1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2016 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/prefetch.h> 28 #include <net/busy_poll.h> 29 #include "i40e.h" 30 #include "i40e_prototype.h" 31 32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 33 u32 td_tag) 34 { 35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | 36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | 37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | 38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | 39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); 40 } 41 42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 43 #define I40E_FD_CLEAN_DELAY 10 44 /** 45 * i40e_program_fdir_filter - Program a Flow Director filter 46 * @fdir_data: Packet data that will be filter parameters 47 * @raw_packet: the pre-allocated packet buffer for FDir 48 * @pf: The PF pointer 49 * @add: True for add/update, False for remove 50 **/ 51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet, 52 struct i40e_pf *pf, bool add) 53 { 54 struct i40e_filter_program_desc *fdir_desc; 55 struct i40e_tx_buffer *tx_buf, *first; 56 struct i40e_tx_desc *tx_desc; 57 struct i40e_ring *tx_ring; 58 unsigned int fpt, dcc; 59 struct i40e_vsi *vsi; 60 struct device *dev; 61 dma_addr_t dma; 62 u32 td_cmd = 0; 63 u16 delay = 0; 64 u16 i; 65 66 /* find existing FDIR VSI */ 67 vsi = NULL; 68 for (i = 0; i < pf->num_alloc_vsi; i++) 69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) 70 vsi = pf->vsi[i]; 71 if (!vsi) 72 return -ENOENT; 73 74 tx_ring = vsi->tx_rings[0]; 75 dev = tx_ring->dev; 76 77 /* we need two descriptors to add/del a filter and we can wait */ 78 do { 79 if (I40E_DESC_UNUSED(tx_ring) > 1) 80 break; 81 msleep_interruptible(1); 82 delay++; 83 } while (delay < I40E_FD_CLEAN_DELAY); 84 85 if (!(I40E_DESC_UNUSED(tx_ring) > 1)) 86 return -EAGAIN; 87 88 dma = dma_map_single(dev, raw_packet, 89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 90 if (dma_mapping_error(dev, dma)) 91 goto dma_fail; 92 93 /* grab the next descriptor */ 94 i = tx_ring->next_to_use; 95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 96 first = &tx_ring->tx_bi[i]; 97 memset(first, 0, sizeof(struct i40e_tx_buffer)); 98 99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 100 101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 102 I40E_TXD_FLTR_QW0_QINDEX_MASK; 103 104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) & 105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK; 106 107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) & 108 I40E_TXD_FLTR_QW0_PCTYPE_MASK; 109 110 /* Use LAN VSI Id if not programmed by user */ 111 if (fdir_data->dest_vsi == 0) 112 fpt |= (pf->vsi[pf->lan_vsi]->id) << 113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 114 else 115 fpt |= ((u32)fdir_data->dest_vsi << 116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) & 117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK; 118 119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG; 120 121 if (add) 122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 123 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 124 else 125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 126 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 127 128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) & 129 I40E_TXD_FLTR_QW1_DEST_MASK; 130 131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) & 132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK; 133 134 if (fdir_data->cnt_index != 0) { 135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 136 dcc |= ((u32)fdir_data->cnt_index << 137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 139 } 140 141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt); 142 fdir_desc->rsvd = cpu_to_le32(0); 143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc); 144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id); 145 146 /* Now program a dummy descriptor */ 147 i = tx_ring->next_to_use; 148 tx_desc = I40E_TX_DESC(tx_ring, i); 149 tx_buf = &tx_ring->tx_bi[i]; 150 151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 152 153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 154 155 /* record length, and DMA address */ 156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 157 dma_unmap_addr_set(tx_buf, dma, dma); 158 159 tx_desc->buffer_addr = cpu_to_le64(dma); 160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 161 162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 163 tx_buf->raw_buf = (void *)raw_packet; 164 165 tx_desc->cmd_type_offset_bsz = 166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 167 168 /* Force memory writes to complete before letting h/w 169 * know there are new descriptors to fetch. 170 */ 171 wmb(); 172 173 /* Mark the data descriptor to be watched */ 174 first->next_to_watch = tx_desc; 175 176 writel(tx_ring->next_to_use, tx_ring->tail); 177 return 0; 178 179 dma_fail: 180 return -1; 181 } 182 183 #define IP_HEADER_OFFSET 14 184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 185 /** 186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 187 * @vsi: pointer to the targeted VSI 188 * @fd_data: the flow director data required for the FDir descriptor 189 * @add: true adds a filter, false removes it 190 * 191 * Returns 0 if the filters were successfully added or removed 192 **/ 193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 194 struct i40e_fdir_filter *fd_data, 195 bool add) 196 { 197 struct i40e_pf *pf = vsi->back; 198 struct udphdr *udp; 199 struct iphdr *ip; 200 bool err = false; 201 u8 *raw_packet; 202 int ret; 203 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 204 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 206 207 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 208 if (!raw_packet) 209 return -ENOMEM; 210 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 211 212 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 213 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 214 + sizeof(struct iphdr)); 215 216 ip->daddr = fd_data->dst_ip[0]; 217 udp->dest = fd_data->dst_port; 218 ip->saddr = fd_data->src_ip[0]; 219 udp->source = fd_data->src_port; 220 221 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 222 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 223 if (ret) { 224 dev_info(&pf->pdev->dev, 225 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 226 fd_data->pctype, fd_data->fd_id, ret); 227 err = true; 228 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 229 if (add) 230 dev_info(&pf->pdev->dev, 231 "Filter OK for PCTYPE %d loc = %d\n", 232 fd_data->pctype, fd_data->fd_id); 233 else 234 dev_info(&pf->pdev->dev, 235 "Filter deleted for PCTYPE %d loc = %d\n", 236 fd_data->pctype, fd_data->fd_id); 237 } 238 if (err) 239 kfree(raw_packet); 240 241 return err ? -EOPNOTSUPP : 0; 242 } 243 244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 245 /** 246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 247 * @vsi: pointer to the targeted VSI 248 * @fd_data: the flow director data required for the FDir descriptor 249 * @add: true adds a filter, false removes it 250 * 251 * Returns 0 if the filters were successfully added or removed 252 **/ 253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 254 struct i40e_fdir_filter *fd_data, 255 bool add) 256 { 257 struct i40e_pf *pf = vsi->back; 258 struct tcphdr *tcp; 259 struct iphdr *ip; 260 bool err = false; 261 u8 *raw_packet; 262 int ret; 263 /* Dummy packet */ 264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 267 0x0, 0x72, 0, 0, 0, 0}; 268 269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 270 if (!raw_packet) 271 return -ENOMEM; 272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 273 274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 276 + sizeof(struct iphdr)); 277 278 ip->daddr = fd_data->dst_ip[0]; 279 tcp->dest = fd_data->dst_port; 280 ip->saddr = fd_data->src_ip[0]; 281 tcp->source = fd_data->src_port; 282 283 if (add) { 284 pf->fd_tcp_rule++; 285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) { 286 if (I40E_DEBUG_FD & pf->hw.debug_mask) 287 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 288 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED; 289 } 290 } else { 291 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ? 292 (pf->fd_tcp_rule - 1) : 0; 293 if (pf->fd_tcp_rule == 0) { 294 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 295 if (I40E_DEBUG_FD & pf->hw.debug_mask) 296 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n"); 297 } 298 } 299 300 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 301 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 302 303 if (ret) { 304 dev_info(&pf->pdev->dev, 305 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 306 fd_data->pctype, fd_data->fd_id, ret); 307 err = true; 308 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 309 if (add) 310 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 311 fd_data->pctype, fd_data->fd_id); 312 else 313 dev_info(&pf->pdev->dev, 314 "Filter deleted for PCTYPE %d loc = %d\n", 315 fd_data->pctype, fd_data->fd_id); 316 } 317 318 if (err) 319 kfree(raw_packet); 320 321 return err ? -EOPNOTSUPP : 0; 322 } 323 324 /** 325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 326 * a specific flow spec 327 * @vsi: pointer to the targeted VSI 328 * @fd_data: the flow director data required for the FDir descriptor 329 * @add: true adds a filter, false removes it 330 * 331 * Returns 0 if the filters were successfully added or removed 332 **/ 333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 334 struct i40e_fdir_filter *fd_data, 335 bool add) 336 { 337 return -EOPNOTSUPP; 338 } 339 340 #define I40E_IP_DUMMY_PACKET_LEN 34 341 /** 342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 343 * a specific flow spec 344 * @vsi: pointer to the targeted VSI 345 * @fd_data: the flow director data required for the FDir descriptor 346 * @add: true adds a filter, false removes it 347 * 348 * Returns 0 if the filters were successfully added or removed 349 **/ 350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 351 struct i40e_fdir_filter *fd_data, 352 bool add) 353 { 354 struct i40e_pf *pf = vsi->back; 355 struct iphdr *ip; 356 bool err = false; 357 u8 *raw_packet; 358 int ret; 359 int i; 360 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 361 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 362 0, 0, 0, 0}; 363 364 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 365 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 366 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 367 if (!raw_packet) 368 return -ENOMEM; 369 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 370 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 371 372 ip->saddr = fd_data->src_ip[0]; 373 ip->daddr = fd_data->dst_ip[0]; 374 ip->protocol = 0; 375 376 fd_data->pctype = i; 377 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 378 379 if (ret) { 380 dev_info(&pf->pdev->dev, 381 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 382 fd_data->pctype, fd_data->fd_id, ret); 383 err = true; 384 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 385 if (add) 386 dev_info(&pf->pdev->dev, 387 "Filter OK for PCTYPE %d loc = %d\n", 388 fd_data->pctype, fd_data->fd_id); 389 else 390 dev_info(&pf->pdev->dev, 391 "Filter deleted for PCTYPE %d loc = %d\n", 392 