1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39 
40 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42 
43 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45 
46 	/* Use LAN VSI Id if not programmed by user */
47 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50 
51 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52 
53 	dtype_cmd |= add ?
54 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58 
59 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61 
62 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64 
65 	if (fdata->cnt_index) {
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 			     ((u32)fdata->cnt_index <<
69 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 	}
71 
72 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 	fdir_desc->rsvd = cpu_to_le32(0);
74 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77 
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80  * i40e_program_fdir_filter - Program a Flow Director filter
81  * @fdir_data: Packet data that will be filter parameters
82  * @raw_packet: the pre-allocated packet buffer for FDir
83  * @pf: The PF pointer
84  * @add: True for add/update, False for remove
85  **/
86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 				    u8 *raw_packet, struct i40e_pf *pf,
88 				    bool add)
89 {
90 	struct i40e_tx_buffer *tx_buf, *first;
91 	struct i40e_tx_desc *tx_desc;
92 	struct i40e_ring *tx_ring;
93 	struct i40e_vsi *vsi;
94 	struct device *dev;
95 	dma_addr_t dma;
96 	u32 td_cmd = 0;
97 	u16 i;
98 
99 	/* find existing FDIR VSI */
100 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 	if (!vsi)
102 		return -ENOENT;
103 
104 	tx_ring = vsi->tx_rings[0];
105 	dev = tx_ring->dev;
106 
107 	/* we need two descriptors to add/del a filter and we can wait */
108 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 		if (!i)
110 			return -EAGAIN;
111 		msleep_interruptible(1);
112 	}
113 
114 	dma = dma_map_single(dev, raw_packet,
115 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 	if (dma_mapping_error(dev, dma))
117 		goto dma_fail;
118 
119 	/* grab the next descriptor */
120 	i = tx_ring->next_to_use;
121 	first = &tx_ring->tx_bi[i];
122 	i40e_fdir(tx_ring, fdir_data, add);
123 
124 	/* Now program a dummy descriptor */
125 	i = tx_ring->next_to_use;
126 	tx_desc = I40E_TX_DESC(tx_ring, i);
127 	tx_buf = &tx_ring->tx_bi[i];
128 
129 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130 
131 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132 
133 	/* record length, and DMA address */
134 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 	dma_unmap_addr_set(tx_buf, dma, dma);
136 
137 	tx_desc->buffer_addr = cpu_to_le64(dma);
138 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139 
140 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 	tx_buf->raw_buf = (void *)raw_packet;
142 
143 	tx_desc->cmd_type_offset_bsz =
144 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145 
146 	/* Force memory writes to complete before letting h/w
147 	 * know there are new descriptors to fetch.
148 	 */
149 	wmb();
150 
151 	/* Mark the data descriptor to be watched */
152 	first->next_to_watch = tx_desc;
153 
154 	writel(tx_ring->next_to_use, tx_ring->tail);
155 	return 0;
156 
157 dma_fail:
158 	return -1;
159 }
160 
161 /**
162  * i40e_create_dummy_packet - Constructs dummy packet for HW
163  * @dummy_packet: preallocated space for dummy packet
164  * @ipv4: is layer 3 packet of version 4 or 6
165  * @l4proto: next level protocol used in data portion of l3
166  * @data: filter data
167  *
168  * Returns address of layer 4 protocol dummy packet.
169  **/
170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 				      struct i40e_fdir_filter *data)
172 {
173 	bool is_vlan = !!data->vlan_tag;
174 	struct vlan_hdr vlan;
175 	struct ipv6hdr ipv6;
176 	struct ethhdr eth;
177 	struct iphdr ip;
178 	u8 *tmp;
179 
180 	if (ipv4) {
181 		eth.h_proto = cpu_to_be16(ETH_P_IP);
182 		ip.protocol = l4proto;
183 		ip.version = 0x4;
184 		ip.ihl = 0x5;
185 
186 		ip.daddr = data->dst_ip;
187 		ip.saddr = data->src_ip;
188 	} else {
189 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 		ipv6.nexthdr = l4proto;
191 		ipv6.version = 0x6;
192 
193 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 		       sizeof(__be32) * 4);
195 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 		       sizeof(__be32) * 4);
197 	}
198 
199 	if (is_vlan) {
200 		vlan.h_vlan_TCI = data->vlan_tag;
201 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 		eth.h_proto = data->vlan_etype;
203 	}
204 
205 	tmp = dummy_packet;
206 	memcpy(tmp, &eth, sizeof(eth));
207 	tmp += sizeof(eth);
208 
209 	if (is_vlan) {
210 		memcpy(tmp, &vlan, sizeof(vlan));
211 		tmp += sizeof(vlan);
212 	}
213 
214 	if (ipv4) {
215 		memcpy(tmp, &ip, sizeof(ip));
216 		tmp += sizeof(ip);
217 	} else {
218 		memcpy(tmp, &ipv6, sizeof(ipv6));
219 		tmp += sizeof(ipv6);
220 	}
221 
222 	return tmp;
223 }
224 
225 /**
226  * i40e_create_dummy_udp_packet - helper function to create UDP packet
227  * @raw_packet: preallocated space for dummy packet
228  * @ipv4: is layer 3 packet of version 4 or 6
229  * @l4proto: next level protocol used in data portion of l3
230  * @data: filter data
231  *
232  * Helper function to populate udp fields.
233  **/
234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 					 struct i40e_fdir_filter *data)
236 {
237 	struct udphdr *udp;
238 	u8 *tmp;
239 
240 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 	udp = (struct udphdr *)(tmp);
242 	udp->dest = data->dst_port;
243 	udp->source = data->src_port;
244 }
245 
246 /**
247  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248  * @raw_packet: preallocated space for dummy packet
249  * @ipv4: is layer 3 packet of version 4 or 6
250  * @l4proto: next level protocol used in data portion of l3
251  * @data: filter data
252  *
253  * Helper function to populate tcp fields.
254  **/
255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 					 struct i40e_fdir_filter *data)
257 {
258 	struct tcphdr *tcp;
259 	u8 *tmp;
260 	/* Dummy tcp packet */
261 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263 
264 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265 
266 	tcp = (struct tcphdr *)tmp;
267 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 	tcp->dest = data->dst_port;
269 	tcp->source = data->src_port;
270 }
271 
272 /**
273  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274  * @raw_packet: preallocated space for dummy packet
275  * @ipv4: is layer 3 packet of version 4 or 6
276  * @l4proto: next level protocol used in data portion of l3
277  * @data: filter data
278  *
279  * Helper function to populate sctp fields.
280  **/
281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 					  u8 l4proto,
283 					  struct i40e_fdir_filter *data)
284 {
285 	struct sctphdr *sctp;
286 	u8 *tmp;
287 
288 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289 
290 	sctp = (struct sctphdr *)tmp;
291 	sctp->dest = data->dst_port;
292 	sctp->source = data->src_port;
293 }
294 
295 /**
296  * i40e_prepare_fdir_filter - Prepare and program fdir filter
297  * @pf: physical function to attach filter to
298  * @fd_data: filter data
299  * @add: add or delete filter
300  * @packet_addr: address of dummy packet, used in filtering
301  * @payload_offset: offset from dummy packet address to user defined data
302  * @pctype: Packet type for which filter is used
303  *
304  * Helper function to offset data of dummy packet, program it and
305  * handle errors.
306  **/
307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 				    struct i40e_fdir_filter *fd_data,
309 				    bool add, char *packet_addr,
310 				    int payload_offset, u8 pctype)
311 {
312 	int ret;
313 
314 	if (fd_data->flex_filter) {
315 		u8 *payload;
316 		__be16 pattern = fd_data->flex_word;
317 		u16 off = fd_data->flex_offset;
318 
319 		payload = packet_addr + payload_offset;
320 
321 		/* If user provided vlan, offset payload by vlan header length */
322 		if (!!fd_data->vlan_tag)
323 			payload += VLAN_HLEN;
324 
325 		*((__force __be16 *)(payload + off)) = pattern;
326 	}
327 
328 	fd_data->pctype = pctype;
329 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 	if (ret) {
331 		dev_info(&pf->pdev->dev,
332 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 			 fd_data->pctype, fd_data->fd_id, ret);
334 		/* Free the packet buffer since it wasn't added to the ring */
335 		return -EOPNOTSUPP;
336 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 		if (add)
338 			dev_info(&pf->pdev->dev,
339 				 "Filter OK for PCTYPE %d loc = %d\n",
340 				 fd_data->pctype, fd_data->fd_id);
341 		else
342 			dev_info(&pf->pdev->dev,
343 				 "Filter deleted for PCTYPE %d loc = %d\n",
344 				 fd_data->pctype, fd_data->fd_id);
345 	}
346 
347 	return ret;
348 }
349 
350 /**
351  * i40e_change_filter_num - Prepare and program fdir filter
352  * @ipv4: is layer 3 packet of version 4 or 6
353  * @add: add or delete filter
354  * @ipv4_filter_num: field to update
355  * @ipv6_filter_num: field to update
356  *
357  * Update filter number field for pf.
358  **/
359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 				   u16 *ipv6_filter_num)
361 {
362 	if (add) {
363 		if (ipv4)
364 			(*ipv4_filter_num)++;
365 		else
366 			(*ipv6_filter_num)++;
367 	} else {
368 		if (ipv4)
369 			(*ipv4_filter_num)--;
370 		else
371 			(*ipv6_filter_num)--;
372 	}
373 }
374 
375 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377 /**
378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
379  * @vsi: pointer to the targeted VSI
380  * @fd_data: the flow director data required for the FDir descriptor
381  * @add: true adds a filter, false removes it
382  * @ipv4: true is v4, false is v6
383  *
384  * Returns 0 if the filters were successfully added or removed
385  **/
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 				 struct i40e_fdir_filter *fd_data,
388 				 bool add,
389 				 bool ipv4)
390 {
391 	struct i40e_pf *pf = vsi->back;
392 	u8 *raw_packet;
393 	int ret;
394 
395 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 	if (!raw_packet)
397 		return -ENOMEM;
398 
399 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400 
401 	if (ipv4)
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 	else
407 		ret = i40e_prepare_fdir_filter
408 			(pf, fd_data, add, raw_packet,
409 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411 
412 	if (ret) {
413 		kfree(raw_packet);
414 		return ret;
415 	}
416 
417 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 			       &pf->fd_udp6_filter_cnt);
419 
420 	return 0;
421 }
422 
423 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425 /**
426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427  * @vsi: pointer to the targeted VSI
428  * @fd_data: the flow director data required for the FDir descriptor
429  * @add: true adds a filter, false removes it
430  * @ipv4: true is v4, false is v6
431  *
432  * Returns 0 if the filters were successfully added or removed
433  **/
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 				 struct i40e_fdir_filter *fd_data,
436 				 bool add,
437 				 bool ipv4)
438 {
439 	struct i40e_pf *pf = vsi->back;
440 	u8 *raw_packet;
441 	int ret;
442 
443 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 	if (!raw_packet)
445 		return -ENOMEM;
446 
447 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 	if (ipv4)
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 	else
454 		ret = i40e_prepare_fdir_filter
455 			(pf, fd_data, add, raw_packet,
456 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458 
459 	if (ret) {
460 		kfree(raw_packet);
461 		return ret;
462 	}
463 
464 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 			       &pf->fd_tcp6_filter_cnt);
466 
467 	if (add) {
468 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 		    I40E_DEBUG_FD & pf->hw.debug_mask)
470 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 	}
473 	return 0;
474 }
475 
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478 /**
479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480  * a specific flow spec
481  * @vsi: pointer to the targeted VSI
482  * @fd_data: the flow director data required for the FDir descriptor
483  * @add: true adds a filter, false removes it
484  * @ipv4: true is v4, false is v6
485  *
486  * Returns 0 if the filters were successfully added or removed
487  **/
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 				  struct i40e_fdir_filter *fd_data,
490 				  bool add,
491 				  bool ipv4)
492 {
493 	struct i40e_pf *pf = vsi->back;
494 	u8 *raw_packet;
495 	int ret;
496 
497 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 	if (!raw_packet)
499 		return -ENOMEM;
500 
501 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502 
503 	if (ipv4)
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 	else
509 		ret = i40e_prepare_fdir_filter
510 			(pf, fd_data, add, raw_packet,
511 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513 
514 	if (ret) {
515 		kfree(raw_packet);
516 		return ret;
517 	}
518 
519 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 			       &pf->fd_sctp6_filter_cnt);
521 
522 	return 0;
523 }
524 
525 #define I40E_IP_DUMMY_PACKET_LEN	34
526 #define I40E_IP6_DUMMY_PACKET_LEN	54
527 /**
528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529  * a specific flow spec
530  * @vsi: pointer to the targeted VSI
531  * @fd_data: the flow director data required for the FDir descriptor
532  * @add: true adds a filter, false removes it
533  * @ipv4: true is v4, false is v6
534  *
535  * Returns 0 if the filters were successfully added or removed
536  **/
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 				struct i40e_fdir_filter *fd_data,
539 				bool add,
540 				bool ipv4)
541 {
542 	struct i40e_pf *pf = vsi->back;
543 	int payload_offset;
544 	u8 *raw_packet;
545 	int iter_start;
546 	int iter_end;
547 	int ret;
548 	int i;
549 
550 	if (ipv4) {
551 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 	} else {
554 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 	}
557 
558 	for (i = iter_start; i <= iter_end; i++) {
559 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 		if (!raw_packet)
561 			return -ENOMEM;
562 
563 		/* IPv6 no header option differs from IPv4 */
564 		(void)i40e_create_dummy_packet
565 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 			 fd_data);
567 
568 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 			I40E_IP6_DUMMY_PACKET_LEN;
570 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 					       payload_offset, i);
572 		if (ret)
573 			goto err;
574 	}
575 
576 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 			       &pf->fd_ip6_filter_cnt);
578 
579 	return 0;
580 err:
581 	kfree(raw_packet);
582 	return ret;
583 }
584 
585 /**
586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587  * @vsi: pointer to the targeted VSI
588  * @input: filter to add or delete
589  * @add: true adds a filter, false removes it
590  *
591  **/
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 		      struct i40e_fdir_filter *input, bool add)
594 {
595 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 	struct i40e_pf *pf = vsi->back;
597 	int ret;
598 
599 	switch (input->flow_type & ~FLOW_EXT) {
600 	case TCP_V4_FLOW:
601 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 		break;
603 	case UDP_V4_FLOW:
604 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 		break;
606 	case SCTP_V4_FLOW:
607 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 		break;
609 	case TCP_V6_FLOW:
610 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 		break;
612 	case UDP_V6_FLOW:
613 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 		break;
615 	case SCTP_V6_FLOW:
616 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 		break;
618 	case IP_USER_FLOW:
619 		switch (input->ipl4_proto) {
620 		case IPPROTO_TCP:
621 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_UDP:
624 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 			break;
626 		case IPPROTO_SCTP:
627 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 			break;
629 		case IPPROTO_IP:
630 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 			break;
632 		default:
633 			/* We cannot support masking based on protocol */
634 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 				 input->ipl4_proto);
636 			return -EINVAL;
637 		}
638 		break;
639 	case IPV6_USER_FLOW:
640 		switch (input->ipl4_proto) {
641 		case IPPROTO_TCP:
642 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_UDP:
645 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 			break;
647 		case IPPROTO_SCTP:
648 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 			break;
650 		case IPPROTO_IP:
651 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 			break;
653 		default:
654 			/* We cannot support masking based on protocol */
655 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 				 input->ipl4_proto);
657 			return -EINVAL;
658 		}
659 		break;
660 	default:
661 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 			 input->flow_type);
663 		return -EINVAL;
664 	}
665 
666 	/* The buffer allocated here will be normally be freed by
667 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 	 * completion. In the event of an error adding the buffer to the FDIR
669 	 * ring, it will immediately be freed. It may also be freed by
670 	 * i40e_clean_tx_ring() when closing the VSI.
