1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2016 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/prefetch.h> 28 #include <net/busy_poll.h> 29 #include <linux/bpf_trace.h> 30 #include <net/xdp.h> 31 #include "i40e.h" 32 #include "i40e_trace.h" 33 #include "i40e_prototype.h" 34 35 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 36 u32 td_tag) 37 { 38 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | 39 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | 40 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | 41 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | 42 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); 43 } 44 45 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 46 /** 47 * i40e_fdir - Generate a Flow Director descriptor based on fdata 48 * @tx_ring: Tx ring to send buffer on 49 * @fdata: Flow director filter data 50 * @add: Indicate if we are adding a rule or deleting one 51 * 52 **/ 53 static void i40e_fdir(struct i40e_ring *tx_ring, 54 struct i40e_fdir_filter *fdata, bool add) 55 { 56 struct i40e_filter_program_desc *fdir_desc; 57 struct i40e_pf *pf = tx_ring->vsi->back; 58 u32 flex_ptype, dtype_cmd; 59 u16 i; 60 61 /* grab the next descriptor */ 62 i = tx_ring->next_to_use; 63 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 64 65 i++; 66 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 67 68 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 69 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 70 71 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 72 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 73 74 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 75 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 76 77 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 78 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 79 80 /* Use LAN VSI Id if not programmed by user */ 81 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 82 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 83 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 84 85 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 86 87 dtype_cmd |= add ? 88 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 89 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 90 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 91 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 92 93 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 94 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 95 96 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 97 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 98 99 if (fdata->cnt_index) { 100 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 101 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 102 ((u32)fdata->cnt_index << 103 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 104 } 105 106 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 107 fdir_desc->rsvd = cpu_to_le32(0); 108 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 109 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 110 } 111 112 #define I40E_FD_CLEAN_DELAY 10 113 /** 114 * i40e_program_fdir_filter - Program a Flow Director filter 115 * @fdir_data: Packet data that will be filter parameters 116 * @raw_packet: the pre-allocated packet buffer for FDir 117 * @pf: The PF pointer 118 * @add: True for add/update, False for remove 119 **/ 120 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 121 u8 *raw_packet, struct i40e_pf *pf, 122 bool add) 123 { 124 struct i40e_tx_buffer *tx_buf, *first; 125 struct i40e_tx_desc *tx_desc; 126 struct i40e_ring *tx_ring; 127 struct i40e_vsi *vsi; 128 struct device *dev; 129 dma_addr_t dma; 130 u32 td_cmd = 0; 131 u16 i; 132 133 /* find existing FDIR VSI */ 134 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 135 if (!vsi) 136 return -ENOENT; 137 138 tx_ring = vsi->tx_rings[0]; 139 dev = tx_ring->dev; 140 141 /* we need two descriptors to add/del a filter and we can wait */ 142 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 143 if (!i) 144 return -EAGAIN; 145 msleep_interruptible(1); 146 } 147 148 dma = dma_map_single(dev, raw_packet, 149 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 150 if (dma_mapping_error(dev, dma)) 151 goto dma_fail; 152 153 /* grab the next descriptor */ 154 i = tx_ring->next_to_use; 155 first = &tx_ring->tx_bi[i]; 156 i40e_fdir(tx_ring, fdir_data, add); 157 158 /* Now program a dummy descriptor */ 159 i = tx_ring->next_to_use; 160 tx_desc = I40E_TX_DESC(tx_ring, i); 161 tx_buf = &tx_ring->tx_bi[i]; 162 163 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 164 165 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 166 167 /* record length, and DMA address */ 168 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 169 dma_unmap_addr_set(tx_buf, dma, dma); 170 171 tx_desc->buffer_addr = cpu_to_le64(dma); 172 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 173 174 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 175 tx_buf->raw_buf = (void *)raw_packet; 176 177 tx_desc->cmd_type_offset_bsz = 178 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 179 180 /* Force memory writes to complete before letting h/w 181 * know there are new descriptors to fetch. 182 */ 183 wmb(); 184 185 /* Mark the data descriptor to be watched */ 186 first->next_to_watch = tx_desc; 187 188 writel(tx_ring->next_to_use, tx_ring->tail); 189 return 0; 190 191 dma_fail: 192 return -1; 193 } 194 195 #define IP_HEADER_OFFSET 14 196 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 197 /** 198 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 199 * @vsi: pointer to the targeted VSI 200 * @fd_data: the flow director data required for the FDir descriptor 201 * @add: true adds a filter, false removes it 202 * 203 * Returns 0 if the filters were successfully added or removed 204 **/ 205 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 206 struct i40e_fdir_filter *fd_data, 207 bool add) 208 { 209 struct i40e_pf *pf = vsi->back; 210 struct udphdr *udp; 211 struct iphdr *ip; 212 u8 *raw_packet; 213 int ret; 214 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 215 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 217 218 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 219 if (!raw_packet) 220 return -ENOMEM; 221 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 222 223 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 224 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 225 + sizeof(struct iphdr)); 226 227 ip->daddr = fd_data->dst_ip; 228 udp->dest = fd_data->dst_port; 229 ip->saddr = fd_data->src_ip; 230 udp->source = fd_data->src_port; 231 232 if (fd_data->flex_filter) { 233 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 234 __be16 pattern = fd_data->flex_word; 235 u16 off = fd_data->flex_offset; 236 237 *((__force __be16 *)(payload + off)) = pattern; 238 } 239 240 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 241 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 242 if (ret) { 243 dev_info(&pf->pdev->dev, 244 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 245 fd_data->pctype, fd_data->fd_id, ret); 246 /* Free the packet buffer since it wasn't added to the ring */ 247 kfree(raw_packet); 248 return -EOPNOTSUPP; 249 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 250 if (add) 251 dev_info(&pf->pdev->dev, 252 "Filter OK for PCTYPE %d loc = %d\n", 253 fd_data->pctype, fd_data->fd_id); 254 else 255 dev_info(&pf->pdev->dev, 256 "Filter deleted for PCTYPE %d loc = %d\n", 257 fd_data->pctype, fd_data->fd_id); 258 } 259 260 if (add) 261 pf->fd_udp4_filter_cnt++; 262 else 263 pf->fd_udp4_filter_cnt--; 264 265 return 0; 266 } 267 268 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 269 /** 270 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 271 * @vsi: pointer to the targeted VSI 272 * @fd_data: the flow director data required for the FDir descriptor 273 * @add: true adds a filter, false removes it 274 * 275 * Returns 0 if the filters were successfully added or removed 276 **/ 277 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 278 struct i40e_fdir_filter *fd_data, 279 bool add) 280 { 281 struct i40e_pf *pf = vsi->back; 282 struct tcphdr *tcp; 283 struct iphdr *ip; 284 u8 *raw_packet; 285 int ret; 286 /* Dummy packet */ 287 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 288 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 289 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 290 0x0, 0x72, 0, 0, 0, 0}; 291 292 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 293 if (!raw_packet) 294 return -ENOMEM; 295 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 296 297 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 298 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 299 + sizeof(struct iphdr)); 300 301 ip->daddr = fd_data->dst_ip; 302 tcp->dest = fd_data->dst_port; 303 ip->saddr = fd_data->src_ip; 304 tcp->source = fd_data->src_port; 305 306 if (fd_data->flex_filter) { 307 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 308 __be16 pattern = fd_data->flex_word; 309 u16 off = fd_data->flex_offset; 310 311 *((__force __be16 *)(payload + off)) = pattern; 312 } 313 314 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 315 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 316 if (ret) { 317 dev_info(&pf->pdev->dev, 318 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 319 fd_data->pctype, fd_data->fd_id, ret); 320 /* Free the packet buffer since it wasn't added to the ring */ 321 kfree(raw_packet); 322 return -EOPNOTSUPP; 323 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 324 if (add) 325 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 326 fd_data->pctype, fd_data->fd_id); 327 else 328 dev_info(&pf->pdev->dev, 329 "Filter deleted for PCTYPE %d loc = %d\n", 330 fd_data->pctype, fd_data->fd_id); 331 } 332 333 if (add) { 334 pf->fd_tcp4_filter_cnt++; 335 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 336 I40E_DEBUG_FD & pf->hw.debug_mask) 337 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 338 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 339 } else { 340 pf->fd_tcp4_filter_cnt--; 341 } 342 343 return 0; 344 } 345 346 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 347 /** 348 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 349 * a specific flow spec 350 * @vsi: pointer to the targeted VSI 351 * @fd_data: the flow director data required for the FDir descriptor 352 * @add: true adds a filter, false removes it 353 * 354 * Returns 0 if the filters were successfully added or removed 355 **/ 356 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 357 struct i40e_fdir_filter *fd_data, 358 bool add) 359 { 360 struct i40e_pf *pf = vsi->back; 361 struct sctphdr *sctp; 362 struct iphdr *ip; 363 u8 *raw_packet; 364 int ret; 365 /* Dummy packet */ 366 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 367 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 368 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 369 370 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 371 if (!raw_packet) 372 return -ENOMEM; 373 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 374 375 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 376 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 377 + sizeof(struct iphdr)); 378 379 ip->daddr = fd_data->dst_ip; 380 sctp->dest = fd_data->dst_port; 381 ip->saddr = fd_data->src_ip; 382 sctp->source = fd_data->src_port; 383 384 if (fd_data->flex_filter) { 385 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 386 __be16 pattern = fd_data->flex_word; 387 u16 off = fd_data->flex_offset; 388 389 *((__force __be16 *)(payload + off)) = pattern; 390 } 391 392 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 393 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 394 if (ret) { 395 dev_info(&pf->pdev->dev, 396 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 397 fd_data->pctype, fd_data->fd_id, ret); 398 /* Free the packet buffer since it wasn't added to the ring */ 399 kfree(raw_packet); 400 return -EOPNOTSUPP; 401 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 402 if (add) 403 dev_info(&pf->pdev->dev, 404 "Filter OK for PCTYPE %d loc = %d\n", 405 fd_data->pctype, fd_data->fd_id); 406 else 407 dev_info(&pf->pdev->dev, 408 "Filter deleted for PCTYPE %d loc = %d\n", 409 fd_data->pctype, fd_data->fd_id); 410 } 411 412 if (add) 413 pf->fd_sctp4_filter_cnt++; 414 else 415 pf->fd_sctp4_filter_cnt--; 416 417 return 0; 418 } 419 420 #define I40E_IP_DUMMY_PACKET_LEN 34 421 /** 422 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 423 * a specific flow spec 424 * @vsi: pointer to the targeted VSI 425 * @fd_data: the flow director data required for the FDir descriptor 426 * @add: true adds a filter, false removes it 427 * 428 * Returns 0 if the filters were successfully added or removed 429 **/ 430 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 431 struct i40e_fdir_filter *fd_data, 432 bool add) 433 { 434 struct i40e_pf *pf = vsi->back; 435 struct iphdr *ip; 436 u8 *raw_packet; 437 int ret; 438 int i; 439 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 440 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 441 0, 0, 0, 0}; 442 443 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 444 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 445 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 446 if (!raw_packet) 447 return -ENOMEM; 448 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 449 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 450 451 ip->saddr = fd_data->src_ip; 452 ip->daddr = fd_data->dst_ip; 453 ip->protocol = 0; 454 455 if (fd_data->flex_filter) { 456 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 457 __be16 pattern = fd_data->flex_word; 458 u16 off = fd_data->flex_offset; 459 460 *((__force __be16 *)(payload + off)) = pattern; 461 } 462 463 fd_data->pctype = i; 464 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 465 if (ret) { 466 dev_info(&pf->pdev->dev, 467 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 468 fd_data->pctype, fd_data->fd_id, ret); 469 /* The packet buffer wasn't added to the ring so we 470 * need to free it now. 471 */ 472 kfree(raw_packet); 473 return -EOPNOTSUPP; 474 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 475 if (add) 476 dev_info(&pf->pdev->dev, 477 "Filter OK for PCTYPE %d loc = %d\n", 478 fd_data->pctype, fd_data->fd_id); 479 else 480 dev_info(&pf->pdev->dev, 481 "Filter deleted for PCTYPE %d loc = %d\n", 482 fd_data->pctype, fd_data->fd_id); 483 } 484 } 485 486 if (add) 487 pf->fd_ip4_filter_cnt++; 488 else 489 pf->fd_ip4_filter_cnt--; 490 491 return 0; 492 } 493 494 /** 495 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 496 * @vsi: pointer to the targeted VSI 497 * @cmd: command to get or set RX flow classification rules 498 * @add: true adds a filter, false removes it 499 * 500 **/ 501 int i40e_add_del_fdir(struct i40e_vsi *vsi, 502 struct i40e_fdir_filter *input, bool add) 503 { 504 struct i40e_pf *pf = vsi->back; 505 int ret; 506 507 switch (input->flow_type & ~FLOW_EXT) { 508 case TCP_V4_FLOW: 509 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 510 break; 511 case UDP_V4_FLOW: 512 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 513 break; 514 case SCTP_V4_FLOW: 515 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 516 break; 517 case IP_USER_FLOW: 518 switch (input->ip4_proto) { 519 case IPPROTO_TCP: 520 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 521 break; 522 case IPPROTO_UDP: 523 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 524 break; 525 case IPPROTO_SCTP: 526 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 527 break; 528 case IPPROTO_IP: 529 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 530 break; 531 default: 532 /* We cannot support masking based on protocol */ 533 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 534 input->ip4_proto); 535 return -EINVAL; 536 } 537 break; 538 default: 539 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 540 input->flow_type); 541 return -EINVAL; 542 } 543 544 /* The buffer allocated here will be normally be freed by 545 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 546 * completion. In the event of an error adding the buffer to the FDIR 547 * ring, it will immediately be freed. It may also be freed by 548 * i40e_clean_tx_ring() when closing the VSI. 549 */ 550 return ret; 551 } 552 553 /** 554 * i40e_fd_handle_status - check the Programming Status for FD 555 * @rx_ring: the Rx ring for this descriptor 556 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 557 * @prog_id: the id originally used for programming 558 * 559 * This is used to verify if the FD programming or invalidation 560 * requested by SW to the HW is successful or not and take actions accordingly. 561 **/ 562 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, 563 union i40e_rx_desc *rx_desc, u8 prog_id) 564 { 565 struct i40e_pf *pf = rx_ring->vsi->back; 566 struct pci_dev *pdev = pf->pdev; 567 u32 fcnt_prog, fcnt_avail; 568 u32 error; 569 u64 qw; 570 571 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 572 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 573 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 574 575 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 576 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 577 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 578 (I40E_DEBUG_FD & pf->hw.debug_mask)) 579 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 580 pf->fd_inv); 581 582 /* Check if the programming error is for ATR. 583 * If so, auto disable ATR and set a state for 584 * flush in progress. Next time we come here if flush is in 585 * progress do nothing, once flush is complete the state will 586 * be cleared. 587 */ 588 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 589 return; 590 591 pf->fd_add_err++; 592 /* store the current atr filter count */ 593 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 594 595 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 596 pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) { 597 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 598 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 599 } 600 601 /* filter programming failed most likely due to table full */ 602 fcnt_prog = i40e_get_global_fd_count(pf); 603 fcnt_avail = pf->fdir_pf_filter_count; 604 /* If ATR is running fcnt_prog can quickly change, 605 * if we are very close to full, it makes sense to disable 606 * FD ATR/SB and then re-enable it when there is room. 607 */ 608 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 609 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 610 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) { 611 pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED; 612 if (I40E_DEBUG_FD & pf->hw.debug_mask) 613 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 614 } 615 } 616 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 617 if (I40E_DEBUG_FD & pf->hw.debug_mask) 618 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 619 rx_desc->wb.qword0.hi_dword.fd_id); 620 } 621 } 622 623 /** 624 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 625 * @ring: the ring that owns the buffer 626 * @tx_buffer: the buffer to free 627 **/ 628 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 629 struct i40e_tx_buffer *tx_buffer) 630 { 631 if (tx_buffer->skb) { 632 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 633 kfree(tx_buffer->raw_buf); 634 else if (ring_is_xdp(ring)) 635 page_frag_free(tx_buffer->raw_buf); 636 else 637 dev_kfree_skb_any(tx_buffer->skb); 638 if (dma_unmap_len(tx_buffer, len)) 639 dma_unmap_single(ring->dev, 640 dma_unmap_addr(tx_buffer, dma), 641 dma_unmap_len(tx_buffer, len), 642 DMA_TO_DEVICE); 643 } else if (dma_unmap_len(tx_buffer, len)) { 644 dma_unmap_page(ring->dev, 645 dma_unmap_addr(tx_buffer, dma), 646 dma_unmap_len(tx_buffer, len), 647 DMA_TO_DEVICE); 648 } 649 650 tx_buffer->next_to_watch = NULL; 651 tx_buffer->skb = NULL; 652 dma_unmap_len_set(tx_buffer, len, 0); 653 /* tx_buffer must be completely set up in the transmit path */ 654 } 655 656 /** 657 * i40e_clean_tx_ring - Free any empty Tx buffers 658 * @tx_ring: ring to be cleaned 659 **/ 660 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 661 { 662 unsigned long bi_size; 663 u16 i; 664 665 /* ring already cleared, nothing to do */ 666 if (!tx_ring->tx_bi) 667 return; 668 669 /* Free all the Tx ring sk_buffs */ 670 for (i = 0; i < tx_ring->count; i++) 671 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 672 673 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 674 memset(tx_ring->tx_bi, 0, bi_size); 675 676 /* Zero out the descriptor ring */ 677 memset(tx_ring->desc, 0, tx_ring->size); 678 679 tx_ring->next_to_use = 0; 680 tx_ring->next_to_clean = 0; 681 682 if (!tx_ring->netdev) 683 return; 684 685 /* cleanup Tx queue statistics */ 686 netdev_tx_reset_queue(txring_txq(tx_ring)); 687 } 688 689 /** 690 * i40e_free_tx_resources - Free Tx resources per queue 691 * @tx_ring: Tx descriptor ring for a specific queue 692 * 693 * Free all transmit software resources 694 **/ 695 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 696 { 697 i40e_clean_tx_ring(tx_ring); 698 kfree(tx_ring->tx_bi); 699 tx_ring->tx_bi = NULL; 700 701 if (tx_ring->desc) { 702 dma_free_coherent(tx_ring->dev, tx_ring->size, 703 tx_ring->desc, tx_ring->dma); 704 tx_ring->desc = NULL; 705 } 706 } 707 708 /** 709 * i40e_get_tx_pending - how many tx descriptors not processed 710 * @tx_ring: the ring of descriptors 711 * 712 * Since there is no access to the ring head register 713 * in XL710, we need to use our local copies 714 **/ 715 u32 i40e_get_tx_pending(struct i40e_ring *ring) 716 { 717 u32 head, tail; 718 719 head = i40e_get_head(ring); 720 tail = readl(ring->tail); 721 722 if (head != tail) 723 return (head < tail) ? 724 tail - head : (tail + ring->count - head); 725 726 return 0; 727 } 728 729 /** 730 * i40e_detect_recover_hung - Function to detect and recover hung_queues 731 * @vsi: pointer to vsi struct with tx queues 732 * 733 * VSI has netdev and netdev has TX queues. This function is to check each of 734 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 735 **/ 736 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 737 { 738 struct i40e_ring *tx_ring = NULL; 739 struct net_device *netdev; 740 unsigned int i; 741 int packets; 742 743 if (!vsi) 744 return; 745 746 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 747 return; 748 749 netdev = vsi->netdev; 750 if (!netdev) 751 return; 752 753 if (!netif_carrier_ok(netdev)) 754 return; 755 756 for (i = 0; i < vsi->num_queue_pairs; i++) { 757 tx_ring = vsi->tx_rings[i]; 758 if (tx_ring && tx_ring->desc) { 759 /* If packet counter has not changed the queue is 760 * likely stalled, so force an interrupt for this 761 * queue. 762 * 763 * prev_pkt_ctr would be negative if there was no 764 * pending work. 765 */ 766 packets = tx_ring->stats.packets & INT_MAX; 767 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 768 i40e_force_wb(vsi, tx_ring->q_vector); 769 continue; 770 } 771 772 /* Memory barrier between read of packet count and call 773 * to i40e_get_tx_pending() 774 */ 775 smp_rmb(); 776 tx_ring->tx_stats.prev_pkt_ctr = 777 i40e_get_tx_pending(tx_ring) ? packets : -1; 778 } 779 } 780 } 781 782 #define WB_STRIDE 4 783 784 /** 785 * i40e_clean_tx_irq - Reclaim resources after transmit completes 786 * @vsi: the VSI we care about 787 * @tx_ring: Tx ring to clean 788 * @napi_budget: Used to determine if we are in netpoll 789 * 790 * Returns true if there's any budget left (e.g. the clean is finished) 791 **/ 792 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 793 struct i40e_ring *tx_ring, int napi_budget) 794 { 795 u16 i = tx_ring->next_to_clean; 796 struct i40e_tx_buffer *tx_buf; 797 struct i40e_tx_desc *tx_head; 798 struct i40e_tx_desc *tx_desc; 799 unsigned int total_bytes = 0, total_packets = 0; 800 unsigned int budget = vsi->work_limit; 801 802 tx_buf = &tx_ring->tx_bi[i]; 803 tx_desc = I40E_TX_DESC(tx_ring, i); 804 i -= tx_ring->count; 805 806 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 807 808 do { 809 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 810 811 /* if next_to_watch is not set then there is no work pending */ 812 if (!eop_desc) 813 break; 814 815 /* prevent any other reads prior to eop_desc */ 816 smp_rmb(); 817 818 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 819 /* we have caught up to head, no work left to do */ 820 if (tx_head == tx_desc) 821 break; 822 823 /* clear next_to_watch to prevent false hangs */ 824 tx_buf->next_to_watch = NULL; 825 826 /* update the statistics for this packet */ 827 total_bytes += tx_buf->bytecount; 828 total_packets += tx_buf->gso_segs; 829 830 /* free the skb/XDP data */ 831 if (ring_is_xdp(tx_ring)) 832 page_frag_free(tx_buf->raw_buf); 833 else 834 napi_consume_skb(tx_buf->skb, napi_budget); 835 836 /* unmap skb header data */ 837 dma_unmap_single(tx_ring->dev, 838 dma_unmap_addr(tx_buf, dma), 839 dma_unmap_len(tx_buf, len), 840 DMA_TO_DEVICE); 841 842 /* clear tx_buffer data */ 843 tx_buf->skb = NULL; 844 dma_unmap_len_set(tx_buf, len, 0); 845 846 /* unmap remaining buffers */ 847 while (tx_desc != eop_desc) { 848 i40e_trace(clean_tx_irq_unmap, 849 tx_ring, tx_desc, tx_buf); 850 851 tx_buf++; 852 tx_desc++; 853 i++; 854 if (unlikely(!i)) { 855 i -= tx_ring->count; 856 tx_buf = tx_ring->tx_bi; 857 tx_desc = I40E_TX_DESC(tx_ring, 0); 858 } 859 860 /* unmap any remaining paged data */ 861 if (dma_unmap_len(tx_buf, len)) { 862 dma_unmap_page(tx_ring->dev, 863 dma_unmap_addr(tx_buf, dma), 864 dma_unmap_len(tx_buf, len), 865 DMA_TO_DEVICE); 866 dma_unmap_len_set(tx_buf, len, 0); 867 } 868 } 869 870 /* move us one more past the eop_desc for start of next pkt */ 871 tx_buf++; 872 tx_desc++; 873 i++; 874 if (unlikely(!i)) { 875 i -= tx_ring->count; 876 tx_buf = tx_ring->tx_bi; 877 tx_desc = I40E_TX_DESC(tx_ring, 0); 878 } 879 880 prefetch(tx_desc); 881 882 /* update budget accounting */ 883 budget--; 884 } while (likely(budget)); 885 886 i += tx_ring->count; 887 tx_ring->next_to_clean = i; 888 u64_stats_update_begin(&tx_ring->syncp); 889 tx_ring->stats.bytes += total_bytes; 890 tx_ring->stats.packets += total_packets; 891 u64_stats_update_end(&tx_ring->syncp); 892 tx_ring->q_vector->tx.total_bytes += total_bytes; 893 tx_ring->q_vector->tx.total_packets += total_packets; 894 895 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) { 896 /* check to see if there are < 4 descriptors 897 * waiting to be written back, then kick the hardware to force 898 * them to be written back in case we stay in NAPI. 899 * In this mode on X722 we do not enable Interrupt. 900 */ 901 unsigned int j = i40e_get_tx_pending(tx_ring); 902 903 if (budget && 904 ((j / WB_STRIDE) == 0) && (j > 0) && 905 !test_bit(__I40E_VSI_DOWN, vsi->state) && 906 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) 907 tx_ring->arm_wb = true; 908 } 909 910 if (ring_is_xdp(tx_ring)) 911 return !!budget; 912 913 /* notify netdev of completed buffers */ 914 netdev_tx_completed_queue(txring_txq(tx_ring), 915 total_packets, total_bytes); 916 917 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 918 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 919 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 920 /* Make sure that anybody stopping the queue after this 921 * sees the new next_to_clean. 