fd_data->pctype, fd_data->fd_id); 393 } 394 } 395 396 if (err) 397 kfree(raw_packet); 398 399 return err ? -EOPNOTSUPP : 0; 400 } 401 402 /** 403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 404 * @vsi: pointer to the targeted VSI 405 * @cmd: command to get or set RX flow classification rules 406 * @add: true adds a filter, false removes it 407 * 408 **/ 409 int i40e_add_del_fdir(struct i40e_vsi *vsi, 410 struct i40e_fdir_filter *input, bool add) 411 { 412 struct i40e_pf *pf = vsi->back; 413 int ret; 414 415 switch (input->flow_type & ~FLOW_EXT) { 416 case TCP_V4_FLOW: 417 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 418 break; 419 case UDP_V4_FLOW: 420 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 421 break; 422 case SCTP_V4_FLOW: 423 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 424 break; 425 case IPV4_FLOW: 426 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 427 break; 428 case IP_USER_FLOW: 429 switch (input->ip4_proto) { 430 case IPPROTO_TCP: 431 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 432 break; 433 case IPPROTO_UDP: 434 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 435 break; 436 case IPPROTO_SCTP: 437 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 438 break; 439 default: 440 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 441 break; 442 } 443 break; 444 default: 445 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n", 446 input->flow_type); 447 ret = -EINVAL; 448 } 449 450 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */ 451 return ret; 452 } 453 454 /** 455 * i40e_fd_handle_status - check the Programming Status for FD 456 * @rx_ring: the Rx ring for this descriptor 457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 458 * @prog_id: the id originally used for programming 459 * 460 * This is used to verify if the FD programming or invalidation 461 * requested by SW to the HW is successful or not and take actions accordingly. 462 **/ 463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, 464 union i40e_rx_desc *rx_desc, u8 prog_id) 465 { 466 struct i40e_pf *pf = rx_ring->vsi->back; 467 struct pci_dev *pdev = pf->pdev; 468 u32 fcnt_prog, fcnt_avail; 469 u32 error; 470 u64 qw; 471 472 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 473 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 474 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 475 476 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 477 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 478 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 479 (I40E_DEBUG_FD & pf->hw.debug_mask)) 480 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 481 pf->fd_inv); 482 483 /* Check if the programming error is for ATR. 484 * If so, auto disable ATR and set a state for 485 * flush in progress. Next time we come here if flush is in 486 * progress do nothing, once flush is complete the state will 487 * be cleared. 488 */ 489 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state)) 490 return; 491 492 pf->fd_add_err++; 493 /* store the current atr filter count */ 494 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 495 496 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 497 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) { 498 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED; 499 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state); 500 } 501 502 /* filter programming failed most likely due to table full */ 503 fcnt_prog = i40e_get_global_fd_count(pf); 504 fcnt_avail = pf->fdir_pf_filter_count; 505 /* If ATR is running fcnt_prog can quickly change, 506 * if we are very close to full, it makes sense to disable 507 * FD ATR/SB and then re-enable it when there is room. 508 */ 509 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 510 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 511 !(pf->auto_disable_flags & 512 I40E_FLAG_FD_SB_ENABLED)) { 513 if (I40E_DEBUG_FD & pf->hw.debug_mask) 514 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 515 pf->auto_disable_flags |= 516 I40E_FLAG_FD_SB_ENABLED; 517 } 518 } 519 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 520 if (I40E_DEBUG_FD & pf->hw.debug_mask) 521 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 522 rx_desc->wb.qword0.hi_dword.fd_id); 523 } 524 } 525 526 /** 527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 528 * @ring: the ring that owns the buffer 529 * @tx_buffer: the buffer to free 530 **/ 531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 532 struct i40e_tx_buffer *tx_buffer) 533 { 534 if (tx_buffer->skb) { 535 dev_kfree_skb_any(tx_buffer->skb); 536 if (dma_unmap_len(tx_buffer, len)) 537 dma_unmap_single(ring->dev, 538 dma_unmap_addr(tx_buffer, dma), 539 dma_unmap_len(tx_buffer, len), 540 DMA_TO_DEVICE); 541 } else if (dma_unmap_len(tx_buffer, len)) { 542 dma_unmap_page(ring->dev, 543 dma_unmap_addr(tx_buffer, dma), 544 dma_unmap_len(tx_buffer, len), 545 DMA_TO_DEVICE); 546 } 547 548 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 549 kfree(tx_buffer->raw_buf); 550 551 tx_buffer->next_to_watch = NULL; 552 tx_buffer->skb = NULL; 553 dma_unmap_len_set(tx_buffer, len, 0); 554 /* tx_buffer must be completely set up in the transmit path */ 555 } 556 557 /** 558 * i40e_clean_tx_ring - Free any empty Tx buffers 559 * @tx_ring: ring to be cleaned 560 **/ 561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 562 { 563 unsigned long bi_size; 564 u16 i; 565 566 /* ring already cleared, nothing to do */ 567 if (!tx_ring->tx_bi) 568 return; 569 570 /* Free all the Tx ring sk_buffs */ 571 for (i = 0; i < tx_ring->count; i++) 572 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 573 574 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 575 memset(tx_ring->tx_bi, 0, bi_size); 576 577 /* Zero out the descriptor ring */ 578 memset(tx_ring->desc, 0, tx_ring->size); 579 580 tx_ring->next_to_use = 0; 581 tx_ring->next_to_clean = 0; 582 583 if (!tx_ring->netdev) 584 return; 585 586 /* cleanup Tx queue statistics */ 587 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 588 tx_ring->queue_index)); 589 } 590 591 /** 592 * i40e_free_tx_resources - Free Tx resources per queue 593 * @tx_ring: Tx descriptor ring for a specific queue 594 * 595 * Free all transmit software resources 596 **/ 597 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 598 { 599 i40e_clean_tx_ring(tx_ring); 600 kfree(tx_ring->tx_bi); 601 tx_ring->tx_bi = NULL; 602 603 if (tx_ring->desc) { 604 dma_free_coherent(tx_ring->dev, tx_ring->size, 605 tx_ring->desc, tx_ring->dma); 606 tx_ring->desc = NULL; 607 } 608 } 609 610 /** 611 * i40e_get_tx_pending - how many tx descriptors not processed 612 * @tx_ring: the ring of descriptors 613 * @in_sw: is tx_pending being checked in SW or HW 614 * 615 * Since there is no access to the ring head register 616 * in XL710, we need to use our local copies 617 **/ 618 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 619 { 620 u32 head, tail; 621 622 if (!in_sw) 623 head = i40e_get_head(ring); 624 else 625 head = ring->next_to_clean; 626 tail = readl(ring->tail); 627 628 if (head != tail) 629 return (head < tail) ? 630 tail - head : (tail + ring->count - head); 631 632 return 0; 633 } 634 635 #define WB_STRIDE 0x3 636 637 /** 638 * i40e_clean_tx_irq - Reclaim resources after transmit completes 639 * @tx_ring: tx ring to clean 640 * @budget: how many cleans we're allowed 641 * 642 * Returns true if there's any budget left (e.g. the clean is finished) 643 **/ 644 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget) 645 { 646 u16 i = tx_ring->next_to_clean; 647 struct i40e_tx_buffer *tx_buf; 648 struct i40e_tx_desc *tx_head; 649 struct i40e_tx_desc *tx_desc; 650 unsigned int total_packets = 0; 651 unsigned int total_bytes = 0; 652 653 tx_buf = &tx_ring->tx_bi[i]; 654 tx_desc = I40E_TX_DESC(tx_ring, i); 655 i -= tx_ring->count; 656 657 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 658 659 do { 660 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 661 662 /* if next_to_watch is not set then there is no work pending */ 663 if (!eop_desc) 664 break; 665 666 /* prevent any other reads prior to eop_desc */ 667 read_barrier_depends(); 668 669 /* we have caught up to head, no work left to do */ 670 if (tx_head == tx_desc) 671 break; 672 673 /* clear next_to_watch to prevent false hangs */ 674 tx_buf->next_to_watch = NULL; 675 676 /* update the statistics for this packet */ 677 total_bytes += tx_buf->bytecount; 678 total_packets += tx_buf->gso_segs; 679 680 /* free the skb */ 681 dev_consume_skb_any(tx_buf->skb); 682 683 /* unmap skb header data */ 684 dma_unmap_single(tx_ring->dev, 685 dma_unmap_addr(tx_buf, dma), 686 dma_unmap_len(tx_buf, len), 687 DMA_TO_DEVICE); 688 689 /* clear tx_buffer data */ 690 tx_buf->skb = NULL; 691 dma_unmap_len_set(tx_buf, len, 0); 692 693 /* unmap remaining buffers */ 694 while (tx_desc != eop_desc) { 695 696 tx_buf++; 697 tx_desc++; 698 i++; 699 if (unlikely(!i)) { 700 i -= tx_ring->count; 701 tx_buf = tx_ring->tx_bi; 702 tx_desc = I40E_TX_DESC(tx_ring, 0); 703 } 704 705 /* unmap any remaining paged data */ 706 if (dma_unmap_len(tx_buf, len)) { 707 dma_unmap_page(tx_ring->dev, 708 dma_unmap_addr(tx_buf, dma), 709 dma_unmap_len(tx_buf, len), 710 DMA_TO_DEVICE); 711 dma_unmap_len_set(tx_buf, len, 0); 712 } 713 } 714 715 /* move us one more past the eop_desc for start of next pkt */ 716 tx_buf++; 717 tx_desc++; 718 i++; 719 if (unlikely(!i)) { 720 i -= tx_ring->count; 721 tx_buf = tx_ring->tx_bi; 722 tx_desc = I40E_TX_DESC(tx_ring, 0); 723 } 724 725 prefetch(tx_desc); 726 727 /* update budget accounting */ 728 budget--; 729 } while (likely(budget)); 730 731 i += tx_ring->count; 732 tx_ring->next_to_clean = i; 733 u64_stats_update_begin(&tx_ring->syncp); 734 tx_ring->stats.bytes += total_bytes; 735 tx_ring->stats.packets += total_packets; 736 u64_stats_update_end(&tx_ring->syncp); 737 tx_ring->q_vector->tx.total_bytes += total_bytes; 738 tx_ring->q_vector->tx.total_packets += total_packets; 739 740 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) { 741 unsigned int j = 0; 742 743 /* check to see if there are < 4 descriptors 744 * waiting to be written back, then kick the hardware to force 745 * them to be written back in case we stay in NAPI. 746 * In this mode on X722 we do not enable Interrupt. 747 */ 748 j = i40e_get_tx_pending(tx_ring, false); 749 750 if (budget && 751 ((j / (WB_STRIDE + 1)) == 0) && (j != 0) && 752 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) && 753 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) 754 tx_ring->arm_wb = true; 755 } 756 757 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev, 758 tx_ring->queue_index), 759 total_packets, total_bytes); 760 761 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 762 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 763 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 764 /* Make sure that anybody stopping the queue after this 765 * sees the new next_to_clean. 