1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include <linux/bpf_trace.h>
30 #include <net/xdp.h>
31 #include "i40e.h"
32 #include "i40e_trace.h"
33 #include "i40e_prototype.h"
34 
35 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
36 				u32 td_tag)
37 {
38 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
39 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
40 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
41 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
42 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
43 }
44 
45 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
46 /**
47  * i40e_fdir - Generate a Flow Director descriptor based on fdata
48  * @tx_ring: Tx ring to send buffer on
49  * @fdata: Flow director filter data
50  * @add: Indicate if we are adding a rule or deleting one
51  *
52  **/
53 static void i40e_fdir(struct i40e_ring *tx_ring,
54 		      struct i40e_fdir_filter *fdata, bool add)
55 {
56 	struct i40e_filter_program_desc *fdir_desc;
57 	struct i40e_pf *pf = tx_ring->vsi->back;
58 	u32 flex_ptype, dtype_cmd;
59 	u16 i;
60 
61 	/* grab the next descriptor */
62 	i = tx_ring->next_to_use;
63 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
64 
65 	i++;
66 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
67 
68 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
69 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
70 
71 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
72 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
73 
74 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
75 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
76 
77 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
78 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
79 
80 	/* Use LAN VSI Id if not programmed by user */
81 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
82 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
83 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
84 
85 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
86 
87 	dtype_cmd |= add ?
88 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
89 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
90 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
91 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
92 
93 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
94 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
95 
96 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
97 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
98 
99 	if (fdata->cnt_index) {
100 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
101 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
102 			     ((u32)fdata->cnt_index <<
103 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
104 	}
105 
106 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
107 	fdir_desc->rsvd = cpu_to_le32(0);
108 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
109 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
110 }
111 
112 #define I40E_FD_CLEAN_DELAY 10
113 /**
114  * i40e_program_fdir_filter - Program a Flow Director filter
115  * @fdir_data: Packet data that will be filter parameters
116  * @raw_packet: the pre-allocated packet buffer for FDir
117  * @pf: The PF pointer
118  * @add: True for add/update, False for remove
119  **/
120 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
121 				    u8 *raw_packet, struct i40e_pf *pf,
122 				    bool add)
123 {
124 	struct i40e_tx_buffer *tx_buf, *first;
125 	struct i40e_tx_desc *tx_desc;
126 	struct i40e_ring *tx_ring;
127 	struct i40e_vsi *vsi;
128 	struct device *dev;
129 	dma_addr_t dma;
130 	u32 td_cmd = 0;
131 	u16 i;
132 
133 	/* find existing FDIR VSI */
134 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
135 	if (!vsi)
136 		return -ENOENT;
137 
138 	tx_ring = vsi->tx_rings[0];
139 	dev = tx_ring->dev;
140 
141 	/* we need two descriptors to add/del a filter and we can wait */
142 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
143 		if (!i)
144 			return -EAGAIN;
145 		msleep_interruptible(1);
146 	}
147 
148 	dma = dma_map_single(dev, raw_packet,
149 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
150 	if (dma_mapping_error(dev, dma))
151 		goto dma_fail;
152 
153 	/* grab the next descriptor */
154 	i = tx_ring->next_to_use;
155 	first = &tx_ring->tx_bi[i];
156 	i40e_fdir(tx_ring, fdir_data, add);
157 
158 	/* Now program a dummy descriptor */
159 	i = tx_ring->next_to_use;
160 	tx_desc = I40E_TX_DESC(tx_ring, i);
161 	tx_buf = &tx_ring->tx_bi[i];
162 
163 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
164 
165 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
166 
167 	/* record length, and DMA address */
168 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
169 	dma_unmap_addr_set(tx_buf, dma, dma);
170 
171 	tx_desc->buffer_addr = cpu_to_le64(dma);
172 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
173 
174 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
175 	tx_buf->raw_buf = (void *)raw_packet;
176 
177 	tx_desc->cmd_type_offset_bsz =
178 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
179 
180 	/* Force memory writes to complete before letting h/w
181 	 * know there are new descriptors to fetch.
182 	 */
183 	wmb();
184 
185 	/* Mark the data descriptor to be watched */
186 	first->next_to_watch = tx_desc;
187 
188 	writel(tx_ring->next_to_use, tx_ring->tail);
189 	return 0;
190 
191 dma_fail:
192 	return -1;
193 }
194 
195 #define IP_HEADER_OFFSET 14
196 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
197 /**
198  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
199  * @vsi: pointer to the targeted VSI
200  * @fd_data: the flow director data required for the FDir descriptor
201  * @add: true adds a filter, false removes it
202  *
203  * Returns 0 if the filters were successfully added or removed
204  **/
205 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
206 				   struct i40e_fdir_filter *fd_data,
207 				   bool add)
208 {
209 	struct i40e_pf *pf = vsi->back;
210 	struct udphdr *udp;
211 	struct iphdr *ip;
212 	u8 *raw_packet;
213 	int ret;
214 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
215 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
216 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
217 
218 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
219 	if (!raw_packet)
220 		return -ENOMEM;
221 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
222 
223 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
224 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
225 	      + sizeof(struct iphdr));
226 
227 	ip->daddr = fd_data->dst_ip;
228 	udp->dest = fd_data->dst_port;
229 	ip->saddr = fd_data->src_ip;
230 	udp->source = fd_data->src_port;
231 
232 	if (fd_data->flex_filter) {
233 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
234 		__be16 pattern = fd_data->flex_word;
235 		u16 off = fd_data->flex_offset;
236 
237 		*((__force __be16 *)(payload + off)) = pattern;
238 	}
239 
240 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
241 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
242 	if (ret) {
243 		dev_info(&pf->pdev->dev,
244 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
245 			 fd_data->pctype, fd_data->fd_id, ret);
246 		/* Free the packet buffer since it wasn't added to the ring */
247 		kfree(raw_packet);
248 		return -EOPNOTSUPP;
249 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
250 		if (add)
251 			dev_info(&pf->pdev->dev,
252 				 "Filter OK for PCTYPE %d loc = %d\n",
253 				 fd_data->pctype, fd_data->fd_id);
254 		else
255 			dev_info(&pf->pdev->dev,
256 				 "Filter deleted for PCTYPE %d loc = %d\n",
257 				 fd_data->pctype, fd_data->fd_id);
258 	}
259 
260 	if (add)
261 		pf->fd_udp4_filter_cnt++;
262 	else
263 		pf->fd_udp4_filter_cnt--;
264 
265 	return 0;
266 }
267 
268 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
269 /**
270  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
271  * @vsi: pointer to the targeted VSI
272  * @fd_data: the flow director data required for the FDir descriptor
273  * @add: true adds a filter, false removes it
274  *
275  * Returns 0 if the filters were successfully added or removed
276  **/
277 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
278 				   struct i40e_fdir_filter *fd_data,
279 				   bool add)
280 {
281 	struct i40e_pf *pf = vsi->back;
282 	struct tcphdr *tcp;
283 	struct iphdr *ip;
284 	u8 *raw_packet;
285 	int ret;
286 	/* Dummy packet */
287 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
288 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
289 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
290 		0x0, 0x72, 0, 0, 0, 0};
291 
292 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
293 	if (!raw_packet)
294 		return -ENOMEM;
295 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
296 
297 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
298 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
299 	      + sizeof(struct iphdr));
300 
301 	ip->daddr = fd_data->dst_ip;
302 	tcp->dest = fd_data->dst_port;
303 	ip->saddr = fd_data->src_ip;
304 	tcp->source = fd_data->src_port;
305 
306 	if (fd_data->flex_filter) {
307 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
308 		__be16 pattern = fd_data->flex_word;
309 		u16 off = fd_data->flex_offset;
310 
311 		*((__force __be16 *)(payload + off)) = pattern;
312 	}
313 
314 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
315 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
316 	if (ret) {
317 		dev_info(&pf->pdev->dev,
318 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
319 			 fd_data->pctype, fd_data->fd_id, ret);
320 		/* Free the packet buffer since it wasn't added to the ring */
321 		kfree(raw_packet);
322 		return -EOPNOTSUPP;
323 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
324 		if (add)
325 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
326 				 fd_data->pctype, fd_data->fd_id);
327 		else
328 			dev_info(&pf->pdev->dev,
329 				 "Filter deleted for PCTYPE %d loc = %d\n",
330 				 fd_data->pctype, fd_data->fd_id);
331 	}
332 
333 	if (add) {
334 		pf->fd_tcp4_filter_cnt++;
335 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
336 		    I40E_DEBUG_FD & pf->hw.debug_mask)
337 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
338 		pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
339 	} else {
340 		pf->fd_tcp4_filter_cnt--;
341 	}
342 
343 	return 0;
344 }
345 
346 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
347 /**
348  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
349  * a specific flow spec
350  * @vsi: pointer to the targeted VSI
351  * @fd_data: the flow director data required for the FDir descriptor
352  * @add: true adds a filter, false removes it
353  *
354  * Returns 0 if the filters were successfully added or removed
355  **/
356 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
357 				    struct i40e_fdir_filter *fd_data,
358 				    bool add)
359 {
360 	struct i40e_pf *pf = vsi->back;
361 	struct sctphdr *sctp;
362 	struct iphdr *ip;
363 	u8 *raw_packet;
364 	int ret;
365 	/* Dummy packet */
366 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
367 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
368 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
369 
370 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
371 	if (!raw_packet)
372 		return -ENOMEM;
373 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
374 
375 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
376 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
377 	      + sizeof(struct iphdr));
378 
379 	ip->daddr = fd_data->dst_ip;
380 	sctp->dest = fd_data->dst_port;
381 	ip->saddr = fd_data->src_ip;
382 	sctp->source = fd_data->src_port;
383 
384 	if (fd_data->flex_filter) {
385 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
386 		__be16 pattern = fd_data->flex_word;
387 		u16 off = fd_data->flex_offset;
388 
389 		*((__force __be16 *)(payload + off)) = pattern;
390 	}
391 
392 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
393 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
394 	if (ret) {
395 		dev_info(&pf->pdev->dev,
396 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
397 			 fd_data->pctype, fd_data->fd_id, ret);
398 		/* Free the packet buffer since it wasn't added to the ring */
399 		kfree(raw_packet);
400 		return -EOPNOTSUPP;
401 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
402 		if (add)
403 			dev_info(&pf->pdev->dev,
404 				 "Filter OK for PCTYPE %d loc = %d\n",
405 				 fd_data->pctype, fd_data->fd_id);
406 		else
407 			dev_info(&pf->pdev->dev,
408 				 "Filter deleted for PCTYPE %d loc = %d\n",
409 				 fd_data->pctype, fd_data->fd_id);
410 	}
411 
412 	if (add)
413 		pf->fd_sctp4_filter_cnt++;
414 	else
415 		pf->fd_sctp4_filter_cnt--;
416 
417 	return 0;
418 }
419 
420 #define I40E_IP_DUMMY_PACKET_LEN 34
421 /**
422  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
423  * a specific flow spec
424  * @vsi: pointer to the targeted VSI
425  * @fd_data: the flow director data required for the FDir descriptor
426  * @add: true adds a filter, false removes it
427  *
428  * Returns 0 if the filters were successfully added or removed
429  **/
430 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
431 				  struct i40e_fdir_filter *fd_data,
432 				  bool add)
433 {
434 	struct i40e_pf *pf = vsi->back;
435 	struct iphdr *ip;
436 	u8 *raw_packet;
437 	int ret;
438 	int i;
439 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
440 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
441 		0, 0, 0, 0};
442 
443 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
444 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
445 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
446 		if (!raw_packet)
447 			return -ENOMEM;
448 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
449 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
450 
451 		ip->saddr = fd_data->src_ip;
452 		ip->daddr = fd_data->dst_ip;
453 		ip->protocol = 0;
454 
455 		if (fd_data->flex_filter) {
456 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
457 			__be16 pattern = fd_data->flex_word;
458 			u16 off = fd_data->flex_offset;
459 
460 			*((__force __be16 *)(payload + off)) = pattern;
461 		}
462 
463 		fd_data->pctype = i;
464 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
465 		if (ret) {
466 			dev_info(&pf->pdev->dev,
467 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
468 				 fd_data->pctype, fd_data->fd_id, ret);
469 			/* The packet buffer wasn't added to the ring so we
470 			 * need to free it now.
471 			 */
472 			kfree(raw_packet);
473 			return -EOPNOTSUPP;
474 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
475 			if (add)
476 				dev_info(&pf->pdev->dev,
477 					 "Filter OK for PCTYPE %d loc = %d\n",
478 					 fd_data->pctype, fd_data->fd_id);
479 			else
480 				dev_info(&pf->pdev->dev,
481 					 "Filter deleted for PCTYPE %d loc = %d\n",
482 					 fd_data->pctype, fd_data->fd_id);
483 		}
484 	}
485 
486 	if (add)
487 		pf->fd_ip4_filter_cnt++;
488 	else
489 		pf->fd_ip4_filter_cnt--;
490 
491 	return 0;
492 }
493 
494 /**
495  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
496  * @vsi: pointer to the targeted VSI
497  * @cmd: command to get or set RX flow classification rules
498  * @add: true adds a filter, false removes it
499  *
500  **/
501 int i40e_add_del_fdir(struct i40e_vsi *vsi,
502 		      struct i40e_fdir_filter *input, bool add)
503 {
504 	struct i40e_pf *pf = vsi->back;
505 	int ret;
506 
507 	switch (input->flow_type & ~FLOW_EXT) {
508 	case TCP_V4_FLOW:
509 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
510 		break;
511 	case UDP_V4_FLOW:
512 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
513 		break;
514 	case SCTP_V4_FLOW:
515 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
516 		break;
517 	case IP_USER_FLOW:
518 		switch (input->ip4_proto) {
519 		case IPPROTO_TCP:
520 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
521 			break;
522 		case IPPROTO_UDP:
523 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
524 			break;
525 		case IPPROTO_SCTP:
526 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
527 			break;
528 		case IPPROTO_IP:
529 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
530 			break;
531 		default:
532 			/* We cannot support masking based on protocol */
533 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
534 				 input->ip4_proto);
535 			return -EINVAL;
536 		}
537 		break;
538 	default:
539 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
540 			 input->flow_type);
541 		return -EINVAL;
542 	}
543 
544 	/* The buffer allocated here will be normally be freed by
545 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
546 	 * completion. In the event of an error adding the buffer to the FDIR
547 	 * ring, it will immediately be freed. It may also be freed by
548 	 * i40e_clean_tx_ring() when closing the VSI.
