1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47 
48 	/* Use LAN VSI Id if not programmed by user */
49 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52 
53 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 
55 	dtype_cmd |= add ?
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63 
64 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66 
67 	if (fdata->cnt_index) {
68 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 			     ((u32)fdata->cnt_index <<
71 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 	}
73 
74 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 	fdir_desc->rsvd = cpu_to_le32(0);
76 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79 
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82  * i40e_program_fdir_filter - Program a Flow Director filter
83  * @fdir_data: Packet data that will be filter parameters
84  * @raw_packet: the pre-allocated packet buffer for FDir
85  * @pf: The PF pointer
86  * @add: True for add/update, False for remove
87  **/
88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 				    u8 *raw_packet, struct i40e_pf *pf,
90 				    bool add)
91 {
92 	struct i40e_tx_buffer *tx_buf, *first;
93 	struct i40e_tx_desc *tx_desc;
94 	struct i40e_ring *tx_ring;
95 	struct i40e_vsi *vsi;
96 	struct device *dev;
97 	dma_addr_t dma;
98 	u32 td_cmd = 0;
99 	u16 i;
100 
101 	/* find existing FDIR VSI */
102 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 	if (!vsi)
104 		return -ENOENT;
105 
106 	tx_ring = vsi->tx_rings[0];
107 	dev = tx_ring->dev;
108 
109 	/* we need two descriptors to add/del a filter and we can wait */
110 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 		if (!i)
112 			return -EAGAIN;
113 		msleep_interruptible(1);
114 	}
115 
116 	dma = dma_map_single(dev, raw_packet,
117 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 	if (dma_mapping_error(dev, dma))
119 		goto dma_fail;
120 
121 	/* grab the next descriptor */
122 	i = tx_ring->next_to_use;
123 	first = &tx_ring->tx_bi[i];
124 	i40e_fdir(tx_ring, fdir_data, add);
125 
126 	/* Now program a dummy descriptor */
127 	i = tx_ring->next_to_use;
128 	tx_desc = I40E_TX_DESC(tx_ring, i);
129 	tx_buf = &tx_ring->tx_bi[i];
130 
131 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132 
133 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134 
135 	/* record length, and DMA address */
136 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 	dma_unmap_addr_set(tx_buf, dma, dma);
138 
139 	tx_desc->buffer_addr = cpu_to_le64(dma);
140 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141 
142 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 	tx_buf->raw_buf = (void *)raw_packet;
144 
145 	tx_desc->cmd_type_offset_bsz =
146 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 
148 	/* Force memory writes to complete before letting h/w
149 	 * know there are new descriptors to fetch.
150 	 */
151 	wmb();
152 
153 	/* Mark the data descriptor to be watched */
154 	first->next_to_watch = tx_desc;
155 
156 	writel(tx_ring->next_to_use, tx_ring->tail);
157 	return 0;
158 
159 dma_fail:
160 	return -1;
161 }
162 
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167  * @vsi: pointer to the targeted VSI
168  * @fd_data: the flow director data required for the FDir descriptor
169  * @add: true adds a filter, false removes it
170  *
171  * Returns 0 if the filters were successfully added or removed
172  **/
173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 				   struct i40e_fdir_filter *fd_data,
175 				   bool add)
176 {
177 	struct i40e_pf *pf = vsi->back;
178 	struct udphdr *udp;
179 	struct iphdr *ip;
180 	u8 *raw_packet;
181 	int ret;
182 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185 
186 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 	if (!raw_packet)
188 		return -ENOMEM;
189 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190 
191 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 	      + sizeof(struct iphdr));
194 
195 	ip->daddr = fd_data->dst_ip;
196 	udp->dest = fd_data->dst_port;
197 	ip->saddr = fd_data->src_ip;
198 	udp->source = fd_data->src_port;
199 
200 	if (fd_data->flex_filter) {
201 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 		__be16 pattern = fd_data->flex_word;
203 		u16 off = fd_data->flex_offset;
204 
205 		*((__force __be16 *)(payload + off)) = pattern;
206 	}
207 
208 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 	if (ret) {
211 		dev_info(&pf->pdev->dev,
212 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 			 fd_data->pctype, fd_data->fd_id, ret);
214 		/* Free the packet buffer since it wasn't added to the ring */
215 		kfree(raw_packet);
216 		return -EOPNOTSUPP;
217 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 		if (add)
219 			dev_info(&pf->pdev->dev,
220 				 "Filter OK for PCTYPE %d loc = %d\n",
221 				 fd_data->pctype, fd_data->fd_id);
222 		else
223 			dev_info(&pf->pdev->dev,
224 				 "Filter deleted for PCTYPE %d loc = %d\n",
225 				 fd_data->pctype, fd_data->fd_id);
226 	}
227 
228 	if (add)
229 		pf->fd_udp4_filter_cnt++;
230 	else
231 		pf->fd_udp4_filter_cnt--;
232 
233 	return 0;
234 }
235 
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239  * @vsi: pointer to the targeted VSI
240  * @fd_data: the flow director data required for the FDir descriptor
241  * @add: true adds a filter, false removes it
242  *
243  * Returns 0 if the filters were successfully added or removed
244  **/
245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 				   struct i40e_fdir_filter *fd_data,
247 				   bool add)
248 {
249 	struct i40e_pf *pf = vsi->back;
250 	struct tcphdr *tcp;
251 	struct iphdr *ip;
252 	u8 *raw_packet;
253 	int ret;
254 	/* Dummy packet */
255 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 		0x0, 0x72, 0, 0, 0, 0};
259 
260 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 	if (!raw_packet)
262 		return -ENOMEM;
263 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264 
265 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 	      + sizeof(struct iphdr));
268 
269 	ip->daddr = fd_data->dst_ip;
270 	tcp->dest = fd_data->dst_port;
271 	ip->saddr = fd_data->src_ip;
272 	tcp->source = fd_data->src_port;
273 
274 	if (fd_data->flex_filter) {
275 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 		__be16 pattern = fd_data->flex_word;
277 		u16 off = fd_data->flex_offset;
278 
279 		*((__force __be16 *)(payload + off)) = pattern;
280 	}
281 
282 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 	if (ret) {
285 		dev_info(&pf->pdev->dev,
286 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 			 fd_data->pctype, fd_data->fd_id, ret);
288 		/* Free the packet buffer since it wasn't added to the ring */
289 		kfree(raw_packet);
290 		return -EOPNOTSUPP;
291 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 		if (add)
293 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 				 fd_data->pctype, fd_data->fd_id);
295 		else
296 			dev_info(&pf->pdev->dev,
297 				 "Filter deleted for PCTYPE %d loc = %d\n",
298 				 fd_data->pctype, fd_data->fd_id);
299 	}
300 
301 	if (add) {
302 		pf->fd_tcp4_filter_cnt++;
303 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 		    I40E_DEBUG_FD & pf->hw.debug_mask)
305 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 	} else {
308 		pf->fd_tcp4_filter_cnt--;
309 	}
310 
311 	return 0;
312 }
313 
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317  * a specific flow spec
318  * @vsi: pointer to the targeted VSI
319  * @fd_data: the flow director data required for the FDir descriptor
320  * @add: true adds a filter, false removes it
321  *
322  * Returns 0 if the filters were successfully added or removed
323  **/
324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 				    struct i40e_fdir_filter *fd_data,
326 				    bool add)
327 {
328 	struct i40e_pf *pf = vsi->back;
329 	struct sctphdr *sctp;
330 	struct iphdr *ip;
331 	u8 *raw_packet;
332 	int ret;
333 	/* Dummy packet */
334 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337 
338 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 	if (!raw_packet)
340 		return -ENOMEM;
341 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342 
343 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 	      + sizeof(struct iphdr));
346 
347 	ip->daddr = fd_data->dst_ip;
348 	sctp->dest = fd_data->dst_port;
349 	ip->saddr = fd_data->src_ip;
350 	sctp->source = fd_data->src_port;
351 
352 	if (fd_data->flex_filter) {
353 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 		__be16 pattern = fd_data->flex_word;
355 		u16 off = fd_data->flex_offset;
356 
357 		*((__force __be16 *)(payload + off)) = pattern;
358 	}
359 
360 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 	if (ret) {
363 		dev_info(&pf->pdev->dev,
364 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 			 fd_data->pctype, fd_data->fd_id, ret);
366 		/* Free the packet buffer since it wasn't added to the ring */
367 		kfree(raw_packet);
368 		return -EOPNOTSUPP;
369 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 		if (add)
371 			dev_info(&pf->pdev->dev,
372 				 "Filter OK for PCTYPE %d loc = %d\n",
373 				 fd_data->pctype, fd_data->fd_id);
374 		else
375 			dev_info(&pf->pdev->dev,
376 				 "Filter deleted for PCTYPE %d loc = %d\n",
377 				 fd_data->pctype, fd_data->fd_id);
378 	}
379 
380 	if (add)
381 		pf->fd_sctp4_filter_cnt++;
382 	else
383 		pf->fd_sctp4_filter_cnt--;
384 
385 	return 0;
386 }
387 
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391  * a specific flow spec
392  * @vsi: pointer to the targeted VSI
393  * @fd_data: the flow director data required for the FDir descriptor
394  * @add: true adds a filter, false removes it
395  *
396  * Returns 0 if the filters were successfully added or removed
397  **/
398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 				  struct i40e_fdir_filter *fd_data,
400 				  bool add)
401 {
402 	struct i40e_pf *pf = vsi->back;
403 	struct iphdr *ip;
404 	u8 *raw_packet;
405 	int ret;
406 	int i;
407 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 		0, 0, 0, 0};
410 
411 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 		if (!raw_packet)
415 			return -ENOMEM;
416 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418 
419 		ip->saddr = fd_data->src_ip;
420 		ip->daddr = fd_data->dst_ip;
421 		ip->protocol = 0;
422 
423 		if (fd_data->flex_filter) {
424 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 			__be16 pattern = fd_data->flex_word;
426 			u16 off = fd_data->flex_offset;
427 
428 			*((__force __be16 *)(payload + off)) = pattern;
429 		}
430 
431 		fd_data->pctype = i;
432 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 		if (ret) {
434 			dev_info(&pf->pdev->dev,
435 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 				 fd_data->pctype, fd_data->fd_id, ret);
437 			/* The packet buffer wasn't added to the ring so we
438 			 * need to free it now.
439 			 */
440 			kfree(raw_packet);
441 			return -EOPNOTSUPP;
442 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 			if (add)
444 				dev_info(&pf->pdev->dev,
445 					 "Filter OK for PCTYPE %d loc = %d\n",
446 					 fd_data->pctype, fd_data->fd_id);
447 			else
448 				dev_info(&pf->pdev->dev,
449 					 "Filter deleted for PCTYPE %d loc = %d\n",
450 					 fd_data->pctype, fd_data->fd_id);
451 		}
452 	}
453 
454 	if (add)
455 		pf->fd_ip4_filter_cnt++;
456 	else
457 		pf->fd_ip4_filter_cnt--;
458 
459 	return 0;
460 }
461 
462 /**
463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464  * @vsi: pointer to the targeted VSI
465  * @input: filter to add or delete
466  * @add: true adds a filter, false removes it
467  *
468  **/
469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 		      struct i40e_fdir_filter *input, bool add)
471 {
472 	struct i40e_pf *pf = vsi->back;
473 	int ret;
474 
475 	switch (input->flow_type & ~FLOW_EXT) {
476 	case TCP_V4_FLOW:
477 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 		break;
479 	case UDP_V4_FLOW:
480 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 		break;
482 	case SCTP_V4_FLOW:
483 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 		break;
485 	case IP_USER_FLOW:
486 		switch (input->ip4_proto) {
487 		case IPPROTO_TCP:
488 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 			break;
490 		case IPPROTO_UDP:
491 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 			break;
493 		case IPPROTO_SCTP:
494 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 			break;
496 		case IPPROTO_IP:
497 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 			break;
499 		default:
500 			/* We cannot support masking based on protocol */
501 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 				 input->ip4_proto);
503 			return -EINVAL;
504 		}
505 		break;
506 	default:
507 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 			 input->flow_type);
509 		return -EINVAL;
510 	}
511 
512 	/* The buffer allocated here will be normally be freed by
513 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 	 * completion. In the event of an error adding the buffer to the FDIR
515 	 * ring, it will immediately be freed. It may also be freed by
516 	 * i40e_clean_tx_ring() when closing the VSI.
