1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	/* Use LAN VSI Id if not programmed by user */
46 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
47 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
48 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
49 
50 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
51 
52 	dtype_cmd |= add ?
53 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
54 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
55 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
56 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
57 
58 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
59 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
62 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
63 
64 	if (fdata->cnt_index) {
65 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
67 			     ((u32)fdata->cnt_index <<
68 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
69 	}
70 
71 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
72 	fdir_desc->rsvd = cpu_to_le32(0);
73 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
74 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
75 }
76 
77 #define I40E_FD_CLEAN_DELAY 10
78 /**
79  * i40e_program_fdir_filter - Program a Flow Director filter
80  * @fdir_data: Packet data that will be filter parameters
81  * @raw_packet: the pre-allocated packet buffer for FDir
82  * @pf: The PF pointer
83  * @add: True for add/update, False for remove
84  **/
85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
86 				    u8 *raw_packet, struct i40e_pf *pf,
87 				    bool add)
88 {
89 	struct i40e_tx_buffer *tx_buf, *first;
90 	struct i40e_tx_desc *tx_desc;
91 	struct i40e_ring *tx_ring;
92 	struct i40e_vsi *vsi;
93 	struct device *dev;
94 	dma_addr_t dma;
95 	u32 td_cmd = 0;
96 	u16 i;
97 
98 	/* find existing FDIR VSI */
99 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
100 	if (!vsi)
101 		return -ENOENT;
102 
103 	tx_ring = vsi->tx_rings[0];
104 	dev = tx_ring->dev;
105 
106 	/* we need two descriptors to add/del a filter and we can wait */
107 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
108 		if (!i)
109 			return -EAGAIN;
110 		msleep_interruptible(1);
111 	}
112 
113 	dma = dma_map_single(dev, raw_packet,
114 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
115 	if (dma_mapping_error(dev, dma))
116 		goto dma_fail;
117 
118 	/* grab the next descriptor */
119 	i = tx_ring->next_to_use;
120 	first = &tx_ring->tx_bi[i];
121 	i40e_fdir(tx_ring, fdir_data, add);
122 
123 	/* Now program a dummy descriptor */
124 	i = tx_ring->next_to_use;
125 	tx_desc = I40E_TX_DESC(tx_ring, i);
126 	tx_buf = &tx_ring->tx_bi[i];
127 
128 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
129 
130 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
131 
132 	/* record length, and DMA address */
133 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
134 	dma_unmap_addr_set(tx_buf, dma, dma);
135 
136 	tx_desc->buffer_addr = cpu_to_le64(dma);
137 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
138 
139 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
140 	tx_buf->raw_buf = (void *)raw_packet;
141 
142 	tx_desc->cmd_type_offset_bsz =
143 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
144 
145 	/* Force memory writes to complete before letting h/w
146 	 * know there are new descriptors to fetch.
147 	 */
148 	wmb();
149 
150 	/* Mark the data descriptor to be watched */
151 	first->next_to_watch = tx_desc;
152 
153 	writel(tx_ring->next_to_use, tx_ring->tail);
154 	return 0;
155 
156 dma_fail:
157 	return -1;
158 }
159 
160 /**
161  * i40e_create_dummy_packet - Constructs dummy packet for HW
162  * @dummy_packet: preallocated space for dummy packet
163  * @ipv4: is layer 3 packet of version 4 or 6
164  * @l4proto: next level protocol used in data portion of l3
165  * @data: filter data
166  *
167  * Returns address of layer 4 protocol dummy packet.
168  **/
169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
170 				      struct i40e_fdir_filter *data)
171 {
172 	bool is_vlan = !!data->vlan_tag;
173 	struct vlan_hdr vlan;
174 	struct ipv6hdr ipv6;
175 	struct ethhdr eth;
176 	struct iphdr ip;
177 	u8 *tmp;
178 
179 	if (ipv4) {
180 		eth.h_proto = cpu_to_be16(ETH_P_IP);
181 		ip.protocol = l4proto;
182 		ip.version = 0x4;
183 		ip.ihl = 0x5;
184 
185 		ip.daddr = data->dst_ip;
186 		ip.saddr = data->src_ip;
187 	} else {
188 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
189 		ipv6.nexthdr = l4proto;
190 		ipv6.version = 0x6;
191 
192 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
193 		       sizeof(__be32) * 4);
194 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
195 		       sizeof(__be32) * 4);
196 	}
197 
198 	if (is_vlan) {
199 		vlan.h_vlan_TCI = data->vlan_tag;
200 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
201 		eth.h_proto = data->vlan_etype;
202 	}
203 
204 	tmp = dummy_packet;
205 	memcpy(tmp, &eth, sizeof(eth));
206 	tmp += sizeof(eth);
207 
208 	if (is_vlan) {
209 		memcpy(tmp, &vlan, sizeof(vlan));
210 		tmp += sizeof(vlan);
211 	}
212 
213 	if (ipv4) {
214 		memcpy(tmp, &ip, sizeof(ip));
215 		tmp += sizeof(ip);
216 	} else {
217 		memcpy(tmp, &ipv6, sizeof(ipv6));
218 		tmp += sizeof(ipv6);
219 	}
220 
221 	return tmp;
222 }
223 
224 /**
225  * i40e_create_dummy_udp_packet - helper function to create UDP packet
226  * @raw_packet: preallocated space for dummy packet
227  * @ipv4: is layer 3 packet of version 4 or 6
228  * @l4proto: next level protocol used in data portion of l3
229  * @data: filter data
230  *
231  * Helper function to populate udp fields.
232  **/
233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
234 					 struct i40e_fdir_filter *data)
235 {
236 	struct udphdr *udp;
237 	u8 *tmp;
238 
239 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
240 	udp = (struct udphdr *)(tmp);
241 	udp->dest = data->dst_port;
242 	udp->source = data->src_port;
243 }
244 
245 /**
246  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
247  * @raw_packet: preallocated space for dummy packet
248  * @ipv4: is layer 3 packet of version 4 or 6
249  * @l4proto: next level protocol used in data portion of l3
250  * @data: filter data
251  *
252  * Helper function to populate tcp fields.
253  **/
254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
255 					 struct i40e_fdir_filter *data)
256 {
257 	struct tcphdr *tcp;
258 	u8 *tmp;
259 	/* Dummy tcp packet */
260 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
261 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
262 
263 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
264 
265 	tcp = (struct tcphdr *)tmp;
266 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
267 	tcp->dest = data->dst_port;
268 	tcp->source = data->src_port;
269 }
270 
271 /**
272  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
273  * @raw_packet: preallocated space for dummy packet
274  * @ipv4: is layer 3 packet of version 4 or 6
275  * @l4proto: next level protocol used in data portion of l3
276  * @data: filter data
277  *
278  * Helper function to populate sctp fields.
279  **/
280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
281 					  u8 l4proto,
282 					  struct i40e_fdir_filter *data)
283 {
284 	struct sctphdr *sctp;
285 	u8 *tmp;
286 
287 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
288 
289 	sctp = (struct sctphdr *)tmp;
290 	sctp->dest = data->dst_port;
291 	sctp->source = data->src_port;
292 }
293 
294 /**
295  * i40e_prepare_fdir_filter - Prepare and program fdir filter
296  * @pf: physical function to attach filter to
297  * @fd_data: filter data
298  * @add: add or delete filter
299  * @packet_addr: address of dummy packet, used in filtering
300  * @payload_offset: offset from dummy packet address to user defined data
301  * @pctype: Packet type for which filter is used
302  *
303  * Helper function to offset data of dummy packet, program it and
304  * handle errors.
305  **/
306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
307 				    struct i40e_fdir_filter *fd_data,
308 				    bool add, char *packet_addr,
309 				    int payload_offset, u8 pctype)
310 {
311 	int ret;
312 
313 	if (fd_data->flex_filter) {
314 		u8 *payload;
315 		__be16 pattern = fd_data->flex_word;
316 		u16 off = fd_data->flex_offset;
317 
318 		payload = packet_addr + payload_offset;
319 
320 		/* If user provided vlan, offset payload by vlan header length */
321 		if (!!fd_data->vlan_tag)
322 			payload += VLAN_HLEN;
323 
324 		*((__force __be16 *)(payload + off)) = pattern;
325 	}
326 
327 	fd_data->pctype = pctype;
328 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
329 	if (ret) {
330 		dev_info(&pf->pdev->dev,
331 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
332 			 fd_data->pctype, fd_data->fd_id, ret);
333 		/* Free the packet buffer since it wasn't added to the ring */
334 		return -EOPNOTSUPP;
335 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
336 		if (add)
337 			dev_info(&pf->pdev->dev,
338 				 "Filter OK for PCTYPE %d loc = %d\n",
339 				 fd_data->pctype, fd_data->fd_id);
340 		else
341 			dev_info(&pf->pdev->dev,
342 				 "Filter deleted for PCTYPE %d loc = %d\n",
343 				 fd_data->pctype, fd_data->fd_id);
344 	}
345 
346 	return ret;
347 }
348 
349 /**
350  * i40e_change_filter_num - Prepare and program fdir filter
351  * @ipv4: is layer 3 packet of version 4 or 6
352  * @add: add or delete filter
353  * @ipv4_filter_num: field to update
354  * @ipv6_filter_num: field to update
355  *
356  * Update filter number field for pf.
357  **/
358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
359 				   u16 *ipv6_filter_num)
360 {
361 	if (add) {
362 		if (ipv4)
363 			(*ipv4_filter_num)++;
364 		else
365 			(*ipv6_filter_num)++;
366 	} else {
367 		if (ipv4)
368 			(*ipv4_filter_num)--;
369 		else
370 			(*ipv6_filter_num)--;
371 	}
372 }
373 
374 #define IP_HEADER_OFFSET		14
375 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377 /**
378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
379  * @vsi: pointer to the targeted VSI
380  * @fd_data: the flow director data required for the FDir descriptor
381  * @add: true adds a filter, false removes it
382  * @ipv4: true is v4, false is v6
383  *
384  * Returns 0 if the filters were successfully added or removed
385  **/
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 				 struct i40e_fdir_filter *fd_data,
388 				 bool add,
389 				 bool ipv4)
390 {
391 	struct i40e_pf *pf = vsi->back;
392 	u8 *raw_packet;
393 	int ret;
394 
395 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 	if (!raw_packet)
397 		return -ENOMEM;
398 
399 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400 
401 	if (ipv4)
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 	else
407 		ret = i40e_prepare_fdir_filter
408 			(pf, fd_data, add, raw_packet,
409 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411 
412 	if (ret) {
413 		kfree(raw_packet);
414 		return ret;
415 	}
416 
417 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 			       &pf->fd_udp6_filter_cnt);
419 
420 	return 0;
421 }
422 
423 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425 /**
426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427  * @vsi: pointer to the targeted VSI
428  * @fd_data: the flow director data required for the FDir descriptor
429  * @add: true adds a filter, false removes it
430  * @ipv4: true is v4, false is v6
431  *
432  * Returns 0 if the filters were successfully added or removed
433  **/
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 				 struct i40e_fdir_filter *fd_data,
436 				 bool add,
437 				 bool ipv4)
438 {
439 	struct i40e_pf *pf = vsi->back;
440 	u8 *raw_packet;
441 	int ret;
442 
443 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 	if (!raw_packet)
445 		return -ENOMEM;
446 
447 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 	if (ipv4)
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 	else
454 		ret = i40e_prepare_fdir_filter
455 			(pf, fd_data, add, raw_packet,
456 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458 
459 	if (ret) {
460 		kfree(raw_packet);
461 		return ret;
462 	}
463 
464 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 			       &pf->fd_tcp6_filter_cnt);
466 
467 	if (add) {
468 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 		    I40E_DEBUG_FD & pf->hw.debug_mask)
470 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 	}
473 	return 0;
474 }
475 
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478 /**
479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480  * a specific flow spec
481  * @vsi: pointer to the targeted VSI
482  * @fd_data: the flow director data required for the FDir descriptor
483  * @add: true adds a filter, false removes it
484  * @ipv4: true is v4, false is v6
485  *
486  * Returns 0 if the filters were successfully added or removed
487  **/
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 				  struct i40e_fdir_filter *fd_data,
490 				  bool add,
491 				  bool ipv4)
492 {
493 	struct i40e_pf *pf = vsi->back;
494 	u8 *raw_packet;
495 	int ret;
496 
497 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 	if (!raw_packet)
499 		return -ENOMEM;
500 
501 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502 
503 	if (ipv4)
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 	else
509 		ret = i40e_prepare_fdir_filter
510 			(pf, fd_data, add, raw_packet,
511 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513 
514 	if (ret) {
515 		kfree(raw_packet);
516 		return ret;
517 	}
518 
519 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 			       &pf->fd_sctp6_filter_cnt);
521 
522 	return 0;
523 }
524 
525 #define I40E_IP_DUMMY_PACKET_LEN	34
526 #define I40E_IP6_DUMMY_PACKET_LEN	54
527 /**
528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529  * a specific flow spec
530  * @vsi: pointer to the targeted VSI
531  * @fd_data: the flow director data required for the FDir descriptor
532  * @add: true adds a filter, false removes it
533  * @ipv4: true is v4, false is v6
534  *
535  * Returns 0 if the filters were successfully added or removed
536  **/
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 				struct i40e_fdir_filter *fd_data,
539 				bool add,
540 				bool ipv4)
541 {
542 	struct i40e_pf *pf = vsi->back;
543 	int payload_offset;
544 	u8 *raw_packet;
545 	int iter_start;
546 	int iter_end;
547 	int ret;
548 	int i;
549 
550 	if (ipv4) {
551 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 	} else {
554 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 	}
557 
558 	for (i = iter_start; i <= iter_end; i++) {
559 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 		if (!raw_packet)
561 			return -ENOMEM;
562 
563 		/* IPv6 no header option differs from IPv4 */
564 		(void)i40e_create_dummy_packet
565 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 			 fd_data);
567 
568 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 			I40E_IP6_DUMMY_PACKET_LEN;
570 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 					       payload_offset, i);
572 		if (ret)
573 			goto err;
574 	}
575 
576 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 			       &pf->fd_ip6_filter_cnt);
578 
579 	return 0;
580 err:
581 	kfree(raw_packet);
582 	return ret;
583 }
584 
585 /**
586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587  * @vsi: pointer to the targeted VSI
588  * @input: filter to add or delete
589  * @add: true adds a filter, false removes it
590  *
591  **/
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 		      struct i40e_fdir_filter *input, bool add)
594 {
595 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 	struct i40e_pf *pf = vsi->back;
597 	int ret;
598 
599 	switch (input->flow_type & ~FLOW_EXT) {
600 	case TCP_V4_FLOW:
601 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 		break;
603 	case UDP_V4_FLOW:
604 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 		break;
606 	case SCTP_V4_FLOW:
607 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 		break;
609 	case TCP_V6_FLOW:
610 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 		break;
612 	case UDP_V6_FLOW:
613 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 		break;
615 	case SCTP_V6_FLOW:
616 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 		break;
618 	case IP_USER_FLOW:
619 		switch (input->ipl4_proto) {
620 		case IPPROTO_TCP:
621 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_UDP:
624 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 			break;
626 		case IPPROTO_SCTP:
627 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 			break;
629 		case IPPROTO_IP:
630 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 			break;
632 		default:
633 			/* We cannot support masking based on protocol */
634 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 				 input->ipl4_proto);
636 			return -EINVAL;
637 		}
638 		break;
639 	case IPV6_USER_FLOW:
640 		switch (input->ipl4_proto) {
641 		case IPPROTO_TCP:
642 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_UDP:
645 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 			break;
647 		case IPPROTO_SCTP:
648 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 			break;
650 		case IPPROTO_IP:
651 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 			break;
653 		default:
654 			/* We cannot support masking based on protocol */
655 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 				 input->ipl4_proto);
657 			return -EINVAL;
658 		}
659 		break;
660 	default:
661 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 			 input->flow_type);
663 		return -EINVAL;
664 	}
665 
666 	/* The buffer allocated here will be normally be freed by
667 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 	 * completion. In the event of an error adding the buffer to the FDIR
669 	 * ring, it will immediately be freed. It may also be freed by
670 	 * i40e_clean_tx_ring() when closing the VSI.
