1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2016 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/prefetch.h> 28 #include <net/busy_poll.h> 29 #include <linux/bpf_trace.h> 30 #include "i40e.h" 31 #include "i40e_trace.h" 32 #include "i40e_prototype.h" 33 34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 35 u32 td_tag) 36 { 37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | 38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | 39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | 40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | 41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); 42 } 43 44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 45 /** 46 * i40e_fdir - Generate a Flow Director descriptor based on fdata 47 * @tx_ring: Tx ring to send buffer on 48 * @fdata: Flow director filter data 49 * @add: Indicate if we are adding a rule or deleting one 50 * 51 **/ 52 static void i40e_fdir(struct i40e_ring *tx_ring, 53 struct i40e_fdir_filter *fdata, bool add) 54 { 55 struct i40e_filter_program_desc *fdir_desc; 56 struct i40e_pf *pf = tx_ring->vsi->back; 57 u32 flex_ptype, dtype_cmd; 58 u16 i; 59 60 /* grab the next descriptor */ 61 i = tx_ring->next_to_use; 62 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 63 64 i++; 65 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 66 67 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 68 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 69 70 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 71 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 72 73 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 74 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 75 76 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 77 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 78 79 /* Use LAN VSI Id if not programmed by user */ 80 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 81 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 82 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 83 84 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 85 86 dtype_cmd |= add ? 87 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 88 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 89 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 90 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 91 92 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 93 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 94 95 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 96 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 97 98 if (fdata->cnt_index) { 99 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 100 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 101 ((u32)fdata->cnt_index << 102 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 103 } 104 105 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 106 fdir_desc->rsvd = cpu_to_le32(0); 107 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 108 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 109 } 110 111 #define I40E_FD_CLEAN_DELAY 10 112 /** 113 * i40e_program_fdir_filter - Program a Flow Director filter 114 * @fdir_data: Packet data that will be filter parameters 115 * @raw_packet: the pre-allocated packet buffer for FDir 116 * @pf: The PF pointer 117 * @add: True for add/update, False for remove 118 **/ 119 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 120 u8 *raw_packet, struct i40e_pf *pf, 121 bool add) 122 { 123 struct i40e_tx_buffer *tx_buf, *first; 124 struct i40e_tx_desc *tx_desc; 125 struct i40e_ring *tx_ring; 126 struct i40e_vsi *vsi; 127 struct device *dev; 128 dma_addr_t dma; 129 u32 td_cmd = 0; 130 u16 i; 131 132 /* find existing FDIR VSI */ 133 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 134 if (!vsi) 135 return -ENOENT; 136 137 tx_ring = vsi->tx_rings[0]; 138 dev = tx_ring->dev; 139 140 /* we need two descriptors to add/del a filter and we can wait */ 141 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 142 if (!i) 143 return -EAGAIN; 144 msleep_interruptible(1); 145 } 146 147 dma = dma_map_single(dev, raw_packet, 148 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 149 if (dma_mapping_error(dev, dma)) 150 goto dma_fail; 151 152 /* grab the next descriptor */ 153 i = tx_ring->next_to_use; 154 first = &tx_ring->tx_bi[i]; 155 i40e_fdir(tx_ring, fdir_data, add); 156 157 /* Now program a dummy descriptor */ 158 i = tx_ring->next_to_use; 159 tx_desc = I40E_TX_DESC(tx_ring, i); 160 tx_buf = &tx_ring->tx_bi[i]; 161 162 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 163 164 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 165 166 /* record length, and DMA address */ 167 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 168 dma_unmap_addr_set(tx_buf, dma, dma); 169 170 tx_desc->buffer_addr = cpu_to_le64(dma); 171 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 172 173 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 174 tx_buf->raw_buf = (void *)raw_packet; 175 176 tx_desc->cmd_type_offset_bsz = 177 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 178 179 /* Force memory writes to complete before letting h/w 180 * know there are new descriptors to fetch. 181 */ 182 wmb(); 183 184 /* Mark the data descriptor to be watched */ 185 first->next_to_watch = tx_desc; 186 187 writel(tx_ring->next_to_use, tx_ring->tail); 188 return 0; 189 190 dma_fail: 191 return -1; 192 } 193 194 #define IP_HEADER_OFFSET 14 195 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 196 /** 197 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 198 * @vsi: pointer to the targeted VSI 199 * @fd_data: the flow director data required for the FDir descriptor 200 * @add: true adds a filter, false removes it 201 * 202 * Returns 0 if the filters were successfully added or removed 203 **/ 204 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 205 struct i40e_fdir_filter *fd_data, 206 bool add) 207 { 208 struct i40e_pf *pf = vsi->back; 209 struct udphdr *udp; 210 struct iphdr *ip; 211 u8 *raw_packet; 212 int ret; 213 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 214 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 216 217 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 218 if (!raw_packet) 219 return -ENOMEM; 220 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 221 222 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 223 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 224 + sizeof(struct iphdr)); 225 226 ip->daddr = fd_data->dst_ip; 227 udp->dest = fd_data->dst_port; 228 ip->saddr = fd_data->src_ip; 229 udp->source = fd_data->src_port; 230 231 if (fd_data->flex_filter) { 232 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 233 __be16 pattern = fd_data->flex_word; 234 u16 off = fd_data->flex_offset; 235 236 *((__force __be16 *)(payload + off)) = pattern; 237 } 238 239 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 240 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 241 if (ret) { 242 dev_info(&pf->pdev->dev, 243 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 244 fd_data->pctype, fd_data->fd_id, ret); 245 /* Free the packet buffer since it wasn't added to the ring */ 246 kfree(raw_packet); 247 return -EOPNOTSUPP; 248 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 249 if (add) 250 dev_info(&pf->pdev->dev, 251 "Filter OK for PCTYPE %d loc = %d\n", 