1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include "i40e.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33 
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 				u32 td_tag)
36 {
37 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
39 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43 
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 /**
46  * i40e_fdir - Generate a Flow Director descriptor based on fdata
47  * @tx_ring: Tx ring to send buffer on
48  * @fdata: Flow director filter data
49  * @add: Indicate if we are adding a rule or deleting one
50  *
51  **/
52 static void i40e_fdir(struct i40e_ring *tx_ring,
53 		      struct i40e_fdir_filter *fdata, bool add)
54 {
55 	struct i40e_filter_program_desc *fdir_desc;
56 	struct i40e_pf *pf = tx_ring->vsi->back;
57 	u32 flex_ptype, dtype_cmd;
58 	u16 i;
59 
60 	/* grab the next descriptor */
61 	i = tx_ring->next_to_use;
62 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
63 
64 	i++;
65 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
66 
67 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
68 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
69 
70 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
71 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
72 
73 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
74 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
75 
76 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
77 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
78 
79 	/* Use LAN VSI Id if not programmed by user */
80 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
81 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
82 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
83 
84 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
85 
86 	dtype_cmd |= add ?
87 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
88 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
89 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
90 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
91 
92 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
93 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
94 
95 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
96 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
97 
98 	if (fdata->cnt_index) {
99 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
101 			     ((u32)fdata->cnt_index <<
102 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
103 	}
104 
105 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
106 	fdir_desc->rsvd = cpu_to_le32(0);
107 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
108 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
109 }
110 
111 #define I40E_FD_CLEAN_DELAY 10
112 /**
113  * i40e_program_fdir_filter - Program a Flow Director filter
114  * @fdir_data: Packet data that will be filter parameters
115  * @raw_packet: the pre-allocated packet buffer for FDir
116  * @pf: The PF pointer
117  * @add: True for add/update, False for remove
118  **/
119 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
120 				    u8 *raw_packet, struct i40e_pf *pf,
121 				    bool add)
122 {
123 	struct i40e_tx_buffer *tx_buf, *first;
124 	struct i40e_tx_desc *tx_desc;
125 	struct i40e_ring *tx_ring;
126 	struct i40e_vsi *vsi;
127 	struct device *dev;
128 	dma_addr_t dma;
129 	u32 td_cmd = 0;
130 	u16 i;
131 
132 	/* find existing FDIR VSI */
133 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
134 	if (!vsi)
135 		return -ENOENT;
136 
137 	tx_ring = vsi->tx_rings[0];
138 	dev = tx_ring->dev;
139 
140 	/* we need two descriptors to add/del a filter and we can wait */
141 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
142 		if (!i)
143 			return -EAGAIN;
144 		msleep_interruptible(1);
145 	}
146 
147 	dma = dma_map_single(dev, raw_packet,
148 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
149 	if (dma_mapping_error(dev, dma))
150 		goto dma_fail;
151 
152 	/* grab the next descriptor */
153 	i = tx_ring->next_to_use;
154 	first = &tx_ring->tx_bi[i];
155 	i40e_fdir(tx_ring, fdir_data, add);
156 
157 	/* Now program a dummy descriptor */
158 	i = tx_ring->next_to_use;
159 	tx_desc = I40E_TX_DESC(tx_ring, i);
160 	tx_buf = &tx_ring->tx_bi[i];
161 
162 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
163 
164 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
165 
166 	/* record length, and DMA address */
167 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
168 	dma_unmap_addr_set(tx_buf, dma, dma);
169 
170 	tx_desc->buffer_addr = cpu_to_le64(dma);
171 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
172 
173 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
174 	tx_buf->raw_buf = (void *)raw_packet;
175 
176 	tx_desc->cmd_type_offset_bsz =
177 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
178 
179 	/* Force memory writes to complete before letting h/w
180 	 * know there are new descriptors to fetch.
181 	 */
182 	wmb();
183 
184 	/* Mark the data descriptor to be watched */
185 	first->next_to_watch = tx_desc;
186 
187 	writel(tx_ring->next_to_use, tx_ring->tail);
188 	return 0;
189 
190 dma_fail:
191 	return -1;
192 }
193 
194 #define IP_HEADER_OFFSET 14
195 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
196 /**
197  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
198  * @vsi: pointer to the targeted VSI
199  * @fd_data: the flow director data required for the FDir descriptor
200  * @add: true adds a filter, false removes it
201  *
202  * Returns 0 if the filters were successfully added or removed
203  **/
204 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
205 				   struct i40e_fdir_filter *fd_data,
206 				   bool add)
207 {
208 	struct i40e_pf *pf = vsi->back;
209 	struct udphdr *udp;
210 	struct iphdr *ip;
211 	u8 *raw_packet;
212 	int ret;
213 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
214 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
215 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
216 
217 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
218 	if (!raw_packet)
219 		return -ENOMEM;
220 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
221 
222 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
223 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
224 	      + sizeof(struct iphdr));
225 
226 	ip->daddr = fd_data->dst_ip;
227 	udp->dest = fd_data->dst_port;
228 	ip->saddr = fd_data->src_ip;
229 	udp->source = fd_data->src_port;
230 
231 	if (fd_data->flex_filter) {
232 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
233 		__be16 pattern = fd_data->flex_word;
234 		u16 off = fd_data->flex_offset;
235 
236 		*((__force __be16 *)(payload + off)) = pattern;
237 	}
238 
239 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
240 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
241 	if (ret) {
242 		dev_info(&pf->pdev->dev,
243 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
244 			 fd_data->pctype, fd_data->fd_id, ret);
245 		/* Free the packet buffer since it wasn't added to the ring */
246 		kfree(raw_packet);
247 		return -EOPNOTSUPP;
248 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
249 		if (add)
250 			dev_info(&pf->pdev->dev,
251 				 "Filter OK for PCTYPE %d loc = %d\n",
252 				 fd_data->pctype, fd_data->fd_id);
253 		else
254 			dev_info(&pf->pdev->dev,
255 				 "Filter deleted for PCTYPE %d loc = %d\n",
256 				 fd_data->pctype, fd_data->fd_id);
257 	}
258 
259 	if (add)
260 		pf->fd_udp4_filter_cnt++;
261 	else
262 		pf->fd_udp4_filter_cnt--;
263 
264 	return 0;
265 }
266 
267 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
268 /**
269  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
270  * @vsi: pointer to the targeted VSI
271  * @fd_data: the flow director data required for the FDir descriptor
272  * @add: true adds a filter, false removes it
273  *
274  * Returns 0 if the filters were successfully added or removed
275  **/
276 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
277 				   struct i40e_fdir_filter *fd_data,
278 				   bool add)
279 {
280 	struct i40e_pf *pf = vsi->back;
281 	struct tcphdr *tcp;
282 	struct iphdr *ip;
283 	u8 *raw_packet;
284 	int ret;
285 	/* Dummy packet */
286 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
287 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
288 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
289 		0x0, 0x72, 0, 0, 0, 0};
290 
291 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
292 	if (!raw_packet)
293 		return -ENOMEM;
294 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
295 
296 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
297 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
298 	      + sizeof(struct iphdr));
299 
300 	ip->daddr = fd_data->dst_ip;
301 	tcp->dest = fd_data->dst_port;
302 	ip->saddr = fd_data->src_ip;
303 	tcp->source = fd_data->src_port;
304 
305 	if (fd_data->flex_filter) {
306 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
307 		__be16 pattern = fd_data->flex_word;
308 		u16 off = fd_data->flex_offset;
309 
310 		*((__force __be16 *)(payload + off)) = pattern;
311 	}
312 
313 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
314 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
315 	if (ret) {
316 		dev_info(&pf->pdev->dev,
317 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
318 			 fd_data->pctype, fd_data->fd_id, ret);
319 		/* Free the packet buffer since it wasn't added to the ring */
320 		kfree(raw_packet);
321 		return -EOPNOTSUPP;
322 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
323 		if (add)
324 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
325 				 fd_data->pctype, fd_data->fd_id);
326 		else
327 			dev_info(&pf->pdev->dev,
328 				 "Filter deleted for PCTYPE %d loc = %d\n",
329 				 fd_data->pctype, fd_data->fd_id);
330 	}
331 
332 	if (add) {
333 		pf->fd_tcp4_filter_cnt++;
334 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
335 		    I40E_DEBUG_FD & pf->hw.debug_mask)
336 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
337 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
338 	} else {
339 		pf->fd_tcp4_filter_cnt--;
340 	}
341 
342 	return 0;
343 }
344 
345 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
346 /**
347  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
348  * a specific flow spec
349  * @vsi: pointer to the targeted VSI
350  * @fd_data: the flow director data required for the FDir descriptor
351  * @add: true adds a filter, false removes it
352  *
353  * Returns 0 if the filters were successfully added or removed
354  **/
355 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
356 				    struct i40e_fdir_filter *fd_data,
357 				    bool add)
358 {
359 	struct i40e_pf *pf = vsi->back;
360 	struct sctphdr *sctp;
361 	struct iphdr *ip;
362 	u8 *raw_packet;
363 	int ret;
364 	/* Dummy packet */
365 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
366 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
367 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
368 
369 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
370 	if (!raw_packet)
371 		return -ENOMEM;
372 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
373 
374 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
375 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
376 	      + sizeof(struct iphdr));
377 
378 	ip->daddr = fd_data->dst_ip;
379 	sctp->dest = fd_data->dst_port;
380 	ip->saddr = fd_data->src_ip;
381 	sctp->source = fd_data->src_port;
382 
383 	if (fd_data->flex_filter) {
384 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
385 		__be16 pattern = fd_data->flex_word;
386 		u16 off = fd_data->flex_offset;
387 
388 		*((__force __be16 *)(payload + off)) = pattern;
389 	}
390 
391 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
392 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
393 	if (ret) {
394 		dev_info(&pf->pdev->dev,
395 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
396 			 fd_data->pctype, fd_data->fd_id, ret);
397 		/* Free the packet buffer since it wasn't added to the ring */
398 		kfree(raw_packet);
399 		return -EOPNOTSUPP;
400 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
401 		if (add)
402 			dev_info(&pf->pdev->dev,
403 				 "Filter OK for PCTYPE %d loc = %d\n",
404 				 fd_data->pctype, fd_data->fd_id);
405 		else
406 			dev_info(&pf->pdev->dev,
407 				 "Filter deleted for PCTYPE %d loc = %d\n",
408 				 fd_data->pctype, fd_data->fd_id);
409 	}
410 
411 	if (add)
412 		pf->fd_sctp4_filter_cnt++;
413 	else
414 		pf->fd_sctp4_filter_cnt--;
415 
416 	return 0;
417 }
418 
419 #define I40E_IP_DUMMY_PACKET_LEN 34
420 /**
421  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
422  * a specific flow spec
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  *
427  * Returns 0 if the filters were successfully added or removed
428  **/
429 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
430 				  struct i40e_fdir_filter *fd_data,
431 				  bool add)
432 {
433 	struct i40e_pf *pf = vsi->back;
434 	struct iphdr *ip;
435 	u8 *raw_packet;
436 	int ret;
437 	int i;
438 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
439 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
440 		0, 0, 0, 0};
441 
442 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
443 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
444 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
445 		if (!raw_packet)
446 			return -ENOMEM;
447 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
448 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
449 
450 		ip->saddr = fd_data->src_ip;
451 		ip->daddr = fd_data->dst_ip;
452 		ip->protocol = 0;
453 
454 		if (fd_data->flex_filter) {
455 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
456 			__be16 pattern = fd_data->flex_word;
457 			u16 off = fd_data->flex_offset;
458 
459 			*((__force __be16 *)(payload + off)) = pattern;
460 		}
461 
462 		fd_data->pctype = i;
463 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
464 		if (ret) {
465 			dev_info(&pf->pdev->dev,
466 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
467 				 fd_data->pctype, fd_data->fd_id, ret);
468 			/* The packet buffer wasn't added to the ring so we
469 			 * need to free it now.