671 	 */
672 	return ret;
673 }
674 
675 /**
676  * i40e_fd_handle_status - check the Programming Status for FD
677  * @rx_ring: the Rx ring for this descriptor
678  * @qword0_raw: qword0
679  * @qword1: qword1 after le_to_cpu
680  * @prog_id: the id originally used for programming
681  *
682  * This is used to verify if the FD programming or invalidation
683  * requested by SW to the HW is successful or not and take actions accordingly.
684  **/
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 				  u64 qword1, u8 prog_id)
687 {
688 	struct i40e_pf *pf = rx_ring->vsi->back;
689 	struct pci_dev *pdev = pf->pdev;
690 	struct i40e_16b_rx_wb_qw0 *qw0;
691 	u32 fcnt_prog, fcnt_avail;
692 	u32 error;
693 
694 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697 
698 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 		if (qw0->hi_dword.fd_id != 0 ||
701 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 				 pf->fd_inv);
704 
705 		/* Check if the programming error is for ATR.
706 		 * If so, auto disable ATR and set a state for
707 		 * flush in progress. Next time we come here if flush is in
708 		 * progress do nothing, once flush is complete the state will
709 		 * be cleared.
710 		 */
711 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 			return;
713 
714 		pf->fd_add_err++;
715 		/* store the current atr filter count */
716 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717 
718 		if (qw0->hi_dword.fd_id == 0 &&
719 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 			/* These set_bit() calls aren't atomic with the
721 			 * test_bit() here, but worse case we potentially
722 			 * disable ATR and queue a flush right after SB
723 			 * support is re-enabled. That shouldn't cause an
724 			 * issue in practice
725 			 */
726 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 		}
729 
730 		/* filter programming failed most likely due to table full */
731 		fcnt_prog = i40e_get_global_fd_count(pf);
732 		fcnt_avail = pf->fdir_pf_filter_count;
733 		/* If ATR is running fcnt_prog can quickly change,
734 		 * if we are very close to full, it makes sense to disable
735 		 * FD ATR/SB and then re-enable it when there is room.
736 		 */
737 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 					      pf->state))
741 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 		}
744 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 				 qw0->hi_dword.fd_id);
748 	}
749 }
750 
751 /**
752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753  * @ring:      the ring that owns the buffer
754  * @tx_buffer: the buffer to free
755  **/
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 					    struct i40e_tx_buffer *tx_buffer)
758 {
759 	if (tx_buffer->skb) {
760 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 			kfree(tx_buffer->raw_buf);
762 		else if (ring_is_xdp(ring))
763 			xdp_return_frame(tx_buffer->xdpf);
764 		else
765 			dev_kfree_skb_any(tx_buffer->skb);
766 		if (dma_unmap_len(tx_buffer, len))
767 			dma_unmap_single(ring->dev,
768 					 dma_unmap_addr(tx_buffer, dma),
769 					 dma_unmap_len(tx_buffer, len),
770 					 DMA_TO_DEVICE);
771 	} else if (dma_unmap_len(tx_buffer, len)) {
772 		dma_unmap_page(ring->dev,
773 			       dma_unmap_addr(tx_buffer, dma),
774 			       dma_unmap_len(tx_buffer, len),
775 			       DMA_TO_DEVICE);
776 	}
777 
778 	tx_buffer->next_to_watch = NULL;
779 	tx_buffer->skb = NULL;
780 	dma_unmap_len_set(tx_buffer, len, 0);
781 	/* tx_buffer must be completely set up in the transmit path */
782 }
783 
784 /**
785  * i40e_clean_tx_ring - Free any empty Tx buffers
786  * @tx_ring: ring to be cleaned
787  **/
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 	unsigned long bi_size;
791 	u16 i;
792 
793 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 		i40e_xsk_clean_tx_ring(tx_ring);
795 	} else {
796 		/* ring already cleared, nothing to do */
797 		if (!tx_ring->tx_bi)
798 			return;
799 
800 		/* Free all the Tx ring sk_buffs */
801 		for (i = 0; i < tx_ring->count; i++)
802 			i40e_unmap_and_free_tx_resource(tx_ring,
803 							&tx_ring->tx_bi[i]);
804 	}
805 
806 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 	memset(tx_ring->tx_bi, 0, bi_size);
808 
809 	/* Zero out the descriptor ring */
810 	memset(tx_ring->desc, 0, tx_ring->size);
811 
812 	tx_ring->next_to_use = 0;
813 	tx_ring->next_to_clean = 0;
814 
815 	if (!tx_ring->netdev)
816 		return;
817 
818 	/* cleanup Tx queue statistics */
819 	netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821 
822 /**
823  * i40e_free_tx_resources - Free Tx resources per queue
824  * @tx_ring: Tx descriptor ring for a specific queue
825  *
826  * Free all transmit software resources
827  **/
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 	i40e_clean_tx_ring(tx_ring);
831 	kfree(tx_ring->tx_bi);
832 	tx_ring->tx_bi = NULL;
833 
834 	if (tx_ring->desc) {
835 		dma_free_coherent(tx_ring->dev, tx_ring->size,
836 				  tx_ring->desc, tx_ring->dma);
837 		tx_ring->desc = NULL;
838 	}
839 }
840 
841 /**
842  * i40e_get_tx_pending - how many tx descriptors not processed
843  * @ring: the ring of descriptors
844  * @in_sw: use SW variables
845  *
846  * Since there is no access to the ring head register
847  * in XL710, we need to use our local copies
848  **/
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 	u32 head, tail;
852 
853 	if (!in_sw) {
854 		head = i40e_get_head(ring);
855 		tail = readl(ring->tail);
856 	} else {
857 		head = ring->next_to_clean;
858 		tail = ring->next_to_use;
859 	}
860 
861 	if (head != tail)
862 		return (head < tail) ?
863 			tail - head : (tail + ring->count - head);
864 
865 	return 0;
866 }
867 
868 /**
869  * i40e_detect_recover_hung - Function to detect and recover hung_queues
870  * @vsi:  pointer to vsi struct with tx queues
871  *
872  * VSI has netdev and netdev has TX queues. This function is to check each of
873  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874  **/
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 	struct i40e_ring *tx_ring = NULL;
878 	struct net_device *netdev;
879 	unsigned int i;
880 	int packets;
881 
882 	if (!vsi)
883 		return;
884 
885 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 		return;
887 
888 	netdev = vsi->netdev;
889 	if (!netdev)
890 		return;
891 
892 	if (!netif_carrier_ok(netdev))
893 		return;
894 
895 	for (i = 0; i < vsi->num_queue_pairs; i++) {
896 		tx_ring = vsi->tx_rings[i];
897 		if (tx_ring && tx_ring->desc) {
898 			/* If packet counter has not changed the queue is
899 			 * likely stalled, so force an interrupt for this
900 			 * queue.
901 			 *
902 			 * prev_pkt_ctr would be negative if there was no
903 			 * pending work.
904 			 */
905 			packets = tx_ring->stats.packets & INT_MAX;
906 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 				i40e_force_wb(vsi, tx_ring->q_vector);
908 				continue;
909 			}
910 
911 			/* Memory barrier between read of packet count and call
912 			 * to i40e_get_tx_pending()
913 			 */
914 			smp_rmb();
915 			tx_ring->tx_stats.prev_pkt_ctr =
916 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 		}
918 	}
919 }
920 
921 /**
922  * i40e_clean_tx_irq - Reclaim resources after transmit completes
923  * @vsi: the VSI we care about
924  * @tx_ring: Tx ring to clean
925  * @napi_budget: Used to determine if we are in netpoll
926  *
927  * Returns true if there's any budget left (e.g. the clean is finished)
928  **/
929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 			      struct i40e_ring *tx_ring, int napi_budget)
931 {
932 	int i = tx_ring->next_to_clean;
933 	struct i40e_tx_buffer *tx_buf;
934 	struct i40e_tx_desc *tx_head;
935 	struct i40e_tx_desc *tx_desc;
936 	unsigned int total_bytes = 0, total_packets = 0;
937 	unsigned int budget = vsi->work_limit;
938 
939 	tx_buf = &tx_ring->tx_bi[i];
940 	tx_desc = I40E_TX_DESC(tx_ring, i);
941 	i -= tx_ring->count;
942 
943 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
944 
945 	do {
946 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
947 
948 		/* if next_to_watch is not set then there is no work pending */
949 		if (!eop_desc)
950 			break;
951 
952 		/* prevent any other reads prior to eop_desc */
953 		smp_rmb();
954 
955 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
956 		/* we have caught up to head, no work left to do */
957 		if (tx_head == tx_desc)
958 			break;
959 
960 		/* clear next_to_watch to prevent false hangs */
961 		tx_buf->next_to_watch = NULL;
962 
963 		/* update the statistics for this packet */
964 		total_bytes += tx_buf->bytecount;
965 		total_packets += tx_buf->gso_segs;
966 
967 		/* free the skb/XDP data */
968 		if (ring_is_xdp(tx_ring))
969 			xdp_return_frame(tx_buf->xdpf);
970 		else
971 			napi_consume_skb(tx_buf->skb, napi_budget);
972 
973 		/* unmap skb header data */
974 		dma_unmap_single(tx_ring->dev,
975 				 dma_unmap_addr(tx_buf, dma),
976 				 dma_unmap_len(tx_buf, len),
977 				 DMA_TO_DEVICE);
978 
979 		/* clear tx_buffer data */
980 		tx_buf->skb = NULL;
981 		dma_unmap_len_set(tx_buf, len, 0);
982 
983 		/* unmap remaining buffers */
984 		while (tx_desc != eop_desc) {
985 			i40e_trace(clean_tx_irq_unmap,
986 				   tx_ring, tx_desc, tx_buf);
987 
988 			tx_buf++;
989 			tx_desc++;
990 			i++;
991 			if (unlikely(!i)) {
992 				i -= tx_ring->count;
993 				tx_buf = tx_ring->tx_bi;
994 				tx_desc = I40E_TX_DESC(tx_ring, 0);
995 			}
996 
997 			/* unmap any remaining paged data */
998 			if (dma_unmap_len(tx_buf, len)) {
999 				dma_unmap_page(tx_ring->dev,
1000 					       dma_unmap_addr(tx_buf, dma),
1001 					       dma_unmap_len(tx_buf, len),
1002 					       DMA_TO_DEVICE);
1003 				dma_unmap_len_set(tx_buf, len, 0);
1004 			}
1005 		}
1006 
1007 		/* move us one more past the eop_desc for start of next pkt */
1008 		tx_buf++;
1009 		tx_desc++;
1010 		i++;
1011 		if (unlikely(!i)) {
1012 			i -= tx_ring->count;
1013 			tx_buf = tx_ring->tx_bi;
1014 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1015 		}
1016 
1017 		prefetch(tx_desc);
1018 
1019 		/* update budget accounting */
1020 		budget--;
1021 	} while (likely(budget));
1022 
1023 	i += tx_ring->count;
1024 	tx_ring->next_to_clean = i;
1025 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1026 	i40e_arm_wb(tx_ring, vsi, budget);
1027 
1028 	if (ring_is_xdp(tx_ring))
1029 		return !!budget;
1030 
1031 	/* notify netdev of completed buffers */
1032 	netdev_tx_completed_queue(txring_txq(tx_ring),
1033 				  total_packets, total_bytes);
1034 
1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1036 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1037 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1038 		/* Make sure that anybody stopping the queue after this
1039 		 * sees the new next_to_clean.