517 	 */
518 	return ret;
519 }
520 
521 /**
522  * i40e_fd_handle_status - check the Programming Status for FD
523  * @rx_ring: the Rx ring for this descriptor
524  * @qword0_raw: qword0
525  * @qword1: qword1 after le_to_cpu
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 				  u64 qword1, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	struct i40e_16b_rx_wb_qw0 *qw0;
537 	u32 fcnt_prog, fcnt_avail;
538 	u32 error;
539 
540 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 		if (qw0->hi_dword.fd_id != 0 ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if (qw0->hi_dword.fd_id == 0 &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 qw0->hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 		i40e_xsk_clean_tx_ring(tx_ring);
641 	} else {
642 		/* ring already cleared, nothing to do */
643 		if (!tx_ring->tx_bi)
644 			return;
645 
646 		/* Free all the Tx ring sk_buffs */
647 		for (i = 0; i < tx_ring->count; i++)
648 			i40e_unmap_and_free_tx_resource(tx_ring,
649 							&tx_ring->tx_bi[i]);
650 	}
651 
652 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 	memset(tx_ring->tx_bi, 0, bi_size);
654 
655 	/* Zero out the descriptor ring */
656 	memset(tx_ring->desc, 0, tx_ring->size);
657 
658 	tx_ring->next_to_use = 0;
659 	tx_ring->next_to_clean = 0;
660 
661 	if (!tx_ring->netdev)
662 		return;
663 
664 	/* cleanup Tx queue statistics */
665 	netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667 
668 /**
669  * i40e_free_tx_resources - Free Tx resources per queue
670  * @tx_ring: Tx descriptor ring for a specific queue
671  *
672  * Free all transmit software resources
673  **/
674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 	i40e_clean_tx_ring(tx_ring);
677 	kfree(tx_ring->tx_bi);
678 	tx_ring->tx_bi = NULL;
679 	kfree(tx_ring->xsk_descs);
680 	tx_ring->xsk_descs = NULL;
681 
682 	if (tx_ring->desc) {
683 		dma_free_coherent(tx_ring->dev, tx_ring->size,
684 				  tx_ring->desc, tx_ring->dma);
685 		tx_ring->desc = NULL;
686 	}
687 }
688 
689 /**
690  * i40e_get_tx_pending - how many tx descriptors not processed
691  * @ring: the ring of descriptors
692  * @in_sw: use SW variables
693  *
694  * Since there is no access to the ring head register
695  * in XL710, we need to use our local copies
696  **/
697 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
698 {
699 	u32 head, tail;
700 
701 	if (!in_sw) {
702 		head = i40e_get_head(ring);
703 		tail = readl(ring->tail);
704 	} else {
705 		head = ring->next_to_clean;
706 		tail = ring->next_to_use;
707 	}
708 
709 	if (head != tail)
710 		return (head < tail) ?
711 			tail - head : (tail + ring->count - head);
712 
713 	return 0;
714 }
715 
716 /**
717  * i40e_detect_recover_hung - Function to detect and recover hung_queues
718  * @vsi:  pointer to vsi struct with tx queues
719  *
720  * VSI has netdev and netdev has TX queues. This function is to check each of
721  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
722  **/
723 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
724 {
725 	struct i40e_ring *tx_ring = NULL;
726 	struct net_device *netdev;
727 	unsigned int i;
728 	int packets;
729 
730 	if (!vsi)
731 		return;
732 
733 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
734 		return;
735 
736 	netdev = vsi->netdev;
737 	if (!netdev)
738 		return;
739 
740 	if (!netif_carrier_ok(netdev))
741 		return;
742 
743 	for (i = 0; i < vsi->num_queue_pairs; i++) {
744 		tx_ring = vsi->tx_rings[i];
745 		if (tx_ring && tx_ring->desc) {
746 			/* If packet counter has not changed the queue is
747 			 * likely stalled, so force an interrupt for this
748 			 * queue.
749 			 *
750 			 * prev_pkt_ctr would be negative if there was no
751 			 * pending work.
752 			 */
753 			packets = tx_ring->stats.packets & INT_MAX;
754 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
755 				i40e_force_wb(vsi, tx_ring->q_vector);
756 				continue;
757 			}
758 
759 			/* Memory barrier between read of packet count and call
760 			 * to i40e_get_tx_pending()
761 			 */
762 			smp_rmb();
763 			tx_ring->tx_stats.prev_pkt_ctr =
764 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
765 		}
766 	}
767 }
768 
769 /**
770  * i40e_clean_tx_irq - Reclaim resources after transmit completes
771  * @vsi: the VSI we care about
772  * @tx_ring: Tx ring to clean
773  * @napi_budget: Used to determine if we are in netpoll
774  *
775  * Returns true if there's any budget left (e.g. the clean is finished)
776  **/
777 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
778 			      struct i40e_ring *tx_ring, int napi_budget)
779 {
780 	int i = tx_ring->next_to_clean;
781 	struct i40e_tx_buffer *tx_buf;
782 	struct i40e_tx_desc *tx_head;
783 	struct i40e_tx_desc *tx_desc;
784 	unsigned int total_bytes = 0, total_packets = 0;
785 	unsigned int budget = vsi->work_limit;
786 
787 	tx_buf = &tx_ring->tx_bi[i];
788 	tx_desc = I40E_TX_DESC(tx_ring, i);
789 	i -= tx_ring->count;
790 
791 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
792 
793 	do {
794 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
795 
796 		/* if next_to_watch is not set then there is no work pending */
797 		if (!eop_desc)
798 			break;
799 
800 		/* prevent any other reads prior to eop_desc */
801 		smp_rmb();
802 
803 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
804 		/* we have caught up to head, no work left to do */
805 		if (tx_head == tx_desc)
806 			break;
807 
808 		/* clear next_to_watch to prevent false hangs */
809 		tx_buf->next_to_watch = NULL;
810 
811 		/* update the statistics for this packet */
812 		total_bytes += tx_buf->bytecount;
813 		total_packets += tx_buf->gso_segs;
814 
815 		/* free the skb/XDP data */
816 		if (ring_is_xdp(tx_ring))
817 			xdp_return_frame(tx_buf->xdpf);
818 		else
819 			napi_consume_skb(tx_buf->skb, napi_budget);
820 
821 		/* unmap skb header data */
822 		dma_unmap_single(tx_ring->dev,
823 				 dma_unmap_addr(tx_buf, dma),
824 				 dma_unmap_len(tx_buf, len),
825 				 DMA_TO_DEVICE);
826 
827 		/* clear tx_buffer data */
828 		tx_buf->skb = NULL;
829 		dma_unmap_len_set(tx_buf, len, 0);
830 
831 		/* unmap remaining buffers */
832 		while (tx_desc != eop_desc) {
833 			i40e_trace(clean_tx_irq_unmap,
834 				   tx_ring, tx_desc, tx_buf);
835 
836 			tx_buf++;
837 			tx_desc++;
838 			i++;
839 			if (unlikely(!i)) {
840 				i -= tx_ring->count;
841 				tx_buf = tx_ring->tx_bi;
842 				tx_desc = I40E_TX_DESC(tx_ring, 0);
843 			}
844 
845 			/* unmap any remaining paged data */
846 			if (dma_unmap_len(tx_buf, len)) {
847 				dma_unmap_page(tx_ring->dev,
848 					       dma_unmap_addr(tx_buf, dma),
849 					       dma_unmap_len(tx_buf, len),
850 					       DMA_TO_DEVICE);
851 				dma_unmap_len_set(tx_buf, len, 0);
852 			}
853 		}
854 
855 		/* move us one more past the eop_desc for start of next pkt */
856 		tx_buf++;
857 		tx_desc++;
858 		i++;
859 		if (unlikely(!i)) {
860 			i -= tx_ring->count;
861 			tx_buf = tx_ring->tx_bi;
862 			tx_desc = I40E_TX_DESC(tx_ring, 0);
863 		}
864 
865 		prefetch(tx_desc);
866 
867 		/* update budget accounting */
868 		budget--;
869 	} while (likely(budget));
870 
871 	i += tx_ring->count;
872 	tx_ring->next_to_clean = i;
873 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
874 	i40e_arm_wb(tx_ring, vsi, budget);
875 
876 	if (ring_is_xdp(tx_ring))
877 		return !!budget;
878 
879 	/* notify netdev of completed buffers */
880 	netdev_tx_completed_queue(txring_txq(tx_ring),
881 				  total_packets, total_bytes);
882 
883 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
884 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
885 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
886 		/* Make sure that anybody stopping the queue after this
887 		 * sees the new next_to_clean.
888 		 */
889 		smp_mb();
890 		if (__netif_subqueue_stopped(tx_ring->netdev,
891 					     tx_ring->queue_index) &&
892 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
893 			netif_wake_subqueue(tx_ring->netdev,
894 					    tx_ring->queue_index);
895 			++tx_ring->tx_stats.restart_queue;
896 		}
897 	}
898 
899 	return !!budget;
900 }
901 
902 /**
903  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
904  * @vsi: the VSI we care about
905  * @q_vector: the vector on which to enable writeback
906  *
907  **/
908 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
909 				  struct i40e_q_vector *q_vector)
910 {
911 	u16 flags = q_vector->tx.ring[0].flags;
912 	u32 val;
913 
914 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
915 		return;
916 
917 	if (q_vector->arm_wb_state)
918 		return;
919 
920 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
921 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
922 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
923 
924 		wr32(&vsi->back->hw,
925 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
926 		     val);
927 	} else {
928 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
929 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
930 
931 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
932 	}
933 	q_vector->arm_wb_state = true;
934 }
935 
936 /**
937  * i40e_force_wb - Issue SW Interrupt so HW does a wb
938  * @vsi: the VSI we care about
939  * @q_vector: the vector  on which to force writeback
940  *
941  **/
942 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
943 {
944 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
945 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
946 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
947 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
948 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
949 			  /* allow 00 to be written to the index */
950 
951 		wr32(&vsi->back->hw,
952 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
953 	} else {
954 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
955 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
956 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
957 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
958 			/* allow 00 to be written to the index */
959 
960 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
961 	}
962 }
963 
964 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
965 					struct i40e_ring_container *rc)
966 {
967 	return &q_vector->rx == rc;
968 }
969 
970 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
971 {
972 	unsigned int divisor;
973 
974 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
975 	case I40E_LINK_SPEED_40GB:
976 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
977 		break;
978 	case I40E_LINK_SPEED_25GB:
979 	case I40E_LINK_SPEED_20GB:
980 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
981 		break;
982 	default:
983 	case I40E_LINK_SPEED_10GB:
984 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
985 		break;
986 	case I40E_LINK_SPEED_1GB:
987 	case I40E_LINK_SPEED_100MB:
988 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
989 		break;
990 	}
991 
992 	return divisor;
993 }
994 
995 /**
996  * i40e_update_itr - update the dynamic ITR value based on statistics
997  * @q_vector: structure containing interrupt and ring information
998  * @rc: structure containing ring performance data
999  *
1000  * Stores a new ITR value based on packets and byte
1001  * counts during the last interrupt.  The advantage of per interrupt
1002  * computation is faster updates and more accurate ITR for the current
1003  * traffic pattern.  Constants in this function were computed
1004  * based on theoretical maximum wire speed and thresholds were set based
1005  * on testing data as well as attempting to minimize response time
1006  * while increasing bulk throughput.
1007  **/
1008 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1009 			    struct i40e_ring_container *rc)
1010 {
1011 	unsigned int avg_wire_size, packets, bytes, itr;
1012 	unsigned long next_update = jiffies;
1013 
1014 	/* If we don't have any rings just leave ourselves set for maximum
1015 	 * possible latency so we take ourselves out of the equation.
1016 	 */
1017 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1018 		return;
1019 
1020 	/* For Rx we want to push the delay up and default to low latency.
1021 	 * for Tx we want to pull the delay down and default to high latency.
1022 	 */
1023 	itr = i40e_container_is_rx(q_vector, rc) ?
1024 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1025 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1026 
1027 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1028 	 * that either packets are coming in so slow there hasn't been
1029 	 * any work, or that there is so much work that NAPI is dealing
1030 	 * with interrupt moderation and we don't need to do anything.
1031 	 */
1032 	if (time_after(next_update, rc->next_update))
1033 		goto clear_counts;
1034 
1035 	/* If itr_countdown is set it means we programmed an ITR within
1036 	 * the last 4 interrupt cycles. This has a side effect of us
1037 	 * potentially firing an early interrupt. In order to work around
1038 	 * this we need to throw out any data received for a few
1039 	 * interrupts following the update.
1040 	 */
1041 	if (q_vector->itr_countdown) {
1042 		itr = rc->target_itr;
1043 		goto clear_counts;
1044 	}
1045 
1046 	packets = rc->total_packets;
1047 	bytes = rc->total_bytes;
1048 
1049 	if (i40e_container_is_rx(q_vector, rc)) {
1050 		/* If Rx there are 1 to 4 packets and bytes are less than
1051 		 * 9000 assume insufficient data to use bulk rate limiting
1052 		 * approach unless Tx is already in bulk rate limiting. We
1053 		 * are likely latency driven.
1054 		 */
1055 		if (packets && packets < 4 && bytes < 9000 &&
1056 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1057 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1058 			goto adjust_by_size;
1059 		}
1060 	} else if (packets < 4) {
1061 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1062 		 * bulk mode and we are receiving 4 or fewer packets just
1063 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1064 		 * that the Rx can relax.
1065 		 */
1066 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1067 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1068 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1069 			goto clear_counts;
1070 	} else if (packets > 32) {
1071 		/* If we have processed over 32 packets in a single interrupt
1072 		 * for Tx assume we need to switch over to "bulk" mode.
1073 		 */
1074 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1075 	}
1076 
1077 	/* We have no packets to actually measure against. This means
1078 	 * either one of the other queues on this vector is active or
1079 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1080 	 *
1081 	 * Between 4 and 56 we can assume that our current interrupt delay
1082 	 * is only slightly too low. As such we should increase it by a small
1083 	 * fixed amount.
1084 	 */
1085 	if (packets < 56) {
1086 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1087 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1088 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1089 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1090 		}
1091 		goto clear_counts;
1092 	}
1093 
1094 	if (packets <= 256) {
1095 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1096 		itr &= I40E_ITR_MASK;
1097 
1098 		/* Between 56 and 112 is our "goldilocks" zone where we are
1099 		 * working out "just right". Just report that our current
1100 		 * ITR is good for us.
1101 		 */
1102 		if (packets <= 112)
1103 			goto clear_counts;
1104 
1105 		/* If packet count is 128 or greater we are likely looking
1106 		 * at a slight overrun of the delay we want. Try halving
1107 		 * our delay to see if that will cut the number of packets
1108 		 * in half per interrupt.