470 			 */
471 			kfree(raw_packet);
472 			return -EOPNOTSUPP;
473 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
474 			if (add)
475 				dev_info(&pf->pdev->dev,
476 					 "Filter OK for PCTYPE %d loc = %d\n",
477 					 fd_data->pctype, fd_data->fd_id);
478 			else
479 				dev_info(&pf->pdev->dev,
480 					 "Filter deleted for PCTYPE %d loc = %d\n",
481 					 fd_data->pctype, fd_data->fd_id);
482 		}
483 	}
484 
485 	if (add)
486 		pf->fd_ip4_filter_cnt++;
487 	else
488 		pf->fd_ip4_filter_cnt--;
489 
490 	return 0;
491 }
492 
493 /**
494  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
495  * @vsi: pointer to the targeted VSI
496  * @cmd: command to get or set RX flow classification rules
497  * @add: true adds a filter, false removes it
498  *
499  **/
500 int i40e_add_del_fdir(struct i40e_vsi *vsi,
501 		      struct i40e_fdir_filter *input, bool add)
502 {
503 	struct i40e_pf *pf = vsi->back;
504 	int ret;
505 
506 	switch (input->flow_type & ~FLOW_EXT) {
507 	case TCP_V4_FLOW:
508 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
509 		break;
510 	case UDP_V4_FLOW:
511 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
512 		break;
513 	case SCTP_V4_FLOW:
514 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
515 		break;
516 	case IP_USER_FLOW:
517 		switch (input->ip4_proto) {
518 		case IPPROTO_TCP:
519 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
520 			break;
521 		case IPPROTO_UDP:
522 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
523 			break;
524 		case IPPROTO_SCTP:
525 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
526 			break;
527 		case IPPROTO_IP:
528 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
529 			break;
530 		default:
531 			/* We cannot support masking based on protocol */
532 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
533 				 input->ip4_proto);
534 			return -EINVAL;
535 		}
536 		break;
537 	default:
538 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
539 			 input->flow_type);
540 		return -EINVAL;
541 	}
542 
543 	/* The buffer allocated here will be normally be freed by
544 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
545 	 * completion. In the event of an error adding the buffer to the FDIR
546 	 * ring, it will immediately be freed. It may also be freed by
547 	 * i40e_clean_tx_ring() when closing the VSI.
548 	 */
549 	return ret;
550 }
551 
552 /**
553  * i40e_fd_handle_status - check the Programming Status for FD
554  * @rx_ring: the Rx ring for this descriptor
555  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
556  * @prog_id: the id originally used for programming
557  *
558  * This is used to verify if the FD programming or invalidation
559  * requested by SW to the HW is successful or not and take actions accordingly.
560  **/
561 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
562 				  union i40e_rx_desc *rx_desc, u8 prog_id)
563 {
564 	struct i40e_pf *pf = rx_ring->vsi->back;
565 	struct pci_dev *pdev = pf->pdev;
566 	u32 fcnt_prog, fcnt_avail;
567 	u32 error;
568 	u64 qw;
569 
570 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
571 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
572 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
573 
574 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
575 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
576 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
577 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
578 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
579 				 pf->fd_inv);
580 
581 		/* Check if the programming error is for ATR.
582 		 * If so, auto disable ATR and set a state for
583 		 * flush in progress. Next time we come here if flush is in
584 		 * progress do nothing, once flush is complete the state will
585 		 * be cleared.
586 		 */
587 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
588 			return;
589 
590 		pf->fd_add_err++;
591 		/* store the current atr filter count */
592 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
593 
594 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
595 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
596 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
597 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
598 		}
599 
600 		/* filter programming failed most likely due to table full */
601 		fcnt_prog = i40e_get_global_fd_count(pf);
602 		fcnt_avail = pf->fdir_pf_filter_count;
603 		/* If ATR is running fcnt_prog can quickly change,
604 		 * if we are very close to full, it makes sense to disable
605 		 * FD ATR/SB and then re-enable it when there is room.
606 		 */
607 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
608 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
609 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
610 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
611 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
612 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
613 			}
614 		}
615 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
616 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
617 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
618 				 rx_desc->wb.qword0.hi_dword.fd_id);
619 	}
620 }
621 
622 /**
623  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
624  * @ring:      the ring that owns the buffer
625  * @tx_buffer: the buffer to free
626  **/
627 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
628 					    struct i40e_tx_buffer *tx_buffer)
629 {
630 	if (tx_buffer->skb) {
631 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
632 			kfree(tx_buffer->raw_buf);
633 		else if (ring_is_xdp(ring))
634 			page_frag_free(tx_buffer->raw_buf);
635 		else
636 			dev_kfree_skb_any(tx_buffer->skb);
637 		if (dma_unmap_len(tx_buffer, len))
638 			dma_unmap_single(ring->dev,
639 					 dma_unmap_addr(tx_buffer, dma),
640 					 dma_unmap_len(tx_buffer, len),
641 					 DMA_TO_DEVICE);
642 	} else if (dma_unmap_len(tx_buffer, len)) {
643 		dma_unmap_page(ring->dev,
644 			       dma_unmap_addr(tx_buffer, dma),
645 			       dma_unmap_len(tx_buffer, len),
646 			       DMA_TO_DEVICE);
647 	}
648 
649 	tx_buffer->next_to_watch = NULL;
650 	tx_buffer->skb = NULL;
651 	dma_unmap_len_set(tx_buffer, len, 0);
652 	/* tx_buffer must be completely set up in the transmit path */
653 }
654 
655 /**
656  * i40e_clean_tx_ring - Free any empty Tx buffers
657  * @tx_ring: ring to be cleaned
658  **/
659 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
660 {
661 	unsigned long bi_size;
662 	u16 i;
663 
664 	/* ring already cleared, nothing to do */
665 	if (!tx_ring->tx_bi)
666 		return;
667 
668 	/* Free all the Tx ring sk_buffs */
669 	for (i = 0; i < tx_ring->count; i++)
670 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
671 
672 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
673 	memset(tx_ring->tx_bi, 0, bi_size);
674 
675 	/* Zero out the descriptor ring */
676 	memset(tx_ring->desc, 0, tx_ring->size);
677 
678 	tx_ring->next_to_use = 0;
679 	tx_ring->next_to_clean = 0;
680 
681 	if (!tx_ring->netdev)
682 		return;
683 
684 	/* cleanup Tx queue statistics */
685 	netdev_tx_reset_queue(txring_txq(tx_ring));
686 }
687 
688 /**
689  * i40e_free_tx_resources - Free Tx resources per queue
690  * @tx_ring: Tx descriptor ring for a specific queue
691  *
692  * Free all transmit software resources
693  **/
694 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
695 {
696 	i40e_clean_tx_ring(tx_ring);
697 	kfree(tx_ring->tx_bi);
698 	tx_ring->tx_bi = NULL;
699 
700 	if (tx_ring->desc) {
701 		dma_free_coherent(tx_ring->dev, tx_ring->size,
702 				  tx_ring->desc, tx_ring->dma);
703 		tx_ring->desc = NULL;
704 	}
705 }
706 
707 /**
708  * i40e_get_tx_pending - how many tx descriptors not processed
709  * @tx_ring: the ring of descriptors
710  *
711  * Since there is no access to the ring head register
712  * in XL710, we need to use our local copies
713  **/
714 u32 i40e_get_tx_pending(struct i40e_ring *ring)
715 {
716 	u32 head, tail;
717 
718 	head = i40e_get_head(ring);
719 	tail = readl(ring->tail);
720 
721 	if (head != tail)
722 		return (head < tail) ?
723 			tail - head : (tail + ring->count - head);
724 
725 	return 0;
726 }
727 
728 #define WB_STRIDE 4
729 
730 /**
731  * i40e_clean_tx_irq - Reclaim resources after transmit completes
732  * @vsi: the VSI we care about
733  * @tx_ring: Tx ring to clean
734  * @napi_budget: Used to determine if we are in netpoll
735  *
736  * Returns true if there's any budget left (e.g. the clean is finished)
737  **/
738 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
739 			      struct i40e_ring *tx_ring, int napi_budget)
740 {
741 	u16 i = tx_ring->next_to_clean;
742 	struct i40e_tx_buffer *tx_buf;
743 	struct i40e_tx_desc *tx_head;
744 	struct i40e_tx_desc *tx_desc;
745 	unsigned int total_bytes = 0, total_packets = 0;
746 	unsigned int budget = vsi->work_limit;
747 
748 	tx_buf = &tx_ring->tx_bi[i];
749 	tx_desc = I40E_TX_DESC(tx_ring, i);
750 	i -= tx_ring->count;
751 
752 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
753 
754 	do {
755 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
756 
757 		/* if next_to_watch is not set then there is no work pending */
758 		if (!eop_desc)
759 			break;
760 
761 		/* prevent any other reads prior to eop_desc */
762 		smp_rmb();
763 
764 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
765 		/* we have caught up to head, no work left to do */
766 		if (tx_head == tx_desc)
767 			break;
768 
769 		/* clear next_to_watch to prevent false hangs */
770 		tx_buf->next_to_watch = NULL;
771 
772 		/* update the statistics for this packet */
773 		total_bytes += tx_buf->bytecount;
774 		total_packets += tx_buf->gso_segs;
775 
776 		/* free the skb/XDP data */
777 		if (ring_is_xdp(tx_ring))
778 			page_frag_free(tx_buf->raw_buf);
779 		else
780 			napi_consume_skb(tx_buf->skb, napi_budget);
781 
782 		/* unmap skb header data */
783 		dma_unmap_single(tx_ring->dev,
784 				 dma_unmap_addr(tx_buf, dma),
785 				 dma_unmap_len(tx_buf, len),
786 				 DMA_TO_DEVICE);
787 
788 		/* clear tx_buffer data */
789 		tx_buf->skb = NULL;
790 		dma_unmap_len_set(tx_buf, len, 0);
791 
792 		/* unmap remaining buffers */
793 		while (tx_desc != eop_desc) {
794 			i40e_trace(clean_tx_irq_unmap,
795 				   tx_ring, tx_desc, tx_buf);
796 
797 			tx_buf++;
798 			tx_desc++;
799 			i++;
800 			if (unlikely(!i)) {
801 				i -= tx_ring->count;
802 				tx_buf = tx_ring->tx_bi;
803 				tx_desc = I40E_TX_DESC(tx_ring, 0);
804 			}
805 
806 			/* unmap any remaining paged data */
807 			if (dma_unmap_len(tx_buf, len)) {
808 				dma_unmap_page(tx_ring->dev,
809 					       dma_unmap_addr(tx_buf, dma),
810 					       dma_unmap_len(tx_buf, len),
811 					       DMA_TO_DEVICE);
812 				dma_unmap_len_set(tx_buf, len, 0);
813 			}
814 		}
815 
816 		/* move us one more past the eop_desc for start of next pkt */
817 		tx_buf++;
818 		tx_desc++;
819 		i++;
820 		if (unlikely(!i)) {
821 			i -= tx_ring->count;
822 			tx_buf = tx_ring->tx_bi;
823 			tx_desc = I40E_TX_DESC(tx_ring, 0);
824 		}
825 
826 		prefetch(tx_desc);
827 
828 		/* update budget accounting */
829 		budget--;
830 	} while (likely(budget));
831 
832 	i += tx_ring->count;
833 	tx_ring->next_to_clean = i;
834 	u64_stats_update_begin(&tx_ring->syncp);
835 	tx_ring->stats.bytes += total_bytes;
836 	tx_ring->stats.packets += total_packets;
837 	u64_stats_update_end(&tx_ring->syncp);
838 	tx_ring->q_vector->tx.total_bytes += total_bytes;
839 	tx_ring->q_vector->tx.total_packets += total_packets;
840 
841 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
842 		/* check to see if there are < 4 descriptors
843 		 * waiting to be written back, then kick the hardware to force
844 		 * them to be written back in case we stay in NAPI.
845 		 * In this mode on X722 we do not enable Interrupt.
846 		 */
847 		unsigned int j = i40e_get_tx_pending(tx_ring);
848 
849 		if (budget &&
850 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
851 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
852 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
853 			tx_ring->arm_wb = true;
854 	}
855 
856 	if (ring_is_xdp(tx_ring))
857 		return !!budget;
858 
859 	/* notify netdev of completed buffers */
860 	netdev_tx_completed_queue(txring_txq(tx_ring),
861 				  total_packets, total_bytes);
862 
863 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
864 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
865 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
866 		/* Make sure that anybody stopping the queue after this
867 		 * sees the new next_to_clean.
868 		 */
869 		smp_mb();
870 		if (__netif_subqueue_stopped(tx_ring->netdev,
871 					     tx_ring->queue_index) &&
872 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
873 			netif_wake_subqueue(tx_ring->netdev,
874 					    tx_ring->queue_index);
875 			++tx_ring->tx_stats.restart_queue;
876 		}
877 	}
878 
879 	return !!budget;
880 }
881 
882 /**
883  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
884  * @vsi: the VSI we care about
885  * @q_vector: the vector on which to enable writeback
886  *
887  **/
888 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
889 				  struct i40e_q_vector *q_vector)
890 {
891 	u16 flags = q_vector->tx.ring[0].flags;
892 	u32 val;
893 
894 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
895 		return;
896 
897 	if (q_vector->arm_wb_state)
898 		return;
899 
900 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
901 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
902 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
903 
904 		wr32(&vsi->back->hw,
905 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
906 		     val);
907 	} else {
908 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
909 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
910 
911 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
912 	}
913 	q_vector->arm_wb_state = true;
914 }
915 
916 /**
917  * i40e_force_wb - Issue SW Interrupt so HW does a wb
918  * @vsi: the VSI we care about
919  * @q_vector: the vector  on which to force writeback
920  *
921  **/
922 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
923 {
924 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
925 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
926 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
927 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
928 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
929 			  /* allow 00 to be written to the index */
930 
931 		wr32(&vsi->back->hw,
932 		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
933 					 vsi->base_vector - 1), val);
934 	} else {
935 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
936 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
937 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
938 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
939 			/* allow 00 to be written to the index */
940 
941 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
942 	}
943 }
944 
945 /**
946  * i40e_set_new_dynamic_itr - Find new ITR level
947  * @rc: structure containing ring performance data
948  *
949  * Returns true if ITR changed, false if not
950  *
951  * Stores a new ITR value based on packets and byte counts during
952  * the last interrupt.  The advantage of per interrupt computation
953  * is faster updates and more accurate ITR for the current traffic
954  * pattern.  Constants in this function were computed based on
955  * theoretical maximum wire speed and thresholds were set based on
956  * testing data as well as attempting to minimize response time
957  * while increasing bulk throughput.