1040 		 */
1041 		smp_mb();
1042 		if (__netif_subqueue_stopped(tx_ring->netdev,
1043 					     tx_ring->queue_index) &&
1044 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1045 			netif_wake_subqueue(tx_ring->netdev,
1046 					    tx_ring->queue_index);
1047 			++tx_ring->tx_stats.restart_queue;
1048 		}
1049 	}
1050 
1051 	return !!budget;
1052 }
1053 
1054 /**
1055  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056  * @vsi: the VSI we care about
1057  * @q_vector: the vector on which to enable writeback
1058  *
1059  **/
1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 				  struct i40e_q_vector *q_vector)
1062 {
1063 	u16 flags = q_vector->tx.ring[0].flags;
1064 	u32 val;
1065 
1066 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 		return;
1068 
1069 	if (q_vector->arm_wb_state)
1070 		return;
1071 
1072 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1073 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075 
1076 		wr32(&vsi->back->hw,
1077 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 		     val);
1079 	} else {
1080 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082 
1083 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 	}
1085 	q_vector->arm_wb_state = true;
1086 }
1087 
1088 /**
1089  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090  * @vsi: the VSI we care about
1091  * @q_vector: the vector  on which to force writeback
1092  *
1093  **/
1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1097 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 			  /* allow 00 to be written to the index */
1102 
1103 		wr32(&vsi->back->hw,
1104 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 	} else {
1106 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 			/* allow 00 to be written to the index */
1111 
1112 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 	}
1114 }
1115 
1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 					struct i40e_ring_container *rc)
1118 {
1119 	return &q_vector->rx == rc;
1120 }
1121 
1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 	unsigned int divisor;
1125 
1126 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 	case I40E_LINK_SPEED_40GB:
1128 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 		break;
1130 	case I40E_LINK_SPEED_25GB:
1131 	case I40E_LINK_SPEED_20GB:
1132 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 		break;
1134 	default:
1135 	case I40E_LINK_SPEED_10GB:
1136 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 		break;
1138 	case I40E_LINK_SPEED_1GB:
1139 	case I40E_LINK_SPEED_100MB:
1140 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 		break;
1142 	}
1143 
1144 	return divisor;
1145 }
1146 
1147 /**
1148  * i40e_update_itr - update the dynamic ITR value based on statistics
1149  * @q_vector: structure containing interrupt and ring information
1150  * @rc: structure containing ring performance data
1151  *
1152  * Stores a new ITR value based on packets and byte
1153  * counts during the last interrupt.  The advantage of per interrupt
1154  * computation is faster updates and more accurate ITR for the current
1155  * traffic pattern.  Constants in this function were computed
1156  * based on theoretical maximum wire speed and thresholds were set based
1157  * on testing data as well as attempting to minimize response time
1158  * while increasing bulk throughput.
1159  **/
1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 			    struct i40e_ring_container *rc)
1162 {
1163 	unsigned int avg_wire_size, packets, bytes, itr;
1164 	unsigned long next_update = jiffies;
1165 
1166 	/* If we don't have any rings just leave ourselves set for maximum
1167 	 * possible latency so we take ourselves out of the equation.
1168 	 */
1169 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 		return;
1171 
1172 	/* For Rx we want to push the delay up and default to low latency.
1173 	 * for Tx we want to pull the delay down and default to high latency.
1174 	 */
1175 	itr = i40e_container_is_rx(q_vector, rc) ?
1176 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178 
1179 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1180 	 * that either packets are coming in so slow there hasn't been
1181 	 * any work, or that there is so much work that NAPI is dealing
1182 	 * with interrupt moderation and we don't need to do anything.
1183 	 */
1184 	if (time_after(next_update, rc->next_update))
1185 		goto clear_counts;
1186 
1187 	/* If itr_countdown is set it means we programmed an ITR within
1188 	 * the last 4 interrupt cycles. This has a side effect of us
1189 	 * potentially firing an early interrupt. In order to work around
1190 	 * this we need to throw out any data received for a few
1191 	 * interrupts following the update.
1192 	 */
1193 	if (q_vector->itr_countdown) {
1194 		itr = rc->target_itr;
1195 		goto clear_counts;
1196 	}
1197 
1198 	packets = rc->total_packets;
1199 	bytes = rc->total_bytes;
1200 
1201 	if (i40e_container_is_rx(q_vector, rc)) {
1202 		/* If Rx there are 1 to 4 packets and bytes are less than
1203 		 * 9000 assume insufficient data to use bulk rate limiting
1204 		 * approach unless Tx is already in bulk rate limiting. We
1205 		 * are likely latency driven.
1206 		 */
1207 		if (packets && packets < 4 && bytes < 9000 &&
1208 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 			goto adjust_by_size;
1211 		}
1212 	} else if (packets < 4) {
1213 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 		 * bulk mode and we are receiving 4 or fewer packets just
1215 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 		 * that the Rx can relax.
1217 		 */
1218 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1221 			goto clear_counts;
1222 	} else if (packets > 32) {
1223 		/* If we have processed over 32 packets in a single interrupt
1224 		 * for Tx assume we need to switch over to "bulk" mode.
1225 		 */
1226 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 	}
1228 
1229 	/* We have no packets to actually measure against. This means
1230 	 * either one of the other queues on this vector is active or
1231 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 	 *
1233 	 * Between 4 and 56 we can assume that our current interrupt delay
1234 	 * is only slightly too low. As such we should increase it by a small
1235 	 * fixed amount.
1236 	 */
1237 	if (packets < 56) {
1238 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 		}
1243 		goto clear_counts;
1244 	}
1245 
1246 	if (packets <= 256) {
1247 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 		itr &= I40E_ITR_MASK;
1249 
1250 		/* Between 56 and 112 is our "goldilocks" zone where we are
1251 		 * working out "just right". Just report that our current
1252 		 * ITR is good for us.
1253 		 */
1254 		if (packets <= 112)
1255 			goto clear_counts;
1256 
1257 		/* If packet count is 128 or greater we are likely looking
1258 		 * at a slight overrun of the delay we want. Try halving
1259 		 * our delay to see if that will cut the number of packets
1260 		 * in half per interrupt.
1261 		 */
1262 		itr /= 2;
1263 		itr &= I40E_ITR_MASK;
1264 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266 
1267 		goto clear_counts;
1268 	}
1269 
1270 	/* The paths below assume we are dealing with a bulk ITR since
1271 	 * number of packets is greater than 256. We are just going to have
1272 	 * to compute a value and try to bring the count under control,
1273 	 * though for smaller packet sizes there isn't much we can do as
1274 	 * NAPI polling will likely be kicking in sooner rather than later.
1275 	 */
1276 	itr = I40E_ITR_ADAPTIVE_BULK;
1277 
1278 adjust_by_size:
1279 	/* If packet counts are 256 or greater we can assume we have a gross
1280 	 * overestimation of what the rate should be. Instead of trying to fine
1281 	 * tune it just use the formula below to try and dial in an exact value
1282 	 * give the current packet size of the frame.
1283 	 */
1284 	avg_wire_size = bytes / packets;
1285 
1286 	/* The following is a crude approximation of:
1287 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1288 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 	 *
1291 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 	 * formula down to
1294 	 *
1295 	 *  (170 * (size + 24)) / (size + 640) = ITR
1296 	 *
1297 	 * We first do some math on the packet size and then finally bitshift
1298 	 * by 8 after rounding up. We also have to account for PCIe link speed
1299 	 * difference as ITR scales based on this.
1300 	 */
1301 	if (avg_wire_size <= 60) {
1302 		/* Start at 250k ints/sec */
1303 		avg_wire_size = 4096;
1304 	} else if (avg_wire_size <= 380) {
1305 		/* 250K ints/sec to 60K ints/sec */
1306 		avg_wire_size *= 40;
1307 		avg_wire_size += 1696;
1308 	} else if (avg_wire_size <= 1084) {
1309 		/* 60K ints/sec to 36K ints/sec */
1310 		avg_wire_size *= 15;
1311 		avg_wire_size += 11452;
1312 	} else if (avg_wire_size <= 1980) {
1313 		/* 36K ints/sec to 30K ints/sec */
1314 		avg_wire_size *= 5;
1315 		avg_wire_size += 22420;
1316 	} else {
1317 		/* plateau at a limit of 30K ints/sec */
1318 		avg_wire_size = 32256;
1319 	}
1320 
1321 	/* If we are in low latency mode halve our delay which doubles the
1322 	 * rate to somewhere between 100K to 16K ints/sec
1323 	 */
1324 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 		avg_wire_size /= 2;
1326 
1327 	/* Resultant value is 256 times larger than it needs to be. This
1328 	 * gives us room to adjust the value as needed to either increase
1329 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 	 *
1331 	 * Use addition as we have already recorded the new latency flag
1332 	 * for the ITR value.
1333 	 */
1334 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 	       I40E_ITR_ADAPTIVE_MIN_INC;
1336 
1337 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 	}
1341 
1342 clear_counts:
1343 	/* write back value */
1344 	rc->target_itr = itr;
1345 
1346 	/* next update should occur within next jiffy */
1347 	rc->next_update = next_update + 1;
1348 
1349 	rc->total_bytes = 0;
1350 	rc->total_packets = 0;
1351 }
1352 
1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 	return &rx_ring->rx_bi[idx];
1356 }
1357 
1358 /**
1359  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360  * @rx_ring: rx descriptor ring to store buffers on
1361  * @old_buff: donor buffer to have page reused
1362  *
1363  * Synchronizes page for reuse by the adapter
1364  **/
1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 			       struct i40e_rx_buffer *old_buff)
1367 {
1368 	struct i40e_rx_buffer *new_buff;
1369 	u16 nta = rx_ring->next_to_alloc;
1370 
1371 	new_buff = i40e_rx_bi(rx_ring, nta);
1372 
1373 	/* update, and store next to alloc */
1374 	nta++;
1375 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376 
1377 	/* transfer page from old buffer to new buffer */
1378 	new_buff->dma		= old_buff->dma;
1379 	new_buff->page		= old_buff->page;
1380 	new_buff->page_offset	= old_buff->page_offset;
1381 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1382 
1383 	/* clear contents of buffer_info */
1384 	old_buff->page = NULL;
1385 }
1386 
1387 /**
1388  * i40e_clean_programming_status - clean the programming status descriptor
1389  * @rx_ring: the rx ring that has this descriptor
1390  * @qword0_raw: qword0
1391  * @qword1: qword1 representing status_error_len in CPU ordering
1392  *
1393  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394  * status being successful or not and take actions accordingly. FCoE should
1395  * handle its context/filter programming/invalidation status and take actions.
1396  *
1397  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398  **/
1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 				   u64 qword1)
1401 {
1402 	u8 id;
1403 
1404 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1405 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1406 
1407 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1408 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1409 }
1410 
1411 /**
1412  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1413  * @tx_ring: the tx ring to set up
1414  *
1415  * Return 0 on success, negative on error
1416  **/
1417 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1418 {
1419 	struct device *dev = tx_ring->dev;
1420 	int bi_size;
1421 
1422 	if (!dev)
1423 		return -ENOMEM;
1424 
1425 	/* warn if we are about to overwrite the pointer */
1426 	WARN_ON(tx_ring->tx_bi);
1427 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1428 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1429 	if (!tx_ring->tx_bi)
1430 		goto err;
1431 
1432 	u64_stats_init(&tx_ring->syncp);
1433 
1434 	/* round up to nearest 4K */
1435 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1436 	/* add u32 for head writeback, align after this takes care of
1437 	 * guaranteeing this is at least one cache line in size
1438 	 */
1439 	tx_ring->size += sizeof(u32);
1440 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1441 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1442 					   &tx_ring->dma, GFP_KERNEL);
1443 	if (!tx_ring->desc) {
1444 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1445 			 tx_ring->size);
1446 		goto err;
1447 	}
1448 
1449 	tx_ring->next_to_use = 0;
1450 	tx_ring->next_to_clean = 0;
1451 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1452 	return 0;
1453 
1454 err:
1455 	kfree(tx_ring->tx_bi);
1456 	tx_ring->tx_bi = NULL;
1457 	return -ENOMEM;
1458 }
1459 
1460 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1461 {
1462 	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1463 
1464 	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1465 	return rx_ring->rx_bi ? 0 : -ENOMEM;
1466 }
1467 
1468 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1469 {
1470 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1471 }
1472 
1473 /**
1474  * i40e_clean_rx_ring - Free Rx buffers
1475  * @rx_ring: ring to be cleaned
1476  **/
1477 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1478 {
1479 	u16 i;
1480 
1481 	/* ring already cleared, nothing to do */
1482 	if (!rx_ring->rx_bi)
1483 		return;
1484 
1485 	if (rx_ring->skb) {
1486 		dev_kfree_skb(rx_ring->skb);
1487 		rx_ring->skb = NULL;
1488 	}
1489 
1490 	if (rx_ring->xsk_pool) {
1491 		i40e_xsk_clean_rx_ring(rx_ring);
1492 		goto skip_free;
1493 	}
1494 
1495 	/* Free all the Rx ring sk_buffs */
1496 	for (i = 0; i < rx_ring->count; i++) {
1497 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1498 
1499 		if (!rx_bi->page)
1500 			continue;
1501 
1502 		/* Invalidate cache lines that may have been written to by
1503 		 * device so that we avoid corrupting memory.
1504 		 */
1505 		dma_sync_single_range_for_cpu(rx_ring->dev,
1506 					      rx_bi->dma,
1507 					      rx_bi->page_offset,
1508 					      rx_ring->rx_buf_len,
1509 					      DMA_FROM_DEVICE);
1510 
1511 		/* free resources associated with mapping */
1512 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1513 				     i40e_rx_pg_size(rx_ring),
1514 				     DMA_FROM_DEVICE,
1515 				     I40E_RX_DMA_ATTR);
1516 
1517 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1518 
1519 		rx_bi->page = NULL;
1520 		rx_bi->page_offset = 0;
1521 	}
1522 
1523 skip_free:
1524 	if (rx_ring->xsk_pool)
1525 		i40e_clear_rx_bi_zc(rx_ring);
1526 	else
1527 		i40e_clear_rx_bi(rx_ring);
1528 
1529 	/* Zero out the descriptor ring */
1530 	memset(rx_ring->desc, 0, rx_ring->size);
1531 
1532 	rx_ring->next_to_alloc = 0;
1533 	rx_ring->next_to_clean = 0;
1534 	rx_ring->next_to_use = 0;
1535 }
1536 
1537 /**
1538  * i40e_free_rx_resources - Free Rx resources
1539  * @rx_ring: ring to clean the resources from
1540  *
1541  * Free all receive software resources
1542  **/
1543 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1544 {
1545 	i40e_clean_rx_ring(rx_ring);
1546 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1547 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1548 	rx_ring->xdp_prog = NULL;
1549 	kfree(rx_ring->rx_bi);
1550 	rx_ring->rx_bi = NULL;
1551 
1552 	if (rx_ring->desc) {
1553 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1554 				  rx_ring->desc, rx_ring->dma);
1555 		rx_ring->desc = NULL;
1556 	}
1557 }
1558 
1559 /**
1560  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1561  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1562  *
1563  * Returns 0 on success, negative on failure
1564  **/
1565 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1566 {
1567 	struct device *dev = rx_ring->dev;
1568 	int err;
1569 
1570 	u64_stats_init(&rx_ring->syncp);
1571 
1572 	/* Round up to nearest 4K */
1573 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1574 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1575 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1576 					   &rx_ring->dma, GFP_KERNEL);
1577 
1578 	if (!rx_ring->desc) {
1579 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1580 			 rx_ring->size);
1581 		return -ENOMEM;
1582 	}
1583 
1584 	rx_ring->next_to_alloc = 0;
1585 	rx_ring->next_to_clean = 0;
1586 	rx_ring->next_to_use = 0;
1587 
1588 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1589 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1590 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1591 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1592 		if (err < 0)
1593 			return err;
1594 	}
1595 
1596 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1597 
1598 	return 0;
1599 }
1600 
1601 /**
1602  * i40e_release_rx_desc - Store the new tail and head values
1603  * @rx_ring: ring to bump
1604  * @val: new head index
1605  **/
1606 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1607 {
1608 	rx_ring->next_to_use = val;
1609 
1610 	/* update next to alloc since we have filled the ring */
1611 	rx_ring->next_to_alloc = val;
1612 
1613 	/* Force memory writes to complete before letting h/w
1614 	 * know there are new descriptors to fetch.  (Only
1615 	 * applicable for weak-ordered memory model archs,
1616 	 * such as IA-64).
