1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <linux/bpf_trace.h> 6 #include <net/xdp.h> 7 #include "i40e.h" 8 #include "i40e_trace.h" 9 #include "i40e_prototype.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 47 48 /* Use LAN VSI Id if not programmed by user */ 49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 52 53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 54 55 dtype_cmd |= add ? 56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 57 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 59 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 63 64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 66 67 if (fdata->cnt_index) { 68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 70 ((u32)fdata->cnt_index << 71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 72 } 73 74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 75 fdir_desc->rsvd = cpu_to_le32(0); 76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 78 } 79 80 #define I40E_FD_CLEAN_DELAY 10 81 /** 82 * i40e_program_fdir_filter - Program a Flow Director filter 83 * @fdir_data: Packet data that will be filter parameters 84 * @raw_packet: the pre-allocated packet buffer for FDir 85 * @pf: The PF pointer 86 * @add: True for add/update, False for remove 87 **/ 88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 89 u8 *raw_packet, struct i40e_pf *pf, 90 bool add) 91 { 92 struct i40e_tx_buffer *tx_buf, *first; 93 struct i40e_tx_desc *tx_desc; 94 struct i40e_ring *tx_ring; 95 struct i40e_vsi *vsi; 96 struct device *dev; 97 dma_addr_t dma; 98 u32 td_cmd = 0; 99 u16 i; 100 101 /* find existing FDIR VSI */ 102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 103 if (!vsi) 104 return -ENOENT; 105 106 tx_ring = vsi->tx_rings[0]; 107 dev = tx_ring->dev; 108 109 /* we need two descriptors to add/del a filter and we can wait */ 110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 111 if (!i) 112 return -EAGAIN; 113 msleep_interruptible(1); 114 } 115 116 dma = dma_map_single(dev, raw_packet, 117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 118 if (dma_mapping_error(dev, dma)) 119 goto dma_fail; 120 121 /* grab the next descriptor */ 122 i = tx_ring->next_to_use; 123 first = &tx_ring->tx_bi[i]; 124 i40e_fdir(tx_ring, fdir_data, add); 125 126 /* Now program a dummy descriptor */ 127 i = tx_ring->next_to_use; 128 tx_desc = I40E_TX_DESC(tx_ring, i); 129 tx_buf = &tx_ring->tx_bi[i]; 130 131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 132 133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 134 135 /* record length, and DMA address */ 136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 137 dma_unmap_addr_set(tx_buf, dma, dma); 138 139 tx_desc->buffer_addr = cpu_to_le64(dma); 140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 141 142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 143 tx_buf->raw_buf = (void *)raw_packet; 144 145 tx_desc->cmd_type_offset_bsz = 146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 147 148 /* Force memory writes to complete before letting h/w 149 * know there are new descriptors to fetch. 150 */ 151 wmb(); 152 153 /* Mark the data descriptor to be watched */ 154 first->next_to_watch = tx_desc; 155 156 writel(tx_ring->next_to_use, tx_ring->tail); 157 return 0; 158 159 dma_fail: 160 return -1; 161 } 162 163 #define IP_HEADER_OFFSET 14 164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 165 /** 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 167 * @vsi: pointer to the targeted VSI 168 * @fd_data: the flow director data required for the FDir descriptor 169 * @add: true adds a filter, false removes it 170 * 171 * Returns 0 if the filters were successfully added or removed 172 **/ 173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 174 struct i40e_fdir_filter *fd_data, 175 bool add) 176 { 177 struct i40e_pf *pf = vsi->back; 178 struct udphdr *udp; 179 struct iphdr *ip; 180 u8 *raw_packet; 181 int ret; 182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 185 186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 187 if (!raw_packet) 188 return -ENOMEM; 189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 190 191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 193 + sizeof(struct iphdr)); 194 195 ip->daddr = fd_data->dst_ip; 196 udp->dest = fd_data->dst_port; 197 ip->saddr = fd_data->src_ip; 198 udp->source = fd_data->src_port; 199 200 if (fd_data->flex_filter) { 201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 202 __be16 pattern = fd_data->flex_word; 203 u16 off = fd_data->flex_offset; 204 205 *((__force __be16 *)(payload + off)) = pattern; 206 } 207 208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 210 if (ret) { 211 dev_info(&pf->pdev->dev, 212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 213 fd_data->pctype, fd_data->fd_id, ret); 214 /* Free the packet buffer since it wasn't added to the ring */ 215 kfree(raw_packet); 216 return -EOPNOTSUPP; 217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 218 if (add) 219 dev_info(&pf->pdev->dev, 220 "Filter OK for PCTYPE %d loc = %d\n", 221 fd_data->pctype, fd_data->fd_id); 222 else 223 dev_info(&pf->pdev->dev, 224 "Filter deleted for PCTYPE %d loc = %d\n", 225 fd_data->pctype, fd_data->fd_id); 226 } 227 228 if (add) 229 pf->fd_udp4_filter_cnt++; 230 else 231 pf->fd_udp4_filter_cnt--; 232 233 return 0; 234 } 235 236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 237 /** 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 239 * @vsi: pointer to the targeted VSI 240 * @fd_data: the flow director data required for the FDir descriptor 241 * @add: true adds a filter, false removes it 242 * 243 * Returns 0 if the filters were successfully added or removed 244 **/ 245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 246 struct i40e_fdir_filter *fd_data, 247 bool add) 248 { 249 struct i40e_pf *pf = vsi->back; 250 struct tcphdr *tcp; 251 struct iphdr *ip; 252 u8 *raw_packet; 253 int ret; 254 /* Dummy packet */ 255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 258 0x0, 0x72, 0, 0, 0, 0}; 259 260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 261 if (!raw_packet) 262 return -ENOMEM; 263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 264 265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 267 + sizeof(struct iphdr)); 268 269 ip->daddr = fd_data->dst_ip; 270 tcp->dest = fd_data->dst_port; 271 ip->saddr = fd_data->src_ip; 272 tcp->source = fd_data->src_port; 273 274 if (fd_data->flex_filter) { 275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 276 __be16 pattern = fd_data->flex_word; 277 u16 off = fd_data->flex_offset; 278 279 *((__force __be16 *)(payload + off)) = pattern; 280 } 281 282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 284 if (ret) { 285 dev_info(&pf->pdev->dev, 286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 287 fd_data->pctype, fd_data->fd_id, ret); 288 /* Free the packet buffer since it wasn't added to the ring */ 289 kfree(raw_packet); 290 return -EOPNOTSUPP; 291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 292 if (add) 293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 294 fd_data->pctype, fd_data->fd_id); 295 else 296 dev_info(&pf->pdev->dev, 297 "Filter deleted for PCTYPE %d loc = %d\n", 298 fd_data->pctype, fd_data->fd_id); 299 } 300 301 if (add) { 302 pf->fd_tcp4_filter_cnt++; 303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 304 I40E_DEBUG_FD & pf->hw.debug_mask) 305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 307 } else { 308 pf->fd_tcp4_filter_cnt--; 309 } 310 311 return 0; 312 } 313 314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 315 /** 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 317 * a specific flow spec 318 * @vsi: pointer to the targeted VSI 319 * @fd_data: the flow director data required for the FDir descriptor 320 * @add: true adds a filter, false removes it 321 * 322 * Returns 0 if the filters were successfully added or removed 323 **/ 324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 325 struct i40e_fdir_filter *fd_data, 326 bool add) 327 { 328 struct i40e_pf *pf = vsi->back; 329 struct sctphdr *sctp; 330 struct iphdr *ip; 331 u8 *raw_packet; 332 int ret; 333 /* Dummy packet */ 334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 337 338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 339 if (!raw_packet) 340 return -ENOMEM; 341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 342 343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 345 + sizeof(struct iphdr)); 346 347 ip->daddr = fd_data->dst_ip; 348 sctp->dest = fd_data->dst_port; 349 ip->saddr = fd_data->src_ip; 350 sctp->source = fd_data->src_port; 351 352 if (fd_data->flex_filter) { 353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 354 __be16 pattern = fd_data->flex_word; 355 u16 off = fd_data->flex_offset; 356 357 *((__force __be16 *)(payload + off)) = pattern; 358 } 359 360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 362 if (ret) { 363 dev_info(&pf->pdev->dev, 364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 365 fd_data->pctype, fd_data->fd_id, ret); 366 /* Free the packet buffer since it wasn't added to the ring */ 367 kfree(raw_packet); 368 return -EOPNOTSUPP; 369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 370 if (add) 371 dev_info(&pf->pdev->dev, 372 "Filter OK for PCTYPE %d loc = %d\n", 373 fd_data->pctype, fd_data->fd_id); 374 else 375 dev_info(&pf->pdev->dev, 376 "Filter deleted for PCTYPE %d loc = %d\n", 377 fd_data->pctype, fd_data->fd_id); 378 } 379 380 if (add) 381 pf->fd_sctp4_filter_cnt++; 382 else 383 pf->fd_sctp4_filter_cnt--; 384 385 return 0; 386 } 387 388 #define I40E_IP_DUMMY_PACKET_LEN 34 389 /** 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 391 * a specific flow spec 392 * @vsi: pointer to the targeted VSI 393 * @fd_data: the flow director data required for the FDir descriptor 394 * @add: true adds a filter, false removes it 395 * 396 * Returns 0 if the filters were successfully added or removed 397 **/ 398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 399 struct i40e_fdir_filter *fd_data, 400 bool add) 401 { 402 struct i40e_pf *pf = vsi->back; 403 struct iphdr *ip; 404 u8 *raw_packet; 405 int ret; 406 int i; 407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 409 0, 0, 0, 0}; 410 411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 414 if (!raw_packet) 415 return -ENOMEM; 416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 418 419 ip->saddr = fd_data->src_ip; 420 ip->daddr = fd_data->dst_ip; 421 ip->protocol = 0; 422 423 if (fd_data->flex_filter) { 424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 425 __be16 pattern = fd_data->flex_word; 426 u16 off = fd_data->flex_offset; 427 428 *((__force __be16 *)(payload + off)) = pattern; 429 } 430 431 fd_data->pctype = i; 432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 433 if (ret) { 434 dev_info(&pf->pdev->dev, 435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 436 fd_data->pctype, fd_data->fd_id, ret); 437 /* The packet buffer wasn't added to the ring so we 438 * need to free it now. 439 */ 440 kfree(raw_packet); 441 return -EOPNOTSUPP; 442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 443 if (add) 444 dev_info(&pf->pdev->dev, 445 "Filter OK for PCTYPE %d loc = %d\n", 446 fd_data->pctype, fd_data->fd_id); 447 else 448 dev_info(&pf->pdev->dev, 449 "Filter deleted for PCTYPE %d loc = %d\n", 450 fd_data->pctype, fd_data->fd_id); 451 } 452 } 453 454 if (add) 455 pf->fd_ip4_filter_cnt++; 456 else 457 pf->fd_ip4_filter_cnt--; 458 459 return 0; 460 } 461 462 /** 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 464 * @vsi: pointer to the targeted VSI 465 * @input: filter to add or delete 466 * @add: true adds a filter, false removes it 467 * 468 **/ 469 int i40e_add_del_fdir(struct i40e_vsi *vsi, 470 struct i40e_fdir_filter *input, bool add) 471 { 472 struct i40e_pf *pf = vsi->back; 473 int ret; 474 475 switch (input->flow_type & ~FLOW_EXT) { 476 case TCP_V4_FLOW: 477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 478 break; 479 case UDP_V4_FLOW: 480 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 481 break; 482 case SCTP_V4_FLOW: 483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 484 break; 485 case IP_USER_FLOW: 486 switch (input->ip4_proto) { 487 case IPPROTO_TCP: 488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 489 break; 490 case IPPROTO_UDP: 491 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 492 break; 493 case IPPROTO_SCTP: 494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 495 break; 496 case IPPROTO_IP: 497 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 498 break; 499 default: 500 /* We cannot support masking based on protocol */ 501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 502 input->ip4_proto); 503 return -EINVAL; 504 } 505 break; 506 default: 507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 508 input->flow_type); 509 return -EINVAL; 510 } 511 512 /* The buffer allocated here will be normally be freed by 513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 514 * completion. In the event of an error adding the buffer to the FDIR 515 * ring, it will immediately be freed. It may also be freed by 516 * i40e_clean_tx_ring() when closing the VSI. 517 */ 518 return ret; 519 } 520 521 /** 522 * i40e_fd_handle_status - check the Programming Status for FD 523 * @rx_ring: the Rx ring for this descriptor 524 * @qword0_raw: qword0 525 * @qword1: qword1 after le_to_cpu 526 * @prog_id: the id originally used for programming 527 * 528 * This is used to verify if the FD programming or invalidation 529 * requested by SW to the HW is successful or not and take actions accordingly. 530 **/ 531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 532 u64 qword1, u8 prog_id) 533 { 534 struct i40e_pf *pf = rx_ring->vsi->back; 535 struct pci_dev *pdev = pf->pdev; 536 struct i40e_32b_rx_wb_qw0 *qw0; 537 u32 fcnt_prog, fcnt_avail; 538 u32 error; 539 540 qw0 = (struct i40e_32b_rx_wb_qw0 *)&qword0_raw; 541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 543 544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 546 if (qw0->hi_dword.fd_id != 0 || 547 (I40E_DEBUG_FD & pf->hw.debug_mask)) 548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 549 pf->fd_inv); 550 551 /* Check if the programming error is for ATR. 552 * If so, auto disable ATR and set a state for 553 * flush in progress. Next time we come here if flush is in 554 * progress do nothing, once flush is complete the state will 555 * be cleared. 