1109 		 */
1110 		itr /= 2;
1111 		itr &= I40E_ITR_MASK;
1112 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1113 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1114 
1115 		goto clear_counts;
1116 	}
1117 
1118 	/* The paths below assume we are dealing with a bulk ITR since
1119 	 * number of packets is greater than 256. We are just going to have
1120 	 * to compute a value and try to bring the count under control,
1121 	 * though for smaller packet sizes there isn't much we can do as
1122 	 * NAPI polling will likely be kicking in sooner rather than later.
1123 	 */
1124 	itr = I40E_ITR_ADAPTIVE_BULK;
1125 
1126 adjust_by_size:
1127 	/* If packet counts are 256 or greater we can assume we have a gross
1128 	 * overestimation of what the rate should be. Instead of trying to fine
1129 	 * tune it just use the formula below to try and dial in an exact value
1130 	 * give the current packet size of the frame.
1131 	 */
1132 	avg_wire_size = bytes / packets;
1133 
1134 	/* The following is a crude approximation of:
1135 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1136 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1137 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1138 	 *
1139 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1140 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1141 	 * formula down to
1142 	 *
1143 	 *  (170 * (size + 24)) / (size + 640) = ITR
1144 	 *
1145 	 * We first do some math on the packet size and then finally bitshift
1146 	 * by 8 after rounding up. We also have to account for PCIe link speed
1147 	 * difference as ITR scales based on this.
1148 	 */
1149 	if (avg_wire_size <= 60) {
1150 		/* Start at 250k ints/sec */
1151 		avg_wire_size = 4096;
1152 	} else if (avg_wire_size <= 380) {
1153 		/* 250K ints/sec to 60K ints/sec */
1154 		avg_wire_size *= 40;
1155 		avg_wire_size += 1696;
1156 	} else if (avg_wire_size <= 1084) {
1157 		/* 60K ints/sec to 36K ints/sec */
1158 		avg_wire_size *= 15;
1159 		avg_wire_size += 11452;
1160 	} else if (avg_wire_size <= 1980) {
1161 		/* 36K ints/sec to 30K ints/sec */
1162 		avg_wire_size *= 5;
1163 		avg_wire_size += 22420;
1164 	} else {
1165 		/* plateau at a limit of 30K ints/sec */
1166 		avg_wire_size = 32256;
1167 	}
1168 
1169 	/* If we are in low latency mode halve our delay which doubles the
1170 	 * rate to somewhere between 100K to 16K ints/sec
1171 	 */
1172 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1173 		avg_wire_size /= 2;
1174 
1175 	/* Resultant value is 256 times larger than it needs to be. This
1176 	 * gives us room to adjust the value as needed to either increase
1177 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1178 	 *
1179 	 * Use addition as we have already recorded the new latency flag
1180 	 * for the ITR value.
1181 	 */
1182 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1183 	       I40E_ITR_ADAPTIVE_MIN_INC;
1184 
1185 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1186 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1187 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1188 	}
1189 
1190 clear_counts:
1191 	/* write back value */
1192 	rc->target_itr = itr;
1193 
1194 	/* next update should occur within next jiffy */
1195 	rc->next_update = next_update + 1;
1196 
1197 	rc->total_bytes = 0;
1198 	rc->total_packets = 0;
1199 }
1200 
1201 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1202 {
1203 	return &rx_ring->rx_bi[idx];
1204 }
1205 
1206 /**
1207  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1208  * @rx_ring: rx descriptor ring to store buffers on
1209  * @old_buff: donor buffer to have page reused
1210  *
1211  * Synchronizes page for reuse by the adapter
1212  **/
1213 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1214 			       struct i40e_rx_buffer *old_buff)
1215 {
1216 	struct i40e_rx_buffer *new_buff;
1217 	u16 nta = rx_ring->next_to_alloc;
1218 
1219 	new_buff = i40e_rx_bi(rx_ring, nta);
1220 
1221 	/* update, and store next to alloc */
1222 	nta++;
1223 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1224 
1225 	/* transfer page from old buffer to new buffer */
1226 	new_buff->dma		= old_buff->dma;
1227 	new_buff->page		= old_buff->page;
1228 	new_buff->page_offset	= old_buff->page_offset;
1229 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1230 
1231 	rx_ring->rx_stats.page_reuse_count++;
1232 
1233 	/* clear contents of buffer_info */
1234 	old_buff->page = NULL;
1235 }
1236 
1237 /**
1238  * i40e_clean_programming_status - clean the programming status descriptor
1239  * @rx_ring: the rx ring that has this descriptor
1240  * @qword0_raw: qword0
1241  * @qword1: qword1 representing status_error_len in CPU ordering
1242  *
1243  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1244  * status being successful or not and take actions accordingly. FCoE should
1245  * handle its context/filter programming/invalidation status and take actions.
1246  *
1247  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1248  **/
1249 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1250 				   u64 qword1)
1251 {
1252 	u8 id;
1253 
1254 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1255 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1256 
1257 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1258 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1259 }
1260 
1261 /**
1262  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1263  * @tx_ring: the tx ring to set up
1264  *
1265  * Return 0 on success, negative on error
1266  **/
1267 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1268 {
1269 	struct device *dev = tx_ring->dev;
1270 	int bi_size;
1271 
1272 	if (!dev)
1273 		return -ENOMEM;
1274 
1275 	/* warn if we are about to overwrite the pointer */
1276 	WARN_ON(tx_ring->tx_bi);
1277 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1278 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1279 	if (!tx_ring->tx_bi)
1280 		goto err;
1281 
1282 	if (ring_is_xdp(tx_ring)) {
1283 		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
1284 					     GFP_KERNEL);
1285 		if (!tx_ring->xsk_descs)
1286 			goto err;
1287 	}
1288 
1289 	u64_stats_init(&tx_ring->syncp);
1290 
1291 	/* round up to nearest 4K */
1292 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1293 	/* add u32 for head writeback, align after this takes care of
1294 	 * guaranteeing this is at least one cache line in size
1295 	 */
1296 	tx_ring->size += sizeof(u32);
1297 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1298 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1299 					   &tx_ring->dma, GFP_KERNEL);
1300 	if (!tx_ring->desc) {
1301 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1302 			 tx_ring->size);
1303 		goto err;
1304 	}
1305 
1306 	tx_ring->next_to_use = 0;
1307 	tx_ring->next_to_clean = 0;
1308 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1309 	return 0;
1310 
1311 err:
1312 	kfree(tx_ring->xsk_descs);
1313 	tx_ring->xsk_descs = NULL;
1314 	kfree(tx_ring->tx_bi);
1315 	tx_ring->tx_bi = NULL;
1316 	return -ENOMEM;
1317 }
1318 
1319 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1320 {
1321 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1322 
1323 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1324 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1325 }
1326 
1327 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1328 {
1329 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1330 }
1331 
1332 /**
1333  * i40e_clean_rx_ring - Free Rx buffers
1334  * @rx_ring: ring to be cleaned
1335  **/
1336 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1337 {
1338 	u16 i;
1339 
1340 	/* ring already cleared, nothing to do */
1341 	if (!rx_ring->rx_bi)
1342 		return;
1343 
1344 	if (rx_ring->skb) {
1345 		dev_kfree_skb(rx_ring->skb);
1346 		rx_ring->skb = NULL;
1347 	}
1348 
1349 	if (rx_ring->xsk_pool) {
1350 		i40e_xsk_clean_rx_ring(rx_ring);
1351 		goto skip_free;
1352 	}
1353 
1354 	/* Free all the Rx ring sk_buffs */
1355 	for (i = 0; i < rx_ring->count; i++) {
1356 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1357 
1358 		if (!rx_bi->page)
1359 			continue;
1360 
1361 		/* Invalidate cache lines that may have been written to by
1362 		 * device so that we avoid corrupting memory.
1363 		 */
1364 		dma_sync_single_range_for_cpu(rx_ring->dev,
1365 					      rx_bi->dma,
1366 					      rx_bi->page_offset,
1367 					      rx_ring->rx_buf_len,
1368 					      DMA_FROM_DEVICE);
1369 
1370 		/* free resources associated with mapping */
1371 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1372 				     i40e_rx_pg_size(rx_ring),
1373 				     DMA_FROM_DEVICE,
1374 				     I40E_RX_DMA_ATTR);
1375 
1376 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1377 
1378 		rx_bi->page = NULL;
1379 		rx_bi->page_offset = 0;
1380 	}
1381 
1382 skip_free:
1383 	if (rx_ring->xsk_pool)
1384 		i40e_clear_rx_bi_zc(rx_ring);
1385 	else
1386 		i40e_clear_rx_bi(rx_ring);
1387 
1388 	/* Zero out the descriptor ring */
1389 	memset(rx_ring->desc, 0, rx_ring->size);
1390 
1391 	rx_ring->next_to_alloc = 0;
1392 	rx_ring->next_to_clean = 0;
1393 	rx_ring->next_to_use = 0;
1394 }
1395 
1396 /**
1397  * i40e_free_rx_resources - Free Rx resources
1398  * @rx_ring: ring to clean the resources from
1399  *
1400  * Free all receive software resources
1401  **/
1402 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1403 {
1404 	i40e_clean_rx_ring(rx_ring);
1405 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1406 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1407 	rx_ring->xdp_prog = NULL;
1408 	kfree(rx_ring->rx_bi);
1409 	rx_ring->rx_bi = NULL;
1410 
1411 	if (rx_ring->desc) {
1412 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1413 				  rx_ring->desc, rx_ring->dma);
1414 		rx_ring->desc = NULL;
1415 	}
1416 }
1417 
1418 /**
1419  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1420  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1421  *
1422  * Returns 0 on success, negative on failure
1423  **/
1424 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1425 {
1426 	struct device *dev = rx_ring->dev;
1427 	int err;
1428 
1429 	u64_stats_init(&rx_ring->syncp);
1430 
1431 	/* Round up to nearest 4K */
1432 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1433 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1434 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1435 					   &rx_ring->dma, GFP_KERNEL);
1436 
1437 	if (!rx_ring->desc) {
1438 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1439 			 rx_ring->size);
1440 		return -ENOMEM;
1441 	}
1442 
1443 	rx_ring->next_to_alloc = 0;
1444 	rx_ring->next_to_clean = 0;
1445 	rx_ring->next_to_use = 0;
1446 
1447 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1448 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1449 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1450 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1451 		if (err < 0)
1452 			return err;
1453 	}
1454 
1455 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1456 
1457 	return 0;
1458 }
1459 
1460 /**
1461  * i40e_release_rx_desc - Store the new tail and head values
1462  * @rx_ring: ring to bump
1463  * @val: new head index
1464  **/
1465 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1466 {
1467 	rx_ring->next_to_use = val;
1468 
1469 	/* update next to alloc since we have filled the ring */
1470 	rx_ring->next_to_alloc = val;
1471 
1472 	/* Force memory writes to complete before letting h/w
1473 	 * know there are new descriptors to fetch.  (Only
1474 	 * applicable for weak-ordered memory model archs,
1475 	 * such as IA-64).
1476 	 */
1477 	wmb();
1478 	writel(val, rx_ring->tail);
1479 }
1480 
1481 /**
1482  * i40e_rx_offset - Return expected offset into page to access data
1483  * @rx_ring: Ring we are requesting offset of
1484  *
1485  * Returns the offset value for ring into the data buffer.
1486  */
1487 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1488 {
1489 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1490 }
1491 
1492 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1493 					   unsigned int size)
1494 {
1495 	unsigned int truesize;
1496 
1497 #if (PAGE_SIZE < 8192)
1498 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1499 #else
1500 	truesize = i40e_rx_offset(rx_ring) ?
1501 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1502 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1503 		SKB_DATA_ALIGN(size);
1504 #endif
1505 	return truesize;
1506 }
1507 
1508 /**
1509  * i40e_alloc_mapped_page - recycle or make a new page
1510  * @rx_ring: ring to use
1511  * @bi: rx_buffer struct to modify
1512  *
1513  * Returns true if the page was successfully allocated or
1514  * reused.
1515  **/
1516 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1517 				   struct i40e_rx_buffer *bi)
1518 {
1519 	struct page *page = bi->page;
1520 	dma_addr_t dma;
1521 
1522 	/* since we are recycling buffers we should seldom need to alloc */
1523 	if (likely(page)) {
1524 		rx_ring->rx_stats.page_reuse_count++;
1525 		return true;
1526 	}
1527 
1528 	/* alloc new page for storage */
1529 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1530 	if (unlikely(!page)) {
1531 		rx_ring->rx_stats.alloc_page_failed++;
1532 		return false;
1533 	}
1534 
1535 	/* map page for use */
1536 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1537 				 i40e_rx_pg_size(rx_ring),
1538 				 DMA_FROM_DEVICE,
1539 				 I40E_RX_DMA_ATTR);
1540 
1541 	/* if mapping failed free memory back to system since
1542 	 * there isn't much point in holding memory we can't use
1543 	 */
1544 	if (dma_mapping_error(rx_ring->dev, dma)) {
1545 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1546 		rx_ring->rx_stats.alloc_page_failed++;
1547 		return false;
1548 	}
1549 
1550 	bi->dma = dma;
1551 	bi->page = page;
1552 	bi->page_offset = i40e_rx_offset(rx_ring);
1553 	page_ref_add(page, USHRT_MAX - 1);
1554 	bi->pagecnt_bias = USHRT_MAX;
1555 
1556 	return true;
1557 }
1558 
1559 /**
1560  * i40e_alloc_rx_buffers - Replace used receive buffers
1561  * @rx_ring: ring to place buffers on
1562  * @cleaned_count: number of buffers to replace
1563  *
1564  * Returns false if all allocations were successful, true if any fail
1565  **/
1566 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1567 {
1568 	u16 ntu = rx_ring->next_to_use;
1569 	union i40e_rx_desc *rx_desc;
1570 	struct i40e_rx_buffer *bi;
1571 
1572 	/* do nothing if no valid netdev defined */
1573 	if (!rx_ring->netdev || !cleaned_count)
1574 		return false;
1575 
1576 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1577 	bi = i40e_rx_bi(rx_ring, ntu);
1578 
1579 	do {
1580 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1581 			goto no_buffers;
1582 
1583 		/* sync the buffer for use by the device */
1584 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1585 						 bi->page_offset,
1586 						 rx_ring->rx_buf_len,
1587 						 DMA_FROM_DEVICE);
1588 
1589 		/* Refresh the desc even if buffer_addrs didn't change
1590 		 * because each write-back erases this info.