1617 	 */
1618 	wmb();
1619 	writel(val, rx_ring->tail);
1620 }
1621 
1622 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1623 					   unsigned int size)
1624 {
1625 	unsigned int truesize;
1626 
1627 #if (PAGE_SIZE < 8192)
1628 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1629 #else
1630 	truesize = rx_ring->rx_offset ?
1631 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1632 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1633 		SKB_DATA_ALIGN(size);
1634 #endif
1635 	return truesize;
1636 }
1637 
1638 /**
1639  * i40e_alloc_mapped_page - recycle or make a new page
1640  * @rx_ring: ring to use
1641  * @bi: rx_buffer struct to modify
1642  *
1643  * Returns true if the page was successfully allocated or
1644  * reused.
1645  **/
1646 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1647 				   struct i40e_rx_buffer *bi)
1648 {
1649 	struct page *page = bi->page;
1650 	dma_addr_t dma;
1651 
1652 	/* since we are recycling buffers we should seldom need to alloc */
1653 	if (likely(page)) {
1654 		rx_ring->rx_stats.page_reuse_count++;
1655 		return true;
1656 	}
1657 
1658 	/* alloc new page for storage */
1659 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1660 	if (unlikely(!page)) {
1661 		rx_ring->rx_stats.alloc_page_failed++;
1662 		return false;
1663 	}
1664 
1665 	rx_ring->rx_stats.page_alloc_count++;
1666 
1667 	/* map page for use */
1668 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1669 				 i40e_rx_pg_size(rx_ring),
1670 				 DMA_FROM_DEVICE,
1671 				 I40E_RX_DMA_ATTR);
1672 
1673 	/* if mapping failed free memory back to system since
1674 	 * there isn't much point in holding memory we can't use
1675 	 */
1676 	if (dma_mapping_error(rx_ring->dev, dma)) {
1677 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1678 		rx_ring->rx_stats.alloc_page_failed++;
1679 		return false;
1680 	}
1681 
1682 	bi->dma = dma;
1683 	bi->page = page;
1684 	bi->page_offset = rx_ring->rx_offset;
1685 	page_ref_add(page, USHRT_MAX - 1);
1686 	bi->pagecnt_bias = USHRT_MAX;
1687 
1688 	return true;
1689 }
1690 
1691 /**
1692  * i40e_alloc_rx_buffers - Replace used receive buffers
1693  * @rx_ring: ring to place buffers on
1694  * @cleaned_count: number of buffers to replace
1695  *
1696  * Returns false if all allocations were successful, true if any fail
1697  **/
1698 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1699 {
1700 	u16 ntu = rx_ring->next_to_use;
1701 	union i40e_rx_desc *rx_desc;
1702 	struct i40e_rx_buffer *bi;
1703 
1704 	/* do nothing if no valid netdev defined */
1705 	if (!rx_ring->netdev || !cleaned_count)
1706 		return false;
1707 
1708 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1709 	bi = i40e_rx_bi(rx_ring, ntu);
1710 
1711 	do {
1712 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1713 			goto no_buffers;
1714 
1715 		/* sync the buffer for use by the device */
1716 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1717 						 bi->page_offset,
1718 						 rx_ring->rx_buf_len,
1719 						 DMA_FROM_DEVICE);
1720 
1721 		/* Refresh the desc even if buffer_addrs didn't change
1722 		 * because each write-back erases this info.
1723 		 */
1724 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1725 
1726 		rx_desc++;
1727 		bi++;
1728 		ntu++;
1729 		if (unlikely(ntu == rx_ring->count)) {
1730 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1731 			bi = i40e_rx_bi(rx_ring, 0);
1732 			ntu = 0;
1733 		}
1734 
1735 		/* clear the status bits for the next_to_use descriptor */
1736 		rx_desc->wb.qword1.status_error_len = 0;
1737 
1738 		cleaned_count--;
1739 	} while (cleaned_count);
1740 
1741 	if (rx_ring->next_to_use != ntu)
1742 		i40e_release_rx_desc(rx_ring, ntu);
1743 
1744 	return false;
1745 
1746 no_buffers:
1747 	if (rx_ring->next_to_use != ntu)
1748 		i40e_release_rx_desc(rx_ring, ntu);
1749 
1750 	/* make sure to come back via polling to try again after
1751 	 * allocation failure
1752 	 */
1753 	return true;
1754 }
1755 
1756 /**
1757  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1758  * @vsi: the VSI we care about
1759  * @skb: skb currently being received and modified
1760  * @rx_desc: the receive descriptor
1761  **/
1762 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1763 				    struct sk_buff *skb,
1764 				    union i40e_rx_desc *rx_desc)
1765 {
1766 	struct i40e_rx_ptype_decoded decoded;
1767 	u32 rx_error, rx_status;
1768 	bool ipv4, ipv6;
1769 	u8 ptype;
1770 	u64 qword;
1771 
1772 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1773 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1774 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1775 		   I40E_RXD_QW1_ERROR_SHIFT;
1776 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1777 		    I40E_RXD_QW1_STATUS_SHIFT;
1778 	decoded = decode_rx_desc_ptype(ptype);
1779 
1780 	skb->ip_summed = CHECKSUM_NONE;
1781 
1782 	skb_checksum_none_assert(skb);
1783 
1784 	/* Rx csum enabled and ip headers found? */
1785 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1786 		return;
1787 
1788 	/* did the hardware decode the packet and checksum? */
1789 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1790 		return;
1791 
1792 	/* both known and outer_ip must be set for the below code to work */
1793 	if (!(decoded.known && decoded.outer_ip))
1794 		return;
1795 
1796 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1797 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1798 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1799 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1800 
1801 	if (ipv4 &&
1802 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1803 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1804 		goto checksum_fail;
1805 
1806 	/* likely incorrect csum if alternate IP extension headers found */
1807 	if (ipv6 &&
1808 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1809 		/* don't increment checksum err here, non-fatal err */
1810 		return;
1811 
1812 	/* there was some L4 error, count error and punt packet to the stack */
1813 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1814 		goto checksum_fail;
1815 
1816 	/* handle packets that were not able to be checksummed due
1817 	 * to arrival speed, in this case the stack can compute
1818 	 * the csum.
1819 	 */
1820 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1821 		return;
1822 
1823 	/* If there is an outer header present that might contain a checksum
1824 	 * we need to bump the checksum level by 1 to reflect the fact that
1825 	 * we are indicating we validated the inner checksum.
1826 	 */
1827 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1828 		skb->csum_level = 1;
1829 
1830 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1831 	switch (decoded.inner_prot) {
1832 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1833 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1834 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1835 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1836 		fallthrough;
1837 	default:
1838 		break;
1839 	}
1840 
1841 	return;
1842 
1843 checksum_fail:
1844 	vsi->back->hw_csum_rx_error++;
1845 }
1846 
1847 /**
1848  * i40e_ptype_to_htype - get a hash type
1849  * @ptype: the ptype value from the descriptor
1850  *
1851  * Returns a hash type to be used by skb_set_hash
1852  **/
1853 static inline int i40e_ptype_to_htype(u8 ptype)
1854 {
1855 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1856 
1857 	if (!decoded.known)
1858 		return PKT_HASH_TYPE_NONE;
1859 
1860 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1861 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1862 		return PKT_HASH_TYPE_L4;
1863 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1864 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1865 		return PKT_HASH_TYPE_L3;
1866 	else
1867 		return PKT_HASH_TYPE_L2;
1868 }
1869 
1870 /**
1871  * i40e_rx_hash - set the hash value in the skb
1872  * @ring: descriptor ring
1873  * @rx_desc: specific descriptor
1874  * @skb: skb currently being received and modified
1875  * @rx_ptype: Rx packet type
1876  **/
1877 static inline void i40e_rx_hash(struct i40e_ring *ring,
1878 				union i40e_rx_desc *rx_desc,
1879 				struct sk_buff *skb,
1880 				u8 rx_ptype)
1881 {
1882 	u32 hash;
1883 	const __le64 rss_mask =
1884 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1885 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1886 
1887 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1888 		return;
1889 
1890 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1891 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1892 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1893 	}
1894 }
1895 
1896 /**
1897  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1898  * @rx_ring: rx descriptor ring packet is being transacted on
1899  * @rx_desc: pointer to the EOP Rx descriptor
1900  * @skb: pointer to current skb being populated
1901  *
1902  * This function checks the ring, descriptor, and packet information in
1903  * order to populate the hash, checksum, VLAN, protocol, and
1904  * other fields within the skb.
1905  **/
1906 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1907 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1908 {
1909 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1910 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1911 			I40E_RXD_QW1_STATUS_SHIFT;
1912 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1913 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1914 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1915 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1916 		      I40E_RXD_QW1_PTYPE_SHIFT;
1917 
1918 	if (unlikely(tsynvalid))
1919 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1920 
1921 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1922 
1923 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1924 
1925 	skb_record_rx_queue(skb, rx_ring->queue_index);
1926 
1927 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1928 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1929 
1930 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1931 				       le16_to_cpu(vlan_tag));
1932 	}
1933 
1934 	/* modifies the skb - consumes the enet header */
1935 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1936 }
1937 
1938 /**
1939  * i40e_cleanup_headers - Correct empty headers
1940  * @rx_ring: rx descriptor ring packet is being transacted on
1941  * @skb: pointer to current skb being fixed
1942  * @rx_desc: pointer to the EOP Rx descriptor
1943  *
1944  * In addition if skb is not at least 60 bytes we need to pad it so that
1945  * it is large enough to qualify as a valid Ethernet frame.
1946  *
1947  * Returns true if an error was encountered and skb was freed.
1948  **/
1949 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1950 				 union i40e_rx_desc *rx_desc)
1951 
1952 {
1953 	/* ERR_MASK will only have valid bits if EOP set, and
1954 	 * what we are doing here is actually checking
1955 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1956 	 * the error field
1957 	 */
1958 	if (unlikely(i40e_test_staterr(rx_desc,
1959 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1960 		dev_kfree_skb_any(skb);
1961 		return true;
1962 	}
1963 
1964 	/* if eth_skb_pad returns an error the skb was freed */
1965 	if (eth_skb_pad(skb))
1966 		return true;
1967 
1968 	return false;
1969 }
1970 
1971 /**
1972  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1973  * @rx_buffer: buffer containing the page
1974  * @rx_stats: rx stats structure for the rx ring
1975  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1976  *
1977  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1978  * which will assign the current buffer to the buffer that next_to_alloc is
1979  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1980  * page freed.
1981  *
1982  * rx_stats will be updated to indicate whether the page was waived
1983  * or busy if it could not be reused.
1984  */
1985 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1986 				   struct i40e_rx_queue_stats *rx_stats,
1987 				   int rx_buffer_pgcnt)
1988 {
1989 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1990 	struct page *page = rx_buffer->page;
1991 
1992 	/* Is any reuse possible? */
1993 	if (!dev_page_is_reusable(page)) {
1994 		rx_stats->page_waive_count++;
1995 		return false;
1996 	}
1997 
1998 #if (PAGE_SIZE < 8192)
1999 	/* if we are only owner of page we can reuse it */
2000 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
2001 		rx_stats->page_busy_count++;
2002 		return false;
2003 	}
2004 #else
2005 #define I40E_LAST_OFFSET \
2006 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2007 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2008 		rx_stats->page_busy_count++;
2009 		return false;
2010 	}
2011 #endif
2012 
2013 	/* If we have drained the page fragment pool we need to update
2014 	 * the pagecnt_bias and page count so that we fully restock the
2015 	 * number of references the driver holds.
2016 	 */
2017 	if (unlikely(pagecnt_bias == 1)) {
2018 		page_ref_add(page, USHRT_MAX - 1);
2019 		rx_buffer->pagecnt_bias = USHRT_MAX;
2020 	}
2021 
2022 	return true;
2023 }
2024 
2025 /**
2026  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2027  * @rx_ring: rx descriptor ring to transact packets on
2028  * @rx_buffer: buffer containing page to add
2029  * @skb: sk_buff to place the data into
2030  * @size: packet length from rx_desc
2031  *
2032  * This function will add the data contained in rx_buffer->page to the skb.
2033  * It will just attach the page as a frag to the skb.
2034  *
2035  * The function will then update the page offset.