556 */ 557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 558 return; 559 560 pf->fd_add_err++; 561 /* store the current atr filter count */ 562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 563 564 if (qw0->hi_dword.fd_id == 0 && 565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 566 /* These set_bit() calls aren't atomic with the 567 * test_bit() here, but worse case we potentially 568 * disable ATR and queue a flush right after SB 569 * support is re-enabled. That shouldn't cause an 570 * issue in practice 571 */ 572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 574 } 575 576 /* filter programming failed most likely due to table full */ 577 fcnt_prog = i40e_get_global_fd_count(pf); 578 fcnt_avail = pf->fdir_pf_filter_count; 579 /* If ATR is running fcnt_prog can quickly change, 580 * if we are very close to full, it makes sense to disable 581 * FD ATR/SB and then re-enable it when there is room. 582 */ 583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 586 pf->state)) 587 if (I40E_DEBUG_FD & pf->hw.debug_mask) 588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 589 } 590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 591 if (I40E_DEBUG_FD & pf->hw.debug_mask) 592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 593 qw0->hi_dword.fd_id); 594 } 595 } 596 597 /** 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 599 * @ring: the ring that owns the buffer 600 * @tx_buffer: the buffer to free 601 **/ 602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 603 struct i40e_tx_buffer *tx_buffer) 604 { 605 if (tx_buffer->skb) { 606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 607 kfree(tx_buffer->raw_buf); 608 else if (ring_is_xdp(ring)) 609 xdp_return_frame(tx_buffer->xdpf); 610 else 611 dev_kfree_skb_any(tx_buffer->skb); 612 if (dma_unmap_len(tx_buffer, len)) 613 dma_unmap_single(ring->dev, 614 dma_unmap_addr(tx_buffer, dma), 615 dma_unmap_len(tx_buffer, len), 616 DMA_TO_DEVICE); 617 } else if (dma_unmap_len(tx_buffer, len)) { 618 dma_unmap_page(ring->dev, 619 dma_unmap_addr(tx_buffer, dma), 620 dma_unmap_len(tx_buffer, len), 621 DMA_TO_DEVICE); 622 } 623 624 tx_buffer->next_to_watch = NULL; 625 tx_buffer->skb = NULL; 626 dma_unmap_len_set(tx_buffer, len, 0); 627 /* tx_buffer must be completely set up in the transmit path */ 628 } 629 630 /** 631 * i40e_clean_tx_ring - Free any empty Tx buffers 632 * @tx_ring: ring to be cleaned 633 **/ 634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 635 { 636 unsigned long bi_size; 637 u16 i; 638 639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) { 640 i40e_xsk_clean_tx_ring(tx_ring); 641 } else { 642 /* ring already cleared, nothing to do */ 643 if (!tx_ring->tx_bi) 644 return; 645 646 /* Free all the Tx ring sk_buffs */ 647 for (i = 0; i < tx_ring->count; i++) 648 i40e_unmap_and_free_tx_resource(tx_ring, 649 &tx_ring->tx_bi[i]); 650 } 651 652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 653 memset(tx_ring->tx_bi, 0, bi_size); 654 655 /* Zero out the descriptor ring */ 656 memset(tx_ring->desc, 0, tx_ring->size); 657 658 tx_ring->next_to_use = 0; 659 tx_ring->next_to_clean = 0; 660 661 if (!tx_ring->netdev) 662 return; 663 664 /* cleanup Tx queue statistics */ 665 netdev_tx_reset_queue(txring_txq(tx_ring)); 666 } 667 668 /** 669 * i40e_free_tx_resources - Free Tx resources per queue 670 * @tx_ring: Tx descriptor ring for a specific queue 671 * 672 * Free all transmit software resources 673 **/ 674 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 675 { 676 i40e_clean_tx_ring(tx_ring); 677 kfree(tx_ring->tx_bi); 678 tx_ring->tx_bi = NULL; 679 680 if (tx_ring->desc) { 681 dma_free_coherent(tx_ring->dev, tx_ring->size, 682 tx_ring->desc, tx_ring->dma); 683 tx_ring->desc = NULL; 684 } 685 } 686 687 /** 688 * i40e_get_tx_pending - how many tx descriptors not processed 689 * @ring: the ring of descriptors 690 * @in_sw: use SW variables 691 * 692 * Since there is no access to the ring head register 693 * in XL710, we need to use our local copies 694 **/ 695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 696 { 697 u32 head, tail; 698 699 if (!in_sw) { 700 head = i40e_get_head(ring); 701 tail = readl(ring->tail); 702 } else { 703 head = ring->next_to_clean; 704 tail = ring->next_to_use; 705 } 706 707 if (head != tail) 708 return (head < tail) ? 709 tail - head : (tail + ring->count - head); 710 711 return 0; 712 } 713 714 /** 715 * i40e_detect_recover_hung - Function to detect and recover hung_queues 716 * @vsi: pointer to vsi struct with tx queues 717 * 718 * VSI has netdev and netdev has TX queues. This function is to check each of 719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 720 **/ 721 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 722 { 723 struct i40e_ring *tx_ring = NULL; 724 struct net_device *netdev; 725 unsigned int i; 726 int packets; 727 728 if (!vsi) 729 return; 730 731 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 732 return; 733 734 netdev = vsi->netdev; 735 if (!netdev) 736 return; 737 738 if (!netif_carrier_ok(netdev)) 739 return; 740 741 for (i = 0; i < vsi->num_queue_pairs; i++) { 742 tx_ring = vsi->tx_rings[i]; 743 if (tx_ring && tx_ring->desc) { 744 /* If packet counter has not changed the queue is 745 * likely stalled, so force an interrupt for this 746 * queue. 747 * 748 * prev_pkt_ctr would be negative if there was no 749 * pending work. 750 */ 751 packets = tx_ring->stats.packets & INT_MAX; 752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 753 i40e_force_wb(vsi, tx_ring->q_vector); 754 continue; 755 } 756 757 /* Memory barrier between read of packet count and call 758 * to i40e_get_tx_pending() 759 */ 760 smp_rmb(); 761 tx_ring->tx_stats.prev_pkt_ctr = 762 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 763 } 764 } 765 } 766 767 /** 768 * i40e_clean_tx_irq - Reclaim resources after transmit completes 769 * @vsi: the VSI we care about 770 * @tx_ring: Tx ring to clean 771 * @napi_budget: Used to determine if we are in netpoll 772 * 773 * Returns true if there's any budget left (e.g. the clean is finished) 774 **/ 775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 776 struct i40e_ring *tx_ring, int napi_budget) 777 { 778 int i = tx_ring->next_to_clean; 779 struct i40e_tx_buffer *tx_buf; 780 struct i40e_tx_desc *tx_head; 781 struct i40e_tx_desc *tx_desc; 782 unsigned int total_bytes = 0, total_packets = 0; 783 unsigned int budget = vsi->work_limit; 784 785 tx_buf = &tx_ring->tx_bi[i]; 786 tx_desc = I40E_TX_DESC(tx_ring, i); 787 i -= tx_ring->count; 788 789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 790 791 do { 792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 793 794 /* if next_to_watch is not set then there is no work pending */ 795 if (!eop_desc) 796 break; 797 798 /* prevent any other reads prior to eop_desc */ 799 smp_rmb(); 800 801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 802 /* we have caught up to head, no work left to do */ 803 if (tx_head == tx_desc) 804 break; 805 806 /* clear next_to_watch to prevent false hangs */ 807 tx_buf->next_to_watch = NULL; 808 809 /* update the statistics for this packet */ 810 total_bytes += tx_buf->bytecount; 811 total_packets += tx_buf->gso_segs; 812 813 /* free the skb/XDP data */ 814 if (ring_is_xdp(tx_ring)) 815 xdp_return_frame(tx_buf->xdpf); 816 else 817 napi_consume_skb(tx_buf->skb, napi_budget); 818 819 /* unmap skb header data */ 820 dma_unmap_single(tx_ring->dev, 821 dma_unmap_addr(tx_buf, dma), 822 dma_unmap_len(tx_buf, len), 823 DMA_TO_DEVICE); 824 825 /* clear tx_buffer data */ 826 tx_buf->skb = NULL; 827 dma_unmap_len_set(tx_buf, len, 0); 828 829 /* unmap remaining buffers */ 830 while (tx_desc != eop_desc) { 831 i40e_trace(clean_tx_irq_unmap, 832 tx_ring, tx_desc, tx_buf); 833 834 tx_buf++; 835 tx_desc++; 836 i++; 837 if (unlikely(!i)) { 838 i -= tx_ring->count; 839 tx_buf = tx_ring->tx_bi; 840 tx_desc = I40E_TX_DESC(tx_ring, 0); 841 } 842 843 /* unmap any remaining paged data */ 844 if (dma_unmap_len(tx_buf, len)) { 845 dma_unmap_page(tx_ring->dev, 846 dma_unmap_addr(tx_buf, dma), 847 dma_unmap_len(tx_buf, len), 848 DMA_TO_DEVICE); 849 dma_unmap_len_set(tx_buf, len, 0); 850 } 851 } 852 853 /* move us one more past the eop_desc for start of next pkt */ 854 tx_buf++; 855 tx_desc++; 856 i++; 857 if (unlikely(!i)) { 858 i -= tx_ring->count; 859 tx_buf = tx_ring->tx_bi; 860 tx_desc = I40E_TX_DESC(tx_ring, 0); 861 } 862 863 prefetch(tx_desc); 864 865 /* update budget accounting */ 866 budget--; 867 } while (likely(budget)); 868 869 i += tx_ring->count; 870 tx_ring->next_to_clean = i; 871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 872 i40e_arm_wb(tx_ring, vsi, budget); 873 874 if (ring_is_xdp(tx_ring)) 875 return !!budget; 876 877 /* notify netdev of completed buffers */ 878 netdev_tx_completed_queue(txring_txq(tx_ring), 879 total_packets, total_bytes); 880 881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 884 /* Make sure that anybody stopping the queue after this 885 * sees the new next_to_clean. 886 */ 887 smp_mb(); 888 if (__netif_subqueue_stopped(tx_ring->netdev, 889 tx_ring->queue_index) && 890 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 891 netif_wake_subqueue(tx_ring->netdev, 892 tx_ring->queue_index); 893 ++tx_ring->tx_stats.restart_queue; 894 } 895 } 896 897 return !!budget; 898 } 899 900 /** 901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 902 * @vsi: the VSI we care about 903 * @q_vector: the vector on which to enable writeback 904 * 905 **/ 906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 907 struct i40e_q_vector *q_vector) 908 { 909 u16 flags = q_vector->tx.ring[0].flags; 910 u32 val; 911 912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 913 return; 914 915 if (q_vector->arm_wb_state) 916 return; 917 918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 921 922 wr32(&vsi->back->hw, 923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 924 val); 925 } else { 926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 928 929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 930 } 931 q_vector->arm_wb_state = true; 932 } 933 934 /** 935 * i40e_force_wb - Issue SW Interrupt so HW does a wb 936 * @vsi: the VSI we care about 937 * @q_vector: the vector on which to force writeback 938 * 939 **/ 940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 941 { 942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 947 /* allow 00 to be written to the index */ 948 949 wr32(&vsi->back->hw, 950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 951 } else { 952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 956 /* allow 00 to be written to the index */ 957 958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 959 } 960 } 961 962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 963 struct i40e_ring_container *rc) 964 { 965 return &q_vector->rx == rc; 966 } 967 968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 969 { 970 unsigned int divisor; 971 972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 973 case I40E_LINK_SPEED_40GB: 974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 975 break; 976 case I40E_LINK_SPEED_25GB: 977 case I40E_LINK_SPEED_20GB: 978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 979 break; 980 default: 981 case I40E_LINK_SPEED_10GB: 982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 983 break; 984 case I40E_LINK_SPEED_1GB: 985 case I40E_LINK_SPEED_100MB: 986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 987 break; 988 } 989 990 return divisor; 991 } 992 993 /** 994 * i40e_update_itr - update the dynamic ITR value based on statistics 995 * @q_vector: structure containing interrupt and ring information 996 * @rc: structure containing ring performance data 997 * 998 * Stores a new ITR value based on packets and byte 999 * counts during the last interrupt. The advantage of per interrupt 1000 * computation is faster updates and more accurate ITR for the current 1001 * traffic pattern. Constants in this function were computed 1002 * based on theoretical maximum wire speed and thresholds were set based 1003 * on testing data as well as attempting to minimize response time 1004 * while increasing bulk throughput. 1005 **/ 1006 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1007 struct i40e_ring_container *rc) 1008 { 1009 unsigned int avg_wire_size, packets, bytes, itr; 1010 unsigned long next_update = jiffies; 1011 1012 /* If we don't have any rings just leave ourselves set for maximum 1013 * possible latency so we take ourselves out of the equation. 1014 */ 1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1016 return; 1017 1018 /* For Rx we want to push the delay up and default to low latency. 1019 * for Tx we want to pull the delay down and default to high latency. 1020 */ 1021 itr = i40e_container_is_rx(q_vector, rc) ? 1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1024 1025 /* If we didn't update within up to 1 - 2 jiffies we can assume 1026 * that either packets are coming in so slow there hasn't been 1027 * any work, or that there is so much work that NAPI is dealing 1028 * with interrupt moderation and we don't need to do anything. 1029 */ 1030 if (time_after(next_update, rc->next_update)) 1031 goto clear_counts; 1032 1033 /* If itr_countdown is set it means we programmed an ITR within 1034 * the last 4 interrupt cycles. This has a side effect of us 1035 * potentially firing an early interrupt. In order to work around 1036 * this we need to throw out any data received for a few 1037 * interrupts following the update. 1038 */ 1039 if (q_vector->itr_countdown) { 1040 itr = rc->target_itr; 1041 goto clear_counts; 1042 } 1043 1044 packets = rc->total_packets; 1045 bytes = rc->total_bytes; 1046 1047 if (i40e_container_is_rx(q_vector, rc)) { 1048 /* If Rx there are 1 to 4 packets and bytes are less than 1049 * 9000 assume insufficient data to use bulk rate limiting 1050 * approach unless Tx is already in bulk rate limiting. We 1051 * are likely latency driven. 