1591 		 */
1592 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1593 
1594 		rx_desc++;
1595 		bi++;
1596 		ntu++;
1597 		if (unlikely(ntu == rx_ring->count)) {
1598 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1599 			bi = i40e_rx_bi(rx_ring, 0);
1600 			ntu = 0;
1601 		}
1602 
1603 		/* clear the status bits for the next_to_use descriptor */
1604 		rx_desc->wb.qword1.status_error_len = 0;
1605 
1606 		cleaned_count--;
1607 	} while (cleaned_count);
1608 
1609 	if (rx_ring->next_to_use != ntu)
1610 		i40e_release_rx_desc(rx_ring, ntu);
1611 
1612 	return false;
1613 
1614 no_buffers:
1615 	if (rx_ring->next_to_use != ntu)
1616 		i40e_release_rx_desc(rx_ring, ntu);
1617 
1618 	/* make sure to come back via polling to try again after
1619 	 * allocation failure
1620 	 */
1621 	return true;
1622 }
1623 
1624 /**
1625  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1626  * @vsi: the VSI we care about
1627  * @skb: skb currently being received and modified
1628  * @rx_desc: the receive descriptor
1629  **/
1630 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1631 				    struct sk_buff *skb,
1632 				    union i40e_rx_desc *rx_desc)
1633 {
1634 	struct i40e_rx_ptype_decoded decoded;
1635 	u32 rx_error, rx_status;
1636 	bool ipv4, ipv6;
1637 	u8 ptype;
1638 	u64 qword;
1639 
1640 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1641 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1642 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1643 		   I40E_RXD_QW1_ERROR_SHIFT;
1644 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1645 		    I40E_RXD_QW1_STATUS_SHIFT;
1646 	decoded = decode_rx_desc_ptype(ptype);
1647 
1648 	skb->ip_summed = CHECKSUM_NONE;
1649 
1650 	skb_checksum_none_assert(skb);
1651 
1652 	/* Rx csum enabled and ip headers found? */
1653 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1654 		return;
1655 
1656 	/* did the hardware decode the packet and checksum? */
1657 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1658 		return;
1659 
1660 	/* both known and outer_ip must be set for the below code to work */
1661 	if (!(decoded.known && decoded.outer_ip))
1662 		return;
1663 
1664 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1665 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1666 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1668 
1669 	if (ipv4 &&
1670 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1671 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1672 		goto checksum_fail;
1673 
1674 	/* likely incorrect csum if alternate IP extension headers found */
1675 	if (ipv6 &&
1676 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1677 		/* don't increment checksum err here, non-fatal err */
1678 		return;
1679 
1680 	/* there was some L4 error, count error and punt packet to the stack */
1681 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1682 		goto checksum_fail;
1683 
1684 	/* handle packets that were not able to be checksummed due
1685 	 * to arrival speed, in this case the stack can compute
1686 	 * the csum.
1687 	 */
1688 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1689 		return;
1690 
1691 	/* If there is an outer header present that might contain a checksum
1692 	 * we need to bump the checksum level by 1 to reflect the fact that
1693 	 * we are indicating we validated the inner checksum.
1694 	 */
1695 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1696 		skb->csum_level = 1;
1697 
1698 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1699 	switch (decoded.inner_prot) {
1700 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1701 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1702 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1703 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1704 		fallthrough;
1705 	default:
1706 		break;
1707 	}
1708 
1709 	return;
1710 
1711 checksum_fail:
1712 	vsi->back->hw_csum_rx_error++;
1713 }
1714 
1715 /**
1716  * i40e_ptype_to_htype - get a hash type
1717  * @ptype: the ptype value from the descriptor
1718  *
1719  * Returns a hash type to be used by skb_set_hash
1720  **/
1721 static inline int i40e_ptype_to_htype(u8 ptype)
1722 {
1723 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1724 
1725 	if (!decoded.known)
1726 		return PKT_HASH_TYPE_NONE;
1727 
1728 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1729 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1730 		return PKT_HASH_TYPE_L4;
1731 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1732 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1733 		return PKT_HASH_TYPE_L3;
1734 	else
1735 		return PKT_HASH_TYPE_L2;
1736 }
1737 
1738 /**
1739  * i40e_rx_hash - set the hash value in the skb
1740  * @ring: descriptor ring
1741  * @rx_desc: specific descriptor
1742  * @skb: skb currently being received and modified
1743  * @rx_ptype: Rx packet type
1744  **/
1745 static inline void i40e_rx_hash(struct i40e_ring *ring,
1746 				union i40e_rx_desc *rx_desc,
1747 				struct sk_buff *skb,
1748 				u8 rx_ptype)
1749 {
1750 	u32 hash;
1751 	const __le64 rss_mask =
1752 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1753 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1754 
1755 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1756 		return;
1757 
1758 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1759 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1760 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1761 	}
1762 }
1763 
1764 /**
1765  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1766  * @rx_ring: rx descriptor ring packet is being transacted on
1767  * @rx_desc: pointer to the EOP Rx descriptor
1768  * @skb: pointer to current skb being populated
1769  *
1770  * This function checks the ring, descriptor, and packet information in
1771  * order to populate the hash, checksum, VLAN, protocol, and
1772  * other fields within the skb.
1773  **/
1774 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1775 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1776 {
1777 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1778 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1779 			I40E_RXD_QW1_STATUS_SHIFT;
1780 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1781 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1782 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1783 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1784 		      I40E_RXD_QW1_PTYPE_SHIFT;
1785 
1786 	if (unlikely(tsynvalid))
1787 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1788 
1789 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1790 
1791 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1792 
1793 	skb_record_rx_queue(skb, rx_ring->queue_index);
1794 
1795 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1796 		u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1797 
1798 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1799 				       le16_to_cpu(vlan_tag));
1800 	}
1801 
1802 	/* modifies the skb - consumes the enet header */
1803 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1804 }
1805 
1806 /**
1807  * i40e_cleanup_headers - Correct empty headers
1808  * @rx_ring: rx descriptor ring packet is being transacted on
1809  * @skb: pointer to current skb being fixed
1810  * @rx_desc: pointer to the EOP Rx descriptor
1811  *
1812  * Also address the case where we are pulling data in on pages only
1813  * and as such no data is present in the skb header.
1814  *
1815  * In addition if skb is not at least 60 bytes we need to pad it so that
1816  * it is large enough to qualify as a valid Ethernet frame.
1817  *
1818  * Returns true if an error was encountered and skb was freed.
1819  **/
1820 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1821 				 union i40e_rx_desc *rx_desc)
1822 
1823 {
1824 	/* XDP packets use error pointer so abort at this point */
1825 	if (IS_ERR(skb))
1826 		return true;
1827 
1828 	/* ERR_MASK will only have valid bits if EOP set, and
1829 	 * what we are doing here is actually checking
1830 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1831 	 * the error field
1832 	 */
1833 	if (unlikely(i40e_test_staterr(rx_desc,
1834 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1835 		dev_kfree_skb_any(skb);
1836 		return true;
1837 	}
1838 
1839 	/* if eth_skb_pad returns an error the skb was freed */
1840 	if (eth_skb_pad(skb))
1841 		return true;
1842 
1843 	return false;
1844 }
1845 
1846 /**
1847  * i40e_page_is_reusable - check if any reuse is possible
1848  * @page: page struct to check
1849  *
1850  * A page is not reusable if it was allocated under low memory
1851  * conditions, or it's not in the same NUMA node as this CPU.
1852  */
1853 static inline bool i40e_page_is_reusable(struct page *page)
1854 {
1855 	return (page_to_nid(page) == numa_mem_id()) &&
1856 		!page_is_pfmemalloc(page);
1857 }
1858 
1859 /**
1860  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1861  * the adapter for another receive
1862  *
1863  * @rx_buffer: buffer containing the page
1864  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1865  *
1866  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1867  * an unused region in the page.
1868  *
1869  * For small pages, @truesize will be a constant value, half the size
1870  * of the memory at page.  We'll attempt to alternate between high and
1871  * low halves of the page, with one half ready for use by the hardware
1872  * and the other half being consumed by the stack.  We use the page
1873  * ref count to determine whether the stack has finished consuming the
1874  * portion of this page that was passed up with a previous packet.  If
1875  * the page ref count is >1, we'll assume the "other" half page is
1876  * still busy, and this page cannot be reused.
1877  *
1878  * For larger pages, @truesize will be the actual space used by the
1879  * received packet (adjusted upward to an even multiple of the cache
1880  * line size).  This will advance through the page by the amount
1881  * actually consumed by the received packets while there is still
1882  * space for a buffer.  Each region of larger pages will be used at
1883  * most once, after which the page will not be reused.
1884  *
1885  * In either case, if the page is reusable its refcount is increased.
1886  **/
1887 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1888 				   int rx_buffer_pgcnt)
1889 {
1890 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1891 	struct page *page = rx_buffer->page;
1892 
1893 	/* Is any reuse possible? */
1894 	if (unlikely(!i40e_page_is_reusable(page)))
1895 		return false;
1896 
1897 #if (PAGE_SIZE < 8192)
1898 	/* if we are only owner of page we can reuse it */
1899 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1900 		return false;
1901 #else
1902 #define I40E_LAST_OFFSET \
1903 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1904 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1905 		return false;
1906 #endif
1907 
1908 	/* If we have drained the page fragment pool we need to update
1909 	 * the pagecnt_bias and page count so that we fully restock the
1910 	 * number of references the driver holds.
1911 	 */
1912 	if (unlikely(pagecnt_bias == 1)) {
1913 		page_ref_add(page, USHRT_MAX - 1);
1914 		rx_buffer->pagecnt_bias = USHRT_MAX;
1915 	}
1916 
1917 	return true;
1918 }
1919 
1920 /**
1921  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1922  * @rx_ring: rx descriptor ring to transact packets on
1923  * @rx_buffer: buffer containing page to add
1924  * @skb: sk_buff to place the data into
1925  * @size: packet length from rx_desc
1926  *
1927  * This function will add the data contained in rx_buffer->page to the skb.
1928  * It will just attach the page as a frag to the skb.
1929  *
1930  * The function will then update the page offset.
1931  **/
1932 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1933 			     struct i40e_rx_buffer *rx_buffer,
1934 			     struct sk_buff *skb,
1935 			     unsigned int size)
1936 {
1937 #if (PAGE_SIZE < 8192)
1938 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1939 #else
1940 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1941 #endif
1942 
1943 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1944 			rx_buffer->page_offset, size, truesize);
1945 
1946 	/* page is being used so we must update the page offset */
1947 #if (PAGE_SIZE < 8192)
1948 	rx_buffer->page_offset ^= truesize;
1949 #else
1950 	rx_buffer->page_offset += truesize;
1951 #endif
1952 }
1953 
1954 /**
1955  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1956  * @rx_ring: rx descriptor ring to transact packets on
1957  * @size: size of buffer to add to skb
1958  * @rx_buffer_pgcnt: buffer page refcount
1959  *
1960  * This function will pull an Rx buffer from the ring and synchronize it
1961  * for use by the CPU.
1962  */
1963 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964 						 const unsigned int size,
1965 						 int *rx_buffer_pgcnt)
1966 {
1967 	struct i40e_rx_buffer *rx_buffer;
1968 
1969 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1970 	*rx_buffer_pgcnt =
1971 #if (PAGE_SIZE < 8192)
1972 		page_count(rx_buffer->page);
1973 #else
1974 		0;
1975 #endif
1976 	prefetch_page_address(rx_buffer->page);
1977 
1978 	/* we are reusing so sync this buffer for CPU use */
1979 	dma_sync_single_range_for_cpu(rx_ring->dev,
1980 				      rx_buffer->dma,
1981 				      rx_buffer->page_offset,
1982 				      size,
1983 				      DMA_FROM_DEVICE);
1984 
1985 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1986 	rx_buffer->pagecnt_bias--;
1987 
1988 	return rx_buffer;
1989 }
1990 
1991 /**
1992  * i40e_construct_skb - Allocate skb and populate it
1993  * @rx_ring: rx descriptor ring to transact packets on
1994  * @rx_buffer: rx buffer to pull data from
1995  * @xdp: xdp_buff pointing to the data
1996  *
1997  * This function allocates an skb.  It then populates it with the page
1998  * data from the current receive descriptor, taking care to set up the
1999  * skb correctly.