766 */ 767 smp_mb(); 768 if (__netif_subqueue_stopped(tx_ring->netdev, 769 tx_ring->queue_index) && 770 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) { 771 netif_wake_subqueue(tx_ring->netdev, 772 tx_ring->queue_index); 773 ++tx_ring->tx_stats.restart_queue; 774 } 775 } 776 777 return !!budget; 778 } 779 780 /** 781 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 782 * @vsi: the VSI we care about 783 * @q_vector: the vector on which to enable writeback 784 * 785 **/ 786 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 787 struct i40e_q_vector *q_vector) 788 { 789 u16 flags = q_vector->tx.ring[0].flags; 790 u32 val; 791 792 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 793 return; 794 795 if (q_vector->arm_wb_state) 796 return; 797 798 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 799 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 800 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 801 802 wr32(&vsi->back->hw, 803 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1), 804 val); 805 } else { 806 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 807 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 808 809 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 810 } 811 q_vector->arm_wb_state = true; 812 } 813 814 /** 815 * i40e_force_wb - Issue SW Interrupt so HW does a wb 816 * @vsi: the VSI we care about 817 * @q_vector: the vector on which to force writeback 818 * 819 **/ 820 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 821 { 822 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 823 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 824 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 825 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 826 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 827 /* allow 00 to be written to the index */ 828 829 wr32(&vsi->back->hw, 830 I40E_PFINT_DYN_CTLN(q_vector->v_idx + 831 vsi->base_vector - 1), val); 832 } else { 833 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 834 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 835 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 836 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 837 /* allow 00 to be written to the index */ 838 839 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 840 } 841 } 842 843 /** 844 * i40e_set_new_dynamic_itr - Find new ITR level 845 * @rc: structure containing ring performance data 846 * 847 * Returns true if ITR changed, false if not 848 * 849 * Stores a new ITR value based on packets and byte counts during 850 * the last interrupt. The advantage of per interrupt computation 851 * is faster updates and more accurate ITR for the current traffic 852 * pattern. Constants in this function were computed based on 853 * theoretical maximum wire speed and thresholds were set based on 854 * testing data as well as attempting to minimize response time 855 * while increasing bulk throughput. 856 **/ 857 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc) 858 { 859 enum i40e_latency_range new_latency_range = rc->latency_range; 860 struct i40e_q_vector *qv = rc->ring->q_vector; 861 u32 new_itr = rc->itr; 862 int bytes_per_int; 863 int usecs; 864 865 if (rc->total_packets == 0 || !rc->itr) 866 return false; 867 868 /* simple throttlerate management 869 * 0-10MB/s lowest (50000 ints/s) 870 * 10-20MB/s low (20000 ints/s) 871 * 20-1249MB/s bulk (18000 ints/s) 872 * > 40000 Rx packets per second (8000 ints/s) 873 * 874 * The math works out because the divisor is in 10^(-6) which 875 * turns the bytes/us input value into MB/s values, but 876 * make sure to use usecs, as the register values written 877 * are in 2 usec increments in the ITR registers, and make sure 878 * to use the smoothed values that the countdown timer gives us. 879 */ 880 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START; 881 bytes_per_int = rc->total_bytes / usecs; 882 883 switch (new_latency_range) { 884 case I40E_LOWEST_LATENCY: 885 if (bytes_per_int > 10) 886 new_latency_range = I40E_LOW_LATENCY; 887 break; 888 case I40E_LOW_LATENCY: 889 if (bytes_per_int > 20) 890 new_latency_range = I40E_BULK_LATENCY; 891 else if (bytes_per_int <= 10) 892 new_latency_range = I40E_LOWEST_LATENCY; 893 break; 894 case I40E_BULK_LATENCY: 895 case I40E_ULTRA_LATENCY: 896 default: 897 if (bytes_per_int <= 20) 898 new_latency_range = I40E_LOW_LATENCY; 899 break; 900 } 901 902 /* this is to adjust RX more aggressively when streaming small 903 * packets. The value of 40000 was picked as it is just beyond 904 * what the hardware can receive per second if in low latency 905 * mode. 906 */ 907 #define RX_ULTRA_PACKET_RATE 40000 908 909 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) && 910 (&qv->rx == rc)) 911 new_latency_range = I40E_ULTRA_LATENCY; 912 913 rc->latency_range = new_latency_range; 914 915 switch (new_latency_range) { 916 case I40E_LOWEST_LATENCY: 917 new_itr = I40E_ITR_50K; 918 break; 919 case I40E_LOW_LATENCY: 920 new_itr = I40E_ITR_20K; 921 break; 922 case I40E_BULK_LATENCY: 923 new_itr = I40E_ITR_18K; 924 break; 925 case I40E_ULTRA_LATENCY: 926 new_itr = I40E_ITR_8K; 927 break; 928 default: 929 break; 930 } 931 932 rc->total_bytes = 0; 933 rc->total_packets = 0; 934 935 if (new_itr != rc->itr) { 936 rc->itr = new_itr; 937 return true; 938 } 939 940 return false; 941 } 942 943 /** 944 * i40e_clean_programming_status - clean the programming status descriptor 945 * @rx_ring: the rx ring that has this descriptor 946 * @rx_desc: the rx descriptor written back by HW 947 * 948 * Flow director should handle FD_FILTER_STATUS to check its filter programming 949 * status being successful or not and take actions accordingly. FCoE should 950 * handle its context/filter programming/invalidation status and take actions. 951 * 952 **/ 953 static void i40e_clean_programming_status(struct i40e_ring *rx_ring, 954 union i40e_rx_desc *rx_desc) 955 { 956 u64 qw; 957 u8 id; 958 959 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 960 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 961 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 962 963 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 964 i40e_fd_handle_status(rx_ring, rx_desc, id); 965 #ifdef I40E_FCOE 966 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) || 967 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS)) 968 i40e_fcoe_handle_status(rx_ring, rx_desc, id); 969 #endif 970 } 971 972 /** 973 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 974 * @tx_ring: the tx ring to set up 975 * 976 * Return 0 on success, negative on error 977 **/ 978 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 979 { 980 struct device *dev = tx_ring->dev; 981 int bi_size; 982 983 if (!dev) 984 return -ENOMEM; 985 986 /* warn if we are about to overwrite the pointer */ 987 WARN_ON(tx_ring->tx_bi); 988 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 989 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 990 if (!tx_ring->tx_bi) 991 goto err; 992 993 /* round up to nearest 4K */ 994 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 995 /* add u32 for head writeback, align after this takes care of 996 * guaranteeing this is at least one cache line in size 997 */ 998 tx_ring->size += sizeof(u32); 999 tx_ring->size = ALIGN(tx_ring->size, 4096); 1000 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1001 &tx_ring->dma, GFP_KERNEL); 1002 if (!tx_ring->desc) { 1003 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1004 tx_ring->size); 1005 goto err; 1006 } 1007 1008 tx_ring->next_to_use = 0; 1009 tx_ring->next_to_clean = 0; 1010 return 0; 1011 1012 err: 1013 kfree(tx_ring->tx_bi); 1014 tx_ring->tx_bi = NULL; 1015 return -ENOMEM; 1016 } 1017 1018 /** 1019 * i40e_clean_rx_ring - Free Rx buffers 1020 * @rx_ring: ring to be cleaned 1021 **/ 1022 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1023 { 1024 struct device *dev = rx_ring->dev; 1025 struct i40e_rx_buffer *rx_bi; 1026 unsigned long bi_size; 1027 u16 i; 1028 1029 /* ring already cleared, nothing to do */ 1030 if (!rx_ring->rx_bi) 1031 return; 1032 1033 if (ring_is_ps_enabled(rx_ring)) { 1034 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count; 1035 1036 rx_bi = &rx_ring->rx_bi[0]; 1037 if (rx_bi->hdr_buf) { 1038 dma_free_coherent(dev, 1039 bufsz, 1040 rx_bi->hdr_buf, 1041 rx_bi->dma); 1042 for (i = 0; i < rx_ring->count; i++) { 1043 rx_bi = &rx_ring->rx_bi[i]; 1044 rx_bi->dma = 0; 1045 rx_bi->hdr_buf = NULL; 1046 } 1047 } 1048 } 1049 /* Free all the Rx ring sk_buffs */ 1050 for (i = 0; i < rx_ring->count; i++) { 1051 rx_bi = &rx_ring->rx_bi[i]; 1052 if (rx_bi->dma) { 1053 dma_unmap_single(dev, 1054 rx_bi->dma, 1055 rx_ring->rx_buf_len, 1056 DMA_FROM_DEVICE); 1057 rx_bi->dma = 0; 1058 } 1059 if (rx_bi->skb) { 1060 dev_kfree_skb(rx_bi->skb); 1061 rx_bi->skb = NULL; 1062 } 1063 if (rx_bi->page) { 1064 if (rx_bi->page_dma) { 1065 dma_unmap_page(dev, 1066 rx_bi->page_dma, 1067 PAGE_SIZE, 1068 DMA_FROM_DEVICE); 1069 rx_bi->page_dma = 0; 1070 } 1071 __free_page(rx_bi->page); 1072 rx_bi->page = NULL; 1073 rx_bi->page_offset = 0; 1074 } 1075 } 1076 1077 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1078 memset(rx_ring->rx_bi, 0, bi_size); 1079 1080 /* Zero out the descriptor ring */ 1081 memset(rx_ring->desc, 0, rx_ring->size); 1082 1083 rx_ring->next_to_clean = 0; 1084 rx_ring->next_to_use = 0; 1085 } 1086 1087 /** 1088 * i40e_free_rx_resources - Free Rx resources 1089 * @rx_ring: ring to clean the resources from 1090 * 1091 * Free all receive software resources 1092 **/ 1093 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1094 { 1095 i40e_clean_rx_ring(rx_ring); 1096 kfree(rx_ring->rx_bi); 1097 rx_ring->rx_bi = NULL; 1098 1099 if (rx_ring->desc) { 1100 dma_free_coherent(rx_ring->dev, rx_ring->size, 1101 rx_ring->desc, rx_ring->dma); 1102 rx_ring->desc = NULL; 1103 } 1104 } 1105 1106 /** 1107 * i40e_alloc_rx_headers - allocate rx header buffers 1108 * @rx_ring: ring to alloc buffers 1109 * 1110 * Allocate rx header buffers for the entire ring. As these are static, 1111 * this is only called when setting up a new ring. 1112 **/ 1113 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring) 1114 { 1115 struct device *dev = rx_ring->dev; 1116 struct i40e_rx_buffer *rx_bi; 1117 dma_addr_t dma; 1118 void *buffer; 1119 int buf_size; 1120 int i; 1121 1122 if (rx_ring->rx_bi[0].hdr_buf) 1123 return; 1124 /* Make sure the buffers don't cross cache line boundaries. */ 1125 buf_size = ALIGN(rx_ring->rx_hdr_len, 256); 1126 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count, 1127 &dma, GFP_KERNEL); 1128 if (!buffer) 1129 return; 1130 for (i = 0; i < rx_ring->count; i++) { 1131 rx_bi = &rx_ring->rx_bi[i]; 1132 rx_bi->dma = dma + (i * buf_size); 1133 rx_bi->hdr_buf = buffer + (i * buf_size); 1134 } 1135 } 1136 1137 /** 1138 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1139 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1140 * 1141 * Returns 0 on success, negative on failure 1142 **/ 1143 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1144 { 1145 struct device *dev = rx_ring->dev; 1146 int bi_size; 1147 1148 /* warn if we are about to overwrite the pointer */ 1149 WARN_ON(rx_ring->rx_bi); 1150 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1151 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1152 if (!rx_ring->rx_bi) 1153 goto err; 1154 1155 u64_stats_init(&rx_ring->syncp); 1156 1157 /* Round up to nearest 4K */ 1158 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring) 1159 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc) 1160 : rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1161 rx_ring->size = ALIGN(rx_ring->size, 4096); 1162 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1163 &rx_ring->dma, GFP_KERNEL); 1164 1165 if (!rx_ring->desc) { 1166 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1167 rx_ring->size); 1168 goto err; 1169 } 1170 1171 rx_ring->next_to_clean = 0; 1172 rx_ring->next_to_use = 0; 1173 1174 return 0; 1175 err: 1176 kfree(rx_ring->rx_bi); 1177 rx_ring->rx_bi = NULL; 1178 return -ENOMEM; 1179 } 1180 1181 /** 1182 * i40e_release_rx_desc - Store the new tail and head values 1183 * @rx_ring: ring to bump 1184 * @val: new head index 1185 **/ 1186 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1187 { 1188 rx_ring->next_to_use = val; 1189 /* Force memory writes to complete before letting h/w 1190 * know there are new descriptors to fetch. (Only 1191 * applicable for weak-ordered memory model archs, 1192 * such as IA-64). 