922 */ 923 smp_mb(); 924 if (__netif_subqueue_stopped(tx_ring->netdev, 925 tx_ring->queue_index) && 926 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 927 netif_wake_subqueue(tx_ring->netdev, 928 tx_ring->queue_index); 929 ++tx_ring->tx_stats.restart_queue; 930 } 931 } 932 933 return !!budget; 934 } 935 936 /** 937 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 938 * @vsi: the VSI we care about 939 * @q_vector: the vector on which to enable writeback 940 * 941 **/ 942 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 943 struct i40e_q_vector *q_vector) 944 { 945 u16 flags = q_vector->tx.ring[0].flags; 946 u32 val; 947 948 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 949 return; 950 951 if (q_vector->arm_wb_state) 952 return; 953 954 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 955 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 956 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 957 958 wr32(&vsi->back->hw, 959 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 960 val); 961 } else { 962 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 963 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 964 965 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 966 } 967 q_vector->arm_wb_state = true; 968 } 969 970 /** 971 * i40e_force_wb - Issue SW Interrupt so HW does a wb 972 * @vsi: the VSI we care about 973 * @q_vector: the vector on which to force writeback 974 * 975 **/ 976 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 977 { 978 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 979 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 980 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 981 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 982 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 983 /* allow 00 to be written to the index */ 984 985 wr32(&vsi->back->hw, 986 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 987 } else { 988 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 989 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 990 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 991 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 992 /* allow 00 to be written to the index */ 993 994 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 995 } 996 } 997 998 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 999 struct i40e_ring_container *rc) 1000 { 1001 return &q_vector->rx == rc; 1002 } 1003 1004 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 1005 { 1006 unsigned int divisor; 1007 1008 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 1009 case I40E_LINK_SPEED_40GB: 1010 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 1011 break; 1012 case I40E_LINK_SPEED_25GB: 1013 case I40E_LINK_SPEED_20GB: 1014 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 1015 break; 1016 default: 1017 case I40E_LINK_SPEED_10GB: 1018 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 1019 break; 1020 case I40E_LINK_SPEED_1GB: 1021 case I40E_LINK_SPEED_100MB: 1022 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 1023 break; 1024 } 1025 1026 return divisor; 1027 } 1028 1029 /** 1030 * i40e_update_itr - update the dynamic ITR value based on statistics 1031 * @q_vector: structure containing interrupt and ring information 1032 * @rc: structure containing ring performance data 1033 * 1034 * Stores a new ITR value based on packets and byte 1035 * counts during the last interrupt. The advantage of per interrupt 1036 * computation is faster updates and more accurate ITR for the current 1037 * traffic pattern. Constants in this function were computed 1038 * based on theoretical maximum wire speed and thresholds were set based 1039 * on testing data as well as attempting to minimize response time 1040 * while increasing bulk throughput. 1041 **/ 1042 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1043 struct i40e_ring_container *rc) 1044 { 1045 unsigned int avg_wire_size, packets, bytes, itr; 1046 unsigned long next_update = jiffies; 1047 1048 /* If we don't have any rings just leave ourselves set for maximum 1049 * possible latency so we take ourselves out of the equation. 1050 */ 1051 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1052 return; 1053 1054 /* For Rx we want to push the delay up and default to low latency. 1055 * for Tx we want to pull the delay down and default to high latency. 1056 */ 1057 itr = i40e_container_is_rx(q_vector, rc) ? 1058 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1059 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1060 1061 /* If we didn't update within up to 1 - 2 jiffies we can assume 1062 * that either packets are coming in so slow there hasn't been 1063 * any work, or that there is so much work that NAPI is dealing 1064 * with interrupt moderation and we don't need to do anything. 1065 */ 1066 if (time_after(next_update, rc->next_update)) 1067 goto clear_counts; 1068 1069 /* If itr_countdown is set it means we programmed an ITR within 1070 * the last 4 interrupt cycles. This has a side effect of us 1071 * potentially firing an early interrupt. In order to work around 1072 * this we need to throw out any data received for a few 1073 * interrupts following the update. 1074 */ 1075 if (q_vector->itr_countdown) { 1076 itr = rc->target_itr; 1077 goto clear_counts; 1078 } 1079 1080 packets = rc->total_packets; 1081 bytes = rc->total_bytes; 1082 1083 if (i40e_container_is_rx(q_vector, rc)) { 1084 /* If Rx there are 1 to 4 packets and bytes are less than 1085 * 9000 assume insufficient data to use bulk rate limiting 1086 * approach unless Tx is already in bulk rate limiting. We 1087 * are likely latency driven. 1088 */ 1089 if (packets && packets < 4 && bytes < 9000 && 1090 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1091 itr = I40E_ITR_ADAPTIVE_LATENCY; 1092 goto adjust_by_size; 1093 } 1094 } else if (packets < 4) { 1095 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1096 * bulk mode and we are receiving 4 or fewer packets just 1097 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1098 * that the Rx can relax. 1099 */ 1100 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1101 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1102 I40E_ITR_ADAPTIVE_MAX_USECS) 1103 goto clear_counts; 1104 } else if (packets > 32) { 1105 /* If we have processed over 32 packets in a single interrupt 1106 * for Tx assume we need to switch over to "bulk" mode. 1107 */ 1108 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1109 } 1110 1111 /* We have no packets to actually measure against. This means 1112 * either one of the other queues on this vector is active or 1113 * we are a Tx queue doing TSO with too high of an interrupt rate. 1114 * 1115 * Between 4 and 56 we can assume that our current interrupt delay 1116 * is only slightly too low. As such we should increase it by a small 1117 * fixed amount. 1118 */ 1119 if (packets < 56) { 1120 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1121 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1122 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1123 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1124 } 1125 goto clear_counts; 1126 } 1127 1128 if (packets <= 256) { 1129 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1130 itr &= I40E_ITR_MASK; 1131 1132 /* Between 56 and 112 is our "goldilocks" zone where we are 1133 * working out "just right". Just report that our current 1134 * ITR is good for us. 1135 */ 1136 if (packets <= 112) 1137 goto clear_counts; 1138 1139 /* If packet count is 128 or greater we are likely looking 1140 * at a slight overrun of the delay we want. Try halving 1141 * our delay to see if that will cut the number of packets 1142 * in half per interrupt. 1143 */ 1144 itr /= 2; 1145 itr &= I40E_ITR_MASK; 1146 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1147 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1148 1149 goto clear_counts; 1150 } 1151 1152 /* The paths below assume we are dealing with a bulk ITR since 1153 * number of packets is greater than 256. We are just going to have 1154 * to compute a value and try to bring the count under control, 1155 * though for smaller packet sizes there isn't much we can do as 1156 * NAPI polling will likely be kicking in sooner rather than later. 1157 */ 1158 itr = I40E_ITR_ADAPTIVE_BULK; 1159 1160 adjust_by_size: 1161 /* If packet counts are 256 or greater we can assume we have a gross 1162 * overestimation of what the rate should be. Instead of trying to fine 1163 * tune it just use the formula below to try and dial in an exact value 1164 * give the current packet size of the frame. 1165 */ 1166 avg_wire_size = bytes / packets; 1167 1168 /* The following is a crude approximation of: 1169 * wmem_default / (size + overhead) = desired_pkts_per_int 1170 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1171 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1172 * 1173 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1174 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1175 * formula down to 1176 * 1177 * (170 * (size + 24)) / (size + 640) = ITR 1178 * 1179 * We first do some math on the packet size and then finally bitshift 1180 * by 8 after rounding up. We also have to account for PCIe link speed 1181 * difference as ITR scales based on this. 1182 */ 1183 if (avg_wire_size <= 60) { 1184 /* Start at 250k ints/sec */ 1185 avg_wire_size = 4096; 1186 } else if (avg_wire_size <= 380) { 1187 /* 250K ints/sec to 60K ints/sec */ 1188 avg_wire_size *= 40; 1189 avg_wire_size += 1696; 1190 } else if (avg_wire_size <= 1084) { 1191 /* 60K ints/sec to 36K ints/sec */ 1192 avg_wire_size *= 15; 1193 avg_wire_size += 11452; 1194 } else if (avg_wire_size <= 1980) { 1195 /* 36K ints/sec to 30K ints/sec */ 1196 avg_wire_size *= 5; 1197 avg_wire_size += 22420; 1198 } else { 1199 /* plateau at a limit of 30K ints/sec */ 1200 avg_wire_size = 32256; 1201 } 1202 1203 /* If we are in low latency mode halve our delay which doubles the 1204 * rate to somewhere between 100K to 16K ints/sec 1205 */ 1206 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1207 avg_wire_size /= 2; 1208 1209 /* Resultant value is 256 times larger than it needs to be. This 1210 * gives us room to adjust the value as needed to either increase 1211 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1212 * 1213 * Use addition as we have already recorded the new latency flag 1214 * for the ITR value. 1215 */ 1216 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1217 I40E_ITR_ADAPTIVE_MIN_INC; 1218 1219 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1220 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1221 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1222 } 1223 1224 clear_counts: 1225 /* write back value */ 1226 rc->target_itr = itr; 1227 1228 /* next update should occur within next jiffy */ 1229 rc->next_update = next_update + 1; 1230 1231 rc->total_bytes = 0; 1232 rc->total_packets = 0; 1233 } 1234 1235 /** 1236 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1237 * @rx_ring: rx descriptor ring to store buffers on 1238 * @old_buff: donor buffer to have page reused 1239 * 1240 * Synchronizes page for reuse by the adapter 1241 **/ 1242 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1243 struct i40e_rx_buffer *old_buff) 1244 { 1245 struct i40e_rx_buffer *new_buff; 1246 u16 nta = rx_ring->next_to_alloc; 1247 1248 new_buff = &rx_ring->rx_bi[nta]; 1249 1250 /* update, and store next to alloc */ 1251 nta++; 1252 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1253 1254 /* transfer page from old buffer to new buffer */ 1255 new_buff->dma = old_buff->dma; 1256 new_buff->page = old_buff->page; 1257 new_buff->page_offset = old_buff->page_offset; 1258 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1259 } 1260 1261 /** 1262 * i40e_rx_is_programming_status - check for programming status descriptor 1263 * @qw: qword representing status_error_len in CPU ordering 1264 * 1265 * The value of in the descriptor length field indicate if this 1266 * is a programming status descriptor for flow director or FCoE 1267 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise 1268 * it is a packet descriptor. 1269 **/ 1270 static inline bool i40e_rx_is_programming_status(u64 qw) 1271 { 1272 /* The Rx filter programming status and SPH bit occupy the same 1273 * spot in the descriptor. Since we don't support packet split we 1274 * can just reuse the bit as an indication that this is a 1275 * programming status descriptor. 1276 */ 1277 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK; 1278 } 1279 1280 /** 1281 * i40e_clean_programming_status - clean the programming status descriptor 1282 * @rx_ring: the rx ring that has this descriptor 1283 * @rx_desc: the rx descriptor written back by HW 1284 * @qw: qword representing status_error_len in CPU ordering 1285 * 1286 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1287 * status being successful or not and take actions accordingly. FCoE should 1288 * handle its context/filter programming/invalidation status and take actions. 1289 * 1290 **/ 1291 static void i40e_clean_programming_status(struct i40e_ring *rx_ring, 1292 union i40e_rx_desc *rx_desc, 1293 u64 qw) 1294 { 1295 struct i40e_rx_buffer *rx_buffer; 1296 u32 ntc = rx_ring->next_to_clean; 1297 u8 id; 1298 1299 /* fetch, update, and store next to clean */ 1300 rx_buffer = &rx_ring->rx_bi[ntc++]; 1301 ntc = (ntc < rx_ring->count) ? ntc : 0; 1302 rx_ring->next_to_clean = ntc; 1303 1304 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1305 1306 /* place unused page back on the ring */ 1307 i40e_reuse_rx_page(rx_ring, rx_buffer); 1308 rx_ring->rx_stats.page_reuse_count++; 1309 1310 /* clear contents of buffer_info */ 1311 rx_buffer->page = NULL; 1312 1313 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1314 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1315 1316 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1317 i40e_fd_handle_status(rx_ring, rx_desc, id); 1318 } 1319 1320 /** 1321 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1322 * @tx_ring: the tx ring to set up 1323 * 1324 * Return 0 on success, negative on error 1325 **/ 1326 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1327 { 1328 struct device *dev = tx_ring->dev; 1329 int bi_size; 1330 1331 if (!dev) 1332 return -ENOMEM; 1333 1334 /* warn if we are about to overwrite the pointer */ 1335 WARN_ON(tx_ring->tx_bi); 1336 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1337 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1338 if (!tx_ring->tx_bi) 1339 goto err; 1340 1341 u64_stats_init(&tx_ring->syncp); 1342 1343 /* round up to nearest 4K */ 1344 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1345 /* add u32 for head writeback, align after this takes care of 1346 * guaranteeing this is at least one cache line in size 1347 */ 1348 tx_ring->size += sizeof(u32); 1349 tx_ring->size = ALIGN(tx_ring->size, 4096); 1350 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1351 &tx_ring->dma, GFP_KERNEL); 1352 if (!tx_ring->desc) { 1353 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1354 tx_ring->size); 1355 goto err; 1356 } 1357 1358 tx_ring->next_to_use = 0; 1359 tx_ring->next_to_clean = 0; 1360 tx_ring->tx_stats.prev_pkt_ctr = -1; 1361 return 0; 1362 1363 err: 1364 kfree(tx_ring->tx_bi); 1365 tx_ring->tx_bi = NULL; 1366 return -ENOMEM; 1367 } 1368 1369 /** 1370 * i40e_clean_rx_ring - Free Rx buffers 1371 * @rx_ring: ring to be cleaned 1372 **/ 1373 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1374 { 1375 unsigned long bi_size; 1376 u16 i; 1377 1378 /* ring already cleared, nothing to do */ 1379 if (!rx_ring->rx_bi) 1380 return; 1381 1382 if (rx_ring->skb) { 1383 dev_kfree_skb(rx_ring->skb); 1384 rx_ring->skb = NULL; 1385 } 1386 1387 /* Free all the Rx ring sk_buffs */ 1388 for (i = 0; i < rx_ring->count; i++) { 1389 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 1390 1391 if (!rx_bi->page) 1392 continue; 1393 1394 /* Invalidate cache lines that may have been written to by 1395 * device so that we avoid corrupting memory. 