958  **/
959 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
960 {
961 	enum i40e_latency_range new_latency_range = rc->latency_range;
962 	u32 new_itr = rc->itr;
963 	int bytes_per_usec;
964 	unsigned int usecs, estimated_usecs;
965 
966 	if (rc->total_packets == 0 || !rc->itr)
967 		return false;
968 
969 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
970 	bytes_per_usec = rc->total_bytes / usecs;
971 
972 	/* The calculations in this algorithm depend on interrupts actually
973 	 * firing at the ITR rate. This may not happen if the packet rate is
974 	 * really low, or if we've been napi polling. Check to make sure
975 	 * that's not the case before we continue.
976 	 */
977 	estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
978 	if (estimated_usecs > usecs) {
979 		new_latency_range = I40E_LOW_LATENCY;
980 		goto reset_latency;
981 	}
982 
983 	/* simple throttlerate management
984 	 *   0-10MB/s   lowest (50000 ints/s)
985 	 *  10-20MB/s   low    (20000 ints/s)
986 	 *  20-1249MB/s bulk   (18000 ints/s)
987 	 *
988 	 * The math works out because the divisor is in 10^(-6) which
989 	 * turns the bytes/us input value into MB/s values, but
990 	 * make sure to use usecs, as the register values written
991 	 * are in 2 usec increments in the ITR registers, and make sure
992 	 * to use the smoothed values that the countdown timer gives us.
993 	 */
994 	switch (new_latency_range) {
995 	case I40E_LOWEST_LATENCY:
996 		if (bytes_per_usec > 10)
997 			new_latency_range = I40E_LOW_LATENCY;
998 		break;
999 	case I40E_LOW_LATENCY:
1000 		if (bytes_per_usec > 20)
1001 			new_latency_range = I40E_BULK_LATENCY;
1002 		else if (bytes_per_usec <= 10)
1003 			new_latency_range = I40E_LOWEST_LATENCY;
1004 		break;
1005 	case I40E_BULK_LATENCY:
1006 	default:
1007 		if (bytes_per_usec <= 20)
1008 			new_latency_range = I40E_LOW_LATENCY;
1009 		break;
1010 	}
1011 
1012 reset_latency:
1013 	rc->latency_range = new_latency_range;
1014 
1015 	switch (new_latency_range) {
1016 	case I40E_LOWEST_LATENCY:
1017 		new_itr = I40E_ITR_50K;
1018 		break;
1019 	case I40E_LOW_LATENCY:
1020 		new_itr = I40E_ITR_20K;
1021 		break;
1022 	case I40E_BULK_LATENCY:
1023 		new_itr = I40E_ITR_18K;
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	rc->total_bytes = 0;
1030 	rc->total_packets = 0;
1031 	rc->last_itr_update = jiffies;
1032 
1033 	if (new_itr != rc->itr) {
1034 		rc->itr = new_itr;
1035 		return true;
1036 	}
1037 	return false;
1038 }
1039 
1040 /**
1041  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1042  * @rx_ring: rx descriptor ring to store buffers on
1043  * @old_buff: donor buffer to have page reused
1044  *
1045  * Synchronizes page for reuse by the adapter
1046  **/
1047 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1048 			       struct i40e_rx_buffer *old_buff)
1049 {
1050 	struct i40e_rx_buffer *new_buff;
1051 	u16 nta = rx_ring->next_to_alloc;
1052 
1053 	new_buff = &rx_ring->rx_bi[nta];
1054 
1055 	/* update, and store next to alloc */
1056 	nta++;
1057 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1058 
1059 	/* transfer page from old buffer to new buffer */
1060 	new_buff->dma		= old_buff->dma;
1061 	new_buff->page		= old_buff->page;
1062 	new_buff->page_offset	= old_buff->page_offset;
1063 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1064 }
1065 
1066 /**
1067  * i40e_rx_is_programming_status - check for programming status descriptor
1068  * @qw: qword representing status_error_len in CPU ordering
1069  *
1070  * The value of in the descriptor length field indicate if this
1071  * is a programming status descriptor for flow director or FCoE
1072  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1073  * it is a packet descriptor.
1074  **/
1075 static inline bool i40e_rx_is_programming_status(u64 qw)
1076 {
1077 	/* The Rx filter programming status and SPH bit occupy the same
1078 	 * spot in the descriptor. Since we don't support packet split we
1079 	 * can just reuse the bit as an indication that this is a
1080 	 * programming status descriptor.
1081 	 */
1082 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1083 }
1084 
1085 /**
1086  * i40e_clean_programming_status - clean the programming status descriptor
1087  * @rx_ring: the rx ring that has this descriptor
1088  * @rx_desc: the rx descriptor written back by HW
1089  * @qw: qword representing status_error_len in CPU ordering
1090  *
1091  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1092  * status being successful or not and take actions accordingly. FCoE should
1093  * handle its context/filter programming/invalidation status and take actions.
1094  *
1095  **/
1096 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1097 					  union i40e_rx_desc *rx_desc,
1098 					  u64 qw)
1099 {
1100 	struct i40e_rx_buffer *rx_buffer;
1101 	u32 ntc = rx_ring->next_to_clean;
1102 	u8 id;
1103 
1104 	/* fetch, update, and store next to clean */
1105 	rx_buffer = &rx_ring->rx_bi[ntc++];
1106 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1107 	rx_ring->next_to_clean = ntc;
1108 
1109 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1110 
1111 	/* place unused page back on the ring */
1112 	i40e_reuse_rx_page(rx_ring, rx_buffer);
1113 	rx_ring->rx_stats.page_reuse_count++;
1114 
1115 	/* clear contents of buffer_info */
1116 	rx_buffer->page = NULL;
1117 
1118 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1119 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1120 
1121 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1122 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1123 }
1124 
1125 /**
1126  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1127  * @tx_ring: the tx ring to set up
1128  *
1129  * Return 0 on success, negative on error
1130  **/
1131 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1132 {
1133 	struct device *dev = tx_ring->dev;
1134 	int bi_size;
1135 
1136 	if (!dev)
1137 		return -ENOMEM;
1138 
1139 	/* warn if we are about to overwrite the pointer */
1140 	WARN_ON(tx_ring->tx_bi);
1141 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1142 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1143 	if (!tx_ring->tx_bi)
1144 		goto err;
1145 
1146 	u64_stats_init(&tx_ring->syncp);
1147 
1148 	/* round up to nearest 4K */
1149 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1150 	/* add u32 for head writeback, align after this takes care of
1151 	 * guaranteeing this is at least one cache line in size
1152 	 */
1153 	tx_ring->size += sizeof(u32);
1154 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1155 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1156 					   &tx_ring->dma, GFP_KERNEL);
1157 	if (!tx_ring->desc) {
1158 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1159 			 tx_ring->size);
1160 		goto err;
1161 	}
1162 
1163 	tx_ring->next_to_use = 0;
1164 	tx_ring->next_to_clean = 0;
1165 	return 0;
1166 
1167 err:
1168 	kfree(tx_ring->tx_bi);
1169 	tx_ring->tx_bi = NULL;
1170 	return -ENOMEM;
1171 }
1172 
1173 /**
1174  * i40e_clean_rx_ring - Free Rx buffers
1175  * @rx_ring: ring to be cleaned
1176  **/
1177 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1178 {
1179 	unsigned long bi_size;
1180 	u16 i;
1181 
1182 	/* ring already cleared, nothing to do */
1183 	if (!rx_ring->rx_bi)
1184 		return;
1185 
1186 	if (rx_ring->skb) {
1187 		dev_kfree_skb(rx_ring->skb);
1188 		rx_ring->skb = NULL;
1189 	}
1190 
1191 	/* Free all the Rx ring sk_buffs */
1192 	for (i = 0; i < rx_ring->count; i++) {
1193 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1194 
1195 		if (!rx_bi->page)
1196 			continue;
1197 
1198 		/* Invalidate cache lines that may have been written to by
1199 		 * device so that we avoid corrupting memory.
1200 		 */
1201 		dma_sync_single_range_for_cpu(rx_ring->dev,
1202 					      rx_bi->dma,
1203 					      rx_bi->page_offset,
1204 					      rx_ring->rx_buf_len,
1205 					      DMA_FROM_DEVICE);
1206 
1207 		/* free resources associated with mapping */
1208 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1209 				     i40e_rx_pg_size(rx_ring),
1210 				     DMA_FROM_DEVICE,
1211 				     I40E_RX_DMA_ATTR);
1212 
1213 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1214 
1215 		rx_bi->page = NULL;
1216 		rx_bi->page_offset = 0;
1217 	}
1218 
1219 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1220 	memset(rx_ring->rx_bi, 0, bi_size);
1221 
1222 	/* Zero out the descriptor ring */
1223 	memset(rx_ring->desc, 0, rx_ring->size);
1224 
1225 	rx_ring->next_to_alloc = 0;
1226 	rx_ring->next_to_clean = 0;
1227 	rx_ring->next_to_use = 0;
1228 }
1229 
1230 /**
1231  * i40e_free_rx_resources - Free Rx resources
1232  * @rx_ring: ring to clean the resources from
1233  *
1234  * Free all receive software resources
1235  **/
1236 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1237 {
1238 	i40e_clean_rx_ring(rx_ring);
1239 	rx_ring->xdp_prog = NULL;
1240 	kfree(rx_ring->rx_bi);
1241 	rx_ring->rx_bi = NULL;
1242 
1243 	if (rx_ring->desc) {
1244 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1245 				  rx_ring->desc, rx_ring->dma);
1246 		rx_ring->desc = NULL;
1247 	}
1248 }
1249 
1250 /**
1251  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1252  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1253  *
1254  * Returns 0 on success, negative on failure
1255  **/
1256 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1257 {
1258 	struct device *dev = rx_ring->dev;
1259 	int bi_size;
1260 
1261 	/* warn if we are about to overwrite the pointer */
1262 	WARN_ON(rx_ring->rx_bi);
1263 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1264 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1265 	if (!rx_ring->rx_bi)
1266 		goto err;
1267 
1268 	u64_stats_init(&rx_ring->syncp);
1269 
1270 	/* Round up to nearest 4K */
1271 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1272 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1273 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1274 					   &rx_ring->dma, GFP_KERNEL);
1275 
1276 	if (!rx_ring->desc) {
1277 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1278 			 rx_ring->size);
1279 		goto err;
1280 	}
1281 
1282 	rx_ring->next_to_alloc = 0;
1283 	rx_ring->next_to_clean = 0;
1284 	rx_ring->next_to_use = 0;
1285 
1286 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1287 
1288 	return 0;
1289 err:
1290 	kfree(rx_ring->rx_bi);
1291 	rx_ring->rx_bi = NULL;
1292 	return -ENOMEM;
1293 }
1294 
1295 /**
1296  * i40e_release_rx_desc - Store the new tail and head values
1297  * @rx_ring: ring to bump
1298  * @val: new head index
1299  **/
1300 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1301 {
1302 	rx_ring->next_to_use = val;
1303 
1304 	/* update next to alloc since we have filled the ring */
1305 	rx_ring->next_to_alloc = val;
1306 
1307 	/* Force memory writes to complete before letting h/w
1308 	 * know there are new descriptors to fetch.  (Only
1309 	 * applicable for weak-ordered memory model archs,
1310 	 * such as IA-64).
1311 	 */
1312 	wmb();
1313 	writel(val, rx_ring->tail);
1314 }
1315 
1316 /**
1317  * i40e_rx_offset - Return expected offset into page to access data
1318  * @rx_ring: Ring we are requesting offset of
1319  *
1320  * Returns the offset value for ring into the data buffer.
1321  */
1322 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1323 {
1324 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1325 }
1326 
1327 /**
1328  * i40e_alloc_mapped_page - recycle or make a new page
1329  * @rx_ring: ring to use
1330  * @bi: rx_buffer struct to modify
1331  *
1332  * Returns true if the page was successfully allocated or
1333  * reused.