1052 */ 1053 if (packets && packets < 4 && bytes < 9000 && 1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1055 itr = I40E_ITR_ADAPTIVE_LATENCY; 1056 goto adjust_by_size; 1057 } 1058 } else if (packets < 4) { 1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1060 * bulk mode and we are receiving 4 or fewer packets just 1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1062 * that the Rx can relax. 1063 */ 1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1065 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1066 I40E_ITR_ADAPTIVE_MAX_USECS) 1067 goto clear_counts; 1068 } else if (packets > 32) { 1069 /* If we have processed over 32 packets in a single interrupt 1070 * for Tx assume we need to switch over to "bulk" mode. 1071 */ 1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1073 } 1074 1075 /* We have no packets to actually measure against. This means 1076 * either one of the other queues on this vector is active or 1077 * we are a Tx queue doing TSO with too high of an interrupt rate. 1078 * 1079 * Between 4 and 56 we can assume that our current interrupt delay 1080 * is only slightly too low. As such we should increase it by a small 1081 * fixed amount. 1082 */ 1083 if (packets < 56) { 1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1086 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1088 } 1089 goto clear_counts; 1090 } 1091 1092 if (packets <= 256) { 1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1094 itr &= I40E_ITR_MASK; 1095 1096 /* Between 56 and 112 is our "goldilocks" zone where we are 1097 * working out "just right". Just report that our current 1098 * ITR is good for us. 1099 */ 1100 if (packets <= 112) 1101 goto clear_counts; 1102 1103 /* If packet count is 128 or greater we are likely looking 1104 * at a slight overrun of the delay we want. Try halving 1105 * our delay to see if that will cut the number of packets 1106 * in half per interrupt. 1107 */ 1108 itr /= 2; 1109 itr &= I40E_ITR_MASK; 1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1112 1113 goto clear_counts; 1114 } 1115 1116 /* The paths below assume we are dealing with a bulk ITR since 1117 * number of packets is greater than 256. We are just going to have 1118 * to compute a value and try to bring the count under control, 1119 * though for smaller packet sizes there isn't much we can do as 1120 * NAPI polling will likely be kicking in sooner rather than later. 1121 */ 1122 itr = I40E_ITR_ADAPTIVE_BULK; 1123 1124 adjust_by_size: 1125 /* If packet counts are 256 or greater we can assume we have a gross 1126 * overestimation of what the rate should be. Instead of trying to fine 1127 * tune it just use the formula below to try and dial in an exact value 1128 * give the current packet size of the frame. 1129 */ 1130 avg_wire_size = bytes / packets; 1131 1132 /* The following is a crude approximation of: 1133 * wmem_default / (size + overhead) = desired_pkts_per_int 1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1136 * 1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1139 * formula down to 1140 * 1141 * (170 * (size + 24)) / (size + 640) = ITR 1142 * 1143 * We first do some math on the packet size and then finally bitshift 1144 * by 8 after rounding up. We also have to account for PCIe link speed 1145 * difference as ITR scales based on this. 1146 */ 1147 if (avg_wire_size <= 60) { 1148 /* Start at 250k ints/sec */ 1149 avg_wire_size = 4096; 1150 } else if (avg_wire_size <= 380) { 1151 /* 250K ints/sec to 60K ints/sec */ 1152 avg_wire_size *= 40; 1153 avg_wire_size += 1696; 1154 } else if (avg_wire_size <= 1084) { 1155 /* 60K ints/sec to 36K ints/sec */ 1156 avg_wire_size *= 15; 1157 avg_wire_size += 11452; 1158 } else if (avg_wire_size <= 1980) { 1159 /* 36K ints/sec to 30K ints/sec */ 1160 avg_wire_size *= 5; 1161 avg_wire_size += 22420; 1162 } else { 1163 /* plateau at a limit of 30K ints/sec */ 1164 avg_wire_size = 32256; 1165 } 1166 1167 /* If we are in low latency mode halve our delay which doubles the 1168 * rate to somewhere between 100K to 16K ints/sec 1169 */ 1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1171 avg_wire_size /= 2; 1172 1173 /* Resultant value is 256 times larger than it needs to be. This 1174 * gives us room to adjust the value as needed to either increase 1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1176 * 1177 * Use addition as we have already recorded the new latency flag 1178 * for the ITR value. 1179 */ 1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1181 I40E_ITR_ADAPTIVE_MIN_INC; 1182 1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1184 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1186 } 1187 1188 clear_counts: 1189 /* write back value */ 1190 rc->target_itr = itr; 1191 1192 /* next update should occur within next jiffy */ 1193 rc->next_update = next_update + 1; 1194 1195 rc->total_bytes = 0; 1196 rc->total_packets = 0; 1197 } 1198 1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1200 { 1201 return &rx_ring->rx_bi[idx]; 1202 } 1203 1204 /** 1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1206 * @rx_ring: rx descriptor ring to store buffers on 1207 * @old_buff: donor buffer to have page reused 1208 * 1209 * Synchronizes page for reuse by the adapter 1210 **/ 1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1212 struct i40e_rx_buffer *old_buff) 1213 { 1214 struct i40e_rx_buffer *new_buff; 1215 u16 nta = rx_ring->next_to_alloc; 1216 1217 new_buff = i40e_rx_bi(rx_ring, nta); 1218 1219 /* update, and store next to alloc */ 1220 nta++; 1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1222 1223 /* transfer page from old buffer to new buffer */ 1224 new_buff->dma = old_buff->dma; 1225 new_buff->page = old_buff->page; 1226 new_buff->page_offset = old_buff->page_offset; 1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1228 1229 rx_ring->rx_stats.page_reuse_count++; 1230 1231 /* clear contents of buffer_info */ 1232 old_buff->page = NULL; 1233 } 1234 1235 /** 1236 * i40e_clean_programming_status - clean the programming status descriptor 1237 * @rx_ring: the rx ring that has this descriptor 1238 * @qword0_raw: qword0 1239 * @qword1: qword1 representing status_error_len in CPU ordering 1240 * 1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1242 * status being successful or not and take actions accordingly. FCoE should 1243 * handle its context/filter programming/invalidation status and take actions. 1244 * 1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1246 **/ 1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1248 u64 qword1) 1249 { 1250 u8 id; 1251 1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1254 1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1257 } 1258 1259 /** 1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1261 * @tx_ring: the tx ring to set up 1262 * 1263 * Return 0 on success, negative on error 1264 **/ 1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1266 { 1267 struct device *dev = tx_ring->dev; 1268 int bi_size; 1269 1270 if (!dev) 1271 return -ENOMEM; 1272 1273 /* warn if we are about to overwrite the pointer */ 1274 WARN_ON(tx_ring->tx_bi); 1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1277 if (!tx_ring->tx_bi) 1278 goto err; 1279 1280 u64_stats_init(&tx_ring->syncp); 1281 1282 /* round up to nearest 4K */ 1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1284 /* add u32 for head writeback, align after this takes care of 1285 * guaranteeing this is at least one cache line in size 1286 */ 1287 tx_ring->size += sizeof(u32); 1288 tx_ring->size = ALIGN(tx_ring->size, 4096); 1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1290 &tx_ring->dma, GFP_KERNEL); 1291 if (!tx_ring->desc) { 1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1293 tx_ring->size); 1294 goto err; 1295 } 1296 1297 tx_ring->next_to_use = 0; 1298 tx_ring->next_to_clean = 0; 1299 tx_ring->tx_stats.prev_pkt_ctr = -1; 1300 return 0; 1301 1302 err: 1303 kfree(tx_ring->tx_bi); 1304 tx_ring->tx_bi = NULL; 1305 return -ENOMEM; 1306 } 1307 1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring) 1309 { 1310 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count; 1311 1312 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL); 1313 return rx_ring->rx_bi ? 0 : -ENOMEM; 1314 } 1315 1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1317 { 1318 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1319 } 1320 1321 /** 1322 * i40e_clean_rx_ring - Free Rx buffers 1323 * @rx_ring: ring to be cleaned 1324 **/ 1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1326 { 1327 u16 i; 1328 1329 /* ring already cleared, nothing to do */ 1330 if (!rx_ring->rx_bi) 1331 return; 1332 1333 if (rx_ring->skb) { 1334 dev_kfree_skb(rx_ring->skb); 1335 rx_ring->skb = NULL; 1336 } 1337 1338 if (rx_ring->xsk_umem) { 1339 i40e_xsk_clean_rx_ring(rx_ring); 1340 goto skip_free; 1341 } 1342 1343 /* Free all the Rx ring sk_buffs */ 1344 for (i = 0; i < rx_ring->count; i++) { 1345 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1346 1347 if (!rx_bi->page) 1348 continue; 1349 1350 /* Invalidate cache lines that may have been written to by 1351 * device so that we avoid corrupting memory. 1352 */ 1353 dma_sync_single_range_for_cpu(rx_ring->dev, 1354 rx_bi->dma, 1355 rx_bi->page_offset, 1356 rx_ring->rx_buf_len, 1357 DMA_FROM_DEVICE); 1358 1359 /* free resources associated with mapping */ 1360 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1361 i40e_rx_pg_size(rx_ring), 1362 DMA_FROM_DEVICE, 1363 I40E_RX_DMA_ATTR); 1364 1365 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1366 1367 rx_bi->page = NULL; 1368 rx_bi->page_offset = 0; 1369 } 1370 1371 skip_free: 1372 if (rx_ring->xsk_umem) 1373 i40e_clear_rx_bi_zc(rx_ring); 1374 else 1375 i40e_clear_rx_bi(rx_ring); 1376 1377 /* Zero out the descriptor ring */ 1378 memset(rx_ring->desc, 0, rx_ring->size); 1379 1380 rx_ring->next_to_alloc = 0; 1381 rx_ring->next_to_clean = 0; 1382 rx_ring->next_to_use = 0; 1383 } 1384 1385 /** 1386 * i40e_free_rx_resources - Free Rx resources 1387 * @rx_ring: ring to clean the resources from 1388 * 1389 * Free all receive software resources 1390 **/ 1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1392 { 1393 i40e_clean_rx_ring(rx_ring); 1394 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1396 rx_ring->xdp_prog = NULL; 1397 kfree(rx_ring->rx_bi); 1398 rx_ring->rx_bi = NULL; 1399 1400 if (rx_ring->desc) { 1401 dma_free_coherent(rx_ring->dev, rx_ring->size, 1402 rx_ring->desc, rx_ring->dma); 1403 rx_ring->desc = NULL; 1404 } 1405 } 1406 1407 /** 1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1410 * 1411 * Returns 0 on success, negative on failure 1412 **/ 1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1414 { 1415 struct device *dev = rx_ring->dev; 1416 int err; 1417 1418 u64_stats_init(&rx_ring->syncp); 1419 1420 /* Round up to nearest 4K */ 1421 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1422 rx_ring->size = ALIGN(rx_ring->size, 4096); 1423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1424 &rx_ring->dma, GFP_KERNEL); 1425 1426 if (!rx_ring->desc) { 1427 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1428 rx_ring->size); 1429 return -ENOMEM; 1430 } 1431 1432 rx_ring->next_to_alloc = 0; 1433 rx_ring->next_to_clean = 0; 1434 rx_ring->next_to_use = 0; 1435 1436 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1437 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1438 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1439 rx_ring->queue_index); 1440 if (err < 0) 1441 return err; 1442 } 1443 1444 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1445 1446 return 0; 1447 } 1448 1449 /** 1450 * i40e_release_rx_desc - Store the new tail and head values 1451 * @rx_ring: ring to bump 1452 * @val: new head index 1453 **/ 1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1455 { 1456 rx_ring->next_to_use = val; 1457 1458 /* update next to alloc since we have filled the ring */ 1459 rx_ring->next_to_alloc = val; 1460 1461 /* Force memory writes to complete before letting h/w 1462 * know there are new descriptors to fetch. (Only 1463 * applicable for weak-ordered memory model archs, 1464 * such as IA-64). 1465 */ 1466 wmb(); 1467 writel(val, rx_ring->tail); 1468 } 1469 1470 /** 1471 * i40e_rx_offset - Return expected offset into page to access data 1472 * @rx_ring: Ring we are requesting offset of 1473 * 1474 * Returns the offset value for ring into the data buffer. 1475 */ 1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1477 { 1478 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1479 } 1480 1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1482 unsigned int size) 1483 { 1484 unsigned int truesize; 1485 1486 #if (PAGE_SIZE < 8192) 1487 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1488 #else 1489 truesize = i40e_rx_offset(rx_ring) ? 1490 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) + 1491 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1492 SKB_DATA_ALIGN(size); 1493 #endif 1494 return truesize; 1495 } 1496 1497 /** 1498 * i40e_alloc_mapped_page - recycle or make a new page 1499 * @rx_ring: ring to use 1500 * @bi: rx_buffer struct to modify 1501 * 1502 * Returns true if the page was successfully allocated or 1503 * reused. 