1396 */ 1397 dma_sync_single_range_for_cpu(rx_ring->dev, 1398 rx_bi->dma, 1399 rx_bi->page_offset, 1400 rx_ring->rx_buf_len, 1401 DMA_FROM_DEVICE); 1402 1403 /* free resources associated with mapping */ 1404 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1405 i40e_rx_pg_size(rx_ring), 1406 DMA_FROM_DEVICE, 1407 I40E_RX_DMA_ATTR); 1408 1409 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1410 1411 rx_bi->page = NULL; 1412 rx_bi->page_offset = 0; 1413 } 1414 1415 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1416 memset(rx_ring->rx_bi, 0, bi_size); 1417 1418 /* Zero out the descriptor ring */ 1419 memset(rx_ring->desc, 0, rx_ring->size); 1420 1421 rx_ring->next_to_alloc = 0; 1422 rx_ring->next_to_clean = 0; 1423 rx_ring->next_to_use = 0; 1424 } 1425 1426 /** 1427 * i40e_free_rx_resources - Free Rx resources 1428 * @rx_ring: ring to clean the resources from 1429 * 1430 * Free all receive software resources 1431 **/ 1432 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1433 { 1434 i40e_clean_rx_ring(rx_ring); 1435 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1436 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1437 rx_ring->xdp_prog = NULL; 1438 kfree(rx_ring->rx_bi); 1439 rx_ring->rx_bi = NULL; 1440 1441 if (rx_ring->desc) { 1442 dma_free_coherent(rx_ring->dev, rx_ring->size, 1443 rx_ring->desc, rx_ring->dma); 1444 rx_ring->desc = NULL; 1445 } 1446 } 1447 1448 /** 1449 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1450 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1451 * 1452 * Returns 0 on success, negative on failure 1453 **/ 1454 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1455 { 1456 struct device *dev = rx_ring->dev; 1457 int err = -ENOMEM; 1458 int bi_size; 1459 1460 /* warn if we are about to overwrite the pointer */ 1461 WARN_ON(rx_ring->rx_bi); 1462 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1463 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1464 if (!rx_ring->rx_bi) 1465 goto err; 1466 1467 u64_stats_init(&rx_ring->syncp); 1468 1469 /* Round up to nearest 4K */ 1470 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1471 rx_ring->size = ALIGN(rx_ring->size, 4096); 1472 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1473 &rx_ring->dma, GFP_KERNEL); 1474 1475 if (!rx_ring->desc) { 1476 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1477 rx_ring->size); 1478 goto err; 1479 } 1480 1481 rx_ring->next_to_alloc = 0; 1482 rx_ring->next_to_clean = 0; 1483 rx_ring->next_to_use = 0; 1484 1485 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1486 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1487 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1488 rx_ring->queue_index); 1489 if (err < 0) 1490 goto err; 1491 } 1492 1493 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1494 1495 return 0; 1496 err: 1497 kfree(rx_ring->rx_bi); 1498 rx_ring->rx_bi = NULL; 1499 return err; 1500 } 1501 1502 /** 1503 * i40e_release_rx_desc - Store the new tail and head values 1504 * @rx_ring: ring to bump 1505 * @val: new head index 1506 **/ 1507 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1508 { 1509 rx_ring->next_to_use = val; 1510 1511 /* update next to alloc since we have filled the ring */ 1512 rx_ring->next_to_alloc = val; 1513 1514 /* Force memory writes to complete before letting h/w 1515 * know there are new descriptors to fetch. (Only 1516 * applicable for weak-ordered memory model archs, 1517 * such as IA-64). 1518 */ 1519 wmb(); 1520 writel(val, rx_ring->tail); 1521 } 1522 1523 /** 1524 * i40e_rx_offset - Return expected offset into page to access data 1525 * @rx_ring: Ring we are requesting offset of 1526 * 1527 * Returns the offset value for ring into the data buffer. 1528 */ 1529 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1530 { 1531 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1532 } 1533 1534 /** 1535 * i40e_alloc_mapped_page - recycle or make a new page 1536 * @rx_ring: ring to use 1537 * @bi: rx_buffer struct to modify 1538 * 1539 * Returns true if the page was successfully allocated or 1540 * reused. 1541 **/ 1542 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1543 struct i40e_rx_buffer *bi) 1544 { 1545 struct page *page = bi->page; 1546 dma_addr_t dma; 1547 1548 /* since we are recycling buffers we should seldom need to alloc */ 1549 if (likely(page)) { 1550 rx_ring->rx_stats.page_reuse_count++; 1551 return true; 1552 } 1553 1554 /* alloc new page for storage */ 1555 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1556 if (unlikely(!page)) { 1557 rx_ring->rx_stats.alloc_page_failed++; 1558 return false; 1559 } 1560 1561 /* map page for use */ 1562 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1563 i40e_rx_pg_size(rx_ring), 1564 DMA_FROM_DEVICE, 1565 I40E_RX_DMA_ATTR); 1566 1567 /* if mapping failed free memory back to system since 1568 * there isn't much point in holding memory we can't use 1569 */ 1570 if (dma_mapping_error(rx_ring->dev, dma)) { 1571 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1572 rx_ring->rx_stats.alloc_page_failed++; 1573 return false; 1574 } 1575 1576 bi->dma = dma; 1577 bi->page = page; 1578 bi->page_offset = i40e_rx_offset(rx_ring); 1579 1580 /* initialize pagecnt_bias to 1 representing we fully own page */ 1581 bi->pagecnt_bias = 1; 1582 1583 return true; 1584 } 1585 1586 /** 1587 * i40e_receive_skb - Send a completed packet up the stack 1588 * @rx_ring: rx ring in play 1589 * @skb: packet to send up 1590 * @vlan_tag: vlan tag for packet 1591 **/ 1592 static void i40e_receive_skb(struct i40e_ring *rx_ring, 1593 struct sk_buff *skb, u16 vlan_tag) 1594 { 1595 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1596 1597 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1598 (vlan_tag & VLAN_VID_MASK)) 1599 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1600 1601 napi_gro_receive(&q_vector->napi, skb); 1602 } 1603 1604 /** 1605 * i40e_alloc_rx_buffers - Replace used receive buffers 1606 * @rx_ring: ring to place buffers on 1607 * @cleaned_count: number of buffers to replace 1608 * 1609 * Returns false if all allocations were successful, true if any fail 1610 **/ 1611 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1612 { 1613 u16 ntu = rx_ring->next_to_use; 1614 union i40e_rx_desc *rx_desc; 1615 struct i40e_rx_buffer *bi; 1616 1617 /* do nothing if no valid netdev defined */ 1618 if (!rx_ring->netdev || !cleaned_count) 1619 return false; 1620 1621 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1622 bi = &rx_ring->rx_bi[ntu]; 1623 1624 do { 1625 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1626 goto no_buffers; 1627 1628 /* sync the buffer for use by the device */ 1629 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1630 bi->page_offset, 1631 rx_ring->rx_buf_len, 1632 DMA_FROM_DEVICE); 1633 1634 /* Refresh the desc even if buffer_addrs didn't change 1635 * because each write-back erases this info. 1636 */ 1637 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1638 1639 rx_desc++; 1640 bi++; 1641 ntu++; 1642 if (unlikely(ntu == rx_ring->count)) { 1643 rx_desc = I40E_RX_DESC(rx_ring, 0); 1644 bi = rx_ring->rx_bi; 1645 ntu = 0; 1646 } 1647 1648 /* clear the status bits for the next_to_use descriptor */ 1649 rx_desc->wb.qword1.status_error_len = 0; 1650 1651 cleaned_count--; 1652 } while (cleaned_count); 1653 1654 if (rx_ring->next_to_use != ntu) 1655 i40e_release_rx_desc(rx_ring, ntu); 1656 1657 return false; 1658 1659 no_buffers: 1660 if (rx_ring->next_to_use != ntu) 1661 i40e_release_rx_desc(rx_ring, ntu); 1662 1663 /* make sure to come back via polling to try again after 1664 * allocation failure 1665 */ 1666 return true; 1667 } 1668 1669 /** 1670 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1671 * @vsi: the VSI we care about 1672 * @skb: skb currently being received and modified 1673 * @rx_desc: the receive descriptor 1674 **/ 1675 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1676 struct sk_buff *skb, 1677 union i40e_rx_desc *rx_desc) 1678 { 1679 struct i40e_rx_ptype_decoded decoded; 1680 u32 rx_error, rx_status; 1681 bool ipv4, ipv6; 1682 u8 ptype; 1683 u64 qword; 1684 1685 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1686 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1687 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1688 I40E_RXD_QW1_ERROR_SHIFT; 1689 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1690 I40E_RXD_QW1_STATUS_SHIFT; 1691 decoded = decode_rx_desc_ptype(ptype); 1692 1693 skb->ip_summed = CHECKSUM_NONE; 1694 1695 skb_checksum_none_assert(skb); 1696 1697 /* Rx csum enabled and ip headers found? */ 1698 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1699 return; 1700 1701 /* did the hardware decode the packet and checksum? */ 1702 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1703 return; 1704 1705 /* both known and outer_ip must be set for the below code to work */ 1706 if (!(decoded.known && decoded.outer_ip)) 1707 return; 1708 1709 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1710 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1711 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1712 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1713 1714 if (ipv4 && 1715 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1716 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1717 goto checksum_fail; 1718 1719 /* likely incorrect csum if alternate IP extension headers found */ 1720 if (ipv6 && 1721 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1722 /* don't increment checksum err here, non-fatal err */ 1723 return; 1724 1725 /* there was some L4 error, count error and punt packet to the stack */ 1726 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1727 goto checksum_fail; 1728 1729 /* handle packets that were not able to be checksummed due 1730 * to arrival speed, in this case the stack can compute 1731 * the csum. 1732 */ 1733 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1734 return; 1735 1736 /* If there is an outer header present that might contain a checksum 1737 * we need to bump the checksum level by 1 to reflect the fact that 1738 * we are indicating we validated the inner checksum. 1739 */ 1740 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1741 skb->csum_level = 1; 1742 1743 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1744 switch (decoded.inner_prot) { 1745 case I40E_RX_PTYPE_INNER_PROT_TCP: 1746 case I40E_RX_PTYPE_INNER_PROT_UDP: 1747 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1748 skb->ip_summed = CHECKSUM_UNNECESSARY; 1749 /* fall though */ 1750 default: 1751 break; 1752 } 1753 1754 return; 1755 1756 checksum_fail: 1757 vsi->back->hw_csum_rx_error++; 1758 } 1759 1760 /** 1761 * i40e_ptype_to_htype - get a hash type 1762 * @ptype: the ptype value from the descriptor 1763 * 1764 * Returns a hash type to be used by skb_set_hash 1765 **/ 1766 static inline int i40e_ptype_to_htype(u8 ptype) 1767 { 1768 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1769 1770 if (!decoded.known) 1771 return PKT_HASH_TYPE_NONE; 1772 1773 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1774 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1775 return PKT_HASH_TYPE_L4; 1776 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1777 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1778 return PKT_HASH_TYPE_L3; 1779 else 1780 return PKT_HASH_TYPE_L2; 1781 } 1782 1783 /** 1784 * i40e_rx_hash - set the hash value in the skb 1785 * @ring: descriptor ring 1786 * @rx_desc: specific descriptor 1787 **/ 1788 static inline void i40e_rx_hash(struct i40e_ring *ring, 1789 union i40e_rx_desc *rx_desc, 1790 struct sk_buff *skb, 1791 u8 rx_ptype) 1792 { 1793 u32 hash; 1794 const __le64 rss_mask = 1795 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1796 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1797 1798 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1799 return; 1800 1801 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1802 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1803 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1804 } 1805 } 1806 1807 /** 1808 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1809 * @rx_ring: rx descriptor ring packet is being transacted on 1810 * @rx_desc: pointer to the EOP Rx descriptor 1811 * @skb: pointer to current skb being populated 1812 * @rx_ptype: the packet type decoded by hardware 1813 * 1814 * This function checks the ring, descriptor, and packet information in 1815 * order to populate the hash, checksum, VLAN, protocol, and 1816 * other fields within the skb. 1817 **/ 1818 static inline 1819 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1820 union i40e_rx_desc *rx_desc, struct sk_buff *skb, 1821 u8 rx_ptype) 1822 { 1823 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1824 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1825 I40E_RXD_QW1_STATUS_SHIFT; 1826 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1827 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1828 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1829 1830 if (unlikely(tsynvalid)) 1831 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1832 1833 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1834 1835 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1836 1837 skb_record_rx_queue(skb, rx_ring->queue_index); 1838 1839 /* modifies the skb - consumes the enet header */ 1840 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1841 } 1842 1843 /** 1844 * i40e_cleanup_headers - Correct empty headers 1845 * @rx_ring: rx descriptor ring packet is being transacted on 1846 * @skb: pointer to current skb being fixed 1847 * @rx_desc: pointer to the EOP Rx descriptor 1848 * 1849 * Also address the case where we are pulling data in on pages only 1850 * and as such no data is present in the skb header. 