549 	 */
550 	return ret;
551 }
552 
553 /**
554  * i40e_fd_handle_status - check the Programming Status for FD
555  * @rx_ring: the Rx ring for this descriptor
556  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
557  * @prog_id: the id originally used for programming
558  *
559  * This is used to verify if the FD programming or invalidation
560  * requested by SW to the HW is successful or not and take actions accordingly.
561  **/
562 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
563 				  union i40e_rx_desc *rx_desc, u8 prog_id)
564 {
565 	struct i40e_pf *pf = rx_ring->vsi->back;
566 	struct pci_dev *pdev = pf->pdev;
567 	u32 fcnt_prog, fcnt_avail;
568 	u32 error;
569 	u64 qw;
570 
571 	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
572 	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
573 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
574 
575 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
576 		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
577 		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
578 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
579 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
580 				 pf->fd_inv);
581 
582 		/* Check if the programming error is for ATR.
583 		 * If so, auto disable ATR and set a state for
584 		 * flush in progress. Next time we come here if flush is in
585 		 * progress do nothing, once flush is complete the state will
586 		 * be cleared.
587 		 */
588 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
589 			return;
590 
591 		pf->fd_add_err++;
592 		/* store the current atr filter count */
593 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
594 
595 		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
596 		    pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
597 			pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
598 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
599 		}
600 
601 		/* filter programming failed most likely due to table full */
602 		fcnt_prog = i40e_get_global_fd_count(pf);
603 		fcnt_avail = pf->fdir_pf_filter_count;
604 		/* If ATR is running fcnt_prog can quickly change,
605 		 * if we are very close to full, it makes sense to disable
606 		 * FD ATR/SB and then re-enable it when there is room.
607 		 */
608 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
609 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
610 			    !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
611 				pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
612 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
613 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
614 			}
615 		}
616 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
617 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
618 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
619 				 rx_desc->wb.qword0.hi_dword.fd_id);
620 	}
621 }
622 
623 /**
624  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
625  * @ring:      the ring that owns the buffer
626  * @tx_buffer: the buffer to free
627  **/
628 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
629 					    struct i40e_tx_buffer *tx_buffer)
630 {
631 	if (tx_buffer->skb) {
632 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
633 			kfree(tx_buffer->raw_buf);
634 		else if (ring_is_xdp(ring))
635 			page_frag_free(tx_buffer->raw_buf);
636 		else
637 			dev_kfree_skb_any(tx_buffer->skb);
638 		if (dma_unmap_len(tx_buffer, len))
639 			dma_unmap_single(ring->dev,
640 					 dma_unmap_addr(tx_buffer, dma),
641 					 dma_unmap_len(tx_buffer, len),
642 					 DMA_TO_DEVICE);
643 	} else if (dma_unmap_len(tx_buffer, len)) {
644 		dma_unmap_page(ring->dev,
645 			       dma_unmap_addr(tx_buffer, dma),
646 			       dma_unmap_len(tx_buffer, len),
647 			       DMA_TO_DEVICE);
648 	}
649 
650 	tx_buffer->next_to_watch = NULL;
651 	tx_buffer->skb = NULL;
652 	dma_unmap_len_set(tx_buffer, len, 0);
653 	/* tx_buffer must be completely set up in the transmit path */
654 }
655 
656 /**
657  * i40e_clean_tx_ring - Free any empty Tx buffers
658  * @tx_ring: ring to be cleaned
659  **/
660 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
661 {
662 	unsigned long bi_size;
663 	u16 i;
664 
665 	/* ring already cleared, nothing to do */
666 	if (!tx_ring->tx_bi)
667 		return;
668 
669 	/* Free all the Tx ring sk_buffs */
670 	for (i = 0; i < tx_ring->count; i++)
671 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
672 
673 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
674 	memset(tx_ring->tx_bi, 0, bi_size);
675 
676 	/* Zero out the descriptor ring */
677 	memset(tx_ring->desc, 0, tx_ring->size);
678 
679 	tx_ring->next_to_use = 0;
680 	tx_ring->next_to_clean = 0;
681 
682 	if (!tx_ring->netdev)
683 		return;
684 
685 	/* cleanup Tx queue statistics */
686 	netdev_tx_reset_queue(txring_txq(tx_ring));
687 }
688 
689 /**
690  * i40e_free_tx_resources - Free Tx resources per queue
691  * @tx_ring: Tx descriptor ring for a specific queue
692  *
693  * Free all transmit software resources
694  **/
695 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
696 {
697 	i40e_clean_tx_ring(tx_ring);
698 	kfree(tx_ring->tx_bi);
699 	tx_ring->tx_bi = NULL;
700 
701 	if (tx_ring->desc) {
702 		dma_free_coherent(tx_ring->dev, tx_ring->size,
703 				  tx_ring->desc, tx_ring->dma);
704 		tx_ring->desc = NULL;
705 	}
706 }
707 
708 /**
709  * i40e_get_tx_pending - how many tx descriptors not processed
710  * @tx_ring: the ring of descriptors
711  *
712  * Since there is no access to the ring head register
713  * in XL710, we need to use our local copies
714  **/
715 u32 i40e_get_tx_pending(struct i40e_ring *ring)
716 {
717 	u32 head, tail;
718 
719 	head = i40e_get_head(ring);
720 	tail = readl(ring->tail);
721 
722 	if (head != tail)
723 		return (head < tail) ?
724 			tail - head : (tail + ring->count - head);
725 
726 	return 0;
727 }
728 
729 /**
730  * i40e_detect_recover_hung - Function to detect and recover hung_queues
731  * @vsi:  pointer to vsi struct with tx queues
732  *
733  * VSI has netdev and netdev has TX queues. This function is to check each of
734  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
735  **/
736 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
737 {
738 	struct i40e_ring *tx_ring = NULL;
739 	struct net_device *netdev;
740 	unsigned int i;
741 	int packets;
742 
743 	if (!vsi)
744 		return;
745 
746 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
747 		return;
748 
749 	netdev = vsi->netdev;
750 	if (!netdev)
751 		return;
752 
753 	if (!netif_carrier_ok(netdev))
754 		return;
755 
756 	for (i = 0; i < vsi->num_queue_pairs; i++) {
757 		tx_ring = vsi->tx_rings[i];
758 		if (tx_ring && tx_ring->desc) {
759 			/* If packet counter has not changed the queue is
760 			 * likely stalled, so force an interrupt for this
761 			 * queue.
762 			 *
763 			 * prev_pkt_ctr would be negative if there was no
764 			 * pending work.
765 			 */
766 			packets = tx_ring->stats.packets & INT_MAX;
767 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
768 				i40e_force_wb(vsi, tx_ring->q_vector);
769 				continue;
770 			}
771 
772 			/* Memory barrier between read of packet count and call
773 			 * to i40e_get_tx_pending()
774 			 */
775 			smp_rmb();
776 			tx_ring->tx_stats.prev_pkt_ctr =
777 			    i40e_get_tx_pending(tx_ring) ? packets : -1;
778 		}
779 	}
780 }
781 
782 #define WB_STRIDE 4
783 
784 /**
785  * i40e_clean_tx_irq - Reclaim resources after transmit completes
786  * @vsi: the VSI we care about
787  * @tx_ring: Tx ring to clean
788  * @napi_budget: Used to determine if we are in netpoll
789  *
790  * Returns true if there's any budget left (e.g. the clean is finished)
791  **/
792 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
793 			      struct i40e_ring *tx_ring, int napi_budget)
794 {
795 	u16 i = tx_ring->next_to_clean;
796 	struct i40e_tx_buffer *tx_buf;
797 	struct i40e_tx_desc *tx_head;
798 	struct i40e_tx_desc *tx_desc;
799 	unsigned int total_bytes = 0, total_packets = 0;
800 	unsigned int budget = vsi->work_limit;
801 
802 	tx_buf = &tx_ring->tx_bi[i];
803 	tx_desc = I40E_TX_DESC(tx_ring, i);
804 	i -= tx_ring->count;
805 
806 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
807 
808 	do {
809 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
810 
811 		/* if next_to_watch is not set then there is no work pending */
812 		if (!eop_desc)
813 			break;
814 
815 		/* prevent any other reads prior to eop_desc */
816 		smp_rmb();
817 
818 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
819 		/* we have caught up to head, no work left to do */
820 		if (tx_head == tx_desc)
821 			break;
822 
823 		/* clear next_to_watch to prevent false hangs */
824 		tx_buf->next_to_watch = NULL;
825 
826 		/* update the statistics for this packet */
827 		total_bytes += tx_buf->bytecount;
828 		total_packets += tx_buf->gso_segs;
829 
830 		/* free the skb/XDP data */
831 		if (ring_is_xdp(tx_ring))
832 			page_frag_free(tx_buf->raw_buf);
833 		else
834 			napi_consume_skb(tx_buf->skb, napi_budget);
835 
836 		/* unmap skb header data */
837 		dma_unmap_single(tx_ring->dev,
838 				 dma_unmap_addr(tx_buf, dma),
839 				 dma_unmap_len(tx_buf, len),
840 				 DMA_TO_DEVICE);
841 
842 		/* clear tx_buffer data */
843 		tx_buf->skb = NULL;
844 		dma_unmap_len_set(tx_buf, len, 0);
845 
846 		/* unmap remaining buffers */
847 		while (tx_desc != eop_desc) {
848 			i40e_trace(clean_tx_irq_unmap,
849 				   tx_ring, tx_desc, tx_buf);
850 
851 			tx_buf++;
852 			tx_desc++;
853 			i++;
854 			if (unlikely(!i)) {
855 				i -= tx_ring->count;
856 				tx_buf = tx_ring->tx_bi;
857 				tx_desc = I40E_TX_DESC(tx_ring, 0);
858 			}
859 
860 			/* unmap any remaining paged data */
861 			if (dma_unmap_len(tx_buf, len)) {
862 				dma_unmap_page(tx_ring->dev,
863 					       dma_unmap_addr(tx_buf, dma),
864 					       dma_unmap_len(tx_buf, len),
865 					       DMA_TO_DEVICE);
866 				dma_unmap_len_set(tx_buf, len, 0);
867 			}
868 		}
869 
870 		/* move us one more past the eop_desc for start of next pkt */
871 		tx_buf++;
872 		tx_desc++;
873 		i++;
874 		if (unlikely(!i)) {
875 			i -= tx_ring->count;
876 			tx_buf = tx_ring->tx_bi;
877 			tx_desc = I40E_TX_DESC(tx_ring, 0);
878 		}
879 
880 		prefetch(tx_desc);
881 
882 		/* update budget accounting */
883 		budget--;
884 	} while (likely(budget));
885 
886 	i += tx_ring->count;
887 	tx_ring->next_to_clean = i;
888 	u64_stats_update_begin(&tx_ring->syncp);
889 	tx_ring->stats.bytes += total_bytes;
890 	tx_ring->stats.packets += total_packets;
891 	u64_stats_update_end(&tx_ring->syncp);
892 	tx_ring->q_vector->tx.total_bytes += total_bytes;
893 	tx_ring->q_vector->tx.total_packets += total_packets;
894 
895 	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
896 		/* check to see if there are < 4 descriptors
897 		 * waiting to be written back, then kick the hardware to force
898 		 * them to be written back in case we stay in NAPI.
899 		 * In this mode on X722 we do not enable Interrupt.
900 		 */
901 		unsigned int j = i40e_get_tx_pending(tx_ring);
902 
903 		if (budget &&
904 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
905 		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
906 		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
907 			tx_ring->arm_wb = true;
908 	}
909 
910 	if (ring_is_xdp(tx_ring))
911 		return !!budget;
912 
913 	/* notify netdev of completed buffers */
914 	netdev_tx_completed_queue(txring_txq(tx_ring),
915 				  total_packets, total_bytes);
916 
917 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
918 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
919 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
920 		/* Make sure that anybody stopping the queue after this
921 		 * sees the new next_to_clean.