1504 **/ 1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1506 struct i40e_rx_buffer *bi) 1507 { 1508 struct page *page = bi->page; 1509 dma_addr_t dma; 1510 1511 /* since we are recycling buffers we should seldom need to alloc */ 1512 if (likely(page)) { 1513 rx_ring->rx_stats.page_reuse_count++; 1514 return true; 1515 } 1516 1517 /* alloc new page for storage */ 1518 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1519 if (unlikely(!page)) { 1520 rx_ring->rx_stats.alloc_page_failed++; 1521 return false; 1522 } 1523 1524 /* map page for use */ 1525 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1526 i40e_rx_pg_size(rx_ring), 1527 DMA_FROM_DEVICE, 1528 I40E_RX_DMA_ATTR); 1529 1530 /* if mapping failed free memory back to system since 1531 * there isn't much point in holding memory we can't use 1532 */ 1533 if (dma_mapping_error(rx_ring->dev, dma)) { 1534 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1535 rx_ring->rx_stats.alloc_page_failed++; 1536 return false; 1537 } 1538 1539 bi->dma = dma; 1540 bi->page = page; 1541 bi->page_offset = i40e_rx_offset(rx_ring); 1542 page_ref_add(page, USHRT_MAX - 1); 1543 bi->pagecnt_bias = USHRT_MAX; 1544 1545 return true; 1546 } 1547 1548 /** 1549 * i40e_alloc_rx_buffers - Replace used receive buffers 1550 * @rx_ring: ring to place buffers on 1551 * @cleaned_count: number of buffers to replace 1552 * 1553 * Returns false if all allocations were successful, true if any fail 1554 **/ 1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1556 { 1557 u16 ntu = rx_ring->next_to_use; 1558 union i40e_rx_desc *rx_desc; 1559 struct i40e_rx_buffer *bi; 1560 1561 /* do nothing if no valid netdev defined */ 1562 if (!rx_ring->netdev || !cleaned_count) 1563 return false; 1564 1565 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1566 bi = i40e_rx_bi(rx_ring, ntu); 1567 1568 do { 1569 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1570 goto no_buffers; 1571 1572 /* sync the buffer for use by the device */ 1573 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1574 bi->page_offset, 1575 rx_ring->rx_buf_len, 1576 DMA_FROM_DEVICE); 1577 1578 /* Refresh the desc even if buffer_addrs didn't change 1579 * because each write-back erases this info. 1580 */ 1581 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1582 1583 rx_desc++; 1584 bi++; 1585 ntu++; 1586 if (unlikely(ntu == rx_ring->count)) { 1587 rx_desc = I40E_RX_DESC(rx_ring, 0); 1588 bi = i40e_rx_bi(rx_ring, 0); 1589 ntu = 0; 1590 } 1591 1592 /* clear the status bits for the next_to_use descriptor */ 1593 rx_desc->wb.qword1.status_error_len = 0; 1594 1595 cleaned_count--; 1596 } while (cleaned_count); 1597 1598 if (rx_ring->next_to_use != ntu) 1599 i40e_release_rx_desc(rx_ring, ntu); 1600 1601 return false; 1602 1603 no_buffers: 1604 if (rx_ring->next_to_use != ntu) 1605 i40e_release_rx_desc(rx_ring, ntu); 1606 1607 /* make sure to come back via polling to try again after 1608 * allocation failure 1609 */ 1610 return true; 1611 } 1612 1613 /** 1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1615 * @vsi: the VSI we care about 1616 * @skb: skb currently being received and modified 1617 * @rx_desc: the receive descriptor 1618 **/ 1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1620 struct sk_buff *skb, 1621 union i40e_rx_desc *rx_desc) 1622 { 1623 struct i40e_rx_ptype_decoded decoded; 1624 u32 rx_error, rx_status; 1625 bool ipv4, ipv6; 1626 u8 ptype; 1627 u64 qword; 1628 1629 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1630 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1631 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1632 I40E_RXD_QW1_ERROR_SHIFT; 1633 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1634 I40E_RXD_QW1_STATUS_SHIFT; 1635 decoded = decode_rx_desc_ptype(ptype); 1636 1637 skb->ip_summed = CHECKSUM_NONE; 1638 1639 skb_checksum_none_assert(skb); 1640 1641 /* Rx csum enabled and ip headers found? */ 1642 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1643 return; 1644 1645 /* did the hardware decode the packet and checksum? */ 1646 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1647 return; 1648 1649 /* both known and outer_ip must be set for the below code to work */ 1650 if (!(decoded.known && decoded.outer_ip)) 1651 return; 1652 1653 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1654 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1655 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1656 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1657 1658 if (ipv4 && 1659 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1660 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1661 goto checksum_fail; 1662 1663 /* likely incorrect csum if alternate IP extension headers found */ 1664 if (ipv6 && 1665 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1666 /* don't increment checksum err here, non-fatal err */ 1667 return; 1668 1669 /* there was some L4 error, count error and punt packet to the stack */ 1670 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1671 goto checksum_fail; 1672 1673 /* handle packets that were not able to be checksummed due 1674 * to arrival speed, in this case the stack can compute 1675 * the csum. 1676 */ 1677 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1678 return; 1679 1680 /* If there is an outer header present that might contain a checksum 1681 * we need to bump the checksum level by 1 to reflect the fact that 1682 * we are indicating we validated the inner checksum. 1683 */ 1684 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1685 skb->csum_level = 1; 1686 1687 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1688 switch (decoded.inner_prot) { 1689 case I40E_RX_PTYPE_INNER_PROT_TCP: 1690 case I40E_RX_PTYPE_INNER_PROT_UDP: 1691 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1692 skb->ip_summed = CHECKSUM_UNNECESSARY; 1693 fallthrough; 1694 default: 1695 break; 1696 } 1697 1698 return; 1699 1700 checksum_fail: 1701 vsi->back->hw_csum_rx_error++; 1702 } 1703 1704 /** 1705 * i40e_ptype_to_htype - get a hash type 1706 * @ptype: the ptype value from the descriptor 1707 * 1708 * Returns a hash type to be used by skb_set_hash 1709 **/ 1710 static inline int i40e_ptype_to_htype(u8 ptype) 1711 { 1712 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1713 1714 if (!decoded.known) 1715 return PKT_HASH_TYPE_NONE; 1716 1717 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1719 return PKT_HASH_TYPE_L4; 1720 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1721 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1722 return PKT_HASH_TYPE_L3; 1723 else 1724 return PKT_HASH_TYPE_L2; 1725 } 1726 1727 /** 1728 * i40e_rx_hash - set the hash value in the skb 1729 * @ring: descriptor ring 1730 * @rx_desc: specific descriptor 1731 * @skb: skb currently being received and modified 1732 * @rx_ptype: Rx packet type 1733 **/ 1734 static inline void i40e_rx_hash(struct i40e_ring *ring, 1735 union i40e_rx_desc *rx_desc, 1736 struct sk_buff *skb, 1737 u8 rx_ptype) 1738 { 1739 u32 hash; 1740 const __le64 rss_mask = 1741 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1742 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1743 1744 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1745 return; 1746 1747 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1748 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1749 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1750 } 1751 } 1752 1753 /** 1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1755 * @rx_ring: rx descriptor ring packet is being transacted on 1756 * @rx_desc: pointer to the EOP Rx descriptor 1757 * @skb: pointer to current skb being populated 1758 * @rx_ptype: the packet type decoded by hardware 1759 * 1760 * This function checks the ring, descriptor, and packet information in 1761 * order to populate the hash, checksum, VLAN, protocol, and 1762 * other fields within the skb. 1763 **/ 1764 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1765 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1766 { 1767 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1768 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1769 I40E_RXD_QW1_STATUS_SHIFT; 1770 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1771 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1772 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1773 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1774 I40E_RXD_QW1_PTYPE_SHIFT; 1775 1776 if (unlikely(tsynvalid)) 1777 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1778 1779 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1780 1781 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1782 1783 skb_record_rx_queue(skb, rx_ring->queue_index); 1784 1785 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1786 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1787 1788 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1789 le16_to_cpu(vlan_tag)); 1790 } 1791 1792 /* modifies the skb - consumes the enet header */ 1793 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1794 } 1795 1796 /** 1797 * i40e_cleanup_headers - Correct empty headers 1798 * @rx_ring: rx descriptor ring packet is being transacted on 1799 * @skb: pointer to current skb being fixed 1800 * @rx_desc: pointer to the EOP Rx descriptor 1801 * 1802 * Also address the case where we are pulling data in on pages only 1803 * and as such no data is present in the skb header. 1804 * 1805 * In addition if skb is not at least 60 bytes we need to pad it so that 1806 * it is large enough to qualify as a valid Ethernet frame. 1807 * 1808 * Returns true if an error was encountered and skb was freed. 1809 **/ 1810 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1811 union i40e_rx_desc *rx_desc) 1812 1813 { 1814 /* XDP packets use error pointer so abort at this point */ 1815 if (IS_ERR(skb)) 1816 return true; 1817 1818 /* ERR_MASK will only have valid bits if EOP set, and 1819 * what we are doing here is actually checking 1820 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1821 * the error field 1822 */ 1823 if (unlikely(i40e_test_staterr(rx_desc, 1824 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1825 dev_kfree_skb_any(skb); 1826 return true; 1827 } 1828 1829 /* if eth_skb_pad returns an error the skb was freed */ 1830 if (eth_skb_pad(skb)) 1831 return true; 1832 1833 return false; 1834 } 1835 1836 /** 1837 * i40e_page_is_reusable - check if any reuse is possible 1838 * @page: page struct to check 1839 * 1840 * A page is not reusable if it was allocated under low memory 1841 * conditions, or it's not in the same NUMA node as this CPU. 1842 */ 1843 static inline bool i40e_page_is_reusable(struct page *page) 1844 { 1845 return (page_to_nid(page) == numa_mem_id()) && 1846 !page_is_pfmemalloc(page); 1847 } 1848 1849 /** 1850 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1851 * the adapter for another receive 1852 * 1853 * @rx_buffer: buffer containing the page 1854 * 1855 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1856 * an unused region in the page. 1857 * 1858 * For small pages, @truesize will be a constant value, half the size 1859 * of the memory at page. We'll attempt to alternate between high and 1860 * low halves of the page, with one half ready for use by the hardware 1861 * and the other half being consumed by the stack. We use the page 1862 * ref count to determine whether the stack has finished consuming the 1863 * portion of this page that was passed up with a previous packet. If 1864 * the page ref count is >1, we'll assume the "other" half page is 1865 * still busy, and this page cannot be reused. 1866 * 1867 * For larger pages, @truesize will be the actual space used by the 1868 * received packet (adjusted upward to an even multiple of the cache 1869 * line size). This will advance through the page by the amount 1870 * actually consumed by the received packets while there is still 1871 * space for a buffer. Each region of larger pages will be used at 1872 * most once, after which the page will not be reused. 1873 * 1874 * In either case, if the page is reusable its refcount is increased. 1875 **/ 1876 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1877 { 1878 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1879 struct page *page = rx_buffer->page; 1880 1881 /* Is any reuse possible? */ 1882 if (unlikely(!i40e_page_is_reusable(page))) 1883 return false; 1884 1885 #if (PAGE_SIZE < 8192) 1886 /* if we are only owner of page we can reuse it */ 1887 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1888 return false; 1889 #else 1890 #define I40E_LAST_OFFSET \ 1891 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1892 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1893 return false; 1894 #endif 1895 1896 /* If we have drained the page fragment pool we need to update 1897 * the pagecnt_bias and page count so that we fully restock the 1898 * number of references the driver holds. 1899 */ 1900 if (unlikely(pagecnt_bias == 1)) { 1901 page_ref_add(page, USHRT_MAX - 1); 1902 rx_buffer->pagecnt_bias = USHRT_MAX; 1903 } 1904 1905 return true; 1906 } 1907 1908 /** 1909 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1910 * @rx_ring: rx descriptor ring to transact packets on 1911 * @rx_buffer: buffer containing page to add 1912 * @skb: sk_buff to place the data into 1913 * @size: packet length from rx_desc 1914 * 1915 * This function will add the data contained in rx_buffer->page to the skb. 1916 * It will just attach the page as a frag to the skb. 1917 * 1918 * The function will then update the page offset. 1919 **/ 1920 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1921 struct i40e_rx_buffer *rx_buffer, 1922 struct sk_buff *skb, 1923 unsigned int size) 1924 { 1925 #if (PAGE_SIZE < 8192) 1926 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1927 #else 1928 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1929 #endif 1930 1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1932 rx_buffer->page_offset, size, truesize); 1933 1934 /* page is being used so we must update the page offset */ 1935 #if (PAGE_SIZE < 8192) 1936 rx_buffer->page_offset ^= truesize; 1937 #else 1938 rx_buffer->page_offset += truesize; 1939 #endif 1940 } 1941 1942 /** 1943 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1944 * @rx_ring: rx descriptor ring to transact packets on 1945 * @size: size of buffer to add to skb 1946 * 1947 * This function will pull an Rx buffer from the ring and synchronize it 1948 * for use by the CPU. 1949 */ 1950 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1951 const unsigned int size) 1952 { 1953 struct i40e_rx_buffer *rx_buffer; 1954 1955 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 1956 prefetchw(rx_buffer->page); 1957 1958 /* we are reusing so sync this buffer for CPU use */ 1959 dma_sync_single_range_for_cpu(rx_ring->dev, 1960 rx_buffer->dma, 1961 rx_buffer->page_offset, 1962 size, 1963 DMA_FROM_DEVICE); 1964 1965 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1966 rx_buffer->pagecnt_bias--; 1967 1968 return rx_buffer; 1969 } 1970 1971 /** 1972 * i40e_construct_skb - Allocate skb and populate it 1973 * @rx_ring: rx descriptor ring to transact packets on 1974 * @rx_buffer: rx buffer to pull data from 1975 * @xdp: xdp_buff pointing to the data 1976 * 1977 * This function allocates an skb. It then populates it with the page 1978 * data from the current receive descriptor, taking care to set up the 1979 * skb correctly. 