1851 * 1852 * In addition if skb is not at least 60 bytes we need to pad it so that 1853 * it is large enough to qualify as a valid Ethernet frame. 1854 * 1855 * Returns true if an error was encountered and skb was freed. 1856 **/ 1857 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1858 union i40e_rx_desc *rx_desc) 1859 1860 { 1861 /* XDP packets use error pointer so abort at this point */ 1862 if (IS_ERR(skb)) 1863 return true; 1864 1865 /* ERR_MASK will only have valid bits if EOP set, and 1866 * what we are doing here is actually checking 1867 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1868 * the error field 1869 */ 1870 if (unlikely(i40e_test_staterr(rx_desc, 1871 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1872 dev_kfree_skb_any(skb); 1873 return true; 1874 } 1875 1876 /* if eth_skb_pad returns an error the skb was freed */ 1877 if (eth_skb_pad(skb)) 1878 return true; 1879 1880 return false; 1881 } 1882 1883 /** 1884 * i40e_page_is_reusable - check if any reuse is possible 1885 * @page: page struct to check 1886 * 1887 * A page is not reusable if it was allocated under low memory 1888 * conditions, or it's not in the same NUMA node as this CPU. 1889 */ 1890 static inline bool i40e_page_is_reusable(struct page *page) 1891 { 1892 return (page_to_nid(page) == numa_mem_id()) && 1893 !page_is_pfmemalloc(page); 1894 } 1895 1896 /** 1897 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1898 * the adapter for another receive 1899 * 1900 * @rx_buffer: buffer containing the page 1901 * 1902 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1903 * an unused region in the page. 1904 * 1905 * For small pages, @truesize will be a constant value, half the size 1906 * of the memory at page. We'll attempt to alternate between high and 1907 * low halves of the page, with one half ready for use by the hardware 1908 * and the other half being consumed by the stack. We use the page 1909 * ref count to determine whether the stack has finished consuming the 1910 * portion of this page that was passed up with a previous packet. If 1911 * the page ref count is >1, we'll assume the "other" half page is 1912 * still busy, and this page cannot be reused. 1913 * 1914 * For larger pages, @truesize will be the actual space used by the 1915 * received packet (adjusted upward to an even multiple of the cache 1916 * line size). This will advance through the page by the amount 1917 * actually consumed by the received packets while there is still 1918 * space for a buffer. Each region of larger pages will be used at 1919 * most once, after which the page will not be reused. 1920 * 1921 * In either case, if the page is reusable its refcount is increased. 1922 **/ 1923 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1924 { 1925 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1926 struct page *page = rx_buffer->page; 1927 1928 /* Is any reuse possible? */ 1929 if (unlikely(!i40e_page_is_reusable(page))) 1930 return false; 1931 1932 #if (PAGE_SIZE < 8192) 1933 /* if we are only owner of page we can reuse it */ 1934 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1935 return false; 1936 #else 1937 #define I40E_LAST_OFFSET \ 1938 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1939 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1940 return false; 1941 #endif 1942 1943 /* If we have drained the page fragment pool we need to update 1944 * the pagecnt_bias and page count so that we fully restock the 1945 * number of references the driver holds. 1946 */ 1947 if (unlikely(!pagecnt_bias)) { 1948 page_ref_add(page, USHRT_MAX); 1949 rx_buffer->pagecnt_bias = USHRT_MAX; 1950 } 1951 1952 return true; 1953 } 1954 1955 /** 1956 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1957 * @rx_ring: rx descriptor ring to transact packets on 1958 * @rx_buffer: buffer containing page to add 1959 * @skb: sk_buff to place the data into 1960 * @size: packet length from rx_desc 1961 * 1962 * This function will add the data contained in rx_buffer->page to the skb. 1963 * It will just attach the page as a frag to the skb. 1964 * 1965 * The function will then update the page offset. 1966 **/ 1967 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1968 struct i40e_rx_buffer *rx_buffer, 1969 struct sk_buff *skb, 1970 unsigned int size) 1971 { 1972 #if (PAGE_SIZE < 8192) 1973 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1974 #else 1975 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1976 #endif 1977 1978 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1979 rx_buffer->page_offset, size, truesize); 1980 1981 /* page is being used so we must update the page offset */ 1982 #if (PAGE_SIZE < 8192) 1983 rx_buffer->page_offset ^= truesize; 1984 #else 1985 rx_buffer->page_offset += truesize; 1986 #endif 1987 } 1988 1989 /** 1990 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1991 * @rx_ring: rx descriptor ring to transact packets on 1992 * @size: size of buffer to add to skb 1993 * 1994 * This function will pull an Rx buffer from the ring and synchronize it 1995 * for use by the CPU. 1996 */ 1997 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1998 const unsigned int size) 1999 { 2000 struct i40e_rx_buffer *rx_buffer; 2001 2002 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 2003 prefetchw(rx_buffer->page); 2004 2005 /* we are reusing so sync this buffer for CPU use */ 2006 dma_sync_single_range_for_cpu(rx_ring->dev, 2007 rx_buffer->dma, 2008 rx_buffer->page_offset, 2009 size, 2010 DMA_FROM_DEVICE); 2011 2012 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 2013 rx_buffer->pagecnt_bias--; 2014 2015 return rx_buffer; 2016 } 2017 2018 /** 2019 * i40e_construct_skb - Allocate skb and populate it 2020 * @rx_ring: rx descriptor ring to transact packets on 2021 * @rx_buffer: rx buffer to pull data from 2022 * @xdp: xdp_buff pointing to the data 2023 * 2024 * This function allocates an skb. It then populates it with the page 2025 * data from the current receive descriptor, taking care to set up the 2026 * skb correctly. 2027 */ 2028 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2029 struct i40e_rx_buffer *rx_buffer, 2030 struct xdp_buff *xdp) 2031 { 2032 unsigned int size = xdp->data_end - xdp->data; 2033 #if (PAGE_SIZE < 8192) 2034 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2035 #else 2036 unsigned int truesize = SKB_DATA_ALIGN(size); 2037 #endif 2038 unsigned int headlen; 2039 struct sk_buff *skb; 2040 2041 /* prefetch first cache line of first page */ 2042 prefetch(xdp->data); 2043 #if L1_CACHE_BYTES < 128 2044 prefetch(xdp->data + L1_CACHE_BYTES); 2045 #endif 2046 2047 /* allocate a skb to store the frags */ 2048 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2049 I40E_RX_HDR_SIZE, 2050 GFP_ATOMIC | __GFP_NOWARN); 2051 if (unlikely(!skb)) 2052 return NULL; 2053 2054 /* Determine available headroom for copy */ 2055 headlen = size; 2056 if (headlen > I40E_RX_HDR_SIZE) 2057 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE); 2058 2059 /* align pull length to size of long to optimize memcpy performance */ 2060 memcpy(__skb_put(skb, headlen), xdp->data, 2061 ALIGN(headlen, sizeof(long))); 2062 2063 /* update all of the pointers */ 2064 size -= headlen; 2065 if (size) { 2066 skb_add_rx_frag(skb, 0, rx_buffer->page, 2067 rx_buffer->page_offset + headlen, 2068 size, truesize); 2069 2070 /* buffer is used by skb, update page_offset */ 2071 #if (PAGE_SIZE < 8192) 2072 rx_buffer->page_offset ^= truesize; 2073 #else 2074 rx_buffer->page_offset += truesize; 2075 #endif 2076 } else { 2077 /* buffer is unused, reset bias back to rx_buffer */ 2078 rx_buffer->pagecnt_bias++; 2079 } 2080 2081 return skb; 2082 } 2083 2084 /** 2085 * i40e_build_skb - Build skb around an existing buffer 2086 * @rx_ring: Rx descriptor ring to transact packets on 2087 * @rx_buffer: Rx buffer to pull data from 2088 * @xdp: xdp_buff pointing to the data 2089 * 2090 * This function builds an skb around an existing Rx buffer, taking care 2091 * to set up the skb correctly and avoid any memcpy overhead. 2092 */ 2093 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2094 struct i40e_rx_buffer *rx_buffer, 2095 struct xdp_buff *xdp) 2096 { 2097 unsigned int size = xdp->data_end - xdp->data; 2098 #if (PAGE_SIZE < 8192) 2099 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2100 #else 2101 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2102 SKB_DATA_ALIGN(I40E_SKB_PAD + size); 2103 #endif 2104 struct sk_buff *skb; 2105 2106 /* prefetch first cache line of first page */ 2107 prefetch(xdp->data); 2108 #if L1_CACHE_BYTES < 128 2109 prefetch(xdp->data + L1_CACHE_BYTES); 2110 #endif 2111 /* build an skb around the page buffer */ 2112 skb = build_skb(xdp->data_hard_start, truesize); 2113 if (unlikely(!skb)) 2114 return NULL; 2115 2116 /* update pointers within the skb to store the data */ 2117 skb_reserve(skb, I40E_SKB_PAD); 2118 __skb_put(skb, size); 2119 2120 /* buffer is used by skb, update page_offset */ 2121 #if (PAGE_SIZE < 8192) 2122 rx_buffer->page_offset ^= truesize; 2123 #else 2124 rx_buffer->page_offset += truesize; 2125 #endif 2126 2127 return skb; 2128 } 2129 2130 /** 2131 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2132 * @rx_ring: rx descriptor ring to transact packets on 2133 * @rx_buffer: rx buffer to pull data from 2134 * 2135 * This function will clean up the contents of the rx_buffer. It will 2136 * either recycle the buffer or unmap it and free the associated resources. 2137 */ 2138 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2139 struct i40e_rx_buffer *rx_buffer) 2140 { 2141 if (i40e_can_reuse_rx_page(rx_buffer)) { 2142 /* hand second half of page back to the ring */ 2143 i40e_reuse_rx_page(rx_ring, rx_buffer); 2144 rx_ring->rx_stats.page_reuse_count++; 2145 } else { 2146 /* we are not reusing the buffer so unmap it */ 2147 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2148 i40e_rx_pg_size(rx_ring), 2149 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2150 __page_frag_cache_drain(rx_buffer->page, 2151 rx_buffer->pagecnt_bias); 2152 } 2153 2154 /* clear contents of buffer_info */ 2155 rx_buffer->page = NULL; 2156 } 2157 2158 /** 2159 * i40e_is_non_eop - process handling of non-EOP buffers 2160 * @rx_ring: Rx ring being processed 2161 * @rx_desc: Rx descriptor for current buffer 2162 * @skb: Current socket buffer containing buffer in progress 2163 * 2164 * This function updates next to clean. If the buffer is an EOP buffer 2165 * this function exits returning false, otherwise it will place the 2166 * sk_buff in the next buffer to be chained and return true indicating 2167 * that this is in fact a non-EOP buffer. 2168 **/ 2169 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2170 union i40e_rx_desc *rx_desc, 2171 struct sk_buff *skb) 2172 { 2173 u32 ntc = rx_ring->next_to_clean + 1; 2174 2175 /* fetch, update, and store next to clean */ 2176 ntc = (ntc < rx_ring->count) ? ntc : 0; 2177 rx_ring->next_to_clean = ntc; 2178 2179 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2180 2181 /* if we are the last buffer then there is nothing else to do */ 2182 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2183 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2184 return false; 2185 2186 rx_ring->rx_stats.non_eop_descs++; 2187 2188 return true; 2189 } 2190 2191 #define I40E_XDP_PASS 0 2192 #define I40E_XDP_CONSUMED 1 2193 #define I40E_XDP_TX 2 2194 2195 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 2196 struct i40e_ring *xdp_ring); 2197 2198 /** 2199 * i40e_run_xdp - run an XDP program 2200 * @rx_ring: Rx ring being processed 2201 * @xdp: XDP buffer containing the frame 2202 **/ 2203 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2204 struct xdp_buff *xdp) 2205 { 2206 int result = I40E_XDP_PASS; 2207 struct i40e_ring *xdp_ring; 2208 struct bpf_prog *xdp_prog; 2209 u32 act; 2210 2211 rcu_read_lock(); 2212 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2213 2214 if (!xdp_prog) 2215 goto xdp_out; 2216 2217 act = bpf_prog_run_xdp(xdp_prog, xdp); 2218 switch (act) { 2219 case XDP_PASS: 2220 break; 2221 case XDP_TX: 2222 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2223 result = i40e_xmit_xdp_ring(xdp, xdp_ring); 2224 break; 2225 default: 2226 bpf_warn_invalid_xdp_action(act); 2227 case XDP_ABORTED: 2228 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2229 /* fallthrough -- handle aborts by dropping packet */ 2230 case XDP_DROP: 2231 result = I40E_XDP_CONSUMED; 2232 break; 2233 } 2234 xdp_out: 2235 rcu_read_unlock(); 2236 return ERR_PTR(-result); 2237 } 2238 2239 /** 2240 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2241 * @rx_ring: Rx ring 2242 * @rx_buffer: Rx buffer to adjust 2243 * @size: Size of adjustment 2244 **/ 2245 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2246 struct i40e_rx_buffer *rx_buffer, 2247 unsigned int size) 2248 { 2249 #if (PAGE_SIZE < 8192) 2250 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2251 2252 rx_buffer->page_offset ^= truesize; 2253 #else 2254 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size); 2255 2256 rx_buffer->page_offset += truesize; 2257 #endif 2258 } 2259 2260 /** 2261 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2262 * @rx_ring: rx descriptor ring to transact packets on 2263 * @budget: Total limit on number of packets to process 2264 * 2265 * This function provides a "bounce buffer" approach to Rx interrupt 2266 * processing. The advantage to this is that on systems that have 2267 * expensive overhead for IOMMU access this provides a means of avoiding 2268 * it by maintaining the mapping of the page to the system. 