2000  */
2001 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2002 					  struct i40e_rx_buffer *rx_buffer,
2003 					  struct xdp_buff *xdp)
2004 {
2005 	unsigned int size = xdp->data_end - xdp->data;
2006 #if (PAGE_SIZE < 8192)
2007 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2008 #else
2009 	unsigned int truesize = SKB_DATA_ALIGN(size);
2010 #endif
2011 	unsigned int headlen;
2012 	struct sk_buff *skb;
2013 
2014 	/* prefetch first cache line of first page */
2015 	net_prefetch(xdp->data);
2016 
2017 	/* Note, we get here by enabling legacy-rx via:
2018 	 *
2019 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2020 	 *
2021 	 * In this mode, we currently get 0 extra XDP headroom as
2022 	 * opposed to having legacy-rx off, where we process XDP
2023 	 * packets going to stack via i40e_build_skb(). The latter
2024 	 * provides us currently with 192 bytes of headroom.
2025 	 *
2026 	 * For i40e_construct_skb() mode it means that the
2027 	 * xdp->data_meta will always point to xdp->data, since
2028 	 * the helper cannot expand the head. Should this ever
2029 	 * change in future for legacy-rx mode on, then lets also
2030 	 * add xdp->data_meta handling here.
2031 	 */
2032 
2033 	/* allocate a skb to store the frags */
2034 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2035 			       I40E_RX_HDR_SIZE,
2036 			       GFP_ATOMIC | __GFP_NOWARN);
2037 	if (unlikely(!skb))
2038 		return NULL;
2039 
2040 	/* Determine available headroom for copy */
2041 	headlen = size;
2042 	if (headlen > I40E_RX_HDR_SIZE)
2043 		headlen = eth_get_headlen(skb->dev, xdp->data,
2044 					  I40E_RX_HDR_SIZE);
2045 
2046 	/* align pull length to size of long to optimize memcpy performance */
2047 	memcpy(__skb_put(skb, headlen), xdp->data,
2048 	       ALIGN(headlen, sizeof(long)));
2049 
2050 	/* update all of the pointers */
2051 	size -= headlen;
2052 	if (size) {
2053 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2054 				rx_buffer->page_offset + headlen,
2055 				size, truesize);
2056 
2057 		/* buffer is used by skb, update page_offset */
2058 #if (PAGE_SIZE < 8192)
2059 		rx_buffer->page_offset ^= truesize;
2060 #else
2061 		rx_buffer->page_offset += truesize;
2062 #endif
2063 	} else {
2064 		/* buffer is unused, reset bias back to rx_buffer */
2065 		rx_buffer->pagecnt_bias++;
2066 	}
2067 
2068 	return skb;
2069 }
2070 
2071 /**
2072  * i40e_build_skb - Build skb around an existing buffer
2073  * @rx_ring: Rx descriptor ring to transact packets on
2074  * @rx_buffer: Rx buffer to pull data from
2075  * @xdp: xdp_buff pointing to the data
2076  *
2077  * This function builds an skb around an existing Rx buffer, taking care
2078  * to set up the skb correctly and avoid any memcpy overhead.
2079  */
2080 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2081 				      struct i40e_rx_buffer *rx_buffer,
2082 				      struct xdp_buff *xdp)
2083 {
2084 	unsigned int metasize = xdp->data - xdp->data_meta;
2085 #if (PAGE_SIZE < 8192)
2086 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2087 #else
2088 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2089 				SKB_DATA_ALIGN(xdp->data_end -
2090 					       xdp->data_hard_start);
2091 #endif
2092 	struct sk_buff *skb;
2093 
2094 	/* Prefetch first cache line of first page. If xdp->data_meta
2095 	 * is unused, this points exactly as xdp->data, otherwise we
2096 	 * likely have a consumer accessing first few bytes of meta
2097 	 * data, and then actual data.
2098 	 */
2099 	net_prefetch(xdp->data_meta);
2100 
2101 	/* build an skb around the page buffer */
2102 	skb = build_skb(xdp->data_hard_start, truesize);
2103 	if (unlikely(!skb))
2104 		return NULL;
2105 
2106 	/* update pointers within the skb to store the data */
2107 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2108 	__skb_put(skb, xdp->data_end - xdp->data);
2109 	if (metasize)
2110 		skb_metadata_set(skb, metasize);
2111 
2112 	/* buffer is used by skb, update page_offset */
2113 #if (PAGE_SIZE < 8192)
2114 	rx_buffer->page_offset ^= truesize;
2115 #else
2116 	rx_buffer->page_offset += truesize;
2117 #endif
2118 
2119 	return skb;
2120 }
2121 
2122 /**
2123  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2124  * @rx_ring: rx descriptor ring to transact packets on
2125  * @rx_buffer: rx buffer to pull data from
2126  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2127  *
2128  * This function will clean up the contents of the rx_buffer.  It will
2129  * either recycle the buffer or unmap it and free the associated resources.
2130  */
2131 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2132 			       struct i40e_rx_buffer *rx_buffer,
2133 			       int rx_buffer_pgcnt)
2134 {
2135 	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2136 		/* hand second half of page back to the ring */
2137 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2138 	} else {
2139 		/* we are not reusing the buffer so unmap it */
2140 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2141 				     i40e_rx_pg_size(rx_ring),
2142 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2143 		__page_frag_cache_drain(rx_buffer->page,
2144 					rx_buffer->pagecnt_bias);
2145 		/* clear contents of buffer_info */
2146 		rx_buffer->page = NULL;
2147 	}
2148 }
2149 
2150 /**
2151  * i40e_is_non_eop - process handling of non-EOP buffers
2152  * @rx_ring: Rx ring being processed
2153  * @rx_desc: Rx descriptor for current buffer
2154  * @skb: Current socket buffer containing buffer in progress
2155  *
2156  * This function updates next to clean.  If the buffer is an EOP buffer
2157  * this function exits returning false, otherwise it will place the
2158  * sk_buff in the next buffer to be chained and return true indicating
2159  * that this is in fact a non-EOP buffer.
2160  **/
2161 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2162 			    union i40e_rx_desc *rx_desc,
2163 			    struct sk_buff *skb)
2164 {
2165 	u32 ntc = rx_ring->next_to_clean + 1;
2166 
2167 	/* fetch, update, and store next to clean */
2168 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2169 	rx_ring->next_to_clean = ntc;
2170 
2171 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2172 
2173 	/* if we are the last buffer then there is nothing else to do */
2174 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2175 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2176 		return false;
2177 
2178 	rx_ring->rx_stats.non_eop_descs++;
2179 
2180 	return true;
2181 }
2182 
2183 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2184 			      struct i40e_ring *xdp_ring);
2185 
2186 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2187 {
2188 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2189 
2190 	if (unlikely(!xdpf))
2191 		return I40E_XDP_CONSUMED;
2192 
2193 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2194 }
2195 
2196 /**
2197  * i40e_run_xdp - run an XDP program
2198  * @rx_ring: Rx ring being processed
2199  * @xdp: XDP buffer containing the frame
2200  **/
2201 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2202 				    struct xdp_buff *xdp)
2203 {
2204 	int err, result = I40E_XDP_PASS;
2205 	struct i40e_ring *xdp_ring;
2206 	struct bpf_prog *xdp_prog;
2207 	u32 act;
2208 
2209 	rcu_read_lock();
2210 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2211 
2212 	if (!xdp_prog)
2213 		goto xdp_out;
2214 
2215 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2216 
2217 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2218 	switch (act) {
2219 	case XDP_PASS:
2220 		break;
2221 	case XDP_TX:
2222 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2223 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2224 		break;
2225 	case XDP_REDIRECT:
2226 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2227 		result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2228 		break;
2229 	default:
2230 		bpf_warn_invalid_xdp_action(act);
2231 		fallthrough;
2232 	case XDP_ABORTED:
2233 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2234 		fallthrough; /* handle aborts by dropping packet */
2235 	case XDP_DROP:
2236 		result = I40E_XDP_CONSUMED;
2237 		break;
2238 	}
2239 xdp_out:
2240 	rcu_read_unlock();
2241 	return ERR_PTR(-result);
2242 }
2243 
2244 /**
2245  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2246  * @rx_ring: Rx ring
2247  * @rx_buffer: Rx buffer to adjust
2248  * @size: Size of adjustment
2249  **/
2250 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2251 				struct i40e_rx_buffer *rx_buffer,
2252 				unsigned int size)
2253 {
2254 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2255 
2256 #if (PAGE_SIZE < 8192)
2257 	rx_buffer->page_offset ^= truesize;
2258 #else
2259 	rx_buffer->page_offset += truesize;
2260 #endif
2261 }
2262 
2263 /**
2264  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2265  * @xdp_ring: XDP Tx ring
2266  *
2267  * This function updates the XDP Tx ring tail register.
2268  **/
2269 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2270 {
2271 	/* Force memory writes to complete before letting h/w
2272 	 * know there are new descriptors to fetch.
2273 	 */
2274 	wmb();
2275 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2276 }
2277 
2278 /**
2279  * i40e_update_rx_stats - Update Rx ring statistics
2280  * @rx_ring: rx descriptor ring
2281  * @total_rx_bytes: number of bytes received
2282  * @total_rx_packets: number of packets received
2283  *
2284  * This function updates the Rx ring statistics.
2285  **/
2286 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2287 			  unsigned int total_rx_bytes,
2288 			  unsigned int total_rx_packets)
2289 {
2290 	u64_stats_update_begin(&rx_ring->syncp);
2291 	rx_ring->stats.packets += total_rx_packets;
2292 	rx_ring->stats.bytes += total_rx_bytes;
2293 	u64_stats_update_end(&rx_ring->syncp);
2294 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2295 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2296 }
2297 
2298 /**
2299  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2300  * @rx_ring: Rx ring
2301  * @xdp_res: Result of the receive batch
2302  *
2303  * This function bumps XDP Tx tail and/or flush redirect map, and
2304  * should be called when a batch of packets has been processed in the
2305  * napi loop.
2306  **/
2307 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2308 {
2309 	if (xdp_res & I40E_XDP_REDIR)
2310 		xdp_do_flush_map();
2311 
2312 	if (xdp_res & I40E_XDP_TX) {
2313 		struct i40e_ring *xdp_ring =
2314 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2315 
2316 		i40e_xdp_ring_update_tail(xdp_ring);
2317 	}
2318 }
2319 
2320 /**
2321  * i40e_inc_ntc: Advance the next_to_clean index
2322  * @rx_ring: Rx ring
2323  **/
2324 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2325 {
2326 	u32 ntc = rx_ring->next_to_clean + 1;
2327 
2328 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2329 	rx_ring->next_to_clean = ntc;
2330 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2331 }
2332 
2333 /**
2334  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2335  * @rx_ring: rx descriptor ring to transact packets on
2336  * @budget: Total limit on number of packets to process
2337  *
2338  * This function provides a "bounce buffer" approach to Rx interrupt
2339  * processing.  The advantage to this is that on systems that have
2340  * expensive overhead for IOMMU access this provides a means of avoiding
2341  * it by maintaining the mapping of the page to the system.
2342  *
2343  * Returns amount of work completed
2344  **/
2345 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2346 {
2347 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2348 	struct sk_buff *skb = rx_ring->skb;
2349 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2350 	unsigned int xdp_xmit = 0;
2351 	bool failure = false;
2352 	struct xdp_buff xdp;
2353 
2354 #if (PAGE_SIZE < 8192)
2355 	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2356 #endif
2357 	xdp.rxq = &rx_ring->xdp_rxq;
2358 
2359 	while (likely(total_rx_packets < (unsigned int)budget)) {
2360 		struct i40e_rx_buffer *rx_buffer;
2361 		union i40e_rx_desc *rx_desc;
2362 		int rx_buffer_pgcnt;
2363 		unsigned int size;
2364 		u64 qword;
2365 
2366 		/* return some buffers to hardware, one at a time is too slow */
2367 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2368 			failure = failure ||
2369 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2370 			cleaned_count = 0;
2371 		}
2372 
2373 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2374 
2375 		/* status_error_len will always be zero for unused descriptors
2376 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2377 		 * which is always zero because packet split isn't used, if the
2378 		 * hardware wrote DD then the length will be non-zero
2379 		 */
2380 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2381 
2382 		/* This memory barrier is needed to keep us from reading
2383 		 * any other fields out of the rx_desc until we have
2384 		 * verified the descriptor has been written back.
2385 		 */
2386 		dma_rmb();
2387 
2388 		if (i40e_rx_is_programming_status(qword)) {
2389 			i40e_clean_programming_status(rx_ring,
2390 						      rx_desc->raw.qword[0],
2391 						      qword);
2392 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2393 			i40e_inc_ntc(rx_ring);
2394 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2395 			cleaned_count++;
2396 			continue;
2397 		}
2398 
2399 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2400 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2401 		if (!size)
2402 			break;
2403 
2404 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2405 		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2406 
2407 		/* retrieve a buffer from the ring */
2408 		if (!skb) {
2409 			xdp.data = page_address(rx_buffer->page) +
2410 				   rx_buffer->page_offset;
2411 			xdp.data_meta = xdp.data;
2412 			xdp.data_hard_start = xdp.data -
2413 					      i40e_rx_offset(rx_ring);
2414 			xdp.data_end = xdp.data + size;
2415 #if (PAGE_SIZE > 4096)
2416 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2417 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2418 #endif
2419 			skb = i40e_run_xdp(rx_ring, &xdp);
2420 		}
2421 
2422 		if (IS_ERR(skb)) {
2423 			unsigned int xdp_res = -PTR_ERR(skb);
2424 
2425 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2426 				xdp_xmit |= xdp_res;
2427 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2428 			} else {
2429 				rx_buffer->pagecnt_bias++;
2430 			}
2431 			total_rx_bytes += size;
2432 			total_rx_packets++;
2433 		} else if (skb) {
2434 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2435 		} else if (ring_uses_build_skb(rx_ring)) {
2436 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2437 		} else {
2438 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2439 		}
2440 
2441 		/* exit if we failed to retrieve a buffer */
2442 		if (!skb) {
2443 			rx_ring->rx_stats.alloc_buff_failed++;
2444 			rx_buffer->pagecnt_bias++;
2445 			break;
2446 		}
2447 
2448 		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2449 		cleaned_count++;
2450 
2451 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2452 			continue;
2453 
2454 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2455 			skb = NULL;
2456 			continue;
2457 		}
2458 
2459 		/* probably a little skewed due to removing CRC */
2460 		total_rx_bytes += skb->len;
2461 
2462 		/* populate checksum, VLAN, and protocol */
2463 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2464 
2465 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2466 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2467 		skb = NULL;
2468 
2469 		/* update budget accounting */
2470 		total_rx_packets++;
2471 	}
2472 
2473 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2474 	rx_ring->skb = skb;
2475 
2476 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2477 
2478 	/* guarantee a trip back through this routine if there was a failure */
2479 	return failure ? budget : (int)total_rx_packets;
2480 }
2481 
2482 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2483 {
2484 	u32 val;
2485 
2486 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2487 	 * points out doing so is "meaningless since it was already
2488 	 * auto-cleared". The auto-clearing happens when the interrupt is
2489 	 * asserted.
