_buffer->page_offset ^= truesize;
2099 #else
2100 	rx_buffer->page_offset += truesize;
2101 #endif
2102 
2103 	return skb;
2104 }
2105 
2106 /**
2107  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2108  * @rx_ring: rx descriptor ring to transact packets on
2109  * @rx_buffer: rx buffer to pull data from
2110  *
2111  * This function will clean up the contents of the rx_buffer.  It will
2112  * either recycle the buffer or unmap it and free the associated resources.
2113  */
2114 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2115 			       struct i40e_rx_buffer *rx_buffer)
2116 {
2117 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2118 		/* hand second half of page back to the ring */
2119 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2120 	} else {
2121 		/* we are not reusing the buffer so unmap it */
2122 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123 				     i40e_rx_pg_size(rx_ring),
2124 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125 		__page_frag_cache_drain(rx_buffer->page,
2126 					rx_buffer->pagecnt_bias);
2127 		/* clear contents of buffer_info */
2128 		rx_buffer->page = NULL;
2129 	}
2130 }
2131 
2132 /**
2133  * i40e_is_non_eop - process handling of non-EOP buffers
2134  * @rx_ring: Rx ring being processed
2135  * @rx_desc: Rx descriptor for current buffer
2136  * @skb: Current socket buffer containing buffer in progress
2137  *
2138  * This function updates next to clean.  If the buffer is an EOP buffer
2139  * this function exits returning false, otherwise it will place the
2140  * sk_buff in the next buffer to be chained and return true indicating
2141  * that this is in fact a non-EOP buffer.
2142  **/
2143 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144 			    union i40e_rx_desc *rx_desc,
2145 			    struct sk_buff *skb)
2146 {
2147 	u32 ntc = rx_ring->next_to_clean + 1;
2148 
2149 	/* fetch, update, and store next to clean */
2150 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2151 	rx_ring->next_to_clean = ntc;
2152 
2153 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2154 
2155 	/* if we are the last buffer then there is nothing else to do */
2156 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158 		return false;
2159 
2160 	rx_ring->rx_stats.non_eop_descs++;
2161 
2162 	return true;
2163 }
2164 
2165 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166 			      struct i40e_ring *xdp_ring);
2167 
2168 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169 {
2170 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171 
2172 	if (unlikely(!xdpf))
2173 		return I40E_XDP_CONSUMED;
2174 
2175 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176 }
2177 
2178 /**
2179  * i40e_run_xdp - run an XDP program
2180  * @rx_ring: Rx ring being processed
2181  * @xdp: XDP buffer containing the frame
2182  **/
2183 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2184 				    struct xdp_buff *xdp)
2185 {
2186 	int err, result = I40E_XDP_PASS;
2187 	struct i40e_ring *xdp_ring;
2188 	struct bpf_prog *xdp_prog;
2189 	u32 act;
2190 
2191 	rcu_read_lock();
2192 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2193 
2194 	if (!xdp_prog)
2195 		goto xdp_out;
2196 
2197 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2198 
2199 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2200 	switch (act) {
2201 	case XDP_PASS:
2202 		break;
2203 	case XDP_TX:
2204 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2205 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2206 		break;
2207 	case XDP_REDIRECT:
2208 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2209 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2210 		break;
2211 	default:
2212 		bpf_warn_invalid_xdp_action(act);
2213 		/* fall through */
2214 	case XDP_ABORTED:
2215 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2216 		/* fall through -- handle aborts by dropping packet */
2217 	case XDP_DROP:
2218 		result = I40E_XDP_CONSUMED;
2219 		break;
2220 	}
2221 xdp_out:
2222 	rcu_read_unlock();
2223 	return ERR_PTR(-result);
2224 }
2225 
2226 /**
2227  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2228  * @rx_ring: Rx ring
2229  * @rx_buffer: Rx buffer to adjust
2230  * @size: Size of adjustment
2231  **/
2232 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2233 				struct i40e_rx_buffer *rx_buffer,
2234 				unsigned int size)
2235 {
2236 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2237 
2238 #if (PAGE_SIZE < 8192)
2239 	rx_buffer->page_offset ^= truesize;
2240 #else
2241 	rx_buffer->page_offset += truesize;
2242 #endif
2243 }
2244 
2245 /**
2246  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2247  * @xdp_ring: XDP Tx ring
2248  *
2249  * This function updates the XDP Tx ring tail register.
2250  **/
2251 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2252 {
2253 	/* Force memory writes to complete before letting h/w
2254 	 * know there are new descriptors to fetch.
2255 	 */
2256 	wmb();
2257 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2258 }
2259 
2260 /**
2261  * i40e_update_rx_stats - Update Rx ring statistics
2262  * @rx_ring: rx descriptor ring
2263  * @total_rx_bytes: number of bytes received
2264  * @total_rx_packets: number of packets received
2265  *
2266  * This function updates the Rx ring statistics.
2267  **/
2268 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2269 			  unsigned int total_rx_bytes,
2270 			  unsigned int total_rx_packets)
2271 {
2272 	u64_stats_update_begin(&rx_ring->syncp);
2273 	rx_ring->stats.packets += total_rx_packets;
2274 	rx_ring->stats.bytes += total_rx_bytes;
2275 	u64_stats_update_end(&rx_ring->syncp);
2276 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2277 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2278 }
2279 
2280 /**
2281  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2282  * @rx_ring: Rx ring
2283  * @xdp_res: Result of the receive batch
2284  *
2285  * This function bumps XDP Tx tail and/or flush redirect map, and
2286  * should be called when a batch of packets has been processed in the
2287  * napi loop.
2288  **/
2289 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2290 {
2291 	if (xdp_res & I40E_XDP_REDIR)
2292 		xdp_do_flush_map();
2293 
2294 	if (xdp_res & I40E_XDP_TX) {
2295 		struct i40e_ring *xdp_ring =
2296 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2297 
2298 		i40e_xdp_ring_update_tail(xdp_ring);
2299 	}
2300 }
2301 
2302 /**
2303  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2304  * @rx_ring: rx descriptor ring to transact packets on
2305  * @budget: Total limit on number of packets to process
2306  *
2307  * This function provides a "bounce buffer" approach to Rx interrupt
2308  * processing.  The advantage to this is that on systems that have
2309  * expensive overhead for IOMMU access this provides a means of avoiding
2310  * it by maintaining the mapping of the page to the system.