2269 * 2270 * Returns amount of work completed 2271 **/ 2272 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2273 { 2274 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2275 struct sk_buff *skb = rx_ring->skb; 2276 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2277 bool failure = false, xdp_xmit = false; 2278 struct xdp_buff xdp; 2279 2280 xdp.rxq = &rx_ring->xdp_rxq; 2281 2282 while (likely(total_rx_packets < (unsigned int)budget)) { 2283 struct i40e_rx_buffer *rx_buffer; 2284 union i40e_rx_desc *rx_desc; 2285 unsigned int size; 2286 u16 vlan_tag; 2287 u8 rx_ptype; 2288 u64 qword; 2289 2290 /* return some buffers to hardware, one at a time is too slow */ 2291 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2292 failure = failure || 2293 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2294 cleaned_count = 0; 2295 } 2296 2297 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2298 2299 /* status_error_len will always be zero for unused descriptors 2300 * because it's cleared in cleanup, and overlaps with hdr_addr 2301 * which is always zero because packet split isn't used, if the 2302 * hardware wrote DD then the length will be non-zero 2303 */ 2304 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2305 2306 /* This memory barrier is needed to keep us from reading 2307 * any other fields out of the rx_desc until we have 2308 * verified the descriptor has been written back. 2309 */ 2310 dma_rmb(); 2311 2312 if (unlikely(i40e_rx_is_programming_status(qword))) { 2313 i40e_clean_programming_status(rx_ring, rx_desc, qword); 2314 cleaned_count++; 2315 continue; 2316 } 2317 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2318 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2319 if (!size) 2320 break; 2321 2322 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2323 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2324 2325 /* retrieve a buffer from the ring */ 2326 if (!skb) { 2327 xdp.data = page_address(rx_buffer->page) + 2328 rx_buffer->page_offset; 2329 xdp_set_data_meta_invalid(&xdp); 2330 xdp.data_hard_start = xdp.data - 2331 i40e_rx_offset(rx_ring); 2332 xdp.data_end = xdp.data + size; 2333 2334 skb = i40e_run_xdp(rx_ring, &xdp); 2335 } 2336 2337 if (IS_ERR(skb)) { 2338 if (PTR_ERR(skb) == -I40E_XDP_TX) { 2339 xdp_xmit = true; 2340 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2341 } else { 2342 rx_buffer->pagecnt_bias++; 2343 } 2344 total_rx_bytes += size; 2345 total_rx_packets++; 2346 } else if (skb) { 2347 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2348 } else if (ring_uses_build_skb(rx_ring)) { 2349 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2350 } else { 2351 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2352 } 2353 2354 /* exit if we failed to retrieve a buffer */ 2355 if (!skb) { 2356 rx_ring->rx_stats.alloc_buff_failed++; 2357 rx_buffer->pagecnt_bias++; 2358 break; 2359 } 2360 2361 i40e_put_rx_buffer(rx_ring, rx_buffer); 2362 cleaned_count++; 2363 2364 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2365 continue; 2366 2367 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2368 skb = NULL; 2369 continue; 2370 } 2371 2372 /* probably a little skewed due to removing CRC */ 2373 total_rx_bytes += skb->len; 2374 2375 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2376 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 2377 I40E_RXD_QW1_PTYPE_SHIFT; 2378 2379 /* populate checksum, VLAN, and protocol */ 2380 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 2381 2382 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 2383 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 2384 2385 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2386 i40e_receive_skb(rx_ring, skb, vlan_tag); 2387 skb = NULL; 2388 2389 /* update budget accounting */ 2390 total_rx_packets++; 2391 } 2392 2393 if (xdp_xmit) { 2394 struct i40e_ring *xdp_ring; 2395 2396 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2397 2398 /* Force memory writes to complete before letting h/w 2399 * know there are new descriptors to fetch. 2400 */ 2401 wmb(); 2402 2403 writel(xdp_ring->next_to_use, xdp_ring->tail); 2404 } 2405 2406 rx_ring->skb = skb; 2407 2408 u64_stats_update_begin(&rx_ring->syncp); 2409 rx_ring->stats.packets += total_rx_packets; 2410 rx_ring->stats.bytes += total_rx_bytes; 2411 u64_stats_update_end(&rx_ring->syncp); 2412 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2413 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2414 2415 /* guarantee a trip back through this routine if there was a failure */ 2416 return failure ? budget : (int)total_rx_packets; 2417 } 2418 2419 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2420 { 2421 u32 val; 2422 2423 /* We don't bother with setting the CLEARPBA bit as the data sheet 2424 * points out doing so is "meaningless since it was already 2425 * auto-cleared". The auto-clearing happens when the interrupt is 2426 * asserted. 2427 * 2428 * Hardware errata 28 for also indicates that writing to a 2429 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2430 * an event in the PBA anyway so we need to rely on the automask 2431 * to hold pending events for us until the interrupt is re-enabled 2432 * 2433 * The itr value is reported in microseconds, and the register 2434 * value is recorded in 2 microsecond units. For this reason we 2435 * only need to shift by the interval shift - 1 instead of the 2436 * full value. 2437 */ 2438 itr &= I40E_ITR_MASK; 2439 2440 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2441 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2442 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2443 2444 return val; 2445 } 2446 2447 /* a small macro to shorten up some long lines */ 2448 #define INTREG I40E_PFINT_DYN_CTLN 2449 2450 /* The act of updating the ITR will cause it to immediately trigger. In order 2451 * to prevent this from throwing off adaptive update statistics we defer the 2452 * update so that it can only happen so often. So after either Tx or Rx are 2453 * updated we make the adaptive scheme wait until either the ITR completely 2454 * expires via the next_update expiration or we have been through at least 2455 * 3 interrupts. 2456 */ 2457 #define ITR_COUNTDOWN_START 3 2458 2459 /** 2460 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2461 * @vsi: the VSI we care about 2462 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2463 * 2464 **/ 2465 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2466 struct i40e_q_vector *q_vector) 2467 { 2468 struct i40e_hw *hw = &vsi->back->hw; 2469 u32 intval; 2470 2471 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2472 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2473 i40e_irq_dynamic_enable_icr0(vsi->back); 2474 return; 2475 } 2476 2477 /* These will do nothing if dynamic updates are not enabled */ 2478 i40e_update_itr(q_vector, &q_vector->tx); 2479 i40e_update_itr(q_vector, &q_vector->rx); 2480 2481 /* This block of logic allows us to get away with only updating 2482 * one ITR value with each interrupt. The idea is to perform a 2483 * pseudo-lazy update with the following criteria. 2484 * 2485 * 1. Rx is given higher priority than Tx if both are in same state 2486 * 2. If we must reduce an ITR that is given highest priority. 2487 * 3. We then give priority to increasing ITR based on amount. 2488 */ 2489 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2490 /* Rx ITR needs to be reduced, this is highest priority */ 2491 intval = i40e_buildreg_itr(I40E_RX_ITR, 2492 q_vector->rx.target_itr); 2493 q_vector->rx.current_itr = q_vector->rx.target_itr; 2494 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2495 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2496 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2497 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2498 /* Tx ITR needs to be reduced, this is second priority 2499 * Tx ITR needs to be increased more than Rx, fourth priority 2500 */ 2501 intval = i40e_buildreg_itr(I40E_TX_ITR, 2502 q_vector->tx.target_itr); 2503 q_vector->tx.current_itr = q_vector->tx.target_itr; 2504 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2505 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2506 /* Rx ITR needs to be increased, third priority */ 2507 intval = i40e_buildreg_itr(I40E_RX_ITR, 2508 q_vector->rx.target_itr); 2509 q_vector->rx.current_itr = q_vector->rx.target_itr; 2510 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2511 } else { 2512 /* No ITR update, lowest priority */ 2513 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2514 if (q_vector->itr_countdown) 2515 q_vector->itr_countdown--; 2516 } 2517 2518 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2519 wr32(hw, INTREG(q_vector->reg_idx), intval); 2520 } 2521 2522 /** 2523 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2524 * @napi: napi struct with our devices info in it 2525 * @budget: amount of work driver is allowed to do this pass, in packets 2526 * 2527 * This function will clean all queues associated with a q_vector. 2528 * 2529 * Returns the amount of work done 2530 **/ 2531 int i40e_napi_poll(struct napi_struct *napi, int budget) 2532 { 2533 struct i40e_q_vector *q_vector = 2534 container_of(napi, struct i40e_q_vector, napi); 2535 struct i40e_vsi *vsi = q_vector->vsi; 2536 struct i40e_ring *ring; 2537 bool clean_complete = true; 2538 bool arm_wb = false; 2539 int budget_per_ring; 2540 int work_done = 0; 2541 2542 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2543 napi_complete(napi); 2544 return 0; 2545 } 2546 2547 /* Since the actual Tx work is minimal, we can give the Tx a larger 2548 * budget and be more aggressive about cleaning up the Tx descriptors. 2549 */ 2550 i40e_for_each_ring(ring, q_vector->tx) { 2551 if (!i40e_clean_tx_irq(vsi, ring, budget)) { 2552 clean_complete = false; 2553 continue; 2554 } 2555 arm_wb |= ring->arm_wb; 2556 ring->arm_wb = false; 2557 } 2558 2559 /* Handle case where we are called by netpoll with a budget of 0 */ 2560 if (budget <= 0) 2561 goto tx_only; 2562 2563 /* We attempt to distribute budget to each Rx queue fairly, but don't 2564 * allow the budget to go below 1 because that would exit polling early. 2565 */ 2566 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 2567 2568 i40e_for_each_ring(ring, q_vector->rx) { 2569 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring); 2570 2571 work_done += cleaned; 2572 /* if we clean as many as budgeted, we must not be done */ 2573 if (cleaned >= budget_per_ring) 2574 clean_complete = false; 2575 } 2576 2577 /* If work not completed, return budget and polling will return */ 2578 if (!clean_complete) { 2579 int cpu_id = smp_processor_id(); 2580 2581 /* It is possible that the interrupt affinity has changed but, 2582 * if the cpu is pegged at 100%, polling will never exit while 2583 * traffic continues and the interrupt will be stuck on this 2584 * cpu. We check to make sure affinity is correct before we 2585 * continue to poll, otherwise we must stop polling so the 2586 * interrupt can move to the correct cpu. 2587 */ 2588 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2589 /* Tell napi that we are done polling */ 2590 napi_complete_done(napi, work_done); 2591 2592 /* Force an interrupt */ 2593 i40e_force_wb(vsi, q_vector); 2594 2595 /* Return budget-1 so that polling stops */ 2596 return budget - 1; 2597 } 2598 tx_only: 2599 if (arm_wb) { 2600 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2601 i40e_enable_wb_on_itr(vsi, q_vector); 2602 } 2603 return budget; 2604 } 2605 2606 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2607 q_vector->arm_wb_state = false; 2608 2609 /* Work is done so exit the polling mode and re-enable the interrupt */ 2610 napi_complete_done(napi, work_done); 2611 2612 i40e_update_enable_itr(vsi, q_vector); 2613 2614 return min(work_done, budget - 1); 2615 } 2616 2617 /** 2618 * i40e_atr - Add a Flow Director ATR filter 2619 * @tx_ring: ring to add programming descriptor to 2620 * @skb: send buffer 2621 * @tx_flags: send tx flags 2622 **/ 2623 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2624 u32 tx_flags) 2625 { 2626 struct i40e_filter_program_desc *fdir_desc; 2627 struct i40e_pf *pf = tx_ring->vsi->back; 2628 union { 2629 unsigned char *network; 2630 struct iphdr *ipv4; 2631 struct ipv6hdr *ipv6; 2632 } hdr; 2633 struct tcphdr *th; 2634 unsigned int hlen; 2635 u32 flex_ptype, dtype_cmd; 2636 int l4_proto; 2637 u16 i; 2638 2639 /* make sure ATR is enabled */ 2640 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2641 return; 2642 2643 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) 2644 return; 2645 2646 /* if sampling is disabled do nothing */ 2647 if (!tx_ring->atr_sample_rate) 2648 return; 2649 2650 /* Currently only IPv4/IPv6 with TCP is supported */ 2651 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2652 return; 2653 2654 /* snag network header to get L4 type and address */ 2655 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2656 skb_inner_network_header(skb) : skb_network_header(skb); 2657 2658 /* Note: tx_flags gets modified to reflect inner protocols in 2659 * tx_enable_csum function if encap is enabled. 2660 */ 2661 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2662 /* access ihl as u8 to avoid unaligned access on ia64 */ 2663 hlen = (hdr.network[0] & 0x0F) << 2; 2664 l4_proto = hdr.ipv4->protocol; 2665 } else { 2666 /* find the start of the innermost ipv6 header */ 2667 unsigned int inner_hlen = hdr.network - skb->data; 2668 unsigned int h_offset = inner_hlen; 2669 2670 /* this function updates h_offset to the end of the header */ 2671 l4_proto = 2672 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2673 /* hlen will contain our best estimate of the tcp header */ 2674 hlen = h_offset - inner_hlen; 2675 } 2676 2677 if (l4_proto != IPPROTO_TCP) 2678 return; 2679 2680 th = (struct tcphdr *)(hdr.network + hlen); 2681 2682 /* Due to lack of space, no more new filters can be programmed */ 2683 if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)) 2684 return; 2685 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2686 /* HW ATR eviction will take care of removing filters on FIN 2687 * and RST packets. 2688 */ 2689 if (th->fin || th->rst) 2690 return; 2691 } 2692 2693 tx_ring->atr_count++; 2694 2695 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2696 if (!th->fin && 2697 !th->syn && 2698 !th->rst && 2699 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2700 return; 2701 2702 tx_ring->atr_count = 0; 2703 2704 /* grab the next descriptor */ 2705 i = tx_ring->next_to_use; 2706 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2707 2708 i++; 2709 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2710 2711 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2712 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2713 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2714 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2715 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2716 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2717 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2718 2719 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2720 2721 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2722 2723 dtype_cmd |= (th->fin || th->rst) ? 