2490 	 *
2491 	 * Hardware errata 28 for also indicates that writing to a
2492 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2493 	 * an event in the PBA anyway so we need to rely on the automask
2494 	 * to hold pending events for us until the interrupt is re-enabled
2495 	 *
2496 	 * The itr value is reported in microseconds, and the register
2497 	 * value is recorded in 2 microsecond units. For this reason we
2498 	 * only need to shift by the interval shift - 1 instead of the
2499 	 * full value.
2500 	 */
2501 	itr &= I40E_ITR_MASK;
2502 
2503 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2504 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2505 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2506 
2507 	return val;
2508 }
2509 
2510 /* a small macro to shorten up some long lines */
2511 #define INTREG I40E_PFINT_DYN_CTLN
2512 
2513 /* The act of updating the ITR will cause it to immediately trigger. In order
2514  * to prevent this from throwing off adaptive update statistics we defer the
2515  * update so that it can only happen so often. So after either Tx or Rx are
2516  * updated we make the adaptive scheme wait until either the ITR completely
2517  * expires via the next_update expiration or we have been through at least
2518  * 3 interrupts.
2519  */
2520 #define ITR_COUNTDOWN_START 3
2521 
2522 /**
2523  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2524  * @vsi: the VSI we care about
2525  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2526  *
2527  **/
2528 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2529 					  struct i40e_q_vector *q_vector)
2530 {
2531 	struct i40e_hw *hw = &vsi->back->hw;
2532 	u32 intval;
2533 
2534 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2535 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2536 		i40e_irq_dynamic_enable_icr0(vsi->back);
2537 		return;
2538 	}
2539 
2540 	/* These will do nothing if dynamic updates are not enabled */
2541 	i40e_update_itr(q_vector, &q_vector->tx);
2542 	i40e_update_itr(q_vector, &q_vector->rx);
2543 
2544 	/* This block of logic allows us to get away with only updating
2545 	 * one ITR value with each interrupt. The idea is to perform a
2546 	 * pseudo-lazy update with the following criteria.
2547 	 *
2548 	 * 1. Rx is given higher priority than Tx if both are in same state
2549 	 * 2. If we must reduce an ITR that is given highest priority.
2550 	 * 3. We then give priority to increasing ITR based on amount.
2551 	 */
2552 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2553 		/* Rx ITR needs to be reduced, this is highest priority */
2554 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2555 					   q_vector->rx.target_itr);
2556 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2557 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2558 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2559 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2560 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2561 		/* Tx ITR needs to be reduced, this is second priority
2562 		 * Tx ITR needs to be increased more than Rx, fourth priority
2563 		 */
2564 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2565 					   q_vector->tx.target_itr);
2566 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2567 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2568 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2569 		/* Rx ITR needs to be increased, third priority */
2570 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2571 					   q_vector->rx.target_itr);
2572 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2573 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2574 	} else {
2575 		/* No ITR update, lowest priority */
2576 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2577 		if (q_vector->itr_countdown)
2578 			q_vector->itr_countdown--;
2579 	}
2580 
2581 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2582 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2583 }
2584 
2585 /**
2586  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2587  * @napi: napi struct with our devices info in it
2588  * @budget: amount of work driver is allowed to do this pass, in packets
2589  *
2590  * This function will clean all queues associated with a q_vector.
2591  *
2592  * Returns the amount of work done
2593  **/
2594 int i40e_napi_poll(struct napi_struct *napi, int budget)
2595 {
2596 	struct i40e_q_vector *q_vector =
2597 			       container_of(napi, struct i40e_q_vector, napi);
2598 	struct i40e_vsi *vsi = q_vector->vsi;
2599 	struct i40e_ring *ring;
2600 	bool clean_complete = true;
2601 	bool arm_wb = false;
2602 	int budget_per_ring;
2603 	int work_done = 0;
2604 
2605 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2606 		napi_complete(napi);
2607 		return 0;
2608 	}
2609 
2610 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2611 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2612 	 */
2613 	i40e_for_each_ring(ring, q_vector->tx) {
2614 		bool wd = ring->xsk_pool ?
2615 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2616 			  i40e_clean_tx_irq(vsi, ring, budget);
2617 
2618 		if (!wd) {
2619 			clean_complete = false;
2620 			continue;
2621 		}
2622 		arm_wb |= ring->arm_wb;
2623 		ring->arm_wb = false;
2624 	}
2625 
2626 	/* Handle case where we are called by netpoll with a budget of 0 */
2627 	if (budget <= 0)
2628 		goto tx_only;
2629 
2630 	/* normally we have 1 Rx ring per q_vector */
2631 	if (unlikely(q_vector->num_ringpairs > 1))
2632 		/* We attempt to distribute budget to each Rx queue fairly, but
2633 		 * don't allow the budget to go below 1 because that would exit
2634 		 * polling early.
2635 		 */
2636 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2637 	else
2638 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2639 		budget_per_ring = budget;
2640 
2641 	i40e_for_each_ring(ring, q_vector->rx) {
2642 		int cleaned = ring->xsk_pool ?
2643 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2644 			      i40e_clean_rx_irq(ring, budget_per_ring);
2645 
2646 		work_done += cleaned;
2647 		/* if we clean as many as budgeted, we must not be done */
2648 		if (cleaned >= budget_per_ring)
2649 			clean_complete = false;
2650 	}
2651 
2652 	/* If work not completed, return budget and polling will return */
2653 	if (!clean_complete) {
2654 		int cpu_id = smp_processor_id();
2655 
2656 		/* It is possible that the interrupt affinity has changed but,
2657 		 * if the cpu is pegged at 100%, polling will never exit while
2658 		 * traffic continues and the interrupt will be stuck on this
2659 		 * cpu.  We check to make sure affinity is correct before we
2660 		 * continue to poll, otherwise we must stop polling so the
2661 		 * interrupt can move to the correct cpu.
2662 		 */
2663 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2664 			/* Tell napi that we are done polling */
2665 			napi_complete_done(napi, work_done);
2666 
2667 			/* Force an interrupt */
2668 			i40e_force_wb(vsi, q_vector);
2669 
2670 			/* Return budget-1 so that polling stops */
2671 			return budget - 1;
2672 		}
2673 tx_only:
2674 		if (arm_wb) {
2675 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2676 			i40e_enable_wb_on_itr(vsi, q_vector);
2677 		}
2678 		return budget;
2679 	}
2680 
2681 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2682 		q_vector->arm_wb_state = false;
2683 
2684 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2685 	 * poll us due to busy-polling
2686 	 */
2687 	if (likely(napi_complete_done(napi, work_done)))
2688 		i40e_update_enable_itr(vsi, q_vector);
2689 
2690 	return min(work_done, budget - 1);
2691 }
2692 
2693 /**
2694  * i40e_atr - Add a Flow Director ATR filter
2695  * @tx_ring:  ring to add programming descriptor to
2696  * @skb:      send buffer
2697  * @tx_flags: send tx flags
2698  **/
2699 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2700 		     u32 tx_flags)
2701 {
2702 	struct i40e_filter_program_desc *fdir_desc;
2703 	struct i40e_pf *pf = tx_ring->vsi->back;
2704 	union {
2705 		unsigned char *network;
2706 		struct iphdr *ipv4;
2707 		struct ipv6hdr *ipv6;
2708 	} hdr;
2709 	struct tcphdr *th;
2710 	unsigned int hlen;
2711 	u32 flex_ptype, dtype_cmd;
2712 	int l4_proto;
2713 	u16 i;
2714 
2715 	/* make sure ATR is enabled */
2716 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2717 		return;
2718 
2719 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2720 		return;
2721 
2722 	/* if sampling is disabled do nothing */
2723 	if (!tx_ring->atr_sample_rate)
2724 		return;
2725 
2726 	/* Currently only IPv4/IPv6 with TCP is supported */
2727 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2728 		return;
2729 
2730 	/* snag network header to get L4 type and address */
2731 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2732 		      skb_inner_network_header(skb) : skb_network_header(skb);
2733 
2734 	/* Note: tx_flags gets modified to reflect inner protocols in
2735 	 * tx_enable_csum function if encap is enabled.
2736 	 */
2737 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2738 		/* access ihl as u8 to avoid unaligned access on ia64 */
2739 		hlen = (hdr.network[0] & 0x0F) << 2;
2740 		l4_proto = hdr.ipv4->protocol;
2741 	} else {
2742 		/* find the start of the innermost ipv6 header */
2743 		unsigned int inner_hlen = hdr.network - skb->data;
2744 		unsigned int h_offset = inner_hlen;
2745 
2746 		/* this function updates h_offset to the end of the header */
2747 		l4_proto =
2748 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2749 		/* hlen will contain our best estimate of the tcp header */
2750 		hlen = h_offset - inner_hlen;
2751 	}
2752 
2753 	if (l4_proto != IPPROTO_TCP)
2754 		return;
2755 
2756 	th = (struct tcphdr *)(hdr.network + hlen);
2757 
2758 	/* Due to lack of space, no more new filters can be programmed */
2759 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2760 		return;
2761 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2762 		/* HW ATR eviction will take care of removing filters on FIN
2763 		 * and RST packets.
2764 		 */
2765 		if (th->fin || th->rst)
2766 			return;
2767 	}
2768 
2769 	tx_ring->atr_count++;
2770 
2771 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2772 	if (!th->fin &&
2773 	    !th->syn &&
2774 	    !th->rst &&
2775 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2776 		return;
2777 
2778 	tx_ring->atr_count = 0;
2779 
2780 	/* grab the next descriptor */
2781 	i = tx_ring->next_to_use;
2782 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2783 
2784 	i++;
2785 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2786 
2787 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2788 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2789 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2790 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2791 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2792 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2793 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2794 
2795 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2796 
2797 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2798 
2799 	dtype_cmd |= (th->fin || th->rst) ?
2800 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2801 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2802 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2803 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2804 
2805 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2806 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2807 
2808 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2809 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2810 
2811 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2812 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2813 		dtype_cmd |=
2814 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2815 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2816 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2817 	else
2818 		dtype_cmd |=
2819 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2820 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2821 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2822 
2823 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2824 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2825 
2826 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2827 	fdir_desc->rsvd = cpu_to_le32(0);
2828 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2829 	fdir_desc->fd_id = cpu_to_le32(0);
2830 }
2831 
2832 /**
2833  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2834  * @skb:     send buffer
2835  * @tx_ring: ring to send buffer on
2836  * @flags:   the tx flags to be set
2837  *
2838  * Checks the skb and set up correspondingly several generic transmit flags
2839  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2840  *
2841  * Returns error code indicate the frame should be dropped upon error and the
2842  * otherwise  returns 0 to indicate the flags has been set properly.
2843  **/
2844 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2845 					     struct i40e_ring *tx_ring,
2846 					     u32 *flags)
2847 {
2848 	__be16 protocol = skb->protocol;
2849 	u32  tx_flags = 0;
2850 
2851 	if (protocol == htons(ETH_P_8021Q) &&
2852 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2853 		/* When HW VLAN acceleration is turned off by the user the
2854 		 * stack sets the protocol to 8021q so that the driver
2855 		 * can take any steps required to support the SW only
2856 		 * VLAN handling.  In our case the driver doesn't need
2857 		 * to take any further steps so just set the protocol
2858 		 * to the encapsulated ethertype.