2311  *
2312  * Returns amount of work completed
2313  **/
2314 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2315 {
2316 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2317 	struct sk_buff *skb = rx_ring->skb;
2318 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2319 	unsigned int xdp_xmit = 0;
2320 	bool failure = false;
2321 	struct xdp_buff xdp;
2322 
2323 #if (PAGE_SIZE < 8192)
2324 	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2325 #endif
2326 	xdp.rxq = &rx_ring->xdp_rxq;
2327 
2328 	while (likely(total_rx_packets < (unsigned int)budget)) {
2329 		struct i40e_rx_buffer *rx_buffer;
2330 		union i40e_rx_desc *rx_desc;
2331 		unsigned int size;
2332 		u64 qword;
2333 
2334 		/* return some buffers to hardware, one at a time is too slow */
2335 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2336 			failure = failure ||
2337 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2338 			cleaned_count = 0;
2339 		}
2340 
2341 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2342 
2343 		/* status_error_len will always be zero for unused descriptors
2344 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2345 		 * which is always zero because packet split isn't used, if the
2346 		 * hardware wrote DD then the length will be non-zero
2347 		 */
2348 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2349 
2350 		/* This memory barrier is needed to keep us from reading
2351 		 * any other fields out of the rx_desc until we have
2352 		 * verified the descriptor has been written back.
2353 		 */
2354 		dma_rmb();
2355 
2356 		if (i40e_rx_is_programming_status(qword)) {
2357 			i40e_clean_programming_status(rx_ring,
2358 						      rx_desc->raw.qword[0],
2359 						      qword);
2360 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2361 			i40e_inc_ntc(rx_ring);
2362 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2363 			cleaned_count++;
2364 			continue;
2365 		}
2366 
2367 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2368 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2369 		if (!size)
2370 			break;
2371 
2372 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2373 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2374 
2375 		/* retrieve a buffer from the ring */
2376 		if (!skb) {
2377 			xdp.data = page_address(rx_buffer->page) +
2378 				   rx_buffer->page_offset;
2379 			xdp.data_meta = xdp.data;
2380 			xdp.data_hard_start = xdp.data -
2381 					      i40e_rx_offset(rx_ring);
2382 			xdp.data_end = xdp.data + size;
2383 #if (PAGE_SIZE > 4096)
2384 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2385 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2386 #endif
2387 			skb = i40e_run_xdp(rx_ring, &xdp);
2388 		}
2389 
2390 		if (IS_ERR(skb)) {
2391 			unsigned int xdp_res = -PTR_ERR(skb);
2392 
2393 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2394 				xdp_xmit |= xdp_res;
2395 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2396 			} else {
2397 				rx_buffer->pagecnt_bias++;
2398 			}
2399 			total_rx_bytes += size;
2400 			total_rx_packets++;
2401 		} else if (skb) {
2402 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2403 		} else if (ring_uses_build_skb(rx_ring)) {
2404 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2405 		} else {
2406 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2407 		}
2408 
2409 		/* exit if we failed to retrieve a buffer */
2410 		if (!skb) {
2411 			rx_ring->rx_stats.alloc_buff_failed++;
2412 			rx_buffer->pagecnt_bias++;
2413 			break;
2414 		}
2415 
2416 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2417 		cleaned_count++;
2418 
2419 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2420 			continue;
2421 
2422 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2423 			skb = NULL;
2424 			continue;
2425 		}
2426 
2427 		/* probably a little skewed due to removing CRC */
2428 		total_rx_bytes += skb->len;
2429 
2430 		/* populate checksum, VLAN, and protocol */
2431 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2432 
2433 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2434 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2435 		skb = NULL;
2436 
2437 		/* update budget accounting */
2438 		total_rx_packets++;
2439 	}
2440 
2441 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2442 	rx_ring->skb = skb;
2443 
2444 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2445 
2446 	/* guarantee a trip back through this routine if there was a failure */
2447 	return failure ? budget : (int)total_rx_packets;
2448 }
2449 
2450 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2451 {
2452 	u32 val;
2453 
2454 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2455 	 * points out doing so is "meaningless since it was already
2456 	 * auto-cleared". The auto-clearing happens when the interrupt is
2457 	 * asserted.
2458 	 *
2459 	 * Hardware errata 28 for also indicates that writing to a
2460 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2461 	 * an event in the PBA anyway so we need to rely on the automask
2462 	 * to hold pending events for us until the interrupt is re-enabled
2463 	 *
2464 	 * The itr value is reported in microseconds, and the register
2465 	 * value is recorded in 2 microsecond units. For this reason we
2466 	 * only need to shift by the interval shift - 1 instead of the
2467 	 * full value.
2468 	 */
2469 	itr &= I40E_ITR_MASK;
2470 
2471 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2472 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2473 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2474 
2475 	return val;
2476 }
2477 
2478 /* a small macro to shorten up some long lines */
2479 #define INTREG I40E_PFINT_DYN_CTLN
2480 
2481 /* The act of updating the ITR will cause it to immediately trigger. In order
2482  * to prevent this from throwing off adaptive update statistics we defer the
2483  * update so that it can only happen so often. So after either Tx or Rx are
2484  * updated we make the adaptive scheme wait until either the ITR completely
2485  * expires via the next_update expiration or we have been through at least
2486  * 3 interrupts.
2487  */
2488 #define ITR_COUNTDOWN_START 3
2489 
2490 /**
2491  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2492  * @vsi: the VSI we care about
2493  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2494  *
2495  **/
2496 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2497 					  struct i40e_q_vector *q_vector)
2498 {
2499 	struct i40e_hw *hw = &vsi->back->hw;
2500 	u32 intval;
2501 
2502 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2503 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2504 		i40e_irq_dynamic_enable_icr0(vsi->back);
2505 		return;
2506 	}
2507 
2508 	/* These will do nothing if dynamic updates are not enabled */
2509 	i40e_update_itr(q_vector, &q_vector->tx);
2510 	i40e_update_itr(q_vector, &q_vector->rx);
2511 
2512 	/* This block of logic allows us to get away with only updating
2513 	 * one ITR value with each interrupt. The idea is to perform a
2514 	 * pseudo-lazy update with the following criteria.