922 		 */
923 		smp_mb();
924 		if (__netif_subqueue_stopped(tx_ring->netdev,
925 					     tx_ring->queue_index) &&
926 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
927 			netif_wake_subqueue(tx_ring->netdev,
928 					    tx_ring->queue_index);
929 			++tx_ring->tx_stats.restart_queue;
930 		}
931 	}
932 
933 	return !!budget;
934 }
935 
936 /**
937  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
938  * @vsi: the VSI we care about
939  * @q_vector: the vector on which to enable writeback
940  *
941  **/
942 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
943 				  struct i40e_q_vector *q_vector)
944 {
945 	u16 flags = q_vector->tx.ring[0].flags;
946 	u32 val;
947 
948 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
949 		return;
950 
951 	if (q_vector->arm_wb_state)
952 		return;
953 
954 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
955 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
956 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
957 
958 		wr32(&vsi->back->hw,
959 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
960 		     val);
961 	} else {
962 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
963 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
964 
965 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
966 	}
967 	q_vector->arm_wb_state = true;
968 }
969 
970 /**
971  * i40e_force_wb - Issue SW Interrupt so HW does a wb
972  * @vsi: the VSI we care about
973  * @q_vector: the vector  on which to force writeback
974  *
975  **/
976 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
977 {
978 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
979 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
980 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
981 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
982 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
983 			  /* allow 00 to be written to the index */
984 
985 		wr32(&vsi->back->hw,
986 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
987 	} else {
988 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
989 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
990 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
991 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
992 			/* allow 00 to be written to the index */
993 
994 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
995 	}
996 }
997 
998 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
999 					struct i40e_ring_container *rc)
1000 {
1001 	return &q_vector->rx == rc;
1002 }
1003 
1004 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1005 {
1006 	unsigned int divisor;
1007 
1008 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1009 	case I40E_LINK_SPEED_40GB:
1010 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1011 		break;
1012 	case I40E_LINK_SPEED_25GB:
1013 	case I40E_LINK_SPEED_20GB:
1014 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1015 		break;
1016 	default:
1017 	case I40E_LINK_SPEED_10GB:
1018 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1019 		break;
1020 	case I40E_LINK_SPEED_1GB:
1021 	case I40E_LINK_SPEED_100MB:
1022 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1023 		break;
1024 	}
1025 
1026 	return divisor;
1027 }
1028 
1029 /**
1030  * i40e_update_itr - update the dynamic ITR value based on statistics
1031  * @q_vector: structure containing interrupt and ring information
1032  * @rc: structure containing ring performance data
1033  *
1034  * Stores a new ITR value based on packets and byte
1035  * counts during the last interrupt.  The advantage of per interrupt
1036  * computation is faster updates and more accurate ITR for the current
1037  * traffic pattern.  Constants in this function were computed
1038  * based on theoretical maximum wire speed and thresholds were set based
1039  * on testing data as well as attempting to minimize response time
1040  * while increasing bulk throughput.
1041  **/
1042 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1043 			    struct i40e_ring_container *rc)
1044 {
1045 	unsigned int avg_wire_size, packets, bytes, itr;
1046 	unsigned long next_update = jiffies;
1047 
1048 	/* If we don't have any rings just leave ourselves set for maximum
1049 	 * possible latency so we take ourselves out of the equation.
1050 	 */
1051 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1052 		return;
1053 
1054 	/* For Rx we want to push the delay up and default to low latency.
1055 	 * for Tx we want to pull the delay down and default to high latency.
1056 	 */
1057 	itr = i40e_container_is_rx(q_vector, rc) ?
1058 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1059 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1060 
1061 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1062 	 * that either packets are coming in so slow there hasn't been
1063 	 * any work, or that there is so much work that NAPI is dealing
1064 	 * with interrupt moderation and we don't need to do anything.
1065 	 */
1066 	if (time_after(next_update, rc->next_update))
1067 		goto clear_counts;
1068 
1069 	/* If itr_countdown is set it means we programmed an ITR within
1070 	 * the last 4 interrupt cycles. This has a side effect of us
1071 	 * potentially firing an early interrupt. In order to work around
1072 	 * this we need to throw out any data received for a few
1073 	 * interrupts following the update.
1074 	 */
1075 	if (q_vector->itr_countdown) {
1076 		itr = rc->target_itr;
1077 		goto clear_counts;
1078 	}
1079 
1080 	packets = rc->total_packets;
1081 	bytes = rc->total_bytes;
1082 
1083 	if (i40e_container_is_rx(q_vector, rc)) {
1084 		/* If Rx there are 1 to 4 packets and bytes are less than
1085 		 * 9000 assume insufficient data to use bulk rate limiting
1086 		 * approach unless Tx is already in bulk rate limiting. We
1087 		 * are likely latency driven.
1088 		 */
1089 		if (packets && packets < 4 && bytes < 9000 &&
1090 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1091 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1092 			goto adjust_by_size;
1093 		}
1094 	} else if (packets < 4) {
1095 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1096 		 * bulk mode and we are receiving 4 or fewer packets just
1097 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1098 		 * that the Rx can relax.
1099 		 */
1100 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1101 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1102 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1103 			goto clear_counts;
1104 	} else if (packets > 32) {
1105 		/* If we have processed over 32 packets in a single interrupt
1106 		 * for Tx assume we need to switch over to "bulk" mode.
1107 		 */
1108 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1109 	}
1110 
1111 	/* We have no packets to actually measure against. This means
1112 	 * either one of the other queues on this vector is active or
1113 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1114 	 *
1115 	 * Between 4 and 56 we can assume that our current interrupt delay
1116 	 * is only slightly too low. As such we should increase it by a small
1117 	 * fixed amount.
1118 	 */
1119 	if (packets < 56) {
1120 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1121 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1122 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1123 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1124 		}
1125 		goto clear_counts;
1126 	}
1127 
1128 	if (packets <= 256) {
1129 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1130 		itr &= I40E_ITR_MASK;
1131 
1132 		/* Between 56 and 112 is our "goldilocks" zone where we are
1133 		 * working out "just right". Just report that our current
1134 		 * ITR is good for us.
1135 		 */
1136 		if (packets <= 112)
1137 			goto clear_counts;
1138 
1139 		/* If packet count is 128 or greater we are likely looking
1140 		 * at a slight overrun of the delay we want. Try halving
1141 		 * our delay to see if that will cut the number of packets
1142 		 * in half per interrupt.
1143 		 */
1144 		itr /= 2;
1145 		itr &= I40E_ITR_MASK;
1146 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1147 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1148 
1149 		goto clear_counts;
1150 	}
1151 
1152 	/* The paths below assume we are dealing with a bulk ITR since
1153 	 * number of packets is greater than 256. We are just going to have
1154 	 * to compute a value and try to bring the count under control,
1155 	 * though for smaller packet sizes there isn't much we can do as
1156 	 * NAPI polling will likely be kicking in sooner rather than later.
1157 	 */
1158 	itr = I40E_ITR_ADAPTIVE_BULK;
1159 
1160 adjust_by_size:
1161 	/* If packet counts are 256 or greater we can assume we have a gross
1162 	 * overestimation of what the rate should be. Instead of trying to fine
1163 	 * tune it just use the formula below to try and dial in an exact value
1164 	 * give the current packet size of the frame.
1165 	 */
1166 	avg_wire_size = bytes / packets;
1167 
1168 	/* The following is a crude approximation of:
1169 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1170 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1171 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1172 	 *
1173 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1174 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1175 	 * formula down to
1176 	 *
1177 	 *  (170 * (size + 24)) / (size + 640) = ITR
1178 	 *
1179 	 * We first do some math on the packet size and then finally bitshift
1180 	 * by 8 after rounding up. We also have to account for PCIe link speed
1181 	 * difference as ITR scales based on this.
1182 	 */
1183 	if (avg_wire_size <= 60) {
1184 		/* Start at 250k ints/sec */
1185 		avg_wire_size = 4096;
1186 	} else if (avg_wire_size <= 380) {
1187 		/* 250K ints/sec to 60K ints/sec */
1188 		avg_wire_size *= 40;
1189 		avg_wire_size += 1696;
1190 	} else if (avg_wire_size <= 1084) {
1191 		/* 60K ints/sec to 36K ints/sec */
1192 		avg_wire_size *= 15;
1193 		avg_wire_size += 11452;
1194 	} else if (avg_wire_size <= 1980) {
1195 		/* 36K ints/sec to 30K ints/sec */
1196 		avg_wire_size *= 5;
1197 		avg_wire_size += 22420;
1198 	} else {
1199 		/* plateau at a limit of 30K ints/sec */
1200 		avg_wire_size = 32256;
1201 	}
1202 
1203 	/* If we are in low latency mode halve our delay which doubles the
1204 	 * rate to somewhere between 100K to 16K ints/sec
1205 	 */
1206 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1207 		avg_wire_size /= 2;
1208 
1209 	/* Resultant value is 256 times larger than it needs to be. This
1210 	 * gives us room to adjust the value as needed to either increase
1211 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1212 	 *
1213 	 * Use addition as we have already recorded the new latency flag
1214 	 * for the ITR value.
1215 	 */
1216 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1217 	       I40E_ITR_ADAPTIVE_MIN_INC;
1218 
1219 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1220 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1221 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1222 	}
1223 
1224 clear_counts:
1225 	/* write back value */
1226 	rc->target_itr = itr;
1227 
1228 	/* next update should occur within next jiffy */
1229 	rc->next_update = next_update + 1;
1230 
1231 	rc->total_bytes = 0;
1232 	rc->total_packets = 0;
1233 }
1234 
1235 /**
1236  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1237  * @rx_ring: rx descriptor ring to store buffers on
1238  * @old_buff: donor buffer to have page reused
1239  *
1240  * Synchronizes page for reuse by the adapter
1241  **/
1242 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1243 			       struct i40e_rx_buffer *old_buff)
1244 {
1245 	struct i40e_rx_buffer *new_buff;
1246 	u16 nta = rx_ring->next_to_alloc;
1247 
1248 	new_buff = &rx_ring->rx_bi[nta];
1249 
1250 	/* update, and store next to alloc */
1251 	nta++;
1252 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1253 
1254 	/* transfer page from old buffer to new buffer */
1255 	new_buff->dma		= old_buff->dma;
1256 	new_buff->page		= old_buff->page;
1257 	new_buff->page_offset	= old_buff->page_offset;
1258 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1259 }
1260 
1261 /**
1262  * i40e_rx_is_programming_status - check for programming status descriptor
1263  * @qw: qword representing status_error_len in CPU ordering
1264  *
1265  * The value of in the descriptor length field indicate if this
1266  * is a programming status descriptor for flow director or FCoE
1267  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1268  * it is a packet descriptor.
1269  **/
1270 static inline bool i40e_rx_is_programming_status(u64 qw)
1271 {
1272 	/* The Rx filter programming status and SPH bit occupy the same
1273 	 * spot in the descriptor. Since we don't support packet split we
1274 	 * can just reuse the bit as an indication that this is a
1275 	 * programming status descriptor.
1276 	 */
1277 	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1278 }
1279 
1280 /**
1281  * i40e_clean_programming_status - clean the programming status descriptor
1282  * @rx_ring: the rx ring that has this descriptor
1283  * @rx_desc: the rx descriptor written back by HW
1284  * @qw: qword representing status_error_len in CPU ordering
1285  *
1286  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1287  * status being successful or not and take actions accordingly. FCoE should
1288  * handle its context/filter programming/invalidation status and take actions.
1289  *
1290  **/
1291 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1292 					  union i40e_rx_desc *rx_desc,
1293 					  u64 qw)
1294 {
1295 	struct i40e_rx_buffer *rx_buffer;
1296 	u32 ntc = rx_ring->next_to_clean;
1297 	u8 id;
1298 
1299 	/* fetch, update, and store next to clean */
1300 	rx_buffer = &rx_ring->rx_bi[ntc++];
1301 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1302 	rx_ring->next_to_clean = ntc;
1303 
1304 	prefetch(I40E_RX_DESC(rx_ring, ntc));
1305 
1306 	/* place unused page back on the ring */
1307 	i40e_reuse_rx_page(rx_ring, rx_buffer);
1308 	rx_ring->rx_stats.page_reuse_count++;
1309 
1310 	/* clear contents of buffer_info */
1311 	rx_buffer->page = NULL;
1312 
1313 	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1314 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1315 
1316 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1317 		i40e_fd_handle_status(rx_ring, rx_desc, id);
1318 }
1319 
1320 /**
1321  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1322  * @tx_ring: the tx ring to set up
1323  *
1324  * Return 0 on success, negative on error
1325  **/
1326 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1327 {
1328 	struct device *dev = tx_ring->dev;
1329 	int bi_size;
1330 
1331 	if (!dev)
1332 		return -ENOMEM;
1333 
1334 	/* warn if we are about to overwrite the pointer */
1335 	WARN_ON(tx_ring->tx_bi);
1336 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1337 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1338 	if (!tx_ring->tx_bi)
1339 		goto err;
1340 
1341 	u64_stats_init(&tx_ring->syncp);
1342 
1343 	/* round up to nearest 4K */
1344 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1345 	/* add u32 for head writeback, align after this takes care of
1346 	 * guaranteeing this is at least one cache line in size
1347 	 */
1348 	tx_ring->size += sizeof(u32);
1349 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1350 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1351 					   &tx_ring->dma, GFP_KERNEL);
1352 	if (!tx_ring->desc) {
1353 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1354 			 tx_ring->size);
1355 		goto err;
1356 	}
1357 
1358 	tx_ring->next_to_use = 0;
1359 	tx_ring->next_to_clean = 0;
1360 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1361 	return 0;
1362 
1363 err:
1364 	kfree(tx_ring->tx_bi);
1365 	tx_ring->tx_bi = NULL;
1366 	return -ENOMEM;
1367 }
1368 
1369 /**
1370  * i40e_clean_rx_ring - Free Rx buffers
1371  * @rx_ring: ring to be cleaned
1372  **/
1373 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1374 {
1375 	unsigned long bi_size;
1376 	u16 i;
1377 
1378 	/* ring already cleared, nothing to do */
1379 	if (!rx_ring->rx_bi)
1380 		return;
1381 
1382 	if (rx_ring->skb) {
1383 		dev_kfree_skb(rx_ring->skb);
1384 		rx_ring->skb = NULL;
1385 	}
1386 
1387 	/* Free all the Rx ring sk_buffs */
1388 	for (i = 0; i < rx_ring->count; i++) {
1389 		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1390 
1391 		if (!rx_bi->page)
1392 			continue;
1393 
1394 		/* Invalidate cache lines that may have been written to by
1395 		 * device so that we avoid corrupting memory.