2036  **/
2037 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2038 			     struct i40e_rx_buffer *rx_buffer,
2039 			     struct sk_buff *skb,
2040 			     unsigned int size)
2041 {
2042 #if (PAGE_SIZE < 8192)
2043 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2044 #else
2045 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2046 #endif
2047 
2048 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2049 			rx_buffer->page_offset, size, truesize);
2050 
2051 	/* page is being used so we must update the page offset */
2052 #if (PAGE_SIZE < 8192)
2053 	rx_buffer->page_offset ^= truesize;
2054 #else
2055 	rx_buffer->page_offset += truesize;
2056 #endif
2057 }
2058 
2059 /**
2060  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2061  * @rx_ring: rx descriptor ring to transact packets on
2062  * @size: size of buffer to add to skb
2063  * @rx_buffer_pgcnt: buffer page refcount
2064  *
2065  * This function will pull an Rx buffer from the ring and synchronize it
2066  * for use by the CPU.
2067  */
2068 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2069 						 const unsigned int size,
2070 						 int *rx_buffer_pgcnt)
2071 {
2072 	struct i40e_rx_buffer *rx_buffer;
2073 
2074 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2075 	*rx_buffer_pgcnt =
2076 #if (PAGE_SIZE < 8192)
2077 		page_count(rx_buffer->page);
2078 #else
2079 		0;
2080 #endif
2081 	prefetch_page_address(rx_buffer->page);
2082 
2083 	/* we are reusing so sync this buffer for CPU use */
2084 	dma_sync_single_range_for_cpu(rx_ring->dev,
2085 				      rx_buffer->dma,
2086 				      rx_buffer->page_offset,
2087 				      size,
2088 				      DMA_FROM_DEVICE);
2089 
2090 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2091 	rx_buffer->pagecnt_bias--;
2092 
2093 	return rx_buffer;
2094 }
2095 
2096 /**
2097  * i40e_construct_skb - Allocate skb and populate it
2098  * @rx_ring: rx descriptor ring to transact packets on
2099  * @rx_buffer: rx buffer to pull data from
2100  * @xdp: xdp_buff pointing to the data
2101  *
2102  * This function allocates an skb.  It then populates it with the page
2103  * data from the current receive descriptor, taking care to set up the
2104  * skb correctly.
2105  */
2106 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2107 					  struct i40e_rx_buffer *rx_buffer,
2108 					  struct xdp_buff *xdp)
2109 {
2110 	unsigned int size = xdp->data_end - xdp->data;
2111 #if (PAGE_SIZE < 8192)
2112 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2113 #else
2114 	unsigned int truesize = SKB_DATA_ALIGN(size);
2115 #endif
2116 	unsigned int headlen;
2117 	struct sk_buff *skb;
2118 
2119 	/* prefetch first cache line of first page */
2120 	net_prefetch(xdp->data);
2121 
2122 	/* Note, we get here by enabling legacy-rx via:
2123 	 *
2124 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2125 	 *
2126 	 * In this mode, we currently get 0 extra XDP headroom as
2127 	 * opposed to having legacy-rx off, where we process XDP
2128 	 * packets going to stack via i40e_build_skb(). The latter
2129 	 * provides us currently with 192 bytes of headroom.
2130 	 *
2131 	 * For i40e_construct_skb() mode it means that the
2132 	 * xdp->data_meta will always point to xdp->data, since
2133 	 * the helper cannot expand the head. Should this ever
2134 	 * change in future for legacy-rx mode on, then lets also
2135 	 * add xdp->data_meta handling here.
2136 	 */
2137 
2138 	/* allocate a skb to store the frags */
2139 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2140 			       I40E_RX_HDR_SIZE,
2141 			       GFP_ATOMIC | __GFP_NOWARN);
2142 	if (unlikely(!skb))
2143 		return NULL;
2144 
2145 	/* Determine available headroom for copy */
2146 	headlen = size;
2147 	if (headlen > I40E_RX_HDR_SIZE)
2148 		headlen = eth_get_headlen(skb->dev, xdp->data,
2149 					  I40E_RX_HDR_SIZE);
2150 
2151 	/* align pull length to size of long to optimize memcpy performance */
2152 	memcpy(__skb_put(skb, headlen), xdp->data,
2153 	       ALIGN(headlen, sizeof(long)));
2154 
2155 	/* update all of the pointers */
2156 	size -= headlen;
2157 	if (size) {
2158 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2159 				rx_buffer->page_offset + headlen,
2160 				size, truesize);
2161 
2162 		/* buffer is used by skb, update page_offset */
2163 #if (PAGE_SIZE < 8192)
2164 		rx_buffer->page_offset ^= truesize;
2165 #else
2166 		rx_buffer->page_offset += truesize;
2167 #endif
2168 	} else {
2169 		/* buffer is unused, reset bias back to rx_buffer */
2170 		rx_buffer->pagecnt_bias++;
2171 	}
2172 
2173 	return skb;
2174 }
2175 
2176 /**
2177  * i40e_build_skb - Build skb around an existing buffer
2178  * @rx_ring: Rx descriptor ring to transact packets on
2179  * @rx_buffer: Rx buffer to pull data from
2180  * @xdp: xdp_buff pointing to the data
2181  *
2182  * This function builds an skb around an existing Rx buffer, taking care
2183  * to set up the skb correctly and avoid any memcpy overhead.
2184  */
2185 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2186 				      struct i40e_rx_buffer *rx_buffer,
2187 				      struct xdp_buff *xdp)
2188 {
2189 	unsigned int metasize = xdp->data - xdp->data_meta;
2190 #if (PAGE_SIZE < 8192)
2191 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2192 #else
2193 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2194 				SKB_DATA_ALIGN(xdp->data_end -
2195 					       xdp->data_hard_start);
2196 #endif
2197 	struct sk_buff *skb;
2198 
2199 	/* Prefetch first cache line of first page. If xdp->data_meta
2200 	 * is unused, this points exactly as xdp->data, otherwise we
2201 	 * likely have a consumer accessing first few bytes of meta
2202 	 * data, and then actual data.
2203 	 */
2204 	net_prefetch(xdp->data_meta);
2205 
2206 	/* build an skb around the page buffer */
2207 	skb = napi_build_skb(xdp->data_hard_start, truesize);
2208 	if (unlikely(!skb))
2209 		return NULL;
2210 
2211 	/* update pointers within the skb to store the data */
2212 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2213 	__skb_put(skb, xdp->data_end - xdp->data);
2214 	if (metasize)
2215 		skb_metadata_set(skb, metasize);
2216 
2217 	/* buffer is used by skb, update page_offset */
2218 #if (PAGE_SIZE < 8192)
2219 	rx_buffer->page_offset ^= truesize;
2220 #else
2221 	rx_buffer->page_offset += truesize;
2222 #endif
2223 
2224 	return skb;
2225 }
2226 
2227 /**
2228  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2229  * @rx_ring: rx descriptor ring to transact packets on
2230  * @rx_buffer: rx buffer to pull data from
2231  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2232  *
2233  * This function will clean up the contents of the rx_buffer.  It will
2234  * either recycle the buffer or unmap it and free the associated resources.
2235  */
2236 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2237 			       struct i40e_rx_buffer *rx_buffer,
2238 			       int rx_buffer_pgcnt)
2239 {
2240 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2241 		/* hand second half of page back to the ring */
2242 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2243 	} else {
2244 		/* we are not reusing the buffer so unmap it */
2245 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2246 				     i40e_rx_pg_size(rx_ring),
2247 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2248 		__page_frag_cache_drain(rx_buffer->page,
2249 					rx_buffer->pagecnt_bias);
2250 		/* clear contents of buffer_info */
2251 		rx_buffer->page = NULL;
2252 	}
2253 }
2254 
2255 /**
2256  * i40e_is_non_eop - process handling of non-EOP buffers
2257  * @rx_ring: Rx ring being processed
2258  * @rx_desc: Rx descriptor for current buffer
2259  *
2260  * If the buffer is an EOP buffer, this function exits returning false,
2261  * otherwise return true indicating that this is in fact a non-EOP buffer.
2262  */
2263 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2264 			    union i40e_rx_desc *rx_desc)
2265 {
2266 	/* if we are the last buffer then there is nothing else to do */
2267 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2268 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2269 		return false;
2270 
2271 	rx_ring->rx_stats.non_eop_descs++;
2272 
2273 	return true;
2274 }
2275 
2276 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2277 			      struct i40e_ring *xdp_ring);
2278 
2279 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2280 {
2281 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2282 
2283 	if (unlikely(!xdpf))
2284 		return I40E_XDP_CONSUMED;
2285 
2286 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2287 }
2288 
2289 /**
2290  * i40e_run_xdp - run an XDP program
2291  * @rx_ring: Rx ring being processed
2292  * @xdp: XDP buffer containing the frame
2293  **/
2294 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2295 {
2296 	int err, result = I40E_XDP_PASS;
2297 	struct i40e_ring *xdp_ring;
2298 	struct bpf_prog *xdp_prog;
2299 	u32 act;
2300 
2301 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2302 
2303 	if (!xdp_prog)
2304 		goto xdp_out;
2305 
2306 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2307 
2308 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2309 	switch (act) {
2310 	case XDP_PASS:
2311 		break;
2312 	case XDP_TX:
2313 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2314 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2315 		if (result == I40E_XDP_CONSUMED)
2316 			goto out_failure;
2317 		break;
2318 	case XDP_REDIRECT:
2319 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2320 		if (err)
2321 			goto out_failure;
2322 		result = I40E_XDP_REDIR;
2323 		break;
2324 	default:
2325 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2326 		fallthrough;
2327 	case XDP_ABORTED:
2328 out_failure:
2329 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2330 		fallthrough; /* handle aborts by dropping packet */
2331 	case XDP_DROP:
2332 		result = I40E_XDP_CONSUMED;
2333 		break;
2334 	}
2335 xdp_out:
2336 	return result;
2337 }
2338 
2339 /**
2340  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2341  * @rx_ring: Rx ring
2342  * @rx_buffer: Rx buffer to adjust
2343  * @size: Size of adjustment
2344  **/
2345 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2346 				struct i40e_rx_buffer *rx_buffer,
2347 				unsigned int size)
2348 {
2349 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2350 
2351 #if (PAGE_SIZE < 8192)
2352 	rx_buffer->page_offset ^= truesize;
2353 #else
2354 	rx_buffer->page_offset += truesize;
2355 #endif
2356 }
2357 
2358 /**
2359  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360  * @xdp_ring: XDP Tx ring
2361  *
2362  * This function updates the XDP Tx ring tail register.
2363  **/
2364 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365 {
2366 	/* Force memory writes to complete before letting h/w
2367 	 * know there are new descriptors to fetch.
2368 	 */
2369 	wmb();
2370 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371 }
2372 
2373 /**
2374  * i40e_update_rx_stats - Update Rx ring statistics
2375  * @rx_ring: rx descriptor ring
2376  * @total_rx_bytes: number of bytes received
2377  * @total_rx_packets: number of packets received
2378  *
2379  * This function updates the Rx ring statistics.
2380  **/
2381 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382 			  unsigned int total_rx_bytes,
2383 			  unsigned int total_rx_packets)
2384 {
2385 	u64_stats_update_begin(&rx_ring->syncp);
2386 	rx_ring->stats.packets += total_rx_packets;
2387 	rx_ring->stats.bytes += total_rx_bytes;
2388 	u64_stats_update_end(&rx_ring->syncp);
2389 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391 }
2392 
2393 /**
2394  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395  * @rx_ring: Rx ring
2396  * @xdp_res: Result of the receive batch
2397  *
2398  * This function bumps XDP Tx tail and/or flush redirect map, and
2399  * should be called when a batch of packets has been processed in the
2400  * napi loop.
2401  **/
2402 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403 {
2404 	if (xdp_res & I40E_XDP_REDIR)
2405 		xdp_do_flush_map();
2406 
2407 	if (xdp_res & I40E_XDP_TX) {
2408 		struct i40e_ring *xdp_ring =
2409 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410 
2411 		i40e_xdp_ring_update_tail(xdp_ring);
2412 	}
2413 }
2414 
2415 /**
2416  * i40e_inc_ntc: Advance the next_to_clean index
2417  * @rx_ring: Rx ring
2418  **/
2419 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2420 {
2421 	u32 ntc = rx_ring->next_to_clean + 1;
2422 
2423 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2424 	rx_ring->next_to_clean = ntc;
2425 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2426 }
2427 
2428 /**
2429  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2430  * @rx_ring: rx descriptor ring to transact packets on
2431  * @budget: Total limit on number of packets to process
2432  *
2433  * This function provides a "bounce buffer" approach to Rx interrupt
2434  * processing.  The advantage to this is that on systems that have
2435  * expensive overhead for IOMMU access this provides a means of avoiding
2436  * it by maintaining the mapping of the page to the system.
2437  *
2438  * Returns amount of work completed
2439  **/
2440 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2441 {
2442 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2443 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 	unsigned int offset = rx_ring->rx_offset;
2445 	struct sk_buff *skb = rx_ring->skb;
2446 	unsigned int xdp_xmit = 0;
2447 	bool failure = false;
2448 	struct xdp_buff xdp;
2449 	int xdp_res = 0;
2450 
2451 #if (PAGE_SIZE < 8192)
2452 	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2453 #endif
2454 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2455 
2456 	while (likely(total_rx_packets < (unsigned int)budget)) {
2457 		struct i40e_rx_buffer *rx_buffer;
2458 		union i40e_rx_desc *rx_desc;
2459 		int rx_buffer_pgcnt;
2460 		unsigned int size;
2461 		u64 qword;
2462 
2463 		/* return some buffers to hardware, one at a time is too slow */
2464 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2465 			failure = failure ||
2466 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2467 			cleaned_count = 0;
2468 		}
2469 
2470 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2471 
2472 		/* status_error_len will always be zero for unused descriptors
2473 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2474 		 * which is always zero because packet split isn't used, if the
2475 		 * hardware wrote DD then the length will be non-zero
2476 		 */
2477 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2478 
2479 		/* This memory barrier is needed to keep us from reading
2480 		 * any other fields out of the rx_desc until we have
2481 		 * verified the descriptor has been written back.