671 	 */
672 	return ret;
673 }
674 
675 /**
676  * i40e_fd_handle_status - check the Programming Status for FD
677  * @rx_ring: the Rx ring for this descriptor
678  * @qword0_raw: qword0
679  * @qword1: qword1 after le_to_cpu
680  * @prog_id: the id originally used for programming
681  *
682  * This is used to verify if the FD programming or invalidation
683  * requested by SW to the HW is successful or not and take actions accordingly.
684  **/
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 				  u64 qword1, u8 prog_id)
687 {
688 	struct i40e_pf *pf = rx_ring->vsi->back;
689 	struct pci_dev *pdev = pf->pdev;
690 	struct i40e_16b_rx_wb_qw0 *qw0;
691 	u32 fcnt_prog, fcnt_avail;
692 	u32 error;
693 
694 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697 
698 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 		if (qw0->hi_dword.fd_id != 0 ||
701 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 				 pf->fd_inv);
704 
705 		/* Check if the programming error is for ATR.
706 		 * If so, auto disable ATR and set a state for
707 		 * flush in progress. Next time we come here if flush is in
708 		 * progress do nothing, once flush is complete the state will
709 		 * be cleared.
710 		 */
711 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 			return;
713 
714 		pf->fd_add_err++;
715 		/* store the current atr filter count */
716 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717 
718 		if (qw0->hi_dword.fd_id == 0 &&
719 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 			/* These set_bit() calls aren't atomic with the
721 			 * test_bit() here, but worse case we potentially
722 			 * disable ATR and queue a flush right after SB
723 			 * support is re-enabled. That shouldn't cause an
724 			 * issue in practice
725 			 */
726 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 		}
729 
730 		/* filter programming failed most likely due to table full */
731 		fcnt_prog = i40e_get_global_fd_count(pf);
732 		fcnt_avail = pf->fdir_pf_filter_count;
733 		/* If ATR is running fcnt_prog can quickly change,
734 		 * if we are very close to full, it makes sense to disable
735 		 * FD ATR/SB and then re-enable it when there is room.
736 		 */
737 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 					      pf->state))
741 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 		}
744 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 				 qw0->hi_dword.fd_id);
748 	}
749 }
750 
751 /**
752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753  * @ring:      the ring that owns the buffer
754  * @tx_buffer: the buffer to free
755  **/
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 					    struct i40e_tx_buffer *tx_buffer)
758 {
759 	if (tx_buffer->skb) {
760 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 			kfree(tx_buffer->raw_buf);
762 		else if (ring_is_xdp(ring))
763 			xdp_return_frame(tx_buffer->xdpf);
764 		else
765 			dev_kfree_skb_any(tx_buffer->skb);
766 		if (dma_unmap_len(tx_buffer, len))
767 			dma_unmap_single(ring->dev,
768 					 dma_unmap_addr(tx_buffer, dma),
769 					 dma_unmap_len(tx_buffer, len),
770 					 DMA_TO_DEVICE);
771 	} else if (dma_unmap_len(tx_buffer, len)) {
772 		dma_unmap_page(ring->dev,
773 			       dma_unmap_addr(tx_buffer, dma),
774 			       dma_unmap_len(tx_buffer, len),
775 			       DMA_TO_DEVICE);
776 	}
777 
778 	tx_buffer->next_to_watch = NULL;
779 	tx_buffer->skb = NULL;
780 	dma_unmap_len_set(tx_buffer, len, 0);
781 	/* tx_buffer must be completely set up in the transmit path */
782 }
783 
784 /**
785  * i40e_clean_tx_ring - Free any empty Tx buffers
786  * @tx_ring: ring to be cleaned
787  **/
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 	unsigned long bi_size;
791 	u16 i;
792 
793 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 		i40e_xsk_clean_tx_ring(tx_ring);
795 	} else {
796 		/* ring already cleared, nothing to do */
797 		if (!tx_ring->tx_bi)
798 			return;
799 
800 		/* Free all the Tx ring sk_buffs */
801 		for (i = 0; i < tx_ring->count; i++)
802 			i40e_unmap_and_free_tx_resource(tx_ring,
803 							&tx_ring->tx_bi[i]);
804 	}
805 
806 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 	memset(tx_ring->tx_bi, 0, bi_size);
808 
809 	/* Zero out the descriptor ring */
810 	memset(tx_ring->desc, 0, tx_ring->size);
811 
812 	tx_ring->next_to_use = 0;
813 	tx_ring->next_to_clean = 0;
814 
815 	if (!tx_ring->netdev)
816 		return;
817 
818 	/* cleanup Tx queue statistics */
819 	netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821 
822 /**
823  * i40e_free_tx_resources - Free Tx resources per queue
824  * @tx_ring: Tx descriptor ring for a specific queue
825  *
826  * Free all transmit software resources
827  **/
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 	i40e_clean_tx_ring(tx_ring);
831 	kfree(tx_ring->tx_bi);
832 	tx_ring->tx_bi = NULL;
833 
834 	if (tx_ring->desc) {
835 		dma_free_coherent(tx_ring->dev, tx_ring->size,
836 				  tx_ring->desc, tx_ring->dma);
837 		tx_ring->desc = NULL;
838 	}
839 }
840 
841 /**
842  * i40e_get_tx_pending - how many tx descriptors not processed
843  * @ring: the ring of descriptors
844  * @in_sw: use SW variables
845  *
846  * Since there is no access to the ring head register
847  * in XL710, we need to use our local copies
848  **/
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 	u32 head, tail;
852 
853 	if (!in_sw) {
854 		head = i40e_get_head(ring);
855 		tail = readl(ring->tail);
856 	} else {
857 		head = ring->next_to_clean;
858 		tail = ring->next_to_use;
859 	}
860 
861 	if (head != tail)
862 		return (head < tail) ?
863 			tail - head : (tail + ring->count - head);
864 
865 	return 0;
866 }
867 
868 /**
869  * i40e_detect_recover_hung - Function to detect and recover hung_queues
870  * @vsi:  pointer to vsi struct with tx queues
871  *
872  * VSI has netdev and netdev has TX queues. This function is to check each of
873  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874  **/
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 	struct i40e_ring *tx_ring = NULL;
878 	struct net_device *netdev;
879 	unsigned int i;
880 	int packets;
881 
882 	if (!vsi)
883 		return;
884 
885 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 		return;
887 
888 	netdev = vsi->netdev;
889 	if (!netdev)
890 		return;
891 
892 	if (!netif_carrier_ok(netdev))
893 		return;
894 
895 	for (i = 0; i < vsi->num_queue_pairs; i++) {
896 		tx_ring = vsi->tx_rings[i];
897 		if (tx_ring && tx_ring->desc) {
898 			/* If packet counter has not changed the queue is
899 			 * likely stalled, so force an interrupt for this
900 			 * queue.
901 			 *
902 			 * prev_pkt_ctr would be negative if there was no
903 			 * pending work.
904 			 */
905 			packets = tx_ring->stats.packets & INT_MAX;
906 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 				i40e_force_wb(vsi, tx_ring->q_vector);
908 				continue;
909 			}
910 
911 			/* Memory barrier between read of packet count and call
912 			 * to i40e_get_tx_pending()
913 			 */
914 			smp_rmb();
915 			tx_ring->tx_stats.prev_pkt_ctr =
916 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 		}
918 	}
919 }
920 
921 /**
922  * i40e_clean_tx_irq - Reclaim resources after transmit completes
923  * @vsi: the VSI we care about
924  * @tx_ring: Tx ring to clean
925  * @napi_budget: Used to determine if we are in netpoll
926  *
927  * Returns true if there's any budget left (e.g. the clean is finished)
928  **/
929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 			      struct i40e_ring *tx_ring, int napi_budget)
931 {
932 	int i = tx_ring->next_to_clean;
933 	struct i40e_tx_buffer *tx_buf;
934 	struct i40e_tx_desc *tx_head;
935 	struct i40e_tx_desc *tx_desc;
936 	unsigned int total_bytes = 0, total_packets = 0;
937 	unsigned int budget = vsi->work_limit;
938 
939 	tx_buf = &tx_ring->tx_bi[i];
940 	tx_desc = I40E_TX_DESC(tx_ring, i);
941 	i -= tx_ring->count;
942 
943 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
944 
945 	do {
946 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
947 
948 		/* if next_to_watch is not set then there is no work pending */
949 		if (!eop_desc)
950 			break;
951 
952 		/* prevent any other reads prior to eop_desc */
953 		smp_rmb();
954 
955 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
956 		/* we have caught up to head, no work left to do */
957 		if (tx_head == tx_desc)
958 			break;
959 
960 		/* clear next_to_watch to prevent false hangs */
961 		tx_buf->next_to_watch = NULL;
962 
963 		/* update the statistics for this packet */
964 		total_bytes += tx_buf->bytecount;
965 		total_packets += tx_buf->gso_segs;
966 
967 		/* free the skb/XDP data */
968 		if (ring_is_xdp(tx_ring))
969 			xdp_return_frame(tx_buf->xdpf);
970 		else
971 			napi_consume_skb(tx_buf->skb, napi_budget);
972 
973 		/* unmap skb header data */
974 		dma_unmap_single(tx_ring->dev,
975 				 dma_unmap_addr(tx_buf, dma),
976 				 dma_unmap_len(tx_buf, len),
977 				 DMA_TO_DEVICE);
978 
979 		/* clear tx_buffer data */
980 		tx_buf->skb = NULL;
981 		dma_unmap_len_set(tx_buf, len, 0);
982 
983 		/* unmap remaining buffers */
984 		while (tx_desc != eop_desc) {
985 			i40e_trace(clean_tx_irq_unmap,
986 				   tx_ring, tx_desc, tx_buf);
987 
988 			tx_buf++;
989 			tx_desc++;
990 			i++;
991 			if (unlikely(!i)) {
992 				i -= tx_ring->count;
993 				tx_buf = tx_ring->tx_bi;
994 				tx_desc = I40E_TX_DESC(tx_ring, 0);
995 			}
996 
997 			/* unmap any remaining paged data */
998 			if (dma_unmap_len(tx_buf, len)) {
999 				dma_unmap_page(tx_ring->dev,
1000 					       dma_unmap_addr(tx_buf, dma),
1001 					       dma_unmap_len(tx_buf, len),
1002 					       DMA_TO_DEVICE);
1003 				dma_unmap_len_set(tx_buf, len, 0);
1004 			}
1005 		}
1006 
1007 		/* move us one more past the eop_desc for start of next pkt */
1008 		tx_buf++;
1009 		tx_desc++;
1010 		i++;
1011 		if (unlikely(!i)) {
1012 			i -= tx_ring->count;
1013 			tx_buf = tx_ring->tx_bi;
1014 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1015 		}
1016 
1017 		prefetch(tx_desc);
1018 
1019 		/* update budget accounting */
1020 		budget--;
1021 	} while (likely(budget));
1022 
1023 	i += tx_ring->count;
1024 	tx_ring->next_to_clean = i;
1025 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1026 	i40e_arm_wb(tx_ring, vsi, budget);
1027 
1028 	if (ring_is_xdp(tx_ring))
1029 		return !!budget;
1030 
1031 	/* notify netdev of completed buffers */
1032 	netdev_tx_completed_queue(txring_txq(tx_ring),
1033 				  total_packets, total_bytes);
1034 
1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1036 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1037 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1038 		/* Make sure that anybody stopping the queue after this
1039 		 * sees the new next_to_clean.