2515 	 *
2516 	 * 1. Rx is given higher priority than Tx if both are in same state
2517 	 * 2. If we must reduce an ITR that is given highest priority.
2518 	 * 3. We then give priority to increasing ITR based on amount.
2519 	 */
2520 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2521 		/* Rx ITR needs to be reduced, this is highest priority */
2522 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2523 					   q_vector->rx.target_itr);
2524 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2525 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2526 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2527 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2528 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2529 		/* Tx ITR needs to be reduced, this is second priority
2530 		 * Tx ITR needs to be increased more than Rx, fourth priority
2531 		 */
2532 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2533 					   q_vector->tx.target_itr);
2534 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2535 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2536 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2537 		/* Rx ITR needs to be increased, third priority */
2538 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2539 					   q_vector->rx.target_itr);
2540 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2541 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542 	} else {
2543 		/* No ITR update, lowest priority */
2544 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2545 		if (q_vector->itr_countdown)
2546 			q_vector->itr_countdown--;
2547 	}
2548 
2549 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2550 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2551 }
2552 
2553 /**
2554  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2555  * @napi: napi struct with our devices info in it
2556  * @budget: amount of work driver is allowed to do this pass, in packets
2557  *
2558  * This function will clean all queues associated with a q_vector.
2559  *
2560  * Returns the amount of work done
2561  **/
2562 int i40e_napi_poll(struct napi_struct *napi, int budget)
2563 {
2564 	struct i40e_q_vector *q_vector =
2565 			       container_of(napi, struct i40e_q_vector, napi);
2566 	struct i40e_vsi *vsi = q_vector->vsi;
2567 	struct i40e_ring *ring;
2568 	bool clean_complete = true;
2569 	bool arm_wb = false;
2570 	int budget_per_ring;
2571 	int work_done = 0;
2572 
2573 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2574 		napi_complete(napi);
2575 		return 0;
2576 	}
2577 
2578 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2579 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2580 	 */
2581 	i40e_for_each_ring(ring, q_vector->tx) {
2582 		bool wd = ring->xsk_umem ?
2583 			  i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2584 			  i40e_clean_tx_irq(vsi, ring, budget);
2585 
2586 		if (!wd) {
2587 			clean_complete = false;
2588 			continue;
2589 		}
2590 		arm_wb |= ring->arm_wb;
2591 		ring->arm_wb = false;
2592 	}
2593 
2594 	/* Handle case where we are called by netpoll with a budget of 0 */
2595 	if (budget <= 0)
2596 		goto tx_only;
2597 
2598 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2599 	 * allow the budget to go below 1 because that would exit polling early.
2600 	 */
2601 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2602 
2603 	i40e_for_each_ring(ring, q_vector->rx) {
2604 		int cleaned = ring->xsk_umem ?
2605 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2606 			      i40e_clean_rx_irq(ring, budget_per_ring);
2607 
2608 		work_done += cleaned;
2609 		/* if we clean as many as budgeted, we must not be done */
2610 		if (cleaned >= budget_per_ring)
2611 			clean_complete = false;
2612 	}
2613 
2614 	/* If work not completed, return budget and polling will return */
2615 	if (!clean_complete) {
2616 		int cpu_id = smp_processor_id();
2617 
2618 		/* It is possible that the interrupt affinity has changed but,
2619 		 * if the cpu is pegged at 100%, polling will never exit while
2620 		 * traffic continues and the interrupt will be stuck on this
2621 		 * cpu.  We check to make sure affinity is correct before we
2622 		 * continue to poll, otherwise we must stop polling so the
2623 		 * interrupt can move to the correct cpu.
2624 		 */
2625 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2626 			/* Tell napi that we are done polling */
2627 			napi_complete_done(napi, work_done);
2628 
2629 			/* Force an interrupt */
2630 			i40e_force_wb(vsi, q_vector);
2631 
2632 			/* Return budget-1 so that polling stops */
2633 			return budget - 1;
2634 		}
2635 tx_only:
2636 		if (arm_wb) {
2637 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2638 			i40e_enable_wb_on_itr(vsi, q_vector);
2639 		}
2640 		return budget;
2641 	}
2642 
2643 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2644 		q_vector->arm_wb_state = false;
2645 
2646 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2647 	 * poll us due to busy-polling
2648 	 */
2649 	if (likely(napi_complete_done(napi, work_done)))
2650 		i40e_update_enable_itr(vsi, q_vector);
2651 
2652 	return min(work_done, budget - 1);
2653 }
2654 
2655 /**
2656  * i40e_atr - Add a Flow Director ATR filter
2657  * @tx_ring:  ring to add programming descriptor to
2658  * @skb:      send buffer
2659  * @tx_flags: send tx flags
2660  **/
2661 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2662 		     u32 tx_flags)
2663 {
2664 	struct i40e_filter_program_desc *fdir_desc;
2665 	struct i40e_pf *pf = tx_ring->vsi->back;
2666 	union {
2667 		unsigned char *network;
2668 		struct iphdr *ipv4;
2669 		struct ipv6hdr *ipv6;
2670 	} hdr;
2671 	struct tcphdr *th;
2672 	unsigned int hlen;
2673 	u32 flex_ptype, dtype_cmd;
2674 	int l4_proto;
2675 	u16 i;
2676 
2677 	/* make sure ATR is enabled */
2678 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2679 		return;
2680 
2681 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2682 		return;
2683 
2684 	/* if sampling is disabled do nothing */
2685 	if (!tx_ring->atr_sample_rate)
2686 		return;
2687 
2688 	/* Currently only IPv4/IPv6 with TCP is supported */
2689 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2690 		return;
2691 
2692 	/* snag network header to get L4 type and address */
2693 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2694 		      skb_inner_network_header(skb) : skb_network_header(skb);
2695 
2696 	/* Note: tx_flags gets modified to reflect inner protocols in
2697 	 * tx_enable_csum function if encap is enabled.