252 fd_data->pctype, fd_data->fd_id); 253 else 254 dev_info(&pf->pdev->dev, 255 "Filter deleted for PCTYPE %d loc = %d\n", 256 fd_data->pctype, fd_data->fd_id); 257 } 258 259 if (add) 260 pf->fd_udp4_filter_cnt++; 261 else 262 pf->fd_udp4_filter_cnt--; 263 264 return 0; 265 } 266 267 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 268 /** 269 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 270 * @vsi: pointer to the targeted VSI 271 * @fd_data: the flow director data required for the FDir descriptor 272 * @add: true adds a filter, false removes it 273 * 274 * Returns 0 if the filters were successfully added or removed 275 **/ 276 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 277 struct i40e_fdir_filter *fd_data, 278 bool add) 279 { 280 struct i40e_pf *pf = vsi->back; 281 struct tcphdr *tcp; 282 struct iphdr *ip; 283 u8 *raw_packet; 284 int ret; 285 /* Dummy packet */ 286 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 287 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 288 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 289 0x0, 0x72, 0, 0, 0, 0}; 290 291 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 292 if (!raw_packet) 293 return -ENOMEM; 294 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 295 296 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 297 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 298 + sizeof(struct iphdr)); 299 300 ip->daddr = fd_data->dst_ip; 301 tcp->dest = fd_data->dst_port; 302 ip->saddr = fd_data->src_ip; 303 tcp->source = fd_data->src_port; 304 305 if (fd_data->flex_filter) { 306 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 307 __be16 pattern = fd_data->flex_word; 308 u16 off = fd_data->flex_offset; 309 310 *((__force __be16 *)(payload + off)) = pattern; 311 } 312 313 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 314 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 315 if (ret) { 316 dev_info(&pf->pdev->dev, 317 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 318 fd_data->pctype, fd_data->fd_id, ret); 319 /* Free the packet buffer since it wasn't added to the ring */ 320 kfree(raw_packet); 321 return -EOPNOTSUPP; 322 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 323 if (add) 324 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 325 fd_data->pctype, fd_data->fd_id); 326 else 327 dev_info(&pf->pdev->dev, 328 "Filter deleted for PCTYPE %d loc = %d\n", 329 fd_data->pctype, fd_data->fd_id); 330 } 331 332 if (add) { 333 pf->fd_tcp4_filter_cnt++; 334 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 335 I40E_DEBUG_FD & pf->hw.debug_mask) 336 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 337 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 338 } else { 339 pf->fd_tcp4_filter_cnt--; 340 } 341 342 return 0; 343 } 344 345 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 346 /** 347 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 348 * a specific flow spec 349 * @vsi: pointer to the targeted VSI 350 * @fd_data: the flow director data required for the FDir descriptor 351 * @add: true adds a filter, false removes it 352 * 353 * Returns 0 if the filters were successfully added or removed 354 **/ 355 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 356 struct i40e_fdir_filter *fd_data, 357 bool add) 358 { 359 struct i40e_pf *pf = vsi->back; 360 struct sctphdr *sctp; 361 struct iphdr *ip; 362 u8 *raw_packet; 363 int ret; 364 /* Dummy packet */ 365 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 366 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 368 369 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 370 if (!raw_packet) 371 return -ENOMEM; 372 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 373 374 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 375 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 376 + sizeof(struct iphdr)); 377 378 ip->daddr = fd_data->dst_ip; 379 sctp->dest = fd_data->dst_port; 380 ip->saddr = fd_data->src_ip; 381 sctp->source = fd_data->src_port; 382 383 if (fd_data->flex_filter) { 384 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 385 __be16 pattern = fd_data->flex_word; 386 u16 off = fd_data->flex_offset; 387 388 *((__force __be16 *)(payload + off)) = pattern; 389 } 390 391 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 392 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 393 if (ret) { 394 dev_info(&pf->pdev->dev, 395 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 396 fd_data->pctype, fd_data->fd_id, ret); 397 /* Free the packet buffer since it wasn't added to the ring */ 398 kfree(raw_packet); 399 return -EOPNOTSUPP; 400 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 401 if (add) 402 dev_info(&pf->pdev->dev, 403 "Filter OK for PCTYPE %d loc = %d\n", 404 fd_data->pctype, fd_data->fd_id); 405 else 406 dev_info(&pf->pdev->dev, 407 "Filter deleted for PCTYPE %d loc = %d\n", 408 fd_data->pctype, fd_data->fd_id); 409 } 410 411 if (add) 412 pf->fd_sctp4_filter_cnt++; 413 else 414 pf->fd_sctp4_filter_cnt--; 415 416 return 0; 417 } 418 419 #define I40E_IP_DUMMY_PACKET_LEN 34 420 /** 421 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 422 * a specific flow spec 423 * @vsi: pointer to the targeted VSI 424 * @fd_data: the flow director data required for the FDir descriptor 425 * @add: true adds a filter, false removes it 426 * 427 * Returns 0 if the filters were successfully added or removed 428 **/ 429 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 430 struct i40e_fdir_filter *fd_data, 431 bool add) 432 { 433 struct i40e_pf *pf = vsi->back; 434 struct iphdr *ip; 435 u8 *raw_packet; 436 int ret; 437 int i; 438 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 439 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 440 0, 0, 0, 0}; 441 442 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 443 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 444 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 445 if (!raw_packet) 446 return -ENOMEM; 447 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 448 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 449 450 ip->saddr = fd_data->src_ip; 451 ip->daddr = fd_data->dst_ip; 452 ip->protocol = 0; 453 454 if (fd_data->flex_filter) { 455 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 456 __be16 pattern = fd_data->flex_word; 457 u16 off = fd_data->flex_offset; 458 459 *((__force __be16 *)(payload + off)) = pattern; 460 } 461 462 fd_data->pctype = i; 463 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 464 if (ret) { 465 dev_info(&pf->pdev->dev, 466 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 467 fd_data->pctype, fd_data->fd_id, ret); 468 /* The packet buffer wasn't added to the ring so we 469 * need to free it now. 470 */ 471 kfree(raw_packet); 472 return -EOPNOTSUPP; 473 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 474 if (add) 475 dev_info(&pf->pdev->dev, 476 "Filter OK for PCTYPE %d loc = %d\n", 477 fd_data->pctype, fd_data->fd_id); 478 else 479 dev_info(&pf->pdev->dev, 480 "Filter deleted for PCTYPE %d loc = %d\n", 481 fd_data->pctype, fd_data->fd_id); 482 } 483 } 484 485 if (add) 486 pf->fd_ip4_filter_cnt++; 487 else 488 pf->fd_ip4_filter_cnt--; 489 490 return 0; 491 } 492 493 /** 494 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 495 * @vsi: pointer to the targeted VSI 496 * @cmd: command to get