1980 */ 1981 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 1982 struct i40e_rx_buffer *rx_buffer, 1983 struct xdp_buff *xdp) 1984 { 1985 unsigned int size = xdp->data_end - xdp->data; 1986 #if (PAGE_SIZE < 8192) 1987 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1988 #else 1989 unsigned int truesize = SKB_DATA_ALIGN(size); 1990 #endif 1991 unsigned int headlen; 1992 struct sk_buff *skb; 1993 1994 /* prefetch first cache line of first page */ 1995 prefetch(xdp->data); 1996 #if L1_CACHE_BYTES < 128 1997 prefetch(xdp->data + L1_CACHE_BYTES); 1998 #endif 1999 /* Note, we get here by enabling legacy-rx via: 2000 * 2001 * ethtool --set-priv-flags <dev> legacy-rx on 2002 * 2003 * In this mode, we currently get 0 extra XDP headroom as 2004 * opposed to having legacy-rx off, where we process XDP 2005 * packets going to stack via i40e_build_skb(). The latter 2006 * provides us currently with 192 bytes of headroom. 2007 * 2008 * For i40e_construct_skb() mode it means that the 2009 * xdp->data_meta will always point to xdp->data, since 2010 * the helper cannot expand the head. Should this ever 2011 * change in future for legacy-rx mode on, then lets also 2012 * add xdp->data_meta handling here. 2013 */ 2014 2015 /* allocate a skb to store the frags */ 2016 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2017 I40E_RX_HDR_SIZE, 2018 GFP_ATOMIC | __GFP_NOWARN); 2019 if (unlikely(!skb)) 2020 return NULL; 2021 2022 /* Determine available headroom for copy */ 2023 headlen = size; 2024 if (headlen > I40E_RX_HDR_SIZE) 2025 headlen = eth_get_headlen(skb->dev, xdp->data, 2026 I40E_RX_HDR_SIZE); 2027 2028 /* align pull length to size of long to optimize memcpy performance */ 2029 memcpy(__skb_put(skb, headlen), xdp->data, 2030 ALIGN(headlen, sizeof(long))); 2031 2032 /* update all of the pointers */ 2033 size -= headlen; 2034 if (size) { 2035 skb_add_rx_frag(skb, 0, rx_buffer->page, 2036 rx_buffer->page_offset + headlen, 2037 size, truesize); 2038 2039 /* buffer is used by skb, update page_offset */ 2040 #if (PAGE_SIZE < 8192) 2041 rx_buffer->page_offset ^= truesize; 2042 #else 2043 rx_buffer->page_offset += truesize; 2044 #endif 2045 } else { 2046 /* buffer is unused, reset bias back to rx_buffer */ 2047 rx_buffer->pagecnt_bias++; 2048 } 2049 2050 return skb; 2051 } 2052 2053 /** 2054 * i40e_build_skb - Build skb around an existing buffer 2055 * @rx_ring: Rx descriptor ring to transact packets on 2056 * @rx_buffer: Rx buffer to pull data from 2057 * @xdp: xdp_buff pointing to the data 2058 * 2059 * This function builds an skb around an existing Rx buffer, taking care 2060 * to set up the skb correctly and avoid any memcpy overhead. 2061 */ 2062 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2063 struct i40e_rx_buffer *rx_buffer, 2064 struct xdp_buff *xdp) 2065 { 2066 unsigned int metasize = xdp->data - xdp->data_meta; 2067 #if (PAGE_SIZE < 8192) 2068 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2069 #else 2070 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2071 SKB_DATA_ALIGN(xdp->data_end - 2072 xdp->data_hard_start); 2073 #endif 2074 struct sk_buff *skb; 2075 2076 /* Prefetch first cache line of first page. If xdp->data_meta 2077 * is unused, this points exactly as xdp->data, otherwise we 2078 * likely have a consumer accessing first few bytes of meta 2079 * data, and then actual data. 2080 */ 2081 prefetch(xdp->data_meta); 2082 #if L1_CACHE_BYTES < 128 2083 prefetch(xdp->data_meta + L1_CACHE_BYTES); 2084 #endif 2085 /* build an skb around the page buffer */ 2086 skb = build_skb(xdp->data_hard_start, truesize); 2087 if (unlikely(!skb)) 2088 return NULL; 2089 2090 /* update pointers within the skb to store the data */ 2091 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2092 __skb_put(skb, xdp->data_end - xdp->data); 2093 if (metasize) 2094 skb_metadata_set(skb, metasize); 2095 2096 /* buffer is used by skb, update page_offset */ 2097 #if (PAGE_SIZE < 8192) 2098 rx_buffer->page_offset ^= truesize; 2099 #else 2100 rx_buffer->page_offset += truesize; 2101 #endif 2102 2103 return skb; 2104 } 2105 2106 /** 2107 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2108 * @rx_ring: rx descriptor ring to transact packets on 2109 * @rx_buffer: rx buffer to pull data from 2110 * 2111 * This function will clean up the contents of the rx_buffer. It will 2112 * either recycle the buffer or unmap it and free the associated resources. 2113 */ 2114 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2115 struct i40e_rx_buffer *rx_buffer) 2116 { 2117 if (i40e_can_reuse_rx_page(rx_buffer)) { 2118 /* hand second half of page back to the ring */ 2119 i40e_reuse_rx_page(rx_ring, rx_buffer); 2120 } else { 2121 /* we are not reusing the buffer so unmap it */ 2122 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2123 i40e_rx_pg_size(rx_ring), 2124 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2125 __page_frag_cache_drain(rx_buffer->page, 2126 rx_buffer->pagecnt_bias); 2127 /* clear contents of buffer_info */ 2128 rx_buffer->page = NULL; 2129 } 2130 } 2131 2132 /** 2133 * i40e_is_non_eop - process handling of non-EOP buffers 2134 * @rx_ring: Rx ring being processed 2135 * @rx_desc: Rx descriptor for current buffer 2136 * @skb: Current socket buffer containing buffer in progress 2137 * 2138 * This function updates next to clean. If the buffer is an EOP buffer 2139 * this function exits returning false, otherwise it will place the 2140 * sk_buff in the next buffer to be chained and return true indicating 2141 * that this is in fact a non-EOP buffer. 2142 **/ 2143 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2144 union i40e_rx_desc *rx_desc, 2145 struct sk_buff *skb) 2146 { 2147 u32 ntc = rx_ring->next_to_clean + 1; 2148 2149 /* fetch, update, and store next to clean */ 2150 ntc = (ntc < rx_ring->count) ? ntc : 0; 2151 rx_ring->next_to_clean = ntc; 2152 2153 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2154 2155 /* if we are the last buffer then there is nothing else to do */ 2156 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2157 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2158 return false; 2159 2160 rx_ring->rx_stats.non_eop_descs++; 2161 2162 return true; 2163 } 2164 2165 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2166 struct i40e_ring *xdp_ring); 2167 2168 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2169 { 2170 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2171 2172 if (unlikely(!xdpf)) 2173 return I40E_XDP_CONSUMED; 2174 2175 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2176 } 2177 2178 /** 2179 * i40e_run_xdp - run an XDP program 2180 * @rx_ring: Rx ring being processed 2181 * @xdp: XDP buffer containing the frame 2182 **/ 2183 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2184 struct xdp_buff *xdp) 2185 { 2186 int err, result = I40E_XDP_PASS; 2187 struct i40e_ring *xdp_ring; 2188 struct bpf_prog *xdp_prog; 2189 u32 act; 2190 2191 rcu_read_lock(); 2192 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2193 2194 if (!xdp_prog) 2195 goto xdp_out; 2196 2197 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2198 2199 act = bpf_prog_run_xdp(xdp_prog, xdp); 2200 switch (act) { 2201 case XDP_PASS: 2202 break; 2203 case XDP_TX: 2204 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2205 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2206 break; 2207 case XDP_REDIRECT: 2208 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2209 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 2210 break; 2211 default: 2212 bpf_warn_invalid_xdp_action(act); 2213 fallthrough; 2214 case XDP_ABORTED: 2215 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2216 fallthrough; /* handle aborts by dropping packet */ 2217 case XDP_DROP: 2218 result = I40E_XDP_CONSUMED; 2219 break; 2220 } 2221 xdp_out: 2222 rcu_read_unlock(); 2223 return ERR_PTR(-result); 2224 } 2225 2226 /** 2227 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2228 * @rx_ring: Rx ring 2229 * @rx_buffer: Rx buffer to adjust 2230 * @size: Size of adjustment 2231 **/ 2232 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2233 struct i40e_rx_buffer *rx_buffer, 2234 unsigned int size) 2235 { 2236 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size); 2237 2238 #if (PAGE_SIZE < 8192) 2239 rx_buffer->page_offset ^= truesize; 2240 #else 2241 rx_buffer->page_offset += truesize; 2242 #endif 2243 } 2244 2245 /** 2246 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2247 * @xdp_ring: XDP Tx ring 2248 * 2249 * This function updates the XDP Tx ring tail register. 2250 **/ 2251 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2252 { 2253 /* Force memory writes to complete before letting h/w 2254 * know there are new descriptors to fetch. 2255 */ 2256 wmb(); 2257 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2258 } 2259 2260 /** 2261 * i40e_update_rx_stats - Update Rx ring statistics 2262 * @rx_ring: rx descriptor ring 2263 * @total_rx_bytes: number of bytes received 2264 * @total_rx_packets: number of packets received 2265 * 2266 * This function updates the Rx ring statistics. 2267 **/ 2268 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2269 unsigned int total_rx_bytes, 2270 unsigned int total_rx_packets) 2271 { 2272 u64_stats_update_begin(&rx_ring->syncp); 2273 rx_ring->stats.packets += total_rx_packets; 2274 rx_ring->stats.bytes += total_rx_bytes; 2275 u64_stats_update_end(&rx_ring->syncp); 2276 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2277 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2278 } 2279 2280 /** 2281 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2282 * @rx_ring: Rx ring 2283 * @xdp_res: Result of the receive batch 2284 * 2285 * This function bumps XDP Tx tail and/or flush redirect map, and 2286 * should be called when a batch of packets has been processed in the 2287 * napi loop. 2288 **/ 2289 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2290 { 2291 if (xdp_res & I40E_XDP_REDIR) 2292 xdp_do_flush_map(); 2293 2294 if (xdp_res & I40E_XDP_TX) { 2295 struct i40e_ring *xdp_ring = 2296 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2297 2298 i40e_xdp_ring_update_tail(xdp_ring); 2299 } 2300 } 2301 2302 /** 2303 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2304 * @rx_ring: rx descriptor ring to transact packets on 2305 * @budget: Total limit on number of packets to process 2306 * 2307 * This function provides a "bounce buffer" approach to Rx interrupt 2308 * processing. The advantage to this is that on systems that have 2309 * expensive overhead for IOMMU access this provides a means of avoiding 2310 * it by maintaining the mapping of the page to the system. 2311 * 2312 * Returns amount of work completed 2313 **/ 2314 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2315 { 2316 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2317 struct sk_buff *skb = rx_ring->skb; 2318 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2319 unsigned int xdp_xmit = 0; 2320 bool failure = false; 2321 struct xdp_buff xdp; 2322 2323 #if (PAGE_SIZE < 8192) 2324 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0); 2325 #endif 2326 xdp.rxq = &rx_ring->xdp_rxq; 2327 2328 while (likely(total_rx_packets < (unsigned int)budget)) { 2329 struct i40e_rx_buffer *rx_buffer; 2330 union i40e_rx_desc *rx_desc; 2331 unsigned int size; 2332 u64 qword; 2333 2334 /* return some buffers to hardware, one at a time is too slow */ 2335 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2336 failure = failure || 2337 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2338 cleaned_count = 0; 2339 } 2340 2341 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2342 2343 /* status_error_len will always be zero for unused descriptors 2344 * because it's cleared in cleanup, and overlaps with hdr_addr 2345 * which is always zero because packet split isn't used, if the 2346 * hardware wrote DD then the length will be non-zero 2347 */ 2348 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2349 2350 /* This memory barrier is needed to keep us from reading 2351 * any other fields out of the rx_desc until we have 2352 * verified the descriptor has been written back. 2353 */ 2354 dma_rmb(); 2355 2356 if (i40e_rx_is_programming_status(qword)) { 2357 i40e_clean_programming_status(rx_ring, 2358 rx_desc->raw.qword[0], 2359 qword); 2360 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2361 i40e_inc_ntc(rx_ring); 2362 i40e_reuse_rx_page(rx_ring, rx_buffer); 2363 cleaned_count++; 2364 continue; 2365 } 2366 2367 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2368 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2369 if (!size) 2370 break; 2371 2372 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2373 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2374 2375 /* retrieve a buffer from the ring */ 2376 if (!skb) { 2377 xdp.data = page_address(rx_buffer->page) + 2378 rx_buffer->page_offset; 2379 xdp.data_meta = xdp.data; 2380 xdp.data_hard_start = xdp.data - 2381 i40e_rx_offset(rx_ring); 2382 xdp.data_end = xdp.data + size; 2383 #if (PAGE_SIZE > 4096) 2384 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2385 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2386 #endif 2387 skb = i40e_run_xdp(rx_ring, &xdp); 2388 } 2389 2390 if (IS_ERR(skb)) { 2391 unsigned int xdp_res = -PTR_ERR(skb); 2392 2393 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2394 xdp_xmit |= xdp_res; 2395 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2396 } else { 2397 rx_buffer->pagecnt_bias++; 2398 } 2399 total_rx_bytes += size; 2400 total_rx_packets++; 2401 } else if (skb) { 2402 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2403 } else if (ring_uses_build_skb(rx_ring)) { 2404 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2405 } else { 2406 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2407 } 2408 2409 /* exit if we failed to retrieve a buffer */ 2410 if (!skb) { 2411 rx_ring->rx_stats.alloc_buff_failed++; 2412 rx_buffer->pagecnt_bias++; 2413 break; 2414 } 2415 2416 i40e_put_rx_buffer(rx_ring, rx_buffer); 2417 cleaned_count++; 2418 2419 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2420 continue; 2421 2422 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2423 skb = NULL; 2424 continue; 2425 } 2426 2427 /* probably a little skewed due to removing CRC */ 2428 total_rx_bytes += skb->len; 2429 2430 /* populate checksum, VLAN, and protocol */ 2431 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2432 2433 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2434 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2435 skb = NULL; 2436 2437 /* update budget accounting */ 2438 total_rx_packets++; 2439 } 2440 2441 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2442 rx_ring->skb = skb; 2443 2444 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2445 2446 /* guarantee a trip back through this routine if there was a failure */ 2447 return failure ? budget : (int)total_rx_packets; 2448 } 2449 2450 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2451 { 2452 u32 val; 2453 2454 /* We don't bother with setting the CLEARPBA bit as the data sheet 2455 * points out doing so is "meaningless since it was already 2456 * auto-cleared". The auto-clearing happens when the interrupt is 2457 * asserted. 