1040 		 */
1041 		smp_mb();
1042 		if (__netif_subqueue_stopped(tx_ring->netdev,
1043 					     tx_ring->queue_index) &&
1044 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1045 			netif_wake_subqueue(tx_ring->netdev,
1046 					    tx_ring->queue_index);
1047 			++tx_ring->tx_stats.restart_queue;
1048 		}
1049 	}
1050 
1051 	return !!budget;
1052 }
1053 
1054 /**
1055  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056  * @vsi: the VSI we care about
1057  * @q_vector: the vector on which to enable writeback
1058  *
1059  **/
1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 				  struct i40e_q_vector *q_vector)
1062 {
1063 	u16 flags = q_vector->tx.ring[0].flags;
1064 	u32 val;
1065 
1066 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 		return;
1068 
1069 	if (q_vector->arm_wb_state)
1070 		return;
1071 
1072 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1073 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075 
1076 		wr32(&vsi->back->hw,
1077 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 		     val);
1079 	} else {
1080 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082 
1083 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 	}
1085 	q_vector->arm_wb_state = true;
1086 }
1087 
1088 /**
1089  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090  * @vsi: the VSI we care about
1091  * @q_vector: the vector  on which to force writeback
1092  *
1093  **/
1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1097 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 			  /* allow 00 to be written to the index */
1102 
1103 		wr32(&vsi->back->hw,
1104 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 	} else {
1106 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 			/* allow 00 to be written to the index */
1111 
1112 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 	}
1114 }
1115 
1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 					struct i40e_ring_container *rc)
1118 {
1119 	return &q_vector->rx == rc;
1120 }
1121 
1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 	unsigned int divisor;
1125 
1126 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 	case I40E_LINK_SPEED_40GB:
1128 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 		break;
1130 	case I40E_LINK_SPEED_25GB:
1131 	case I40E_LINK_SPEED_20GB:
1132 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 		break;
1134 	default:
1135 	case I40E_LINK_SPEED_10GB:
1136 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 		break;
1138 	case I40E_LINK_SPEED_1GB:
1139 	case I40E_LINK_SPEED_100MB:
1140 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 		break;
1142 	}
1143 
1144 	return divisor;
1145 }
1146 
1147 /**
1148  * i40e_update_itr - update the dynamic ITR value based on statistics
1149  * @q_vector: structure containing interrupt and ring information
1150  * @rc: structure containing ring performance data
1151  *
1152  * Stores a new ITR value based on packets and byte
1153  * counts during the last interrupt.  The advantage of per interrupt
1154  * computation is faster updates and more accurate ITR for the current
1155  * traffic pattern.  Constants in this function were computed
1156  * based on theoretical maximum wire speed and thresholds were set based
1157  * on testing data as well as attempting to minimize response time
1158  * while increasing bulk throughput.
1159  **/
1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 			    struct i40e_ring_container *rc)
1162 {
1163 	unsigned int avg_wire_size, packets, bytes, itr;
1164 	unsigned long next_update = jiffies;
1165 
1166 	/* If we don't have any rings just leave ourselves set for maximum
1167 	 * possible latency so we take ourselves out of the equation.
1168 	 */
1169 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 		return;
1171 
1172 	/* For Rx we want to push the delay up and default to low latency.
1173 	 * for Tx we want to pull the delay down and default to high latency.
1174 	 */
1175 	itr = i40e_container_is_rx(q_vector, rc) ?
1176 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178 
1179 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1180 	 * that either packets are coming in so slow there hasn't been
1181 	 * any work, or that there is so much work that NAPI is dealing
1182 	 * with interrupt moderation and we don't need to do anything.
1183 	 */
1184 	if (time_after(next_update, rc->next_update))
1185 		goto clear_counts;
1186 
1187 	/* If itr_countdown is set it means we programmed an ITR within
1188 	 * the last 4 interrupt cycles. This has a side effect of us
1189 	 * potentially firing an early interrupt. In order to work around
1190 	 * this we need to throw out any data received for a few
1191 	 * interrupts following the update.
1192 	 */
1193 	if (q_vector->itr_countdown) {
1194 		itr = rc->target_itr;
1195 		goto clear_counts;
1196 	}
1197 
1198 	packets = rc->total_packets;
1199 	bytes = rc->total_bytes;
1200 
1201 	if (i40e_container_is_rx(q_vector, rc)) {
1202 		/* If Rx there are 1 to 4 packets and bytes are less than
1203 		 * 9000 assume insufficient data to use bulk rate limiting
1204 		 * approach unless Tx is already in bulk rate limiting. We
1205 		 * are likely latency driven.
1206 		 */
1207 		if (packets && packets < 4 && bytes < 9000 &&
1208 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 			goto adjust_by_size;
1211 		}
1212 	} else if (packets < 4) {
1213 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 		 * bulk mode and we are receiving 4 or fewer packets just
1215 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 		 * that the Rx can relax.
1217 		 */
1218 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1221 			goto clear_counts;
1222 	} else if (packets > 32) {
1223 		/* If we have processed over 32 packets in a single interrupt
1224 		 * for Tx assume we need to switch over to "bulk" mode.
1225 		 */
1226 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 	}
1228 
1229 	/* We have no packets to actually measure against. This means
1230 	 * either one of the other queues on this vector is active or
1231 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 	 *
1233 	 * Between 4 and 56 we can assume that our current interrupt delay
1234 	 * is only slightly too low. As such we should increase it by a small
1235 	 * fixed amount.
1236 	 */
1237 	if (packets < 56) {
1238 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 		}
1243 		goto clear_counts;
1244 	}
1245 
1246 	if (packets <= 256) {
1247 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 		itr &= I40E_ITR_MASK;
1249 
1250 		/* Between 56 and 112 is our "goldilocks" zone where we are
1251 		 * working out "just right". Just report that our current
1252 		 * ITR is good for us.
1253 		 */
1254 		if (packets <= 112)
1255 			goto clear_counts;
1256 
1257 		/* If packet count is 128 or greater we are likely looking
1258 		 * at a slight overrun of the delay we want. Try halving
1259 		 * our delay to see if that will cut the number of packets
1260 		 * in half per interrupt.
1261 		 */
1262 		itr /= 2;
1263 		itr &= I40E_ITR_MASK;
1264 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266 
1267 		goto clear_counts;
1268 	}
1269 
1270 	/* The paths below assume we are dealing with a bulk ITR since
1271 	 * number of packets is greater than 256. We are just going to have
1272 	 * to compute a value and try to bring the count under control,
1273 	 * though for smaller packet sizes there isn't much we can do as
1274 	 * NAPI polling will likely be kicking in sooner rather than later.
1275 	 */
1276 	itr = I40E_ITR_ADAPTIVE_BULK;
1277 
1278 adjust_by_size:
1279 	/* If packet counts are 256 or greater we can assume we have a gross
1280 	 * overestimation of what the rate should be. Instead of trying to fine
1281 	 * tune it just use the formula below to try and dial in an exact value
1282 	 * give the current packet size of the frame.
1283 	 */
1284 	avg_wire_size = bytes / packets;
1285 
1286 	/* The following is a crude approximation of:
1287 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1288 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 	 *
1291 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 	 * formula down to
1294 	 *
1295 	 *  (170 * (size + 24)) / (size + 640) = ITR
1296 	 *
1297 	 * We first do some math on the packet size and then finally bitshift
1298 	 * by 8 after rounding up. We also have to account for PCIe link speed
1299 	 * difference as ITR scales based on this.
1300 	 */
1301 	if (avg_wire_size <= 60) {
1302 		/* Start at 250k ints/sec */
1303 		avg_wire_size = 4096;
1304 	} else if (avg_wire_size <= 380) {
1305 		/* 250K ints/sec to 60K ints/sec */
1306 		avg_wire_size *= 40;
1307 		avg_wire_size += 1696;
1308 	} else if (avg_wire_size <= 1084) {
1309 		/* 60K ints/sec to 36K ints/sec */
1310 		avg_wire_size *= 15;
1311 		avg_wire_size += 11452;
1312 	} else if (avg_wire_size <= 1980) {
1313 		/* 36K ints/sec to 30K ints/sec */
1314 		avg_wire_size *= 5;
1315 		avg_wire_size += 22420;
1316 	} else {
1317 		/* plateau at a limit of 30K ints/sec */
1318 		avg_wire_size = 32256;
1319 	}
1320 
1321 	/* If we are in low latency mode halve our delay which doubles the
1322 	 * rate to somewhere between 100K to 16K ints/sec
1323 	 */
1324 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 		avg_wire_size /= 2;
1326 
1327 	/* Resultant value is 256 times larger than it needs to be. This
1328 	 * gives us room to adjust the value as needed to either increase
1329 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 	 *
1331 	 * Use addition as we have already recorded the new latency flag
1332 	 * for the ITR value.
1333 	 */
1334 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 	       I40E_ITR_ADAPTIVE_MIN_INC;
1336 
1337 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 	}
1341 
1342 clear_counts:
1343 	/* write back value */
1344 	rc->target_itr = itr;
1345 
1346 	/* next update should occur within next jiffy */
1347 	rc->next_update = next_update + 1;
1348 
1349 	rc->total_bytes = 0;
1350 	rc->total_packets = 0;
1351 }
1352 
1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 	return &rx_ring->rx_bi[idx];
1356 }
1357 
1358 /**
1359  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360  * @rx_ring: rx descriptor ring to store buffers on
1361  * @old_buff: donor buffer to have page reused
1362  *
1363  * Synchronizes page for reuse by the adapter
1364  **/
1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 			       struct i40e_rx_buffer *old_buff)
1367 {
1368 	struct i40e_rx_buffer *new_buff;
1369 	u16 nta = rx_ring->next_to_alloc;
1370 
1371 	new_buff = i40e_rx_bi(rx_ring, nta);
1372 
1373 	/* update, and store next to alloc */
1374 	nta++;
1375 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376 
1377 	/* transfer page from old buffer to new buffer */
1378 	new_buff->dma		= old_buff->dma;
1379 	new_buff->page		= old_buff->page;
1380 	new_buff->page_offset	= old_buff->page_offset;
1381 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1382 
1383 	/* clear contents of buffer_info */
1384 	old_buff->page = NULL;
1385 }
1386 
1387 /**
1388  * i40e_clean_programming_status - clean the programming status descriptor
1389  * @rx_ring: the rx ring that has this descriptor
1390  * @qword0_raw: qword0
1391  * @qword1: qword1 representing status_error_len in CPU ordering
1392  *
1393  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394  * status being successful or not and take actions accordingly. FCoE should
1395  * handle its context/filter programming/invalidation status and take actions.
1396  *
1397  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398  **/
1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 				   u64 qword1)
1401 {
1402 	u8 id;
1403 
1404 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1405 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1406 
1407 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1408 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1409 }
1410 
1411 /**
1412  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1413  * @tx_ring: the tx ring to set up
1414  *
1415  * Return 0 on success, negative on error
1416  **/
1417 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1418 {
1419 	struct device *dev = tx_ring->dev;
1420 	int bi_size;
1421 
1422 	if (!dev)
1423 		return -ENOMEM;
1424 
1425 	/* warn if we are about to overwrite the pointer */
1426 	WARN_ON(tx_ring->tx_bi);
1427 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1428 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1429 	if (!tx_ring->tx_bi)
1430 		goto err;
1431 
1432 	u64_stats_init(&tx_ring->syncp);
1433 
1434 	/* round up to nearest 4K */
1435 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1436 	/* add u32 for head writeback, align after this takes care of
1437 	 * guaranteeing this is at least one cache line in size
1438 	 */
1439 	tx_ring->size += sizeof(u32);
1440 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1441 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1442 					   &tx_ring->dma, GFP_KERNEL);
1443 	if (!tx_ring->desc) {
1444 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1445 			 tx_ring->size);
1446 		goto err;
1447 	}
1448 
1449 	tx_ring->next_to_use = 0;
1450 	tx_ring->next_to_clean = 0;
1451 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1452 	return 0;
1453 
1454 err:
1455 	kfree(tx_ring->tx_bi);
1456 	tx_ring->tx_bi = NULL;
1457 	return -ENOMEM;
1458 }
1459 
1460 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1461 {
1462 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1463 
1464 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1465 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1466 }
1467 
1468 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1469 {
1470 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1471 }
1472 
1473 /**
1474  * i40e_clean_rx_ring - Free Rx buffers
1475  * @rx_ring: ring to be cleaned
1476  **/
1477 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1478 {
1479 	u16 i;
1480 
1481 	/* ring already cleared, nothing to do */
1482 	if (!rx_ring->rx_bi)
1483 		return;
1484 
1485 	dev_kfree_skb(rx_ring->skb);
1486 	rx_ring->skb = NULL;
1487 
1488 	if (rx_ring->xsk_pool) {
1489 		i40e_xsk_clean_rx_ring(rx_ring);
1490 		goto skip_free;
1491 	}
1492 
1493 	/* Free all the Rx ring sk_buffs */
1494 	for (i = 0; i < rx_ring->count; i++) {
1495 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1496 
1497 		if (!rx_bi->page)
1498 			continue;
1499 
1500 		/* Invalidate cache lines that may have been written to by
1501 		 * device so that we avoid corrupting memory.
1502 		 */
1503 		dma_sync_single_range_for_cpu(rx_ring->dev,
1504 					      rx_bi->dma,
1505 					      rx_bi->page_offset,
1506 					      rx_ring->rx_buf_len,
1507 					      DMA_FROM_DEVICE);
1508 
1509 		/* free resources associated with mapping */
1510 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1511 				     i40e_rx_pg_size(rx_ring),
1512 				     DMA_FROM_DEVICE,
1513 				     I40E_RX_DMA_ATTR);
1514 
1515 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1516 
1517 		rx_bi->page = NULL;
1518 		rx_bi->page_offset = 0;
1519 	}
1520 
1521 skip_free:
1522 	if (rx_ring->xsk_pool)
1523 		i40e_clear_rx_bi_zc(rx_ring);
1524 	else
1525 		i40e_clear_rx_bi(rx_ring);
1526 
1527 	/* Zero out the descriptor ring */
1528 	memset(rx_ring->desc, 0, rx_ring->size);
1529 
1530 	rx_ring->next_to_alloc = 0;
1531 	rx_ring->next_to_clean = 0;
1532 	rx_ring->next_to_use = 0;
1533 }
1534 
1535 /**
1536  * i40e_free_rx_resources - Free Rx resources
1537  * @rx_ring: ring to clean the resources from
1538  *
1539  * Free all receive software resources
1540  **/
1541 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1542 {
1543 	i40e_clean_rx_ring(rx_ring);
1544 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1545 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1546 	rx_ring->xdp_prog = NULL;
1547 	kfree(rx_ring->rx_bi);
1548 	rx_ring->rx_bi = NULL;
1549 
1550 	if (rx_ring->desc) {
1551 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1552 				  rx_ring->desc, rx_ring->dma);
1553 		rx_ring->desc = NULL;
1554 	}
1555 }
1556 
1557 /**
1558  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1559  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1560  *
1561  * Returns 0 on success, negative on failure
1562  **/
1563 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1564 {
1565 	struct device *dev = rx_ring->dev;
1566 	int err;
1567 
1568 	u64_stats_init(&rx_ring->syncp);
1569 
1570 	/* Round up to nearest 4K */
1571 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1572 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1573 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1574 					   &rx_ring->dma, GFP_KERNEL);
1575 
1576 	if (!rx_ring->desc) {
1577 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1578 			 rx_ring->size);
1579 		return -ENOMEM;
1580 	}
1581 
1582 	rx_ring->next_to_alloc = 0;
1583 	rx_ring->next_to_clean = 0;
1584 	rx_ring->next_to_use = 0;
1585 
1586 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1587 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1588 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1589 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1590 		if (err < 0)
1591 			return err;
1592 	}
1593 
1594 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1595 
1596 	return 0;
1597 }
1598 
1599 /**
1600  * i40e_release_rx_desc - Store the new tail and head values
1601  * @rx_ring: ring to bump
1602  * @val: new head index
1603  **/
1604 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1605 {
1606 	rx_ring->next_to_use = val;
1607 
1608 	/* update next to alloc since we have filled the ring */
1609 	rx_ring->next_to_alloc = val;
1610 
1611 	/* Force memory writes to complete before letting h/w
1612 	 * know there are new descriptors to fetch.  (Only
1613 	 * applicable for weak-ordered memory model archs,
1614 	 * such as IA-64).