1193 */ 1194 wmb(); 1195 writel(val, rx_ring->tail); 1196 } 1197 1198 /** 1199 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split 1200 * @rx_ring: ring to place buffers on 1201 * @cleaned_count: number of buffers to replace 1202 * 1203 * Returns true if any errors on allocation 1204 **/ 1205 bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count) 1206 { 1207 u16 i = rx_ring->next_to_use; 1208 union i40e_rx_desc *rx_desc; 1209 struct i40e_rx_buffer *bi; 1210 const int current_node = numa_node_id(); 1211 1212 /* do nothing if no valid netdev defined */ 1213 if (!rx_ring->netdev || !cleaned_count) 1214 return false; 1215 1216 while (cleaned_count--) { 1217 rx_desc = I40E_RX_DESC(rx_ring, i); 1218 bi = &rx_ring->rx_bi[i]; 1219 1220 if (bi->skb) /* desc is in use */ 1221 goto no_buffers; 1222 1223 /* If we've been moved to a different NUMA node, release the 1224 * page so we can get a new one on the current node. 1225 */ 1226 if (bi->page && page_to_nid(bi->page) != current_node) { 1227 dma_unmap_page(rx_ring->dev, 1228 bi->page_dma, 1229 PAGE_SIZE, 1230 DMA_FROM_DEVICE); 1231 __free_page(bi->page); 1232 bi->page = NULL; 1233 bi->page_dma = 0; 1234 rx_ring->rx_stats.realloc_count++; 1235 } else if (bi->page) { 1236 rx_ring->rx_stats.page_reuse_count++; 1237 } 1238 1239 if (!bi->page) { 1240 bi->page = alloc_page(GFP_ATOMIC); 1241 if (!bi->page) { 1242 rx_ring->rx_stats.alloc_page_failed++; 1243 goto no_buffers; 1244 } 1245 bi->page_dma = dma_map_page(rx_ring->dev, 1246 bi->page, 1247 0, 1248 PAGE_SIZE, 1249 DMA_FROM_DEVICE); 1250 if (dma_mapping_error(rx_ring->dev, bi->page_dma)) { 1251 rx_ring->rx_stats.alloc_page_failed++; 1252 __free_page(bi->page); 1253 bi->page = NULL; 1254 bi->page_dma = 0; 1255 bi->page_offset = 0; 1256 goto no_buffers; 1257 } 1258 bi->page_offset = 0; 1259 } 1260 1261 /* Refresh the desc even if buffer_addrs didn't change 1262 * because each write-back erases this info. 1263 */ 1264 rx_desc->read.pkt_addr = 1265 cpu_to_le64(bi->page_dma + bi->page_offset); 1266 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma); 1267 i++; 1268 if (i == rx_ring->count) 1269 i = 0; 1270 } 1271 1272 if (rx_ring->next_to_use != i) 1273 i40e_release_rx_desc(rx_ring, i); 1274 1275 return false; 1276 1277 no_buffers: 1278 if (rx_ring->next_to_use != i) 1279 i40e_release_rx_desc(rx_ring, i); 1280 1281 /* make sure to come back via polling to try again after 1282 * allocation failure 1283 */ 1284 return true; 1285 } 1286 1287 /** 1288 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer 1289 * @rx_ring: ring to place buffers on 1290 * @cleaned_count: number of buffers to replace 1291 * 1292 * Returns true if any errors on allocation 1293 **/ 1294 bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count) 1295 { 1296 u16 i = rx_ring->next_to_use; 1297 union i40e_rx_desc *rx_desc; 1298 struct i40e_rx_buffer *bi; 1299 struct sk_buff *skb; 1300 1301 /* do nothing if no valid netdev defined */ 1302 if (!rx_ring->netdev || !cleaned_count) 1303 return false; 1304 1305 while (cleaned_count--) { 1306 rx_desc = I40E_RX_DESC(rx_ring, i); 1307 bi = &rx_ring->rx_bi[i]; 1308 skb = bi->skb; 1309 1310 if (!skb) { 1311 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev, 1312 rx_ring->rx_buf_len, 1313 GFP_ATOMIC | 1314 __GFP_NOWARN); 1315 if (!skb) { 1316 rx_ring->rx_stats.alloc_buff_failed++; 1317 goto no_buffers; 1318 } 1319 /* initialize queue mapping */ 1320 skb_record_rx_queue(skb, rx_ring->queue_index); 1321 bi->skb = skb; 1322 } 1323 1324 if (!bi->dma) { 1325 bi->dma = dma_map_single(rx_ring->dev, 1326 skb->data, 1327 rx_ring->rx_buf_len, 1328 DMA_FROM_DEVICE); 1329 if (dma_mapping_error(rx_ring->dev, bi->dma)) { 1330 rx_ring->rx_stats.alloc_buff_failed++; 1331 bi->dma = 0; 1332 dev_kfree_skb(bi->skb); 1333 bi->skb = NULL; 1334 goto no_buffers; 1335 } 1336 } 1337 1338 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); 1339 rx_desc->read.hdr_addr = 0; 1340 i++; 1341 if (i == rx_ring->count) 1342 i = 0; 1343 } 1344 1345 if (rx_ring->next_to_use != i) 1346 i40e_release_rx_desc(rx_ring, i); 1347 1348 return false; 1349 1350 no_buffers: 1351 if (rx_ring->next_to_use != i) 1352 i40e_release_rx_desc(rx_ring, i); 1353 1354 /* make sure to come back via polling to try again after 1355 * allocation failure 1356 */ 1357 return true; 1358 } 1359 1360 /** 1361 * i40e_receive_skb - Send a completed packet up the stack 1362 * @rx_ring: rx ring in play 1363 * @skb: packet to send up 1364 * @vlan_tag: vlan tag for packet 1365 **/ 1366 static void i40e_receive_skb(struct i40e_ring *rx_ring, 1367 struct sk_buff *skb, u16 vlan_tag) 1368 { 1369 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1370 1371 if (vlan_tag & VLAN_VID_MASK) 1372 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1373 1374 napi_gro_receive(&q_vector->napi, skb); 1375 } 1376 1377 /** 1378 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1379 * @vsi: the VSI we care about 1380 * @skb: skb currently being received and modified 1381 * @rx_status: status value of last descriptor in packet 1382 * @rx_error: error value of last descriptor in packet 1383 * @rx_ptype: ptype value of last descriptor in packet 1384 **/ 1385 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1386 struct sk_buff *skb, 1387 u32 rx_status, 1388 u32 rx_error, 1389 u16 rx_ptype) 1390 { 1391 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype); 1392 bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel; 1393 1394 skb->ip_summed = CHECKSUM_NONE; 1395 1396 /* Rx csum enabled and ip headers found? */ 1397 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1398 return; 1399 1400 /* did the hardware decode the packet and checksum? */ 1401 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1402 return; 1403 1404 /* both known and outer_ip must be set for the below code to work */ 1405 if (!(decoded.known && decoded.outer_ip)) 1406 return; 1407 1408 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1409 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1410 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1411 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1412 1413 if (ipv4 && 1414 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1415 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1416 goto checksum_fail; 1417 1418 /* likely incorrect csum if alternate IP extension headers found */ 1419 if (ipv6 && 1420 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1421 /* don't increment checksum err here, non-fatal err */ 1422 return; 1423 1424 /* there was some L4 error, count error and punt packet to the stack */ 1425 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1426 goto checksum_fail; 1427 1428 /* handle packets that were not able to be checksummed due 1429 * to arrival speed, in this case the stack can compute 1430 * the csum. 1431 */ 1432 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1433 return; 1434 1435 /* The hardware supported by this driver does not validate outer 1436 * checksums for tunneled VXLAN or GENEVE frames. I don't agree 1437 * with it but the specification states that you "MAY validate", it 1438 * doesn't make it a hard requirement so if we have validated the 1439 * inner checksum report CHECKSUM_UNNECESSARY. 1440 */ 1441 1442 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) && 1443 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4); 1444 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) && 1445 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4); 1446 1447 skb->ip_summed = CHECKSUM_UNNECESSARY; 1448 skb->csum_level = ipv4_tunnel || ipv6_tunnel; 1449 1450 return; 1451 1452 checksum_fail: 1453 vsi->back->hw_csum_rx_error++; 1454 } 1455 1456 /** 1457 * i40e_ptype_to_htype - get a hash type 1458 * @ptype: the ptype value from the descriptor 1459 * 1460 * Returns a hash type to be used by skb_set_hash 1461 **/ 1462 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype) 1463 { 1464 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1465 1466 if (!decoded.known) 1467 return PKT_HASH_TYPE_NONE; 1468 1469 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1470 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1471 return PKT_HASH_TYPE_L4; 1472 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1473 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1474 return PKT_HASH_TYPE_L3; 1475 else 1476 return PKT_HASH_TYPE_L2; 1477 } 1478 1479 /** 1480 * i40e_rx_hash - set the hash value in the skb 1481 * @ring: descriptor ring 1482 * @rx_desc: specific descriptor 1483 **/ 1484 static inline void i40e_rx_hash(struct i40e_ring *ring, 1485 union i40e_rx_desc *rx_desc, 1486 struct sk_buff *skb, 1487 u8 rx_ptype) 1488 { 1489 u32 hash; 1490 const __le64 rss_mask = 1491 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1492 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1493 1494 if (ring->netdev->features & NETIF_F_RXHASH) 1495 return; 1496 1497 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1498 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1499 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1500 } 1501 } 1502 1503 /** 1504 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split 1505 * @rx_ring: rx ring to clean 1506 * @budget: how many cleans we're allowed 1507 * 1508 * Returns true if there's any budget left (e.g. the clean is finished) 1509 **/ 1510 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget) 1511 { 1512 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1513 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo; 1514 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 1515 struct i40e_vsi *vsi = rx_ring->vsi; 1516 u16 i = rx_ring->next_to_clean; 1517 union i40e_rx_desc *rx_desc; 1518 u32 rx_error, rx_status; 1519 bool failure = false; 1520 u8 rx_ptype; 1521 u64 qword; 1522 u32 copysize; 1523 1524 if (budget <= 0) 1525 return 0; 1526 1527 do { 1528 struct i40e_rx_buffer *rx_bi; 1529 struct sk_buff *skb; 1530 u16 vlan_tag; 1531 /* return some buffers to hardware, one at a time is too slow */ 1532 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 1533 failure = failure || 1534 i40e_alloc_rx_buffers_ps(rx_ring, 1535 cleaned_count); 1536 cleaned_count = 0; 1537 } 1538 1539 i = rx_ring->next_to_clean; 1540 rx_desc = I40E_RX_DESC(rx_ring, i); 1541 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1542 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1543 I40E_RXD_QW1_STATUS_SHIFT; 1544 1545 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) 1546 break; 1547 1548 /* This memory barrier is needed to keep us from reading 1549 * any other fields out of the rx_desc until we know the 1550 * DD bit is