2458 * 2459 * Hardware errata 28 for also indicates that writing to a 2460 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2461 * an event in the PBA anyway so we need to rely on the automask 2462 * to hold pending events for us until the interrupt is re-enabled 2463 * 2464 * The itr value is reported in microseconds, and the register 2465 * value is recorded in 2 microsecond units. For this reason we 2466 * only need to shift by the interval shift - 1 instead of the 2467 * full value. 2468 */ 2469 itr &= I40E_ITR_MASK; 2470 2471 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2472 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2473 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2474 2475 return val; 2476 } 2477 2478 /* a small macro to shorten up some long lines */ 2479 #define INTREG I40E_PFINT_DYN_CTLN 2480 2481 /* The act of updating the ITR will cause it to immediately trigger. In order 2482 * to prevent this from throwing off adaptive update statistics we defer the 2483 * update so that it can only happen so often. So after either Tx or Rx are 2484 * updated we make the adaptive scheme wait until either the ITR completely 2485 * expires via the next_update expiration or we have been through at least 2486 * 3 interrupts. 2487 */ 2488 #define ITR_COUNTDOWN_START 3 2489 2490 /** 2491 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2492 * @vsi: the VSI we care about 2493 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2494 * 2495 **/ 2496 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2497 struct i40e_q_vector *q_vector) 2498 { 2499 struct i40e_hw *hw = &vsi->back->hw; 2500 u32 intval; 2501 2502 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2503 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2504 i40e_irq_dynamic_enable_icr0(vsi->back); 2505 return; 2506 } 2507 2508 /* These will do nothing if dynamic updates are not enabled */ 2509 i40e_update_itr(q_vector, &q_vector->tx); 2510 i40e_update_itr(q_vector, &q_vector->rx); 2511 2512 /* This block of logic allows us to get away with only updating 2513 * one ITR value with each interrupt. The idea is to perform a 2514 * pseudo-lazy update with the following criteria. 2515 * 2516 * 1. Rx is given higher priority than Tx if both are in same state 2517 * 2. If we must reduce an ITR that is given highest priority. 2518 * 3. We then give priority to increasing ITR based on amount. 2519 */ 2520 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2521 /* Rx ITR needs to be reduced, this is highest priority */ 2522 intval = i40e_buildreg_itr(I40E_RX_ITR, 2523 q_vector->rx.target_itr); 2524 q_vector->rx.current_itr = q_vector->rx.target_itr; 2525 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2526 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2527 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2528 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2529 /* Tx ITR needs to be reduced, this is second priority 2530 * Tx ITR needs to be increased more than Rx, fourth priority 2531 */ 2532 intval = i40e_buildreg_itr(I40E_TX_ITR, 2533 q_vector->tx.target_itr); 2534 q_vector->tx.current_itr = q_vector->tx.target_itr; 2535 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2536 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2537 /* Rx ITR needs to be increased, third priority */ 2538 intval = i40e_buildreg_itr(I40E_RX_ITR, 2539 q_vector->rx.target_itr); 2540 q_vector->rx.current_itr = q_vector->rx.target_itr; 2541 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2542 } else { 2543 /* No ITR update, lowest priority */ 2544 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2545 if (q_vector->itr_countdown) 2546 q_vector->itr_countdown--; 2547 } 2548 2549 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2550 wr32(hw, INTREG(q_vector->reg_idx), intval); 2551 } 2552 2553 /** 2554 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2555 * @napi: napi struct with our devices info in it 2556 * @budget: amount of work driver is allowed to do this pass, in packets 2557 * 2558 * This function will clean all queues associated with a q_vector. 2559 * 2560 * Returns the amount of work done 2561 **/ 2562 int i40e_napi_poll(struct napi_struct *napi, int budget) 2563 { 2564 struct i40e_q_vector *q_vector = 2565 container_of(napi, struct i40e_q_vector, napi); 2566 struct i40e_vsi *vsi = q_vector->vsi; 2567 struct i40e_ring *ring; 2568 bool clean_complete = true; 2569 bool arm_wb = false; 2570 int budget_per_ring; 2571 int work_done = 0; 2572 2573 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2574 napi_complete(napi); 2575 return 0; 2576 } 2577 2578 /* Since the actual Tx work is minimal, we can give the Tx a larger 2579 * budget and be more aggressive about cleaning up the Tx descriptors. 2580 */ 2581 i40e_for_each_ring(ring, q_vector->tx) { 2582 bool wd = ring->xsk_umem ? 2583 i40e_clean_xdp_tx_irq(vsi, ring) : 2584 i40e_clean_tx_irq(vsi, ring, budget); 2585 2586 if (!wd) { 2587 clean_complete = false; 2588 continue; 2589 } 2590 arm_wb |= ring->arm_wb; 2591 ring->arm_wb = false; 2592 } 2593 2594 /* Handle case where we are called by netpoll with a budget of 0 */ 2595 if (budget <= 0) 2596 goto tx_only; 2597 2598 /* normally we have 1 Rx ring per q_vector */ 2599 if (unlikely(q_vector->num_ringpairs > 1)) 2600 /* We attempt to distribute budget to each Rx queue fairly, but 2601 * don't allow the budget to go below 1 because that would exit 2602 * polling early. 2603 */ 2604 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2605 else 2606 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2607 budget_per_ring = budget; 2608 2609 i40e_for_each_ring(ring, q_vector->rx) { 2610 int cleaned = ring->xsk_umem ? 2611 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2612 i40e_clean_rx_irq(ring, budget_per_ring); 2613 2614 work_done += cleaned; 2615 /* if we clean as many as budgeted, we must not be done */ 2616 if (cleaned >= budget_per_ring) 2617 clean_complete = false; 2618 } 2619 2620 /* If work not completed, return budget and polling will return */ 2621 if (!clean_complete) { 2622 int cpu_id = smp_processor_id(); 2623 2624 /* It is possible that the interrupt affinity has changed but, 2625 * if the cpu is pegged at 100%, polling will never exit while 2626 * traffic continues and the interrupt will be stuck on this 2627 * cpu. We check to make sure affinity is correct before we 2628 * continue to poll, otherwise we must stop polling so the 2629 * interrupt can move to the correct cpu. 2630 */ 2631 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2632 /* Tell napi that we are done polling */ 2633 napi_complete_done(napi, work_done); 2634 2635 /* Force an interrupt */ 2636 i40e_force_wb(vsi, q_vector); 2637 2638 /* Return budget-1 so that polling stops */ 2639 return budget - 1; 2640 } 2641 tx_only: 2642 if (arm_wb) { 2643 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2644 i40e_enable_wb_on_itr(vsi, q_vector); 2645 } 2646 return budget; 2647 } 2648 2649 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2650 q_vector->arm_wb_state = false; 2651 2652 /* Exit the polling mode, but don't re-enable interrupts if stack might 2653 * poll us due to busy-polling 2654 */ 2655 if (likely(napi_complete_done(napi, work_done))) 2656 i40e_update_enable_itr(vsi, q_vector); 2657 2658 return min(work_done, budget - 1); 2659 } 2660 2661 /** 2662 * i40e_atr - Add a Flow Director ATR filter 2663 * @tx_ring: ring to add programming descriptor to 2664 * @skb: send buffer 2665 * @tx_flags: send tx flags 2666 **/ 2667 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2668 u32 tx_flags) 2669 { 2670 struct i40e_filter_program_desc *fdir_desc; 2671 struct i40e_pf *pf = tx_ring->vsi->back; 2672 union { 2673 unsigned char *network; 2674 struct iphdr *ipv4; 2675 struct ipv6hdr *ipv6; 2676 } hdr; 2677 struct tcphdr *th; 2678 unsigned int hlen; 2679 u32 flex_ptype, dtype_cmd; 2680 int l4_proto; 2681 u16 i; 2682 2683 /* make sure ATR is enabled */ 2684 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2685 return; 2686 2687 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2688 return; 2689 2690 /* if sampling is disabled do nothing */ 2691 if (!tx_ring->atr_sample_rate) 2692 return; 2693 2694 /* Currently only IPv4/IPv6 with TCP is supported */ 2695 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2696 return; 2697 2698 /* snag network header to get L4 type and address */ 2699 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2700 skb_inner_network_header(skb) : skb_network_header(skb); 2701 2702 /* Note: tx_flags gets modified to reflect inner protocols in 2703 * tx_enable_csum function if encap is enabled. 2704 */ 2705 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2706 /* access ihl as u8 to avoid unaligned access on ia64 */ 2707 hlen = (hdr.network[0] & 0x0F) << 2; 2708 l4_proto = hdr.ipv4->protocol; 2709 } else { 2710 /* find the start of the innermost ipv6 header */ 2711 unsigned int inner_hlen = hdr.network - skb->data; 2712 unsigned int h_offset = inner_hlen; 2713 2714 /* this function updates h_offset to the end of the header */ 2715 l4_proto = 2716 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2717 /* hlen will contain our best estimate of the tcp header */ 2718 hlen = h_offset - inner_hlen; 2719 } 2720 2721 if (l4_proto != IPPROTO_TCP) 2722 return; 2723 2724 th = (struct tcphdr *)(hdr.network + hlen); 2725 2726 /* Due to lack of space, no more new filters can be programmed */ 2727 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2728 return; 2729 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2730 /* HW ATR eviction will take care of removing filters on FIN 2731 * and RST packets. 2732 */ 2733 if (th->fin || th->rst) 2734 return; 2735 } 2736 2737 tx_ring->atr_count++; 2738 2739 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2740 if (!th->fin && 2741 !th->syn && 2742 !th->rst && 2743 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2744 return; 2745 2746 tx_ring->atr_count = 0; 2747 2748 /* grab the next descriptor */ 2749 i = tx_ring->next_to_use; 2750 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2751 2752 i++; 2753 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2754 2755 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2756 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2757 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2758 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2759 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2760 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2761 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2762 2763 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2764 2765 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2766 2767 dtype_cmd |= (th->fin || th->rst) ? 2768 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2769 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2770 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2771 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2772 2773 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2774 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2775 2776 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2777 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2778 2779 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2780 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2781 dtype_cmd |= 2782 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2783 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2784 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2785 else 2786 dtype_cmd |= 2787 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2788 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2789 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2790 2791 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2792 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2793 2794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2795 fdir_desc->rsvd = cpu_to_le32(0); 2796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2797 fdir_desc->fd_id = cpu_to_le32(0); 2798 } 2799 2800 /** 2801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2802 * @skb: send buffer 2803 * @tx_ring: ring to send buffer on 2804 * @flags: the tx flags to be set 2805 * 2806 * Checks the skb and set up correspondingly several generic transmit flags 2807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2808 * 2809 * Returns error code indicate the frame should be dropped upon error and the 2810 * otherwise returns 0 to indicate the flags has been set properly. 