1334  **/
1335 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1336 				   struct i40e_rx_buffer *bi)
1337 {
1338 	struct page *page = bi->page;
1339 	dma_addr_t dma;
1340 
1341 	/* since we are recycling buffers we should seldom need to alloc */
1342 	if (likely(page)) {
1343 		rx_ring->rx_stats.page_reuse_count++;
1344 		return true;
1345 	}
1346 
1347 	/* alloc new page for storage */
1348 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1349 	if (unlikely(!page)) {
1350 		rx_ring->rx_stats.alloc_page_failed++;
1351 		return false;
1352 	}
1353 
1354 	/* map page for use */
1355 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1356 				 i40e_rx_pg_size(rx_ring),
1357 				 DMA_FROM_DEVICE,
1358 				 I40E_RX_DMA_ATTR);
1359 
1360 	/* if mapping failed free memory back to system since
1361 	 * there isn't much point in holding memory we can't use
1362 	 */
1363 	if (dma_mapping_error(rx_ring->dev, dma)) {
1364 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1365 		rx_ring->rx_stats.alloc_page_failed++;
1366 		return false;
1367 	}
1368 
1369 	bi->dma = dma;
1370 	bi->page = page;
1371 	bi->page_offset = i40e_rx_offset(rx_ring);
1372 
1373 	/* initialize pagecnt_bias to 1 representing we fully own page */
1374 	bi->pagecnt_bias = 1;
1375 
1376 	return true;
1377 }
1378 
1379 /**
1380  * i40e_receive_skb - Send a completed packet up the stack
1381  * @rx_ring:  rx ring in play
1382  * @skb: packet to send up
1383  * @vlan_tag: vlan tag for packet
1384  **/
1385 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1386 			     struct sk_buff *skb, u16 vlan_tag)
1387 {
1388 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1389 
1390 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1391 	    (vlan_tag & VLAN_VID_MASK))
1392 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1393 
1394 	napi_gro_receive(&q_vector->napi, skb);
1395 }
1396 
1397 /**
1398  * i40e_alloc_rx_buffers - Replace used receive buffers
1399  * @rx_ring: ring to place buffers on
1400  * @cleaned_count: number of buffers to replace
1401  *
1402  * Returns false if all allocations were successful, true if any fail
1403  **/
1404 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1405 {
1406 	u16 ntu = rx_ring->next_to_use;
1407 	union i40e_rx_desc *rx_desc;
1408 	struct i40e_rx_buffer *bi;
1409 
1410 	/* do nothing if no valid netdev defined */
1411 	if (!rx_ring->netdev || !cleaned_count)
1412 		return false;
1413 
1414 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1415 	bi = &rx_ring->rx_bi[ntu];
1416 
1417 	do {
1418 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1419 			goto no_buffers;
1420 
1421 		/* sync the buffer for use by the device */
1422 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1423 						 bi->page_offset,
1424 						 rx_ring->rx_buf_len,
1425 						 DMA_FROM_DEVICE);
1426 
1427 		/* Refresh the desc even if buffer_addrs didn't change
1428 		 * because each write-back erases this info.
1429 		 */
1430 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1431 
1432 		rx_desc++;
1433 		bi++;
1434 		ntu++;
1435 		if (unlikely(ntu == rx_ring->count)) {
1436 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1437 			bi = rx_ring->rx_bi;
1438 			ntu = 0;
1439 		}
1440 
1441 		/* clear the status bits for the next_to_use descriptor */
1442 		rx_desc->wb.qword1.status_error_len = 0;
1443 
1444 		cleaned_count--;
1445 	} while (cleaned_count);
1446 
1447 	if (rx_ring->next_to_use != ntu)
1448 		i40e_release_rx_desc(rx_ring, ntu);
1449 
1450 	return false;
1451 
1452 no_buffers:
1453 	if (rx_ring->next_to_use != ntu)
1454 		i40e_release_rx_desc(rx_ring, ntu);
1455 
1456 	/* make sure to come back via polling to try again after
1457 	 * allocation failure
1458 	 */
1459 	return true;
1460 }
1461 
1462 /**
1463  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1464  * @vsi: the VSI we care about
1465  * @skb: skb currently being received and modified
1466  * @rx_desc: the receive descriptor
1467  **/
1468 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1469 				    struct sk_buff *skb,
1470 				    union i40e_rx_desc *rx_desc)
1471 {
1472 	struct i40e_rx_ptype_decoded decoded;
1473 	u32 rx_error, rx_status;
1474 	bool ipv4, ipv6;
1475 	u8 ptype;
1476 	u64 qword;
1477 
1478 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1479 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1480 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1481 		   I40E_RXD_QW1_ERROR_SHIFT;
1482 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1483 		    I40E_RXD_QW1_STATUS_SHIFT;
1484 	decoded = decode_rx_desc_ptype(ptype);
1485 
1486 	skb->ip_summed = CHECKSUM_NONE;
1487 
1488 	skb_checksum_none_assert(skb);
1489 
1490 	/* Rx csum enabled and ip headers found? */
1491 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1492 		return;
1493 
1494 	/* did the hardware decode the packet and checksum? */
1495 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1496 		return;
1497 
1498 	/* both known and outer_ip must be set for the below code to work */
1499 	if (!(decoded.known && decoded.outer_ip))
1500 		return;
1501 
1502 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1503 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1504 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1505 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1506 
1507 	if (ipv4 &&
1508 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1509 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1510 		goto checksum_fail;
1511 
1512 	/* likely incorrect csum if alternate IP extension headers found */
1513 	if (ipv6 &&
1514 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1515 		/* don't increment checksum err here, non-fatal err */
1516 		return;
1517 
1518 	/* there was some L4 error, count error and punt packet to the stack */
1519 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1520 		goto checksum_fail;
1521 
1522 	/* handle packets that were not able to be checksummed due
1523 	 * to arrival speed, in this case the stack can compute
1524 	 * the csum.
1525 	 */
1526 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1527 		return;
1528 
1529 	/* If there is an outer header present that might contain a checksum
1530 	 * we need to bump the checksum level by 1 to reflect the fact that
1531 	 * we are indicating we validated the inner checksum.
1532 	 */
1533 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1534 		skb->csum_level = 1;
1535 
1536 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1537 	switch (decoded.inner_prot) {
1538 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1539 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1540 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1541 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 		/* fall though */
1543 	default:
1544 		break;
1545 	}
1546 
1547 	return;
1548 
1549 checksum_fail:
1550 	vsi->back->hw_csum_rx_error++;
1551 }
1552 
1553 /**
1554  * i40e_ptype_to_htype - get a hash type
1555  * @ptype: the ptype value from the descriptor
1556  *
1557  * Returns a hash type to be used by skb_set_hash
1558  **/
1559 static inline int i40e_ptype_to_htype(u8 ptype)
1560 {
1561 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1562 
1563 	if (!decoded.known)
1564 		return PKT_HASH_TYPE_NONE;
1565 
1566 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1567 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1568 		return PKT_HASH_TYPE_L4;
1569 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1570 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1571 		return PKT_HASH_TYPE_L3;
1572 	else
1573 		return PKT_HASH_TYPE_L2;
1574 }
1575 
1576 /**
1577  * i40e_rx_hash - set the hash value in the skb
1578  * @ring: descriptor ring
1579  * @rx_desc: specific descriptor
1580  **/
1581 static inline void i40e_rx_hash(struct i40e_ring *ring,
1582 				union i40e_rx_desc *rx_desc,
1583 				struct sk_buff *skb,
1584 				u8 rx_ptype)
1585 {
1586 	u32 hash;
1587 	const __le64 rss_mask =
1588 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1589 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1590 
1591 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1592 		return;
1593 
1594 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1595 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1596 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1597 	}
1598 }
1599 
1600 /**
1601  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1602  * @rx_ring: rx descriptor ring packet is being transacted on
1603  * @rx_desc: pointer to the EOP Rx descriptor
1604  * @skb: pointer to current skb being populated
1605  * @rx_ptype: the packet type decoded by hardware
1606  *
1607  * This function checks the ring, descriptor, and packet information in
1608  * order to populate the hash, checksum, VLAN, protocol, and
1609  * other fields within the skb.
1610  **/
1611 static inline
1612 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1613 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1614 			     u8 rx_ptype)
1615 {
1616 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1617 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1618 			I40E_RXD_QW1_STATUS_SHIFT;
1619 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1620 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1621 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1622 
1623 	if (unlikely(tsynvalid))
1624 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1625 
1626 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1627 
1628 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1629 
1630 	skb_record_rx_queue(skb, rx_ring->queue_index);
1631 
1632 	/* modifies the skb - consumes the enet header */
1633 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1634 }
1635 
1636 /**
1637  * i40e_cleanup_headers - Correct empty headers
1638  * @rx_ring: rx descriptor ring packet is being transacted on
1639  * @skb: pointer to current skb being fixed
1640  * @rx_desc: pointer to the EOP Rx descriptor
1641  *
1642  * Also address the case where we are pulling data in on pages only
1643  * and as such no data is present in the skb header.
1644  *
1645  * In addition if skb is not at least 60 bytes we need to pad it so that
1646  * it is large enough to qualify as a valid Ethernet frame.
1647  *
1648  * Returns true if an error was encountered and skb was freed.
1649  **/
1650 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1651 				 union i40e_rx_desc *rx_desc)
1652 
1653 {
1654 	/* XDP packets use error pointer so abort at this point */
1655 	if (IS_ERR(skb))
1656 		return true;
1657 
1658 	/* ERR_MASK will only have valid bits if EOP set, and
1659 	 * what we are doing here is actually checking
1660 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1661 	 * the error field
1662 	 */
1663 	if (unlikely(i40e_test_staterr(rx_desc,
1664 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1665 		dev_kfree_skb_any(skb);
1666 		return true;
1667 	}
1668 
1669 	/* if eth_skb_pad returns an error the skb was freed */
1670 	if (eth_skb_pad(skb))
1671 		return true;
1672 
1673 	return false;
1674 }
1675 
1676 /**
1677  * i40e_page_is_reusable - check if any reuse is possible
1678  * @page: page struct to check
1679  *
1680  * A page is not reusable if it was allocated under low memory
1681  * conditions, or it's not in the same NUMA node as this CPU.
1682  */
1683 static inline bool i40e_page_is_reusable(struct page *page)
1684 {
1685 	return (page_to_nid(page) == numa_mem_id()) &&
1686 		!page_is_pfmemalloc(page);
1687 }
1688 
1689 /**
1690  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1691  * the adapter for another receive
1692  *
1693  * @rx_buffer: buffer containing the page
1694  *
1695  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1696  * an unused region in the page.
1697  *
1698  * For small pages, @truesize will be a constant value, half the size
1699  * of the memory at page.  We'll attempt to alternate between high and
1700  * low halves of the page, with one half ready for use by the hardware
1701  * and the other half being consumed by the stack.  We use the page
1702  * ref count to determine whether the stack has finished consuming the
1703  * portion of this page that was passed up with a previous packet.  If
1704  * the page ref count is >1, we'll assume the "other" half page is
1705  * still busy, and this page cannot be reused.
1706  *
1707  * For larger pages, @truesize will be the actual space used by the
1708  * received packet (adjusted upward to an even multiple of the cache
1709  * line size).  This will advance through the page by the amount
1710  * actually consumed by the received packets while there is still
1711  * space for a buffer.  Each region of larger pages will be used at
1712  * most once, after which the page will not be reused.
1713  *
1714  * In either case, if the page is reusable its refcount is increased.
1715  **/
1716 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1717 {
1718 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1719 	struct page *page = rx_buffer->page;
1720 
1721 	/* Is any reuse possible? */
1722 	if (unlikely(!i40e_page_is_reusable(page)))
1723 		return false;
1724 
1725 #if (PAGE_SIZE < 8192)
1726 	/* if we are only owner of page we can reuse it */
1727 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1728 		return false;
1729 #else
1730 #define I40E_LAST_OFFSET \
1731 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1732 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1733 		return false;
1734 #endif
1735 
1736 	/* If we have drained the page fragment pool we need to update
1737 	 * the pagecnt_bias and page count so that we fully restock the
1738 	 * number of references the driver holds.
1739 	 */
1740 	if (unlikely(!pagecnt_bias)) {
1741 		page_ref_add(page, USHRT_MAX);
1742 		rx_buffer->pagecnt_bias = USHRT_MAX;
1743 	}
1744 
1745 	return true;
1746 }
1747 
1748 /**
1749  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1750  * @rx_ring: rx descriptor ring to transact packets on
1751  * @rx_buffer: buffer containing page to add
1752  * @skb: sk_buff to place the data into
1753  * @size: packet length from rx_desc
1754  *
1755  * This function will add the data contained in rx_buffer->page to the skb.