2698 	 */
2699 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2700 		/* access ihl as u8 to avoid unaligned access on ia64 */
2701 		hlen = (hdr.network[0] & 0x0F) << 2;
2702 		l4_proto = hdr.ipv4->protocol;
2703 	} else {
2704 		/* find the start of the innermost ipv6 header */
2705 		unsigned int inner_hlen = hdr.network - skb->data;
2706 		unsigned int h_offset = inner_hlen;
2707 
2708 		/* this function updates h_offset to the end of the header */
2709 		l4_proto =
2710 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2711 		/* hlen will contain our best estimate of the tcp header */
2712 		hlen = h_offset - inner_hlen;
2713 	}
2714 
2715 	if (l4_proto != IPPROTO_TCP)
2716 		return;
2717 
2718 	th = (struct tcphdr *)(hdr.network + hlen);
2719 
2720 	/* Due to lack of space, no more new filters can be programmed */
2721 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2722 		return;
2723 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2724 		/* HW ATR eviction will take care of removing filters on FIN
2725 		 * and RST packets.
2726 		 */
2727 		if (th->fin || th->rst)
2728 			return;
2729 	}
2730 
2731 	tx_ring->atr_count++;
2732 
2733 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2734 	if (!th->fin &&
2735 	    !th->syn &&
2736 	    !th->rst &&
2737 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2738 		return;
2739 
2740 	tx_ring->atr_count = 0;
2741 
2742 	/* grab the next descriptor */
2743 	i = tx_ring->next_to_use;
2744 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2745 
2746 	i++;
2747 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2748 
2749 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2750 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2751 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2752 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2753 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2754 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2755 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2756 
2757 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2758 
2759 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2760 
2761 	dtype_cmd |= (th->fin || th->rst) ?
2762 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2763 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2764 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2765 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2766 
2767 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2768 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2769 
2770 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2771 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2772 
2773 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2774 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2775 		dtype_cmd |=
2776 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2777 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2778 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2779 	else
2780 		dtype_cmd |=
2781 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2782 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2783 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2784 
2785 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2786 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2787 
2788 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2789 	fdir_desc->rsvd = cpu_to_le32(0);
2790 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2791 	fdir_desc->fd_id = cpu_to_le32(0);
2792 }
2793 
2794 /**
2795  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2796  * @skb:     send buffer
2797  * @tx_ring: ring to send buffer on
2798  * @flags:   the tx flags to be set
2799  *
2800  * Checks the skb and set up correspondingly several generic transmit flags
2801  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2802  *
2803  * Returns error code indicate the frame should be dropped upon error and the
2804  * otherwise  returns 0 to indicate the flags has been set properly.
2805  **/
2806 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2807 					     struct i40e_ring *tx_ring,
2808 					     u32 *flags)
2809 {
2810 	__be16 protocol = skb->protocol;
2811 	u32  tx_flags = 0;
2812 
2813 	if (protocol == htons(ETH_P_8021Q) &&
2814 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2815 		/* When HW VLAN acceleration is turned off by the user the
2816 		 * stack sets the protocol to 8021q so that the driver
2817 		 * can take any steps required to support the SW only
2818 		 * VLAN handling.  In our case the driver doesn't need
2819 		 * to take any further steps so just set the protocol
2820 		 * to the encapsulated ethertype.
2821 		 */
2822 		skb->protocol = vlan_get_protocol(skb);
2823 		goto out;
2824 	}
2825 
2826 	/* if we have a HW VLAN tag being added, default to the HW one */
2827 	if (skb_vlan_tag_present(skb)) {
2828 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2829 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2830 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2831 	} else if (protocol == htons(ETH_P_8021Q)) {
2832 		struct vlan_hdr *vhdr, _vhdr;
2833 
2834 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2835 		if (!vhdr)
2836 			return -EINVAL;
2837 
2838 		protocol = vhdr->h_vlan_encapsulated_proto;
2839 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2840 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2841 	}
2842 
2843 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2844 		goto out;
2845 
2846 	/* Insert 802.1p priority into VLAN header */
2847 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2848 	    (skb->priority != TC_PRIO_CONTROL)) {
2849 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2850 		tx_flags |= (skb->priority & 0x7) <<
2851 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2852 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2853 			struct vlan_ethhdr *vhdr;
2854 			int rc;
2855 
2856 			rc = skb_cow_head(skb, 0);
2857 			if (rc < 0)
2858 				return rc;
2859 			vhdr = (struct vlan_ethhdr *)skb->data;
2860 			vhdr->h_vlan_TCI = htons(tx_flags >>
2861 						 I40E_TX_FLAGS_VLAN_SHIFT);
2862 		} else {
2863 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2864 		}
2865 	}
2866 
2867 out:
2868 	*flags = tx_flags;
2869 	return 0;
2870 }
2871 
2872 /**
2873  * i40e_tso - set up the tso context descriptor
2874  * @first:    pointer to first Tx buffer for xmit
2875  * @hdr_len:  ptr to the size of the packet header
2876  * @cd_type_cmd_tso_mss: Quad Word 1
2877  *
2878  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2879  **/
2880 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2881 		    u64 *cd_type_cmd_tso_mss)
2882 {
2883 	struct sk_buff *skb = first->skb;
2884 	u64 cd_cmd, cd_tso_len, cd_mss;
2885 	union {
2886 		struct iphdr *v4;
2887 		struct ipv6hdr *v6;
2888 		unsigned char *hdr;
2889 	} ip;
2890 	union {
2891 		struct tcphdr *tcp;
2892 		struct udphdr *udp;
2893 		unsigned char *hdr;
2894 	} l4;
2895 	u32 paylen, l4_offset;
2896 	u16 gso_segs, gso_size;
2897 	int err;
2898 
2899 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2900 		return 0;
2901 
2902 	if (!skb_is_gso(skb))
2903 		return 0;
2904 
2905 	err = skb_cow_head(skb, 0);
2906 	if (err < 0)
2907 		return err;
2908 
2909 	ip.hdr = skb_network_header(skb);
2910 	l4.hdr = skb_transport_header(skb);
2911 
2912 	/* initialize outer IP header fields */
2913 	if (ip.v4->version == 4) {
2914 		ip.v4->tot_len = 0;
2915 		ip.v4->check = 0;
2916 	} else {
2917 		ip.v6->payload_len = 0;
2918 	}
2919 
2920 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2921 					 SKB_GSO_GRE_CSUM |