set. 1551 */ 1552 dma_rmb(); 1553 /* sync header buffer for reading */ 1554 dma_sync_single_range_for_cpu(rx_ring->dev, 1555 rx_ring->rx_bi[0].dma, 1556 i * rx_ring->rx_hdr_len, 1557 rx_ring->rx_hdr_len, 1558 DMA_FROM_DEVICE); 1559 if (i40e_rx_is_programming_status(qword)) { 1560 i40e_clean_programming_status(rx_ring, rx_desc); 1561 I40E_RX_INCREMENT(rx_ring, i); 1562 continue; 1563 } 1564 rx_bi = &rx_ring->rx_bi[i]; 1565 skb = rx_bi->skb; 1566 if (likely(!skb)) { 1567 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev, 1568 rx_ring->rx_hdr_len, 1569 GFP_ATOMIC | 1570 __GFP_NOWARN); 1571 if (!skb) { 1572 rx_ring->rx_stats.alloc_buff_failed++; 1573 failure = true; 1574 break; 1575 } 1576 1577 /* initialize queue mapping */ 1578 skb_record_rx_queue(skb, rx_ring->queue_index); 1579 /* we are reusing so sync this buffer for CPU use */ 1580 dma_sync_single_range_for_cpu(rx_ring->dev, 1581 rx_ring->rx_bi[0].dma, 1582 i * rx_ring->rx_hdr_len, 1583 rx_ring->rx_hdr_len, 1584 DMA_FROM_DEVICE); 1585 } 1586 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 1587 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 1588 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >> 1589 I40E_RXD_QW1_LENGTH_HBUF_SHIFT; 1590 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >> 1591 I40E_RXD_QW1_LENGTH_SPH_SHIFT; 1592 1593 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1594 I40E_RXD_QW1_ERROR_SHIFT; 1595 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1596 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1597 1598 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1599 I40E_RXD_QW1_PTYPE_SHIFT; 1600 /* sync half-page for reading */ 1601 dma_sync_single_range_for_cpu(rx_ring->dev, 1602 rx_bi->page_dma, 1603 rx_bi->page_offset, 1604 PAGE_SIZE / 2, 1605 DMA_FROM_DEVICE); 1606 prefetch(page_address(rx_bi->page) + rx_bi->page_offset); 1607 rx_bi->skb = NULL; 1608 cleaned_count++; 1609 copysize = 0; 1610 if (rx_hbo || rx_sph) { 1611 int len; 1612 1613 if (rx_hbo) 1614 len = I40E_RX_HDR_SIZE; 1615 else 1616 len = rx_header_len; 1617 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len); 1618 } else if (skb->len == 0) { 1619 int len; 1620 unsigned char *va = page_address(rx_bi->page) + 1621 rx_bi->page_offset; 1622 1623 len = min(rx_packet_len, rx_ring->rx_hdr_len); 1624 memcpy(__skb_put(skb, len), va, len); 1625 copysize = len; 1626 rx_packet_len -= len; 1627 } 1628 /* Get the rest of the data if this was a header split */ 1629 if (rx_packet_len) { 1630 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 1631 rx_bi->page, 1632 rx_bi->page_offset + copysize, 1633 rx_packet_len, I40E_RXBUFFER_2048); 1634 1635 /* If the page count is more than 2, then both halves 1636 * of the page are used and we need to free it. Do it 1637 * here instead of in the alloc code. Otherwise one 1638 * of the half-pages might be released between now and 1639 * then, and we wouldn't know which one to use. 1640 * Don't call get_page and free_page since those are 1641 * both expensive atomic operations that just change 1642 * the refcount in opposite directions. Just give the 1643 * page to the stack; he can have our refcount. 1644 */ 1645 if (page_count(rx_bi->page) > 2) { 1646 dma_unmap_page(rx_ring->dev, 1647 rx_bi->page_dma, 1648 PAGE_SIZE, 1649 DMA_FROM_DEVICE); 1650 rx_bi->page = NULL; 1651 rx_bi->page_dma = 0; 1652 rx_ring->rx_stats.realloc_count++; 1653 } else { 1654 get_page(rx_bi->page); 1655 /* switch to the other half-page here; the 1656 * allocation code programs the right addr 1657 * into HW. If we haven't used this half-page, 1658 * the address won't be changed, and HW can 1659 * just use it next time through. 1660 */ 1661 rx_bi->page_offset ^= PAGE_SIZE / 2; 1662 } 1663 1664 } 1665 I40E_RX_INCREMENT(rx_ring, i); 1666 1667 if (unlikely( 1668 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { 1669 struct i40e_rx_buffer *next_buffer; 1670 1671 next_buffer = &rx_ring->rx_bi[i]; 1672 next_buffer->skb = skb; 1673 rx_ring->rx_stats.non_eop_descs++; 1674 continue; 1675 } 1676 1677 /* ERR_MASK will only have valid bits if EOP set */ 1678 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { 1679 dev_kfree_skb_any(skb); 1680 continue; 1681 } 1682 1683 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1684 1685 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) { 1686 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status & 1687 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1688 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT); 1689 rx_ring->last_rx_timestamp = jiffies; 1690 } 1691 1692 /* probably a little skewed due to removing CRC */ 1693 total_rx_bytes += skb->len; 1694 total_rx_packets++; 1695 1696 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1697 1698 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); 1699 1700 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) 1701 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) 1702 : 0; 1703 #ifdef I40E_FCOE 1704 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) { 1705 dev_kfree_skb_any(skb); 1706 continue; 1707 } 1708 #endif 1709 i40e_receive_skb(rx_ring, skb, vlan_tag); 1710 1711 rx_desc->wb.qword1.status_error_len = 0; 1712 1713 } while (likely(total_rx_packets < budget)); 1714 1715 u64_stats_update_begin(&rx_ring->syncp); 1716 rx_ring->stats.packets += total_rx_packets; 1717 rx_ring->stats.bytes += total_rx_bytes; 1718 u64_stats_update_end(&rx_ring->syncp); 1719 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1720 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1721 1722 return failure ? budget : total_rx_packets; 1723 } 1724 1725 /** 1726 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer 1727 * @rx_ring: rx ring to clean 1728 * @budget: how many cleans we're allowed 1729 * 1730 * Returns number of packets cleaned 1731 **/ 1732 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget) 1733 { 1734 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1735 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 1736 struct i40e_vsi *vsi = rx_ring->vsi; 1737 union i40e_rx_desc *rx_desc; 1738 u32 rx_error, rx_status; 1739 u16 rx_packet_len; 1740 bool failure = false; 1741 u8 rx_ptype; 1742 u64 qword; 1743 u16 i; 1744 1745 do { 1746 struct i40e_rx_buffer *rx_bi; 1747 struct sk_buff *skb; 1748 u16 vlan_tag; 1749 /* return some buffers to hardware, one at a time is too slow */ 1750 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 1751 failure = failure || 1752 i40e_alloc_rx_buffers_1buf(rx_ring, 1753 cleaned_count); 1754 cleaned_count = 0; 1755 } 1756 1757 i = rx_ring->next_to_clean; 1758 rx_desc = I40E_RX_DESC(rx_ring, i); 1759 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1760 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1761 I40E_RXD_QW1_STATUS_SHIFT; 1762 1763 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) 1764 break; 1765 1766 /* This memory barrier is needed to keep us from reading 1767 * any other fields out of the rx_desc until we know the 1768 * DD bit is set. 1769 */ 1770 dma_rmb(); 1771 1772 if (i40e_rx_is_programming_status(qword)) { 1773 i40e_clean_programming_status(rx_ring, rx_desc); 1774 I40E_RX_INCREMENT(rx_ring, i); 1775 continue; 1776 } 1777 rx_bi = &rx_ring->rx_bi[i]; 1778 skb = rx_bi->skb; 1779 prefetch(skb->data); 1780 1781 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 1782 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 1783 1784 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1785 I40E_RXD_QW1_ERROR_SHIFT; 1786 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1787 1788 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1789 I40E_RXD_QW1_PTYPE_SHIFT; 1790 rx_bi->skb = NULL; 1791 cleaned_count++; 1792 1793 /* Get the header and possibly the whole packet 1794 * If this is an skb from previous receive dma will be 0 1795 */ 1796 skb_put(skb, rx_packet_len); 1797 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len, 1798 DMA_FROM_DEVICE); 1799 rx_bi->dma = 0; 1800 1801 I40E_RX_INCREMENT(rx_ring, i); 1802 1803 if (unlikely( 1804 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { 1805 rx_ring->rx_stats.non_eop_descs++; 1806 continue; 1807 } 1808 1809 /* ERR_MASK will only have valid bits if EOP set */ 1810 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { 1811 dev_kfree_skb_any(skb); 1812 continue; 1813 } 1814 1815 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1816 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) { 1817 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status & 1818 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1819 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT); 1820 rx_ring->last_rx_timestamp = jiffies; 1821 } 1822 1823 /* probably a little skewed due to removing CRC */ 1824 total_rx_bytes += skb->len; 1825 total_rx_packets++; 1826 1827 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1828 1829 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); 1830 1831 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) 1832 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) 1833 : 0; 1834 #ifdef I40E_FCOE 1835 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) { 1836 dev_kfree_skb_any(skb); 1837 continue; 1838 } 1839 #endif 1840 i40e_receive_skb(rx_ring, skb, vlan_tag); 1841 1842 rx_desc->wb.qword1.status_error_len = 0; 1843 } while (likely(total_rx_packets < budget)); 1844 1845 u64_stats_update_begin(&rx_ring->syncp); 1846 rx_ring->stats.packets += total_rx_packets; 1847 rx_ring->stats.bytes += total_rx_bytes; 1848 u64_stats_update_end(&rx_ring->syncp); 1849 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1850 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1851 1852 return failure ? budget : total_rx_packets; 1853 } 1854 1855 static u32 i40e_buildreg_itr(const int type, const u16 itr) 1856 { 1857 u32 val; 1858 1859 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 1860 /* Don't clear PBA because that can cause lost interrupts that 1861 * came in while we were cleaning/polling 1862 */ 1863 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 1864 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT); 1865 1866 return val; 1867 } 1868 1869 /* a small macro to shorten up some long lines */ 1870 #define INTREG I40E_PFINT_DYN_CTLN 1871 1872 /** 1873 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 1874 * @vsi: the VSI we care about 1875 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1876 * 1877 **/ 1878 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 1879 struct i40e_q_vector *q_vector) 1880 { 1881 struct i40e_hw *hw = &vsi->back->hw; 1882 bool rx = false, tx = false; 1883 u32 rxval, txval; 1884 int vector; 1885 int idx = q_vector->v_idx; 1886 1887 vector = (q_vector->v_idx + vsi->base_vector); 1888 1889 /* avoid dynamic calculation if in countdown mode OR if 1890 * all dynamic is disabled 1891 */ 1892 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 1893 1894 if (q_vector->itr_countdown > 0 || 1895 (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) && 1896 !