1756  * It will just attach the page as a frag to the skb.
1757  *
1758  * The function will then update the page offset.
1759  **/
1760 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1761 			     struct i40e_rx_buffer *rx_buffer,
1762 			     struct sk_buff *skb,
1763 			     unsigned int size)
1764 {
1765 #if (PAGE_SIZE < 8192)
1766 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1767 #else
1768 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1769 #endif
1770 
1771 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1772 			rx_buffer->page_offset, size, truesize);
1773 
1774 	/* page is being used so we must update the page offset */
1775 #if (PAGE_SIZE < 8192)
1776 	rx_buffer->page_offset ^= truesize;
1777 #else
1778 	rx_buffer->page_offset += truesize;
1779 #endif
1780 }
1781 
1782 /**
1783  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1784  * @rx_ring: rx descriptor ring to transact packets on
1785  * @size: size of buffer to add to skb
1786  *
1787  * This function will pull an Rx buffer from the ring and synchronize it
1788  * for use by the CPU.
1789  */
1790 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1791 						 const unsigned int size)
1792 {
1793 	struct i40e_rx_buffer *rx_buffer;
1794 
1795 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1796 	prefetchw(rx_buffer->page);
1797 
1798 	/* we are reusing so sync this buffer for CPU use */
1799 	dma_sync_single_range_for_cpu(rx_ring->dev,
1800 				      rx_buffer->dma,
1801 				      rx_buffer->page_offset,
1802 				      size,
1803 				      DMA_FROM_DEVICE);
1804 
1805 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1806 	rx_buffer->pagecnt_bias--;
1807 
1808 	return rx_buffer;
1809 }
1810 
1811 /**
1812  * i40e_construct_skb - Allocate skb and populate it
1813  * @rx_ring: rx descriptor ring to transact packets on
1814  * @rx_buffer: rx buffer to pull data from
1815  * @xdp: xdp_buff pointing to the data
1816  *
1817  * This function allocates an skb.  It then populates it with the page
1818  * data from the current receive descriptor, taking care to set up the
1819  * skb correctly.
1820  */
1821 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1822 					  struct i40e_rx_buffer *rx_buffer,
1823 					  struct xdp_buff *xdp)
1824 {
1825 	unsigned int size = xdp->data_end - xdp->data;
1826 #if (PAGE_SIZE < 8192)
1827 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1828 #else
1829 	unsigned int truesize = SKB_DATA_ALIGN(size);
1830 #endif
1831 	unsigned int headlen;
1832 	struct sk_buff *skb;
1833 
1834 	/* prefetch first cache line of first page */
1835 	prefetch(xdp->data);
1836 #if L1_CACHE_BYTES < 128
1837 	prefetch(xdp->data + L1_CACHE_BYTES);
1838 #endif
1839 
1840 	/* allocate a skb to store the frags */
1841 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1842 			       I40E_RX_HDR_SIZE,
1843 			       GFP_ATOMIC | __GFP_NOWARN);
1844 	if (unlikely(!skb))
1845 		return NULL;
1846 
1847 	/* Determine available headroom for copy */
1848 	headlen = size;
1849 	if (headlen > I40E_RX_HDR_SIZE)
1850 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
1851 
1852 	/* align pull length to size of long to optimize memcpy performance */
1853 	memcpy(__skb_put(skb, headlen), xdp->data,
1854 	       ALIGN(headlen, sizeof(long)));
1855 
1856 	/* update all of the pointers */
1857 	size -= headlen;
1858 	if (size) {
1859 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1860 				rx_buffer->page_offset + headlen,
1861 				size, truesize);
1862 
1863 		/* buffer is used by skb, update page_offset */
1864 #if (PAGE_SIZE < 8192)
1865 		rx_buffer->page_offset ^= truesize;
1866 #else
1867 		rx_buffer->page_offset += truesize;
1868 #endif
1869 	} else {
1870 		/* buffer is unused, reset bias back to rx_buffer */
1871 		rx_buffer->pagecnt_bias++;
1872 	}
1873 
1874 	return skb;
1875 }
1876 
1877 /**
1878  * i40e_build_skb - Build skb around an existing buffer
1879  * @rx_ring: Rx descriptor ring to transact packets on
1880  * @rx_buffer: Rx buffer to pull data from
1881  * @xdp: xdp_buff pointing to the data
1882  *
1883  * This function builds an skb around an existing Rx buffer, taking care
1884  * to set up the skb correctly and avoid any memcpy overhead.
1885  */
1886 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1887 				      struct i40e_rx_buffer *rx_buffer,
1888 				      struct xdp_buff *xdp)
1889 {
1890 	unsigned int size = xdp->data_end - xdp->data;
1891 #if (PAGE_SIZE < 8192)
1892 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1893 #else
1894 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1895 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1896 #endif
1897 	struct sk_buff *skb;
1898 
1899 	/* prefetch first cache line of first page */
1900 	prefetch(xdp->data);
1901 #if L1_CACHE_BYTES < 128
1902 	prefetch(xdp->data + L1_CACHE_BYTES);
1903 #endif
1904 	/* build an skb around the page buffer */
1905 	skb = build_skb(xdp->data_hard_start, truesize);
1906 	if (unlikely(!skb))
1907 		return NULL;
1908 
1909 	/* update pointers within the skb to store the data */
1910 	skb_reserve(skb, I40E_SKB_PAD);
1911 	__skb_put(skb, size);
1912 
1913 	/* buffer is used by skb, update page_offset */
1914 #if (PAGE_SIZE < 8192)
1915 	rx_buffer->page_offset ^= truesize;
1916 #else
1917 	rx_buffer->page_offset += truesize;
1918 #endif
1919 
1920 	return skb;
1921 }
1922 
1923 /**
1924  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1925  * @rx_ring: rx descriptor ring to transact packets on
1926  * @rx_buffer: rx buffer to pull data from
1927  *
1928  * This function will clean up the contents of the rx_buffer.  It will
1929  * either recycle the bufer or unmap it and free the associated resources.
1930  */
1931 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1932 			       struct i40e_rx_buffer *rx_buffer)
1933 {
1934 	if (i40e_can_reuse_rx_page(rx_buffer)) {
1935 		/* hand second half of page back to the ring */
1936 		i40e_reuse_rx_page(rx_ring, rx_buffer);
1937 		rx_ring->rx_stats.page_reuse_count++;
1938 	} else {
1939 		/* we are not reusing the buffer so unmap it */
1940 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1941 				     i40e_rx_pg_size(rx_ring),
1942 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1943 		__page_frag_cache_drain(rx_buffer->page,
1944 					rx_buffer->pagecnt_bias);
1945 	}
1946 
1947 	/* clear contents of buffer_info */
1948 	rx_buffer->page = NULL;
1949 }
1950 
1951 /**
1952  * i40e_is_non_eop - process handling of non-EOP buffers
1953  * @rx_ring: Rx ring being processed
1954  * @rx_desc: Rx descriptor for current buffer
1955  * @skb: Current socket buffer containing buffer in progress
1956  *
1957  * This function updates next to clean.  If the buffer is an EOP buffer
1958  * this function exits returning false, otherwise it will place the
1959  * sk_buff in the next buffer to be chained and return true indicating
1960  * that this is in fact a non-EOP buffer.
1961  **/
1962 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1963 			    union i40e_rx_desc *rx_desc,
1964 			    struct sk_buff *skb)
1965 {
1966 	u32 ntc = rx_ring->next_to_clean + 1;
1967 
1968 	/* fetch, update, and store next to clean */
1969 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1970 	rx_ring->next_to_clean = ntc;
1971 
1972 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1973 
1974 	/* if we are the last buffer then there is nothing else to do */
1975 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1976 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1977 		return false;
1978 
1979 	rx_ring->rx_stats.non_eop_descs++;
1980 
1981 	return true;
1982 }
1983 
1984 #define I40E_XDP_PASS 0
1985 #define I40E_XDP_CONSUMED 1
1986 #define I40E_XDP_TX 2
1987 
1988 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
1989 			      struct i40e_ring *xdp_ring);
1990 
1991 /**
1992  * i40e_run_xdp - run an XDP program
1993  * @rx_ring: Rx ring being processed
1994  * @xdp: XDP buffer containing the frame
1995  **/
1996 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
1997 				    struct xdp_buff *xdp)
1998 {
1999 	int result = I40E_XDP_PASS;
2000 	struct i40e_ring *xdp_ring;
2001 	struct bpf_prog *xdp_prog;
2002 	u32 act;
2003 
2004 	rcu_read_lock();
2005 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2006 
2007 	if (!xdp_prog)
2008 		goto xdp_out;
2009 
2010 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2011 	switch (act) {
2012 	case XDP_PASS:
2013 		break;
2014 	case XDP_TX:
2015 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2016 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2017 		break;
2018 	default:
2019 		bpf_warn_invalid_xdp_action(act);
2020 	case XDP_ABORTED:
2021 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2022 		/* fallthrough -- handle aborts by dropping packet */
2023 	case XDP_DROP:
2024 		result = I40E_XDP_CONSUMED;
2025 		break;
2026 	}
2027 xdp_out:
2028 	rcu_read_unlock();
2029 	return ERR_PTR(-result);
2030 }
2031 
2032 /**
2033  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2034  * @rx_ring: Rx ring
2035  * @rx_buffer: Rx buffer to adjust
2036  * @size: Size of adjustment
2037  **/
2038 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2039 				struct i40e_rx_buffer *rx_buffer,
2040 				unsigned int size)
2041 {
2042 #if (PAGE_SIZE < 8192)
2043 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2044 
2045 	rx_buffer->page_offset ^= truesize;
2046 #else
2047 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2048 
2049 	rx_buffer->page_offset += truesize;
2050 #endif
2051 }
2052 
2053 /**
2054  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2055  * @rx_ring: rx descriptor ring to transact packets on
2056  * @budget: Total limit on number of packets to process
2057  *
2058  * This function provides a "bounce buffer" approach to Rx interrupt
2059  * processing.  The advantage to this is that on systems that have
2060  * expensive overhead for IOMMU access this provides a means of avoiding
2061  * it by maintaining the mapping of the page to the system.
2062  *
2063  * Returns amount of work completed
2064  **/
2065 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2066 {
2067 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2068 	struct sk_buff *skb = rx_ring->skb;
2069 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2070 	bool failure = false, xdp_xmit = false;
2071 
2072 	while (likely(total_rx_packets < (unsigned int)budget)) {
2073 		struct i40e_rx_buffer *rx_buffer;
2074 		union i40e_rx_desc *rx_desc;
2075 		struct xdp_buff xdp;
2076 		unsigned int size;
2077 		u16 vlan_tag;
2078 		u8 rx_ptype;
2079 		u64 qword;
2080 
2081 		/* return some buffers to hardware, one at a time is too slow */
2082 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2083 			failure = failure ||
2084 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2085 			cleaned_count = 0;
2086 		}
2087 
2088 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2089 
2090 		/* status_error_len will always be zero for unused descriptors
2091 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2092 		 * which is always zero because packet split isn't used, if the
2093 		 * hardware wrote DD then the length will be non-zero
2094 		 */
2095 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2096 
2097 		/* This memory barrier is needed to keep us from reading
2098 		 * any other fields out of the rx_desc until we have
2099 		 * verified the descriptor has been written back.
2100 		 */
2101 		dma_rmb();
2102 
2103 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2104 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2105 			cleaned_count++;
2106 			continue;
2107 		}
2108 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2109 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2110 		if (!size)
2111 			break;
2112 
2113 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2114 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2115 
2116 		/* retrieve a buffer from the ring */
2117 		if (!skb) {
2118 			xdp.data = page_address(rx_buffer->page) +
2119 				   rx_buffer->page_offset;
2120 			xdp_set_data_meta_invalid(&xdp);
2121 			xdp.data_hard_start = xdp.data -
2122 					      i40e_rx_offset(rx_ring);
2123 			xdp.data_end = xdp.data + size;
2124 
2125 			skb = i40e_run_xdp(rx_ring, &xdp);
2126 		}
2127 
2128 		if (IS_ERR(skb)) {
2129 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2130 				xdp_xmit = true;
2131 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2132 			} else {
2133 				rx_buffer->pagecnt_bias++;
2134 			}
2135 			total_rx_bytes += size;
2136 			total_rx_packets++;
2137 		} else if (skb) {
2138 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2139 		} else if (ring_uses_build_skb(rx_ring)) {
2140 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2141 		} else {
2142 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2143 		}
2144 
2145 		/* exit if we failed to retrieve a buffer */
2146 		if (!skb) {
2147 			rx_ring->rx_stats.alloc_buff_failed++;
2148 			rx_buffer->pagecnt_bias++;
2149 			break;
2150 		}
2151 
2152 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2153 		cleaned_count++;
2154 
2155 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2156 			continue;
2157 
2158 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2159 			skb = NULL;
2160 			continue;
2161 		}
2162 
2163 		/* probably a little skewed due to removing CRC */
2164 		total_rx_bytes += skb->len;
2165 
2166 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2167 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2168 			   I40E_RXD_QW1_PTYPE_SHIFT;
2169 
2170 		/* populate checksum, VLAN, and protocol */
2171 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2172 
2173 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2174 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2175 
2176 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2177 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2178 		skb = NULL;
2179 
2180 		/* update budget accounting */
2181 		total_rx_packets++;
2182 	}
2183 
2184 	if (xdp_xmit) {
2185 		struct i40e_ring *xdp_ring;
2186 
2187 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2188 
2189 		/* Force memory writes to complete before letting h/w
2190 		 * know there are new descriptors to fetch.