2724 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2725 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2726 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2727 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2728 2729 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2730 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2731 2732 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2733 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2734 2735 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2736 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2737 dtype_cmd |= 2738 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2739 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2740 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2741 else 2742 dtype_cmd |= 2743 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2744 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2745 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2746 2747 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2748 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2749 2750 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2751 fdir_desc->rsvd = cpu_to_le32(0); 2752 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2753 fdir_desc->fd_id = cpu_to_le32(0); 2754 } 2755 2756 /** 2757 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2758 * @skb: send buffer 2759 * @tx_ring: ring to send buffer on 2760 * @flags: the tx flags to be set 2761 * 2762 * Checks the skb and set up correspondingly several generic transmit flags 2763 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2764 * 2765 * Returns error code indicate the frame should be dropped upon error and the 2766 * otherwise returns 0 to indicate the flags has been set properly. 2767 **/ 2768 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2769 struct i40e_ring *tx_ring, 2770 u32 *flags) 2771 { 2772 __be16 protocol = skb->protocol; 2773 u32 tx_flags = 0; 2774 2775 if (protocol == htons(ETH_P_8021Q) && 2776 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2777 /* When HW VLAN acceleration is turned off by the user the 2778 * stack sets the protocol to 8021q so that the driver 2779 * can take any steps required to support the SW only 2780 * VLAN handling. In our case the driver doesn't need 2781 * to take any further steps so just set the protocol 2782 * to the encapsulated ethertype. 2783 */ 2784 skb->protocol = vlan_get_protocol(skb); 2785 goto out; 2786 } 2787 2788 /* if we have a HW VLAN tag being added, default to the HW one */ 2789 if (skb_vlan_tag_present(skb)) { 2790 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2791 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2792 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2793 } else if (protocol == htons(ETH_P_8021Q)) { 2794 struct vlan_hdr *vhdr, _vhdr; 2795 2796 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2797 if (!vhdr) 2798 return -EINVAL; 2799 2800 protocol = vhdr->h_vlan_encapsulated_proto; 2801 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2802 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2803 } 2804 2805 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2806 goto out; 2807 2808 /* Insert 802.1p priority into VLAN header */ 2809 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2810 (skb->priority != TC_PRIO_CONTROL)) { 2811 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2812 tx_flags |= (skb->priority & 0x7) << 2813 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2814 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2815 struct vlan_ethhdr *vhdr; 2816 int rc; 2817 2818 rc = skb_cow_head(skb, 0); 2819 if (rc < 0) 2820 return rc; 2821 vhdr = (struct vlan_ethhdr *)skb->data; 2822 vhdr->h_vlan_TCI = htons(tx_flags >> 2823 I40E_TX_FLAGS_VLAN_SHIFT); 2824 } else { 2825 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2826 } 2827 } 2828 2829 out: 2830 *flags = tx_flags; 2831 return 0; 2832 } 2833 2834 /** 2835 * i40e_tso - set up the tso context descriptor 2836 * @first: pointer to first Tx buffer for xmit 2837 * @hdr_len: ptr to the size of the packet header 2838 * @cd_type_cmd_tso_mss: Quad Word 1 2839 * 2840 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2841 **/ 2842 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2843 u64 *cd_type_cmd_tso_mss) 2844 { 2845 struct sk_buff *skb = first->skb; 2846 u64 cd_cmd, cd_tso_len, cd_mss; 2847 union { 2848 struct iphdr *v4; 2849 struct ipv6hdr *v6; 2850 unsigned char *hdr; 2851 } ip; 2852 union { 2853 struct tcphdr *tcp; 2854 struct udphdr *udp; 2855 unsigned char *hdr; 2856 } l4; 2857 u32 paylen, l4_offset; 2858 u16 gso_segs, gso_size; 2859 int err; 2860 2861 if (skb->ip_summed != CHECKSUM_PARTIAL) 2862 return 0; 2863 2864 if (!skb_is_gso(skb)) 2865 return 0; 2866 2867 err = skb_cow_head(skb, 0); 2868 if (err < 0) 2869 return err; 2870 2871 ip.hdr = skb_network_header(skb); 2872 l4.hdr = skb_transport_header(skb); 2873 2874 /* initialize outer IP header fields */ 2875 if (ip.v4->version == 4) { 2876 ip.v4->tot_len = 0; 2877 ip.v4->check = 0; 2878 } else { 2879 ip.v6->payload_len = 0; 2880 } 2881 2882 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2883 SKB_GSO_GRE_CSUM | 2884 SKB_GSO_IPXIP4 | 2885 SKB_GSO_IPXIP6 | 2886 SKB_GSO_UDP_TUNNEL | 2887 SKB_GSO_UDP_TUNNEL_CSUM)) { 2888 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2889 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2890 l4.udp->len = 0; 2891 2892 /* determine offset of outer transport header */ 2893 l4_offset = l4.hdr - skb->data; 2894 2895 /* remove payload length from outer checksum */ 2896 paylen = skb->len - l4_offset; 2897 csum_replace_by_diff(&l4.udp->check, 2898 (__force __wsum)htonl(paylen)); 2899 } 2900 2901 /* reset pointers to inner headers */ 2902 ip.hdr = skb_inner_network_header(skb); 2903 l4.hdr = skb_inner_transport_header(skb); 2904 2905 /* initialize inner IP header fields */ 2906 if (ip.v4->version == 4) { 2907 ip.v4->tot_len = 0; 2908 ip.v4->check = 0; 2909 } else { 2910 ip.v6->payload_len = 0; 2911 } 2912 } 2913 2914 /* determine offset of inner transport header */ 2915 l4_offset = l4.hdr - skb->data; 2916 2917 /* remove payload length from inner checksum */ 2918 paylen = skb->len - l4_offset; 2919 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2920 2921 /* compute length of segmentation header */ 2922 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2923 2924 /* pull values out of skb_shinfo */ 2925 gso_size = skb_shinfo(skb)->gso_size; 2926 gso_segs = skb_shinfo(skb)->gso_segs; 2927 2928 /* update GSO size and bytecount with header size */ 2929 first->gso_segs = gso_segs; 2930 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2931 2932 /* find the field values */ 2933 cd_cmd = I40E_TX_CTX_DESC_TSO; 2934 cd_tso_len = skb->len - *hdr_len; 2935 cd_mss = gso_size; 2936 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2937 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2938 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2939 return 1; 2940 } 2941 2942 /** 2943 * i40e_tsyn - set up the tsyn context descriptor 2944 * @tx_ring: ptr to the ring to send 2945 * @skb: ptr to the skb we're sending 2946 * @tx_flags: the collected send information 2947 * @cd_type_cmd_tso_mss: Quad Word 1 2948 * 2949 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2950 **/ 2951 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2952 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2953 { 2954 struct i40e_pf *pf; 2955 2956 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2957 return 0; 2958 2959 /* Tx timestamps cannot be sampled when doing TSO */ 2960 if (tx_flags & I40E_TX_FLAGS_TSO) 2961 return 0; 2962 2963 /* only timestamp the outbound packet if the user has requested it and 2964 * we are not already transmitting a packet to be timestamped 2965 */ 2966 pf = i40e_netdev_to_pf(tx_ring->netdev); 2967 if (!(pf->flags & I40E_FLAG_PTP)) 2968 return 0; 2969 2970 if (pf->ptp_tx && 2971 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 2972 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2973 pf->ptp_tx_start = jiffies; 2974 pf->ptp_tx_skb = skb_get(skb); 2975 } else { 2976 pf->tx_hwtstamp_skipped++; 2977 return 0; 2978 } 2979 2980 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 2981 I40E_TXD_CTX_QW1_CMD_SHIFT; 2982 2983 return 1; 2984 } 2985 2986 /** 2987 * i40e_tx_enable_csum - Enable Tx checksum offloads 2988 * @skb: send buffer 2989 * @tx_flags: pointer to Tx flags currently set 2990 * @td_cmd: Tx descriptor command bits to set 2991 * @td_offset: Tx descriptor header offsets to set 2992 * @tx_ring: Tx descriptor ring 2993 * @cd_tunneling: ptr to context desc bits 2994 **/ 2995 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 2996 u32 *td_cmd, u32 *td_offset, 2997 struct i40e_ring *tx_ring, 2998 u32 *cd_tunneling) 2999 { 3000 union { 3001 struct iphdr *v4; 3002 struct ipv6hdr *v6; 3003 unsigned char *hdr; 3004 } ip; 3005 union { 3006 struct tcphdr *tcp; 3007 struct udphdr *udp; 3008 unsigned char *hdr; 3009 } l4; 3010 unsigned char *exthdr; 3011 u32 offset, cmd = 0; 3012 __be16 frag_off; 3013 u8 l4_proto = 0; 3014 3015 if (skb->ip_summed != CHECKSUM_PARTIAL) 3016 return 0; 3017 3018 ip.hdr = skb_network_header(skb); 3019 l4.hdr = skb_transport_header(skb); 3020 3021 /* compute outer L2 header size */ 3022 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3023 3024 if (skb->encapsulation) { 3025 u32 tunnel = 0; 3026 /* define outer network header type */ 3027 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3028 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3029 I40E_TX_CTX_EXT_IP_IPV4 : 3030 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3031 3032 l4_proto = ip.v4->protocol; 3033 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3034 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3035 3036 exthdr = ip.hdr + sizeof(*ip.v6); 3037 l4_proto = ip.v6->nexthdr; 3038 if (l4.hdr != exthdr) 3039 ipv6_skip_exthdr(skb, exthdr - skb->data, 3040 &l4_proto, &frag_off); 3041 } 3042 3043 /* define outer transport */ 3044 switch (l4_proto) { 3045 case IPPROTO_UDP: 3046 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3047 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3048 break; 3049 case IPPROTO_GRE: 3050 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3051 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3052 break; 3053 case IPPROTO_IPIP: 3054 case IPPROTO_IPV6: 3055 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3056 l4.hdr = skb_inner_network_header(skb); 3057 break; 3058 default: 3059 if (*tx_flags & I40E_TX_FLAGS_TSO) 3060 return -1; 3061 3062 skb_checksum_help(skb); 3063 return 0; 3064 } 3065 3066 /* compute outer L3 header size */ 3067 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3068 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3069 3070 /* switch IP header pointer from outer to inner header */ 3071 ip.hdr = skb_inner_network_header(skb); 3072 3073 /* compute tunnel header size */ 3074 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3075 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3076 3077 /* indicate if we need to offload outer UDP header */ 3078 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3079 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3080 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3081 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3082 3083 /* record tunnel offload values */ 3084 *cd_tunneling |= tunnel; 3085 3086 /* switch L4 header pointer from outer to inner */ 3087 l4.hdr = skb_inner_transport_header(skb); 3088 l4_proto = 0; 3089 3090 /* reset type as we transition from outer to inner headers */ 3091 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3092 if (ip.v4->version == 4) 3093 *tx_flags |= I40E_TX_FLAGS_IPV4; 3094 if (ip.v6->version == 6) 3095 *tx_flags |= I40E_TX_FLAGS_IPV6; 3096 } 3097 3098 /* Enable IP checksum offloads */ 3099 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3100 l4_proto = ip.v4->protocol; 3101 /* the stack computes the IP header already, the only time we 3102 * need the hardware to recompute it is in the case of TSO. 3103 */ 3104 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3105 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3106 I40E_TX_DESC_CMD_IIPT_IPV4; 3107 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3108 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3109 3110 exthdr = ip.hdr + sizeof(*ip.v6); 3111 l4_proto = ip.v6->nexthdr; 3112 if (l4.hdr != exthdr) 3113 ipv6_skip_exthdr(skb, exthdr - skb->data, 3114 &l4_proto, &frag_off); 3115 } 3116 3117 /* compute inner L3 header size */ 3118 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3119 3120 /* Enable L4 checksum offloads */ 3121 switch (l4_proto) { 3122 case IPPROTO_TCP: 3123 /* enable checksum offloads */ 3124 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3125 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3126 break; 3127 case IPPROTO_SCTP: 3128 /* enable SCTP checksum offload */ 3129 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3130 offset |= (sizeof(struct sctphdr) >> 2) << 3131 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3132 break; 3133 case IPPROTO_UDP: 3134 /* enable UDP checksum offload */ 3135 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3136 offset |= (sizeof(struct udphdr) >> 2) << 3137 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3138 break; 3139 default: 3140 if (*tx_flags & I40E_TX_FLAGS_TSO) 3141 return -1; 3142 skb_checksum_help(skb); 3143 return 0; 3144 } 3145 3146 *td_cmd |= cmd; 3147 *td_offset |= offset; 3148 3149 return 1; 3150 } 3151 3152 /** 3153 * i40e_create_tx_ctx Build the Tx context descriptor 3154 * @tx_ring: ring to create the descriptor on 3155 * @cd_type_cmd_tso_mss: Quad Word 1 3156 * @cd_tunneling: Quad Word 0 - bits 0-31 3157 * @cd_l2tag2: Quad Word 0 - bits 32-63 3158 **/ 3159 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3160 const u64 cd_type_cmd_tso_mss, 3161 const u32 cd_tunneling, const u32 cd_l2tag2) 3162 { 3163 struct i40e_tx_context_desc *context_desc; 3164 int i = tx_ring->next_to_use; 3165 3166 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3167 !cd_tunneling && !cd_l2tag2) 3168 return; 3169 3170 /* grab the next descriptor */ 3171 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3172 3173 i++; 3174 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3175 3176 /* cpu_to_le32 and assign to struct fields */ 3177 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3178 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3179 context_desc->rsvd = cpu_to_le16(0); 3180 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3181 } 3182 3183 /** 3184 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3185 * @tx_ring: the ring to be checked 3186 * @size: the size buffer we want to assure is available 3187 * 3188 * Returns -EBUSY if a stop is needed, else 0 3189 **/ 3190 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3191 { 3192 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3193 /* Memory barrier before checking head and tail */ 3194 smp_mb(); 3195 3196 /* Check again in a case another CPU has just made room available. */ 3197 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3198 return -EBUSY; 3199 3200 /* A reprieve! - use start_queue because it doesn't call schedule */ 3201 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3202 ++tx_ring->tx_stats.restart_queue; 3203 return 0; 3204 } 3205 3206 /** 3207 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3208 * @skb: send buffer 3209 * 3210 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3211 * and so we need to figure out the cases where we need to linearize the skb. 3212 * 3213 * For TSO we need to count the TSO header and segment payload separately. 