1615 	 */
1616 	wmb();
1617 	writel(val, rx_ring->tail);
1618 }
1619 
1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1621 					   unsigned int size)
1622 {
1623 	unsigned int truesize;
1624 
1625 #if (PAGE_SIZE < 8192)
1626 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1627 #else
1628 	truesize = rx_ring->rx_offset ?
1629 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1630 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1631 		SKB_DATA_ALIGN(size);
1632 #endif
1633 	return truesize;
1634 }
1635 
1636 /**
1637  * i40e_alloc_mapped_page - recycle or make a new page
1638  * @rx_ring: ring to use
1639  * @bi: rx_buffer struct to modify
1640  *
1641  * Returns true if the page was successfully allocated or
1642  * reused.
1643  **/
1644 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1645 				   struct i40e_rx_buffer *bi)
1646 {
1647 	struct page *page = bi->page;
1648 	dma_addr_t dma;
1649 
1650 	/* since we are recycling buffers we should seldom need to alloc */
1651 	if (likely(page)) {
1652 		rx_ring->rx_stats.page_reuse_count++;
1653 		return true;
1654 	}
1655 
1656 	/* alloc new page for storage */
1657 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1658 	if (unlikely(!page)) {
1659 		rx_ring->rx_stats.alloc_page_failed++;
1660 		return false;
1661 	}
1662 
1663 	rx_ring->rx_stats.page_alloc_count++;
1664 
1665 	/* map page for use */
1666 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1667 				 i40e_rx_pg_size(rx_ring),
1668 				 DMA_FROM_DEVICE,
1669 				 I40E_RX_DMA_ATTR);
1670 
1671 	/* if mapping failed free memory back to system since
1672 	 * there isn't much point in holding memory we can't use
1673 	 */
1674 	if (dma_mapping_error(rx_ring->dev, dma)) {
1675 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1676 		rx_ring->rx_stats.alloc_page_failed++;
1677 		return false;
1678 	}
1679 
1680 	bi->dma = dma;
1681 	bi->page = page;
1682 	bi->page_offset = rx_ring->rx_offset;
1683 	page_ref_add(page, USHRT_MAX - 1);
1684 	bi->pagecnt_bias = USHRT_MAX;
1685 
1686 	return true;
1687 }
1688 
1689 /**
1690  * i40e_alloc_rx_buffers - Replace used receive buffers
1691  * @rx_ring: ring to place buffers on
1692  * @cleaned_count: number of buffers to replace
1693  *
1694  * Returns false if all allocations were successful, true if any fail
1695  **/
1696 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1697 {
1698 	u16 ntu = rx_ring->next_to_use;
1699 	union i40e_rx_desc *rx_desc;
1700 	struct i40e_rx_buffer *bi;
1701 
1702 	/* do nothing if no valid netdev defined */
1703 	if (!rx_ring->netdev || !cleaned_count)
1704 		return false;
1705 
1706 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1707 	bi = i40e_rx_bi(rx_ring, ntu);
1708 
1709 	do {
1710 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1711 			goto no_buffers;
1712 
1713 		/* sync the buffer for use by the device */
1714 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1715 						 bi->page_offset,
1716 						 rx_ring->rx_buf_len,
1717 						 DMA_FROM_DEVICE);
1718 
1719 		/* Refresh the desc even if buffer_addrs didn't change
1720 		 * because each write-back erases this info.
1721 		 */
1722 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1723 
1724 		rx_desc++;
1725 		bi++;
1726 		ntu++;
1727 		if (unlikely(ntu == rx_ring->count)) {
1728 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1729 			bi = i40e_rx_bi(rx_ring, 0);
1730 			ntu = 0;
1731 		}
1732 
1733 		/* clear the status bits for the next_to_use descriptor */
1734 		rx_desc->wb.qword1.status_error_len = 0;
1735 
1736 		cleaned_count--;
1737 	} while (cleaned_count);
1738 
1739 	if (rx_ring->next_to_use != ntu)
1740 		i40e_release_rx_desc(rx_ring, ntu);
1741 
1742 	return false;
1743 
1744 no_buffers:
1745 	if (rx_ring->next_to_use != ntu)
1746 		i40e_release_rx_desc(rx_ring, ntu);
1747 
1748 	/* make sure to come back via polling to try again after
1749 	 * allocation failure
1750 	 */
1751 	return true;
1752 }
1753 
1754 /**
1755  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1756  * @vsi: the VSI we care about
1757  * @skb: skb currently being received and modified
1758  * @rx_desc: the receive descriptor
1759  **/
1760 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1761 				    struct sk_buff *skb,
1762 				    union i40e_rx_desc *rx_desc)
1763 {
1764 	struct i40e_rx_ptype_decoded decoded;
1765 	u32 rx_error, rx_status;
1766 	bool ipv4, ipv6;
1767 	u8 ptype;
1768 	u64 qword;
1769 
1770 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1771 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1772 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1773 		   I40E_RXD_QW1_ERROR_SHIFT;
1774 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1775 		    I40E_RXD_QW1_STATUS_SHIFT;
1776 	decoded = decode_rx_desc_ptype(ptype);
1777 
1778 	skb->ip_summed = CHECKSUM_NONE;
1779 
1780 	skb_checksum_none_assert(skb);
1781 
1782 	/* Rx csum enabled and ip headers found? */
1783 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1784 		return;
1785 
1786 	/* did the hardware decode the packet and checksum? */
1787 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1788 		return;
1789 
1790 	/* both known and outer_ip must be set for the below code to work */
1791 	if (!(decoded.known && decoded.outer_ip))
1792 		return;
1793 
1794 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1795 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1796 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1797 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1798 
1799 	if (ipv4 &&
1800 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1801 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1802 		goto checksum_fail;
1803 
1804 	/* likely incorrect csum if alternate IP extension headers found */
1805 	if (ipv6 &&
1806 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1807 		/* don't increment checksum err here, non-fatal err */
1808 		return;
1809 
1810 	/* there was some L4 error, count error and punt packet to the stack */
1811 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1812 		goto checksum_fail;
1813 
1814 	/* handle packets that were not able to be checksummed due
1815 	 * to arrival speed, in this case the stack can compute
1816 	 * the csum.
1817 	 */
1818 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1819 		return;
1820 
1821 	/* If there is an outer header present that might contain a checksum
1822 	 * we need to bump the checksum level by 1 to reflect the fact that
1823 	 * we are indicating we validated the inner checksum.
1824 	 */
1825 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1826 		skb->csum_level = 1;
1827 
1828 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1829 	switch (decoded.inner_prot) {
1830 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1831 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1832 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1833 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1834 		fallthrough;
1835 	default:
1836 		break;
1837 	}
1838 
1839 	return;
1840 
1841 checksum_fail:
1842 	vsi->back->hw_csum_rx_error++;
1843 }
1844 
1845 /**
1846  * i40e_ptype_to_htype - get a hash type
1847  * @ptype: the ptype value from the descriptor
1848  *
1849  * Returns a hash type to be used by skb_set_hash
1850  **/
1851 static inline int i40e_ptype_to_htype(u8 ptype)
1852 {
1853 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1854 
1855 	if (!decoded.known)
1856 		return PKT_HASH_TYPE_NONE;
1857 
1858 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1860 		return PKT_HASH_TYPE_L4;
1861 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1862 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1863 		return PKT_HASH_TYPE_L3;
1864 	else
1865 		return PKT_HASH_TYPE_L2;
1866 }
1867 
1868 /**
1869  * i40e_rx_hash - set the hash value in the skb
1870  * @ring: descriptor ring
1871  * @rx_desc: specific descriptor
1872  * @skb: skb currently being received and modified
1873  * @rx_ptype: Rx packet type
1874  **/
1875 static inline void i40e_rx_hash(struct i40e_ring *ring,
1876 				union i40e_rx_desc *rx_desc,
1877 				struct sk_buff *skb,
1878 				u8 rx_ptype)
1879 {
1880 	u32 hash;
1881 	const __le64 rss_mask =
1882 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1883 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1884 
1885 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1886 		return;
1887 
1888 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1889 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1890 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1891 	}
1892 }
1893 
1894 /**
1895  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1896  * @rx_ring: rx descriptor ring packet is being transacted on
1897  * @rx_desc: pointer to the EOP Rx descriptor
1898  * @skb: pointer to current skb being populated
1899  *
1900  * This function checks the ring, descriptor, and packet information in
1901  * order to populate the hash, checksum, VLAN, protocol, and
1902  * other fields within the skb.
1903  **/
1904 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1905 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1906 {
1907 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1908 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1909 			I40E_RXD_QW1_STATUS_SHIFT;
1910 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1911 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1912 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1913 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1914 		      I40E_RXD_QW1_PTYPE_SHIFT;
1915 
1916 	if (unlikely(tsynvalid))
1917 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1918 
1919 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1920 
1921 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1922 
1923 	skb_record_rx_queue(skb, rx_ring->queue_index);
1924 
1925 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1926 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1927 
1928 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1929 				       le16_to_cpu(vlan_tag));
1930 	}
1931 
1932 	/* modifies the skb - consumes the enet header */
1933 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1934 }
1935 
1936 /**
1937  * i40e_cleanup_headers - Correct empty headers
1938  * @rx_ring: rx descriptor ring packet is being transacted on
1939  * @skb: pointer to current skb being fixed
1940  * @rx_desc: pointer to the EOP Rx descriptor
1941  *
1942  * In addition if skb is not at least 60 bytes we need to pad it so that
1943  * it is large enough to qualify as a valid Ethernet frame.
1944  *
1945  * Returns true if an error was encountered and skb was freed.
1946  **/
1947 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1948 				 union i40e_rx_desc *rx_desc)
1949 
1950 {
1951 	/* ERR_MASK will only have valid bits if EOP set, and
1952 	 * what we are doing here is actually checking
1953 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1954 	 * the error field
1955 	 */
1956 	if (unlikely(i40e_test_staterr(rx_desc,
1957 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1958 		dev_kfree_skb_any(skb);
1959 		return true;
1960 	}
1961 
1962 	/* if eth_skb_pad returns an error the skb was freed */
1963 	if (eth_skb_pad(skb))
1964 		return true;
1965 
1966 	return false;
1967 }
1968 
1969 /**
1970  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1971  * @rx_buffer: buffer containing the page
1972  * @rx_stats: rx stats structure for the rx ring
1973  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1974  *
1975  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1976  * which will assign the current buffer to the buffer that next_to_alloc is
1977  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1978  * page freed.
1979  *
1980  * rx_stats will be updated to indicate whether the page was waived
1981  * or busy if it could not be reused.
1982  */
1983 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1984 				   struct i40e_rx_queue_stats *rx_stats,
1985 				   int rx_buffer_pgcnt)
1986 {
1987 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1988 	struct page *page = rx_buffer->page;
1989 
1990 	/* Is any reuse possible? */
1991 	if (!dev_page_is_reusable(page)) {
1992 		rx_stats->page_waive_count++;
1993 		return false;
1994 	}
1995 
1996 #if (PAGE_SIZE < 8192)
1997 	/* if we are only owner of page we can reuse it */
1998 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
1999 		rx_stats->page_busy_count++;
2000 		return false;
2001 	}
2002 #else
2003 #define I40E_LAST_OFFSET \
2004 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2005 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2006 		rx_stats->page_busy_count++;
2007 		return false;
2008 	}
2009 #endif
2010 
2011 	/* If we have drained the page fragment pool we need to update
2012 	 * the pagecnt_bias and page count so that we fully restock the
2013 	 * number of references the driver holds.
2014 	 */
2015 	if (unlikely(pagecnt_bias == 1)) {
2016 		page_ref_add(page, USHRT_MAX - 1);
2017 		rx_buffer->pagecnt_bias = USHRT_MAX;
2018 	}
2019 
2020 	return true;
2021 }
2022 
2023 /**
2024  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2025  * @rx_ring: rx descriptor ring to transact packets on
2026  * @rx_buffer: buffer containing page to add
2027  * @skb: sk_buff to place the data into
2028  * @size: packet length from rx_desc
2029  *
2030  * This function will add the data contained in rx_buffer->page to the skb.
2031  * It will just attach the page as a frag to the skb.
2032  *
2033  * The function will then update the page offset.
2034  **/
2035 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2036 			     struct i40e_rx_buffer *rx_buffer,
2037 			     struct sk_buff *skb,
2038 			     unsigned int size)
2039 {
2040 #if (PAGE_SIZE < 8192)
2041 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2042 #else
2043 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2044 #endif
2045 
2046 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2047 			rx_buffer->page_offset, size, truesize);
2048 
2049 	/* page is being used so we must update the page offset */
2050 #if (PAGE_SIZE < 8192)
2051 	rx_buffer->page_offset ^= truesize;
2052 #else
2053 	rx_buffer->page_offset += truesize;
2054 #endif
2055 }
2056 
2057 /**
2058  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2059  * @rx_ring: rx descriptor ring to transact packets on
2060  * @size: size of buffer to add to skb
2061  * @rx_buffer_pgcnt: buffer page refcount
2062  *
2063  * This function will pull an Rx buffer from the ring and synchronize it
2064  * for use by the CPU.