or set RX flow classification rules 497 * @add: true adds a filter, false removes it 498 * 499 **/ 500 int i40e_add_del_fdir(struct i40e_vsi *vsi, 501 struct i40e_fdir_filter *input, bool add) 502 { 503 struct i40e_pf *pf = vsi->back; 504 int ret; 505 506 switch (input->flow_type & ~FLOW_EXT) { 507 case TCP_V4_FLOW: 508 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 509 break; 510 case UDP_V4_FLOW: 511 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 512 break; 513 case SCTP_V4_FLOW: 514 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 515 break; 516 case IP_USER_FLOW: 517 switch (input->ip4_proto) { 518 case IPPROTO_TCP: 519 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 520 break; 521 case IPPROTO_UDP: 522 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 523 break; 524 case IPPROTO_SCTP: 525 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 526 break; 527 case IPPROTO_IP: 528 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 529 break; 530 default: 531 /* We cannot support masking based on protocol */ 532 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 533 input->ip4_proto); 534 return -EINVAL; 535 } 536 break; 537 default: 538 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 539 input->flow_type); 540 return -EINVAL; 541 } 542 543 /* The buffer allocated here will be normally be freed by 544 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 545 * completion. In the event of an error adding the buffer to the FDIR 546 * ring, it will immediately be freed. It may also be freed by 547 * i40e_clean_tx_ring() when closing the VSI. 548 */ 549 return ret; 550 } 551 552 /** 553 * i40e_fd_handle_status - check the Programming Status for FD 554 * @rx_ring: the Rx ring for this descriptor 555 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 556 * @prog_id: the id originally used for programming 557 * 558 * This is used to verify if the FD programming or invalidation 559 * requested by SW to the HW is successful or not and take actions accordingly. 560 **/ 561 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, 562 union i40e_rx_desc *rx_desc, u8 prog_id) 563 { 564 struct i40e_pf *pf = rx_ring->vsi->back; 565 struct pci_dev *pdev = pf->pdev; 566 u32 fcnt_prog, fcnt_avail; 567 u32 error; 568 u64 qw; 569 570 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 571 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 572 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 573 574 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 575 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 576 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 577 (I40E_DEBUG_FD & pf->hw.debug_mask)) 578 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 579 pf->fd_inv); 580 581 /* Check if the programming error is for ATR. 582 * If so, auto disable ATR and set a state for 583 * flush in progress. Next time we come here if flush is in 584 * progress do nothing, once flush is complete the state will 585 * be cleared. 586 */ 587 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 588 return; 589 590 pf->fd_add_err++; 591 /* store the current atr filter count */ 592 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 593 594 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 595 pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) { 596 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED; 597 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 598 } 599 600 /* filter programming failed most likely due to table full */ 601 fcnt_prog = i40e_get_global_fd_count(pf); 602 fcnt_avail = pf->fdir_pf_filter_count; 603 /* If ATR is running fcnt_prog can quickly change, 604 * if we are very close to full, it makes sense to disable 605 * FD ATR/SB and then re-enable it when there is room. 606 */ 607 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 608 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 609 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) { 610 pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED; 611 if (I40E_DEBUG_FD & pf->hw.debug_mask) 612 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 613 } 614 } 615 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 616 if (I40E_DEBUG_FD & pf->hw.debug_mask) 617 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 618 rx_desc->wb.qword0.hi_dword.fd_id); 619 } 620 } 621 622 /** 623 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 624 * @ring: the ring that owns the buffer 625 * @tx_buffer: the buffer to free 626 **/ 627 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 628 struct i40e_tx_buffer *tx_buffer) 629 { 630 if (tx_buffer->skb) { 631 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 632 kfree(tx_buffer->raw_buf); 633 else if (ring_is_xdp(ring)) 634 page_frag_free(tx_buffer->raw_buf); 635 else 636 dev_kfree_skb_any(tx_buffer->skb); 637 if (dma_unmap_len(tx_buffer, len)) 638 dma_unmap_single(ring->dev, 639 dma_unmap_addr(tx_buffer, dma), 640 dma_unmap_len(tx_buffer, len), 641 DMA_TO_DEVICE); 642 } else if (dma_unmap_len(tx_buffer, len)) { 643 dma_unmap_page(ring->dev, 644 dma_unmap_addr(tx_buffer, dma), 645 dma_unmap_len(tx_buffer, len), 646 DMA_TO_DEVICE); 647 } 648 649 tx_buffer->next_to_watch = NULL; 650 tx_buffer->skb = NULL; 651 dma_unmap_len_set(tx_buffer, len, 0); 652 /* tx_buffer must be completely set up in the transmit path */ 653 } 654 655 /** 656 * i40e_clean_tx_ring - Free any empty Tx buffers 657 * @tx_ring: ring to be cleaned 658 **/ 659 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 660 { 661 unsigned long bi_size; 662 u16 i; 663 664 /* ring already cleared, nothing to do */ 665 if (!tx_ring->tx_bi) 666 return; 667 668 /* Free all the Tx ring sk_buffs */ 669 for (i = 0; i < tx_ring->count; i++) 670 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 671 672 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 673 memset(tx_ring->tx_bi, 0, bi_size); 674 675 /* Zero out the descriptor ring */ 676 memset(tx_ring->desc, 0, tx_ring->size); 677 678 tx_ring->next_to_use = 0; 679 tx_ring->next_to_clean = 0; 680 681 if (!tx_ring->netdev) 682 return; 683 684 /* cleanup Tx queue statistics */ 685 netdev_tx_reset_queue(txring_txq(tx_ring)); 686 } 687 688 /** 689 * i40e_free_tx_resources - Free Tx resources per queue 690 * @tx_ring: Tx descriptor ring for a specific queue 691 * 692 * Free all transmit software resources 693 **/ 694 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 695 { 696 i40e_clean_tx_ring(tx_ring); 697 kfree(tx_ring->tx_bi); 698 tx_ring->tx_bi = NULL; 699 700 if (tx_ring->desc) { 701 dma_free_coherent(tx_ring->dev, tx_ring->size, 702 tx_ring->desc, tx_ring->dma); 703 tx_ring->desc = NULL; 704 } 705 } 706 707 /** 708 * i40e_get_tx_pending - how many tx descriptors not processed 709 * @tx_ring: the ring of descriptors 710 * 711 * Since there is no access to the ring head register 712 * in XL710, we need to use our local copies 713 **/ 714 u32 i40e_get_tx_pending(struct i40e_ring *ring) 715 { 716 u32 head, tail; 717 718 head = i40e_get_head(ring); 719 tail = readl(ring->tail); 720 721 if (head != tail) 722 return (head < tail) ? 