2811 **/ 2812 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2813 struct i40e_ring *tx_ring, 2814 u32 *flags) 2815 { 2816 __be16 protocol = skb->protocol; 2817 u32 tx_flags = 0; 2818 2819 if (protocol == htons(ETH_P_8021Q) && 2820 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2821 /* When HW VLAN acceleration is turned off by the user the 2822 * stack sets the protocol to 8021q so that the driver 2823 * can take any steps required to support the SW only 2824 * VLAN handling. In our case the driver doesn't need 2825 * to take any further steps so just set the protocol 2826 * to the encapsulated ethertype. 2827 */ 2828 skb->protocol = vlan_get_protocol(skb); 2829 goto out; 2830 } 2831 2832 /* if we have a HW VLAN tag being added, default to the HW one */ 2833 if (skb_vlan_tag_present(skb)) { 2834 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2835 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2836 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2837 } else if (protocol == htons(ETH_P_8021Q)) { 2838 struct vlan_hdr *vhdr, _vhdr; 2839 2840 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2841 if (!vhdr) 2842 return -EINVAL; 2843 2844 protocol = vhdr->h_vlan_encapsulated_proto; 2845 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2846 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2847 } 2848 2849 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2850 goto out; 2851 2852 /* Insert 802.1p priority into VLAN header */ 2853 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2854 (skb->priority != TC_PRIO_CONTROL)) { 2855 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2856 tx_flags |= (skb->priority & 0x7) << 2857 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2858 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2859 struct vlan_ethhdr *vhdr; 2860 int rc; 2861 2862 rc = skb_cow_head(skb, 0); 2863 if (rc < 0) 2864 return rc; 2865 vhdr = (struct vlan_ethhdr *)skb->data; 2866 vhdr->h_vlan_TCI = htons(tx_flags >> 2867 I40E_TX_FLAGS_VLAN_SHIFT); 2868 } else { 2869 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2870 } 2871 } 2872 2873 out: 2874 *flags = tx_flags; 2875 return 0; 2876 } 2877 2878 /** 2879 * i40e_tso - set up the tso context descriptor 2880 * @first: pointer to first Tx buffer for xmit 2881 * @hdr_len: ptr to the size of the packet header 2882 * @cd_type_cmd_tso_mss: Quad Word 1 2883 * 2884 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2885 **/ 2886 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2887 u64 *cd_type_cmd_tso_mss) 2888 { 2889 struct sk_buff *skb = first->skb; 2890 u64 cd_cmd, cd_tso_len, cd_mss; 2891 union { 2892 struct iphdr *v4; 2893 struct ipv6hdr *v6; 2894 unsigned char *hdr; 2895 } ip; 2896 union { 2897 struct tcphdr *tcp; 2898 struct udphdr *udp; 2899 unsigned char *hdr; 2900 } l4; 2901 u32 paylen, l4_offset; 2902 u16 gso_segs, gso_size; 2903 int err; 2904 2905 if (skb->ip_summed != CHECKSUM_PARTIAL) 2906 return 0; 2907 2908 if (!skb_is_gso(skb)) 2909 return 0; 2910 2911 err = skb_cow_head(skb, 0); 2912 if (err < 0) 2913 return err; 2914 2915 ip.hdr = skb_network_header(skb); 2916 l4.hdr = skb_transport_header(skb); 2917 2918 /* initialize outer IP header fields */ 2919 if (ip.v4->version == 4) { 2920 ip.v4->tot_len = 0; 2921 ip.v4->check = 0; 2922 } else { 2923 ip.v6->payload_len = 0; 2924 } 2925 2926 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2927 SKB_GSO_GRE_CSUM | 2928 SKB_GSO_IPXIP4 | 2929 SKB_GSO_IPXIP6 | 2930 SKB_GSO_UDP_TUNNEL | 2931 SKB_GSO_UDP_TUNNEL_CSUM)) { 2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2933 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2934 l4.udp->len = 0; 2935 2936 /* determine offset of outer transport header */ 2937 l4_offset = l4.hdr - skb->data; 2938 2939 /* remove payload length from outer checksum */ 2940 paylen = skb->len - l4_offset; 2941 csum_replace_by_diff(&l4.udp->check, 2942 (__force __wsum)htonl(paylen)); 2943 } 2944 2945 /* reset pointers to inner headers */ 2946 ip.hdr = skb_inner_network_header(skb); 2947 l4.hdr = skb_inner_transport_header(skb); 2948 2949 /* initialize inner IP header fields */ 2950 if (ip.v4->version == 4) { 2951 ip.v4->tot_len = 0; 2952 ip.v4->check = 0; 2953 } else { 2954 ip.v6->payload_len = 0; 2955 } 2956 } 2957 2958 /* determine offset of inner transport header */ 2959 l4_offset = l4.hdr - skb->data; 2960 2961 /* remove payload length from inner checksum */ 2962 paylen = skb->len - l4_offset; 2963 2964 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2965 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 2966 /* compute length of segmentation header */ 2967 *hdr_len = sizeof(*l4.udp) + l4_offset; 2968 } else { 2969 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2970 /* compute length of segmentation header */ 2971 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2972 } 2973 2974 /* pull values out of skb_shinfo */ 2975 gso_size = skb_shinfo(skb)->gso_size; 2976 gso_segs = skb_shinfo(skb)->gso_segs; 2977 2978 /* update GSO size and bytecount with header size */ 2979 first->gso_segs = gso_segs; 2980 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2981 2982 /* find the field values */ 2983 cd_cmd = I40E_TX_CTX_DESC_TSO; 2984 cd_tso_len = skb->len - *hdr_len; 2985 cd_mss = gso_size; 2986 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2987 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2988 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2989 return 1; 2990 } 2991 2992 /** 2993 * i40e_tsyn - set up the tsyn context descriptor 2994 * @tx_ring: ptr to the ring to send 2995 * @skb: ptr to the skb we're sending 2996 * @tx_flags: the collected send information 2997 * @cd_type_cmd_tso_mss: Quad Word 1 2998 * 2999 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3000 **/ 3001 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3002 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3003 { 3004 struct i40e_pf *pf; 3005 3006 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3007 return 0; 3008 3009 /* Tx timestamps cannot be sampled when doing TSO */ 3010 if (tx_flags & I40E_TX_FLAGS_TSO) 3011 return 0; 3012 3013 /* only timestamp the outbound packet if the user has requested it and 3014 * we are not already transmitting a packet to be timestamped 3015 */ 3016 pf = i40e_netdev_to_pf(tx_ring->netdev); 3017 if (!(pf->flags & I40E_FLAG_PTP)) 3018 return 0; 3019 3020 if (pf->ptp_tx && 3021 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3022 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3023 pf->ptp_tx_start = jiffies; 3024 pf->ptp_tx_skb = skb_get(skb); 3025 } else { 3026 pf->tx_hwtstamp_skipped++; 3027 return 0; 3028 } 3029 3030 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3031 I40E_TXD_CTX_QW1_CMD_SHIFT; 3032 3033 return 1; 3034 } 3035 3036 /** 3037 * i40e_tx_enable_csum - Enable Tx checksum offloads 3038 * @skb: send buffer 3039 * @tx_flags: pointer to Tx flags currently set 3040 * @td_cmd: Tx descriptor command bits to set 3041 * @td_offset: Tx descriptor header offsets to set 3042 * @tx_ring: Tx descriptor ring 3043 * @cd_tunneling: ptr to context desc bits 3044 **/ 3045 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3046 u32 *td_cmd, u32 *td_offset, 3047 struct i40e_ring *tx_ring, 3048 u32 *cd_tunneling) 3049 { 3050 union { 3051 struct iphdr *v4; 3052 struct ipv6hdr *v6; 3053 unsigned char *hdr; 3054 } ip; 3055 union { 3056 struct tcphdr *tcp; 3057 struct udphdr *udp; 3058 unsigned char *hdr; 3059 } l4; 3060 unsigned char *exthdr; 3061 u32 offset, cmd = 0; 3062 __be16 frag_off; 3063 u8 l4_proto = 0; 3064 3065 if (skb->ip_summed != CHECKSUM_PARTIAL) 3066 return 0; 3067 3068 ip.hdr = skb_network_header(skb); 3069 l4.hdr = skb_transport_header(skb); 3070 3071 /* compute outer L2 header size */ 3072 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3073 3074 if (skb->encapsulation) { 3075 u32 tunnel = 0; 3076 /* define outer network header type */ 3077 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3078 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3079 I40E_TX_CTX_EXT_IP_IPV4 : 3080 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3081 3082 l4_proto = ip.v4->protocol; 3083 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3084 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3085 3086 exthdr = ip.hdr + sizeof(*ip.v6); 3087 l4_proto = ip.v6->nexthdr; 3088 if (l4.hdr != exthdr) 3089 ipv6_skip_exthdr(skb, exthdr - skb->data, 3090 &l4_proto, &frag_off); 3091 } 3092 3093 /* define outer transport */ 3094 switch (l4_proto) { 3095 case IPPROTO_UDP: 3096 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3097 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3098 break; 3099 case IPPROTO_GRE: 3100 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3101 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3102 break; 3103 case IPPROTO_IPIP: 3104 case IPPROTO_IPV6: 3105 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3106 l4.hdr = skb_inner_network_header(skb); 3107 break; 3108 default: 3109 if (*tx_flags & I40E_TX_FLAGS_TSO) 3110 return -1; 3111 3112 skb_checksum_help(skb); 3113 return 0; 3114 } 3115 3116 /* compute outer L3 header size */ 3117 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3118 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3119 3120 /* switch IP header pointer from outer to inner header */ 3121 ip.hdr = skb_inner_network_header(skb); 3122 3123 /* compute tunnel header size */ 3124 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3125 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3126 3127 /* indicate if we need to offload outer UDP header */ 3128 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3129 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3130 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3131 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3132 3133 /* record tunnel offload values */ 3134 *cd_tunneling |= tunnel; 3135 3136 /* switch L4 header pointer from outer to inner */ 3137 l4.hdr = skb_inner_transport_header(skb); 3138 l4_proto = 0; 3139 3140 /* reset type as we transition from outer to inner headers */ 3141 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3142 if (ip.v4->version == 4) 3143 *tx_flags |= I40E_TX_FLAGS_IPV4; 3144 if (ip.v6->version == 6) 3145 *tx_flags |= I40E_TX_FLAGS_IPV6; 3146 } 3147 3148 /* Enable IP checksum offloads */ 3149 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3150 l4_proto = ip.v4->protocol; 3151 /* the stack computes the IP header already, the only time we 3152 * need the hardware to recompute it is in the case of TSO. 3153 */ 3154 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3155 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3156 I40E_TX_DESC_CMD_IIPT_IPV4; 3157 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3158 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3159 3160 exthdr = ip.hdr + sizeof(*ip.v6); 3161 l4_proto = ip.v6->nexthdr; 3162 if (l4.hdr != exthdr) 3163 ipv6_skip_exthdr(skb, exthdr - skb->data, 3164 &l4_proto, &frag_off); 3165 } 3166 3167 /* compute inner L3 header size */ 3168 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3169 3170 /* Enable L4 checksum offloads */ 3171 switch (l4_proto) { 3172 case IPPROTO_TCP: 3173 /* enable checksum offloads */ 3174 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3175 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3176 break; 3177 case IPPROTO_SCTP: 3178 /* enable SCTP checksum offload */ 3179 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3180 offset |= (sizeof(struct sctphdr) >> 2) << 3181 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3182 break; 3183 case IPPROTO_UDP: 3184 /* enable UDP checksum offload */ 3185 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3186 offset |= (sizeof(struct udphdr) >> 2) << 3187 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3188 break; 3189 default: 3190 if (*tx_flags & I40E_TX_FLAGS_TSO) 3191 return -1; 3192 skb_checksum_help(skb); 3193 return 0; 3194 } 3195 3196 *td_cmd |= cmd; 3197 *td_offset |= offset; 3198 3199 return 1; 3200 } 3201 3202 /** 3203 * i40e_create_tx_ctx Build the Tx context descriptor 3204 * @tx_ring: ring to create the descriptor on 3205 * @cd_type_cmd_tso_mss: Quad Word 1 3206 * @cd_tunneling: Quad Word 0 - bits 0-31 3207 * @cd_l2tag2: Quad Word 0 - bits 32-63 3208 **/ 3209 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3210 const u64 cd_type_cmd_tso_mss, 3211 const u32 cd_tunneling, const u32 cd_l2tag2) 3212 { 3213 struct i40e_tx_context_desc *context_desc; 3214 int i = tx_ring->next_to_use; 3215 3216 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3217 !cd_tunneling && !cd_l2tag2) 3218 return; 3219 3220 /* grab the next descriptor */ 3221 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3222 3223 i++; 3224 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3225 3226 /* cpu_to_le32 and assign to struct fields */ 3227 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3228 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3229 context_desc->rsvd = cpu_to_le16(0); 3230 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3231 } 3232 3233 /** 3234 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3235 * @tx_ring: the ring to be checked 3236 * @size: the size buffer we want to assure is available 3237 * 3238 * Returns -EBUSY if a stop is needed, else 0 3239 **/ 3240 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3241 { 3242 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3243 /* Memory barrier before checking head and tail */ 3244 smp_mb(); 3245 3246 /* Check again in a case another CPU has just made room available. */ 3247 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3248 return -EBUSY; 3249 3250 /* A reprieve! - use start_queue because it doesn't call schedule */ 3251 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3252 ++tx_ring->tx_stats.restart_queue; 3253 return 0; 3254 } 3255 3256 /** 3257 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3258 * @skb: send buffer 3259 * 3260 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3261 * and so we need to figure out the cases where we need to linearize the skb. 3262 * 3263 * For TSO we need to count the TSO header and segment payload separately. 