2191 		 */
2192 		wmb();
2193 
2194 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2195 	}
2196 
2197 	rx_ring->skb = skb;
2198 
2199 	u64_stats_update_begin(&rx_ring->syncp);
2200 	rx_ring->stats.packets += total_rx_packets;
2201 	rx_ring->stats.bytes += total_rx_bytes;
2202 	u64_stats_update_end(&rx_ring->syncp);
2203 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2204 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2205 
2206 	/* guarantee a trip back through this routine if there was a failure */
2207 	return failure ? budget : (int)total_rx_packets;
2208 }
2209 
2210 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2211 {
2212 	u32 val;
2213 
2214 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2215 	      I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2216 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2217 	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2218 
2219 	return val;
2220 }
2221 
2222 /* a small macro to shorten up some long lines */
2223 #define INTREG I40E_PFINT_DYN_CTLN
2224 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2225 {
2226 	return vsi->rx_rings[idx]->rx_itr_setting;
2227 }
2228 
2229 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2230 {
2231 	return vsi->tx_rings[idx]->tx_itr_setting;
2232 }
2233 
2234 /**
2235  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2236  * @vsi: the VSI we care about
2237  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2238  *
2239  **/
2240 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2241 					  struct i40e_q_vector *q_vector)
2242 {
2243 	struct i40e_hw *hw = &vsi->back->hw;
2244 	bool rx = false, tx = false;
2245 	u32 rxval, txval;
2246 	int vector;
2247 	int idx = q_vector->v_idx;
2248 	int rx_itr_setting, tx_itr_setting;
2249 
2250 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2251 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2252 		i40e_irq_dynamic_enable_icr0(vsi->back);
2253 		return;
2254 	}
2255 
2256 	vector = (q_vector->v_idx + vsi->base_vector);
2257 
2258 	/* avoid dynamic calculation if in countdown mode OR if
2259 	 * all dynamic is disabled
2260 	 */
2261 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2262 
2263 	rx_itr_setting = get_rx_itr(vsi, idx);
2264 	tx_itr_setting = get_tx_itr(vsi, idx);
2265 
2266 	if (q_vector->itr_countdown > 0 ||
2267 	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2268 	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2269 		goto enable_int;
2270 	}
2271 
2272 	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
2273 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2274 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2275 	}
2276 
2277 	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2278 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2279 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2280 	}
2281 
2282 	if (rx || tx) {
2283 		/* get the higher of the two ITR adjustments and
2284 		 * use the same value for both ITR registers
2285 		 * when in adaptive mode (Rx and/or Tx)
2286 		 */
2287 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2288 
2289 		q_vector->tx.itr = q_vector->rx.itr = itr;
2290 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2291 		tx = true;
2292 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2293 		rx = true;
2294 	}
2295 
2296 	/* only need to enable the interrupt once, but need
2297 	 * to possibly update both ITR values
2298 	 */
2299 	if (rx) {
2300 		/* set the INTENA_MSK_MASK so that this first write
2301 		 * won't actually enable the interrupt, instead just
2302 		 * updating the ITR (it's bit 31 PF and VF)
2303 		 */
2304 		rxval |= BIT(31);
2305 		/* don't check _DOWN because interrupt isn't being enabled */
2306 		wr32(hw, INTREG(vector - 1), rxval);
2307 	}
2308 
2309 enable_int:
2310 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2311 		wr32(hw, INTREG(vector - 1), txval);
2312 
2313 	if (q_vector->itr_countdown)
2314 		q_vector->itr_countdown--;
2315 	else
2316 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2317 }
2318 
2319 /**
2320  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2321  * @napi: napi struct with our devices info in it
2322  * @budget: amount of work driver is allowed to do this pass, in packets
2323  *
2324  * This function will clean all queues associated with a q_vector.
2325  *
2326  * Returns the amount of work done
2327  **/
2328 int i40e_napi_poll(struct napi_struct *napi, int budget)
2329 {
2330 	struct i40e_q_vector *q_vector =
2331 			       container_of(napi, struct i40e_q_vector, napi);
2332 	struct i40e_vsi *vsi = q_vector->vsi;
2333 	struct i40e_ring *ring;
2334 	bool clean_complete = true;
2335 	bool arm_wb = false;
2336 	int budget_per_ring;
2337 	int work_done = 0;
2338 
2339 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2340 		napi_complete(napi);
2341 		return 0;
2342 	}
2343 
2344 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2345 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2346 	 */
2347 	i40e_for_each_ring(ring, q_vector->tx) {
2348 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2349 			clean_complete = false;
2350 			continue;
2351 		}
2352 		arm_wb |= ring->arm_wb;
2353 		ring->arm_wb = false;
2354 	}
2355 
2356 	/* Handle case where we are called by netpoll with a budget of 0 */
2357 	if (budget <= 0)
2358 		goto tx_only;
2359 
2360 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2361 	 * allow the budget to go below 1 because that would exit polling early.
2362 	 */
2363 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2364 
2365 	i40e_for_each_ring(ring, q_vector->rx) {
2366 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2367 
2368 		work_done += cleaned;
2369 		/* if we clean as many as budgeted, we must not be done */
2370 		if (cleaned >= budget_per_ring)
2371 			clean_complete = false;
2372 	}
2373 
2374 	/* If work not completed, return budget and polling will return */
2375 	if (!clean_complete) {
2376 		int cpu_id = smp_processor_id();
2377 
2378 		/* It is possible that the interrupt affinity has changed but,
2379 		 * if the cpu is pegged at 100%, polling will never exit while
2380 		 * traffic continues and the interrupt will be stuck on this
2381 		 * cpu.  We check to make sure affinity is correct before we
2382 		 * continue to poll, otherwise we must stop polling so the
2383 		 * interrupt can move to the correct cpu.
2384 		 */
2385 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2386 			/* Tell napi that we are done polling */
2387 			napi_complete_done(napi, work_done);
2388 
2389 			/* Force an interrupt */
2390 			i40e_force_wb(vsi, q_vector);
2391 
2392 			/* Return budget-1 so that polling stops */
2393 			return budget - 1;
2394 		}
2395 tx_only:
2396 		if (arm_wb) {
2397 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2398 			i40e_enable_wb_on_itr(vsi, q_vector);
2399 		}
2400 		return budget;
2401 	}
2402 
2403 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2404 		q_vector->arm_wb_state = false;
2405 
2406 	/* Work is done so exit the polling mode and re-enable the interrupt */
2407 	napi_complete_done(napi, work_done);
2408 
2409 	i40e_update_enable_itr(vsi, q_vector);
2410 
2411 	return min(work_done, budget - 1);
2412 }
2413 
2414 /**
2415  * i40e_atr - Add a Flow Director ATR filter
2416  * @tx_ring:  ring to add programming descriptor to
2417  * @skb:      send buffer
2418  * @tx_flags: send tx flags
2419  **/
2420 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2421 		     u32 tx_flags)
2422 {
2423 	struct i40e_filter_program_desc *fdir_desc;
2424 	struct i40e_pf *pf = tx_ring->vsi->back;
2425 	union {
2426 		unsigned char *network;
2427 		struct iphdr *ipv4;
2428 		struct ipv6hdr *ipv6;
2429 	} hdr;
2430 	struct tcphdr *th;
2431 	unsigned int hlen;
2432 	u32 flex_ptype, dtype_cmd;
2433 	int l4_proto;
2434 	u16 i;
2435 
2436 	/* make sure ATR is enabled */
2437 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2438 		return;
2439 
2440 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2441 		return;
2442 
2443 	/* if sampling is disabled do nothing */
2444 	if (!tx_ring->atr_sample_rate)
2445 		return;
2446 
2447 	/* Currently only IPv4/IPv6 with TCP is supported */
2448 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2449 		return;
2450 
2451 	/* snag network header to get L4 type and address */
2452 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2453 		      skb_inner_network_header(skb) : skb_network_header(skb);
2454 
2455 	/* Note: tx_flags gets modified to reflect inner protocols in
2456 	 * tx_enable_csum function if encap is enabled.
2457 	 */
2458 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2459 		/* access ihl as u8 to avoid unaligned access on ia64 */
2460 		hlen = (hdr.network[0] & 0x0F) << 2;
2461 		l4_proto = hdr.ipv4->protocol;
2462 	} else {
2463 		/* find the start of the innermost ipv6 header */
2464 		unsigned int inner_hlen = hdr.network - skb->data;
2465 		unsigned int h_offset = inner_hlen;
2466 
2467 		/* this function updates h_offset to the end of the header */
2468 		l4_proto =
2469 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2470 		/* hlen will contain our best estimate of the tcp header */
2471 		hlen = h_offset - inner_hlen;
2472 	}
2473 
2474 	if (l4_proto != IPPROTO_TCP)
2475 		return;
2476 
2477 	th = (struct tcphdr *)(hdr.network + hlen);
2478 
2479 	/* Due to lack of space, no more new filters can be programmed */
2480 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2481 		return;
2482 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2483 		/* HW ATR eviction will take care of removing filters on FIN
2484 		 * and RST packets.
2485 		 */
2486 		if (th->fin || th->rst)
2487 			return;
2488 	}
2489 
2490 	tx_ring->atr_count++;
2491 
2492 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2493 	if (!th->fin &&
2494 	    !th->syn &&
2495 	    !th->rst &&
2496 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2497 		return;
2498 
2499 	tx_ring->atr_count = 0;
2500 
2501 	/* grab the next descriptor */
2502 	i = tx_ring->next_to_use;
2503 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2504 
2505 	i++;
2506 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2507 
2508 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2509 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2510 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2511 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2512 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2513 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2514 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2515 
2516 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2517 
2518 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2519 
2520 	dtype_cmd |= (th->fin || th->rst) ?
2521 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2522 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2523 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2524 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2525 
2526 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2527 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2528 
2529 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2530 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2531 
2532 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2533 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2534 		dtype_cmd |=
2535 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2536 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2537 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2538 	else
2539 		dtype_cmd |=
2540 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2541 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2542 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2543 
2544 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2545 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2546 
2547 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2548 	fdir_desc->rsvd = cpu_to_le32(0);
2549 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2550 	fdir_desc->fd_id = cpu_to_le32(0);
2551 }
2552 
2553 /**
2554  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2555  * @skb:     send buffer
2556  * @tx_ring: ring to send buffer on
2557  * @flags:   the tx flags to be set
2558  *
2559  * Checks the skb and set up correspondingly several generic transmit flags
2560  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2561  *
2562  * Returns error code indicate the frame should be dropped upon error and the
2563  * otherwise  returns 0 to indicate the flags has been set properly.
2564  **/
2565 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2566 					     struct i40e_ring *tx_ring,
2567 					     u32 *flags)
2568 {
2569 	__be16 protocol = skb->protocol;
2570 	u32  tx_flags = 0;
2571 
2572 	if (protocol == htons(ETH_P_8021Q) &&
2573 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2574 		/* When HW VLAN acceleration is turned off by the user the
2575 		 * stack sets the protocol to 8021q so that the driver
2576 		 * can take any steps required to support the SW only
2577 		 * VLAN handling.  In our case the driver doesn't need
2578 		 * to take any further steps so just set the protocol
2579 		 * to the encapsulated ethertype.