1396 		 */
1397 		dma_sync_single_range_for_cpu(rx_ring->dev,
1398 					      rx_bi->dma,
1399 					      rx_bi->page_offset,
1400 					      rx_ring->rx_buf_len,
1401 					      DMA_FROM_DEVICE);
1402 
1403 		/* free resources associated with mapping */
1404 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1405 				     i40e_rx_pg_size(rx_ring),
1406 				     DMA_FROM_DEVICE,
1407 				     I40E_RX_DMA_ATTR);
1408 
1409 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1410 
1411 		rx_bi->page = NULL;
1412 		rx_bi->page_offset = 0;
1413 	}
1414 
1415 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1416 	memset(rx_ring->rx_bi, 0, bi_size);
1417 
1418 	/* Zero out the descriptor ring */
1419 	memset(rx_ring->desc, 0, rx_ring->size);
1420 
1421 	rx_ring->next_to_alloc = 0;
1422 	rx_ring->next_to_clean = 0;
1423 	rx_ring->next_to_use = 0;
1424 }
1425 
1426 /**
1427  * i40e_free_rx_resources - Free Rx resources
1428  * @rx_ring: ring to clean the resources from
1429  *
1430  * Free all receive software resources
1431  **/
1432 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1433 {
1434 	i40e_clean_rx_ring(rx_ring);
1435 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1436 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1437 	rx_ring->xdp_prog = NULL;
1438 	kfree(rx_ring->rx_bi);
1439 	rx_ring->rx_bi = NULL;
1440 
1441 	if (rx_ring->desc) {
1442 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1443 				  rx_ring->desc, rx_ring->dma);
1444 		rx_ring->desc = NULL;
1445 	}
1446 }
1447 
1448 /**
1449  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1450  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1451  *
1452  * Returns 0 on success, negative on failure
1453  **/
1454 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1455 {
1456 	struct device *dev = rx_ring->dev;
1457 	int err = -ENOMEM;
1458 	int bi_size;
1459 
1460 	/* warn if we are about to overwrite the pointer */
1461 	WARN_ON(rx_ring->rx_bi);
1462 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1463 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1464 	if (!rx_ring->rx_bi)
1465 		goto err;
1466 
1467 	u64_stats_init(&rx_ring->syncp);
1468 
1469 	/* Round up to nearest 4K */
1470 	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1471 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1472 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1473 					   &rx_ring->dma, GFP_KERNEL);
1474 
1475 	if (!rx_ring->desc) {
1476 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1477 			 rx_ring->size);
1478 		goto err;
1479 	}
1480 
1481 	rx_ring->next_to_alloc = 0;
1482 	rx_ring->next_to_clean = 0;
1483 	rx_ring->next_to_use = 0;
1484 
1485 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1486 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1487 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1488 				       rx_ring->queue_index);
1489 		if (err < 0)
1490 			goto err;
1491 	}
1492 
1493 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1494 
1495 	return 0;
1496 err:
1497 	kfree(rx_ring->rx_bi);
1498 	rx_ring->rx_bi = NULL;
1499 	return err;
1500 }
1501 
1502 /**
1503  * i40e_release_rx_desc - Store the new tail and head values
1504  * @rx_ring: ring to bump
1505  * @val: new head index
1506  **/
1507 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1508 {
1509 	rx_ring->next_to_use = val;
1510 
1511 	/* update next to alloc since we have filled the ring */
1512 	rx_ring->next_to_alloc = val;
1513 
1514 	/* Force memory writes to complete before letting h/w
1515 	 * know there are new descriptors to fetch.  (Only
1516 	 * applicable for weak-ordered memory model archs,
1517 	 * such as IA-64).
1518 	 */
1519 	wmb();
1520 	writel(val, rx_ring->tail);
1521 }
1522 
1523 /**
1524  * i40e_rx_offset - Return expected offset into page to access data
1525  * @rx_ring: Ring we are requesting offset of
1526  *
1527  * Returns the offset value for ring into the data buffer.
1528  */
1529 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1530 {
1531 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1532 }
1533 
1534 /**
1535  * i40e_alloc_mapped_page - recycle or make a new page
1536  * @rx_ring: ring to use
1537  * @bi: rx_buffer struct to modify
1538  *
1539  * Returns true if the page was successfully allocated or
1540  * reused.
1541  **/
1542 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1543 				   struct i40e_rx_buffer *bi)
1544 {
1545 	struct page *page = bi->page;
1546 	dma_addr_t dma;
1547 
1548 	/* since we are recycling buffers we should seldom need to alloc */
1549 	if (likely(page)) {
1550 		rx_ring->rx_stats.page_reuse_count++;
1551 		return true;
1552 	}
1553 
1554 	/* alloc new page for storage */
1555 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1556 	if (unlikely(!page)) {
1557 		rx_ring->rx_stats.alloc_page_failed++;
1558 		return false;
1559 	}
1560 
1561 	/* map page for use */
1562 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1563 				 i40e_rx_pg_size(rx_ring),
1564 				 DMA_FROM_DEVICE,
1565 				 I40E_RX_DMA_ATTR);
1566 
1567 	/* if mapping failed free memory back to system since
1568 	 * there isn't much point in holding memory we can't use
1569 	 */
1570 	if (dma_mapping_error(rx_ring->dev, dma)) {
1571 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1572 		rx_ring->rx_stats.alloc_page_failed++;
1573 		return false;
1574 	}
1575 
1576 	bi->dma = dma;
1577 	bi->page = page;
1578 	bi->page_offset = i40e_rx_offset(rx_ring);
1579 
1580 	/* initialize pagecnt_bias to 1 representing we fully own page */
1581 	bi->pagecnt_bias = 1;
1582 
1583 	return true;
1584 }
1585 
1586 /**
1587  * i40e_receive_skb - Send a completed packet up the stack
1588  * @rx_ring:  rx ring in play
1589  * @skb: packet to send up
1590  * @vlan_tag: vlan tag for packet
1591  **/
1592 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1593 			     struct sk_buff *skb, u16 vlan_tag)
1594 {
1595 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1596 
1597 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1598 	    (vlan_tag & VLAN_VID_MASK))
1599 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1600 
1601 	napi_gro_receive(&q_vector->napi, skb);
1602 }
1603 
1604 /**
1605  * i40e_alloc_rx_buffers - Replace used receive buffers
1606  * @rx_ring: ring to place buffers on
1607  * @cleaned_count: number of buffers to replace
1608  *
1609  * Returns false if all allocations were successful, true if any fail
1610  **/
1611 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1612 {
1613 	u16 ntu = rx_ring->next_to_use;
1614 	union i40e_rx_desc *rx_desc;
1615 	struct i40e_rx_buffer *bi;
1616 
1617 	/* do nothing if no valid netdev defined */
1618 	if (!rx_ring->netdev || !cleaned_count)
1619 		return false;
1620 
1621 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1622 	bi = &rx_ring->rx_bi[ntu];
1623 
1624 	do {
1625 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1626 			goto no_buffers;
1627 
1628 		/* sync the buffer for use by the device */
1629 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1630 						 bi->page_offset,
1631 						 rx_ring->rx_buf_len,
1632 						 DMA_FROM_DEVICE);
1633 
1634 		/* Refresh the desc even if buffer_addrs didn't change
1635 		 * because each write-back erases this info.
1636 		 */
1637 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1638 
1639 		rx_desc++;
1640 		bi++;
1641 		ntu++;
1642 		if (unlikely(ntu == rx_ring->count)) {
1643 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1644 			bi = rx_ring->rx_bi;
1645 			ntu = 0;
1646 		}
1647 
1648 		/* clear the status bits for the next_to_use descriptor */
1649 		rx_desc->wb.qword1.status_error_len = 0;
1650 
1651 		cleaned_count--;
1652 	} while (cleaned_count);
1653 
1654 	if (rx_ring->next_to_use != ntu)
1655 		i40e_release_rx_desc(rx_ring, ntu);
1656 
1657 	return false;
1658 
1659 no_buffers:
1660 	if (rx_ring->next_to_use != ntu)
1661 		i40e_release_rx_desc(rx_ring, ntu);
1662 
1663 	/* make sure to come back via polling to try again after
1664 	 * allocation failure
1665 	 */
1666 	return true;
1667 }
1668 
1669 /**
1670  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1671  * @vsi: the VSI we care about
1672  * @skb: skb currently being received and modified
1673  * @rx_desc: the receive descriptor
1674  **/
1675 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1676 				    struct sk_buff *skb,
1677 				    union i40e_rx_desc *rx_desc)
1678 {
1679 	struct i40e_rx_ptype_decoded decoded;
1680 	u32 rx_error, rx_status;
1681 	bool ipv4, ipv6;
1682 	u8 ptype;
1683 	u64 qword;
1684 
1685 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1686 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1687 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1688 		   I40E_RXD_QW1_ERROR_SHIFT;
1689 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1690 		    I40E_RXD_QW1_STATUS_SHIFT;
1691 	decoded = decode_rx_desc_ptype(ptype);
1692 
1693 	skb->ip_summed = CHECKSUM_NONE;
1694 
1695 	skb_checksum_none_assert(skb);
1696 
1697 	/* Rx csum enabled and ip headers found? */
1698 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1699 		return;
1700 
1701 	/* did the hardware decode the packet and checksum? */
1702 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1703 		return;
1704 
1705 	/* both known and outer_ip must be set for the below code to work */
1706 	if (!(decoded.known && decoded.outer_ip))
1707 		return;
1708 
1709 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1710 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1711 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1712 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1713 
1714 	if (ipv4 &&
1715 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1716 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1717 		goto checksum_fail;
1718 
1719 	/* likely incorrect csum if alternate IP extension headers found */
1720 	if (ipv6 &&
1721 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1722 		/* don't increment checksum err here, non-fatal err */
1723 		return;
1724 
1725 	/* there was some L4 error, count error and punt packet to the stack */
1726 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1727 		goto checksum_fail;
1728 
1729 	/* handle packets that were not able to be checksummed due
1730 	 * to arrival speed, in this case the stack can compute
1731 	 * the csum.
1732 	 */
1733 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1734 		return;
1735 
1736 	/* If there is an outer header present that might contain a checksum
1737 	 * we need to bump the checksum level by 1 to reflect the fact that
1738 	 * we are indicating we validated the inner checksum.
1739 	 */
1740 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1741 		skb->csum_level = 1;
1742 
1743 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1744 	switch (decoded.inner_prot) {
1745 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1746 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1747 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1748 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1749 		/* fall though */
1750 	default:
1751 		break;
1752 	}
1753 
1754 	return;
1755 
1756 checksum_fail:
1757 	vsi->back->hw_csum_rx_error++;
1758 }
1759 
1760 /**
1761  * i40e_ptype_to_htype - get a hash type
1762  * @ptype: the ptype value from the descriptor
1763  *
1764  * Returns a hash type to be used by skb_set_hash
1765  **/
1766 static inline int i40e_ptype_to_htype(u8 ptype)
1767 {
1768 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1769 
1770 	if (!decoded.known)
1771 		return PKT_HASH_TYPE_NONE;
1772 
1773 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1774 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1775 		return PKT_HASH_TYPE_L4;
1776 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1777 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1778 		return PKT_HASH_TYPE_L3;
1779 	else
1780 		return PKT_HASH_TYPE_L2;
1781 }
1782 
1783 /**
1784  * i40e_rx_hash - set the hash value in the skb
1785  * @ring: descriptor ring
1786  * @rx_desc: specific descriptor
1787  **/
1788 static inline void i40e_rx_hash(struct i40e_ring *ring,
1789 				union i40e_rx_desc *rx_desc,
1790 				struct sk_buff *skb,
1791 				u8 rx_ptype)
1792 {
1793 	u32 hash;
1794 	const __le64 rss_mask =
1795 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1796 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1797 
1798 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1799 		return;
1800 
1801 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1802 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1803 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1804 	}
1805 }
1806 
1807 /**
1808  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1809  * @rx_ring: rx descriptor ring packet is being transacted on
1810  * @rx_desc: pointer to the EOP Rx descriptor
1811  * @skb: pointer to current skb being populated
1812  * @rx_ptype: the packet type decoded by hardware
1813  *
1814  * This function checks the ring, descriptor, and packet information in
1815  * order to populate the hash, checksum, VLAN, protocol, and
1816  * other fields within the skb.
1817  **/
1818 static inline
1819 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1820 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1821 			     u8 rx_ptype)
1822 {
1823 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1824 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1825 			I40E_RXD_QW1_STATUS_SHIFT;
1826 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1827 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1828 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1829 
1830 	if (unlikely(tsynvalid))
1831 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1832 
1833 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1834 
1835 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1836 
1837 	skb_record_rx_queue(skb, rx_ring->queue_index);
1838 
1839 	/* modifies the skb - consumes the enet header */
1840 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1841 }
1842 
1843 /**
1844  * i40e_cleanup_headers - Correct empty headers
1845  * @rx_ring: rx descriptor ring packet is being transacted on
1846  * @skb: pointer to current skb being fixed
1847  * @rx_desc: pointer to the EOP Rx descriptor
1848  *
1849  * Also address the case where we are pulling data in on pages only
1850  * and as such no data is present in the skb header.
1851  *
1852  * In addition if skb is not at least 60 bytes we need to pad it so that
1853  * it is large enough to qualify as a valid Ethernet frame.
1854  *
1855  * Returns true if an error was encountered and skb was freed.
1856  **/
1857 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1858 				 union i40e_rx_desc *rx_desc)
1859 
1860 {
1861 	/* XDP packets use error pointer so abort at this point */
1862 	if (IS_ERR(skb))
1863 		return true;
1864 
1865 	/* ERR_MASK will only have valid bits if EOP set, and
1866 	 * what we are doing here is actually checking
1867 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1868 	 * the error field
1869 	 */
1870 	if (unlikely(i40e_test_staterr(rx_desc,
1871 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1872 		dev_kfree_skb_any(skb);
1873 		return true;
1874 	}
1875 
1876 	/* if eth_skb_pad returns an error the skb was freed */
1877 	if (eth_skb_pad(skb))
1878 		return true;
1879 
1880 	return false;
1881 }
1882 
1883 /**
1884  * i40e_page_is_reusable - check if any reuse is possible
1885  * @page: page struct to check
1886  *
1887  * A page is not reusable if it was allocated under low memory
1888  * conditions, or it's not in the same NUMA node as this CPU.