2065  */
2066 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2067 						 const unsigned int size,
2068 						 int *rx_buffer_pgcnt)
2069 {
2070 	struct i40e_rx_buffer *rx_buffer;
2071 
2072 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2073 	*rx_buffer_pgcnt =
2074 #if (PAGE_SIZE < 8192)
2075 		page_count(rx_buffer->page);
2076 #else
2077 		0;
2078 #endif
2079 	prefetch_page_address(rx_buffer->page);
2080 
2081 	/* we are reusing so sync this buffer for CPU use */
2082 	dma_sync_single_range_for_cpu(rx_ring->dev,
2083 				      rx_buffer->dma,
2084 				      rx_buffer->page_offset,
2085 				      size,
2086 				      DMA_FROM_DEVICE);
2087 
2088 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2089 	rx_buffer->pagecnt_bias--;
2090 
2091 	return rx_buffer;
2092 }
2093 
2094 /**
2095  * i40e_construct_skb - Allocate skb and populate it
2096  * @rx_ring: rx descriptor ring to transact packets on
2097  * @rx_buffer: rx buffer to pull data from
2098  * @xdp: xdp_buff pointing to the data
2099  *
2100  * This function allocates an skb.  It then populates it with the page
2101  * data from the current receive descriptor, taking care to set up the
2102  * skb correctly.
2103  */
2104 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2105 					  struct i40e_rx_buffer *rx_buffer,
2106 					  struct xdp_buff *xdp)
2107 {
2108 	unsigned int size = xdp->data_end - xdp->data;
2109 #if (PAGE_SIZE < 8192)
2110 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111 #else
2112 	unsigned int truesize = SKB_DATA_ALIGN(size);
2113 #endif
2114 	unsigned int headlen;
2115 	struct sk_buff *skb;
2116 
2117 	/* prefetch first cache line of first page */
2118 	net_prefetch(xdp->data);
2119 
2120 	/* Note, we get here by enabling legacy-rx via:
2121 	 *
2122 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2123 	 *
2124 	 * In this mode, we currently get 0 extra XDP headroom as
2125 	 * opposed to having legacy-rx off, where we process XDP
2126 	 * packets going to stack via i40e_build_skb(). The latter
2127 	 * provides us currently with 192 bytes of headroom.
2128 	 *
2129 	 * For i40e_construct_skb() mode it means that the
2130 	 * xdp->data_meta will always point to xdp->data, since
2131 	 * the helper cannot expand the head. Should this ever
2132 	 * change in future for legacy-rx mode on, then lets also
2133 	 * add xdp->data_meta handling here.
2134 	 */
2135 
2136 	/* allocate a skb to store the frags */
2137 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2138 			       I40E_RX_HDR_SIZE,
2139 			       GFP_ATOMIC | __GFP_NOWARN);
2140 	if (unlikely(!skb))
2141 		return NULL;
2142 
2143 	/* Determine available headroom for copy */
2144 	headlen = size;
2145 	if (headlen > I40E_RX_HDR_SIZE)
2146 		headlen = eth_get_headlen(skb->dev, xdp->data,
2147 					  I40E_RX_HDR_SIZE);
2148 
2149 	/* align pull length to size of long to optimize memcpy performance */
2150 	memcpy(__skb_put(skb, headlen), xdp->data,
2151 	       ALIGN(headlen, sizeof(long)));
2152 
2153 	/* update all of the pointers */
2154 	size -= headlen;
2155 	if (size) {
2156 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2157 				rx_buffer->page_offset + headlen,
2158 				size, truesize);
2159 
2160 		/* buffer is used by skb, update page_offset */
2161 #if (PAGE_SIZE < 8192)
2162 		rx_buffer->page_offset ^= truesize;
2163 #else
2164 		rx_buffer->page_offset += truesize;
2165 #endif
2166 	} else {
2167 		/* buffer is unused, reset bias back to rx_buffer */
2168 		rx_buffer->pagecnt_bias++;
2169 	}
2170 
2171 	return skb;
2172 }
2173 
2174 /**
2175  * i40e_build_skb - Build skb around an existing buffer
2176  * @rx_ring: Rx descriptor ring to transact packets on
2177  * @rx_buffer: Rx buffer to pull data from
2178  * @xdp: xdp_buff pointing to the data
2179  *
2180  * This function builds an skb around an existing Rx buffer, taking care
2181  * to set up the skb correctly and avoid any memcpy overhead.
2182  */
2183 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2184 				      struct i40e_rx_buffer *rx_buffer,
2185 				      struct xdp_buff *xdp)
2186 {
2187 	unsigned int metasize = xdp->data - xdp->data_meta;
2188 #if (PAGE_SIZE < 8192)
2189 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2190 #else
2191 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2192 				SKB_DATA_ALIGN(xdp->data_end -
2193 					       xdp->data_hard_start);
2194 #endif
2195 	struct sk_buff *skb;
2196 
2197 	/* Prefetch first cache line of first page. If xdp->data_meta
2198 	 * is unused, this points exactly as xdp->data, otherwise we
2199 	 * likely have a consumer accessing first few bytes of meta
2200 	 * data, and then actual data.
2201 	 */
2202 	net_prefetch(xdp->data_meta);
2203 
2204 	/* build an skb around the page buffer */
2205 	skb = napi_build_skb(xdp->data_hard_start, truesize);
2206 	if (unlikely(!skb))
2207 		return NULL;
2208 
2209 	/* update pointers within the skb to store the data */
2210 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2211 	__skb_put(skb, xdp->data_end - xdp->data);
2212 	if (metasize)
2213 		skb_metadata_set(skb, metasize);
2214 
2215 	/* buffer is used by skb, update page_offset */
2216 #if (PAGE_SIZE < 8192)
2217 	rx_buffer->page_offset ^= truesize;
2218 #else
2219 	rx_buffer->page_offset += truesize;
2220 #endif
2221 
2222 	return skb;
2223 }
2224 
2225 /**
2226  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2227  * @rx_ring: rx descriptor ring to transact packets on
2228  * @rx_buffer: rx buffer to pull data from
2229  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2230  *
2231  * This function will clean up the contents of the rx_buffer.  It will
2232  * either recycle the buffer or unmap it and free the associated resources.
2233  */
2234 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2235 			       struct i40e_rx_buffer *rx_buffer,
2236 			       int rx_buffer_pgcnt)
2237 {
2238 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2239 		/* hand second half of page back to the ring */
2240 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2241 	} else {
2242 		/* we are not reusing the buffer so unmap it */
2243 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2244 				     i40e_rx_pg_size(rx_ring),
2245 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2246 		__page_frag_cache_drain(rx_buffer->page,
2247 					rx_buffer->pagecnt_bias);
2248 		/* clear contents of buffer_info */
2249 		rx_buffer->page = NULL;
2250 	}
2251 }
2252 
2253 /**
2254  * i40e_is_non_eop - process handling of non-EOP buffers
2255  * @rx_ring: Rx ring being processed
2256  * @rx_desc: Rx descriptor for current buffer
2257  *
2258  * If the buffer is an EOP buffer, this function exits returning false,
2259  * otherwise return true indicating that this is in fact a non-EOP buffer.
2260  */
2261 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2262 			    union i40e_rx_desc *rx_desc)
2263 {
2264 	/* if we are the last buffer then there is nothing else to do */
2265 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2266 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2267 		return false;
2268 
2269 	rx_ring->rx_stats.non_eop_descs++;
2270 
2271 	return true;
2272 }
2273 
2274 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2275 			      struct i40e_ring *xdp_ring);
2276 
2277 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2278 {
2279 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2280 
2281 	if (unlikely(!xdpf))
2282 		return I40E_XDP_CONSUMED;
2283 
2284 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2285 }
2286 
2287 /**
2288  * i40e_run_xdp - run an XDP program
2289  * @rx_ring: Rx ring being processed
2290  * @xdp: XDP buffer containing the frame
2291  * @xdp_prog: XDP program to run
2292  **/
2293 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2294 {
2295 	int err, result = I40E_XDP_PASS;
2296 	struct i40e_ring *xdp_ring;
2297 	u32 act;
2298 
2299 	if (!xdp_prog)
2300 		goto xdp_out;
2301 
2302 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2303 
2304 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2305 	switch (act) {
2306 	case XDP_PASS:
2307 		break;
2308 	case XDP_TX:
2309 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2310 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2311 		if (result == I40E_XDP_CONSUMED)
2312 			goto out_failure;
2313 		break;
2314 	case XDP_REDIRECT:
2315 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2316 		if (err)
2317 			goto out_failure;
2318 		result = I40E_XDP_REDIR;
2319 		break;
2320 	default:
2321 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2322 		fallthrough;
2323 	case XDP_ABORTED:
2324 out_failure:
2325 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2326 		fallthrough; /* handle aborts by dropping packet */
2327 	case XDP_DROP:
2328 		result = I40E_XDP_CONSUMED;
2329 		break;
2330 	}
2331 xdp_out:
2332 	return result;
2333 }
2334 
2335 /**
2336  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2337  * @rx_ring: Rx ring
2338  * @rx_buffer: Rx buffer to adjust
2339  * @size: Size of adjustment
2340  **/
2341 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2342 				struct i40e_rx_buffer *rx_buffer,
2343 				unsigned int size)
2344 {
2345 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2346 
2347 #if (PAGE_SIZE < 8192)
2348 	rx_buffer->page_offset ^= truesize;
2349 #else
2350 	rx_buffer->page_offset += truesize;
2351 #endif
2352 }
2353 
2354 /**
2355  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2356  * @xdp_ring: XDP Tx ring
2357  *
2358  * This function updates the XDP Tx ring tail register.
2359  **/
2360 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2361 {
2362 	/* Force memory writes to complete before letting h/w
2363 	 * know there are new descriptors to fetch.
2364 	 */
2365 	wmb();
2366 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2367 }
2368 
2369 /**
2370  * i40e_update_rx_stats - Update Rx ring statistics
2371  * @rx_ring: rx descriptor ring
2372  * @total_rx_bytes: number of bytes received
2373  * @total_rx_packets: number of packets received
2374  *
2375  * This function updates the Rx ring statistics.
2376  **/
2377 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2378 			  unsigned int total_rx_bytes,
2379 			  unsigned int total_rx_packets)
2380 {
2381 	u64_stats_update_begin(&rx_ring->syncp);
2382 	rx_ring->stats.packets += total_rx_packets;
2383 	rx_ring->stats.bytes += total_rx_bytes;
2384 	u64_stats_update_end(&rx_ring->syncp);
2385 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2386 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2387 }
2388 
2389 /**
2390  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2391  * @rx_ring: Rx ring
2392  * @xdp_res: Result of the receive batch
2393  *
2394  * This function bumps XDP Tx tail and/or flush redirect map, and
2395  * should be called when a batch of packets has been processed in the
2396  * napi loop.
2397  **/
2398 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2399 {
2400 	if (xdp_res & I40E_XDP_REDIR)
2401 		xdp_do_flush_map();
2402 
2403 	if (xdp_res & I40E_XDP_TX) {
2404 		struct i40e_ring *xdp_ring =
2405 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2406 
2407 		i40e_xdp_ring_update_tail(xdp_ring);
2408 	}
2409 }
2410 
2411 /**
2412  * i40e_inc_ntc: Advance the next_to_clean index
2413  * @rx_ring: Rx ring
2414  **/
2415 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2416 {
2417 	u32 ntc = rx_ring->next_to_clean + 1;
2418 
2419 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2420 	rx_ring->next_to_clean = ntc;
2421 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2422 }
2423 
2424 /**
2425  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2426  * @rx_ring: rx descriptor ring to transact packets on
2427  * @budget: Total limit on number of packets to process
2428  *
2429  * This function provides a "bounce buffer" approach to Rx interrupt
2430  * processing.  The advantage to this is that on systems that have
2431  * expensive overhead for IOMMU access this provides a means of avoiding
2432  * it by maintaining the mapping of the page to the system.
2433  *
2434  * Returns amount of work completed
2435  **/
2436 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2437 {
2438 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2439 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2440 	unsigned int offset = rx_ring->rx_offset;
2441 	struct sk_buff *skb = rx_ring->skb;
2442 	unsigned int xdp_xmit = 0;
2443 	struct bpf_prog *xdp_prog;
2444 	bool failure = false;
2445 	struct xdp_buff xdp;
2446 	int xdp_res = 0;
2447 
2448 #if (PAGE_SIZE < 8192)
2449 	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2450 #endif
2451 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2452 
2453 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2454 
2455 	while (likely(total_rx_packets < (unsigned int)budget)) {
2456 		struct i40e_rx_buffer *rx_buffer;
2457 		union i40e_rx_desc *rx_desc;
2458 		int rx_buffer_pgcnt;
2459 		unsigned int size;
2460 		u64 qword;
2461 
2462 		/* return some buffers to hardware, one at a time is too slow */
2463 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2464 			failure = failure ||
2465 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2466 			cleaned_count = 0;
2467 		}
2468 
2469 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2470 
2471 		/* status_error_len will always be zero for unused descriptors
2472 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2473 		 * which is always zero because packet split isn't used, if the
2474 		 * hardware wrote DD then the length will be non-zero
2475 		 */
2476 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2477 
2478 		/* This memory barrier is needed to keep us from reading
2479 		 * any other fields out of the rx_desc until we have
2480 		 * verified the descriptor has been written back.
2481 		 */
2482 		dma_rmb();
2483 
2484 		if (i40e_rx_is_programming_status(qword)) {
2485 			i40e_clean_programming_status(rx_ring,
2486 						      rx_desc->raw.qword[0],
2487 						      qword);
2488 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2489 			i40e_inc_ntc(rx_ring);
2490 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2491 			cleaned_count++;
2492 			continue;
2493 		}
2494 
2495 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2496 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2497 		if (!size)
2498 			break;
2499 
2500 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2501 		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2502 
2503 		/* retrieve a buffer from the ring */
2504 		if (!skb) {
2505 			unsigned char *hard_start;
2506 
2507 			hard_start = page_address(rx_buffer->page) +
2508 				     rx_buffer->page_offset - offset;
2509 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2510 			xdp_buff_clear_frags_flag(&xdp);
2511 #if (PAGE_SIZE > 4096)
2512 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2513 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2514 #endif
2515 			xdp_res = i40e_run_xdp(rx_ring, &xdp, xdp_prog);
2516 		}
2517 
2518 		if (xdp_res) {
2519 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520 				xdp_xmit |= xdp_res;
2521 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2522 			} else {
2523 				rx_buffer->pagecnt_bias++;
2524 			}
2525 			total_rx_bytes += size;
2526 			total_rx_packets++;
2527 		} else if (skb) {
2528 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529 		} else if (ring_uses_build_skb(rx_ring)) {
2530 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2531 		} else {
2532 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2533 		}
2534 
2535 		/* exit if we failed to retrieve a buffer */
2536 		if (!xdp_res && !skb) {
2537 			rx_ring->rx_stats.alloc_buff_failed++;
2538 			rx_buffer->pagecnt_bias++;
2539 			break;
2540 		}
2541 
2542 		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2543 		cleaned_count++;
2544 
2545 		i40e_inc_ntc(rx_ring);
2546 		if (i40e_is_non_eop(rx_ring, rx_desc))
2547 			continue;
2548 
2549 		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2550 			skb = NULL;
2551 			continue;
2552 		}
2553 
2554 		/* probably a little skewed due to removing CRC */
2555 		total_rx_bytes += skb->len;
2556 
2557 		/* populate checksum, VLAN, and protocol */
2558 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2559 
2560 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2562 		skb = NULL;
2563 
2564 		/* update budget accounting */
2565 		total_rx_packets++;
2566 	}
2567 
2568 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2569 	rx_ring->skb = skb;
2570 
2571 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2572 
2573 	/* guarantee a trip back through this routine if there was a failure */
2574 	return failure ? budget : (int)total_rx_packets;
2575 }
2576 
2577 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2578 {
2579 	u32 val;
2580 
2581 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2582 	 * points out doing so is "meaningless since it was already
2583 	 * auto-cleared". The auto-clearing happens when the interrupt is
2584 	 * asserted.