2580 		 */
2581 		skb->protocol = vlan_get_protocol(skb);
2582 		goto out;
2583 	}
2584 
2585 	/* if we have a HW VLAN tag being added, default to the HW one */
2586 	if (skb_vlan_tag_present(skb)) {
2587 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2588 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2589 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2590 	} else if (protocol == htons(ETH_P_8021Q)) {
2591 		struct vlan_hdr *vhdr, _vhdr;
2592 
2593 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2594 		if (!vhdr)
2595 			return -EINVAL;
2596 
2597 		protocol = vhdr->h_vlan_encapsulated_proto;
2598 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2599 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2600 	}
2601 
2602 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2603 		goto out;
2604 
2605 	/* Insert 802.1p priority into VLAN header */
2606 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2607 	    (skb->priority != TC_PRIO_CONTROL)) {
2608 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2609 		tx_flags |= (skb->priority & 0x7) <<
2610 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2611 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2612 			struct vlan_ethhdr *vhdr;
2613 			int rc;
2614 
2615 			rc = skb_cow_head(skb, 0);
2616 			if (rc < 0)
2617 				return rc;
2618 			vhdr = (struct vlan_ethhdr *)skb->data;
2619 			vhdr->h_vlan_TCI = htons(tx_flags >>
2620 						 I40E_TX_FLAGS_VLAN_SHIFT);
2621 		} else {
2622 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2623 		}
2624 	}
2625 
2626 out:
2627 	*flags = tx_flags;
2628 	return 0;
2629 }
2630 
2631 /**
2632  * i40e_tso - set up the tso context descriptor
2633  * @first:    pointer to first Tx buffer for xmit
2634  * @hdr_len:  ptr to the size of the packet header
2635  * @cd_type_cmd_tso_mss: Quad Word 1
2636  *
2637  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2638  **/
2639 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2640 		    u64 *cd_type_cmd_tso_mss)
2641 {
2642 	struct sk_buff *skb = first->skb;
2643 	u64 cd_cmd, cd_tso_len, cd_mss;
2644 	union {
2645 		struct iphdr *v4;
2646 		struct ipv6hdr *v6;
2647 		unsigned char *hdr;
2648 	} ip;
2649 	union {
2650 		struct tcphdr *tcp;
2651 		struct udphdr *udp;
2652 		unsigned char *hdr;
2653 	} l4;
2654 	u32 paylen, l4_offset;
2655 	u16 gso_segs, gso_size;
2656 	int err;
2657 
2658 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2659 		return 0;
2660 
2661 	if (!skb_is_gso(skb))
2662 		return 0;
2663 
2664 	err = skb_cow_head(skb, 0);
2665 	if (err < 0)
2666 		return err;
2667 
2668 	ip.hdr = skb_network_header(skb);
2669 	l4.hdr = skb_transport_header(skb);
2670 
2671 	/* initialize outer IP header fields */
2672 	if (ip.v4->version == 4) {
2673 		ip.v4->tot_len = 0;
2674 		ip.v4->check = 0;
2675 	} else {
2676 		ip.v6->payload_len = 0;
2677 	}
2678 
2679 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2680 					 SKB_GSO_GRE_CSUM |
2681 					 SKB_GSO_IPXIP4 |
2682 					 SKB_GSO_IPXIP6 |
2683 					 SKB_GSO_UDP_TUNNEL |
2684 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2685 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2686 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2687 			l4.udp->len = 0;
2688 
2689 			/* determine offset of outer transport header */
2690 			l4_offset = l4.hdr - skb->data;
2691 
2692 			/* remove payload length from outer checksum */
2693 			paylen = skb->len - l4_offset;
2694 			csum_replace_by_diff(&l4.udp->check,
2695 					     (__force __wsum)htonl(paylen));
2696 		}
2697 
2698 		/* reset pointers to inner headers */
2699 		ip.hdr = skb_inner_network_header(skb);
2700 		l4.hdr = skb_inner_transport_header(skb);
2701 
2702 		/* initialize inner IP header fields */
2703 		if (ip.v4->version == 4) {
2704 			ip.v4->tot_len = 0;
2705 			ip.v4->check = 0;
2706 		} else {
2707 			ip.v6->payload_len = 0;
2708 		}
2709 	}
2710 
2711 	/* determine offset of inner transport header */
2712 	l4_offset = l4.hdr - skb->data;
2713 
2714 	/* remove payload length from inner checksum */
2715 	paylen = skb->len - l4_offset;
2716 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2717 
2718 	/* compute length of segmentation header */
2719 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2720 
2721 	/* pull values out of skb_shinfo */
2722 	gso_size = skb_shinfo(skb)->gso_size;
2723 	gso_segs = skb_shinfo(skb)->gso_segs;
2724 
2725 	/* update GSO size and bytecount with header size */
2726 	first->gso_segs = gso_segs;
2727 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2728 
2729 	/* find the field values */
2730 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2731 	cd_tso_len = skb->len - *hdr_len;
2732 	cd_mss = gso_size;
2733 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2734 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2735 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2736 	return 1;
2737 }
2738 
2739 /**
2740  * i40e_tsyn - set up the tsyn context descriptor
2741  * @tx_ring:  ptr to the ring to send
2742  * @skb:      ptr to the skb we're sending
2743  * @tx_flags: the collected send information
2744  * @cd_type_cmd_tso_mss: Quad Word 1
2745  *
2746  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2747  **/
2748 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2749 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2750 {
2751 	struct i40e_pf *pf;
2752 
2753 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2754 		return 0;
2755 
2756 	/* Tx timestamps cannot be sampled when doing TSO */
2757 	if (tx_flags & I40E_TX_FLAGS_TSO)
2758 		return 0;
2759 
2760 	/* only timestamp the outbound packet if the user has requested it and
2761 	 * we are not already transmitting a packet to be timestamped
2762 	 */
2763 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2764 	if (!(pf->flags & I40E_FLAG_PTP))
2765 		return 0;
2766 
2767 	if (pf->ptp_tx &&
2768 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2769 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2770 		pf->ptp_tx_start = jiffies;
2771 		pf->ptp_tx_skb = skb_get(skb);
2772 	} else {
2773 		pf->tx_hwtstamp_skipped++;
2774 		return 0;
2775 	}
2776 
2777 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2778 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2779 
2780 	return 1;
2781 }
2782 
2783 /**
2784  * i40e_tx_enable_csum - Enable Tx checksum offloads
2785  * @skb: send buffer
2786  * @tx_flags: pointer to Tx flags currently set
2787  * @td_cmd: Tx descriptor command bits to set
2788  * @td_offset: Tx descriptor header offsets to set
2789  * @tx_ring: Tx descriptor ring
2790  * @cd_tunneling: ptr to context desc bits
2791  **/
2792 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2793 			       u32 *td_cmd, u32 *td_offset,
2794 			       struct i40e_ring *tx_ring,
2795 			       u32 *cd_tunneling)
2796 {
2797 	union {
2798 		struct iphdr *v4;
2799 		struct ipv6hdr *v6;
2800 		unsigned char *hdr;
2801 	} ip;
2802 	union {
2803 		struct tcphdr *tcp;
2804 		struct udphdr *udp;
2805 		unsigned char *hdr;
2806 	} l4;
2807 	unsigned char *exthdr;
2808 	u32 offset, cmd = 0;
2809 	__be16 frag_off;
2810 	u8 l4_proto = 0;
2811 
2812 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2813 		return 0;
2814 
2815 	ip.hdr = skb_network_header(skb);
2816 	l4.hdr = skb_transport_header(skb);
2817 
2818 	/* compute outer L2 header size */
2819 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2820 
2821 	if (skb->encapsulation) {
2822 		u32 tunnel = 0;
2823 		/* define outer network header type */
2824 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2825 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2826 				  I40E_TX_CTX_EXT_IP_IPV4 :
2827 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2828 
2829 			l4_proto = ip.v4->protocol;
2830 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2831 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2832 
2833 			exthdr = ip.hdr + sizeof(*ip.v6);
2834 			l4_proto = ip.v6->nexthdr;
2835 			if (l4.hdr != exthdr)
2836 				ipv6_skip_exthdr(skb, exthdr - skb->data,
2837 						 &l4_proto, &frag_off);
2838 		}
2839 
2840 		/* define outer transport */
2841 		switch (l4_proto) {
2842 		case IPPROTO_UDP:
2843 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2844 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2845 			break;
2846 		case IPPROTO_GRE:
2847 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2848 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2849 			break;
2850 		case IPPROTO_IPIP:
2851 		case IPPROTO_IPV6:
2852 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2853 			l4.hdr = skb_inner_network_header(skb);
2854 			break;
2855 		default:
2856 			if (*tx_flags & I40E_TX_FLAGS_TSO)
2857 				return -1;
2858 
2859 			skb_checksum_help(skb);
2860 			return 0;
2861 		}
2862 
2863 		/* compute outer L3 header size */
2864 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2865 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2866 
2867 		/* switch IP header pointer from outer to inner header */
2868 		ip.hdr = skb_inner_network_header(skb);
2869 
2870 		/* compute tunnel header size */
2871 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2872 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2873 
2874 		/* indicate if we need to offload outer UDP header */
2875 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2876 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2877 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2878 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2879 
2880 		/* record tunnel offload values */
2881 		*cd_tunneling |= tunnel;
2882 
2883 		/* switch L4 header pointer from outer to inner */
2884 		l4.hdr = skb_inner_transport_header(skb);
2885 		l4_proto = 0;
2886 
2887 		/* reset type as we transition from outer to inner headers */
2888 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2889 		if (ip.v4->version == 4)
2890 			*tx_flags |= I40E_TX_FLAGS_IPV4;
2891 		if (ip.v6->version == 6)
2892 			*tx_flags |= I40E_TX_FLAGS_IPV6;
2893 	}
2894 
2895 	/* Enable IP checksum offloads */
2896 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2897 		l4_proto = ip.v4->protocol;
2898 		/* the stack computes the IP header already, the only time we
2899 		 * need the hardware to recompute it is in the case of TSO.
2900 		 */
2901 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2902 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2903 		       I40E_TX_DESC_CMD_IIPT_IPV4;
2904 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2905 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2906 
2907 		exthdr = ip.hdr + sizeof(*ip.v6);
2908 		l4_proto = ip.v6->nexthdr;
2909 		if (l4.hdr != exthdr)
2910 			ipv6_skip_exthdr(skb, exthdr - skb->data,
2911 					 &l4_proto, &frag_off);
2912 	}
2913 
2914 	/* compute inner L3 header size */
2915 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2916 
2917 	/* Enable L4 checksum offloads */
2918 	switch (l4_proto) {
2919 	case IPPROTO_TCP:
2920 		/* enable checksum offloads */
2921 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2922 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2923 		break;
2924 	case IPPROTO_SCTP:
2925 		/* enable SCTP checksum offload */
2926 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2927 		offset |= (sizeof(struct sctphdr) >> 2) <<
2928 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2929 		break;
2930 	case IPPROTO_UDP:
2931 		/* enable UDP checksum offload */
2932 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2933 		offset |= (sizeof(struct udphdr) >> 2) <<
2934 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2935 		break;
2936 	default:
2937 		if (*tx_flags & I40E_TX_FLAGS_TSO)
2938 			return -1;
2939 		skb_checksum_help(skb);
2940 		return 0;
2941 	}
2942 
2943 	*td_cmd |= cmd;
2944 	*td_offset |= offset;
2945 
2946 	return 1;
2947 }
2948 
2949 /**
2950  * i40e_create_tx_ctx Build the Tx context descriptor
2951  * @tx_ring:  ring to create the descriptor on
2952  * @cd_type_cmd_tso_mss: Quad Word 1
2953  * @cd_tunneling: Quad Word 0 - bits 0-31
2954  * @cd_l2tag2: Quad Word 0 - bits 32-63
2955  **/
2956 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2957 			       const u64 cd_type_cmd_tso_mss,
2958 			       const u32 cd_tunneling, const u32 cd_l2tag2)
2959 {
2960 	struct i40e_tx_context_desc *context_desc;
2961 	int i = tx_ring->next_to_use;
2962 
2963 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2964 	    !cd_tunneling && !cd_l2tag2)
2965 		return;
2966 
2967 	/* grab the next descriptor */
2968 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2969 
2970 	i++;
2971 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2972 
2973 	/* cpu_to_le32 and assign to struct fields */
2974 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2975 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2976 	context_desc->rsvd = cpu_to_le16(0);
2977 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2978 }
2979 
2980 /**
2981  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2982  * @tx_ring: the ring to be checked
2983  * @size:    the size buffer we want to assure is available
2984  *
2985  * Returns -EBUSY if a stop is needed, else 0
2986  **/
2987 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2988 {
2989 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2990 	/* Memory barrier before checking head and tail */
2991 	smp_mb();
2992 
2993 	/* Check again in a case another CPU has just made room available. */
2994 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2995 		return -EBUSY;
2996 
2997 	/* A reprieve! - use start_queue because it doesn't call schedule */
2998 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2999 	++tx_ring->tx_stats.restart_queue;
3000 	return 0;
3001 }
3002 
3003 /**
3004  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3005  * @skb:      send buffer
3006  *
3007  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3008  * and so we need to figure out the cases where we need to linearize the skb.
3009  *
3010  * For TSO we need to count the TSO header and segment payload separately.
3011  * As such we need to check cases where we have 7 fragments or more as we
3012  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3013  * the segment payload in the first descriptor, and another 7 for the
3014  * fragments.