1889  */
1890 static inline bool i40e_page_is_reusable(struct page *page)
1891 {
1892 	return (page_to_nid(page) == numa_mem_id()) &&
1893 		!page_is_pfmemalloc(page);
1894 }
1895 
1896 /**
1897  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1898  * the adapter for another receive
1899  *
1900  * @rx_buffer: buffer containing the page
1901  *
1902  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1903  * an unused region in the page.
1904  *
1905  * For small pages, @truesize will be a constant value, half the size
1906  * of the memory at page.  We'll attempt to alternate between high and
1907  * low halves of the page, with one half ready for use by the hardware
1908  * and the other half being consumed by the stack.  We use the page
1909  * ref count to determine whether the stack has finished consuming the
1910  * portion of this page that was passed up with a previous packet.  If
1911  * the page ref count is >1, we'll assume the "other" half page is
1912  * still busy, and this page cannot be reused.
1913  *
1914  * For larger pages, @truesize will be the actual space used by the
1915  * received packet (adjusted upward to an even multiple of the cache
1916  * line size).  This will advance through the page by the amount
1917  * actually consumed by the received packets while there is still
1918  * space for a buffer.  Each region of larger pages will be used at
1919  * most once, after which the page will not be reused.
1920  *
1921  * In either case, if the page is reusable its refcount is increased.
1922  **/
1923 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1924 {
1925 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1926 	struct page *page = rx_buffer->page;
1927 
1928 	/* Is any reuse possible? */
1929 	if (unlikely(!i40e_page_is_reusable(page)))
1930 		return false;
1931 
1932 #if (PAGE_SIZE < 8192)
1933 	/* if we are only owner of page we can reuse it */
1934 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1935 		return false;
1936 #else
1937 #define I40E_LAST_OFFSET \
1938 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1939 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1940 		return false;
1941 #endif
1942 
1943 	/* If we have drained the page fragment pool we need to update
1944 	 * the pagecnt_bias and page count so that we fully restock the
1945 	 * number of references the driver holds.
1946 	 */
1947 	if (unlikely(!pagecnt_bias)) {
1948 		page_ref_add(page, USHRT_MAX);
1949 		rx_buffer->pagecnt_bias = USHRT_MAX;
1950 	}
1951 
1952 	return true;
1953 }
1954 
1955 /**
1956  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1957  * @rx_ring: rx descriptor ring to transact packets on
1958  * @rx_buffer: buffer containing page to add
1959  * @skb: sk_buff to place the data into
1960  * @size: packet length from rx_desc
1961  *
1962  * This function will add the data contained in rx_buffer->page to the skb.
1963  * It will just attach the page as a frag to the skb.
1964  *
1965  * The function will then update the page offset.
1966  **/
1967 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1968 			     struct i40e_rx_buffer *rx_buffer,
1969 			     struct sk_buff *skb,
1970 			     unsigned int size)
1971 {
1972 #if (PAGE_SIZE < 8192)
1973 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1974 #else
1975 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1976 #endif
1977 
1978 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1979 			rx_buffer->page_offset, size, truesize);
1980 
1981 	/* page is being used so we must update the page offset */
1982 #if (PAGE_SIZE < 8192)
1983 	rx_buffer->page_offset ^= truesize;
1984 #else
1985 	rx_buffer->page_offset += truesize;
1986 #endif
1987 }
1988 
1989 /**
1990  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1991  * @rx_ring: rx descriptor ring to transact packets on
1992  * @size: size of buffer to add to skb
1993  *
1994  * This function will pull an Rx buffer from the ring and synchronize it
1995  * for use by the CPU.
1996  */
1997 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1998 						 const unsigned int size)
1999 {
2000 	struct i40e_rx_buffer *rx_buffer;
2001 
2002 	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
2003 	prefetchw(rx_buffer->page);
2004 
2005 	/* we are reusing so sync this buffer for CPU use */
2006 	dma_sync_single_range_for_cpu(rx_ring->dev,
2007 				      rx_buffer->dma,
2008 				      rx_buffer->page_offset,
2009 				      size,
2010 				      DMA_FROM_DEVICE);
2011 
2012 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2013 	rx_buffer->pagecnt_bias--;
2014 
2015 	return rx_buffer;
2016 }
2017 
2018 /**
2019  * i40e_construct_skb - Allocate skb and populate it
2020  * @rx_ring: rx descriptor ring to transact packets on
2021  * @rx_buffer: rx buffer to pull data from
2022  * @xdp: xdp_buff pointing to the data
2023  *
2024  * This function allocates an skb.  It then populates it with the page
2025  * data from the current receive descriptor, taking care to set up the
2026  * skb correctly.
2027  */
2028 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2029 					  struct i40e_rx_buffer *rx_buffer,
2030 					  struct xdp_buff *xdp)
2031 {
2032 	unsigned int size = xdp->data_end - xdp->data;
2033 #if (PAGE_SIZE < 8192)
2034 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2035 #else
2036 	unsigned int truesize = SKB_DATA_ALIGN(size);
2037 #endif
2038 	unsigned int headlen;
2039 	struct sk_buff *skb;
2040 
2041 	/* prefetch first cache line of first page */
2042 	prefetch(xdp->data);
2043 #if L1_CACHE_BYTES < 128
2044 	prefetch(xdp->data + L1_CACHE_BYTES);
2045 #endif
2046 
2047 	/* allocate a skb to store the frags */
2048 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2049 			       I40E_RX_HDR_SIZE,
2050 			       GFP_ATOMIC | __GFP_NOWARN);
2051 	if (unlikely(!skb))
2052 		return NULL;
2053 
2054 	/* Determine available headroom for copy */
2055 	headlen = size;
2056 	if (headlen > I40E_RX_HDR_SIZE)
2057 		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
2058 
2059 	/* align pull length to size of long to optimize memcpy performance */
2060 	memcpy(__skb_put(skb, headlen), xdp->data,
2061 	       ALIGN(headlen, sizeof(long)));
2062 
2063 	/* update all of the pointers */
2064 	size -= headlen;
2065 	if (size) {
2066 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2067 				rx_buffer->page_offset + headlen,
2068 				size, truesize);
2069 
2070 		/* buffer is used by skb, update page_offset */
2071 #if (PAGE_SIZE < 8192)
2072 		rx_buffer->page_offset ^= truesize;
2073 #else
2074 		rx_buffer->page_offset += truesize;
2075 #endif
2076 	} else {
2077 		/* buffer is unused, reset bias back to rx_buffer */
2078 		rx_buffer->pagecnt_bias++;
2079 	}
2080 
2081 	return skb;
2082 }
2083 
2084 /**
2085  * i40e_build_skb - Build skb around an existing buffer
2086  * @rx_ring: Rx descriptor ring to transact packets on
2087  * @rx_buffer: Rx buffer to pull data from
2088  * @xdp: xdp_buff pointing to the data
2089  *
2090  * This function builds an skb around an existing Rx buffer, taking care
2091  * to set up the skb correctly and avoid any memcpy overhead.
2092  */
2093 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2094 				      struct i40e_rx_buffer *rx_buffer,
2095 				      struct xdp_buff *xdp)
2096 {
2097 	unsigned int size = xdp->data_end - xdp->data;
2098 #if (PAGE_SIZE < 8192)
2099 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2100 #else
2101 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2102 				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2103 #endif
2104 	struct sk_buff *skb;
2105 
2106 	/* prefetch first cache line of first page */
2107 	prefetch(xdp->data);
2108 #if L1_CACHE_BYTES < 128
2109 	prefetch(xdp->data + L1_CACHE_BYTES);
2110 #endif
2111 	/* build an skb around the page buffer */
2112 	skb = build_skb(xdp->data_hard_start, truesize);
2113 	if (unlikely(!skb))
2114 		return NULL;
2115 
2116 	/* update pointers within the skb to store the data */
2117 	skb_reserve(skb, I40E_SKB_PAD);
2118 	__skb_put(skb, size);
2119 
2120 	/* buffer is used by skb, update page_offset */
2121 #if (PAGE_SIZE < 8192)
2122 	rx_buffer->page_offset ^= truesize;
2123 #else
2124 	rx_buffer->page_offset += truesize;
2125 #endif
2126 
2127 	return skb;
2128 }
2129 
2130 /**
2131  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2132  * @rx_ring: rx descriptor ring to transact packets on
2133  * @rx_buffer: rx buffer to pull data from
2134  *
2135  * This function will clean up the contents of the rx_buffer.  It will
2136  * either recycle the buffer or unmap it and free the associated resources.
2137  */
2138 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2139 			       struct i40e_rx_buffer *rx_buffer)
2140 {
2141 	if (i40e_can_reuse_rx_page(rx_buffer)) {
2142 		/* hand second half of page back to the ring */
2143 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2144 		rx_ring->rx_stats.page_reuse_count++;
2145 	} else {
2146 		/* we are not reusing the buffer so unmap it */
2147 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2148 				     i40e_rx_pg_size(rx_ring),
2149 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2150 		__page_frag_cache_drain(rx_buffer->page,
2151 					rx_buffer->pagecnt_bias);
2152 	}
2153 
2154 	/* clear contents of buffer_info */
2155 	rx_buffer->page = NULL;
2156 }
2157 
2158 /**
2159  * i40e_is_non_eop - process handling of non-EOP buffers
2160  * @rx_ring: Rx ring being processed
2161  * @rx_desc: Rx descriptor for current buffer
2162  * @skb: Current socket buffer containing buffer in progress
2163  *
2164  * This function updates next to clean.  If the buffer is an EOP buffer
2165  * this function exits returning false, otherwise it will place the
2166  * sk_buff in the next buffer to be chained and return true indicating
2167  * that this is in fact a non-EOP buffer.
2168  **/
2169 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2170 			    union i40e_rx_desc *rx_desc,
2171 			    struct sk_buff *skb)
2172 {
2173 	u32 ntc = rx_ring->next_to_clean + 1;
2174 
2175 	/* fetch, update, and store next to clean */
2176 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2177 	rx_ring->next_to_clean = ntc;
2178 
2179 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2180 
2181 	/* if we are the last buffer then there is nothing else to do */
2182 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2183 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2184 		return false;
2185 
2186 	rx_ring->rx_stats.non_eop_descs++;
2187 
2188 	return true;
2189 }
2190 
2191 #define I40E_XDP_PASS 0
2192 #define I40E_XDP_CONSUMED 1
2193 #define I40E_XDP_TX 2
2194 
2195 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2196 			      struct i40e_ring *xdp_ring);
2197 
2198 /**
2199  * i40e_run_xdp - run an XDP program
2200  * @rx_ring: Rx ring being processed
2201  * @xdp: XDP buffer containing the frame
2202  **/
2203 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2204 				    struct xdp_buff *xdp)
2205 {
2206 	int result = I40E_XDP_PASS;
2207 	struct i40e_ring *xdp_ring;
2208 	struct bpf_prog *xdp_prog;
2209 	u32 act;
2210 
2211 	rcu_read_lock();
2212 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2213 
2214 	if (!xdp_prog)
2215 		goto xdp_out;
2216 
2217 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2218 	switch (act) {
2219 	case XDP_PASS:
2220 		break;
2221 	case XDP_TX:
2222 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2223 		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
2224 		break;
2225 	default:
2226 		bpf_warn_invalid_xdp_action(act);
2227 	case XDP_ABORTED:
2228 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2229 		/* fallthrough -- handle aborts by dropping packet */
2230 	case XDP_DROP:
2231 		result = I40E_XDP_CONSUMED;
2232 		break;
2233 	}
2234 xdp_out:
2235 	rcu_read_unlock();
2236 	return ERR_PTR(-result);
2237 }
2238 
2239 /**
2240  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241  * @rx_ring: Rx ring
2242  * @rx_buffer: Rx buffer to adjust
2243  * @size: Size of adjustment
2244  **/
2245 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246 				struct i40e_rx_buffer *rx_buffer,
2247 				unsigned int size)
2248 {
2249 #if (PAGE_SIZE < 8192)
2250 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251 
2252 	rx_buffer->page_offset ^= truesize;
2253 #else
2254 	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255 
2256 	rx_buffer->page_offset += truesize;
2257 #endif
2258 }
2259 
2260 /**
2261  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2262  * @rx_ring: rx descriptor ring to transact packets on
2263  * @budget: Total limit on number of packets to process
2264  *
2265  * This function provides a "bounce buffer" approach to Rx interrupt
2266  * processing.  The advantage to this is that on systems that have
2267  * expensive overhead for IOMMU access this provides a means of avoiding
2268  * it by maintaining the mapping of the page to the system.
2269  *
2270  * Returns amount of work completed
2271  **/
2272 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2273 {
2274 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2275 	struct sk_buff *skb = rx_ring->skb;
2276 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2277 	bool failure = false, xdp_xmit = false;
2278 	struct xdp_buff xdp;
2279 
2280 	xdp.rxq = &rx_ring->xdp_rxq;
2281 
2282 	while (likely(total_rx_packets < (unsigned int)budget)) {
2283 		struct i40e_rx_buffer *rx_buffer;
2284 		union i40e_rx_desc *rx_desc;
2285 		unsigned int size;
2286 		u16 vlan_tag;
2287 		u8 rx_ptype;
2288 		u64 qword;
2289 
2290 		/* return some buffers to hardware, one at a time is too slow */
2291 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2292 			failure = failure ||
2293 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2294 			cleaned_count = 0;
2295 		}
2296 
2297 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2298 
2299 		/* status_error_len will always be zero for unused descriptors
2300 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2301 		 * which is always zero because packet split isn't used, if the
2302 		 * hardware wrote DD then the length will be non-zero
2303 		 */
2304 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2305 
2306 		/* This memory barrier is needed to keep us from reading
2307 		 * any other fields out of the rx_desc until we have
2308 		 * verified the descriptor has been written back.