2585 	 *
2586 	 * Hardware errata 28 for also indicates that writing to a
2587 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588 	 * an event in the PBA anyway so we need to rely on the automask
2589 	 * to hold pending events for us until the interrupt is re-enabled
2590 	 *
2591 	 * The itr value is reported in microseconds, and the register
2592 	 * value is recorded in 2 microsecond units. For this reason we
2593 	 * only need to shift by the interval shift - 1 instead of the
2594 	 * full value.
2595 	 */
2596 	itr &= I40E_ITR_MASK;
2597 
2598 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2599 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2601 
2602 	return val;
2603 }
2604 
2605 /* a small macro to shorten up some long lines */
2606 #define INTREG I40E_PFINT_DYN_CTLN
2607 
2608 /* The act of updating the ITR will cause it to immediately trigger. In order
2609  * to prevent this from throwing off adaptive update statistics we defer the
2610  * update so that it can only happen so often. So after either Tx or Rx are
2611  * updated we make the adaptive scheme wait until either the ITR completely
2612  * expires via the next_update expiration or we have been through at least
2613  * 3 interrupts.
2614  */
2615 #define ITR_COUNTDOWN_START 3
2616 
2617 /**
2618  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619  * @vsi: the VSI we care about
2620  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2621  *
2622  **/
2623 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624 					  struct i40e_q_vector *q_vector)
2625 {
2626 	struct i40e_hw *hw = &vsi->back->hw;
2627 	u32 intval;
2628 
2629 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2630 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631 		i40e_irq_dynamic_enable_icr0(vsi->back);
2632 		return;
2633 	}
2634 
2635 	/* These will do nothing if dynamic updates are not enabled */
2636 	i40e_update_itr(q_vector, &q_vector->tx);
2637 	i40e_update_itr(q_vector, &q_vector->rx);
2638 
2639 	/* This block of logic allows us to get away with only updating
2640 	 * one ITR value with each interrupt. The idea is to perform a
2641 	 * pseudo-lazy update with the following criteria.
2642 	 *
2643 	 * 1. Rx is given higher priority than Tx if both are in same state
2644 	 * 2. If we must reduce an ITR that is given highest priority.
2645 	 * 3. We then give priority to increasing ITR based on amount.
2646 	 */
2647 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648 		/* Rx ITR needs to be reduced, this is highest priority */
2649 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2650 					   q_vector->rx.target_itr);
2651 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2652 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656 		/* Tx ITR needs to be reduced, this is second priority
2657 		 * Tx ITR needs to be increased more than Rx, fourth priority
2658 		 */
2659 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2660 					   q_vector->tx.target_itr);
2661 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2662 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664 		/* Rx ITR needs to be increased, third priority */
2665 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2666 					   q_vector->rx.target_itr);
2667 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2668 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2669 	} else {
2670 		/* No ITR update, lowest priority */
2671 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672 		if (q_vector->itr_countdown)
2673 			q_vector->itr_countdown--;
2674 	}
2675 
2676 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2678 }
2679 
2680 /**
2681  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682  * @napi: napi struct with our devices info in it
2683  * @budget: amount of work driver is allowed to do this pass, in packets
2684  *
2685  * This function will clean all queues associated with a q_vector.
2686  *
2687  * Returns the amount of work done
2688  **/
2689 int i40e_napi_poll(struct napi_struct *napi, int budget)
2690 {
2691 	struct i40e_q_vector *q_vector =
2692 			       container_of(napi, struct i40e_q_vector, napi);
2693 	struct i40e_vsi *vsi = q_vector->vsi;
2694 	struct i40e_ring *ring;
2695 	bool clean_complete = true;
2696 	bool arm_wb = false;
2697 	int budget_per_ring;
2698 	int work_done = 0;
2699 
2700 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701 		napi_complete(napi);
2702 		return 0;
2703 	}
2704 
2705 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2706 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2707 	 */
2708 	i40e_for_each_ring(ring, q_vector->tx) {
2709 		bool wd = ring->xsk_pool ?
2710 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2711 			  i40e_clean_tx_irq(vsi, ring, budget);
2712 
2713 		if (!wd) {
2714 			clean_complete = false;
2715 			continue;
2716 		}
2717 		arm_wb |= ring->arm_wb;
2718 		ring->arm_wb = false;
2719 	}
2720 
2721 	/* Handle case where we are called by netpoll with a budget of 0 */
2722 	if (budget <= 0)
2723 		goto tx_only;
2724 
2725 	/* normally we have 1 Rx ring per q_vector */
2726 	if (unlikely(q_vector->num_ringpairs > 1))
2727 		/* We attempt to distribute budget to each Rx queue fairly, but
2728 		 * don't allow the budget to go below 1 because that would exit
2729 		 * polling early.
2730 		 */
2731 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2732 	else
2733 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2734 		budget_per_ring = budget;
2735 
2736 	i40e_for_each_ring(ring, q_vector->rx) {
2737 		int cleaned = ring->xsk_pool ?
2738 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739 			      i40e_clean_rx_irq(ring, budget_per_ring);
2740 
2741 		work_done += cleaned;
2742 		/* if we clean as many as budgeted, we must not be done */
2743 		if (cleaned >= budget_per_ring)
2744 			clean_complete = false;
2745 	}
2746 
2747 	/* If work not completed, return budget and polling will return */
2748 	if (!clean_complete) {
2749 		int cpu_id = smp_processor_id();
2750 
2751 		/* It is possible that the interrupt affinity has changed but,
2752 		 * if the cpu is pegged at 100%, polling will never exit while
2753 		 * traffic continues and the interrupt will be stuck on this
2754 		 * cpu.  We check to make sure affinity is correct before we
2755 		 * continue to poll, otherwise we must stop polling so the
2756 		 * interrupt can move to the correct cpu.
2757 		 */
2758 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759 			/* Tell napi that we are done polling */
2760 			napi_complete_done(napi, work_done);
2761 
2762 			/* Force an interrupt */
2763 			i40e_force_wb(vsi, q_vector);
2764 
2765 			/* Return budget-1 so that polling stops */
2766 			return budget - 1;
2767 		}
2768 tx_only:
2769 		if (arm_wb) {
2770 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771 			i40e_enable_wb_on_itr(vsi, q_vector);
2772 		}
2773 		return budget;
2774 	}
2775 
2776 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777 		q_vector->arm_wb_state = false;
2778 
2779 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2780 	 * poll us due to busy-polling
2781 	 */
2782 	if (likely(napi_complete_done(napi, work_done)))
2783 		i40e_update_enable_itr(vsi, q_vector);
2784 
2785 	return min(work_done, budget - 1);
2786 }
2787 
2788 /**
2789  * i40e_atr - Add a Flow Director ATR filter
2790  * @tx_ring:  ring to add programming descriptor to
2791  * @skb:      send buffer
2792  * @tx_flags: send tx flags
2793  **/
2794 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2795 		     u32 tx_flags)
2796 {
2797 	struct i40e_filter_program_desc *fdir_desc;
2798 	struct i40e_pf *pf = tx_ring->vsi->back;
2799 	union {
2800 		unsigned char *network;
2801 		struct iphdr *ipv4;
2802 		struct ipv6hdr *ipv6;
2803 	} hdr;
2804 	struct tcphdr *th;
2805 	unsigned int hlen;
2806 	u32 flex_ptype, dtype_cmd;
2807 	int l4_proto;
2808 	u16 i;
2809 
2810 	/* make sure ATR is enabled */
2811 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2812 		return;
2813 
2814 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2815 		return;
2816 
2817 	/* if sampling is disabled do nothing */
2818 	if (!tx_ring->atr_sample_rate)
2819 		return;
2820 
2821 	/* Currently only IPv4/IPv6 with TCP is supported */
2822 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2823 		return;
2824 
2825 	/* snag network header to get L4 type and address */
2826 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827 		      skb_inner_network_header(skb) : skb_network_header(skb);
2828 
2829 	/* Note: tx_flags gets modified to reflect inner protocols in
2830 	 * tx_enable_csum function if encap is enabled.
2831 	 */
2832 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833 		/* access ihl as u8 to avoid unaligned access on ia64 */
2834 		hlen = (hdr.network[0] & 0x0F) << 2;
2835 		l4_proto = hdr.ipv4->protocol;
2836 	} else {
2837 		/* find the start of the innermost ipv6 header */
2838 		unsigned int inner_hlen = hdr.network - skb->data;
2839 		unsigned int h_offset = inner_hlen;
2840 
2841 		/* this function updates h_offset to the end of the header */
2842 		l4_proto =
2843 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844 		/* hlen will contain our best estimate of the tcp header */
2845 		hlen = h_offset - inner_hlen;
2846 	}
2847 
2848 	if (l4_proto != IPPROTO_TCP)
2849 		return;
2850 
2851 	th = (struct tcphdr *)(hdr.network + hlen);
2852 
2853 	/* Due to lack of space, no more new filters can be programmed */
2854 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2855 		return;
2856 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2857 		/* HW ATR eviction will take care of removing filters on FIN
2858 		 * and RST packets.
2859 		 */
2860 		if (th->fin || th->rst)
2861 			return;
2862 	}
2863 
2864 	tx_ring->atr_count++;
2865 
2866 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2867 	if (!th->fin &&
2868 	    !th->syn &&
2869 	    !th->rst &&
2870 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2871 		return;
2872 
2873 	tx_ring->atr_count = 0;
2874 
2875 	/* grab the next descriptor */
2876 	i = tx_ring->next_to_use;
2877 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2878 
2879 	i++;
2880 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2881 
2882 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2889 
2890 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2891 
2892 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2893 
2894 	dtype_cmd |= (th->fin || th->rst) ?
2895 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2899 
2900 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2902 
2903 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2905 
2906 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2908 		dtype_cmd |=
2909 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2912 	else
2913 		dtype_cmd |=
2914 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2917 
2918 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2919 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2920 
2921 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922 	fdir_desc->rsvd = cpu_to_le32(0);
2923 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924 	fdir_desc->fd_id = cpu_to_le32(0);
2925 }
2926 
2927 /**
2928  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2929  * @skb:     send buffer
2930  * @tx_ring: ring to send buffer on
2931  * @flags:   the tx flags to be set
2932  *
2933  * Checks the skb and set up correspondingly several generic transmit flags
2934  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2935  *
2936  * Returns error code indicate the frame should be dropped upon error and the
2937  * otherwise  returns 0 to indicate the flags has been set properly.
2938  **/
2939 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940 					     struct i40e_ring *tx_ring,
2941 					     u32 *flags)
2942 {
2943 	__be16 protocol = skb->protocol;
2944 	u32  tx_flags = 0;
2945 
2946 	if (protocol == htons(ETH_P_8021Q) &&
2947 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948 		/* When HW VLAN acceleration is turned off by the user the
2949 		 * stack sets the protocol to 8021q so that the driver
2950 		 * can take any steps required to support the SW only
2951 		 * VLAN handling.  In our case the driver doesn't need
2952 		 * to take any further steps so just set the protocol
2953 		 * to the encapsulated ethertype.