2859 		 */
2860 		skb->protocol = vlan_get_protocol(skb);
2861 		goto out;
2862 	}
2863 
2864 	/* if we have a HW VLAN tag being added, default to the HW one */
2865 	if (skb_vlan_tag_present(skb)) {
2866 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2867 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2868 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2869 	} else if (protocol == htons(ETH_P_8021Q)) {
2870 		struct vlan_hdr *vhdr, _vhdr;
2871 
2872 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2873 		if (!vhdr)
2874 			return -EINVAL;
2875 
2876 		protocol = vhdr->h_vlan_encapsulated_proto;
2877 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2878 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2879 	}
2880 
2881 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2882 		goto out;
2883 
2884 	/* Insert 802.1p priority into VLAN header */
2885 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2886 	    (skb->priority != TC_PRIO_CONTROL)) {
2887 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2888 		tx_flags |= (skb->priority & 0x7) <<
2889 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2890 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2891 			struct vlan_ethhdr *vhdr;
2892 			int rc;
2893 
2894 			rc = skb_cow_head(skb, 0);
2895 			if (rc < 0)
2896 				return rc;
2897 			vhdr = (struct vlan_ethhdr *)skb->data;
2898 			vhdr->h_vlan_TCI = htons(tx_flags >>
2899 						 I40E_TX_FLAGS_VLAN_SHIFT);
2900 		} else {
2901 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2902 		}
2903 	}
2904 
2905 out:
2906 	*flags = tx_flags;
2907 	return 0;
2908 }
2909 
2910 /**
2911  * i40e_tso - set up the tso context descriptor
2912  * @first:    pointer to first Tx buffer for xmit
2913  * @hdr_len:  ptr to the size of the packet header
2914  * @cd_type_cmd_tso_mss: Quad Word 1
2915  *
2916  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2917  **/
2918 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2919 		    u64 *cd_type_cmd_tso_mss)
2920 {
2921 	struct sk_buff *skb = first->skb;
2922 	u64 cd_cmd, cd_tso_len, cd_mss;
2923 	union {
2924 		struct iphdr *v4;
2925 		struct ipv6hdr *v6;
2926 		unsigned char *hdr;
2927 	} ip;
2928 	union {
2929 		struct tcphdr *tcp;
2930 		struct udphdr *udp;
2931 		unsigned char *hdr;
2932 	} l4;
2933 	u32 paylen, l4_offset;
2934 	u16 gso_segs, gso_size;
2935 	int err;
2936 
2937 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2938 		return 0;
2939 
2940 	if (!skb_is_gso(skb))
2941 		return 0;
2942 
2943 	err = skb_cow_head(skb, 0);
2944 	if (err < 0)
2945 		return err;
2946 
2947 	ip.hdr = skb_network_header(skb);
2948 	l4.hdr = skb_transport_header(skb);
2949 
2950 	/* initialize outer IP header fields */
2951 	if (ip.v4->version == 4) {
2952 		ip.v4->tot_len = 0;
2953 		ip.v4->check = 0;
2954 	} else {
2955 		ip.v6->payload_len = 0;
2956 	}
2957 
2958 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2959 					 SKB_GSO_GRE_CSUM |
2960 					 SKB_GSO_IPXIP4 |
2961 					 SKB_GSO_IPXIP6 |
2962 					 SKB_GSO_UDP_TUNNEL |
2963 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2964 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2965 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2966 			l4.udp->len = 0;
2967 
2968 			/* determine offset of outer transport header */
2969 			l4_offset = l4.hdr - skb->data;
2970 
2971 			/* remove payload length from outer checksum */
2972 			paylen = skb->len - l4_offset;
2973 			csum_replace_by_diff(&l4.udp->check,
2974 					     (__force __wsum)htonl(paylen));
2975 		}
2976 
2977 		/* reset pointers to inner headers */
2978 		ip.hdr = skb_inner_network_header(skb);
2979 		l4.hdr = skb_inner_transport_header(skb);
2980 
2981 		/* initialize inner IP header fields */
2982 		if (ip.v4->version == 4) {
2983 			ip.v4->tot_len = 0;
2984 			ip.v4->check = 0;
2985 		} else {
2986 			ip.v6->payload_len = 0;
2987 		}
2988 	}
2989 
2990 	/* determine offset of inner transport header */
2991 	l4_offset = l4.hdr - skb->data;
2992 
2993 	/* remove payload length from inner checksum */
2994 	paylen = skb->len - l4_offset;
2995 
2996 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2997 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2998 		/* compute length of segmentation header */
2999 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3000 	} else {
3001 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3002 		/* compute length of segmentation header */
3003 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3004 	}
3005 
3006 	/* pull values out of skb_shinfo */
3007 	gso_size = skb_shinfo(skb)->gso_size;
3008 	gso_segs = skb_shinfo(skb)->gso_segs;
3009 
3010 	/* update GSO size and bytecount with header size */
3011 	first->gso_segs = gso_segs;
3012 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3013 
3014 	/* find the field values */
3015 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3016 	cd_tso_len = skb->len - *hdr_len;
3017 	cd_mss = gso_size;
3018 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3019 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3020 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3021 	return 1;
3022 }
3023 
3024 /**
3025  * i40e_tsyn - set up the tsyn context descriptor
3026  * @tx_ring:  ptr to the ring to send
3027  * @skb:      ptr to the skb we're sending
3028  * @tx_flags: the collected send information
3029  * @cd_type_cmd_tso_mss: Quad Word 1
3030  *
3031  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3032  **/
3033 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3034 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3035 {
3036 	struct i40e_pf *pf;
3037 
3038 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3039 		return 0;
3040 
3041 	/* Tx timestamps cannot be sampled when doing TSO */
3042 	if (tx_flags & I40E_TX_FLAGS_TSO)
3043 		return 0;
3044 
3045 	/* only timestamp the outbound packet if the user has requested it and
3046 	 * we are not already transmitting a packet to be timestamped
3047 	 */
3048 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3049 	if (!(pf->flags & I40E_FLAG_PTP))
3050 		return 0;
3051 
3052 	if (pf->ptp_tx &&
3053 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3054 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3055 		pf->ptp_tx_start = jiffies;
3056 		pf->ptp_tx_skb = skb_get(skb);
3057 	} else {
3058 		pf->tx_hwtstamp_skipped++;
3059 		return 0;
3060 	}
3061 
3062 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3063 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3064 
3065 	return 1;
3066 }
3067 
3068 /**
3069  * i40e_tx_enable_csum - Enable Tx checksum offloads
3070  * @skb: send buffer
3071  * @tx_flags: pointer to Tx flags currently set
3072  * @td_cmd: Tx descriptor command bits to set
3073  * @td_offset: Tx descriptor header offsets to set
3074  * @tx_ring: Tx descriptor ring
3075  * @cd_tunneling: ptr to context desc bits
3076  **/
3077 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3078 			       u32 *td_cmd, u32 *td_offset,
3079 			       struct i40e_ring *tx_ring,
3080 			       u32 *cd_tunneling)
3081 {
3082 	union {
3083 		struct iphdr *v4;
3084 		struct ipv6hdr *v6;
3085 		unsigned char *hdr;
3086 	} ip;
3087 	union {
3088 		struct tcphdr *tcp;
3089 		struct udphdr *udp;
3090 		unsigned char *hdr;
3091 	} l4;
3092 	unsigned char *exthdr;
3093 	u32 offset, cmd = 0;
3094 	__be16 frag_off;
3095 	u8 l4_proto = 0;
3096 
3097 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 		return 0;
3099 
3100 	ip.hdr = skb_network_header(skb);
3101 	l4.hdr = skb_transport_header(skb);
3102 
3103 	/* compute outer L2 header size */
3104 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3105 
3106 	if (skb->encapsulation) {
3107 		u32 tunnel = 0;
3108 		/* define outer network header type */
3109 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3110 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3111 				  I40E_TX_CTX_EXT_IP_IPV4 :
3112 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3113 
3114 			l4_proto = ip.v4->protocol;
3115 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3116 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3117 
3118 			exthdr = ip.hdr + sizeof(*ip.v6);
3119 			l4_proto = ip.v6->nexthdr;
3120 			if (l4.hdr != exthdr)
3121 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3122 						 &l4_proto, &frag_off);
3123 		}
3124 
3125 		/* define outer transport */
3126 		switch (l4_proto) {
3127 		case IPPROTO_UDP:
3128 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3129 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3130 			break;
3131 		case IPPROTO_GRE:
3132 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3133 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3134 			break;
3135 		case IPPROTO_IPIP:
3136 		case IPPROTO_IPV6:
3137 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3138 			l4.hdr = skb_inner_network_header(skb);
3139 			break;
3140 		default:
3141 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3142 				return -1;
3143 
3144 			skb_checksum_help(skb);
3145 			return 0;
3146 		}
3147 
3148 		/* compute outer L3 header size */
3149 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3150 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3151 
3152 		/* switch IP header pointer from outer to inner header */
3153 		ip.hdr = skb_inner_network_header(skb);
3154 
3155 		/* compute tunnel header size */
3156 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3157 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3158 
3159 		/* indicate if we need to offload outer UDP header */
3160 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3161 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3162 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3163 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3164 
3165 		/* record tunnel offload values */
3166 		*cd_tunneling |= tunnel;
3167 
3168 		/* switch L4 header pointer from outer to inner */
3169 		l4.hdr = skb_inner_transport_header(skb);
3170 		l4_proto = 0;
3171 
3172 		/* reset type as we transition from outer to inner headers */
3173 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3174 		if (ip.v4->version == 4)
3175 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3176 		if (ip.v6->version == 6)
3177 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3178 	}
3179 
3180 	/* Enable IP checksum offloads */
3181 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3182 		l4_proto = ip.v4->protocol;
3183 		/* the stack computes the IP header already, the only time we
3184 		 * need the hardware to recompute it is in the case of TSO.
3185 		 */
3186 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3187 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3188 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3189 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3190 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3191 
3192 		exthdr = ip.hdr + sizeof(*ip.v6);
3193 		l4_proto = ip.v6->nexthdr;
3194 		if (l4.hdr != exthdr)
3195 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3196 					 &l4_proto, &frag_off);
3197 	}
3198 
3199 	/* compute inner L3 header size */
3200 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3201 
3202 	/* Enable L4 checksum offloads */
3203 	switch (l4_proto) {
3204 	case IPPROTO_TCP:
3205 		/* enable checksum offloads */
3206 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3207 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3208 		break;
3209 	case IPPROTO_SCTP:
3210 		/* enable SCTP checksum offload */
3211 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3212 		offset |= (sizeof(struct sctphdr) >> 2) <<
3213 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3214 		break;
3215 	case IPPROTO_UDP:
3216 		/* enable UDP checksum offload */
3217 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3218 		offset |= (sizeof(struct udphdr) >> 2) <<
3219 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3220 		break;
3221 	default:
3222 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3223 			return -1;
3224 		skb_checksum_help(skb);
3225 		return 0;
3226 	}
3227 
3228 	*td_cmd |= cmd;
3229 	*td_offset |= offset;
3230 
3231 	return 1;
3232 }
3233 
3234 /**
3235  * i40e_create_tx_ctx Build the Tx context descriptor
3236  * @tx_ring:  ring to create the descriptor on
3237  * @cd_type_cmd_tso_mss: Quad Word 1
3238  * @cd_tunneling: Quad Word 0 - bits 0-31
3239  * @cd_l2tag2: Quad Word 0 - bits 32-63
3240  **/
3241 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3242 			       const u64 cd_type_cmd_tso_mss,
3243 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3244 {
3245 	struct i40e_tx_context_desc *context_desc;
3246 	int i = tx_ring->next_to_use;
3247 
3248 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3249 	    !cd_tunneling && !cd_l2tag2)
3250 		return;
3251 
3252 	/* grab the next descriptor */
3253 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3254 
3255 	i++;
3256 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3257 
3258 	/* cpu_to_le32 and assign to struct fields */
3259 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3260 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3261 	context_desc->rsvd = cpu_to_le16(0);
3262 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3263 }
3264 
3265 /**
3266  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3267  * @tx_ring: the ring to be checked
3268  * @size:    the size buffer we want to assure is available
3269  *
3270  * Returns -EBUSY if a stop is needed, else 0
3271  **/
3272 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3273 {
3274 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3275 	/* Memory barrier before checking head and tail */
3276 	smp_mb();
3277 
3278 	/* Check again in a case another CPU has just made room available. */
3279 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3280 		return -EBUSY;
3281 
3282 	/* A reprieve! - use start_queue because it doesn't call schedule */
3283 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3284 	++tx_ring->tx_stats.restart_queue;
3285 	return 0;
3286 }
3287 
3288 /**
3289  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3290  * @skb:      send buffer
3291  *
3292  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3293  * and so we need to figure out the cases where we need to linearize the skb.
3294  *
3295  * For TSO we need to count the TSO header and segment payload separately.
3296  * As such we need to check cases where we have 7 fragments or more as we
3297  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3298  * the segment payload in the first descriptor, and another 7 for the
3299  * fragments.
3300  **/
3301 bool __i40e_chk_linearize(struct sk_buff *skb)
3302 {
3303 	const skb_frag_t *frag, *stale;
3304 	int nr_frags, sum;
3305 
3306 	/* no need to check if number of frags is less than 7 */
3307 	nr_frags = skb_shinfo(skb)->nr_frags;
3308 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3309 		return false;
3310 
3311 	/* We need to walk through the list and validate that each group
3312 	 * of 6 fragments totals at least gso_size.
3313 	 */
3314 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3315 	frag = &skb_shinfo(skb)->frags[0];
3316 
3317 	/* Initialize size to the negative value of gso_size minus 1.  We
3318 	 * use this as the worst case scenerio in which the frag ahead
3319 	 * of us only provides one byte which is why we are limited to 6
3320 	 * descriptors for a single transmit as the header and previous
3321 	 * fragment are already consuming 2 descriptors.
3322 	 */
3323 	sum = 1 - skb_shinfo(skb)->gso_size;
3324 
3325 	/* Add size of frags 0 through 4 to create our initial sum */
3326 	sum += skb_frag_size(frag++);
3327 	sum += skb_frag_size(frag++);
3328 	sum += skb_frag_size(frag++);
3329 	sum += skb_frag_size(frag++);
3330 	sum += skb_frag_size(frag++);
3331 
3332 	/* Walk through fragments adding latest fragment, testing it, and
3333 	 * then removing stale fragments from the sum.