2309 		 */
2310 		dma_rmb();
2311 
2312 		if (unlikely(i40e_rx_is_programming_status(qword))) {
2313 			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2314 			cleaned_count++;
2315 			continue;
2316 		}
2317 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2318 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2319 		if (!size)
2320 			break;
2321 
2322 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2323 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2324 
2325 		/* retrieve a buffer from the ring */
2326 		if (!skb) {
2327 			xdp.data = page_address(rx_buffer->page) +
2328 				   rx_buffer->page_offset;
2329 			xdp_set_data_meta_invalid(&xdp);
2330 			xdp.data_hard_start = xdp.data -
2331 					      i40e_rx_offset(rx_ring);
2332 			xdp.data_end = xdp.data + size;
2333 
2334 			skb = i40e_run_xdp(rx_ring, &xdp);
2335 		}
2336 
2337 		if (IS_ERR(skb)) {
2338 			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2339 				xdp_xmit = true;
2340 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2341 			} else {
2342 				rx_buffer->pagecnt_bias++;
2343 			}
2344 			total_rx_bytes += size;
2345 			total_rx_packets++;
2346 		} else if (skb) {
2347 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2348 		} else if (ring_uses_build_skb(rx_ring)) {
2349 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2350 		} else {
2351 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2352 		}
2353 
2354 		/* exit if we failed to retrieve a buffer */
2355 		if (!skb) {
2356 			rx_ring->rx_stats.alloc_buff_failed++;
2357 			rx_buffer->pagecnt_bias++;
2358 			break;
2359 		}
2360 
2361 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2362 		cleaned_count++;
2363 
2364 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2365 			continue;
2366 
2367 		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2368 			skb = NULL;
2369 			continue;
2370 		}
2371 
2372 		/* probably a little skewed due to removing CRC */
2373 		total_rx_bytes += skb->len;
2374 
2375 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2376 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2377 			   I40E_RXD_QW1_PTYPE_SHIFT;
2378 
2379 		/* populate checksum, VLAN, and protocol */
2380 		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2381 
2382 		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2383 			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2384 
2385 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2386 		i40e_receive_skb(rx_ring, skb, vlan_tag);
2387 		skb = NULL;
2388 
2389 		/* update budget accounting */
2390 		total_rx_packets++;
2391 	}
2392 
2393 	if (xdp_xmit) {
2394 		struct i40e_ring *xdp_ring;
2395 
2396 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397 
2398 		/* Force memory writes to complete before letting h/w
2399 		 * know there are new descriptors to fetch.
2400 		 */
2401 		wmb();
2402 
2403 		writel(xdp_ring->next_to_use, xdp_ring->tail);
2404 	}
2405 
2406 	rx_ring->skb = skb;
2407 
2408 	u64_stats_update_begin(&rx_ring->syncp);
2409 	rx_ring->stats.packets += total_rx_packets;
2410 	rx_ring->stats.bytes += total_rx_bytes;
2411 	u64_stats_update_end(&rx_ring->syncp);
2412 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2413 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2414 
2415 	/* guarantee a trip back through this routine if there was a failure */
2416 	return failure ? budget : (int)total_rx_packets;
2417 }
2418 
2419 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2420 {
2421 	u32 val;
2422 
2423 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2424 	 * points out doing so is "meaningless since it was already
2425 	 * auto-cleared". The auto-clearing happens when the interrupt is
2426 	 * asserted.
2427 	 *
2428 	 * Hardware errata 28 for also indicates that writing to a
2429 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2430 	 * an event in the PBA anyway so we need to rely on the automask
2431 	 * to hold pending events for us until the interrupt is re-enabled
2432 	 *
2433 	 * The itr value is reported in microseconds, and the register
2434 	 * value is recorded in 2 microsecond units. For this reason we
2435 	 * only need to shift by the interval shift - 1 instead of the
2436 	 * full value.
2437 	 */
2438 	itr &= I40E_ITR_MASK;
2439 
2440 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2441 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2442 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2443 
2444 	return val;
2445 }
2446 
2447 /* a small macro to shorten up some long lines */
2448 #define INTREG I40E_PFINT_DYN_CTLN
2449 
2450 /* The act of updating the ITR will cause it to immediately trigger. In order
2451  * to prevent this from throwing off adaptive update statistics we defer the
2452  * update so that it can only happen so often. So after either Tx or Rx are
2453  * updated we make the adaptive scheme wait until either the ITR completely
2454  * expires via the next_update expiration or we have been through at least
2455  * 3 interrupts.
2456  */
2457 #define ITR_COUNTDOWN_START 3
2458 
2459 /**
2460  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2461  * @vsi: the VSI we care about
2462  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2463  *
2464  **/
2465 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2466 					  struct i40e_q_vector *q_vector)
2467 {
2468 	struct i40e_hw *hw = &vsi->back->hw;
2469 	u32 intval;
2470 
2471 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2472 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2473 		i40e_irq_dynamic_enable_icr0(vsi->back);
2474 		return;
2475 	}
2476 
2477 	/* These will do nothing if dynamic updates are not enabled */
2478 	i40e_update_itr(q_vector, &q_vector->tx);
2479 	i40e_update_itr(q_vector, &q_vector->rx);
2480 
2481 	/* This block of logic allows us to get away with only updating
2482 	 * one ITR value with each interrupt. The idea is to perform a
2483 	 * pseudo-lazy update with the following criteria.
2484 	 *
2485 	 * 1. Rx is given higher priority than Tx if both are in same state
2486 	 * 2. If we must reduce an ITR that is given highest priority.
2487 	 * 3. We then give priority to increasing ITR based on amount.
2488 	 */
2489 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2490 		/* Rx ITR needs to be reduced, this is highest priority */
2491 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2492 					   q_vector->rx.target_itr);
2493 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2494 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2495 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2496 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2497 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2498 		/* Tx ITR needs to be reduced, this is second priority
2499 		 * Tx ITR needs to be increased more than Rx, fourth priority
2500 		 */
2501 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2502 					   q_vector->tx.target_itr);
2503 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2504 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2505 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2506 		/* Rx ITR needs to be increased, third priority */
2507 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2508 					   q_vector->rx.target_itr);
2509 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2510 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2511 	} else {
2512 		/* No ITR update, lowest priority */
2513 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2514 		if (q_vector->itr_countdown)
2515 			q_vector->itr_countdown--;
2516 	}
2517 
2518 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2519 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2520 }
2521 
2522 /**
2523  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2524  * @napi: napi struct with our devices info in it
2525  * @budget: amount of work driver is allowed to do this pass, in packets
2526  *
2527  * This function will clean all queues associated with a q_vector.
2528  *
2529  * Returns the amount of work done
2530  **/
2531 int i40e_napi_poll(struct napi_struct *napi, int budget)
2532 {
2533 	struct i40e_q_vector *q_vector =
2534 			       container_of(napi, struct i40e_q_vector, napi);
2535 	struct i40e_vsi *vsi = q_vector->vsi;
2536 	struct i40e_ring *ring;
2537 	bool clean_complete = true;
2538 	bool arm_wb = false;
2539 	int budget_per_ring;
2540 	int work_done = 0;
2541 
2542 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2543 		napi_complete(napi);
2544 		return 0;
2545 	}
2546 
2547 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2548 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2549 	 */
2550 	i40e_for_each_ring(ring, q_vector->tx) {
2551 		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2552 			clean_complete = false;
2553 			continue;
2554 		}
2555 		arm_wb |= ring->arm_wb;
2556 		ring->arm_wb = false;
2557 	}
2558 
2559 	/* Handle case where we are called by netpoll with a budget of 0 */
2560 	if (budget <= 0)
2561 		goto tx_only;
2562 
2563 	/* We attempt to distribute budget to each Rx queue fairly, but don't
2564 	 * allow the budget to go below 1 because that would exit polling early.
2565 	 */
2566 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2567 
2568 	i40e_for_each_ring(ring, q_vector->rx) {
2569 		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2570 
2571 		work_done += cleaned;
2572 		/* if we clean as many as budgeted, we must not be done */
2573 		if (cleaned >= budget_per_ring)
2574 			clean_complete = false;
2575 	}
2576 
2577 	/* If work not completed, return budget and polling will return */
2578 	if (!clean_complete) {
2579 		int cpu_id = smp_processor_id();
2580 
2581 		/* It is possible that the interrupt affinity has changed but,
2582 		 * if the cpu is pegged at 100%, polling will never exit while
2583 		 * traffic continues and the interrupt will be stuck on this
2584 		 * cpu.  We check to make sure affinity is correct before we
2585 		 * continue to poll, otherwise we must stop polling so the
2586 		 * interrupt can move to the correct cpu.
2587 		 */
2588 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2589 			/* Tell napi that we are done polling */
2590 			napi_complete_done(napi, work_done);
2591 
2592 			/* Force an interrupt */
2593 			i40e_force_wb(vsi, q_vector);
2594 
2595 			/* Return budget-1 so that polling stops */
2596 			return budget - 1;
2597 		}
2598 tx_only:
2599 		if (arm_wb) {
2600 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2601 			i40e_enable_wb_on_itr(vsi, q_vector);
2602 		}
2603 		return budget;
2604 	}
2605 
2606 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2607 		q_vector->arm_wb_state = false;
2608 
2609 	/* Work is done so exit the polling mode and re-enable the interrupt */
2610 	napi_complete_done(napi, work_done);
2611 
2612 	i40e_update_enable_itr(vsi, q_vector);
2613 
2614 	return min(work_done, budget - 1);
2615 }
2616 
2617 /**
2618  * i40e_atr - Add a Flow Director ATR filter
2619  * @tx_ring:  ring to add programming descriptor to
2620  * @skb:      send buffer
2621  * @tx_flags: send tx flags
2622  **/
2623 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2624 		     u32 tx_flags)
2625 {
2626 	struct i40e_filter_program_desc *fdir_desc;
2627 	struct i40e_pf *pf = tx_ring->vsi->back;
2628 	union {
2629 		unsigned char *network;
2630 		struct iphdr *ipv4;
2631 		struct ipv6hdr *ipv6;
2632 	} hdr;
2633 	struct tcphdr *th;
2634 	unsigned int hlen;
2635 	u32 flex_ptype, dtype_cmd;
2636 	int l4_proto;
2637 	u16 i;
2638 
2639 	/* make sure ATR is enabled */
2640 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2641 		return;
2642 
2643 	if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2644 		return;
2645 
2646 	/* if sampling is disabled do nothing */
2647 	if (!tx_ring->atr_sample_rate)
2648 		return;
2649 
2650 	/* Currently only IPv4/IPv6 with TCP is supported */
2651 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2652 		return;
2653 
2654 	/* snag network header to get L4 type and address */
2655 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2656 		      skb_inner_network_header(skb) : skb_network_header(skb);
2657 
2658 	/* Note: tx_flags gets modified to reflect inner protocols in
2659 	 * tx_enable_csum function if encap is enabled.
2660 	 */
2661 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2662 		/* access ihl as u8 to avoid unaligned access on ia64 */
2663 		hlen = (hdr.network[0] & 0x0F) << 2;
2664 		l4_proto = hdr.ipv4->protocol;
2665 	} else {
2666 		/* find the start of the innermost ipv6 header */
2667 		unsigned int inner_hlen = hdr.network - skb->data;
2668 		unsigned int h_offset = inner_hlen;
2669 
2670 		/* this function updates h_offset to the end of the header */
2671 		l4_proto =
2672 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2673 		/* hlen will contain our best estimate of the tcp header */
2674 		hlen = h_offset - inner_hlen;
2675 	}
2676 
2677 	if (l4_proto != IPPROTO_TCP)
2678 		return;
2679 
2680 	th = (struct tcphdr *)(hdr.network + hlen);
2681 
2682 	/* Due to lack of space, no more new filters can be programmed */
2683 	if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2684 		return;
2685 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2686 		/* HW ATR eviction will take care of removing filters on FIN
2687 		 * and RST packets.
2688 		 */
2689 		if (th->fin || th->rst)
2690 			return;
2691 	}
2692 
2693 	tx_ring->atr_count++;
2694 
2695 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2696 	if (!th->fin &&
2697 	    !th->syn &&
2698 	    !th->rst &&
2699 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2700 		return;
2701 
2702 	tx_ring->atr_count = 0;
2703 
2704 	/* grab the next descriptor */
2705 	i = tx_ring->next_to_use;
2706 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2707 
2708 	i++;
2709 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2710 
2711 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2712 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2713 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2714 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2715 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2716 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2717 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2718 
2719 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2720 
2721 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2722 
2723 	dtype_cmd |= (th->fin || th->rst) ?
2724 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2725 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2726 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2727 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2728 
2729 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2730 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2731 
2732 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2733 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2734 
2735 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2736 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2737 		dtype_cmd |=
2738 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2739 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2740 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2741 	else
2742 		dtype_cmd |=
2743 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2744 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2745 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2746 
2747 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2748 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2749 
2750 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2751 	fdir_desc->rsvd = cpu_to_le32(0);
2752 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2753 	fdir_desc->fd_id = cpu_to_le32(0);
2754 }
2755 
2756 /**
2757  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2758  * @skb:     send buffer
2759  * @tx_ring: ring to send buffer on
2760  * @flags:   the tx flags to be set
2761  *
2762  * Checks the skb and set up correspondingly several generic transmit flags
2763  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2764  *
2765  * Returns error code indicate the frame should be dropped upon error and the
2766  * otherwise  returns 0 to indicate the flags has been set properly.