723 tail - head : (tail + ring->count - head); 724 725 return 0; 726 } 727 728 #define WB_STRIDE 4 729 730 /** 731 * i40e_clean_tx_irq - Reclaim resources after transmit completes 732 * @vsi: the VSI we care about 733 * @tx_ring: Tx ring to clean 734 * @napi_budget: Used to determine if we are in netpoll 735 * 736 * Returns true if there's any budget left (e.g. the clean is finished) 737 **/ 738 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 739 struct i40e_ring *tx_ring, int napi_budget) 740 { 741 u16 i = tx_ring->next_to_clean; 742 struct i40e_tx_buffer *tx_buf; 743 struct i40e_tx_desc *tx_head; 744 struct i40e_tx_desc *tx_desc; 745 unsigned int total_bytes = 0, total_packets = 0; 746 unsigned int budget = vsi->work_limit; 747 748 tx_buf = &tx_ring->tx_bi[i]; 749 tx_desc = I40E_TX_DESC(tx_ring, i); 750 i -= tx_ring->count; 751 752 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 753 754 do { 755 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 756 757 /* if next_to_watch is not set then there is no work pending */ 758 if (!eop_desc) 759 break; 760 761 /* prevent any other reads prior to eop_desc */ 762 read_barrier_depends(); 763 764 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 765 /* we have caught up to head, no work left to do */ 766 if (tx_head == tx_desc) 767 break; 768 769 /* clear next_to_watch to prevent false hangs */ 770 tx_buf->next_to_watch = NULL; 771 772 /* update the statistics for this packet */ 773 total_bytes += tx_buf->bytecount; 774 total_packets += tx_buf->gso_segs; 775 776 /* free the skb/XDP data */ 777 if (ring_is_xdp(tx_ring)) 778 page_frag_free(tx_buf->raw_buf); 779 else 780 napi_consume_skb(tx_buf->skb, napi_budget); 781 782 /* unmap skb header data */ 783 dma_unmap_single(tx_ring->dev, 784 dma_unmap_addr(tx_buf, dma), 785 dma_unmap_len(tx_buf, len), 786 DMA_TO_DEVICE); 787 788 /* clear tx_buffer data */ 789 tx_buf->skb = NULL; 790 dma_unmap_len_set(tx_buf, len, 0); 791 792 /* unmap remaining buffers */ 793 while (tx_desc != eop_desc) { 794 i40e_trace(clean_tx_irq_unmap, 795 tx_ring, tx_desc, tx_buf); 796 797 tx_buf++; 798 tx_desc++; 799 i++; 800 if (unlikely(!i)) { 801 i -= tx_ring->count; 802 tx_buf = tx_ring->tx_bi; 803 tx_desc = I40E_TX_DESC(tx_ring, 0); 804 } 805 806 /* unmap any remaining paged data */ 807 if (dma_unmap_len(tx_buf, len)) { 808 dma_unmap_page(tx_ring->dev, 809 dma_unmap_addr(tx_buf, dma), 810 dma_unmap_len(tx_buf, len), 811 DMA_TO_DEVICE); 812 dma_unmap_len_set(tx_buf, len, 0); 813 } 814 } 815 816 /* move us one more past the eop_desc for start of next pkt */ 817 tx_buf++; 818 tx_desc++; 819 i++; 820 if (unlikely(!i)) { 821 i -= tx_ring->count; 822 tx_buf = tx_ring->tx_bi; 823 tx_desc = I40E_TX_DESC(tx_ring, 0); 824 } 825 826 prefetch(tx_desc); 827 828 /* update budget accounting */ 829 budget--; 830 } while (likely(budget)); 831 832 i += tx_ring->count; 833 tx_ring->next_to_clean = i; 834 u64_stats_update_begin(&tx_ring->syncp); 835 tx_ring->stats.bytes += total_bytes; 836 tx_ring->stats.packets += total_packets; 837 u64_stats_update_end(&tx_ring->syncp); 838 tx_ring->q_vector->tx.total_bytes += total_bytes; 839 tx_ring->q_vector->tx.total_packets += total_packets; 840 841 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) { 842 /* check to see if there are < 4 descriptors 843 * waiting to be written back, then kick the hardware to force 844 * them to be written back in case we stay in NAPI. 845 * In this mode on X722 we do not enable Interrupt. 846 */ 847 unsigned int j = i40e_get_tx_pending(tx_ring); 848 849 if (budget && 850 ((j / WB_STRIDE) == 0) && (j > 0) && 851 !test_bit(__I40E_VSI_DOWN, vsi->state) && 852 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) 853 tx_ring->arm_wb = true; 854 } 855 856 if (ring_is_xdp(tx_ring)) 857 return !!budget; 858 859 /* notify netdev of completed buffers */ 860 netdev_tx_completed_queue(txring_txq(tx_ring), 861 total_packets, total_bytes); 862 863 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 864 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 865 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 866 /* Make sure that anybody stopping the queue after this 867 * sees the new next_to_clean. 868 */ 869 smp_mb(); 870 if (__netif_subqueue_stopped(tx_ring->netdev, 871 tx_ring->queue_index) && 872 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 873 netif_wake_subqueue(tx_ring->netdev, 874 tx_ring->queue_index); 875 ++tx_ring->tx_stats.restart_queue; 876 } 877 } 878 879 return !!budget; 880 } 881 882 /** 883 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 884 * @vsi: the VSI we care about 885 * @q_vector: the vector on which to enable writeback 886 * 887 **/ 888 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 889 struct i40e_q_vector *q_vector) 890 { 891 u16 flags = q_vector->tx.ring[0].flags; 892 u32 val; 893 894 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 895 return; 896 897 if (q_vector->arm_wb_state) 898 return; 899 900 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 901 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 902 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 903 904 wr32(&vsi->back->hw, 905 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1), 906 val); 907 } else { 908 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 909 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 910 911 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 912 } 913 q_vector->arm_wb_state = true; 914 } 915 916 /** 917 * i40e_force_wb - Issue SW Interrupt so HW does a wb 918 * @vsi: the VSI we care about 919 * @q_vector: the vector on which to force writeback 920 * 921 **/ 922 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 923 { 924 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 925 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 926 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 927 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 928 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 929 /* allow 00 to be written to the index */ 930 931 wr32(&vsi->back->hw, 932 I40E_PFINT_DYN_CTLN(q_vector->v_idx + 933 vsi->base_vector - 1), val); 934 } else { 935 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 936 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 937 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 938 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 939 /* allow 00 to be written to the index */ 940 941 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 942 } 943 } 944 945 /** 946 * i40e_set_new_dynamic_itr - Find new ITR level 947 * @rc: structure containing ring performance data 948 * 949 * Returns true if ITR changed, false if not 950 * 951 * Stores a new ITR value based on packets and byte counts during 952 * the last interrupt. The advantage of per interrupt computation 953 * is faster updates and more accurate ITR for the current traffic 954 * pattern. Constants in this function were computed based on 955 * theoretical maximum wire speed and thresholds were set based on 956 * testing data as well as attempting to minimize response time 957 * while increasing bulk throughput. 958 **/ 959 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc) 960 { 961 enum i40e_latency_range new_latency_range = rc->latency_range; 962 u32 new_itr = rc->itr; 963 int bytes_per_usec; 964 unsigned int usecs, estimated_usecs; 965 966 if (rc->total_packets == 0 || !rc->itr) 967 return false; 968 969 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START; 970 bytes_per_usec = rc->total_bytes / usecs; 971 972 /* The calculations in this algorithm depend on interrupts actually 973 * firing at the ITR rate. This may not happen if the packet rate is 974 * really low, or if we've been napi polling. Check to make sure 975 * that's not the case before we continue. 