3334 	 */
3335 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3336 		int stale_size = skb_frag_size(stale);
3337 
3338 		sum += skb_frag_size(frag++);
3339 
3340 		/* The stale fragment may present us with a smaller
3341 		 * descriptor than the actual fragment size. To account
3342 		 * for that we need to remove all the data on the front and
3343 		 * figure out what the remainder would be in the last
3344 		 * descriptor associated with the fragment.
3345 		 */
3346 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3347 			int align_pad = -(skb_frag_off(stale)) &
3348 					(I40E_MAX_READ_REQ_SIZE - 1);
3349 
3350 			sum -= align_pad;
3351 			stale_size -= align_pad;
3352 
3353 			do {
3354 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3355 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3356 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3357 		}
3358 
3359 		/* if sum is negative we failed to make sufficient progress */
3360 		if (sum < 0)
3361 			return true;
3362 
3363 		if (!nr_frags--)
3364 			break;
3365 
3366 		sum -= stale_size;
3367 	}
3368 
3369 	return false;
3370 }
3371 
3372 /**
3373  * i40e_tx_map - Build the Tx descriptor
3374  * @tx_ring:  ring to send buffer on
3375  * @skb:      send buffer
3376  * @first:    first buffer info buffer to use
3377  * @tx_flags: collected send information
3378  * @hdr_len:  size of the packet header
3379  * @td_cmd:   the command field in the descriptor
3380  * @td_offset: offset for checksum or crc
3381  *
3382  * Returns 0 on success, -1 on failure to DMA
3383  **/
3384 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3385 			      struct i40e_tx_buffer *first, u32 tx_flags,
3386 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3387 {
3388 	unsigned int data_len = skb->data_len;
3389 	unsigned int size = skb_headlen(skb);
3390 	skb_frag_t *frag;
3391 	struct i40e_tx_buffer *tx_bi;
3392 	struct i40e_tx_desc *tx_desc;
3393 	u16 i = tx_ring->next_to_use;
3394 	u32 td_tag = 0;
3395 	dma_addr_t dma;
3396 	u16 desc_count = 1;
3397 
3398 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3399 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3400 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3401 			 I40E_TX_FLAGS_VLAN_SHIFT;
3402 	}
3403 
3404 	first->tx_flags = tx_flags;
3405 
3406 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3407 
3408 	tx_desc = I40E_TX_DESC(tx_ring, i);
3409 	tx_bi = first;
3410 
3411 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3412 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3413 
3414 		if (dma_mapping_error(tx_ring->dev, dma))
3415 			goto dma_error;
3416 
3417 		/* record length, and DMA address */
3418 		dma_unmap_len_set(tx_bi, len, size);
3419 		dma_unmap_addr_set(tx_bi, dma, dma);
3420 
3421 		/* align size to end of page */
3422 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3423 		tx_desc->buffer_addr = cpu_to_le64(dma);
3424 
3425 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3426 			tx_desc->cmd_type_offset_bsz =
3427 				build_ctob(td_cmd, td_offset,
3428 					   max_data, td_tag);
3429 
3430 			tx_desc++;
3431 			i++;
3432 			desc_count++;
3433 
3434 			if (i == tx_ring->count) {
3435 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3436 				i = 0;
3437 			}
3438 
3439 			dma += max_data;
3440 			size -= max_data;
3441 
3442 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3443 			tx_desc->buffer_addr = cpu_to_le64(dma);
3444 		}
3445 
3446 		if (likely(!data_len))
3447 			break;
3448 
3449 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3450 							  size, td_tag);
3451 
3452 		tx_desc++;
3453 		i++;
3454 		desc_count++;
3455 
3456 		if (i == tx_ring->count) {
3457 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3458 			i = 0;
3459 		}
3460 
3461 		size = skb_frag_size(frag);
3462 		data_len -= size;
3463 
3464 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3465 				       DMA_TO_DEVICE);
3466 
3467 		tx_bi = &tx_ring->tx_bi[i];
3468 	}
3469 
3470 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3471 
3472 	i++;
3473 	if (i == tx_ring->count)
3474 		i = 0;
3475 
3476 	tx_ring->next_to_use = i;
3477 
3478 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3479 
3480 	/* write last descriptor with EOP bit */
3481 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3482 
3483 	/* We OR these values together to check both against 4 (WB_STRIDE)
3484 	 * below. This is safe since we don't re-use desc_count afterwards.
3485 	 */
3486 	desc_count |= ++tx_ring->packet_stride;
3487 
3488 	if (desc_count >= WB_STRIDE) {
3489 		/* write last descriptor with RS bit set */
3490 		td_cmd |= I40E_TX_DESC_CMD_RS;
3491 		tx_ring->packet_stride = 0;
3492 	}
3493 
3494 	tx_desc->cmd_type_offset_bsz =
3495 			build_ctob(td_cmd, td_offset, size, td_tag);
3496 
3497 	skb_tx_timestamp(skb);
3498 
3499 	/* Force memory writes to complete before letting h/w know there
3500 	 * are new descriptors to fetch.
3501 	 *
3502 	 * We also use this memory barrier to make certain all of the
3503 	 * status bits have been updated before next_to_watch is written.
3504 	 */
3505 	wmb();
3506 
3507 	/* set next_to_watch value indicating a packet is present */
3508 	first->next_to_watch = tx_desc;
3509 
3510 	/* notify HW of packet */
3511 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3512 		writel(i, tx_ring->tail);
3513 	}
3514 
3515 	return 0;
3516 
3517 dma_error:
3518 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3519 
3520 	/* clear dma mappings for failed tx_bi map */
3521 	for (;;) {
3522 		tx_bi = &tx_ring->tx_bi[i];
3523 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3524 		if (tx_bi == first)
3525 			break;
3526 		if (i == 0)
3527 			i = tx_ring->count;
3528 		i--;
3529 	}
3530 
3531 	tx_ring->next_to_use = i;
3532 
3533 	return -1;
3534 }
3535 
3536 /**
3537  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3538  * @xdpf: data to transmit
3539  * @xdp_ring: XDP Tx ring
3540  **/
3541 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3542 			      struct i40e_ring *xdp_ring)
3543 {
3544 	u16 i = xdp_ring->next_to_use;
3545 	struct i40e_tx_buffer *tx_bi;
3546 	struct i40e_tx_desc *tx_desc;
3547 	void *data = xdpf->data;
3548 	u32 size = xdpf->len;
3549 	dma_addr_t dma;
3550 
3551 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3552 		xdp_ring->tx_stats.tx_busy++;
3553 		return I40E_XDP_CONSUMED;
3554 	}
3555 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3556 	if (dma_mapping_error(xdp_ring->dev, dma))
3557 		return I40E_XDP_CONSUMED;
3558 
3559 	tx_bi = &xdp_ring->tx_bi[i];
3560 	tx_bi->bytecount = size;
3561 	tx_bi->gso_segs = 1;
3562 	tx_bi->xdpf = xdpf;
3563 
3564 	/* record length, and DMA address */
3565 	dma_unmap_len_set(tx_bi, len, size);
3566 	dma_unmap_addr_set(tx_bi, dma, dma);
3567 
3568 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3569 	tx_desc->buffer_addr = cpu_to_le64(dma);
3570 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3571 						  | I40E_TXD_CMD,
3572 						  0, size, 0);
3573 
3574 	/* Make certain all of the status bits have been updated
3575 	 * before next_to_watch is written.
3576 	 */
3577 	smp_wmb();
3578 
3579 	xdp_ring->xdp_tx_active++;
3580 	i++;
3581 	if (i == xdp_ring->count)
3582 		i = 0;
3583 
3584 	tx_bi->next_to_watch = tx_desc;
3585 	xdp_ring->next_to_use = i;
3586 
3587 	return I40E_XDP_TX;
3588 }
3589 
3590 /**
3591  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3592  * @skb:     send buffer
3593  * @tx_ring: ring to send buffer on
3594  *
3595  * Returns NETDEV_TX_OK if sent, else an error code
3596  **/
3597 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3598 					struct i40e_ring *tx_ring)
3599 {
3600 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3601 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3602 	struct i40e_tx_buffer *first;
3603 	u32 td_offset = 0;
3604 	u32 tx_flags = 0;
3605 	__be16 protocol;
3606 	u32 td_cmd = 0;
3607 	u8 hdr_len = 0;
3608 	int tso, count;
3609 	int tsyn;
3610 
3611 	/* prefetch the data, we'll need it later */
3612 	prefetch(skb->data);
3613 
3614 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3615 
3616 	count = i40e_xmit_descriptor_count(skb);
3617 	if (i40e_chk_linearize(skb, count)) {
3618 		if (__skb_linearize(skb)) {
3619 			dev_kfree_skb_any(skb);
3620 			return NETDEV_TX_OK;
3621 		}
3622 		count = i40e_txd_use_count(skb->len);
3623 		tx_ring->tx_stats.tx_linearize++;
3624 	}
3625 
3626 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3627 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3628 	 *       + 4 desc gap to avoid the cache line where head is,
3629 	 *       + 1 desc for context descriptor,
3630 	 * otherwise try next time
3631 	 */
3632 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3633 		tx_ring->tx_stats.tx_busy++;
3634 		return NETDEV_TX_BUSY;
3635 	}
3636 
3637 	/* record the location of the first descriptor for this packet */
3638 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3639 	first->skb = skb;
3640 	first->bytecount = skb->len;
3641 	first->gso_segs = 1;
3642 
3643 	/* prepare the xmit flags */
3644 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3645 		goto out_drop;
3646 
3647 	/* obtain protocol of skb */
3648 	protocol = vlan_get_protocol(skb);
3649 
3650 	/* setup IPv4/IPv6 offloads */
3651 	if (protocol == htons(ETH_P_IP))
3652 		tx_flags |= I40E_TX_FLAGS_IPV4;
3653 	else if (protocol == htons(ETH_P_IPV6))
3654 		tx_flags |= I40E_TX_FLAGS_IPV6;
3655 
3656 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3657 
3658 	if (tso < 0)
3659 		goto out_drop;
3660 	else if (tso)
3661 		tx_flags |= I40E_TX_FLAGS_TSO;
3662 
3663 	/* Always offload the checksum, since it's in the data descriptor */
3664 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3665 				  tx_ring, &cd_tunneling);
3666 	if (tso < 0)
3667 		goto out_drop;
3668 
3669 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3670 
3671 	if (tsyn)
3672 		tx_flags |= I40E_TX_FLAGS_TSYN;
3673 
3674 	/* always enable CRC insertion offload */
3675 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3676 
3677 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3678 			   cd_tunneling, cd_l2tag2);
3679 
3680 	/* Add Flow Director ATR if it's enabled.
3681 	 *
3682 	 * NOTE: this must always be directly before the data descriptor.
3683 	 */
3684 	i40e_atr(tx_ring, skb, tx_flags);
3685 
3686 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3687 			td_cmd, td_offset))
3688 		goto cleanup_tx_tstamp;
3689 
3690 	return NETDEV_TX_OK;
3691 
3692 out_drop:
3693 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3694 	dev_kfree_skb_any(first->skb);
3695 	first->skb = NULL;
3696 cleanup_tx_tstamp:
3697 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3698 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3699 
3700 		dev_kfree_skb_any(pf->ptp_tx_skb);
3701 		pf->ptp_tx_skb = NULL;
3702 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3703 	}
3704 
3705 	return NETDEV_TX_OK;
3706 }
3707 
3708 /**
3709  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3710  * @skb:    send buffer
3711  * @netdev: network interface device structure
3712  *
3713  * Returns NETDEV_TX_OK if sent, else an error code
3714  **/
3715 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3716 {
3717 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3718 	struct i40e_vsi *vsi = np->vsi;
3719 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3720 
3721 	/* hardware can't handle really short frames, hardware padding works
3722 	 * beyond this point
3723 	 */
3724 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3725 		return NETDEV_TX_OK;
3726 
3727 	return i40e_xmit_frame_ring(skb, tx_ring);
3728 }
3729 
3730 /**
3731  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3732  * @dev: netdev
3733  * @n: number of frames
3734  * @frames: array of XDP buffer pointers
3735  * @flags: XDP extra info
3736  *
3737  * Returns number of frames successfully sent. Frames that fail are
3738  * free'ed via XDP return API.
3739  *
3740  * For error cases, a negative errno code is returned and no-frames
3741  * are transmitted (caller must handle freeing frames).
3742  **/
3743 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3744 		  u32 flags)
3745 {
3746 	struct i40e_netdev_priv *np = netdev_priv(dev);
3747 	unsigned int queue_index = smp_processor_id();
3748 	struct i40e_vsi *vsi = np->vsi;
3749 	struct i40e_pf *pf = vsi->back;
3750 	struct i40e_ring *xdp_ring;
3751 	int drops = 0;
3752 	int i;
3753 
3754 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3755 		return -ENETDOWN;
3756 
3757 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3758 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3759 		return -ENXIO;
3760 
3761 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3762 		return -EINVAL;
3763 
3764 	xdp_ring = vsi->xdp_rings[queue_index];
3765 
3766 	for (i = 0; i < n; i++) {
3767 		struct xdp_frame *xdpf = frames[i];
3768 		int err;
3769 
3770 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3771 		if (err != I40E_XDP_TX) {
3772 			xdp_return_frame_rx_napi(xdpf);
3773 			drops++;
3774 		}
3775 	}
3776 
3777 	if (unlikely(flags & XDP_XMIT_FLUSH))
3778 		i40e_xdp_ring_update_tail(xdp_ring);
3779 
3780 	return n - drops;
3781 }
3782