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) { 1897 goto enable_int; 1898 } 1899 1900 if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) { 1901 rx = i40e_set_new_dynamic_itr(&q_vector->rx); 1902 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr); 1903 } 1904 1905 if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) { 1906 tx = i40e_set_new_dynamic_itr(&q_vector->tx); 1907 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr); 1908 } 1909 1910 if (rx || tx) { 1911 /* get the higher of the two ITR adjustments and 1912 * use the same value for both ITR registers 1913 * when in adaptive mode (Rx and/or Tx) 1914 */ 1915 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr); 1916 1917 q_vector->tx.itr = q_vector->rx.itr = itr; 1918 txval = i40e_buildreg_itr(I40E_TX_ITR, itr); 1919 tx = true; 1920 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr); 1921 rx = true; 1922 } 1923 1924 /* only need to enable the interrupt once, but need 1925 * to possibly update both ITR values 1926 */ 1927 if (rx) { 1928 /* set the INTENA_MSK_MASK so that this first write 1929 * won't actually enable the interrupt, instead just 1930 * updating the ITR (it's bit 31 PF and VF) 1931 */ 1932 rxval |= BIT(31); 1933 /* don't check _DOWN because interrupt isn't being enabled */ 1934 wr32(hw, INTREG(vector - 1), rxval); 1935 } 1936 1937 enable_int: 1938 if (!test_bit(__I40E_DOWN, &vsi->state)) 1939 wr32(hw, INTREG(vector - 1), txval); 1940 1941 if (q_vector->itr_countdown) 1942 q_vector->itr_countdown--; 1943 else 1944 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1945 } 1946 1947 /** 1948 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 1949 * @napi: napi struct with our devices info in it 1950 * @budget: amount of work driver is allowed to do this pass, in packets 1951 * 1952 * This function will clean all queues associated with a q_vector. 1953 * 1954 * Returns the amount of work done 1955 **/ 1956 int i40e_napi_poll(struct napi_struct *napi, int budget) 1957 { 1958 struct i40e_q_vector *q_vector = 1959 container_of(napi, struct i40e_q_vector, napi); 1960 struct i40e_vsi *vsi = q_vector->vsi; 1961 struct i40e_ring *ring; 1962 bool clean_complete = true; 1963 bool arm_wb = false; 1964 int budget_per_ring; 1965 int work_done = 0; 1966 1967 if (test_bit(__I40E_DOWN, &vsi->state)) { 1968 napi_complete(napi); 1969 return 0; 1970 } 1971 1972 /* Clear hung_detected bit */ 1973 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected); 1974 /* Since the actual Tx work is minimal, we can give the Tx a larger 1975 * budget and be more aggressive about cleaning up the Tx descriptors. 1976 */ 1977 i40e_for_each_ring(ring, q_vector->tx) { 1978 clean_complete = clean_complete && 1979 i40e_clean_tx_irq(ring, vsi->work_limit); 1980 arm_wb = arm_wb || ring->arm_wb; 1981 ring->arm_wb = false; 1982 } 1983 1984 /* Handle case where we are called by netpoll with a budget of 0 */ 1985 if (budget <= 0) 1986 goto tx_only; 1987 1988 /* We attempt to distribute budget to each Rx queue fairly, but don't 1989 * allow the budget to go below 1 because that would exit polling early. 1990 */ 1991 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1992 1993 i40e_for_each_ring(ring, q_vector->rx) { 1994 int cleaned; 1995 1996 if (ring_is_ps_enabled(ring)) 1997 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring); 1998 else 1999 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring); 2000 2001 work_done += cleaned; 2002 /* if we didn't clean as many as budgeted, we must be done */ 2003 clean_complete = clean_complete && (budget_per_ring > cleaned); 2004 } 2005 2006 /* If work not completed, return budget and polling will return */ 2007 if (!clean_complete) { 2008 tx_only: 2009 if (arm_wb) { 2010 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2011 i40e_enable_wb_on_itr(vsi, q_vector); 2012 } 2013 return budget; 2014 } 2015 2016 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2017 q_vector->arm_wb_state = false; 2018 2019 /* Work is done so exit the polling mode and re-enable the interrupt */ 2020 napi_complete_done(napi, work_done); 2021 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 2022 i40e_update_enable_itr(vsi, q_vector); 2023 } else { /* Legacy mode */ 2024 i40e_irq_dynamic_enable_icr0(vsi->back, false); 2025 } 2026 return 0; 2027 } 2028 2029 /** 2030 * i40e_atr - Add a Flow Director ATR filter 2031 * @tx_ring: ring to add programming descriptor to 2032 * @skb: send buffer 2033 * @tx_flags: send tx flags 2034 **/ 2035 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2036 u32 tx_flags) 2037 { 2038 struct i40e_filter_program_desc *fdir_desc; 2039 struct i40e_pf *pf = tx_ring->vsi->back; 2040 union { 2041 unsigned char *network; 2042 struct iphdr *ipv4; 2043 struct ipv6hdr *ipv6; 2044 } hdr; 2045 struct tcphdr *th; 2046 unsigned int hlen; 2047 u32 flex_ptype, dtype_cmd; 2048 int l4_proto; 2049 u16 i; 2050 2051 /* make sure ATR is enabled */ 2052 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2053 return; 2054 2055 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) 2056 return; 2057 2058 /* if sampling is disabled do nothing */ 2059 if (!tx_ring->atr_sample_rate) 2060 return; 2061 2062 /* Currently only IPv4/IPv6 with TCP is supported */ 2063 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2064 return; 2065 2066 /* snag network header to get L4 type and address */ 2067 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2068 skb_inner_network_header(skb) : skb_network_header(skb); 2069 2070 /* Note: tx_flags gets modified to reflect inner protocols in 2071 * tx_enable_csum function if encap is enabled. 2072 */ 2073 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2074 /* access ihl as u8 to avoid unaligned access on ia64 */ 2075 hlen = (hdr.network[0] & 0x0F) << 2; 2076 l4_proto = hdr.ipv4->protocol; 2077 } else { 2078 hlen = hdr.network - skb->data; 2079 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL); 2080 hlen -= hdr.network - skb->data; 2081 } 2082 2083 if (l4_proto != IPPROTO_TCP) 2084 return; 2085 2086 th = (struct tcphdr *)(hdr.network + hlen); 2087 2088 /* Due to lack of space, no more new filters can be programmed */ 2089 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) 2090 return; 2091 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) && 2092 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) { 2093 /* HW ATR eviction will take care of removing filters on FIN 2094 * and RST packets. 2095 */ 2096 if (th->fin || th->rst) 2097 return; 2098 } 2099 2100 tx_ring->atr_count++; 2101 2102 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2103 if (!th->fin && 2104 !th->syn && 2105 !th->rst && 2106 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2107 return; 2108 2109 tx_ring->atr_count = 0; 2110 2111 /* grab the next descriptor */ 2112 i = tx_ring->next_to_use; 2113 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2114 2115 i++; 2116 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2117 2118 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2119 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2120 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2121 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2122 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2123 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2124 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2125 2126 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2127 2128 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2129 2130 dtype_cmd |= (th->fin || th->rst) ? 2131 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2132 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2133 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2134 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2135 2136 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2137 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2138 2139 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2140 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2141 2142 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2143 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2144 dtype_cmd |= 2145 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2146 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2147 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2148 else 2149 dtype_cmd |= 2150 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2151 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2152 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2153 2154 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) && 2155 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) 2156 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2157 2158 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2159 fdir_desc->rsvd = cpu_to_le32(0); 2160 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2161 fdir_desc->fd_id = cpu_to_le32(0); 2162 } 2163 2164 /** 2165 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2166 * @skb: send buffer 2167 * @tx_ring: ring to send buffer on 2168 * @flags: the tx flags to be set 2169 * 2170 * Checks the skb and set up correspondingly several generic transmit flags 2171 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2172 * 2173 * Returns error code indicate the frame should be dropped upon error and the 2174 * otherwise returns 0 to indicate the flags has been set properly. 2175 **/ 2176 #ifdef I40E_FCOE 2177 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2178 struct i40e_ring *tx_ring, 2179 u32 *flags) 2180 #else 2181 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2182 struct i40e_ring *tx_ring, 2183 u32 *flags) 2184 #endif 2185 { 2186 __be16 protocol = skb->protocol; 2187 u32 tx_flags = 0; 2188 2189 if (protocol == htons(ETH_P_8021Q) && 2190 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2191 /* When HW VLAN acceleration is turned off by the user the 2192 * stack sets the protocol to 8021q so that the driver 2193 * can take any steps required to support the SW only 2194 * VLAN handling. In our case the driver doesn't need 2195 * to take any further steps so just set the protocol 2196 * to the encapsulated ethertype. 