2922 					 SKB_GSO_IPXIP4 |
2923 					 SKB_GSO_IPXIP6 |
2924 					 SKB_GSO_UDP_TUNNEL |
2925 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2926 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2927 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2928 			l4.udp->len = 0;
2929 
2930 			/* determine offset of outer transport header */
2931 			l4_offset = l4.hdr - skb->data;
2932 
2933 			/* remove payload length from outer checksum */
2934 			paylen = skb->len - l4_offset;
2935 			csum_replace_by_diff(&l4.udp->check,
2936 					     (__force __wsum)htonl(paylen));
2937 		}
2938 
2939 		/* reset pointers to inner headers */
2940 		ip.hdr = skb_inner_network_header(skb);
2941 		l4.hdr = skb_inner_transport_header(skb);
2942 
2943 		/* initialize inner IP header fields */
2944 		if (ip.v4->version == 4) {
2945 			ip.v4->tot_len = 0;
2946 			ip.v4->check = 0;
2947 		} else {
2948 			ip.v6->payload_len = 0;
2949 		}
2950 	}
2951 
2952 	/* determine offset of inner transport header */
2953 	l4_offset = l4.hdr - skb->data;
2954 
2955 	/* remove payload length from inner checksum */
2956 	paylen = skb->len - l4_offset;
2957 
2958 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2959 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2960 		/* compute length of segmentation header */
2961 		*hdr_len = sizeof(*l4.udp) + l4_offset;
2962 	} else {
2963 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2964 		/* compute length of segmentation header */
2965 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2966 	}
2967 
2968 	/* pull values out of skb_shinfo */
2969 	gso_size = skb_shinfo(skb)->gso_size;
2970 	gso_segs = skb_shinfo(skb)->gso_segs;
2971 
2972 	/* update GSO size and bytecount with header size */
2973 	first->gso_segs = gso_segs;
2974 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2975 
2976 	/* find the field values */
2977 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2978 	cd_tso_len = skb->len - *hdr_len;
2979 	cd_mss = gso_size;
2980 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2981 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2982 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2983 	return 1;
2984 }
2985 
2986 /**
2987  * i40e_tsyn - set up the tsyn context descriptor
2988  * @tx_ring:  ptr to the ring to send
2989  * @skb:      ptr to the skb we're sending
2990  * @tx_flags: the collected send information
2991  * @cd_type_cmd_tso_mss: Quad Word 1
2992  *
2993  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2994  **/
2995 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2996 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2997 {
2998 	struct i40e_pf *pf;
2999 
3000 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3001 		return 0;
3002 
3003 	/* Tx timestamps cannot be sampled when doing TSO */
3004 	if (tx_flags & I40E_TX_FLAGS_TSO)
3005 		return 0;
3006 
3007 	/* only timestamp the outbound packet if the user has requested it and
3008 	 * we are not already transmitting a packet to be timestamped
3009 	 */
3010 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3011 	if (!(pf->flags & I40E_FLAG_PTP))
3012 		return 0;
3013 
3014 	if (pf->ptp_tx &&
3015 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3016 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3017 		pf->ptp_tx_start = jiffies;
3018 		pf->ptp_tx_skb = skb_get(skb);
3019 	} else {
3020 		pf->tx_hwtstamp_skipped++;
3021 		return 0;
3022 	}
3023 
3024 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3025 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3026 
3027 	return 1;
3028 }
3029 
3030 /**
3031  * i40e_tx_enable_csum - Enable Tx checksum offloads
3032  * @skb: send buffer
3033  * @tx_flags: pointer to Tx flags currently set
3034  * @td_cmd: Tx descriptor command bits to set
3035  * @td_offset: Tx descriptor header offsets to set
3036  * @tx_ring: Tx descriptor ring
3037  * @cd_tunneling: ptr to context desc bits
3038  **/
3039 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3040 			       u32 *td_cmd, u32 *td_offset,
3041 			       struct i40e_ring *tx_ring,
3042 			       u32 *cd_tunneling)
3043 {
3044 	union {
3045 		struct iphdr *v4;
3046 		struct ipv6hdr *v6;
3047 		unsigned char *hdr;
3048 	} ip;
3049 	union {
3050 		struct tcphdr *tcp;
3051 		struct udphdr *udp;
3052 		unsigned char *hdr;
3053 	} l4;
3054 	unsigned char *exthdr;
3055 	u32 offset, cmd = 0;
3056 	__be16 frag_off;
3057 	u8 l4_proto = 0;
3058 
3059 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3060 		return 0;
3061 
3062 	ip.hdr = skb_network_header(skb);
3063 	l4.hdr = skb_transport_header(skb);
3064 
3065 	/* compute outer L2 header size */
3066 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3067 
3068 	if (skb->encapsulation) {
3069 		u32 tunnel = 0;
3070 		/* define outer network header type */
3071 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3072 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3073 				  I40E_TX_CTX_EXT_IP_IPV4 :
3074 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3075 
3076 			l4_proto = ip.v4->protocol;
3077 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3078 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3079 
3080 			exthdr = ip.hdr + sizeof(*ip.v6);
3081 			l4_proto = ip.v6->nexthdr;
3082 			if (l4.hdr != exthdr)
3083 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3084 						 &l4_proto, &frag_off);
3085 		}
3086 
3087 		/* define outer transport */
3088 		switch (l4_proto) {
3089 		case IPPROTO_UDP:
3090 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3091 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3092 			break;
3093 		case IPPROTO_GRE:
3094 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3095 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3096 			break;
3097 		case IPPROTO_IPIP:
3098 		case IPPROTO_IPV6:
3099 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3100 			l4.hdr = skb_inner_network_header(skb);
3101 			break;
3102 		default:
3103 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3104 				return -1;
3105 
3106 			skb_checksum_help(skb);
3107 			return 0;
3108 		}
3109 
3110 		/* compute outer L3 header size */
3111 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3112 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3113 
3114 		/* switch IP header pointer from outer to inner header */
3115 		ip.hdr = skb_inner_network_header(skb);
3116 
3117 		/* compute tunnel header size */
3118 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3119 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3120 
3121 		/* indicate if we need to offload outer UDP header */
3122 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3123 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3124 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3125 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3126 
3127 		/* record tunnel offload values */
3128 		*cd_tunneling |= tunnel;
3129 
3130 		/* switch L4 header pointer from outer to inner */
3131 		l4.hdr = skb_inner_transport_header(skb);
3132 		l4_proto = 0;
3133 
3134 		/* reset type as we transition from outer to inner headers */
3135 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3136 		if (ip.v4->version == 4)
3137 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3138 		if (ip.v6->version == 6)
3139 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3140 	}
3141 
3142 	/* Enable IP checksum offloads */
3143 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3144 		l4_proto = ip.v4->protocol;
3145 		/* the stack computes the IP header already, the only time we
3146 		 * need the hardware to recompute it is in the case of TSO.