2767  **/
2768 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2769 					     struct i40e_ring *tx_ring,
2770 					     u32 *flags)
2771 {
2772 	__be16 protocol = skb->protocol;
2773 	u32  tx_flags = 0;
2774 
2775 	if (protocol == htons(ETH_P_8021Q) &&
2776 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2777 		/* When HW VLAN acceleration is turned off by the user the
2778 		 * stack sets the protocol to 8021q so that the driver
2779 		 * can take any steps required to support the SW only
2780 		 * VLAN handling.  In our case the driver doesn't need
2781 		 * to take any further steps so just set the protocol
2782 		 * to the encapsulated ethertype.
2783 		 */
2784 		skb->protocol = vlan_get_protocol(skb);
2785 		goto out;
2786 	}
2787 
2788 	/* if we have a HW VLAN tag being added, default to the HW one */
2789 	if (skb_vlan_tag_present(skb)) {
2790 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2791 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2792 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2793 	} else if (protocol == htons(ETH_P_8021Q)) {
2794 		struct vlan_hdr *vhdr, _vhdr;
2795 
2796 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2797 		if (!vhdr)
2798 			return -EINVAL;
2799 
2800 		protocol = vhdr->h_vlan_encapsulated_proto;
2801 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2802 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2803 	}
2804 
2805 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2806 		goto out;
2807 
2808 	/* Insert 802.1p priority into VLAN header */
2809 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2810 	    (skb->priority != TC_PRIO_CONTROL)) {
2811 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2812 		tx_flags |= (skb->priority & 0x7) <<
2813 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2814 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2815 			struct vlan_ethhdr *vhdr;
2816 			int rc;
2817 
2818 			rc = skb_cow_head(skb, 0);
2819 			if (rc < 0)
2820 				return rc;
2821 			vhdr = (struct vlan_ethhdr *)skb->data;
2822 			vhdr->h_vlan_TCI = htons(tx_flags >>
2823 						 I40E_TX_FLAGS_VLAN_SHIFT);
2824 		} else {
2825 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2826 		}
2827 	}
2828 
2829 out:
2830 	*flags = tx_flags;
2831 	return 0;
2832 }
2833 
2834 /**
2835  * i40e_tso - set up the tso context descriptor
2836  * @first:    pointer to first Tx buffer for xmit
2837  * @hdr_len:  ptr to the size of the packet header
2838  * @cd_type_cmd_tso_mss: Quad Word 1
2839  *
2840  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2841  **/
2842 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2843 		    u64 *cd_type_cmd_tso_mss)
2844 {
2845 	struct sk_buff *skb = first->skb;
2846 	u64 cd_cmd, cd_tso_len, cd_mss;
2847 	union {
2848 		struct iphdr *v4;
2849 		struct ipv6hdr *v6;
2850 		unsigned char *hdr;
2851 	} ip;
2852 	union {
2853 		struct tcphdr *tcp;
2854 		struct udphdr *udp;
2855 		unsigned char *hdr;
2856 	} l4;
2857 	u32 paylen, l4_offset;
2858 	u16 gso_segs, gso_size;
2859 	int err;
2860 
2861 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2862 		return 0;
2863 
2864 	if (!skb_is_gso(skb))
2865 		return 0;
2866 
2867 	err = skb_cow_head(skb, 0);
2868 	if (err < 0)
2869 		return err;
2870 
2871 	ip.hdr = skb_network_header(skb);
2872 	l4.hdr = skb_transport_header(skb);
2873 
2874 	/* initialize outer IP header fields */
2875 	if (ip.v4->version == 4) {
2876 		ip.v4->tot_len = 0;
2877 		ip.v4->check = 0;
2878 	} else {
2879 		ip.v6->payload_len = 0;
2880 	}
2881 
2882 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2883 					 SKB_GSO_GRE_CSUM |
2884 					 SKB_GSO_IPXIP4 |
2885 					 SKB_GSO_IPXIP6 |
2886 					 SKB_GSO_UDP_TUNNEL |
2887 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2888 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2889 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2890 			l4.udp->len = 0;
2891 
2892 			/* determine offset of outer transport header */
2893 			l4_offset = l4.hdr - skb->data;
2894 
2895 			/* remove payload length from outer checksum */
2896 			paylen = skb->len - l4_offset;
2897 			csum_replace_by_diff(&l4.udp->check,
2898 					     (__force __wsum)htonl(paylen));
2899 		}
2900 
2901 		/* reset pointers to inner headers */
2902 		ip.hdr = skb_inner_network_header(skb);
2903 		l4.hdr = skb_inner_transport_header(skb);
2904 
2905 		/* initialize inner IP header fields */
2906 		if (ip.v4->version == 4) {
2907 			ip.v4->tot_len = 0;
2908 			ip.v4->check = 0;
2909 		} else {
2910 			ip.v6->payload_len = 0;
2911 		}
2912 	}
2913 
2914 	/* determine offset of inner transport header */
2915 	l4_offset = l4.hdr - skb->data;
2916 
2917 	/* remove payload length from inner checksum */
2918 	paylen = skb->len - l4_offset;
2919 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2920 
2921 	/* compute length of segmentation header */
2922 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2923 
2924 	/* pull values out of skb_shinfo */
2925 	gso_size = skb_shinfo(skb)->gso_size;
2926 	gso_segs = skb_shinfo(skb)->gso_segs;
2927 
2928 	/* update GSO size and bytecount with header size */
2929 	first->gso_segs = gso_segs;
2930 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2931 
2932 	/* find the field values */
2933 	cd_cmd = I40E_TX_CTX_DESC_TSO;
2934 	cd_tso_len = skb->len - *hdr_len;
2935 	cd_mss = gso_size;
2936 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2937 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2938 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2939 	return 1;
2940 }
2941 
2942 /**
2943  * i40e_tsyn - set up the tsyn context descriptor
2944  * @tx_ring:  ptr to the ring to send
2945  * @skb:      ptr to the skb we're sending
2946  * @tx_flags: the collected send information
2947  * @cd_type_cmd_tso_mss: Quad Word 1
2948  *
2949  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2950  **/
2951 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2952 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2953 {
2954 	struct i40e_pf *pf;
2955 
2956 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2957 		return 0;
2958 
2959 	/* Tx timestamps cannot be sampled when doing TSO */
2960 	if (tx_flags & I40E_TX_FLAGS_TSO)
2961 		return 0;
2962 
2963 	/* only timestamp the outbound packet if the user has requested it and
2964 	 * we are not already transmitting a packet to be timestamped
2965 	 */
2966 	pf = i40e_netdev_to_pf(tx_ring->netdev);
2967 	if (!(pf->flags & I40E_FLAG_PTP))
2968 		return 0;
2969 
2970 	if (pf->ptp_tx &&
2971 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2972 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2973 		pf->ptp_tx_start = jiffies;
2974 		pf->ptp_tx_skb = skb_get(skb);
2975 	} else {
2976 		pf->tx_hwtstamp_skipped++;
2977 		return 0;
2978 	}
2979 
2980 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2981 				I40E_TXD_CTX_QW1_CMD_SHIFT;
2982 
2983 	return 1;
2984 }
2985 
2986 /**
2987  * i40e_tx_enable_csum - Enable Tx checksum offloads
2988  * @skb: send buffer
2989  * @tx_flags: pointer to Tx flags currently set
2990  * @td_cmd: Tx descriptor command bits to set
2991  * @td_offset: Tx descriptor header offsets to set
2992  * @tx_ring: Tx descriptor ring
2993  * @cd_tunneling: ptr to context desc bits
2994  **/
2995 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2996 			       u32 *td_cmd, u32 *td_offset,
2997 			       struct i40e_ring *tx_ring,
2998 			       u32 *cd_tunneling)
2999 {
3000 	union {
3001 		struct iphdr *v4;
3002 		struct ipv6hdr *v6;
3003 		unsigned char *hdr;
3004 	} ip;
3005 	union {
3006 		struct tcphdr *tcp;
3007 		struct udphdr *udp;
3008 		unsigned char *hdr;
3009 	} l4;
3010 	unsigned char *exthdr;
3011 	u32 offset, cmd = 0;
3012 	__be16 frag_off;
3013 	u8 l4_proto = 0;
3014 
3015 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3016 		return 0;
3017 
3018 	ip.hdr = skb_network_header(skb);
3019 	l4.hdr = skb_transport_header(skb);
3020 
3021 	/* compute outer L2 header size */
3022 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3023 
3024 	if (skb->encapsulation) {
3025 		u32 tunnel = 0;
3026 		/* define outer network header type */
3027 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3028 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3029 				  I40E_TX_CTX_EXT_IP_IPV4 :
3030 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3031 
3032 			l4_proto = ip.v4->protocol;
3033 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3034 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3035 
3036 			exthdr = ip.hdr + sizeof(*ip.v6);
3037 			l4_proto = ip.v6->nexthdr;
3038 			if (l4.hdr != exthdr)
3039 				ipv6_skip_exthdr(skb, exthdr - skb->data,
3040 						 &l4_proto, &frag_off);
3041 		}
3042 
3043 		/* define outer transport */
3044 		switch (l4_proto) {
3045 		case IPPROTO_UDP:
3046 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3047 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3048 			break;
3049 		case IPPROTO_GRE:
3050 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3051 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3052 			break;
3053 		case IPPROTO_IPIP:
3054 		case IPPROTO_IPV6:
3055 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3056 			l4.hdr = skb_inner_network_header(skb);
3057 			break;
3058 		default:
3059 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3060 				return -1;
3061 
3062 			skb_checksum_help(skb);
3063 			return 0;
3064 		}
3065 
3066 		/* compute outer L3 header size */
3067 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3068 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3069 
3070 		/* switch IP header pointer from outer to inner header */
3071 		ip.hdr = skb_inner_network_header(skb);
3072 
3073 		/* compute tunnel header size */
3074 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3075 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3076 
3077 		/* indicate if we need to offload outer UDP header */
3078 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3079 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3080 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3081 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3082 
3083 		/* record tunnel offload values */
3084 		*cd_tunneling |= tunnel;
3085 
3086 		/* switch L4 header pointer from outer to inner */
3087 		l4.hdr = skb_inner_transport_header(skb);
3088 		l4_proto = 0;
3089 
3090 		/* reset type as we transition from outer to inner headers */
3091 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3092 		if (ip.v4->version == 4)
3093 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3094 		if (ip.v6->version == 6)
3095 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3096 	}
3097 
3098 	/* Enable IP checksum offloads */
3099 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3100 		l4_proto = ip.v4->protocol;
3101 		/* the stack computes the IP header already, the only time we
3102 		 * need the hardware to recompute it is in the case of TSO.
3103 		 */
3104 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3105 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3106 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3107 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3108 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3109 
3110 		exthdr = ip.hdr + sizeof(*ip.v6);
3111 		l4_proto = ip.v6->nexthdr;
3112 		if (l4.hdr != exthdr)
3113 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3114 					 &l4_proto, &frag_off);
3115 	}
3116 
3117 	/* compute inner L3 header size */
3118 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3119 
3120 	/* Enable L4 checksum offloads */
3121 	switch (l4_proto) {
3122 	case IPPROTO_TCP:
3123 		/* enable checksum offloads */
3124 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3125 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3126 		break;
3127 	case IPPROTO_SCTP:
3128 		/* enable SCTP checksum offload */
3129 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3130 		offset |= (sizeof(struct sctphdr) >> 2) <<
3131 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3132 		break;
3133 	case IPPROTO_UDP:
3134 		/* enable UDP checksum offload */
3135 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3136 		offset |= (sizeof(struct udphdr) >> 2) <<
3137 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3138 		break;
3139 	default:
3140 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3141 			return -1;
3142 		skb_checksum_help(skb);
3143 		return 0;
3144 	}
3145 
3146 	*td_cmd |= cmd;
3147 	*td_offset |= offset;
3148 
3149 	return 1;
3150 }
3151 
3152 /**
3153  * i40e_create_tx_ctx Build the Tx context descriptor
3154  * @tx_ring:  ring to create the descriptor on
3155  * @cd_type_cmd_tso_mss: Quad Word 1
3156  * @cd_tunneling: Quad Word 0 - bits 0-31
3157  * @cd_l2tag2: Quad Word 0 - bits 32-63
3158  **/
3159 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3160 			       const u64 cd_type_cmd_tso_mss,
3161 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3162 {
3163 	struct i40e_tx_context_desc *context_desc;
3164 	int i = tx_ring->next_to_use;
3165 
3166 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3167 	    !cd_tunneling && !cd_l2tag2)
3168 		return;
3169 
3170 	/* grab the next descriptor */
3171 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3172 
3173 	i++;
3174 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3175 
3176 	/* cpu_to_le32 and assign to struct fields */
3177 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3178 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3179 	context_desc->rsvd = cpu_to_le16(0);
3180 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3181 }
3182 
3183 /**
3184  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3185  * @tx_ring: the ring to be checked
3186  * @size:    the size buffer we want to assure is available
3187  *
3188  * Returns -EBUSY if a stop is needed, else 0
3189  **/
3190 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3191 {
3192 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3193 	/* Memory barrier before checking head and tail */
3194 	smp_mb();
3195 
3196 	/* Check again in a case another CPU has just made room available. */
3197 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3198 		return -EBUSY;
3199 
3200 	/* A reprieve! - use start_queue because it doesn't call schedule */
3201 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3202 	++tx_ring->tx_stats.restart_queue;
3203 	return 0;
3204 }
3205 
3206 /**
3207  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3208  * @skb:      send buffer
3209  *
3210  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3211  * and so we need to figure out the cases where we need to linearize the skb.