2482 		 */
2483 		dma_rmb();
2484 
2485 		if (i40e_rx_is_programming_status(qword)) {
2486 			i40e_clean_programming_status(rx_ring,
2487 						      rx_desc->raw.qword[0],
2488 						      qword);
2489 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2490 			i40e_inc_ntc(rx_ring);
2491 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2492 			cleaned_count++;
2493 			continue;
2494 		}
2495 
2496 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2497 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2498 		if (!size)
2499 			break;
2500 
2501 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2502 		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2503 
2504 		/* retrieve a buffer from the ring */
2505 		if (!skb) {
2506 			unsigned char *hard_start;
2507 
2508 			hard_start = page_address(rx_buffer->page) +
2509 				     rx_buffer->page_offset - offset;
2510 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2511 #if (PAGE_SIZE > 4096)
2512 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2513 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2514 #endif
2515 			xdp_res = i40e_run_xdp(rx_ring, &xdp);
2516 		}
2517 
2518 		if (xdp_res) {
2519 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520 				xdp_xmit |= xdp_res;
2521 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2522 			} else {
2523 				rx_buffer->pagecnt_bias++;
2524 			}
2525 			total_rx_bytes += size;
2526 			total_rx_packets++;
2527 		} else if (skb) {
2528 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529 		} else if (ring_uses_build_skb(rx_ring)) {
2530 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2531 		} else {
2532 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2533 		}
2534 
2535 		/* exit if we failed to retrieve a buffer */
2536 		if (!xdp_res && !skb) {
2537 			rx_ring->rx_stats.alloc_buff_failed++;
2538 			rx_buffer->pagecnt_bias++;
2539 			break;
2540 		}
2541 
2542 		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2543 		cleaned_count++;
2544 
2545 		i40e_inc_ntc(rx_ring);
2546 		if (i40e_is_non_eop(rx_ring, rx_desc))
2547 			continue;
2548 
2549 		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2550 			skb = NULL;
2551 			continue;
2552 		}
2553 
2554 		/* probably a little skewed due to removing CRC */
2555 		total_rx_bytes += skb->len;
2556 
2557 		/* populate checksum, VLAN, and protocol */
2558 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2559 
2560 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2562 		skb = NULL;
2563 
2564 		/* update budget accounting */
2565 		total_rx_packets++;
2566 	}
2567 
2568 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2569 	rx_ring->skb = skb;
2570 
2571 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2572 
2573 	/* guarantee a trip back through this routine if there was a failure */
2574 	return failure ? budget : (int)total_rx_packets;
2575 }
2576 
2577 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2578 {
2579 	u32 val;
2580 
2581 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2582 	 * points out doing so is "meaningless since it was already
2583 	 * auto-cleared". The auto-clearing happens when the interrupt is
2584 	 * asserted.
2585 	 *
2586 	 * Hardware errata 28 for also indicates that writing to a
2587 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588 	 * an event in the PBA anyway so we need to rely on the automask
2589 	 * to hold pending events for us until the interrupt is re-enabled
2590 	 *
2591 	 * The itr value is reported in microseconds, and the register
2592 	 * value is recorded in 2 microsecond units. For this reason we
2593 	 * only need to shift by the interval shift - 1 instead of the
2594 	 * full value.
2595 	 */
2596 	itr &= I40E_ITR_MASK;
2597 
2598 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2599 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2601 
2602 	return val;
2603 }
2604 
2605 /* a small macro to shorten up some long lines */
2606 #define INTREG I40E_PFINT_DYN_CTLN
2607 
2608 /* The act of updating the ITR will cause it to immediately trigger. In order
2609  * to prevent this from throwing off adaptive update statistics we defer the
2610  * update so that it can only happen so often. So after either Tx or Rx are
2611  * updated we make the adaptive scheme wait until either the ITR completely
2612  * expires via the next_update expiration or we have been through at least
2613  * 3 interrupts.
2614  */
2615 #define ITR_COUNTDOWN_START 3
2616 
2617 /**
2618  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619  * @vsi: the VSI we care about
2620  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2621  *
2622  **/
2623 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624 					  struct i40e_q_vector *q_vector)
2625 {
2626 	struct i40e_hw *hw = &vsi->back->hw;
2627 	u32 intval;
2628 
2629 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2630 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631 		i40e_irq_dynamic_enable_icr0(vsi->back);
2632 		return;
2633 	}
2634 
2635 	/* These will do nothing if dynamic updates are not enabled */
2636 	i40e_update_itr(q_vector, &q_vector->tx);
2637 	i40e_update_itr(q_vector, &q_vector->rx);
2638 
2639 	/* This block of logic allows us to get away with only updating
2640 	 * one ITR value with each interrupt. The idea is to perform a
2641 	 * pseudo-lazy update with the following criteria.
2642 	 *
2643 	 * 1. Rx is given higher priority than Tx if both are in same state
2644 	 * 2. If we must reduce an ITR that is given highest priority.
2645 	 * 3. We then give priority to increasing ITR based on amount.
2646 	 */
2647 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648 		/* Rx ITR needs to be reduced, this is highest priority */
2649 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2650 					   q_vector->rx.target_itr);
2651 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2652 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656 		/* Tx ITR needs to be reduced, this is second priority
2657 		 * Tx ITR needs to be increased more than Rx, fourth priority
2658 		 */
2659 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2660 					   q_vector->tx.target_itr);
2661 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2662 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664 		/* Rx ITR needs to be increased, third priority */
2665 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2666 					   q_vector->rx.target_itr);
2667 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2668 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2669 	} else {
2670 		/* No ITR update, lowest priority */
2671 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672 		if (q_vector->itr_countdown)
2673 			q_vector->itr_countdown--;
2674 	}
2675 
2676 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2678 }
2679 
2680 /**
2681  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682  * @napi: napi struct with our devices info in it
2683  * @budget: amount of work driver is allowed to do this pass, in packets
2684  *
2685  * This function will clean all queues associated with a q_vector.
2686  *
2687  * Returns the amount of work done
2688  **/
2689 int i40e_napi_poll(struct napi_struct *napi, int budget)
2690 {
2691 	struct i40e_q_vector *q_vector =
2692 			       container_of(napi, struct i40e_q_vector, napi);
2693 	struct i40e_vsi *vsi = q_vector->vsi;
2694 	struct i40e_ring *ring;
2695 	bool clean_complete = true;
2696 	bool arm_wb = false;
2697 	int budget_per_ring;
2698 	int work_done = 0;
2699 
2700 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701 		napi_complete(napi);
2702 		return 0;
2703 	}
2704 
2705 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2706 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2707 	 */
2708 	i40e_for_each_ring(ring, q_vector->tx) {
2709 		bool wd = ring->xsk_pool ?
2710 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2711 			  i40e_clean_tx_irq(vsi, ring, budget);
2712 
2713 		if (!wd) {
2714 			clean_complete = false;
2715 			continue;
2716 		}
2717 		arm_wb |= ring->arm_wb;
2718 		ring->arm_wb = false;
2719 	}
2720 
2721 	/* Handle case where we are called by netpoll with a budget of 0 */
2722 	if (budget <= 0)
2723 		goto tx_only;
2724 
2725 	/* normally we have 1 Rx ring per q_vector */
2726 	if (unlikely(q_vector->num_ringpairs > 1))
2727 		/* We attempt to distribute budget to each Rx queue fairly, but
2728 		 * don't allow the budget to go below 1 because that would exit
2729 		 * polling early.
2730 		 */
2731 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2732 	else
2733 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2734 		budget_per_ring = budget;
2735 
2736 	i40e_for_each_ring(ring, q_vector->rx) {
2737 		int cleaned = ring->xsk_pool ?
2738 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739 			      i40e_clean_rx_irq(ring, budget_per_ring);
2740 
2741 		work_done += cleaned;
2742 		/* if we clean as many as budgeted, we must not be done */
2743 		if (cleaned >= budget_per_ring)
2744 			clean_complete = false;
2745 	}
2746 
2747 	/* If work not completed, return budget and polling will return */
2748 	if (!clean_complete) {
2749 		int cpu_id = smp_processor_id();
2750 
2751 		/* It is possible that the interrupt affinity has changed but,
2752 		 * if the cpu is pegged at 100%, polling will never exit while
2753 		 * traffic continues and the interrupt will be stuck on this
2754 		 * cpu.  We check to make sure affinity is correct before we
2755 		 * continue to poll, otherwise we must stop polling so the
2756 		 * interrupt can move to the correct cpu.
2757 		 */
2758 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759 			/* Tell napi that we are done polling */
2760 			napi_complete_done(napi, work_done);
2761 
2762 			/* Force an interrupt */
2763 			i40e_force_wb(vsi, q_vector);
2764 
2765 			/* Return budget-1 so that polling stops */
2766 			return budget - 1;
2767 		}
2768 tx_only:
2769 		if (arm_wb) {
2770 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771 			i40e_enable_wb_on_itr(vsi, q_vector);
2772 		}
2773 		return budget;
2774 	}
2775 
2776 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777 		q_vector->arm_wb_state = false;
2778 
2779 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2780 	 * poll us due to busy-polling
2781 	 */
2782 	if (likely(napi_complete_done(napi, work_done)))
2783 		i40e_update_enable_itr(vsi, q_vector);
2784 
2785 	return min(work_done, budget - 1);
2786 }
2787 
2788 /**
2789  * i40e_atr - Add a Flow Director ATR filter
2790  * @tx_ring:  ring to add programming descriptor to
2791  * @skb:      send buffer
2792  * @tx_flags: send tx flags
2793  **/
2794 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2795 		     u32 tx_flags)
2796 {
2797 	struct i40e_filter_program_desc *fdir_desc;
2798 	struct i40e_pf *pf = tx_ring->vsi->back;
2799 	union {
2800 		unsigned char *network;
2801 		struct iphdr *ipv4;
2802 		struct ipv6hdr *ipv6;
2803 	} hdr;
2804 	struct tcphdr *th;
2805 	unsigned int hlen;
2806 	u32 flex_ptype, dtype_cmd;
2807 	int l4_proto;
2808 	u16 i;
2809 
2810 	/* make sure ATR is enabled */
2811 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2812 		return;
2813 
2814 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2815 		return;
2816 
2817 	/* if sampling is disabled do nothing */
2818 	if (!tx_ring->atr_sample_rate)
2819 		return;
2820 
2821 	/* Currently only IPv4/IPv6 with TCP is supported */
2822 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2823 		return;
2824 
2825 	/* snag network header to get L4 type and address */
2826 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827 		      skb_inner_network_header(skb) : skb_network_header(skb);
2828 
2829 	/* Note: tx_flags gets modified to reflect inner protocols in
2830 	 * tx_enable_csum function if encap is enabled.
2831 	 */
2832 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833 		/* access ihl as u8 to avoid unaligned access on ia64 */
2834 		hlen = (hdr.network[0] & 0x0F) << 2;
2835 		l4_proto = hdr.ipv4->protocol;
2836 	} else {
2837 		/* find the start of the innermost ipv6 header */
2838 		unsigned int inner_hlen = hdr.network - skb->data;
2839 		unsigned int h_offset = inner_hlen;
2840 
2841 		/* this function updates h_offset to the end of the header */
2842 		l4_proto =
2843 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844 		/* hlen will contain our best estimate of the tcp header */
2845 		hlen = h_offset - inner_hlen;
2846 	}
2847 
2848 	if (l4_proto != IPPROTO_TCP)
2849 		return;
2850 
2851 	th = (struct tcphdr *)(hdr.network + hlen);
2852 
2853 	/* Due to lack of space, no more new filters can be programmed */
2854 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2855 		return;
2856 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2857 		/* HW ATR eviction will take care of removing filters on FIN
2858 		 * and RST packets.
2859 		 */
2860 		if (th->fin || th->rst)
2861 			return;
2862 	}
2863 
2864 	tx_ring->atr_count++;
2865 
2866 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2867 	if (!th->fin &&
2868 	    !th->syn &&
2869 	    !th->rst &&
2870 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2871 		return;
2872 
2873 	tx_ring->atr_count = 0;
2874 
2875 	/* grab the next descriptor */
2876 	i = tx_ring->next_to_use;
2877 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2878 
2879 	i++;
2880 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2881 
2882 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2889 
2890 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2891 
2892 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2893 
2894 	dtype_cmd |= (th->fin || th->rst) ?
2895 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2899 
2900 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2902 
2903 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2905 
2906 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2908 		dtype_cmd |=
2909 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2912 	else
2913 		dtype_cmd |=
2914 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2917 
2918 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2919 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2920 
2921 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922 	fdir_desc->rsvd = cpu_to_le32(0);
2923 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924 	fdir_desc->fd_id = cpu_to_le32(0);
2925 }
2926 
2927 /**
2928  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2929  * @skb:     send buffer
2930  * @tx_ring: ring to send buffer on
2931  * @flags:   the tx flags to be set
2932  *
2933  * Checks the skb and set up correspondingly several generic transmit flags
2934  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2935  *
2936  * Returns error code indicate the frame should be dropped upon error and the
2937  * otherwise  returns 0 to indicate the flags has been set properly.
2938  **/
2939 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940 					     struct i40e_ring *tx_ring,
2941 					     u32 *flags)
2942 {
2943 	__be16 protocol = skb->protocol;
2944 	u32  tx_flags = 0;
2945 
2946 	if (protocol == htons(ETH_P_8021Q) &&
2947 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948 		/* When HW VLAN acceleration is turned off by the user the
2949 		 * stack sets the protocol to 8021q so that the driver
2950 		 * can take any steps required to support the SW only
2951 		 * VLAN handling.  In our case the driver doesn't need
2952 		 * to take any further steps so just set the protocol
2953 		 * to the encapsulated ethertype.