3214 * As such we need to check cases where we have 7 fragments or more as we 3215 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3216 * the segment payload in the first descriptor, and another 7 for the 3217 * fragments. 3218 **/ 3219 bool __i40e_chk_linearize(struct sk_buff *skb) 3220 { 3221 const struct skb_frag_struct *frag, *stale; 3222 int nr_frags, sum; 3223 3224 /* no need to check if number of frags is less than 7 */ 3225 nr_frags = skb_shinfo(skb)->nr_frags; 3226 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3227 return false; 3228 3229 /* We need to walk through the list and validate that each group 3230 * of 6 fragments totals at least gso_size. 3231 */ 3232 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3233 frag = &skb_shinfo(skb)->frags[0]; 3234 3235 /* Initialize size to the negative value of gso_size minus 1. We 3236 * use this as the worst case scenerio in which the frag ahead 3237 * of us only provides one byte which is why we are limited to 6 3238 * descriptors for a single transmit as the header and previous 3239 * fragment are already consuming 2 descriptors. 3240 */ 3241 sum = 1 - skb_shinfo(skb)->gso_size; 3242 3243 /* Add size of frags 0 through 4 to create our initial sum */ 3244 sum += skb_frag_size(frag++); 3245 sum += skb_frag_size(frag++); 3246 sum += skb_frag_size(frag++); 3247 sum += skb_frag_size(frag++); 3248 sum += skb_frag_size(frag++); 3249 3250 /* Walk through fragments adding latest fragment, testing it, and 3251 * then removing stale fragments from the sum. 3252 */ 3253 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3254 int stale_size = skb_frag_size(stale); 3255 3256 sum += skb_frag_size(frag++); 3257 3258 /* The stale fragment may present us with a smaller 3259 * descriptor than the actual fragment size. To account 3260 * for that we need to remove all the data on the front and 3261 * figure out what the remainder would be in the last 3262 * descriptor associated with the fragment. 3263 */ 3264 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3265 int align_pad = -(stale->page_offset) & 3266 (I40E_MAX_READ_REQ_SIZE - 1); 3267 3268 sum -= align_pad; 3269 stale_size -= align_pad; 3270 3271 do { 3272 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3273 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3274 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3275 } 3276 3277 /* if sum is negative we failed to make sufficient progress */ 3278 if (sum < 0) 3279 return true; 3280 3281 if (!nr_frags--) 3282 break; 3283 3284 sum -= stale_size; 3285 } 3286 3287 return false; 3288 } 3289 3290 /** 3291 * i40e_tx_map - Build the Tx descriptor 3292 * @tx_ring: ring to send buffer on 3293 * @skb: send buffer 3294 * @first: first buffer info buffer to use 3295 * @tx_flags: collected send information 3296 * @hdr_len: size of the packet header 3297 * @td_cmd: the command field in the descriptor 3298 * @td_offset: offset for checksum or crc 3299 * 3300 * Returns 0 on success, -1 on failure to DMA 3301 **/ 3302 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3303 struct i40e_tx_buffer *first, u32 tx_flags, 3304 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3305 { 3306 unsigned int data_len = skb->data_len; 3307 unsigned int size = skb_headlen(skb); 3308 struct skb_frag_struct *frag; 3309 struct i40e_tx_buffer *tx_bi; 3310 struct i40e_tx_desc *tx_desc; 3311 u16 i = tx_ring->next_to_use; 3312 u32 td_tag = 0; 3313 dma_addr_t dma; 3314 u16 desc_count = 1; 3315 3316 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3317 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3318 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3319 I40E_TX_FLAGS_VLAN_SHIFT; 3320 } 3321 3322 first->tx_flags = tx_flags; 3323 3324 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3325 3326 tx_desc = I40E_TX_DESC(tx_ring, i); 3327 tx_bi = first; 3328 3329 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3330 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3331 3332 if (dma_mapping_error(tx_ring->dev, dma)) 3333 goto dma_error; 3334 3335 /* record length, and DMA address */ 3336 dma_unmap_len_set(tx_bi, len, size); 3337 dma_unmap_addr_set(tx_bi, dma, dma); 3338 3339 /* align size to end of page */ 3340 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3341 tx_desc->buffer_addr = cpu_to_le64(dma); 3342 3343 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3344 tx_desc->cmd_type_offset_bsz = 3345 build_ctob(td_cmd, td_offset, 3346 max_data, td_tag); 3347 3348 tx_desc++; 3349 i++; 3350 desc_count++; 3351 3352 if (i == tx_ring->count) { 3353 tx_desc = I40E_TX_DESC(tx_ring, 0); 3354 i = 0; 3355 } 3356 3357 dma += max_data; 3358 size -= max_data; 3359 3360 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3361 tx_desc->buffer_addr = cpu_to_le64(dma); 3362 } 3363 3364 if (likely(!data_len)) 3365 break; 3366 3367 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3368 size, td_tag); 3369 3370 tx_desc++; 3371 i++; 3372 desc_count++; 3373 3374 if (i == tx_ring->count) { 3375 tx_desc = I40E_TX_DESC(tx_ring, 0); 3376 i = 0; 3377 } 3378 3379 size = skb_frag_size(frag); 3380 data_len -= size; 3381 3382 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3383 DMA_TO_DEVICE); 3384 3385 tx_bi = &tx_ring->tx_bi[i]; 3386 } 3387 3388 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3389 3390 i++; 3391 if (i == tx_ring->count) 3392 i = 0; 3393 3394 tx_ring->next_to_use = i; 3395 3396 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3397 3398 /* write last descriptor with EOP bit */ 3399 td_cmd |= I40E_TX_DESC_CMD_EOP; 3400 3401 /* We OR these values together to check both against 4 (WB_STRIDE) 3402 * below. This is safe since we don't re-use desc_count afterwards. 3403 */ 3404 desc_count |= ++tx_ring->packet_stride; 3405 3406 if (desc_count >= WB_STRIDE) { 3407 /* write last descriptor with RS bit set */ 3408 td_cmd |= I40E_TX_DESC_CMD_RS; 3409 tx_ring->packet_stride = 0; 3410 } 3411 3412 tx_desc->cmd_type_offset_bsz = 3413 build_ctob(td_cmd, td_offset, size, td_tag); 3414 3415 /* Force memory writes to complete before letting h/w know there 3416 * are new descriptors to fetch. 3417 * 3418 * We also use this memory barrier to make certain all of the 3419 * status bits have been updated before next_to_watch is written. 3420 */ 3421 wmb(); 3422 3423 /* set next_to_watch value indicating a packet is present */ 3424 first->next_to_watch = tx_desc; 3425 3426 /* notify HW of packet */ 3427 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 3428 writel(i, tx_ring->tail); 3429 3430 /* we need this if more than one processor can write to our tail 3431 * at a time, it synchronizes IO on IA64/Altix systems 3432 */ 3433 mmiowb(); 3434 } 3435 3436 return 0; 3437 3438 dma_error: 3439 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3440 3441 /* clear dma mappings for failed tx_bi map */ 3442 for (;;) { 3443 tx_bi = &tx_ring->tx_bi[i]; 3444 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3445 if (tx_bi == first) 3446 break; 3447 if (i == 0) 3448 i = tx_ring->count; 3449 i--; 3450 } 3451 3452 tx_ring->next_to_use = i; 3453 3454 return -1; 3455 } 3456 3457 /** 3458 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3459 * @xdp: data to transmit 3460 * @xdp_ring: XDP Tx ring 3461 **/ 3462 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 3463 struct i40e_ring *xdp_ring) 3464 { 3465 u32 size = xdp->data_end - xdp->data; 3466 u16 i = xdp_ring->next_to_use; 3467 struct i40e_tx_buffer *tx_bi; 3468 struct i40e_tx_desc *tx_desc; 3469 dma_addr_t dma; 3470 3471 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3472 xdp_ring->tx_stats.tx_busy++; 3473 return I40E_XDP_CONSUMED; 3474 } 3475 3476 dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE); 3477 if (dma_mapping_error(xdp_ring->dev, dma)) 3478 return I40E_XDP_CONSUMED; 3479 3480 tx_bi = &xdp_ring->tx_bi[i]; 3481 tx_bi->bytecount = size; 3482 tx_bi->gso_segs = 1; 3483 tx_bi->raw_buf = xdp->data; 3484 3485 /* record length, and DMA address */ 3486 dma_unmap_len_set(tx_bi, len, size); 3487 dma_unmap_addr_set(tx_bi, dma, dma); 3488 3489 tx_desc = I40E_TX_DESC(xdp_ring, i); 3490 tx_desc->buffer_addr = cpu_to_le64(dma); 3491 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3492 | I40E_TXD_CMD, 3493 0, size, 0); 3494 3495 /* Make certain all of the status bits have been updated 3496 * before next_to_watch is written. 3497 */ 3498 smp_wmb(); 3499 3500 i++; 3501 if (i == xdp_ring->count) 3502 i = 0; 3503 3504 tx_bi->next_to_watch = tx_desc; 3505 xdp_ring->next_to_use = i; 3506 3507 return I40E_XDP_TX; 3508 } 3509 3510 /** 3511 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3512 * @skb: send buffer 3513 * @tx_ring: ring to send buffer on 3514 * 3515 * Returns NETDEV_TX_OK if sent, else an error code 3516 **/ 3517 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3518 struct i40e_ring *tx_ring) 3519 { 3520 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3521 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3522 struct i40e_tx_buffer *first; 3523 u32 td_offset = 0; 3524 u32 tx_flags = 0; 3525 __be16 protocol; 3526 u32 td_cmd = 0; 3527 u8 hdr_len = 0; 3528 int tso, count; 3529 int tsyn; 3530 3531 /* prefetch the data, we'll need it later */ 3532 prefetch(skb->data); 3533 3534 i40e_trace(xmit_frame_ring, skb, tx_ring); 3535 3536 count = i40e_xmit_descriptor_count(skb); 3537 if (i40e_chk_linearize(skb, count)) { 3538 if (__skb_linearize(skb)) { 3539 dev_kfree_skb_any(skb); 3540 return NETDEV_TX_OK; 3541 } 3542 count = i40e_txd_use_count(skb->len); 3543 tx_ring->tx_stats.tx_linearize++; 3544 } 3545 3546 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3547 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3548 * + 4 desc gap to avoid the cache line where head is, 3549 * + 1 desc for context descriptor, 3550 * otherwise try next time 3551 */ 3552 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3553 tx_ring->tx_stats.tx_busy++; 3554 return NETDEV_TX_BUSY; 3555 } 3556 3557 /* record the location of the first descriptor for this packet */ 3558 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3559 first->skb = skb; 3560 first->bytecount = skb->len; 3561 first->gso_segs = 1; 3562 3563 /* prepare the xmit flags */ 3564 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3565 goto out_drop; 3566 3567 /* obtain protocol of skb */ 3568 protocol = vlan_get_protocol(skb); 3569 3570 /* setup IPv4/IPv6 offloads */ 3571 if (protocol == htons(ETH_P_IP)) 3572 tx_flags |= I40E_TX_FLAGS_IPV4; 3573 else if (protocol == htons(ETH_P_IPV6)) 3574 tx_flags |= I40E_TX_FLAGS_IPV6; 3575 3576 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3577 3578 if (tso < 0) 3579 goto out_drop; 3580 else if (tso) 3581 tx_flags |= I40E_TX_FLAGS_TSO; 3582 3583 /* Always offload the checksum, since it's in the data descriptor */ 3584 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3585 tx_ring, &cd_tunneling); 3586 if (tso < 0) 3587 goto out_drop; 3588 3589 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3590 3591 if (tsyn) 3592 tx_flags |= I40E_TX_FLAGS_TSYN; 3593 3594 skb_tx_timestamp(skb); 3595 3596 /* always enable CRC insertion offload */ 3597 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3598 3599 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3600 cd_tunneling, cd_l2tag2); 3601 3602 /* Add Flow Director ATR if it's enabled. 3603 * 3604 * NOTE: this must always be directly before the data descriptor. 3605 */ 3606 i40e_atr(tx_ring, skb, tx_flags); 3607 3608 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3609 td_cmd, td_offset)) 3610 goto cleanup_tx_tstamp; 3611 3612 return NETDEV_TX_OK; 3613 3614 out_drop: 3615 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3616 dev_kfree_skb_any(first->skb); 3617 first->skb = NULL; 3618 cleanup_tx_tstamp: 3619 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3620 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3621 3622 dev_kfree_skb_any(pf->ptp_tx_skb); 3623 pf->ptp_tx_skb = NULL; 3624 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3625 } 3626 3627 return NETDEV_TX_OK; 3628 } 3629 3630 /** 3631 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3632 * @skb: send buffer 3633 * @netdev: network interface device structure 3634 * 3635 * Returns NETDEV_TX_OK if sent, else an error code 3636 **/ 3637 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3638 { 3639 struct i40e_netdev_priv *np = netdev_priv(netdev); 3640 struct i40e_vsi *vsi = np->vsi; 3641 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3642 3643 /* hardware can't handle really short frames, hardware padding works 3644 * beyond this point 3645 */ 3646 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3647 return NETDEV_TX_OK; 3648 3649 return i40e_xmit_frame_ring(skb, tx_ring); 3650 } 3651