3015  **/
3016 bool __i40e_chk_linearize(struct sk_buff *skb)
3017 {
3018 	const struct skb_frag_struct *frag, *stale;
3019 	int nr_frags, sum;
3020 
3021 	/* no need to check if number of frags is less than 7 */
3022 	nr_frags = skb_shinfo(skb)->nr_frags;
3023 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3024 		return false;
3025 
3026 	/* We need to walk through the list and validate that each group
3027 	 * of 6 fragments totals at least gso_size.
3028 	 */
3029 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3030 	frag = &skb_shinfo(skb)->frags[0];
3031 
3032 	/* Initialize size to the negative value of gso_size minus 1.  We
3033 	 * use this as the worst case scenerio in which the frag ahead
3034 	 * of us only provides one byte which is why we are limited to 6
3035 	 * descriptors for a single transmit as the header and previous
3036 	 * fragment are already consuming 2 descriptors.
3037 	 */
3038 	sum = 1 - skb_shinfo(skb)->gso_size;
3039 
3040 	/* Add size of frags 0 through 4 to create our initial sum */
3041 	sum += skb_frag_size(frag++);
3042 	sum += skb_frag_size(frag++);
3043 	sum += skb_frag_size(frag++);
3044 	sum += skb_frag_size(frag++);
3045 	sum += skb_frag_size(frag++);
3046 
3047 	/* Walk through fragments adding latest fragment, testing it, and
3048 	 * then removing stale fragments from the sum.
3049 	 */
3050 	stale = &skb_shinfo(skb)->frags[0];
3051 	for (;;) {
3052 		sum += skb_frag_size(frag++);
3053 
3054 		/* if sum is negative we failed to make sufficient progress */
3055 		if (sum < 0)
3056 			return true;
3057 
3058 		if (!nr_frags--)
3059 			break;
3060 
3061 		sum -= skb_frag_size(stale++);
3062 	}
3063 
3064 	return false;
3065 }
3066 
3067 /**
3068  * i40e_tx_map - Build the Tx descriptor
3069  * @tx_ring:  ring to send buffer on
3070  * @skb:      send buffer
3071  * @first:    first buffer info buffer to use
3072  * @tx_flags: collected send information
3073  * @hdr_len:  size of the packet header
3074  * @td_cmd:   the command field in the descriptor
3075  * @td_offset: offset for checksum or crc
3076  *
3077  * Returns 0 on success, -1 on failure to DMA
3078  **/
3079 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3080 			      struct i40e_tx_buffer *first, u32 tx_flags,
3081 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3082 {
3083 	unsigned int data_len = skb->data_len;
3084 	unsigned int size = skb_headlen(skb);
3085 	struct skb_frag_struct *frag;
3086 	struct i40e_tx_buffer *tx_bi;
3087 	struct i40e_tx_desc *tx_desc;
3088 	u16 i = tx_ring->next_to_use;
3089 	u32 td_tag = 0;
3090 	dma_addr_t dma;
3091 	u16 desc_count = 1;
3092 
3093 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3094 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3095 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3096 			 I40E_TX_FLAGS_VLAN_SHIFT;
3097 	}
3098 
3099 	first->tx_flags = tx_flags;
3100 
3101 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3102 
3103 	tx_desc = I40E_TX_DESC(tx_ring, i);
3104 	tx_bi = first;
3105 
3106 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3107 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3108 
3109 		if (dma_mapping_error(tx_ring->dev, dma))
3110 			goto dma_error;
3111 
3112 		/* record length, and DMA address */
3113 		dma_unmap_len_set(tx_bi, len, size);
3114 		dma_unmap_addr_set(tx_bi, dma, dma);
3115 
3116 		/* align size to end of page */
3117 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3118 		tx_desc->buffer_addr = cpu_to_le64(dma);
3119 
3120 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3121 			tx_desc->cmd_type_offset_bsz =
3122 				build_ctob(td_cmd, td_offset,
3123 					   max_data, td_tag);
3124 
3125 			tx_desc++;
3126 			i++;
3127 			desc_count++;
3128 
3129 			if (i == tx_ring->count) {
3130 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3131 				i = 0;
3132 			}
3133 
3134 			dma += max_data;
3135 			size -= max_data;
3136 
3137 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3138 			tx_desc->buffer_addr = cpu_to_le64(dma);
3139 		}
3140 
3141 		if (likely(!data_len))
3142 			break;
3143 
3144 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3145 							  size, td_tag);
3146 
3147 		tx_desc++;
3148 		i++;
3149 		desc_count++;
3150 
3151 		if (i == tx_ring->count) {
3152 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3153 			i = 0;
3154 		}
3155 
3156 		size = skb_frag_size(frag);
3157 		data_len -= size;
3158 
3159 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3160 				       DMA_TO_DEVICE);
3161 
3162 		tx_bi = &tx_ring->tx_bi[i];
3163 	}
3164 
3165 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3166 
3167 	i++;
3168 	if (i == tx_ring->count)
3169 		i = 0;
3170 
3171 	tx_ring->next_to_use = i;
3172 
3173 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3174 
3175 	/* write last descriptor with EOP bit */
3176 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3177 
3178 	/* We OR these values together to check both against 4 (WB_STRIDE)
3179 	 * below. This is safe since we don't re-use desc_count afterwards.
3180 	 */
3181 	desc_count |= ++tx_ring->packet_stride;
3182 
3183 	if (desc_count >= WB_STRIDE) {
3184 		/* write last descriptor with RS bit set */
3185 		td_cmd |= I40E_TX_DESC_CMD_RS;
3186 		tx_ring->packet_stride = 0;
3187 	}
3188 
3189 	tx_desc->cmd_type_offset_bsz =
3190 			build_ctob(td_cmd, td_offset, size, td_tag);
3191 
3192 	/* Force memory writes to complete before letting h/w know there
3193 	 * are new descriptors to fetch.
3194 	 *
3195 	 * We also use this memory barrier to make certain all of the
3196 	 * status bits have been updated before next_to_watch is written.
3197 	 */
3198 	wmb();
3199 
3200 	/* set next_to_watch value indicating a packet is present */
3201 	first->next_to_watch = tx_desc;
3202 
3203 	/* notify HW of packet */
3204 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3205 		writel(i, tx_ring->tail);
3206 
3207 		/* we need this if more than one processor can write to our tail
3208 		 * at a time, it synchronizes IO on IA64/Altix systems
3209 		 */
3210 		mmiowb();
3211 	}
3212 
3213 	return 0;
3214 
3215 dma_error:
3216 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3217 
3218 	/* clear dma mappings for failed tx_bi map */
3219 	for (;;) {
3220 		tx_bi = &tx_ring->tx_bi[i];
3221 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3222 		if (tx_bi == first)
3223 			break;
3224 		if (i == 0)
3225 			i = tx_ring->count;
3226 		i--;
3227 	}
3228 
3229 	tx_ring->next_to_use = i;
3230 
3231 	return -1;
3232 }
3233 
3234 /**
3235  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3236  * @xdp: data to transmit
3237  * @xdp_ring: XDP Tx ring
3238  **/
3239 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3240 			      struct i40e_ring *xdp_ring)
3241 {
3242 	u32 size = xdp->data_end - xdp->data;
3243 	u16 i = xdp_ring->next_to_use;
3244 	struct i40e_tx_buffer *tx_bi;
3245 	struct i40e_tx_desc *tx_desc;
3246 	dma_addr_t dma;
3247 
3248 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3249 		xdp_ring->tx_stats.tx_busy++;
3250 		return I40E_XDP_CONSUMED;
3251 	}
3252 
3253 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3254 	if (dma_mapping_error(xdp_ring->dev, dma))
3255 		return I40E_XDP_CONSUMED;
3256 
3257 	tx_bi = &xdp_ring->tx_bi[i];
3258 	tx_bi->bytecount = size;
3259 	tx_bi->gso_segs = 1;
3260 	tx_bi->raw_buf = xdp->data;
3261 
3262 	/* record length, and DMA address */
3263 	dma_unmap_len_set(tx_bi, len, size);
3264 	dma_unmap_addr_set(tx_bi, dma, dma);
3265 
3266 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3267 	tx_desc->buffer_addr = cpu_to_le64(dma);
3268 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3269 						  | I40E_TXD_CMD,
3270 						  0, size, 0);
3271 
3272 	/* Make certain all of the status bits have been updated
3273 	 * before next_to_watch is written.
3274 	 */
3275 	smp_wmb();
3276 
3277 	i++;
3278 	if (i == xdp_ring->count)
3279 		i = 0;
3280 
3281 	tx_bi->next_to_watch = tx_desc;
3282 	xdp_ring->next_to_use = i;
3283 
3284 	return I40E_XDP_TX;
3285 }
3286 
3287 /**
3288  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3289  * @skb:     send buffer
3290  * @tx_ring: ring to send buffer on
3291  *
3292  * Returns NETDEV_TX_OK if sent, else an error code
3293  **/
3294 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3295 					struct i40e_ring *tx_ring)
3296 {
3297 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3298 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3299 	struct i40e_tx_buffer *first;
3300 	u32 td_offset = 0;
3301 	u32 tx_flags = 0;
3302 	__be16 protocol;
3303 	u32 td_cmd = 0;
3304 	u8 hdr_len = 0;
3305 	int tso, count;
3306 	int tsyn;
3307 
3308 	/* prefetch the data, we'll need it later */
3309 	prefetch(skb->data);
3310 
3311 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3312 
3313 	count = i40e_xmit_descriptor_count(skb);
3314 	if (i40e_chk_linearize(skb, count)) {
3315 		if (__skb_linearize(skb)) {
3316 			dev_kfree_skb_any(skb);
3317 			return NETDEV_TX_OK;
3318 		}
3319 		count = i40e_txd_use_count(skb->len);
3320 		tx_ring->tx_stats.tx_linearize++;
3321 	}
3322 
3323 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3324 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3325 	 *       + 4 desc gap to avoid the cache line where head is,
3326 	 *       + 1 desc for context descriptor,
3327 	 * otherwise try next time
3328 	 */
3329 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3330 		tx_ring->tx_stats.tx_busy++;
3331 		return NETDEV_TX_BUSY;
3332 	}
3333 
3334 	/* record the location of the first descriptor for this packet */
3335 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3336 	first->skb = skb;
3337 	first->bytecount = skb->len;
3338 	first->gso_segs = 1;
3339 
3340 	/* prepare the xmit flags */
3341 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3342 		goto out_drop;
3343 
3344 	/* obtain protocol of skb */
3345 	protocol = vlan_get_protocol(skb);
3346 
3347 	/* setup IPv4/IPv6 offloads */
3348 	if (protocol == htons(ETH_P_IP))
3349 		tx_flags |= I40E_TX_FLAGS_IPV4;
3350 	else if (protocol == htons(ETH_P_IPV6))
3351 		tx_flags |= I40E_TX_FLAGS_IPV6;
3352 
3353 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3354 
3355 	if (tso < 0)
3356 		goto out_drop;
3357 	else if (tso)
3358 		tx_flags |= I40E_TX_FLAGS_TSO;
3359 
3360 	/* Always offload the checksum, since it's in the data descriptor */
3361 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3362 				  tx_ring, &cd_tunneling);
3363 	if (tso < 0)
3364 		goto out_drop;
3365 
3366 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3367 
3368 	if (tsyn)
3369 		tx_flags |= I40E_TX_FLAGS_TSYN;
3370 
3371 	skb_tx_timestamp(skb);
3372 
3373 	/* always enable CRC insertion offload */
3374 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3375 
3376 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3377 			   cd_tunneling, cd_l2tag2);
3378 
3379 	/* Add Flow Director ATR if it's enabled.
3380 	 *
3381 	 * NOTE: this must always be directly before the data descriptor.
3382 	 */
3383 	i40e_atr(tx_ring, skb, tx_flags);
3384 
3385 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3386 			td_cmd, td_offset))
3387 		goto cleanup_tx_tstamp;
3388 
3389 	return NETDEV_TX_OK;
3390 
3391 out_drop:
3392 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3393 	dev_kfree_skb_any(first->skb);
3394 	first->skb = NULL;
3395 cleanup_tx_tstamp:
3396 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3397 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3398 
3399 		dev_kfree_skb_any(pf->ptp_tx_skb);
3400 		pf->ptp_tx_skb = NULL;
3401 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3402 	}
3403 
3404 	return NETDEV_TX_OK;
3405 }
3406 
3407 /**
3408  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3409  * @skb:    send buffer
3410  * @netdev: network interface device structure
3411  *
3412  * Returns NETDEV_TX_OK if sent, else an error code
3413  **/
3414 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3415 {
3416 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3417 	struct i40e_vsi *vsi = np->vsi;
3418 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3419 
3420 	/* hardware can't handle really short frames, hardware padding works
3421 	 * beyond this point
3422 	 */
3423 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3424 		return NETDEV_TX_OK;
3425 
3426 	return i40e_xmit_frame_ring(skb, tx_ring);
3427 }
3428