2954 		 */
2955 		skb->protocol = vlan_get_protocol(skb);
2956 		goto out;
2957 	}
2958 
2959 	/* if we have a HW VLAN tag being added, default to the HW one */
2960 	if (skb_vlan_tag_present(skb)) {
2961 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2964 	} else if (protocol == htons(ETH_P_8021Q)) {
2965 		struct vlan_hdr *vhdr, _vhdr;
2966 
2967 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2968 		if (!vhdr)
2969 			return -EINVAL;
2970 
2971 		protocol = vhdr->h_vlan_encapsulated_proto;
2972 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2974 	}
2975 
2976 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2977 		goto out;
2978 
2979 	/* Insert 802.1p priority into VLAN header */
2980 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981 	    (skb->priority != TC_PRIO_CONTROL)) {
2982 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983 		tx_flags |= (skb->priority & 0x7) <<
2984 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986 			struct vlan_ethhdr *vhdr;
2987 			int rc;
2988 
2989 			rc = skb_cow_head(skb, 0);
2990 			if (rc < 0)
2991 				return rc;
2992 			vhdr = (struct vlan_ethhdr *)skb->data;
2993 			vhdr->h_vlan_TCI = htons(tx_flags >>
2994 						 I40E_TX_FLAGS_VLAN_SHIFT);
2995 		} else {
2996 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2997 		}
2998 	}
2999 
3000 out:
3001 	*flags = tx_flags;
3002 	return 0;
3003 }
3004 
3005 /**
3006  * i40e_tso - set up the tso context descriptor
3007  * @first:    pointer to first Tx buffer for xmit
3008  * @hdr_len:  ptr to the size of the packet header
3009  * @cd_type_cmd_tso_mss: Quad Word 1
3010  *
3011  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3012  **/
3013 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014 		    u64 *cd_type_cmd_tso_mss)
3015 {
3016 	struct sk_buff *skb = first->skb;
3017 	u64 cd_cmd, cd_tso_len, cd_mss;
3018 	union {
3019 		struct iphdr *v4;
3020 		struct ipv6hdr *v6;
3021 		unsigned char *hdr;
3022 	} ip;
3023 	union {
3024 		struct tcphdr *tcp;
3025 		struct udphdr *udp;
3026 		unsigned char *hdr;
3027 	} l4;
3028 	u32 paylen, l4_offset;
3029 	u16 gso_segs, gso_size;
3030 	int err;
3031 
3032 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3033 		return 0;
3034 
3035 	if (!skb_is_gso(skb))
3036 		return 0;
3037 
3038 	err = skb_cow_head(skb, 0);
3039 	if (err < 0)
3040 		return err;
3041 
3042 	ip.hdr = skb_network_header(skb);
3043 	l4.hdr = skb_transport_header(skb);
3044 
3045 	/* initialize outer IP header fields */
3046 	if (ip.v4->version == 4) {
3047 		ip.v4->tot_len = 0;
3048 		ip.v4->check = 0;
3049 	} else {
3050 		ip.v6->payload_len = 0;
3051 	}
3052 
3053 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3054 					 SKB_GSO_GRE_CSUM |
3055 					 SKB_GSO_IPXIP4 |
3056 					 SKB_GSO_IPXIP6 |
3057 					 SKB_GSO_UDP_TUNNEL |
3058 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3059 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3060 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3061 			l4.udp->len = 0;
3062 
3063 			/* determine offset of outer transport header */
3064 			l4_offset = l4.hdr - skb->data;
3065 
3066 			/* remove payload length from outer checksum */
3067 			paylen = skb->len - l4_offset;
3068 			csum_replace_by_diff(&l4.udp->check,
3069 					     (__force __wsum)htonl(paylen));
3070 		}
3071 
3072 		/* reset pointers to inner headers */
3073 		ip.hdr = skb_inner_network_header(skb);
3074 		l4.hdr = skb_inner_transport_header(skb);
3075 
3076 		/* initialize inner IP header fields */
3077 		if (ip.v4->version == 4) {
3078 			ip.v4->tot_len = 0;
3079 			ip.v4->check = 0;
3080 		} else {
3081 			ip.v6->payload_len = 0;
3082 		}
3083 	}
3084 
3085 	/* determine offset of inner transport header */
3086 	l4_offset = l4.hdr - skb->data;
3087 
3088 	/* remove payload length from inner checksum */
3089 	paylen = skb->len - l4_offset;
3090 
3091 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3092 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3093 		/* compute length of segmentation header */
3094 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3095 	} else {
3096 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3097 		/* compute length of segmentation header */
3098 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3099 	}
3100 
3101 	/* pull values out of skb_shinfo */
3102 	gso_size = skb_shinfo(skb)->gso_size;
3103 	gso_segs = skb_shinfo(skb)->gso_segs;
3104 
3105 	/* update GSO size and bytecount with header size */
3106 	first->gso_segs = gso_segs;
3107 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3108 
3109 	/* find the field values */
3110 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3111 	cd_tso_len = skb->len - *hdr_len;
3112 	cd_mss = gso_size;
3113 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3114 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3115 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3116 	return 1;
3117 }
3118 
3119 /**
3120  * i40e_tsyn - set up the tsyn context descriptor
3121  * @tx_ring:  ptr to the ring to send
3122  * @skb:      ptr to the skb we're sending
3123  * @tx_flags: the collected send information
3124  * @cd_type_cmd_tso_mss: Quad Word 1
3125  *
3126  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3127  **/
3128 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3129 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3130 {
3131 	struct i40e_pf *pf;
3132 
3133 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3134 		return 0;
3135 
3136 	/* Tx timestamps cannot be sampled when doing TSO */
3137 	if (tx_flags & I40E_TX_FLAGS_TSO)
3138 		return 0;
3139 
3140 	/* only timestamp the outbound packet if the user has requested it and
3141 	 * we are not already transmitting a packet to be timestamped
3142 	 */
3143 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3144 	if (!(pf->flags & I40E_FLAG_PTP))
3145 		return 0;
3146 
3147 	if (pf->ptp_tx &&
3148 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3149 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3150 		pf->ptp_tx_start = jiffies;
3151 		pf->ptp_tx_skb = skb_get(skb);
3152 	} else {
3153 		pf->tx_hwtstamp_skipped++;
3154 		return 0;
3155 	}
3156 
3157 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3158 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3159 
3160 	return 1;
3161 }
3162 
3163 /**
3164  * i40e_tx_enable_csum - Enable Tx checksum offloads
3165  * @skb: send buffer
3166  * @tx_flags: pointer to Tx flags currently set
3167  * @td_cmd: Tx descriptor command bits to set
3168  * @td_offset: Tx descriptor header offsets to set
3169  * @tx_ring: Tx descriptor ring
3170  * @cd_tunneling: ptr to context desc bits
3171  **/
3172 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3173 			       u32 *td_cmd, u32 *td_offset,
3174 			       struct i40e_ring *tx_ring,
3175 			       u32 *cd_tunneling)
3176 {
3177 	union {
3178 		struct iphdr *v4;
3179 		struct ipv6hdr *v6;
3180 		unsigned char *hdr;
3181 	} ip;
3182 	union {
3183 		struct tcphdr *tcp;
3184 		struct udphdr *udp;
3185 		unsigned char *hdr;
3186 	} l4;
3187 	unsigned char *exthdr;
3188 	u32 offset, cmd = 0;
3189 	__be16 frag_off;
3190 	u8 l4_proto = 0;
3191 
3192 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3193 		return 0;
3194 
3195 	ip.hdr = skb_network_header(skb);
3196 	l4.hdr = skb_transport_header(skb);
3197 
3198 	/* compute outer L2 header size */
3199 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3200 
3201 	if (skb->encapsulation) {
3202 		u32 tunnel = 0;
3203 		/* define outer network header type */
3204 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3205 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3206 				  I40E_TX_CTX_EXT_IP_IPV4 :
3207 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3208 
3209 			l4_proto = ip.v4->protocol;
3210 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3211 			int ret;
3212 
3213 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3214 
3215 			exthdr = ip.hdr + sizeof(*ip.v6);
3216 			l4_proto = ip.v6->nexthdr;
3217 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3218 					       &l4_proto, &frag_off);
3219 			if (ret < 0)
3220 				return -1;
3221 		}
3222 
3223 		/* define outer transport */
3224 		switch (l4_proto) {
3225 		case IPPROTO_UDP:
3226 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3227 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3228 			break;
3229 		case IPPROTO_GRE:
3230 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3231 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3232 			break;
3233 		case IPPROTO_IPIP:
3234 		case IPPROTO_IPV6:
3235 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3236 			l4.hdr = skb_inner_network_header(skb);
3237 			break;
3238 		default:
3239 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3240 				return -1;
3241 
3242 			skb_checksum_help(skb);
3243 			return 0;
3244 		}
3245 
3246 		/* compute outer L3 header size */
3247 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3248 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3249 
3250 		/* switch IP header pointer from outer to inner header */
3251 		ip.hdr = skb_inner_network_header(skb);
3252 
3253 		/* compute tunnel header size */
3254 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3255 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3256 
3257 		/* indicate if we need to offload outer UDP header */
3258 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3259 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3260 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3261 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3262 
3263 		/* record tunnel offload values */
3264 		*cd_tunneling |= tunnel;
3265 
3266 		/* switch L4 header pointer from outer to inner */
3267 		l4.hdr = skb_inner_transport_header(skb);
3268 		l4_proto = 0;
3269 
3270 		/* reset type as we transition from outer to inner headers */
3271 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3272 		if (ip.v4->version == 4)
3273 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3274 		if (ip.v6->version == 6)
3275 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3276 	}
3277 
3278 	/* Enable IP checksum offloads */
3279 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3280 		l4_proto = ip.v4->protocol;
3281 		/* the stack computes the IP header already, the only time we
3282 		 * need the hardware to recompute it is in the case of TSO.
3283 		 */
3284 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3285 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3286 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3287 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3288 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3289 
3290 		exthdr = ip.hdr + sizeof(*ip.v6);
3291 		l4_proto = ip.v6->nexthdr;
3292 		if (l4.hdr != exthdr)
3293 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3294 					 &l4_proto, &frag_off);
3295 	}
3296 
3297 	/* compute inner L3 header size */
3298 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3299 
3300 	/* Enable L4 checksum offloads */
3301 	switch (l4_proto) {
3302 	case IPPROTO_TCP:
3303 		/* enable checksum offloads */
3304 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3305 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3306 		break;
3307 	case IPPROTO_SCTP:
3308 		/* enable SCTP checksum offload */
3309 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3310 		offset |= (sizeof(struct sctphdr) >> 2) <<
3311 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3312 		break;
3313 	case IPPROTO_UDP:
3314 		/* enable UDP checksum offload */
3315 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3316 		offset |= (sizeof(struct udphdr) >> 2) <<
3317 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3318 		break;
3319 	default:
3320 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3321 			return -1;
3322 		skb_checksum_help(skb);
3323 		return 0;
3324 	}
3325 
3326 	*td_cmd |= cmd;
3327 	*td_offset |= offset;
3328 
3329 	return 1;
3330 }
3331 
3332 /**
3333  * i40e_create_tx_ctx - Build the Tx context descriptor
3334  * @tx_ring:  ring to create the descriptor on
3335  * @cd_type_cmd_tso_mss: Quad Word 1
3336  * @cd_tunneling: Quad Word 0 - bits 0-31
3337  * @cd_l2tag2: Quad Word 0 - bits 32-63
3338  **/
3339 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3340 			       const u64 cd_type_cmd_tso_mss,
3341 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3342 {
3343 	struct i40e_tx_context_desc *context_desc;
3344 	int i = tx_ring->next_to_use;
3345 
3346 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3347 	    !cd_tunneling && !cd_l2tag2)
3348 		return;
3349 
3350 	/* grab the next descriptor */
3351 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3352 
3353 	i++;
3354 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3355 
3356 	/* cpu_to_le32 and assign to struct fields */
3357 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3358 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3359 	context_desc->rsvd = cpu_to_le16(0);
3360 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3361 }
3362 
3363 /**
3364  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3365  * @tx_ring: the ring to be checked
3366  * @size:    the size buffer we want to assure is available
3367  *
3368  * Returns -EBUSY if a stop is needed, else 0
3369  **/
3370 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3371 {
3372 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3373 	/* Memory barrier before checking head and tail */
3374 	smp_mb();
3375 
3376 	/* Check again in a case another CPU has just made room available. */
3377 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3378 		return -EBUSY;
3379 
3380 	/* A reprieve! - use start_queue because it doesn't call schedule */
3381 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3382 	++tx_ring->tx_stats.restart_queue;
3383 	return 0;
3384 }
3385 
3386 /**
3387  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3388  * @skb:      send buffer
3389  *
3390  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3391  * and so we need to figure out the cases where we need to linearize the skb.
3392  *
3393  * For TSO we need to count the TSO header and segment payload separately.
3394  * As such we need to check cases where we have 7 fragments or more as we
3395  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3396  * the segment payload in the first descriptor, and another 7 for the
3397  * fragments.
3398  **/
3399 bool __i40e_chk_linearize(struct sk_buff *skb)
3400 {
3401 	const skb_frag_t *frag, *stale;
3402 	int nr_frags, sum;
3403 
3404 	/* no need to check if number of frags is less than 7 */
3405 	nr_frags = skb_shinfo(skb)->nr_frags;
3406 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3407 		return false;
3408 
3409 	/* We need to walk through the list and validate that each group
3410 	 * of 6 fragments totals at least gso_size.
3411 	 */
3412 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3413 	frag = &skb_shinfo(skb)->frags[0];
3414 
3415 	/* Initialize size to the negative value of gso_size minus 1.  We
3416 	 * use this as the worst case scenerio in which the frag ahead
3417 	 * of us only provides one byte which is why we are limited to 6
3418 	 * descriptors for a single transmit as the header and previous
3419 	 * fragment are already consuming 2 descriptors.
3420 	 */
3421 	sum = 1 - skb_shinfo(skb)->gso_size;
3422 
3423 	/* Add size of frags 0 through 4 to create our initial sum */
3424 	sum += skb_frag_size(frag++);
3425 	sum += skb_frag_size(frag++);
3426 	sum += skb_frag_size(frag++);
3427 	sum += skb_frag_size(frag++);
3428 	sum += skb_frag_size(frag++);
3429 
3430 	/* Walk through fragments adding latest fragment, testing it, and
3431 	 * then removing stale fragments from the sum.
3432 	 */
3433 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3434 		int stale_size = skb_frag_size(stale);
3435 
3436 		sum += skb_frag_size(frag++);
3437 
3438 		/* The stale fragment may present us with a smaller
3439 		 * descriptor than the actual fragment size. To account
3440 		 * for that we need to remove all the data on the front and
3441 		 * figure out what the remainder would be in the last
3442 		 * descriptor associated with the fragment.