976 */ 977 estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update); 978 if (estimated_usecs > usecs) { 979 new_latency_range = I40E_LOW_LATENCY; 980 goto reset_latency; 981 } 982 983 /* simple throttlerate management 984 * 0-10MB/s lowest (50000 ints/s) 985 * 10-20MB/s low (20000 ints/s) 986 * 20-1249MB/s bulk (18000 ints/s) 987 * 988 * The math works out because the divisor is in 10^(-6) which 989 * turns the bytes/us input value into MB/s values, but 990 * make sure to use usecs, as the register values written 991 * are in 2 usec increments in the ITR registers, and make sure 992 * to use the smoothed values that the countdown timer gives us. 993 */ 994 switch (new_latency_range) { 995 case I40E_LOWEST_LATENCY: 996 if (bytes_per_usec > 10) 997 new_latency_range = I40E_LOW_LATENCY; 998 break; 999 case I40E_LOW_LATENCY: 1000 if (bytes_per_usec > 20) 1001 new_latency_range = I40E_BULK_LATENCY; 1002 else if (bytes_per_usec <= 10) 1003 new_latency_range = I40E_LOWEST_LATENCY; 1004 break; 1005 case I40E_BULK_LATENCY: 1006 default: 1007 if (bytes_per_usec <= 20) 1008 new_latency_range = I40E_LOW_LATENCY; 1009 break; 1010 } 1011 1012 reset_latency: 1013 rc->latency_range = new_latency_range; 1014 1015 switch (new_latency_range) { 1016 case I40E_LOWEST_LATENCY: 1017 new_itr = I40E_ITR_50K; 1018 break; 1019 case I40E_LOW_LATENCY: 1020 new_itr = I40E_ITR_20K; 1021 break; 1022 case I40E_BULK_LATENCY: 1023 new_itr = I40E_ITR_18K; 1024 break; 1025 default: 1026 break; 1027 } 1028 1029 rc->total_bytes = 0; 1030 rc->total_packets = 0; 1031 rc->last_itr_update = jiffies; 1032 1033 if (new_itr != rc->itr) { 1034 rc->itr = new_itr; 1035 return true; 1036 } 1037 return false; 1038 } 1039 1040 /** 1041 * i40e_rx_is_programming_status - check for programming status descriptor 1042 * @qw: qword representing status_error_len in CPU ordering 1043 * 1044 * The value of in the descriptor length field indicate if this 1045 * is a programming status descriptor for flow director or FCoE 1046 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise 1047 * it is a packet descriptor. 1048 **/ 1049 static inline bool i40e_rx_is_programming_status(u64 qw) 1050 { 1051 /* The Rx filter programming status and SPH bit occupy the same 1052 * spot in the descriptor. Since we don't support packet split we 1053 * can just reuse the bit as an indication that this is a 1054 * programming status descriptor. 1055 */ 1056 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK; 1057 } 1058 1059 /** 1060 * i40e_clean_programming_status - clean the programming status descriptor 1061 * @rx_ring: the rx ring that has this descriptor 1062 * @rx_desc: the rx descriptor written back by HW 1063 * @qw: qword representing status_error_len in CPU ordering 1064 * 1065 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1066 * status being successful or not and take actions accordingly. FCoE should 1067 * handle its context/filter programming/invalidation status and take actions. 1068 * 1069 **/ 1070 static void i40e_clean_programming_status(struct i40e_ring *rx_ring, 1071 union i40e_rx_desc *rx_desc, 1072 u64 qw) 1073 { 1074 u32 ntc = rx_ring->next_to_clean + 1; 1075 u8 id; 1076 1077 /* fetch, update, and store next to clean */ 1078 ntc = (ntc < rx_ring->count) ? ntc : 0; 1079 rx_ring->next_to_clean = ntc; 1080 1081 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1082 1083 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1084 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1085 1086 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1087 i40e_fd_handle_status(rx_ring, rx_desc, id); 1088 } 1089 1090 /** 1091 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1092 * @tx_ring: the tx ring to set up 1093 * 1094 * Return 0 on success, negative on error 1095 **/ 1096 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1097 { 1098 struct device *dev = tx_ring->dev; 1099 int bi_size; 1100 1101 if (!dev) 1102 return -ENOMEM; 1103 1104 /* warn if we are about to overwrite the pointer */ 1105 WARN_ON(tx_ring->tx_bi); 1106 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1107 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1108 if (!tx_ring->tx_bi) 1109 goto err; 1110 1111 u64_stats_init(&tx_ring->syncp); 1112 1113 /* round up to nearest 4K */ 1114 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1115 /* add u32 for head writeback, align after this takes care of 1116 * guaranteeing this is at least one cache line in size 1117 */ 1118 tx_ring->size += sizeof(u32); 1119 tx_ring->size = ALIGN(tx_ring->size, 4096); 1120 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1121 &tx_ring->dma, GFP_KERNEL); 1122 if (!tx_ring->desc) { 1123 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1124 tx_ring->size); 1125 goto err; 1126 } 1127 1128 tx_ring->next_to_use = 0; 1129 tx_ring->next_to_clean = 0; 1130 return 0; 1131 1132 err: 1133 kfree(tx_ring->tx_bi); 1134 tx_ring->tx_bi = NULL; 1135 return -ENOMEM; 1136 } 1137 1138 /** 1139 * i40e_clean_rx_ring - Free Rx buffers 1140 * @rx_ring: ring to be cleaned 1141 **/ 1142 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1143 { 1144 unsigned long bi_size; 1145 u16 i; 1146 1147 /* ring already cleared, nothing to do */ 1148 if (!rx_ring->rx_bi) 1149 return; 1150 1151 if (rx_ring->skb) { 1152 dev_kfree_skb(rx_ring->skb); 1153 rx_ring->skb = NULL; 1154 } 1155 1156 /* Free all the Rx ring sk_buffs */ 1157 for (i = 0; i < rx_ring->count; i++) { 1158 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; 1159 1160 if (!rx_bi->page) 1161 continue; 1162 1163 /* Invalidate cache lines that may have been written to by 1164 * device so that we avoid corrupting memory. 1165 */ 1166 dma_sync_single_range_for_cpu(rx_ring->dev, 1167 rx_bi->dma, 1168 rx_bi->page_offset, 1169 rx_ring->rx_buf_len, 1170 DMA_FROM_DEVICE); 1171 1172 /* free resources associated with mapping */ 1173 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1174 i40e_rx_pg_size(rx_ring), 1175 DMA_FROM_DEVICE, 1176 I40E_RX_DMA_ATTR); 1177 1178 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1179 1180 rx_bi->page = NULL; 1181 rx_bi->page_offset = 0; 1182 } 1183 1184 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1185 memset(rx_ring->rx_bi, 0, bi_size); 1186 1187 /* Zero out the descriptor ring */ 1188 memset(rx_ring->desc, 0, rx_ring->size); 1189 1190 rx_ring->next_to_alloc = 0; 1191 rx_ring->next_to_clean = 0; 1192 rx_ring->next_to_use = 0; 1193 } 1194 1195 /** 1196 * i40e_free_rx_resources - Free Rx resources 1197 * @rx_ring: ring to clean the resources from 1198 * 1199 * Free all receive software resources 1200 **/ 1201 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1202 { 1203 i40e_clean_rx_ring(rx_ring); 1204 rx_ring->xdp_prog = NULL; 1205 kfree(rx_ring->rx_bi); 1206 rx_ring->rx_bi = NULL; 1207 1208 if (rx_ring->desc) { 1209 dma_free_coherent(rx_ring->dev, rx_ring->size, 1210 rx_ring->desc, rx_ring->dma); 1211 rx_ring->desc = NULL; 1212 } 1213 } 1214 1215 /** 1216 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1217 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1218 * 1219 * Returns 0 on success, negative on failure 