3212  *
3213  * For TSO we need to count the TSO header and segment payload separately.
3214  * As such we need to check cases where we have 7 fragments or more as we
3215  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3216  * the segment payload in the first descriptor, and another 7 for the
3217  * fragments.
3218  **/
3219 bool __i40e_chk_linearize(struct sk_buff *skb)
3220 {
3221 	const struct skb_frag_struct *frag, *stale;
3222 	int nr_frags, sum;
3223 
3224 	/* no need to check if number of frags is less than 7 */
3225 	nr_frags = skb_shinfo(skb)->nr_frags;
3226 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3227 		return false;
3228 
3229 	/* We need to walk through the list and validate that each group
3230 	 * of 6 fragments totals at least gso_size.
3231 	 */
3232 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3233 	frag = &skb_shinfo(skb)->frags[0];
3234 
3235 	/* Initialize size to the negative value of gso_size minus 1.  We
3236 	 * use this as the worst case scenerio in which the frag ahead
3237 	 * of us only provides one byte which is why we are limited to 6
3238 	 * descriptors for a single transmit as the header and previous
3239 	 * fragment are already consuming 2 descriptors.
3240 	 */
3241 	sum = 1 - skb_shinfo(skb)->gso_size;
3242 
3243 	/* Add size of frags 0 through 4 to create our initial sum */
3244 	sum += skb_frag_size(frag++);
3245 	sum += skb_frag_size(frag++);
3246 	sum += skb_frag_size(frag++);
3247 	sum += skb_frag_size(frag++);
3248 	sum += skb_frag_size(frag++);
3249 
3250 	/* Walk through fragments adding latest fragment, testing it, and
3251 	 * then removing stale fragments from the sum.
3252 	 */
3253 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3254 		int stale_size = skb_frag_size(stale);
3255 
3256 		sum += skb_frag_size(frag++);
3257 
3258 		/* The stale fragment may present us with a smaller
3259 		 * descriptor than the actual fragment size. To account
3260 		 * for that we need to remove all the data on the front and
3261 		 * figure out what the remainder would be in the last
3262 		 * descriptor associated with the fragment.
3263 		 */
3264 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3265 			int align_pad = -(stale->page_offset) &
3266 					(I40E_MAX_READ_REQ_SIZE - 1);
3267 
3268 			sum -= align_pad;
3269 			stale_size -= align_pad;
3270 
3271 			do {
3272 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3273 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3274 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3275 		}
3276 
3277 		/* if sum is negative we failed to make sufficient progress */
3278 		if (sum < 0)
3279 			return true;
3280 
3281 		if (!nr_frags--)
3282 			break;
3283 
3284 		sum -= stale_size;
3285 	}
3286 
3287 	return false;
3288 }
3289 
3290 /**
3291  * i40e_tx_map - Build the Tx descriptor
3292  * @tx_ring:  ring to send buffer on
3293  * @skb:      send buffer
3294  * @first:    first buffer info buffer to use
3295  * @tx_flags: collected send information
3296  * @hdr_len:  size of the packet header
3297  * @td_cmd:   the command field in the descriptor
3298  * @td_offset: offset for checksum or crc
3299  *
3300  * Returns 0 on success, -1 on failure to DMA
3301  **/
3302 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3303 			      struct i40e_tx_buffer *first, u32 tx_flags,
3304 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3305 {
3306 	unsigned int data_len = skb->data_len;
3307 	unsigned int size = skb_headlen(skb);
3308 	struct skb_frag_struct *frag;
3309 	struct i40e_tx_buffer *tx_bi;
3310 	struct i40e_tx_desc *tx_desc;
3311 	u16 i = tx_ring->next_to_use;
3312 	u32 td_tag = 0;
3313 	dma_addr_t dma;
3314 	u16 desc_count = 1;
3315 
3316 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3317 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3318 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3319 			 I40E_TX_FLAGS_VLAN_SHIFT;
3320 	}
3321 
3322 	first->tx_flags = tx_flags;
3323 
3324 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3325 
3326 	tx_desc = I40E_TX_DESC(tx_ring, i);
3327 	tx_bi = first;
3328 
3329 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3330 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3331 
3332 		if (dma_mapping_error(tx_ring->dev, dma))
3333 			goto dma_error;
3334 
3335 		/* record length, and DMA address */
3336 		dma_unmap_len_set(tx_bi, len, size);
3337 		dma_unmap_addr_set(tx_bi, dma, dma);
3338 
3339 		/* align size to end of page */
3340 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3341 		tx_desc->buffer_addr = cpu_to_le64(dma);
3342 
3343 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3344 			tx_desc->cmd_type_offset_bsz =
3345 				build_ctob(td_cmd, td_offset,
3346 					   max_data, td_tag);
3347 
3348 			tx_desc++;
3349 			i++;
3350 			desc_count++;
3351 
3352 			if (i == tx_ring->count) {
3353 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3354 				i = 0;
3355 			}
3356 
3357 			dma += max_data;
3358 			size -= max_data;
3359 
3360 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3361 			tx_desc->buffer_addr = cpu_to_le64(dma);
3362 		}
3363 
3364 		if (likely(!data_len))
3365 			break;
3366 
3367 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3368 							  size, td_tag);
3369 
3370 		tx_desc++;
3371 		i++;
3372 		desc_count++;
3373 
3374 		if (i == tx_ring->count) {
3375 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3376 			i = 0;
3377 		}
3378 
3379 		size = skb_frag_size(frag);
3380 		data_len -= size;
3381 
3382 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3383 				       DMA_TO_DEVICE);
3384 
3385 		tx_bi = &tx_ring->tx_bi[i];
3386 	}
3387 
3388 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3389 
3390 	i++;
3391 	if (i == tx_ring->count)
3392 		i = 0;
3393 
3394 	tx_ring->next_to_use = i;
3395 
3396 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3397 
3398 	/* write last descriptor with EOP bit */
3399 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3400 
3401 	/* We OR these values together to check both against 4 (WB_STRIDE)
3402 	 * below. This is safe since we don't re-use desc_count afterwards.
3403 	 */
3404 	desc_count |= ++tx_ring->packet_stride;
3405 
3406 	if (desc_count >= WB_STRIDE) {
3407 		/* write last descriptor with RS bit set */
3408 		td_cmd |= I40E_TX_DESC_CMD_RS;
3409 		tx_ring->packet_stride = 0;
3410 	}
3411 
3412 	tx_desc->cmd_type_offset_bsz =
3413 			build_ctob(td_cmd, td_offset, size, td_tag);
3414 
3415 	/* Force memory writes to complete before letting h/w know there
3416 	 * are new descriptors to fetch.
3417 	 *
3418 	 * We also use this memory barrier to make certain all of the
3419 	 * status bits have been updated before next_to_watch is written.
3420 	 */
3421 	wmb();
3422 
3423 	/* set next_to_watch value indicating a packet is present */
3424 	first->next_to_watch = tx_desc;
3425 
3426 	/* notify HW of packet */
3427 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3428 		writel(i, tx_ring->tail);
3429 
3430 		/* we need this if more than one processor can write to our tail
3431 		 * at a time, it synchronizes IO on IA64/Altix systems
3432 		 */
3433 		mmiowb();
3434 	}
3435 
3436 	return 0;
3437 
3438 dma_error:
3439 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3440 
3441 	/* clear dma mappings for failed tx_bi map */
3442 	for (;;) {
3443 		tx_bi = &tx_ring->tx_bi[i];
3444 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3445 		if (tx_bi == first)
3446 			break;
3447 		if (i == 0)
3448 			i = tx_ring->count;
3449 		i--;
3450 	}
3451 
3452 	tx_ring->next_to_use = i;
3453 
3454 	return -1;
3455 }
3456 
3457 /**
3458  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3459  * @xdp: data to transmit
3460  * @xdp_ring: XDP Tx ring
3461  **/
3462 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3463 			      struct i40e_ring *xdp_ring)
3464 {
3465 	u32 size = xdp->data_end - xdp->data;
3466 	u16 i = xdp_ring->next_to_use;
3467 	struct i40e_tx_buffer *tx_bi;
3468 	struct i40e_tx_desc *tx_desc;
3469 	dma_addr_t dma;
3470 
3471 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3472 		xdp_ring->tx_stats.tx_busy++;
3473 		return I40E_XDP_CONSUMED;
3474 	}
3475 
3476 	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3477 	if (dma_mapping_error(xdp_ring->dev, dma))
3478 		return I40E_XDP_CONSUMED;
3479 
3480 	tx_bi = &xdp_ring->tx_bi[i];
3481 	tx_bi->bytecount = size;
3482 	tx_bi->gso_segs = 1;
3483 	tx_bi->raw_buf = xdp->data;
3484 
3485 	/* record length, and DMA address */
3486 	dma_unmap_len_set(tx_bi, len, size);
3487 	dma_unmap_addr_set(tx_bi, dma, dma);
3488 
3489 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3490 	tx_desc->buffer_addr = cpu_to_le64(dma);
3491 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3492 						  | I40E_TXD_CMD,
3493 						  0, size, 0);
3494 
3495 	/* Make certain all of the status bits have been updated
3496 	 * before next_to_watch is written.
3497 	 */
3498 	smp_wmb();
3499 
3500 	i++;
3501 	if (i == xdp_ring->count)
3502 		i = 0;
3503 
3504 	tx_bi->next_to_watch = tx_desc;
3505 	xdp_ring->next_to_use = i;
3506 
3507 	return I40E_XDP_TX;
3508 }
3509 
3510 /**
3511  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3512  * @skb:     send buffer
3513  * @tx_ring: ring to send buffer on
3514  *
3515  * Returns NETDEV_TX_OK if sent, else an error code
3516  **/
3517 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3518 					struct i40e_ring *tx_ring)
3519 {
3520 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3521 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3522 	struct i40e_tx_buffer *first;
3523 	u32 td_offset = 0;
3524 	u32 tx_flags = 0;
3525 	__be16 protocol;
3526 	u32 td_cmd = 0;
3527 	u8 hdr_len = 0;
3528 	int tso, count;
3529 	int tsyn;
3530 
3531 	/* prefetch the data, we'll need it later */
3532 	prefetch(skb->data);
3533 
3534 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3535 
3536 	count = i40e_xmit_descriptor_count(skb);
3537 	if (i40e_chk_linearize(skb, count)) {
3538 		if (__skb_linearize(skb)) {
3539 			dev_kfree_skb_any(skb);
3540 			return NETDEV_TX_OK;
3541 		}
3542 		count = i40e_txd_use_count(skb->len);
3543 		tx_ring->tx_stats.tx_linearize++;
3544 	}
3545 
3546 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3547 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3548 	 *       + 4 desc gap to avoid the cache line where head is,
3549 	 *       + 1 desc for context descriptor,
3550 	 * otherwise try next time
3551 	 */
3552 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3553 		tx_ring->tx_stats.tx_busy++;
3554 		return NETDEV_TX_BUSY;
3555 	}
3556 
3557 	/* record the location of the first descriptor for this packet */
3558 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3559 	first->skb = skb;
3560 	first->bytecount = skb->len;
3561 	first->gso_segs = 1;
3562 
3563 	/* prepare the xmit flags */
3564 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3565 		goto out_drop;
3566 
3567 	/* obtain protocol of skb */
3568 	protocol = vlan_get_protocol(skb);
3569 
3570 	/* setup IPv4/IPv6 offloads */
3571 	if (protocol == htons(ETH_P_IP))
3572 		tx_flags |= I40E_TX_FLAGS_IPV4;
3573 	else if (protocol == htons(ETH_P_IPV6))
3574 		tx_flags |= I40E_TX_FLAGS_IPV6;
3575 
3576 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3577 
3578 	if (tso < 0)
3579 		goto out_drop;
3580 	else if (tso)
3581 		tx_flags |= I40E_TX_FLAGS_TSO;
3582 
3583 	/* Always offload the checksum, since it's in the data descriptor */
3584 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3585 				  tx_ring, &cd_tunneling);
3586 	if (tso < 0)
3587 		goto out_drop;
3588 
3589 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3590 
3591 	if (tsyn)
3592 		tx_flags |= I40E_TX_FLAGS_TSYN;
3593 
3594 	skb_tx_timestamp(skb);
3595 
3596 	/* always enable CRC insertion offload */
3597 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3598 
3599 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3600 			   cd_tunneling, cd_l2tag2);
3601 
3602 	/* Add Flow Director ATR if it's enabled.
3603 	 *
3604 	 * NOTE: this must always be directly before the data descriptor.
3605 	 */
3606 	i40e_atr(tx_ring, skb, tx_flags);
3607 
3608 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3609 			td_cmd, td_offset))
3610 		goto cleanup_tx_tstamp;
3611 
3612 	return NETDEV_TX_OK;
3613 
3614 out_drop:
3615 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3616 	dev_kfree_skb_any(first->skb);
3617 	first->skb = NULL;
3618 cleanup_tx_tstamp:
3619 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3620 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3621 
3622 		dev_kfree_skb_any(pf->ptp_tx_skb);
3623 		pf->ptp_tx_skb = NULL;
3624 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3625 	}
3626 
3627 	return NETDEV_TX_OK;
3628 }
3629 
3630 /**
3631  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3632  * @skb:    send buffer
3633  * @netdev: network interface device structure
3634  *
3635  * Returns NETDEV_TX_OK if sent, else an error code
3636  **/
3637 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3638 {
3639 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3640 	struct i40e_vsi *vsi = np->vsi;
3641 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3642 
3643 	/* hardware can't handle really short frames, hardware padding works
3644 	 * beyond this point
3645 	 */
3646 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3647 		return NETDEV_TX_OK;
3648 
3649 	return i40e_xmit_frame_ring(skb, tx_ring);
3650 }
3651