2954 		 */
2955 		skb->protocol = vlan_get_protocol(skb);
2956 		goto out;
2957 	}
2958 
2959 	/* if we have a HW VLAN tag being added, default to the HW one */
2960 	if (skb_vlan_tag_present(skb)) {
2961 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2964 	} else if (protocol == htons(ETH_P_8021Q)) {
2965 		struct vlan_hdr *vhdr, _vhdr;
2966 
2967 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2968 		if (!vhdr)
2969 			return -EINVAL;
2970 
2971 		protocol = vhdr->h_vlan_encapsulated_proto;
2972 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2974 	}
2975 
2976 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2977 		goto out;
2978 
2979 	/* Insert 802.1p priority into VLAN header */
2980 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981 	    (skb->priority != TC_PRIO_CONTROL)) {
2982 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983 		tx_flags |= (skb->priority & 0x7) <<
2984 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986 			struct vlan_ethhdr *vhdr;
2987 			int rc;
2988 
2989 			rc = skb_cow_head(skb, 0);
2990 			if (rc < 0)
2991 				return rc;
2992 			vhdr = (struct vlan_ethhdr *)skb->data;
2993 			vhdr->h_vlan_TCI = htons(tx_flags >>
2994 						 I40E_TX_FLAGS_VLAN_SHIFT);
2995 		} else {
2996 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2997 		}
2998 	}
2999 
3000 out:
3001 	*flags = tx_flags;
3002 	return 0;
3003 }
3004 
3005 /**
3006  * i40e_tso - set up the tso context descriptor
3007  * @first:    pointer to first Tx buffer for xmit
3008  * @hdr_len:  ptr to the size of the packet header
3009  * @cd_type_cmd_tso_mss: Quad Word 1
3010  *
3011  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3012  **/
3013 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014 		    u64 *cd_type_cmd_tso_mss)
3015 {
3016 	struct sk_buff *skb = first->skb;
3017 	u64 cd_cmd, cd_tso_len, cd_mss;
3018 	__be16 protocol;
3019 	union {
3020 		struct iphdr *v4;
3021 		struct ipv6hdr *v6;
3022 		unsigned char *hdr;
3023 	} ip;
3024 	union {
3025 		struct tcphdr *tcp;
3026 		struct udphdr *udp;
3027 		unsigned char *hdr;
3028 	} l4;
3029 	u32 paylen, l4_offset;
3030 	u16 gso_size;
3031 	int err;
3032 
3033 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3034 		return 0;
3035 
3036 	if (!skb_is_gso(skb))
3037 		return 0;
3038 
3039 	err = skb_cow_head(skb, 0);
3040 	if (err < 0)
3041 		return err;
3042 
3043 	protocol = vlan_get_protocol(skb);
3044 
3045 	if (eth_p_mpls(protocol))
3046 		ip.hdr = skb_inner_network_header(skb);
3047 	else
3048 		ip.hdr = skb_network_header(skb);
3049 	l4.hdr = skb_checksum_start(skb);
3050 
3051 	/* initialize outer IP header fields */
3052 	if (ip.v4->version == 4) {
3053 		ip.v4->tot_len = 0;
3054 		ip.v4->check = 0;
3055 
3056 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3057 	} else {
3058 		ip.v6->payload_len = 0;
3059 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3060 	}
3061 
3062 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3063 					 SKB_GSO_GRE_CSUM |
3064 					 SKB_GSO_IPXIP4 |
3065 					 SKB_GSO_IPXIP6 |
3066 					 SKB_GSO_UDP_TUNNEL |
3067 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3068 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3069 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3070 			l4.udp->len = 0;
3071 
3072 			/* determine offset of outer transport header */
3073 			l4_offset = l4.hdr - skb->data;
3074 
3075 			/* remove payload length from outer checksum */
3076 			paylen = skb->len - l4_offset;
3077 			csum_replace_by_diff(&l4.udp->check,
3078 					     (__force __wsum)htonl(paylen));
3079 		}
3080 
3081 		/* reset pointers to inner headers */
3082 		ip.hdr = skb_inner_network_header(skb);
3083 		l4.hdr = skb_inner_transport_header(skb);
3084 
3085 		/* initialize inner IP header fields */
3086 		if (ip.v4->version == 4) {
3087 			ip.v4->tot_len = 0;
3088 			ip.v4->check = 0;
3089 		} else {
3090 			ip.v6->payload_len = 0;
3091 		}
3092 	}
3093 
3094 	/* determine offset of inner transport header */
3095 	l4_offset = l4.hdr - skb->data;
3096 
3097 	/* remove payload length from inner checksum */
3098 	paylen = skb->len - l4_offset;
3099 
3100 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3101 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3102 		/* compute length of segmentation header */
3103 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3104 	} else {
3105 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3106 		/* compute length of segmentation header */
3107 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3108 	}
3109 
3110 	/* pull values out of skb_shinfo */
3111 	gso_size = skb_shinfo(skb)->gso_size;
3112 
3113 	/* update GSO size and bytecount with header size */
3114 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3115 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3116 
3117 	/* find the field values */
3118 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3119 	cd_tso_len = skb->len - *hdr_len;
3120 	cd_mss = gso_size;
3121 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3122 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3123 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3124 	return 1;
3125 }
3126 
3127 /**
3128  * i40e_tsyn - set up the tsyn context descriptor
3129  * @tx_ring:  ptr to the ring to send
3130  * @skb:      ptr to the skb we're sending
3131  * @tx_flags: the collected send information
3132  * @cd_type_cmd_tso_mss: Quad Word 1
3133  *
3134  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3135  **/
3136 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3137 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3138 {
3139 	struct i40e_pf *pf;
3140 
3141 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3142 		return 0;
3143 
3144 	/* Tx timestamps cannot be sampled when doing TSO */
3145 	if (tx_flags & I40E_TX_FLAGS_TSO)
3146 		return 0;
3147 
3148 	/* only timestamp the outbound packet if the user has requested it and
3149 	 * we are not already transmitting a packet to be timestamped
3150 	 */
3151 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3152 	if (!(pf->flags & I40E_FLAG_PTP))
3153 		return 0;
3154 
3155 	if (pf->ptp_tx &&
3156 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3157 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3158 		pf->ptp_tx_start = jiffies;
3159 		pf->ptp_tx_skb = skb_get(skb);
3160 	} else {
3161 		pf->tx_hwtstamp_skipped++;
3162 		return 0;
3163 	}
3164 
3165 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3166 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3167 
3168 	return 1;
3169 }
3170 
3171 /**
3172  * i40e_tx_enable_csum - Enable Tx checksum offloads
3173  * @skb: send buffer
3174  * @tx_flags: pointer to Tx flags currently set
3175  * @td_cmd: Tx descriptor command bits to set
3176  * @td_offset: Tx descriptor header offsets to set
3177  * @tx_ring: Tx descriptor ring
3178  * @cd_tunneling: ptr to context desc bits
3179  **/
3180 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3181 			       u32 *td_cmd, u32 *td_offset,
3182 			       struct i40e_ring *tx_ring,
3183 			       u32 *cd_tunneling)
3184 {
3185 	union {
3186 		struct iphdr *v4;
3187 		struct ipv6hdr *v6;
3188 		unsigned char *hdr;
3189 	} ip;
3190 	union {
3191 		struct tcphdr *tcp;
3192 		struct udphdr *udp;
3193 		unsigned char *hdr;
3194 	} l4;
3195 	unsigned char *exthdr;
3196 	u32 offset, cmd = 0;
3197 	__be16 frag_off;
3198 	__be16 protocol;
3199 	u8 l4_proto = 0;
3200 
3201 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3202 		return 0;
3203 
3204 	protocol = vlan_get_protocol(skb);
3205 
3206 	if (eth_p_mpls(protocol)) {
3207 		ip.hdr = skb_inner_network_header(skb);
3208 		l4.hdr = skb_checksum_start(skb);
3209 	} else {
3210 		ip.hdr = skb_network_header(skb);
3211 		l4.hdr = skb_transport_header(skb);
3212 	}
3213 
3214 	/* set the tx_flags to indicate the IP protocol type. this is
3215 	 * required so that checksum header computation below is accurate.
3216 	 */
3217 	if (ip.v4->version == 4)
3218 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3219 	else
3220 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3221 
3222 	/* compute outer L2 header size */
3223 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3224 
3225 	if (skb->encapsulation) {
3226 		u32 tunnel = 0;
3227 		/* define outer network header type */
3228 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3229 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3230 				  I40E_TX_CTX_EXT_IP_IPV4 :
3231 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3232 
3233 			l4_proto = ip.v4->protocol;
3234 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3235 			int ret;
3236 
3237 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3238 
3239 			exthdr = ip.hdr + sizeof(*ip.v6);
3240 			l4_proto = ip.v6->nexthdr;
3241 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3242 					       &l4_proto, &frag_off);
3243 			if (ret < 0)
3244 				return -1;
3245 		}
3246 
3247 		/* define outer transport */
3248 		switch (l4_proto) {
3249 		case IPPROTO_UDP:
3250 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3251 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3252 			break;
3253 		case IPPROTO_GRE:
3254 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3255 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3256 			break;
3257 		case IPPROTO_IPIP:
3258 		case IPPROTO_IPV6:
3259 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3260 			l4.hdr = skb_inner_network_header(skb);
3261 			break;
3262 		default:
3263 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3264 				return -1;
3265 
3266 			skb_checksum_help(skb);
3267 			return 0;
3268 		}
3269 
3270 		/* compute outer L3 header size */
3271 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3272 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3273 
3274 		/* switch IP header pointer from outer to inner header */
3275 		ip.hdr = skb_inner_network_header(skb);
3276 
3277 		/* compute tunnel header size */
3278 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3279 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3280 
3281 		/* indicate if we need to offload outer UDP header */
3282 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3283 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3284 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3285 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3286 
3287 		/* record tunnel offload values */
3288 		*cd_tunneling |= tunnel;
3289 
3290 		/* switch L4 header pointer from outer to inner */
3291 		l4.hdr = skb_inner_transport_header(skb);
3292 		l4_proto = 0;
3293 
3294 		/* reset type as we transition from outer to inner headers */
3295 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3296 		if (ip.v4->version == 4)
3297 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3298 		if (ip.v6->version == 6)
3299 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3300 	}
3301 
3302 	/* Enable IP checksum offloads */
3303 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3304 		l4_proto = ip.v4->protocol;
3305 		/* the stack computes the IP header already, the only time we
3306 		 * need the hardware to recompute it is in the case of TSO.
3307 		 */
3308 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3309 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3310 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3311 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3312 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3313 
3314 		exthdr = ip.hdr + sizeof(*ip.v6);
3315 		l4_proto = ip.v6->nexthdr;
3316 		if (l4.hdr != exthdr)
3317 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3318 					 &l4_proto, &frag_off);
3319 	}
3320 
3321 	/* compute inner L3 header size */
3322 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3323 
3324 	/* Enable L4 checksum offloads */
3325 	switch (l4_proto) {
3326 	case IPPROTO_TCP:
3327 		/* enable checksum offloads */
3328 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3329 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3330 		break;
3331 	case IPPROTO_SCTP:
3332 		/* enable SCTP checksum offload */
3333 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3334 		offset |= (sizeof(struct sctphdr) >> 2) <<
3335 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3336 		break;
3337 	case IPPROTO_UDP:
3338 		/* enable UDP checksum offload */
3339 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3340 		offset |= (sizeof(struct udphdr) >> 2) <<
3341 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3342 		break;
3343 	default:
3344 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3345 			return -1;
3346 		skb_checksum_help(skb);
3347 		return 0;
3348 	}
3349 
3350 	*td_cmd |= cmd;
3351 	*td_offset |= offset;
3352 
3353 	return 1;
3354 }
3355 
3356 /**
3357  * i40e_create_tx_ctx - Build the Tx context descriptor
3358  * @tx_ring:  ring to create the descriptor on
3359  * @cd_type_cmd_tso_mss: Quad Word 1
3360  * @cd_tunneling: Quad Word 0 - bits 0-31
3361  * @cd_l2tag2: Quad Word 0 - bits 32-63
3362  **/
3363 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3364 			       const u64 cd_type_cmd_tso_mss,
3365 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3366 {
3367 	struct i40e_tx_context_desc *context_desc;
3368 	int i = tx_ring->next_to_use;
3369 
3370 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3371 	    !cd_tunneling && !cd_l2tag2)
3372 		return;
3373 
3374 	/* grab the next descriptor */
3375 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3376 
3377 	i++;
3378 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3379 
3380 	/* cpu_to_le32 and assign to struct fields */
3381 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3382 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3383 	context_desc->rsvd = cpu_to_le16(0);
3384 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3385 }
3386 
3387 /**
3388  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3389  * @tx_ring: the ring to be checked
3390  * @size:    the size buffer we want to assure is available
3391  *
3392  * Returns -EBUSY if a stop is needed, else 0
3393  **/
3394 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3395 {
3396 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3397 	/* Memory barrier before checking head and tail */
3398 	smp_mb();
3399 
3400 	++tx_ring->tx_stats.tx_stopped;
3401 
3402 	/* Check again in a case another CPU has just made room available. */
3403 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3404 		return -EBUSY;
3405 
3406 	/* A reprieve! - use start_queue because it doesn't call schedule */
3407 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3408 	++tx_ring->tx_stats.restart_queue;
3409 	return 0;
3410 }
3411 
3412 /**
3413  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3414  * @skb:      send buffer
3415  *
3416  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3417  * and so we need to figure out the cases where we need to linearize the skb.
3418  *
3419  * For TSO we need to count the TSO header and segment payload separately.
3420  * As such we need to check cases where we have 7 fragments or more as we
3421  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3422  * the segment payload in the first descriptor, and another 7 for the
3423  * fragments.
3424  **/
3425 bool __i40e_chk_linearize(struct sk_buff *skb)
3426 {
3427 	const skb_frag_t *frag, *stale;
3428 	int nr_frags, sum;
3429 
3430 	/* no need to check if number of frags is less than 7 */
3431 	nr_frags = skb_shinfo(skb)->nr_frags;
3432 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3433 		return false;
3434 
3435 	/* We need to walk through the list and validate that each group
3436 	 * of 6 fragments totals at least gso_size.
3437 	 */
3438 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3439 	frag = &skb_shinfo(skb)->frags[0];
3440 
3441 	/* Initialize size to the negative value of gso_size minus 1.  We
3442 	 * use this as the worst case scenerio in which the frag ahead
3443 	 * of us only provides one byte which is why we are limited to 6
3444 	 * descriptors for a single transmit as the header and previous
3445 	 * fragment are already consuming 2 descriptors.
3446 	 */
3447 	sum = 1 - skb_shinfo(skb)->gso_size;
3448 
3449 	/* Add size of frags 0 through 4 to create our initial sum */
3450 	sum += skb_frag_size(frag++);
3451 	sum += skb_frag_size(frag++);
3452 	sum += skb_frag_size(frag++);
3453 	sum += skb_frag_size(frag++);
3454 	sum += skb_frag_size(frag++);
3455 
3456 	/* Walk through fragments adding latest fragment, testing it, and
3457 	 * then removing stale fragments from the sum.
3458 	 */
3459 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3460 		int stale_size = skb_frag_size(stale);
3461 
3462 		sum += skb_frag_size(frag++);
3463 
3464 		/* The stale fragment may present us with a smaller
3465 		 * descriptor than the actual fragment size. To account
3466 		 * for that we need to remove all the data on the front and
3467 		 * figure out what the remainder would be in the last
3468 		 * descriptor associated with the fragment.