2197 */ 2198 skb->protocol = vlan_get_protocol(skb); 2199 goto out; 2200 } 2201 2202 /* if we have a HW VLAN tag being added, default to the HW one */ 2203 if (skb_vlan_tag_present(skb)) { 2204 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2205 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2206 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2207 } else if (protocol == htons(ETH_P_8021Q)) { 2208 struct vlan_hdr *vhdr, _vhdr; 2209 2210 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2211 if (!vhdr) 2212 return -EINVAL; 2213 2214 protocol = vhdr->h_vlan_encapsulated_proto; 2215 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2216 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2217 } 2218 2219 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2220 goto out; 2221 2222 /* Insert 802.1p priority into VLAN header */ 2223 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2224 (skb->priority != TC_PRIO_CONTROL)) { 2225 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2226 tx_flags |= (skb->priority & 0x7) << 2227 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2228 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2229 struct vlan_ethhdr *vhdr; 2230 int rc; 2231 2232 rc = skb_cow_head(skb, 0); 2233 if (rc < 0) 2234 return rc; 2235 vhdr = (struct vlan_ethhdr *)skb->data; 2236 vhdr->h_vlan_TCI = htons(tx_flags >> 2237 I40E_TX_FLAGS_VLAN_SHIFT); 2238 } else { 2239 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2240 } 2241 } 2242 2243 out: 2244 *flags = tx_flags; 2245 return 0; 2246 } 2247 2248 /** 2249 * i40e_tso - set up the tso context descriptor 2250 * @tx_ring: ptr to the ring to send 2251 * @skb: ptr to the skb we're sending 2252 * @hdr_len: ptr to the size of the packet header 2253 * @cd_type_cmd_tso_mss: Quad Word 1 2254 * 2255 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2256 **/ 2257 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb, 2258 u8 *hdr_len, u64 *cd_type_cmd_tso_mss) 2259 { 2260 u64 cd_cmd, cd_tso_len, cd_mss; 2261 union { 2262 struct iphdr *v4; 2263 struct ipv6hdr *v6; 2264 unsigned char *hdr; 2265 } ip; 2266 union { 2267 struct tcphdr *tcp; 2268 struct udphdr *udp; 2269 unsigned char *hdr; 2270 } l4; 2271 u32 paylen, l4_offset; 2272 int err; 2273 2274 if (skb->ip_summed != CHECKSUM_PARTIAL) 2275 return 0; 2276 2277 if (!skb_is_gso(skb)) 2278 return 0; 2279 2280 err = skb_cow_head(skb, 0); 2281 if (err < 0) 2282 return err; 2283 2284 ip.hdr = skb_network_header(skb); 2285 l4.hdr = skb_transport_header(skb); 2286 2287 /* initialize outer IP header fields */ 2288 if (ip.v4->version == 4) { 2289 ip.v4->tot_len = 0; 2290 ip.v4->check = 0; 2291 } else { 2292 ip.v6->payload_len = 0; 2293 } 2294 2295 if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE | 2296 SKB_GSO_UDP_TUNNEL_CSUM)) { 2297 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) { 2298 /* determine offset of outer transport header */ 2299 l4_offset = l4.hdr - skb->data; 2300 2301 /* remove payload length from outer checksum */ 2302 paylen = (__force u16)l4.udp->check; 2303 paylen += ntohs(1) * (u16)~(skb->len - l4_offset); 2304 l4.udp->check = ~csum_fold((__force __wsum)paylen); 2305 } 2306 2307 /* reset pointers to inner headers */ 2308 ip.hdr = skb_inner_network_header(skb); 2309 l4.hdr = skb_inner_transport_header(skb); 2310 2311 /* initialize inner IP header fields */ 2312 if (ip.v4->version == 4) { 2313 ip.v4->tot_len = 0; 2314 ip.v4->check = 0; 2315 } else { 2316 ip.v6->payload_len = 0; 2317 } 2318 } 2319 2320 /* determine offset of inner transport header */ 2321 l4_offset = l4.hdr - skb->data; 2322 2323 /* remove payload length from inner checksum */ 2324 paylen = (__force u16)l4.tcp->check; 2325 paylen += ntohs(1) * (u16)~(skb->len - l4_offset); 2326 l4.tcp->check = ~csum_fold((__force __wsum)paylen); 2327 2328 /* compute length of segmentation header */ 2329 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2330 2331 /* find the field values */ 2332 cd_cmd = I40E_TX_CTX_DESC_TSO; 2333 cd_tso_len = skb->len - *hdr_len; 2334 cd_mss = skb_shinfo(skb)->gso_size; 2335 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2336 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2337 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2338 return 1; 2339 } 2340 2341 /** 2342 * i40e_tsyn - set up the tsyn context descriptor 2343 * @tx_ring: ptr to the ring to send 2344 * @skb: ptr to the skb we're sending 2345 * @tx_flags: the collected send information 2346 * @cd_type_cmd_tso_mss: Quad Word 1 2347 * 2348 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2349 **/ 2350 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2351 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2352 { 2353 struct i40e_pf *pf; 2354 2355 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2356 return 0; 2357 2358 /* Tx timestamps cannot be sampled when doing TSO */ 2359 if (tx_flags & I40E_TX_FLAGS_TSO) 2360 return 0; 2361 2362 /* only timestamp the outbound packet if the user has requested it and 2363 * we are not already transmitting a packet to be timestamped 2364 */ 2365 pf = i40e_netdev_to_pf(tx_ring->netdev); 2366 if (!(pf->flags & I40E_FLAG_PTP)) 2367 return 0; 2368 2369 if (pf->ptp_tx && 2370 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) { 2371 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2372 pf->ptp_tx_skb = skb_get(skb); 2373 } else { 2374 return 0; 2375 } 2376 2377 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 2378 I40E_TXD_CTX_QW1_CMD_SHIFT; 2379 2380 return 1; 2381 } 2382 2383 /** 2384 * i40e_tx_enable_csum - Enable Tx checksum offloads 2385 * @skb: send buffer 2386 * @tx_flags: pointer to Tx flags currently set 2387 * @td_cmd: Tx descriptor command bits to set 2388 * @td_offset: Tx descriptor header offsets to set 2389 * @tx_ring: Tx descriptor ring 2390 * @cd_tunneling: ptr to context desc bits 2391 **/ 2392 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 2393 u32 *td_cmd, u32 *td_offset, 2394 struct i40e_ring *tx_ring, 2395 u32 *cd_tunneling) 2396 { 2397 union { 2398 struct iphdr *v4; 2399 struct ipv6hdr *v6; 2400 unsigned char *hdr; 2401 } ip; 2402 union { 2403 struct tcphdr *tcp; 2404 struct udphdr *udp; 2405 unsigned char *hdr; 2406 } l4; 2407 unsigned char *exthdr; 2408 u32 offset, cmd = 0, tunnel = 0; 2409 __be16 frag_off; 2410 u8 l4_proto = 0; 2411 2412 if (skb->ip_summed != CHECKSUM_PARTIAL) 2413 return 0; 2414 2415 ip.hdr = skb_network_header(skb); 2416 l4.hdr = skb_transport_header(skb); 2417 2418 /* compute outer L2 header size */ 2419 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 2420 2421 if (skb->encapsulation) { 2422 /* define outer network header type */ 2423 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2424 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 2425 I40E_TX_CTX_EXT_IP_IPV4 : 2426 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 2427 2428 l4_proto = ip.v4->protocol; 2429 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2430 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 2431 2432 exthdr = ip.hdr + sizeof(*ip.v6); 2433 l4_proto = ip.v6->nexthdr; 2434 if (l4.hdr != exthdr) 2435 ipv6_skip_exthdr(skb, exthdr - skb->data, 2436 &l4_proto, &frag_off); 2437 } 2438 2439 /* compute outer L3 header size */ 2440 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2441 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2442 2443 /* switch IP header pointer from outer to inner header */ 2444 ip.hdr = skb_inner_network_header(skb); 2445 2446 /* define outer transport */ 2447 switch (l4_proto) { 2448 case IPPROTO_UDP: 2449 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 2450 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 2451 break; 2452 case IPPROTO_GRE: 2453 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 2454 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 2455 break; 2456 default: 2457 if (*tx_flags & I40E_TX_FLAGS_TSO) 2458 return -1; 2459 2460 skb_checksum_help(skb); 2461 return 0; 2462 } 2463 2464 /* compute tunnel header size */ 2465 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2466 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 2467 2468 /* indicate if we need to offload outer UDP header */ 2469 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 2470 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2471 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 2472 2473 /* record tunnel offload values */ 2474 *cd_tunneling |= tunnel; 2475 2476 /* switch L4 header pointer from outer to inner */ 2477 l4.hdr = skb_inner_transport_header(skb); 2478 l4_proto = 0; 2479 2480 /* reset type as we transition from outer to inner headers */ 2481 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 2482 if (ip.v4->version == 4) 2483 *tx_flags |= I40E_TX_FLAGS_IPV4; 2484 if (ip.v6->version == 6) 2485 *tx_flags |= I40E_TX_FLAGS_IPV6; 2486 } 2487 2488 /* Enable IP checksum offloads */ 2489 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2490 l4_proto = ip.v4->protocol; 2491 /* the stack computes the IP header already, the only time we 2492 * need the hardware to recompute it is in the case of TSO. 2493 */ 2494 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 2495 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 2496 I40E_TX_DESC_CMD_IIPT_IPV4; 2497 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2498 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 2499 2500 exthdr = ip.hdr + sizeof(*ip.v6); 2501 l4_proto = ip.v6->nexthdr; 2502 if (l4.hdr != exthdr) 2503 ipv6_skip_exthdr(skb, exthdr - skb->data, 2504 &l4_proto, &frag_off); 2505 } 2506 2507 /* compute inner L3 header size */ 2508 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 2509 2510 /* Enable L4 checksum offloads */ 2511 switch (l4_proto) { 2512 case IPPROTO_TCP: 2513 /* enable checksum offloads */ 2514 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 2515 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2516 break; 2517 case IPPROTO_SCTP: 2518 /* enable SCTP checksum offload */ 2519 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 2520 offset |= (sizeof(struct sctphdr) >> 2) << 2521 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2522 break; 2523 case IPPROTO_UDP: 2524 /* enable UDP checksum offload */ 2525 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 2526 offset |= (sizeof(struct udphdr) >> 2) << 2527 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2528 break; 2529 default: 2530 if (*tx_flags & I40E_TX_FLAGS_TSO) 2531 return -1; 2532 skb_checksum_help(skb); 2533 return 0; 2534 } 2535 2536 *td_cmd |= cmd; 2537 *td_offset |= offset; 2538 2539 return 1; 2540 } 2541 2542 /** 2543 * i40e_create_tx_ctx Build the Tx context descriptor 2544 * @tx_ring: ring to create the descriptor on 2545 * @cd_type_cmd_tso_mss: Quad Word 1 2546 * @cd_tunneling: Quad Word 0 - bits 0-31 2547 * @cd_l2tag2: Quad Word 0 - bits 32-63 2548 **/ 2549 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 2550 const u64 cd_type_cmd_tso_mss, 2551 const u32 cd_tunneling, const u32 cd_l2tag2) 2552 { 2553 struct i40e_tx_context_desc *context_desc; 2554 int i = tx_ring->next_to_use; 2555 2556 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 2557 !cd_tunneling && !cd_l2tag2) 2558 return; 2559 2560 /* grab the next descriptor */ 2561 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 2562 2563 i++; 2564 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2565 2566 /* cpu_to_le32 and assign to struct fields */ 2567 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2568 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2569 context_desc->rsvd = cpu_to_le16(0); 2570 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2571 } 2572 2573 /** 2574 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 2575 * @tx_ring: the ring to be checked 2576 * @size: the size buffer we want to assure is available 2577 * 2578 * Returns -EBUSY if a stop is needed, else 0 2579 **/ 2580 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 2581 { 2582 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2583 /* Memory barrier before checking head and tail */ 2584 smp_mb(); 2585 2586 /* Check again in a case another CPU has just made room available. */ 2587 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 2588 return -EBUSY; 2589 2590 /* A reprieve! - use start_queue because it doesn't call schedule */ 2591 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2592 ++tx_ring->tx_stats.restart_queue; 2593 return 0; 2594 } 2595 2596 /** 2597 * __i40e_chk_linearize - Check if there are more than 8 fragments per packet 2598 * @skb: send buffer 2599 * 2600 * Note: Our HW can't scatter-gather more than 8 fragments to build 2601 * a packet on the wire and so we need to figure out the cases where we 2602 * need to linearize the skb. 2603 **/ 2604 bool __i40e_chk_linearize(struct sk_buff *skb) 2605 { 2606 const struct skb_frag_struct *frag, *stale; 2607 int gso_size, nr_frags, sum; 2608 2609 /* check to see if TSO is enabled, if so we may get a repreive */ 2610 gso_size = skb_shinfo(skb)->gso_size; 2611 if (unlikely(!gso_size)) 2612 return true; 2613 2614 /* no need to check if number of frags is less than 8 */ 2615 nr_frags = skb_shinfo(skb)->nr_frags; 2616 if (nr_frags < I40E_MAX_BUFFER_TXD) 2617 return false; 2618 2619 /* We need to walk through the list and validate that each group 2620 * of 6 fragments totals at least gso_size. However we don't need 2621 * to perform such validation on the first or last 6 since the first 2622 * 6 cannot inherit any data from a descriptor before them, and the 2623 * last 6 cannot inherit any data from a descriptor after them. 2624 */ 2625 nr_frags -= I40E_MAX_BUFFER_TXD - 1; 2626 frag = &skb_shinfo(skb)->frags[0]; 2627 2628 /* Initialize size to the negative value of gso_size minus 1. We 2629 * use this as the worst case scenerio in which the frag ahead 2630 * of us only provides one byte which is why we are limited to 6 2631 * descriptors for a single transmit as the header and previous 2632 * fragment are already consuming 2 descriptors. 