1220 **/ 1221 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1222 { 1223 struct device *dev = rx_ring->dev; 1224 int bi_size; 1225 1226 /* warn if we are about to overwrite the pointer */ 1227 WARN_ON(rx_ring->rx_bi); 1228 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1229 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1230 if (!rx_ring->rx_bi) 1231 goto err; 1232 1233 u64_stats_init(&rx_ring->syncp); 1234 1235 /* Round up to nearest 4K */ 1236 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1237 rx_ring->size = ALIGN(rx_ring->size, 4096); 1238 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1239 &rx_ring->dma, GFP_KERNEL); 1240 1241 if (!rx_ring->desc) { 1242 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1243 rx_ring->size); 1244 goto err; 1245 } 1246 1247 rx_ring->next_to_alloc = 0; 1248 rx_ring->next_to_clean = 0; 1249 rx_ring->next_to_use = 0; 1250 1251 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1252 1253 return 0; 1254 err: 1255 kfree(rx_ring->rx_bi); 1256 rx_ring->rx_bi = NULL; 1257 return -ENOMEM; 1258 } 1259 1260 /** 1261 * i40e_release_rx_desc - Store the new tail and head values 1262 * @rx_ring: ring to bump 1263 * @val: new head index 1264 **/ 1265 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1266 { 1267 rx_ring->next_to_use = val; 1268 1269 /* update next to alloc since we have filled the ring */ 1270 rx_ring->next_to_alloc = val; 1271 1272 /* Force memory writes to complete before letting h/w 1273 * know there are new descriptors to fetch. (Only 1274 * applicable for weak-ordered memory model archs, 1275 * such as IA-64). 1276 */ 1277 wmb(); 1278 writel(val, rx_ring->tail); 1279 } 1280 1281 /** 1282 * i40e_rx_offset - Return expected offset into page to access data 1283 * @rx_ring: Ring we are requesting offset of 1284 * 1285 * Returns the offset value for ring into the data buffer. 1286 */ 1287 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1288 { 1289 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1290 } 1291 1292 /** 1293 * i40e_alloc_mapped_page - recycle or make a new page 1294 * @rx_ring: ring to use 1295 * @bi: rx_buffer struct to modify 1296 * 1297 * Returns true if the page was successfully allocated or 1298 * reused. 1299 **/ 1300 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1301 struct i40e_rx_buffer *bi) 1302 { 1303 struct page *page = bi->page; 1304 dma_addr_t dma; 1305 1306 /* since we are recycling buffers we should seldom need to alloc */ 1307 if (likely(page)) { 1308 rx_ring->rx_stats.page_reuse_count++; 1309 return true; 1310 } 1311 1312 /* alloc new page for storage */ 1313 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1314 if (unlikely(!page)) { 1315 rx_ring->rx_stats.alloc_page_failed++; 1316 return false; 1317 } 1318 1319 /* map page for use */ 1320 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1321 i40e_rx_pg_size(rx_ring), 1322 DMA_FROM_DEVICE, 1323 I40E_RX_DMA_ATTR); 1324 1325 /* if mapping failed free memory back to system since 1326 * there isn't much point in holding memory we can't use 1327 */ 1328 if (dma_mapping_error(rx_ring->dev, dma)) { 1329 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1330 rx_ring->rx_stats.alloc_page_failed++; 1331 return false; 1332 } 1333 1334 bi->dma = dma; 1335 bi->page = page; 1336 bi->page_offset = i40e_rx_offset(rx_ring); 1337 1338 /* initialize pagecnt_bias to 1 representing we fully own page */ 1339 bi->pagecnt_bias = 1; 1340 1341 return true; 1342 } 1343 1344 /** 1345 * i40e_receive_skb - Send a completed packet up the stack 1346 * @rx_ring: rx ring in play 1347 * @skb: packet to send up 1348 * @vlan_tag: vlan tag for packet 1349 **/ 1350 static void i40e_receive_skb(struct i40e_ring *rx_ring, 1351 struct sk_buff *skb, u16 vlan_tag) 1352 { 1353 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1354 1355 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1356 (vlan_tag & VLAN_VID_MASK)) 1357 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1358 1359 napi_gro_receive(&q_vector->napi, skb); 1360 } 1361 1362 /** 1363 * i40e_alloc_rx_buffers - Replace used receive buffers 1364 * @rx_ring: ring to place buffers on 1365 * @cleaned_count: number of buffers to replace 1366 * 1367 * Returns false if all allocations were successful, true if any fail 1368 **/ 1369 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1370 { 1371 u16 ntu = rx_ring->next_to_use; 1372 union i40e_rx_desc *rx_desc; 1373 struct i40e_rx_buffer *bi; 1374 1375 /* do nothing if no valid netdev defined */ 1376 if (!rx_ring->netdev || !cleaned_count) 1377 return false; 1378 1379 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1380 bi = &rx_ring->rx_bi[ntu]; 1381 1382 do { 1383 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1384 goto no_buffers; 1385 1386 /* sync the buffer for use by the device */ 1387 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1388 bi->page_offset, 1389 rx_ring->rx_buf_len, 1390 DMA_FROM_DEVICE); 1391 1392 /* Refresh the desc even if buffer_addrs didn't change 1393 * because each write-back erases this info. 1394 */ 1395 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1396 1397 rx_desc++; 1398 bi++; 1399 ntu++; 1400 if (unlikely(ntu == rx_ring->count)) { 1401 rx_desc = I40E_RX_DESC(rx_ring, 0); 1402 bi = rx_ring->rx_bi; 1403 ntu = 0; 1404 } 1405 1406 /* clear the status bits for the next_to_use descriptor */ 1407 rx_desc->wb.qword1.status_error_len = 0; 1408 1409 cleaned_count--; 1410 } while (cleaned_count); 1411 1412 if (rx_ring->next_to_use != ntu) 1413 i40e_release_rx_desc(rx_ring, ntu); 1414 1415 return false; 1416 1417 no_buffers: 1418 if (rx_ring->next_to_use != ntu) 1419 i40e_release_rx_desc(rx_ring, ntu); 1420 1421 /* make sure to come back via polling to try again after 1422 * allocation failure 1423 */ 1424 return true; 1425 } 1426 1427 /** 1428 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1429 * @vsi: the VSI we care about 1430 * @skb: skb currently being received and modified 1431 * @rx_desc: the receive descriptor 1432 **/ 1433 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1434 struct sk_buff *skb, 1435 union i40e_rx_desc *rx_desc) 1436 { 1437 struct i40e_rx_ptype_decoded decoded; 1438 u32 rx_error, rx_status; 1439 bool ipv4, ipv6; 1440 u8 ptype; 1441 u64 qword; 1442 1443 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1444 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1445 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1446 I40E_RXD_QW1_ERROR_SHIFT; 1447 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1448 I40E_RXD_QW1_STATUS_SHIFT; 1449 decoded = decode_rx_desc_ptype(ptype); 1450 1451 skb->ip_summed = CHECKSUM_NONE; 1452 1453 skb_checksum_none_assert(skb); 1454 1455 /* Rx csum enabled and ip headers found? */ 1456 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1457 return; 1458 1459 /* did the hardware decode the packet and checksum? */ 1460 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1461 return; 1462 1463 /* both known and outer_ip must be set for the below code to work */ 1464 if (!