3469 		 */
3470 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3471 			int align_pad = -(skb_frag_off(stale)) &
3472 					(I40E_MAX_READ_REQ_SIZE - 1);
3473 
3474 			sum -= align_pad;
3475 			stale_size -= align_pad;
3476 
3477 			do {
3478 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3479 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3480 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3481 		}
3482 
3483 		/* if sum is negative we failed to make sufficient progress */
3484 		if (sum < 0)
3485 			return true;
3486 
3487 		if (!nr_frags--)
3488 			break;
3489 
3490 		sum -= stale_size;
3491 	}
3492 
3493 	return false;
3494 }
3495 
3496 /**
3497  * i40e_tx_map - Build the Tx descriptor
3498  * @tx_ring:  ring to send buffer on
3499  * @skb:      send buffer
3500  * @first:    first buffer info buffer to use
3501  * @tx_flags: collected send information
3502  * @hdr_len:  size of the packet header
3503  * @td_cmd:   the command field in the descriptor
3504  * @td_offset: offset for checksum or crc
3505  *
3506  * Returns 0 on success, -1 on failure to DMA
3507  **/
3508 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3509 			      struct i40e_tx_buffer *first, u32 tx_flags,
3510 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3511 {
3512 	unsigned int data_len = skb->data_len;
3513 	unsigned int size = skb_headlen(skb);
3514 	skb_frag_t *frag;
3515 	struct i40e_tx_buffer *tx_bi;
3516 	struct i40e_tx_desc *tx_desc;
3517 	u16 i = tx_ring->next_to_use;
3518 	u32 td_tag = 0;
3519 	dma_addr_t dma;
3520 	u16 desc_count = 1;
3521 
3522 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3523 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3524 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3525 			 I40E_TX_FLAGS_VLAN_SHIFT;
3526 	}
3527 
3528 	first->tx_flags = tx_flags;
3529 
3530 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3531 
3532 	tx_desc = I40E_TX_DESC(tx_ring, i);
3533 	tx_bi = first;
3534 
3535 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3536 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3537 
3538 		if (dma_mapping_error(tx_ring->dev, dma))
3539 			goto dma_error;
3540 
3541 		/* record length, and DMA address */
3542 		dma_unmap_len_set(tx_bi, len, size);
3543 		dma_unmap_addr_set(tx_bi, dma, dma);
3544 
3545 		/* align size to end of page */
3546 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3547 		tx_desc->buffer_addr = cpu_to_le64(dma);
3548 
3549 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3550 			tx_desc->cmd_type_offset_bsz =
3551 				build_ctob(td_cmd, td_offset,
3552 					   max_data, td_tag);
3553 
3554 			tx_desc++;
3555 			i++;
3556 			desc_count++;
3557 
3558 			if (i == tx_ring->count) {
3559 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3560 				i = 0;
3561 			}
3562 
3563 			dma += max_data;
3564 			size -= max_data;
3565 
3566 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3567 			tx_desc->buffer_addr = cpu_to_le64(dma);
3568 		}
3569 
3570 		if (likely(!data_len))
3571 			break;
3572 
3573 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3574 							  size, td_tag);
3575 
3576 		tx_desc++;
3577 		i++;
3578 		desc_count++;
3579 
3580 		if (i == tx_ring->count) {
3581 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3582 			i = 0;
3583 		}
3584 
3585 		size = skb_frag_size(frag);
3586 		data_len -= size;
3587 
3588 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3589 				       DMA_TO_DEVICE);
3590 
3591 		tx_bi = &tx_ring->tx_bi[i];
3592 	}
3593 
3594 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3595 
3596 	i++;
3597 	if (i == tx_ring->count)
3598 		i = 0;
3599 
3600 	tx_ring->next_to_use = i;
3601 
3602 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3603 
3604 	/* write last descriptor with EOP bit */
3605 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3606 
3607 	/* We OR these values together to check both against 4 (WB_STRIDE)
3608 	 * below. This is safe since we don't re-use desc_count afterwards.
3609 	 */
3610 	desc_count |= ++tx_ring->packet_stride;
3611 
3612 	if (desc_count >= WB_STRIDE) {
3613 		/* write last descriptor with RS bit set */
3614 		td_cmd |= I40E_TX_DESC_CMD_RS;
3615 		tx_ring->packet_stride = 0;
3616 	}
3617 
3618 	tx_desc->cmd_type_offset_bsz =
3619 			build_ctob(td_cmd, td_offset, size, td_tag);
3620 
3621 	skb_tx_timestamp(skb);
3622 
3623 	/* Force memory writes to complete before letting h/w know there
3624 	 * are new descriptors to fetch.
3625 	 *
3626 	 * We also use this memory barrier to make certain all of the
3627 	 * status bits have been updated before next_to_watch is written.
3628 	 */
3629 	wmb();
3630 
3631 	/* set next_to_watch value indicating a packet is present */
3632 	first->next_to_watch = tx_desc;
3633 
3634 	/* notify HW of packet */
3635 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3636 		writel(i, tx_ring->tail);
3637 	}
3638 
3639 	return 0;
3640 
3641 dma_error:
3642 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3643 
3644 	/* clear dma mappings for failed tx_bi map */
3645 	for (;;) {
3646 		tx_bi = &tx_ring->tx_bi[i];
3647 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3648 		if (tx_bi == first)
3649 			break;
3650 		if (i == 0)
3651 			i = tx_ring->count;
3652 		i--;
3653 	}
3654 
3655 	tx_ring->next_to_use = i;
3656 
3657 	return -1;
3658 }
3659 
3660 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3661 				  const struct sk_buff *skb,
3662 				  u16 num_tx_queues)
3663 {
3664 	u32 jhash_initval_salt = 0xd631614b;
3665 	u32 hash;
3666 
3667 	if (skb->sk && skb->sk->sk_hash)
3668 		hash = skb->sk->sk_hash;
3669 	else
3670 		hash = (__force u16)skb->protocol ^ skb->hash;
3671 
3672 	hash = jhash_1word(hash, jhash_initval_salt);
3673 
3674 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3675 }
3676 
3677 u16 i40e_lan_select_queue(struct net_device *netdev,
3678 			  struct sk_buff *skb,
3679 			  struct net_device __always_unused *sb_dev)
3680 {
3681 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3682 	struct i40e_vsi *vsi = np->vsi;
3683 	struct i40e_hw *hw;
3684 	u16 qoffset;
3685 	u16 qcount;
3686 	u8 tclass;
3687 	u16 hash;
3688 	u8 prio;
3689 
3690 	/* is DCB enabled at all? */
3691 	if (vsi->tc_config.numtc == 1 ||
3692 	    i40e_is_tc_mqprio_enabled(vsi->back))
3693 		return netdev_pick_tx(netdev, skb, sb_dev);
3694 
3695 	prio = skb->priority;
3696 	hw = &vsi->back->hw;
3697 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3698 	/* sanity check */
3699 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3700 		tclass = 0;
3701 
3702 	/* select a queue assigned for the given TC */
3703 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3704 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3705 
3706 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3707 	return qoffset + hash;
3708 }
3709 
3710 /**
3711  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3712  * @xdpf: data to transmit
3713  * @xdp_ring: XDP Tx ring
3714  **/
3715 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3716 			      struct i40e_ring *xdp_ring)
3717 {
3718 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3719 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3720 	u16 i = 0, index = xdp_ring->next_to_use;
3721 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3722 	struct i40e_tx_buffer *tx_bi = tx_head;
3723 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3724 	void *data = xdpf->data;
3725 	u32 size = xdpf->len;
3726 
3727 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3728 		xdp_ring->tx_stats.tx_busy++;
3729 		return I40E_XDP_CONSUMED;
3730 	}
3731 
3732 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3733 	tx_head->gso_segs = 1;
3734 	tx_head->xdpf = xdpf;
3735 
3736 	for (;;) {
3737 		dma_addr_t dma;
3738 
3739 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3740 		if (dma_mapping_error(xdp_ring->dev, dma))
3741 			goto unmap;
3742 
3743 		/* record length, and DMA address */
3744 		dma_unmap_len_set(tx_bi, len, size);
3745 		dma_unmap_addr_set(tx_bi, dma, dma);
3746 
3747 		tx_desc->buffer_addr = cpu_to_le64(dma);
3748 		tx_desc->cmd_type_offset_bsz =
3749 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3750 
3751 		if (++index == xdp_ring->count)
3752 			index = 0;
3753 
3754 		if (i == nr_frags)
3755 			break;
3756 
3757 		tx_bi = &xdp_ring->tx_bi[index];
3758 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3759 
3760 		data = skb_frag_address(&sinfo->frags[i]);
3761 		size = skb_frag_size(&sinfo->frags[i]);
3762 		i++;
3763 	}
3764 
3765 	tx_desc->cmd_type_offset_bsz |=
3766 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3767 
3768 	/* Make certain all of the status bits have been updated
3769 	 * before next_to_watch is written.
3770 	 */
3771 	smp_wmb();
3772 
3773 	xdp_ring->xdp_tx_active++;
3774 
3775 	tx_head->next_to_watch = tx_desc;
3776 	xdp_ring->next_to_use = index;
3777 
3778 	return I40E_XDP_TX;
3779 
3780 unmap:
3781 	for (;;) {
3782 		tx_bi = &xdp_ring->tx_bi[index];
3783 		if (dma_unmap_len(tx_bi, len))
3784 			dma_unmap_page(xdp_ring->dev,
3785 				       dma_unmap_addr(tx_bi, dma),
3786 				       dma_unmap_len(tx_bi, len),
3787 				       DMA_TO_DEVICE);
3788 		dma_unmap_len_set(tx_bi, len, 0);
3789 		if (tx_bi == tx_head)
3790 			break;
3791 
3792 		if (!index)
3793 			index += xdp_ring->count;
3794 		index--;
3795 	}
3796 
3797 	return I40E_XDP_CONSUMED;
3798 }
3799 
3800 /**
3801  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3802  * @skb:     send buffer
3803  * @tx_ring: ring to send buffer on
3804  *
3805  * Returns NETDEV_TX_OK if sent, else an error code
3806  **/
3807 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3808 					struct i40e_ring *tx_ring)
3809 {
3810 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3811 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3812 	struct i40e_tx_buffer *first;
3813 	u32 td_offset = 0;
3814 	u32 tx_flags = 0;
3815 	u32 td_cmd = 0;
3816 	u8 hdr_len = 0;
3817 	int tso, count;
3818 	int tsyn;
3819 
3820 	/* prefetch the data, we'll need it later */
3821 	prefetch(skb->data);
3822 
3823 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3824 
3825 	count = i40e_xmit_descriptor_count(skb);
3826 	if (i40e_chk_linearize(skb, count)) {
3827 		if (__skb_linearize(skb)) {
3828 			dev_kfree_skb_any(skb);
3829 			return NETDEV_TX_OK;
3830 		}
3831 		count = i40e_txd_use_count(skb->len);
3832 		tx_ring->tx_stats.tx_linearize++;
3833 	}
3834 
3835 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3836 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3837 	 *       + 4 desc gap to avoid the cache line where head is,
3838 	 *       + 1 desc for context descriptor,
3839 	 * otherwise try next time
3840 	 */
3841 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3842 		tx_ring->tx_stats.tx_busy++;
3843 		return NETDEV_TX_BUSY;
3844 	}
3845 
3846 	/* record the location of the first descriptor for this packet */
3847 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3848 	first->skb = skb;
3849 	first->bytecount = skb->len;
3850 	first->gso_segs = 1;
3851 
3852 	/* prepare the xmit flags */
3853 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3854 		goto out_drop;
3855 
3856 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3857 
3858 	if (tso < 0)
3859 		goto out_drop;
3860 	else if (tso)
3861 		tx_flags |= I40E_TX_FLAGS_TSO;
3862 
3863 	/* Always offload the checksum, since it's in the data descriptor */
3864 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3865 				  tx_ring, &cd_tunneling);
3866 	if (tso < 0)
3867 		goto out_drop;
3868 
3869 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3870 
3871 	if (tsyn)
3872 		tx_flags |= I40E_TX_FLAGS_TSYN;
3873 
3874 	/* always enable CRC insertion offload */
3875 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3876 
3877 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3878 			   cd_tunneling, cd_l2tag2);
3879 
3880 	/* Add Flow Director ATR if it's enabled.
3881 	 *
3882 	 * NOTE: this must always be directly before the data descriptor.
3883 	 */
3884 	i40e_atr(tx_ring, skb, tx_flags);
3885 
3886 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3887 			td_cmd, td_offset))
3888 		goto cleanup_tx_tstamp;
3889 
3890 	return NETDEV_TX_OK;
3891 
3892 out_drop:
3893 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3894 	dev_kfree_skb_any(first->skb);
3895 	first->skb = NULL;
3896 cleanup_tx_tstamp:
3897 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3898 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3899 
3900 		dev_kfree_skb_any(pf->ptp_tx_skb);
3901 		pf->ptp_tx_skb = NULL;
3902 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3903 	}
3904 
3905 	return NETDEV_TX_OK;
3906 }
3907 
3908 /**
3909  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3910  * @skb:    send buffer
3911  * @netdev: network interface device structure
3912  *
3913  * Returns NETDEV_TX_OK if sent, else an error code
3914  **/
3915 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3916 {
3917 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3918 	struct i40e_vsi *vsi = np->vsi;
3919 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3920 
3921 	/* hardware can't handle really short frames, hardware padding works
3922 	 * beyond this point
3923 	 */
3924 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3925 		return NETDEV_TX_OK;
3926 
3927 	return i40e_xmit_frame_ring(skb, tx_ring);
3928 }
3929 
3930 /**
3931  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3932  * @dev: netdev
3933  * @n: number of frames
3934  * @frames: array of XDP buffer pointers
3935  * @flags: XDP extra info
3936  *
3937  * Returns number of frames successfully sent. Failed frames
3938  * will be free'ed by XDP core.
3939  *
3940  * For error cases, a negative errno code is returned and no-frames
3941  * are transmitted (caller must handle freeing frames).
3942  **/
3943 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3944 		  u32 flags)
3945 {
3946 	struct i40e_netdev_priv *np = netdev_priv(dev);
3947 	unsigned int queue_index = smp_processor_id();
3948 	struct i40e_vsi *vsi = np->vsi;
3949 	struct i40e_pf *pf = vsi->back;
3950 	struct i40e_ring *xdp_ring;
3951 	int nxmit = 0;
3952 	int i;
3953 
3954 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3955 		return -ENETDOWN;
3956 
3957 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3958 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3959 		return -ENXIO;
3960 
3961 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3962 		return -EINVAL;
3963 
3964 	xdp_ring = vsi->xdp_rings[queue_index];
3965 
3966 	for (i = 0; i < n; i++) {
3967 		struct xdp_frame *xdpf = frames[i];
3968 		int err;
3969 
3970 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3971 		if (err != I40E_XDP_TX)
3972 			break;
3973 		nxmit++;
3974 	}
3975 
3976 	if (unlikely(flags & XDP_XMIT_FLUSH))
3977 		i40e_xdp_ring_update_tail(xdp_ring);
3978 
3979 	return nxmit;
3980 }
3981