3147 		 */
3148 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3149 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3150 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3151 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3152 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3153 
3154 		exthdr = ip.hdr + sizeof(*ip.v6);
3155 		l4_proto = ip.v6->nexthdr;
3156 		if (l4.hdr != exthdr)
3157 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3158 					 &l4_proto, &frag_off);
3159 	}
3160 
3161 	/* compute inner L3 header size */
3162 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3163 
3164 	/* Enable L4 checksum offloads */
3165 	switch (l4_proto) {
3166 	case IPPROTO_TCP:
3167 		/* enable checksum offloads */
3168 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3169 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3170 		break;
3171 	case IPPROTO_SCTP:
3172 		/* enable SCTP checksum offload */
3173 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3174 		offset |= (sizeof(struct sctphdr) >> 2) <<
3175 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176 		break;
3177 	case IPPROTO_UDP:
3178 		/* enable UDP checksum offload */
3179 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3180 		offset |= (sizeof(struct udphdr) >> 2) <<
3181 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182 		break;
3183 	default:
3184 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3185 			return -1;
3186 		skb_checksum_help(skb);
3187 		return 0;
3188 	}
3189 
3190 	*td_cmd |= cmd;
3191 	*td_offset |= offset;
3192 
3193 	return 1;
3194 }
3195 
3196 /**
3197  * i40e_create_tx_ctx Build the Tx context descriptor
3198  * @tx_ring:  ring to create the descriptor on
3199  * @cd_type_cmd_tso_mss: Quad Word 1
3200  * @cd_tunneling: Quad Word 0 - bits 0-31
3201  * @cd_l2tag2: Quad Word 0 - bits 32-63
3202  **/
3203 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3204 			       const u64 cd_type_cmd_tso_mss,
3205 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3206 {
3207 	struct i40e_tx_context_desc *context_desc;
3208 	int i = tx_ring->next_to_use;
3209 
3210 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3211 	    !cd_tunneling && !cd_l2tag2)
3212 		return;
3213 
3214 	/* grab the next descriptor */
3215 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3216 
3217 	i++;
3218 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3219 
3220 	/* cpu_to_le32 and assign to struct fields */
3221 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3222 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3223 	context_desc->rsvd = cpu_to_le16(0);
3224 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3225 }
3226 
3227 /**
3228  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3229  * @tx_ring: the ring to be checked
3230  * @size:    the size buffer we want to assure is available
3231  *
3232  * Returns -EBUSY if a stop is needed, else 0
3233  **/
3234 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3235 {
3236 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3237 	/* Memory barrier before checking head and tail */
3238 	smp_mb();
3239 
3240 	/* Check again in a case another CPU has just made room available. */
3241 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3242 		return -EBUSY;
3243 
3244 	/* A reprieve! - use start_queue because it doesn't call schedule */
3245 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3246 	++tx_ring->tx_stats.restart_queue;
3247 	return 0;
3248 }
3249 
3250 /**
3251  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3252  * @skb:      send buffer
3253  *
3254  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3255  * and so we need to figure out the cases where we need to linearize the skb.
3256  *
3257  * For TSO we need to count the TSO header and segment payload separately.
3258  * As such we need to check cases where we have 7 fragments or more as we
3259  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3260  * the segment payload in the first descriptor, and another 7 for the
3261  * fragments.
3262  **/
3263 bool __i40e_chk_linearize(struct sk_buff *skb)
3264 {
3265 	const skb_frag_t *frag, *stale;
3266 	int nr_frags, sum;
3267 
3268 	/* no need to check if number of frags is less than 7 */
3269 	nr_frags = skb_shinfo(skb)->nr_frags;
3270 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3271 		return false;
3272 
3273 	/* We need to walk through the list and validate that each group
3274 	 * of 6 fragments totals at least gso_size.
3275 	 */
3276 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3277 	frag = &skb_shinfo(skb)->frags[0];
3278 
3279 	/* Initialize size to the negative value of gso_size minus 1.  We
3280 	 * use this as the worst case scenerio in which the frag ahead
3281 	 * of us only provides one byte which is why we are limited to 6
3282 	 * descriptors for a single transmit as the header and previous
3283 	 * fragment are already consuming 2 descriptors.
3284 	 */
3285 	sum = 1 - skb_shinfo(skb)->gso_size;
3286 
3287 	/* Add size of frags 0 through 4 to create our initial sum */
3288 	sum += skb_frag_size(frag++);
3289 	sum += skb_frag_size(frag++);
3290 	sum += skb_frag_size(frag++);
3291 	sum += skb_frag_size(frag++);
3292 	sum += skb_frag_size(frag++);
3293 
3294 	/* Walk through fragments adding latest fragment, testing it, and
3295 	 * then removing stale fragments from the sum.
3296 	 */
3297 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3298 		int stale_size = skb_frag_size(stale);
3299 
3300 		sum += skb_frag_size(frag++);
3301 
3302 		/* The stale fragment may present us with a smaller
3303 		 * descriptor than the actual fragment size. To account
3304 		 * for that we need to remove all the data on the front and
3305 		 * figure out what the remainder would be in the last
3306 		 * descriptor associated with the fragment.