3443 		 */
3444 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3445 			int align_pad = -(skb_frag_off(stale)) &
3446 					(I40E_MAX_READ_REQ_SIZE - 1);
3447 
3448 			sum -= align_pad;
3449 			stale_size -= align_pad;
3450 
3451 			do {
3452 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3453 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3454 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3455 		}
3456 
3457 		/* if sum is negative we failed to make sufficient progress */
3458 		if (sum < 0)
3459 			return true;
3460 
3461 		if (!nr_frags--)
3462 			break;
3463 
3464 		sum -= stale_size;
3465 	}
3466 
3467 	return false;
3468 }
3469 
3470 /**
3471  * i40e_tx_map - Build the Tx descriptor
3472  * @tx_ring:  ring to send buffer on
3473  * @skb:      send buffer
3474  * @first:    first buffer info buffer to use
3475  * @tx_flags: collected send information
3476  * @hdr_len:  size of the packet header
3477  * @td_cmd:   the command field in the descriptor
3478  * @td_offset: offset for checksum or crc
3479  *
3480  * Returns 0 on success, -1 on failure to DMA
3481  **/
3482 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3483 			      struct i40e_tx_buffer *first, u32 tx_flags,
3484 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3485 {
3486 	unsigned int data_len = skb->data_len;
3487 	unsigned int size = skb_headlen(skb);
3488 	skb_frag_t *frag;
3489 	struct i40e_tx_buffer *tx_bi;
3490 	struct i40e_tx_desc *tx_desc;
3491 	u16 i = tx_ring->next_to_use;
3492 	u32 td_tag = 0;
3493 	dma_addr_t dma;
3494 	u16 desc_count = 1;
3495 
3496 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3497 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3498 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3499 			 I40E_TX_FLAGS_VLAN_SHIFT;
3500 	}
3501 
3502 	first->tx_flags = tx_flags;
3503 
3504 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3505 
3506 	tx_desc = I40E_TX_DESC(tx_ring, i);
3507 	tx_bi = first;
3508 
3509 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3510 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3511 
3512 		if (dma_mapping_error(tx_ring->dev, dma))
3513 			goto dma_error;
3514 
3515 		/* record length, and DMA address */
3516 		dma_unmap_len_set(tx_bi, len, size);
3517 		dma_unmap_addr_set(tx_bi, dma, dma);
3518 
3519 		/* align size to end of page */
3520 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3521 		tx_desc->buffer_addr = cpu_to_le64(dma);
3522 
3523 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3524 			tx_desc->cmd_type_offset_bsz =
3525 				build_ctob(td_cmd, td_offset,
3526 					   max_data, td_tag);
3527 
3528 			tx_desc++;
3529 			i++;
3530 			desc_count++;
3531 
3532 			if (i == tx_ring->count) {
3533 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3534 				i = 0;
3535 			}
3536 
3537 			dma += max_data;
3538 			size -= max_data;
3539 
3540 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3541 			tx_desc->buffer_addr = cpu_to_le64(dma);
3542 		}
3543 
3544 		if (likely(!data_len))
3545 			break;
3546 
3547 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3548 							  size, td_tag);
3549 
3550 		tx_desc++;
3551 		i++;
3552 		desc_count++;
3553 
3554 		if (i == tx_ring->count) {
3555 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3556 			i = 0;
3557 		}
3558 
3559 		size = skb_frag_size(frag);
3560 		data_len -= size;
3561 
3562 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3563 				       DMA_TO_DEVICE);
3564 
3565 		tx_bi = &tx_ring->tx_bi[i];
3566 	}
3567 
3568 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3569 
3570 	i++;
3571 	if (i == tx_ring->count)
3572 		i = 0;
3573 
3574 	tx_ring->next_to_use = i;
3575 
3576 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3577 
3578 	/* write last descriptor with EOP bit */
3579 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3580 
3581 	/* We OR these values together to check both against 4 (WB_STRIDE)
3582 	 * below. This is safe since we don't re-use desc_count afterwards.
3583 	 */
3584 	desc_count |= ++tx_ring->packet_stride;
3585 
3586 	if (desc_count >= WB_STRIDE) {
3587 		/* write last descriptor with RS bit set */
3588 		td_cmd |= I40E_TX_DESC_CMD_RS;
3589 		tx_ring->packet_stride = 0;
3590 	}
3591 
3592 	tx_desc->cmd_type_offset_bsz =
3593 			build_ctob(td_cmd, td_offset, size, td_tag);
3594 
3595 	skb_tx_timestamp(skb);
3596 
3597 	/* Force memory writes to complete before letting h/w know there
3598 	 * are new descriptors to fetch.
3599 	 *
3600 	 * We also use this memory barrier to make certain all of the
3601 	 * status bits have been updated before next_to_watch is written.
3602 	 */
3603 	wmb();
3604 
3605 	/* set next_to_watch value indicating a packet is present */
3606 	first->next_to_watch = tx_desc;
3607 
3608 	/* notify HW of packet */
3609 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3610 		writel(i, tx_ring->tail);
3611 	}
3612 
3613 	return 0;
3614 
3615 dma_error:
3616 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3617 
3618 	/* clear dma mappings for failed tx_bi map */
3619 	for (;;) {
3620 		tx_bi = &tx_ring->tx_bi[i];
3621 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3622 		if (tx_bi == first)
3623 			break;
3624 		if (i == 0)
3625 			i = tx_ring->count;
3626 		i--;
3627 	}
3628 
3629 	tx_ring->next_to_use = i;
3630 
3631 	return -1;
3632 }
3633 
3634 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3635 				  const struct sk_buff *skb,
3636 				  u16 num_tx_queues)
3637 {
3638 	u32 jhash_initval_salt = 0xd631614b;
3639 	u32 hash;
3640 
3641 	if (skb->sk && skb->sk->sk_hash)
3642 		hash = skb->sk->sk_hash;
3643 	else
3644 		hash = (__force u16)skb->protocol ^ skb->hash;
3645 
3646 	hash = jhash_1word(hash, jhash_initval_salt);
3647 
3648 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3649 }
3650 
3651 u16 i40e_lan_select_queue(struct net_device *netdev,
3652 			  struct sk_buff *skb,
3653 			  struct net_device __always_unused *sb_dev)
3654 {
3655 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3656 	struct i40e_vsi *vsi = np->vsi;
3657 	struct i40e_hw *hw;
3658 	u16 qoffset;
3659 	u16 qcount;
3660 	u8 tclass;
3661 	u16 hash;
3662 	u8 prio;
3663 
3664 	/* is DCB enabled at all? */
3665 	if (vsi->tc_config.numtc == 1)
3666 		return netdev_pick_tx(netdev, skb, sb_dev);
3667 
3668 	prio = skb->priority;
3669 	hw = &vsi->back->hw;
3670 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3671 	/* sanity check */
3672 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3673 		tclass = 0;
3674 
3675 	/* select a queue assigned for the given TC */
3676 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3677 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3678 
3679 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3680 	return qoffset + hash;
3681 }
3682 
3683 /**
3684  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3685  * @xdpf: data to transmit
3686  * @xdp_ring: XDP Tx ring
3687  **/
3688 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3689 			      struct i40e_ring *xdp_ring)
3690 {
3691 	u16 i = xdp_ring->next_to_use;
3692 	struct i40e_tx_buffer *tx_bi;
3693 	struct i40e_tx_desc *tx_desc;
3694 	void *data = xdpf->data;
3695 	u32 size = xdpf->len;
3696 	dma_addr_t dma;
3697 
3698 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3699 		xdp_ring->tx_stats.tx_busy++;
3700 		return I40E_XDP_CONSUMED;
3701 	}
3702 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3703 	if (dma_mapping_error(xdp_ring->dev, dma))
3704 		return I40E_XDP_CONSUMED;
3705 
3706 	tx_bi = &xdp_ring->tx_bi[i];
3707 	tx_bi->bytecount = size;
3708 	tx_bi->gso_segs = 1;
3709 	tx_bi->xdpf = xdpf;
3710 
3711 	/* record length, and DMA address */
3712 	dma_unmap_len_set(tx_bi, len, size);
3713 	dma_unmap_addr_set(tx_bi, dma, dma);
3714 
3715 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3716 	tx_desc->buffer_addr = cpu_to_le64(dma);
3717 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3718 						  | I40E_TXD_CMD,
3719 						  0, size, 0);
3720 
3721 	/* Make certain all of the status bits have been updated
3722 	 * before next_to_watch is written.
3723 	 */
3724 	smp_wmb();
3725 
3726 	xdp_ring->xdp_tx_active++;
3727 	i++;
3728 	if (i == xdp_ring->count)
3729 		i = 0;
3730 
3731 	tx_bi->next_to_watch = tx_desc;
3732 	xdp_ring->next_to_use = i;
3733 
3734 	return I40E_XDP_TX;
3735 }
3736 
3737 /**
3738  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3739  * @skb:     send buffer
3740  * @tx_ring: ring to send buffer on
3741  *
3742  * Returns NETDEV_TX_OK if sent, else an error code
3743  **/
3744 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3745 					struct i40e_ring *tx_ring)
3746 {
3747 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3748 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3749 	struct i40e_tx_buffer *first;
3750 	u32 td_offset = 0;
3751 	u32 tx_flags = 0;
3752 	__be16 protocol;
3753 	u32 td_cmd = 0;
3754 	u8 hdr_len = 0;
3755 	int tso, count;
3756 	int tsyn;
3757 
3758 	/* prefetch the data, we'll need it later */
3759 	prefetch(skb->data);
3760 
3761 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3762 
3763 	count = i40e_xmit_descriptor_count(skb);
3764 	if (i40e_chk_linearize(skb, count)) {
3765 		if (__skb_linearize(skb)) {
3766 			dev_kfree_skb_any(skb);
3767 			return NETDEV_TX_OK;
3768 		}
3769 		count = i40e_txd_use_count(skb->len);
3770 		tx_ring->tx_stats.tx_linearize++;
3771 	}
3772 
3773 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3774 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3775 	 *       + 4 desc gap to avoid the cache line where head is,
3776 	 *       + 1 desc for context descriptor,
3777 	 * otherwise try next time
3778 	 */
3779 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3780 		tx_ring->tx_stats.tx_busy++;
3781 		return NETDEV_TX_BUSY;
3782 	}
3783 
3784 	/* record the location of the first descriptor for this packet */
3785 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3786 	first->skb = skb;
3787 	first->bytecount = skb->len;
3788 	first->gso_segs = 1;
3789 
3790 	/* prepare the xmit flags */
3791 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3792 		goto out_drop;
3793 
3794 	/* obtain protocol of skb */
3795 	protocol = vlan_get_protocol(skb);
3796 
3797 	/* setup IPv4/IPv6 offloads */
3798 	if (protocol == htons(ETH_P_IP))
3799 		tx_flags |= I40E_TX_FLAGS_IPV4;
3800 	else if (protocol == htons(ETH_P_IPV6))
3801 		tx_flags |= I40E_TX_FLAGS_IPV6;
3802 
3803 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3804 
3805 	if (tso < 0)
3806 		goto out_drop;
3807 	else if (tso)
3808 		tx_flags |= I40E_TX_FLAGS_TSO;
3809 
3810 	/* Always offload the checksum, since it's in the data descriptor */
3811 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3812 				  tx_ring, &cd_tunneling);
3813 	if (tso < 0)
3814 		goto out_drop;
3815 
3816 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3817 
3818 	if (tsyn)
3819 		tx_flags |= I40E_TX_FLAGS_TSYN;
3820 
3821 	/* always enable CRC insertion offload */
3822 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3823 
3824 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3825 			   cd_tunneling, cd_l2tag2);
3826 
3827 	/* Add Flow Director ATR if it's enabled.
3828 	 *
3829 	 * NOTE: this must always be directly before the data descriptor.
3830 	 */
3831 	i40e_atr(tx_ring, skb, tx_flags);
3832 
3833 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3834 			td_cmd, td_offset))
3835 		goto cleanup_tx_tstamp;
3836 
3837 	return NETDEV_TX_OK;
3838 
3839 out_drop:
3840 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3841 	dev_kfree_skb_any(first->skb);
3842 	first->skb = NULL;
3843 cleanup_tx_tstamp:
3844 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3845 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3846 
3847 		dev_kfree_skb_any(pf->ptp_tx_skb);
3848 		pf->ptp_tx_skb = NULL;
3849 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3850 	}
3851 
3852 	return NETDEV_TX_OK;
3853 }
3854 
3855 /**
3856  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3857  * @skb:    send buffer
3858  * @netdev: network interface device structure
3859  *
3860  * Returns NETDEV_TX_OK if sent, else an error code
3861  **/
3862 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3863 {
3864 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3865 	struct i40e_vsi *vsi = np->vsi;
3866 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3867 
3868 	/* hardware can't handle really short frames, hardware padding works
3869 	 * beyond this point
3870 	 */
3871 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3872 		return NETDEV_TX_OK;
3873 
3874 	return i40e_xmit_frame_ring(skb, tx_ring);
3875 }
3876 
3877 /**
3878  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3879  * @dev: netdev
3880  * @n: number of frames
3881  * @frames: array of XDP buffer pointers
3882  * @flags: XDP extra info
3883  *
3884  * Returns number of frames successfully sent. Failed frames
3885  * will be free'ed by XDP core.
3886  *
3887  * For error cases, a negative errno code is returned and no-frames
3888  * are transmitted (caller must handle freeing frames).
3889  **/
3890 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3891 		  u32 flags)
3892 {
3893 	struct i40e_netdev_priv *np = netdev_priv(dev);
3894 	unsigned int queue_index = smp_processor_id();
3895 	struct i40e_vsi *vsi = np->vsi;
3896 	struct i40e_pf *pf = vsi->back;
3897 	struct i40e_ring *xdp_ring;
3898 	int nxmit = 0;
3899 	int i;
3900 
3901 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3902 		return -ENETDOWN;
3903 
3904 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3905 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3906 		return -ENXIO;
3907 
3908 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3909 		return -EINVAL;
3910 
3911 	xdp_ring = vsi->xdp_rings[queue_index];
3912 
3913 	for (i = 0; i < n; i++) {
3914 		struct xdp_frame *xdpf = frames[i];
3915 		int err;
3916 
3917 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3918 		if (err != I40E_XDP_TX)
3919 			break;
3920 		nxmit++;
3921 	}
3922 
3923 	if (unlikely(flags & XDP_XMIT_FLUSH))
3924 		i40e_xdp_ring_update_tail(xdp_ring);
3925 
3926 	return nxmit;
3927 }
3928