3264 * As such we need to check cases where we have 7 fragments or more as we 3265 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3266 * the segment payload in the first descriptor, and another 7 for the 3267 * fragments. 3268 **/ 3269 bool __i40e_chk_linearize(struct sk_buff *skb) 3270 { 3271 const skb_frag_t *frag, *stale; 3272 int nr_frags, sum; 3273 3274 /* no need to check if number of frags is less than 7 */ 3275 nr_frags = skb_shinfo(skb)->nr_frags; 3276 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3277 return false; 3278 3279 /* We need to walk through the list and validate that each group 3280 * of 6 fragments totals at least gso_size. 3281 */ 3282 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3283 frag = &skb_shinfo(skb)->frags[0]; 3284 3285 /* Initialize size to the negative value of gso_size minus 1. We 3286 * use this as the worst case scenerio in which the frag ahead 3287 * of us only provides one byte which is why we are limited to 6 3288 * descriptors for a single transmit as the header and previous 3289 * fragment are already consuming 2 descriptors. 3290 */ 3291 sum = 1 - skb_shinfo(skb)->gso_size; 3292 3293 /* Add size of frags 0 through 4 to create our initial sum */ 3294 sum += skb_frag_size(frag++); 3295 sum += skb_frag_size(frag++); 3296 sum += skb_frag_size(frag++); 3297 sum += skb_frag_size(frag++); 3298 sum += skb_frag_size(frag++); 3299 3300 /* Walk through fragments adding latest fragment, testing it, and 3301 * then removing stale fragments from the sum. 3302 */ 3303 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3304 int stale_size = skb_frag_size(stale); 3305 3306 sum += skb_frag_size(frag++); 3307 3308 /* The stale fragment may present us with a smaller 3309 * descriptor than the actual fragment size. To account 3310 * for that we need to remove all the data on the front and 3311 * figure out what the remainder would be in the last 3312 * descriptor associated with the fragment. 3313 */ 3314 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3315 int align_pad = -(skb_frag_off(stale)) & 3316 (I40E_MAX_READ_REQ_SIZE - 1); 3317 3318 sum -= align_pad; 3319 stale_size -= align_pad; 3320 3321 do { 3322 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3323 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3324 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3325 } 3326 3327 /* if sum is negative we failed to make sufficient progress */ 3328 if (sum < 0) 3329 return true; 3330 3331 if (!nr_frags--) 3332 break; 3333 3334 sum -= stale_size; 3335 } 3336 3337 return false; 3338 } 3339 3340 /** 3341 * i40e_tx_map - Build the Tx descriptor 3342 * @tx_ring: ring to send buffer on 3343 * @skb: send buffer 3344 * @first: first buffer info buffer to use 3345 * @tx_flags: collected send information 3346 * @hdr_len: size of the packet header 3347 * @td_cmd: the command field in the descriptor 3348 * @td_offset: offset for checksum or crc 3349 * 3350 * Returns 0 on success, -1 on failure to DMA 3351 **/ 3352 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3353 struct i40e_tx_buffer *first, u32 tx_flags, 3354 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3355 { 3356 unsigned int data_len = skb->data_len; 3357 unsigned int size = skb_headlen(skb); 3358 skb_frag_t *frag; 3359 struct i40e_tx_buffer *tx_bi; 3360 struct i40e_tx_desc *tx_desc; 3361 u16 i = tx_ring->next_to_use; 3362 u32 td_tag = 0; 3363 dma_addr_t dma; 3364 u16 desc_count = 1; 3365 3366 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3367 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3368 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3369 I40E_TX_FLAGS_VLAN_SHIFT; 3370 } 3371 3372 first->tx_flags = tx_flags; 3373 3374 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3375 3376 tx_desc = I40E_TX_DESC(tx_ring, i); 3377 tx_bi = first; 3378 3379 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3380 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3381 3382 if (dma_mapping_error(tx_ring->dev, dma)) 3383 goto dma_error; 3384 3385 /* record length, and DMA address */ 3386 dma_unmap_len_set(tx_bi, len, size); 3387 dma_unmap_addr_set(tx_bi, dma, dma); 3388 3389 /* align size to end of page */ 3390 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3391 tx_desc->buffer_addr = cpu_to_le64(dma); 3392 3393 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3394 tx_desc->cmd_type_offset_bsz = 3395 build_ctob(td_cmd, td_offset, 3396 max_data, td_tag); 3397 3398 tx_desc++; 3399 i++; 3400 desc_count++; 3401 3402 if (i == tx_ring->count) { 3403 tx_desc = I40E_TX_DESC(tx_ring, 0); 3404 i = 0; 3405 } 3406 3407 dma += max_data; 3408 size -= max_data; 3409 3410 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3411 tx_desc->buffer_addr = cpu_to_le64(dma); 3412 } 3413 3414 if (likely(!data_len)) 3415 break; 3416 3417 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3418 size, td_tag); 3419 3420 tx_desc++; 3421 i++; 3422 desc_count++; 3423 3424 if (i == tx_ring->count) { 3425 tx_desc = I40E_TX_DESC(tx_ring, 0); 3426 i = 0; 3427 } 3428 3429 size = skb_frag_size(frag); 3430 data_len -= size; 3431 3432 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3433 DMA_TO_DEVICE); 3434 3435 tx_bi = &tx_ring->tx_bi[i]; 3436 } 3437 3438 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3439 3440 i++; 3441 if (i == tx_ring->count) 3442 i = 0; 3443 3444 tx_ring->next_to_use = i; 3445 3446 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3447 3448 /* write last descriptor with EOP bit */ 3449 td_cmd |= I40E_TX_DESC_CMD_EOP; 3450 3451 /* We OR these values together to check both against 4 (WB_STRIDE) 3452 * below. This is safe since we don't re-use desc_count afterwards. 3453 */ 3454 desc_count |= ++tx_ring->packet_stride; 3455 3456 if (desc_count >= WB_STRIDE) { 3457 /* write last descriptor with RS bit set */ 3458 td_cmd |= I40E_TX_DESC_CMD_RS; 3459 tx_ring->packet_stride = 0; 3460 } 3461 3462 tx_desc->cmd_type_offset_bsz = 3463 build_ctob(td_cmd, td_offset, size, td_tag); 3464 3465 skb_tx_timestamp(skb); 3466 3467 /* Force memory writes to complete before letting h/w know there 3468 * are new descriptors to fetch. 3469 * 3470 * We also use this memory barrier to make certain all of the 3471 * status bits have been updated before next_to_watch is written. 3472 */ 3473 wmb(); 3474 3475 /* set next_to_watch value indicating a packet is present */ 3476 first->next_to_watch = tx_desc; 3477 3478 /* notify HW of packet */ 3479 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3480 writel(i, tx_ring->tail); 3481 } 3482 3483 return 0; 3484 3485 dma_error: 3486 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3487 3488 /* clear dma mappings for failed tx_bi map */ 3489 for (;;) { 3490 tx_bi = &tx_ring->tx_bi[i]; 3491 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3492 if (tx_bi == first) 3493 break; 3494 if (i == 0) 3495 i = tx_ring->count; 3496 i--; 3497 } 3498 3499 tx_ring->next_to_use = i; 3500 3501 return -1; 3502 } 3503 3504 /** 3505 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3506 * @xdp: data to transmit 3507 * @xdp_ring: XDP Tx ring 3508 **/ 3509 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3510 struct i40e_ring *xdp_ring) 3511 { 3512 u16 i = xdp_ring->next_to_use; 3513 struct i40e_tx_buffer *tx_bi; 3514 struct i40e_tx_desc *tx_desc; 3515 void *data = xdpf->data; 3516 u32 size = xdpf->len; 3517 dma_addr_t dma; 3518 3519 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3520 xdp_ring->tx_stats.tx_busy++; 3521 return I40E_XDP_CONSUMED; 3522 } 3523 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3524 if (dma_mapping_error(xdp_ring->dev, dma)) 3525 return I40E_XDP_CONSUMED; 3526 3527 tx_bi = &xdp_ring->tx_bi[i]; 3528 tx_bi->bytecount = size; 3529 tx_bi->gso_segs = 1; 3530 tx_bi->xdpf = xdpf; 3531 3532 /* record length, and DMA address */ 3533 dma_unmap_len_set(tx_bi, len, size); 3534 dma_unmap_addr_set(tx_bi, dma, dma); 3535 3536 tx_desc = I40E_TX_DESC(xdp_ring, i); 3537 tx_desc->buffer_addr = cpu_to_le64(dma); 3538 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3539 | I40E_TXD_CMD, 3540 0, size, 0); 3541 3542 /* Make certain all of the status bits have been updated 3543 * before next_to_watch is written. 3544 */ 3545 smp_wmb(); 3546 3547 xdp_ring->xdp_tx_active++; 3548 i++; 3549 if (i == xdp_ring->count) 3550 i = 0; 3551 3552 tx_bi->next_to_watch = tx_desc; 3553 xdp_ring->next_to_use = i; 3554 3555 return I40E_XDP_TX; 3556 } 3557 3558 /** 3559 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3560 * @skb: send buffer 3561 * @tx_ring: ring to send buffer on 3562 * 3563 * Returns NETDEV_TX_OK if sent, else an error code 3564 **/ 3565 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3566 struct i40e_ring *tx_ring) 3567 { 3568 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3569 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3570 struct i40e_tx_buffer *first; 3571 u32 td_offset = 0; 3572 u32 tx_flags = 0; 3573 __be16 protocol; 3574 u32 td_cmd = 0; 3575 u8 hdr_len = 0; 3576 int tso, count; 3577 int tsyn; 3578 3579 /* prefetch the data, we'll need it later */ 3580 prefetch(skb->data); 3581 3582 i40e_trace(xmit_frame_ring, skb, tx_ring); 3583 3584 count = i40e_xmit_descriptor_count(skb); 3585 if (i40e_chk_linearize(skb, count)) { 3586 if (__skb_linearize(skb)) { 3587 dev_kfree_skb_any(skb); 3588 return NETDEV_TX_OK; 3589 } 3590 count = i40e_txd_use_count(skb->len); 3591 tx_ring->tx_stats.tx_linearize++; 3592 } 3593 3594 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3595 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3596 * + 4 desc gap to avoid the cache line where head is, 3597 * + 1 desc for context descriptor, 3598 * otherwise try next time 3599 */ 3600 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3601 tx_ring->tx_stats.tx_busy++; 3602 return NETDEV_TX_BUSY; 3603 } 3604 3605 /* record the location of the first descriptor for this packet */ 3606 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3607 first->skb = skb; 3608 first->bytecount = skb->len; 3609 first->gso_segs = 1; 3610 3611 /* prepare the xmit flags */ 3612 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3613 goto out_drop; 3614 3615 /* obtain protocol of skb */ 3616 protocol = vlan_get_protocol(skb); 3617 3618 /* setup IPv4/IPv6 offloads */ 3619 if (protocol == htons(ETH_P_IP)) 3620 tx_flags |= I40E_TX_FLAGS_IPV4; 3621 else if (protocol == htons(ETH_P_IPV6)) 3622 tx_flags |= I40E_TX_FLAGS_IPV6; 3623 3624 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3625 3626 if (tso < 0) 3627 goto out_drop; 3628 else if (tso) 3629 tx_flags |= I40E_TX_FLAGS_TSO; 3630 3631 /* Always offload the checksum, since it's in the data descriptor */ 3632 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3633 tx_ring, &cd_tunneling); 3634 if (tso < 0) 3635 goto out_drop; 3636 3637 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3638 3639 if (tsyn) 3640 tx_flags |= I40E_TX_FLAGS_TSYN; 3641 3642 /* always enable CRC insertion offload */ 3643 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3644 3645 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3646 cd_tunneling, cd_l2tag2); 3647 3648 /* Add Flow Director ATR if it's enabled. 3649 * 3650 * NOTE: this must always be directly before the data descriptor. 3651 */ 3652 i40e_atr(tx_ring, skb, tx_flags); 3653 3654 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3655 td_cmd, td_offset)) 3656 goto cleanup_tx_tstamp; 3657 3658 return NETDEV_TX_OK; 3659 3660 out_drop: 3661 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3662 dev_kfree_skb_any(first->skb); 3663 first->skb = NULL; 3664 cleanup_tx_tstamp: 3665 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3666 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3667 3668 dev_kfree_skb_any(pf->ptp_tx_skb); 3669 pf->ptp_tx_skb = NULL; 3670 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3671 } 3672 3673 return NETDEV_TX_OK; 3674 } 3675 3676 /** 3677 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3678 * @skb: send buffer 3679 * @netdev: network interface device structure 3680 * 3681 * Returns NETDEV_TX_OK if sent, else an error code 3682 **/ 3683 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3684 { 3685 struct i40e_netdev_priv *np = netdev_priv(netdev); 3686 struct i40e_vsi *vsi = np->vsi; 3687 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3688 3689 /* hardware can't handle really short frames, hardware padding works 3690 * beyond this point 3691 */ 3692 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3693 return NETDEV_TX_OK; 3694 3695 return i40e_xmit_frame_ring(skb, tx_ring); 3696 } 3697 3698 /** 3699 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3700 * @dev: netdev 3701 * @xdp: XDP buffer 3702 * 3703 * Returns number of frames successfully sent. Frames that fail are 3704 * free'ed via XDP return API. 3705 * 3706 * For error cases, a negative errno code is returned and no-frames 3707 * are transmitted (caller must handle freeing frames). 3708 **/ 3709 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3710 u32 flags) 3711 { 3712 struct i40e_netdev_priv *np = netdev_priv(dev); 3713 unsigned int queue_index = smp_processor_id(); 3714 struct i40e_vsi *vsi = np->vsi; 3715 struct i40e_pf *pf = vsi->back; 3716 struct i40e_ring *xdp_ring; 3717 int drops = 0; 3718 int i; 3719 3720 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3721 return -ENETDOWN; 3722 3723 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 3724 test_bit(__I40E_CONFIG_BUSY, pf->state)) 3725 return -ENXIO; 3726 3727 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3728 return -EINVAL; 3729 3730 xdp_ring = vsi->xdp_rings[queue_index]; 3731 3732 for (i = 0; i < n; i++) { 3733 struct xdp_frame *xdpf = frames[i]; 3734 int err; 3735 3736 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3737 if (err != I40E_XDP_TX) { 3738 xdp_return_frame_rx_napi(xdpf); 3739 drops++; 3740 } 3741 } 3742 3743 if (unlikely(flags & XDP_XMIT_FLUSH)) 3744 i40e_xdp_ring_update_tail(xdp_ring); 3745 3746 return n - drops; 3747 } 3748