3307 		 */
3308 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3309 			int align_pad = -(skb_frag_off(stale)) &
3310 					(I40E_MAX_READ_REQ_SIZE - 1);
3311 
3312 			sum -= align_pad;
3313 			stale_size -= align_pad;
3314 
3315 			do {
3316 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3318 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3319 		}
3320 
3321 		/* if sum is negative we failed to make sufficient progress */
3322 		if (sum < 0)
3323 			return true;
3324 
3325 		if (!nr_frags--)
3326 			break;
3327 
3328 		sum -= stale_size;
3329 	}
3330 
3331 	return false;
3332 }
3333 
3334 /**
3335  * i40e_tx_map - Build the Tx descriptor
3336  * @tx_ring:  ring to send buffer on
3337  * @skb:      send buffer
3338  * @first:    first buffer info buffer to use
3339  * @tx_flags: collected send information
3340  * @hdr_len:  size of the packet header
3341  * @td_cmd:   the command field in the descriptor
3342  * @td_offset: offset for checksum or crc
3343  *
3344  * Returns 0 on success, -1 on failure to DMA
3345  **/
3346 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3347 			      struct i40e_tx_buffer *first, u32 tx_flags,
3348 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3349 {
3350 	unsigned int data_len = skb->data_len;
3351 	unsigned int size = skb_headlen(skb);
3352 	skb_frag_t *frag;
3353 	struct i40e_tx_buffer *tx_bi;
3354 	struct i40e_tx_desc *tx_desc;
3355 	u16 i = tx_ring->next_to_use;
3356 	u32 td_tag = 0;
3357 	dma_addr_t dma;
3358 	u16 desc_count = 1;
3359 
3360 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3361 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3362 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3363 			 I40E_TX_FLAGS_VLAN_SHIFT;
3364 	}
3365 
3366 	first->tx_flags = tx_flags;
3367 
3368 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3369 
3370 	tx_desc = I40E_TX_DESC(tx_ring, i);
3371 	tx_bi = first;
3372 
3373 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3374 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3375 
3376 		if (dma_mapping_error(tx_ring->dev, dma))
3377 			goto dma_error;
3378 
3379 		/* record length, and DMA address */
3380 		dma_unmap_len_set(tx_bi, len, size);
3381 		dma_unmap_addr_set(tx_bi, dma, dma);
3382 
3383 		/* align size to end of page */
3384 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3385 		tx_desc->buffer_addr = cpu_to_le64(dma);
3386 
3387 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3388 			tx_desc->cmd_type_offset_bsz =
3389 				build_ctob(td_cmd, td_offset,
3390 					   max_data, td_tag);
3391 
3392 			tx_desc++;
3393 			i++;
3394 			desc_count++;
3395 
3396 			if (i == tx_ring->count) {
3397 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3398 				i = 0;
3399 			}
3400 
3401 			dma += max_data;
3402 			size -= max_data;
3403 
3404 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3405 			tx_desc->buffer_addr = cpu_to_le64(dma);
3406 		}
3407 
3408 		if (likely(!data_len))
3409 			break;
3410 
3411 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3412 							  size, td_tag);
3413 
3414 		tx_desc++;
3415 		i++;
3416 		desc_count++;
3417 
3418 		if (i == tx_ring->count) {
3419 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3420 			i = 0;
3421 		}
3422 
3423 		size = skb_frag_size(frag);
3424 		data_len -= size;
3425 
3426 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3427 				       DMA_TO_DEVICE);
3428 
3429 		tx_bi = &tx_ring->tx_bi[i];
3430 	}
3431 
3432 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3433 
3434 	i++;
3435 	if (i == tx_ring->count)
3436 		i = 0;
3437 
3438 	tx_ring->next_to_use = i;
3439 
3440 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3441 
3442 	/* write last descriptor with EOP bit */
3443 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3444 
3445 	/* We OR these values together to check both against 4 (WB_STRIDE)
3446 	 * below. This is safe since we don't re-use desc_count afterwards.
3447 	 */
3448 	desc_count |= ++tx_ring->packet_stride;
3449 
3450 	if (desc_count >= WB_STRIDE) {
3451 		/* write last descriptor with RS bit set */
3452 		td_cmd |= I40E_TX_DESC_CMD_RS;
3453 		tx_ring->packet_stride = 0;
3454 	}
3455 
3456 	tx_desc->cmd_type_offset_bsz =
3457 			build_ctob(td_cmd, td_offset, size, td_tag);
3458 
3459 	skb_tx_timestamp(skb);
3460 
3461 	/* Force memory writes to complete before letting h/w know there
3462 	 * are new descriptors to fetch.
3463 	 *
3464 	 * We also use this memory barrier to make certain all of the
3465 	 * status bits have been updated before next_to_watch is written.
3466 	 */
3467 	wmb();
3468 
3469 	/* set next_to_watch value indicating a packet is present */
3470 	first->next_to_watch = tx_desc;
3471 
3472 	/* notify HW of packet */
3473 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3474 		writel(i, tx_ring->tail);
3475 	}
3476 
3477 	return 0;
3478 
3479 dma_error:
3480 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3481 
3482 	/* clear dma mappings for failed tx_bi map */
3483 	for (;;) {
3484 		tx_bi = &tx_ring->tx_bi[i];
3485 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3486 		if (tx_bi == first)
3487 			break;
3488 		if (i == 0)
3489 			i = tx_ring->count;
3490 		i--;
3491 	}
3492 
3493 	tx_ring->next_to_use = i;
3494 
3495 	return -1;
3496 }
3497 
3498 /**
3499  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3500  * @xdp: data to transmit
3501  * @xdp_ring: XDP Tx ring
3502  **/
3503 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3504 			      struct i40e_ring *xdp_ring)
3505 {
3506 	u16 i = xdp_ring->next_to_use;
3507 	struct i40e_tx_buffer *tx_bi;
3508 	struct i40e_tx_desc *tx_desc;
3509 	void *data = xdpf->data;
3510 	u32 size = xdpf->len;
3511 	dma_addr_t dma;
3512 
3513 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3514 		xdp_ring->tx_stats.tx_busy++;
3515 		return I40E_XDP_CONSUMED;
3516 	}
3517 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3518 	if (dma_mapping_error(xdp_ring->dev, dma))
3519 		return I40E_XDP_CONSUMED;
3520 
3521 	tx_bi = &xdp_ring->tx_bi[i];
3522 	tx_bi->bytecount = size;
3523 	tx_bi->gso_segs = 1;
3524 	tx_bi->xdpf = xdpf;
3525 
3526 	/* record length, and DMA address */
3527 	dma_unmap_len_set(tx_bi, len, size);
3528 	dma_unmap_addr_set(tx_bi, dma, dma);
3529 
3530 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3531 	tx_desc->buffer_addr = cpu_to_le64(dma);
3532 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3533 						  | I40E_TXD_CMD,
3534 						  0, size, 0);
3535 
3536 	/* Make certain all of the status bits have been updated
3537 	 * before next_to_watch is written.