2633 */ 2634 sum = 1 - gso_size; 2635 2636 /* Add size of frags 1 through 5 to create our initial sum */ 2637 sum += skb_frag_size(++frag); 2638 sum += skb_frag_size(++frag); 2639 sum += skb_frag_size(++frag); 2640 sum += skb_frag_size(++frag); 2641 sum += skb_frag_size(++frag); 2642 2643 /* Walk through fragments adding latest fragment, testing it, and 2644 * then removing stale fragments from the sum. 2645 */ 2646 stale = &skb_shinfo(skb)->frags[0]; 2647 for (;;) { 2648 sum += skb_frag_size(++frag); 2649 2650 /* if sum is negative we failed to make sufficient progress */ 2651 if (sum < 0) 2652 return true; 2653 2654 /* use pre-decrement to avoid processing last fragment */ 2655 if (!--nr_frags) 2656 break; 2657 2658 sum -= skb_frag_size(++stale); 2659 } 2660 2661 return false; 2662 } 2663 2664 /** 2665 * i40e_tx_map - Build the Tx descriptor 2666 * @tx_ring: ring to send buffer on 2667 * @skb: send buffer 2668 * @first: first buffer info buffer to use 2669 * @tx_flags: collected send information 2670 * @hdr_len: size of the packet header 2671 * @td_cmd: the command field in the descriptor 2672 * @td_offset: offset for checksum or crc 2673 **/ 2674 #ifdef I40E_FCOE 2675 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 2676 struct i40e_tx_buffer *first, u32 tx_flags, 2677 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2678 #else 2679 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 2680 struct i40e_tx_buffer *first, u32 tx_flags, 2681 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2682 #endif 2683 { 2684 unsigned int data_len = skb->data_len; 2685 unsigned int size = skb_headlen(skb); 2686 struct skb_frag_struct *frag; 2687 struct i40e_tx_buffer *tx_bi; 2688 struct i40e_tx_desc *tx_desc; 2689 u16 i = tx_ring->next_to_use; 2690 u32 td_tag = 0; 2691 dma_addr_t dma; 2692 u16 gso_segs; 2693 u16 desc_count = 0; 2694 bool tail_bump = true; 2695 bool do_rs = false; 2696 2697 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 2698 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 2699 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 2700 I40E_TX_FLAGS_VLAN_SHIFT; 2701 } 2702 2703 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) 2704 gso_segs = skb_shinfo(skb)->gso_segs; 2705 else 2706 gso_segs = 1; 2707 2708 /* multiply data chunks by size of headers */ 2709 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len); 2710 first->gso_segs = gso_segs; 2711 first->skb = skb; 2712 first->tx_flags = tx_flags; 2713 2714 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2715 2716 tx_desc = I40E_TX_DESC(tx_ring, i); 2717 tx_bi = first; 2718 2719 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2720 if (dma_mapping_error(tx_ring->dev, dma)) 2721 goto dma_error; 2722 2723 /* record length, and DMA address */ 2724 dma_unmap_len_set(tx_bi, len, size); 2725 dma_unmap_addr_set(tx_bi, dma, dma); 2726 2727 tx_desc->buffer_addr = cpu_to_le64(dma); 2728 2729 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 2730 tx_desc->cmd_type_offset_bsz = 2731 build_ctob(td_cmd, td_offset, 2732 I40E_MAX_DATA_PER_TXD, td_tag); 2733 2734 tx_desc++; 2735 i++; 2736 desc_count++; 2737 2738 if (i == tx_ring->count) { 2739 tx_desc = I40E_TX_DESC(tx_ring, 0); 2740 i = 0; 2741 } 2742 2743 dma += I40E_MAX_DATA_PER_TXD; 2744 size -= I40E_MAX_DATA_PER_TXD; 2745 2746 tx_desc->buffer_addr = cpu_to_le64(dma); 2747 } 2748 2749 if (likely(!data_len)) 2750 break; 2751 2752 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2753 size, td_tag); 2754 2755 tx_desc++; 2756 i++; 2757 desc_count++; 2758 2759 if (i == tx_ring->count) { 2760 tx_desc = I40E_TX_DESC(tx_ring, 0); 2761 i = 0; 2762 } 2763 2764 size = skb_frag_size(frag); 2765 data_len -= size; 2766 2767 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2768 DMA_TO_DEVICE); 2769 2770 tx_bi = &tx_ring->tx_bi[i]; 2771 } 2772 2773 /* set next_to_watch value indicating a packet is present */ 2774 first->next_to_watch = tx_desc; 2775 2776 i++; 2777 if (i == tx_ring->count) 2778 i = 0; 2779 2780 tx_ring->next_to_use = i; 2781 2782 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev, 2783 tx_ring->queue_index), 2784 first->bytecount); 2785 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 2786 2787 /* Algorithm to optimize tail and RS bit setting: 2788 * if xmit_more is supported 2789 * if xmit_more is true 2790 * do not update tail and do not mark RS bit. 2791 * if xmit_more is false and last xmit_more was false 2792 * if every packet spanned less than 4 desc 2793 * then set RS bit on 4th packet and update tail 2794 * on every packet 2795 * else 2796 * update tail and set RS bit on every packet. 2797 * if xmit_more is false and last_xmit_more was true 2798 * update tail and set RS bit. 2799 * 2800 * Optimization: wmb to be issued only in case of tail update. 2801 * Also optimize the Descriptor WB path for RS bit with the same 2802 * algorithm. 2803 * 2804 * Note: If there are less than 4 packets 2805 * pending and interrupts were disabled the service task will 2806 * trigger a force WB. 2807 */ 2808 if (skb->xmit_more && 2809 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev, 2810 tx_ring->queue_index))) { 2811 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET; 2812 tail_bump = false; 2813 } else if (!skb->xmit_more && 2814 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev, 2815 tx_ring->queue_index)) && 2816 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) && 2817 (tx_ring->packet_stride < WB_STRIDE) && 2818 (desc_count < WB_STRIDE)) { 2819 tx_ring->packet_stride++; 2820 } else { 2821 tx_ring->packet_stride = 0; 2822 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET; 2823 do_rs = true; 2824 } 2825 if (do_rs) 2826 tx_ring->packet_stride = 0; 2827 2828 tx_desc->cmd_type_offset_bsz = 2829 build_ctob(td_cmd, td_offset, size, td_tag) | 2830 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD : 2831 I40E_TX_DESC_CMD_EOP) << 2832 I40E_TXD_QW1_CMD_SHIFT); 2833 2834 /* notify HW of packet */ 2835 if (!tail_bump) 2836 prefetchw(tx_desc + 1); 2837 2838 if (tail_bump) { 2839 /* Force memory writes to complete before letting h/w 2840 * know there are new descriptors to fetch. (Only 2841 * applicable for weak-ordered memory model archs, 2842 * such as IA-64). 2843 */ 2844 wmb(); 2845 writel(i, tx_ring->tail); 2846 } 2847 2848 return; 2849 2850 dma_error: 2851 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2852 2853 /* clear dma mappings for failed tx_bi map */ 2854 for (;;) { 2855 tx_bi = &tx_ring->tx_bi[i]; 2856 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 2857 if (tx_bi == first) 2858 break; 2859 if (i == 0) 2860 i = tx_ring->count; 2861 i--; 2862 } 2863 2864 tx_ring->next_to_use = i; 2865 } 2866 2867 /** 2868 * i40e_xmit_frame_ring - Sends buffer on Tx ring 2869 * @skb: send buffer 2870 * @tx_ring: ring to send buffer on 2871 * 2872 * Returns NETDEV_TX_OK if sent, else an error code 2873 **/ 2874 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 2875 struct i40e_ring *tx_ring) 2876 { 2877 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 2878 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2879 struct i40e_tx_buffer *first; 2880 u32 td_offset = 0; 2881 u32 tx_flags = 0; 2882 __be16 protocol; 2883 u32 td_cmd = 0; 2884 u8 hdr_len = 0; 2885 int tso, count; 2886 int tsyn; 2887 2888 /* prefetch the data, we'll need it later */ 2889 prefetch(skb->data); 2890 2891 count = i40e_xmit_descriptor_count(skb); 2892 if (i40e_chk_linearize(skb, count)) { 2893 if (__skb_linearize(skb)) 2894 goto out_drop; 2895 count = TXD_USE_COUNT(skb->len); 2896 tx_ring->tx_stats.tx_linearize++; 2897 } 2898 2899 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 2900 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 2901 * + 4 desc gap to avoid the cache line where head is, 2902 * + 1 desc for context descriptor, 2903 * otherwise try next time 2904 */ 2905 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2906 tx_ring->tx_stats.tx_busy++; 2907 return NETDEV_TX_BUSY; 2908 } 2909 2910 /* prepare the xmit flags */ 2911 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 2912 goto out_drop; 2913 2914 /* obtain protocol of skb */ 2915 protocol = vlan_get_protocol(skb); 2916 2917 /* record the location of the first descriptor for this packet */ 2918 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2919 2920 /* setup IPv4/IPv6 offloads */ 2921 if (protocol == htons(ETH_P_IP)) 2922 tx_flags |= I40E_TX_FLAGS_IPV4; 2923 else if (protocol == htons(ETH_P_IPV6)) 2924 tx_flags |= I40E_TX_FLAGS_IPV6; 2925 2926 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss); 2927 2928 if (tso < 0) 2929 goto out_drop; 2930 else if (tso) 2931 tx_flags |= I40E_TX_FLAGS_TSO; 2932 2933 /* Always offload the checksum, since it's in the data descriptor */ 2934 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2935 tx_ring, &cd_tunneling); 2936 if (tso < 0) 2937 goto out_drop; 2938 2939 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 2940 2941 if (tsyn) 2942 tx_flags |= I40E_TX_FLAGS_TSYN; 2943 2944 skb_tx_timestamp(skb); 2945 2946 /* always enable CRC insertion offload */ 2947 td_cmd |= I40E_TX_DESC_CMD_ICRC; 2948 2949 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2950 cd_tunneling, cd_l2tag2); 2951 2952 /* Add Flow Director ATR if it's enabled. 2953 * 2954 * NOTE: this must always be directly before the data descriptor. 2955 */ 2956 i40e_atr(tx_ring, skb, tx_flags); 2957 2958 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2959 td_cmd, td_offset); 2960 2961 return NETDEV_TX_OK; 2962 2963 out_drop: 2964 dev_kfree_skb_any(skb); 2965 return NETDEV_TX_OK; 2966 } 2967 2968 /** 2969 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2970 * @skb: send buffer 2971 * @netdev: network interface device structure 2972 * 2973 * Returns NETDEV_TX_OK if sent, else an error code 2974 **/ 2975 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2976 { 2977 struct i40e_netdev_priv *np = netdev_priv(netdev); 2978 struct i40e_vsi *vsi = np->vsi; 2979 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 2980 2981 /* hardware can't handle really short frames, hardware padding works 2982 * beyond this point 2983 */ 2984 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 2985 return NETDEV_TX_OK; 2986 2987 return i40e_xmit_frame_ring(skb, tx_ring); 2988 } 2989