(decoded.known && decoded.outer_ip)) 1465 return; 1466 1467 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1468 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1469 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1470 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1471 1472 if (ipv4 && 1473 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1474 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1475 goto checksum_fail; 1476 1477 /* likely incorrect csum if alternate IP extension headers found */ 1478 if (ipv6 && 1479 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1480 /* don't increment checksum err here, non-fatal err */ 1481 return; 1482 1483 /* there was some L4 error, count error and punt packet to the stack */ 1484 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1485 goto checksum_fail; 1486 1487 /* handle packets that were not able to be checksummed due 1488 * to arrival speed, in this case the stack can compute 1489 * the csum. 1490 */ 1491 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1492 return; 1493 1494 /* If there is an outer header present that might contain a checksum 1495 * we need to bump the checksum level by 1 to reflect the fact that 1496 * we are indicating we validated the inner checksum. 1497 */ 1498 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1499 skb->csum_level = 1; 1500 1501 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1502 switch (decoded.inner_prot) { 1503 case I40E_RX_PTYPE_INNER_PROT_TCP: 1504 case I40E_RX_PTYPE_INNER_PROT_UDP: 1505 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1506 skb->ip_summed = CHECKSUM_UNNECESSARY; 1507 /* fall though */ 1508 default: 1509 break; 1510 } 1511 1512 return; 1513 1514 checksum_fail: 1515 vsi->back->hw_csum_rx_error++; 1516 } 1517 1518 /** 1519 * i40e_ptype_to_htype - get a hash type 1520 * @ptype: the ptype value from the descriptor 1521 * 1522 * Returns a hash type to be used by skb_set_hash 1523 **/ 1524 static inline int i40e_ptype_to_htype(u8 ptype) 1525 { 1526 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1527 1528 if (!decoded.known) 1529 return PKT_HASH_TYPE_NONE; 1530 1531 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1532 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1533 return PKT_HASH_TYPE_L4; 1534 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1535 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1536 return PKT_HASH_TYPE_L3; 1537 else 1538 return PKT_HASH_TYPE_L2; 1539 } 1540 1541 /** 1542 * i40e_rx_hash - set the hash value in the skb 1543 * @ring: descriptor ring 1544 * @rx_desc: specific descriptor 1545 **/ 1546 static inline void i40e_rx_hash(struct i40e_ring *ring, 1547 union i40e_rx_desc *rx_desc, 1548 struct sk_buff *skb, 1549 u8 rx_ptype) 1550 { 1551 u32 hash; 1552 const __le64 rss_mask = 1553 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1554 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1555 1556 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1557 return; 1558 1559 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1560 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1561 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1562 } 1563 } 1564 1565 /** 1566 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1567 * @rx_ring: rx descriptor ring packet is being transacted on 1568 * @rx_desc: pointer to the EOP Rx descriptor 1569 * @skb: pointer to current skb being populated 1570 * @rx_ptype: the packet type decoded by hardware 1571 * 1572 * This function checks the ring, descriptor, and packet information in 1573 * order to populate the hash, checksum, VLAN, protocol, and 1574 * other fields within the skb. 1575 **/ 1576 static inline 1577 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1578 union i40e_rx_desc *rx_desc, struct sk_buff *skb, 1579 u8 rx_ptype) 1580 { 1581 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1582 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1583 I40E_RXD_QW1_STATUS_SHIFT; 1584 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1585 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1586 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1587 1588 if (unlikely(tsynvalid)) 1589 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1590 1591 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1592 1593 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1594 1595 skb_record_rx_queue(skb, rx_ring->queue_index); 1596 1597 /* modifies the skb - consumes the enet header */ 1598 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1599 } 1600 1601 /** 1602 * i40e_cleanup_headers - Correct empty headers 1603 * @rx_ring: rx descriptor ring packet is being transacted on 1604 * @skb: pointer to current skb being fixed 1605 * @rx_desc: pointer to the EOP Rx descriptor 1606 * 1607 * Also address the case where we are pulling data in on pages only 1608 * and as such no data is present in the skb header. 1609 * 1610 * In addition if skb is not at least 60 bytes we need to pad it so that 1611 * it is large enough to qualify as a valid Ethernet frame. 1612 * 1613 * Returns true if an error was encountered and skb was freed. 1614 **/ 1615 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1616 union i40e_rx_desc *rx_desc) 1617 1618 { 1619 /* XDP packets use error pointer so abort at this point */ 1620 if (IS_ERR(skb)) 1621 return true; 1622 1623 /* ERR_MASK will only have valid bits if EOP set, and 1624 * what we are doing here is actually checking 1625 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1626 * the error field 1627 */ 1628 if (unlikely(i40e_test_staterr(rx_desc, 1629 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1630 dev_kfree_skb_any(skb); 1631 return true; 1632 } 1633 1634 /* if eth_skb_pad returns an error the skb was freed */ 1635 if (eth_skb_pad(skb)) 1636 return true; 1637 1638 return false; 1639 } 1640 1641 /** 1642 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1643 * @rx_ring: rx descriptor ring to store buffers on 1644 * @old_buff: donor buffer to have page reused 1645 * 1646 * Synchronizes page for reuse by the adapter 1647 **/ 1648 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1649 struct i40e_rx_buffer *old_buff) 1650 { 1651 struct i40e_rx_buffer *new_buff; 1652 u16 nta = rx_ring->next_to_alloc; 1653 1654 new_buff = &rx_ring->rx_bi[nta]; 1655 1656 /* update, and store next to alloc */ 1657 nta++; 1658 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1659 1660 /* transfer page from old buffer to new buffer */ 1661 new_buff->dma = old_buff->dma; 1662 new_buff->page = old_buff->page; 1663 new_buff->page_offset = old_buff->page_offset; 1664 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1665 } 1666 1667 /** 1668 * i40e_page_is_reusable - check if any reuse is possible 1669 * @page: page struct to check 1670 * 1671 * A page is not reusable if it was allocated under low memory 1672 * conditions, or it's not in the same NUMA node as this CPU. 1673 */ 1674 static inline bool i40e_page_is_reusable(struct page *page) 1675 { 1676 return (page_to_nid(page) == numa_mem_id()) && 1677 !page_is_pfmemalloc(page); 1678 } 1679 1680 /** 1681 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1682 * the adapter for another receive 1683 * 1684 * @rx_buffer: buffer containing the page 1685 * 1686 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1687 * an unused region in the page. 1688 * 1689 * For small pages, @truesize will be a constant value, half the size 1690 * of the memory at page. We'll attempt to alternate between high and 1691 * low halves of the page, with one half ready for use by the hardware 1692 * and the other half being consumed by the stack. We use the page 1693 * ref count to determine whether the stack has finished consuming the 1694 * portion of this page that was passed up with a previous packet. If 1695 * the page ref count is >1, we'll assume the "other" half page is 1696 * still busy, and this page cannot be reused. 