3538 	 */
3539 	smp_wmb();
3540 
3541 	i++;
3542 	if (i == xdp_ring->count)
3543 		i = 0;
3544 
3545 	tx_bi->next_to_watch = tx_desc;
3546 	xdp_ring->next_to_use = i;
3547 
3548 	return I40E_XDP_TX;
3549 }
3550 
3551 /**
3552  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3553  * @skb:     send buffer
3554  * @tx_ring: ring to send buffer on
3555  *
3556  * Returns NETDEV_TX_OK if sent, else an error code
3557  **/
3558 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3559 					struct i40e_ring *tx_ring)
3560 {
3561 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3562 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3563 	struct i40e_tx_buffer *first;
3564 	u32 td_offset = 0;
3565 	u32 tx_flags = 0;
3566 	__be16 protocol;
3567 	u32 td_cmd = 0;
3568 	u8 hdr_len = 0;
3569 	int tso, count;
3570 	int tsyn;
3571 
3572 	/* prefetch the data, we'll need it later */
3573 	prefetch(skb->data);
3574 
3575 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3576 
3577 	count = i40e_xmit_descriptor_count(skb);
3578 	if (i40e_chk_linearize(skb, count)) {
3579 		if (__skb_linearize(skb)) {
3580 			dev_kfree_skb_any(skb);
3581 			return NETDEV_TX_OK;
3582 		}
3583 		count = i40e_txd_use_count(skb->len);
3584 		tx_ring->tx_stats.tx_linearize++;
3585 	}
3586 
3587 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3588 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3589 	 *       + 4 desc gap to avoid the cache line where head is,
3590 	 *       + 1 desc for context descriptor,
3591 	 * otherwise try next time
3592 	 */
3593 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3594 		tx_ring->tx_stats.tx_busy++;
3595 		return NETDEV_TX_BUSY;
3596 	}
3597 
3598 	/* record the location of the first descriptor for this packet */
3599 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3600 	first->skb = skb;
3601 	first->bytecount = skb->len;
3602 	first->gso_segs = 1;
3603 
3604 	/* prepare the xmit flags */
3605 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3606 		goto out_drop;
3607 
3608 	/* obtain protocol of skb */
3609 	protocol = vlan_get_protocol(skb);
3610 
3611 	/* setup IPv4/IPv6 offloads */
3612 	if (protocol == htons(ETH_P_IP))
3613 		tx_flags |= I40E_TX_FLAGS_IPV4;
3614 	else if (protocol == htons(ETH_P_IPV6))
3615 		tx_flags |= I40E_TX_FLAGS_IPV6;
3616 
3617 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3618 
3619 	if (tso < 0)
3620 		goto out_drop;
3621 	else if (tso)
3622 		tx_flags |= I40E_TX_FLAGS_TSO;
3623 
3624 	/* Always offload the checksum, since it's in the data descriptor */
3625 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3626 				  tx_ring, &cd_tunneling);
3627 	if (tso < 0)
3628 		goto out_drop;
3629 
3630 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3631 
3632 	if (tsyn)
3633 		tx_flags |= I40E_TX_FLAGS_TSYN;
3634 
3635 	/* always enable CRC insertion offload */
3636 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637 
3638 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639 			   cd_tunneling, cd_l2tag2);
3640 
3641 	/* Add Flow Director ATR if it's enabled.
3642 	 *
3643 	 * NOTE: this must always be directly before the data descriptor.
3644 	 */
3645 	i40e_atr(tx_ring, skb, tx_flags);
3646 
3647 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648 			td_cmd, td_offset))
3649 		goto cleanup_tx_tstamp;
3650 
3651 	return NETDEV_TX_OK;
3652 
3653 out_drop:
3654 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655 	dev_kfree_skb_any(first->skb);
3656 	first->skb = NULL;
3657 cleanup_tx_tstamp:
3658 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660 
3661 		dev_kfree_skb_any(pf->ptp_tx_skb);
3662 		pf->ptp_tx_skb = NULL;
3663 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664 	}
3665 
3666 	return NETDEV_TX_OK;
3667 }
3668 
3669 /**
3670  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671  * @skb:    send buffer
3672  * @netdev: network interface device structure
3673  *
3674  * Returns NETDEV_TX_OK if sent, else an error code
3675  **/
3676 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677 {
3678 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3679 	struct i40e_vsi *vsi = np->vsi;
3680 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681 
3682 	/* hardware can't handle really short frames, hardware padding works
3683 	 * beyond this point
3684 	 */
3685 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686 		return NETDEV_TX_OK;
3687 
3688 	return i40e_xmit_frame_ring(skb, tx_ring);
3689 }
3690 
3691 /**
3692  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693  * @dev: netdev
3694  * @xdp: XDP buffer
3695  *
3696  * Returns number of frames successfully sent. Frames that fail are
3697  * free'ed via XDP return API.
3698  *
3699  * For error cases, a negative errno code is returned and no-frames
3700  * are transmitted (caller must handle freeing frames).
3701  **/
3702 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703 		  u32 flags)
3704 {
3705 	struct i40e_netdev_priv *np = netdev_priv(dev);
3706 	unsigned int queue_index = smp_processor_id();
3707 	struct i40e_vsi *vsi = np->vsi;
3708 	struct i40e_pf *pf = vsi->back;
3709 	struct i40e_ring *xdp_ring;
3710 	int drops = 0;
3711 	int i;
3712 
3713 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3714 		return -ENETDOWN;
3715 
3716 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3717 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3718 		return -ENXIO;
3719 
3720 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3721 		return -EINVAL;
3722 
3723 	xdp_ring = vsi->xdp_rings[queue_index];
3724 
3725 	for (i = 0; i < n; i++) {
3726 		struct xdp_frame *xdpf = frames[i];
3727 		int err;
3728 
3729 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3730 		if (err != I40E_XDP_TX) {
3731 			xdp_return_frame_rx_napi(xdpf);
3732 			drops++;
3733 		}
3734 	}
3735 
3736 	if (unlikely(flags & XDP_XMIT_FLUSH))
3737 		i40e_xdp_ring_update_tail(xdp_ring);
3738 
3739 	return n - drops;
3740 }
3741