1697 * 1698 * For larger pages, @truesize will be the actual space used by the 1699 * received packet (adjusted upward to an even multiple of the cache 1700 * line size). This will advance through the page by the amount 1701 * actually consumed by the received packets while there is still 1702 * space for a buffer. Each region of larger pages will be used at 1703 * most once, after which the page will not be reused. 1704 * 1705 * In either case, if the page is reusable its refcount is increased. 1706 **/ 1707 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer) 1708 { 1709 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1710 struct page *page = rx_buffer->page; 1711 1712 /* Is any reuse possible? */ 1713 if (unlikely(!i40e_page_is_reusable(page))) 1714 return false; 1715 1716 #if (PAGE_SIZE < 8192) 1717 /* if we are only owner of page we can reuse it */ 1718 if (unlikely((page_count(page) - pagecnt_bias) > 1)) 1719 return false; 1720 #else 1721 #define I40E_LAST_OFFSET \ 1722 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1723 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1724 return false; 1725 #endif 1726 1727 /* If we have drained the page fragment pool we need to update 1728 * the pagecnt_bias and page count so that we fully restock the 1729 * number of references the driver holds. 1730 */ 1731 if (unlikely(!pagecnt_bias)) { 1732 page_ref_add(page, USHRT_MAX); 1733 rx_buffer->pagecnt_bias = USHRT_MAX; 1734 } 1735 1736 return true; 1737 } 1738 1739 /** 1740 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1741 * @rx_ring: rx descriptor ring to transact packets on 1742 * @rx_buffer: buffer containing page to add 1743 * @skb: sk_buff to place the data into 1744 * @size: packet length from rx_desc 1745 * 1746 * This function will add the data contained in rx_buffer->page to the skb. 1747 * It will just attach the page as a frag to the skb. 1748 * 1749 * The function will then update the page offset. 1750 **/ 1751 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1752 struct i40e_rx_buffer *rx_buffer, 1753 struct sk_buff *skb, 1754 unsigned int size) 1755 { 1756 #if (PAGE_SIZE < 8192) 1757 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1758 #else 1759 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1760 #endif 1761 1762 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1763 rx_buffer->page_offset, size, truesize); 1764 1765 /* page is being used so we must update the page offset */ 1766 #if (PAGE_SIZE < 8192) 1767 rx_buffer->page_offset ^= truesize; 1768 #else 1769 rx_buffer->page_offset += truesize; 1770 #endif 1771 } 1772 1773 /** 1774 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1775 * @rx_ring: rx descriptor ring to transact packets on 1776 * @size: size of buffer to add to skb 1777 * 1778 * This function will pull an Rx buffer from the ring and synchronize it 1779 * for use by the CPU. 1780 */ 1781 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1782 const unsigned int size) 1783 { 1784 struct i40e_rx_buffer *rx_buffer; 1785 1786 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; 1787 prefetchw(rx_buffer->page); 1788 1789 /* we are reusing so sync this buffer for CPU use */ 1790 dma_sync_single_range_for_cpu(rx_ring->dev, 1791 rx_buffer->dma, 1792 rx_buffer->page_offset, 1793 size, 1794 DMA_FROM_DEVICE); 1795 1796 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1797 rx_buffer->pagecnt_bias--; 1798 1799 return rx_buffer; 1800 } 1801 1802 /** 1803 * i40e_construct_skb - Allocate skb and populate it 1804 * @rx_ring: rx descriptor ring to transact packets on 1805 * @rx_buffer: rx buffer to pull data from 1806 * @xdp: xdp_buff pointing to the data 1807 * 1808 * This function allocates an skb. It then populates it with the page 1809 * data from the current receive descriptor, taking care to set up the 1810 * skb correctly. 1811 */ 1812 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 1813 struct i40e_rx_buffer *rx_buffer, 1814 struct xdp_buff *xdp) 1815 { 1816 unsigned int size = xdp->data_end - xdp->data; 1817 #if (PAGE_SIZE < 8192) 1818 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1819 #else 1820 unsigned int truesize = SKB_DATA_ALIGN(size); 1821 #endif 1822 unsigned int headlen; 1823 struct sk_buff *skb; 1824 1825 /* prefetch first cache line of first page */ 1826 prefetch(xdp->data); 1827 #if L1_CACHE_BYTES < 128 1828 prefetch(xdp->data + L1_CACHE_BYTES); 1829 #endif 1830 1831 /* allocate a skb to store the frags */ 1832 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 1833 I40E_RX_HDR_SIZE, 1834 GFP_ATOMIC | __GFP_NOWARN); 1835 if (unlikely(!skb)) 1836 return NULL; 1837 1838 /* Determine available headroom for copy */ 1839 headlen = size; 1840 if (headlen > I40E_RX_HDR_SIZE) 1841 headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE); 1842 1843 /* align pull length to size of long to optimize memcpy performance */ 1844 memcpy(__skb_put(skb, headlen), xdp->data, 1845 ALIGN(headlen, sizeof(long))); 1846 1847 /* update all of the pointers */ 1848 size -= headlen; 1849 if (size) { 1850 skb_add_rx_frag(skb, 0, rx_buffer->page, 1851 rx_buffer->page_offset + headlen, 1852 size, truesize); 1853 1854 /* buffer is used by skb, update page_offset */ 1855 #if (PAGE_SIZE < 8192) 1856 rx_buffer->page_offset ^= truesize; 1857 #else 1858 rx_buffer->page_offset += truesize; 1859 #endif 1860 } else { 1861 /* buffer is unused, reset bias back to rx_buffer */ 1862 rx_buffer->pagecnt_bias++; 1863 } 1864 1865 return skb; 1866 } 1867 1868 /** 1869 * i40e_build_skb - Build skb around an existing buffer 1870 * @rx_ring: Rx descriptor ring to transact packets on 1871 * @rx_buffer: Rx buffer to pull data from 1872 * @xdp: xdp_buff pointing to the data 1873 * 1874 * This function builds an skb around an existing Rx buffer, taking care 1875 * to set up the skb correctly and avoid any memcpy overhead. 1876 */ 1877 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 1878 struct i40e_rx_buffer *rx_buffer, 1879 struct xdp_buff *xdp) 1880 { 1881 unsigned int size = xdp->data_end - xdp->data; 1882 #if (PAGE_SIZE < 8192) 1883 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1884 #else 1885 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1886 SKB_DATA_ALIGN(I40E_SKB_PAD + size); 1887 #endif 1888 struct sk_buff *skb; 1889 1890 /* prefetch first cache line of first page */ 1891 prefetch(xdp->data); 1892 #if L1_CACHE_BYTES < 128 1893 prefetch(xdp->data + L1_CACHE_BYTES); 1894 #endif 1895 /* build an skb around the page buffer */ 1896 skb = build_skb(xdp->data_hard_start, truesize); 1897 if (unlikely(!skb)) 1898 return NULL; 1899 1900 /* update pointers within the skb to store the data */ 1901 skb_reserve(skb, I40E_SKB_PAD); 1902 __skb_put(skb, size); 1903 1904 /* buffer is used by skb, update page_offset */ 1905 #if (PAGE_SIZE < 8192) 1906 rx_buffer->page_offset ^= truesize; 1907 #else 1908 rx_buffer->page_offset += truesize; 1909 #endif 1910 1911 return skb; 1912 } 1913 1914 /** 1915 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 1916 * @rx_ring: rx descriptor ring to transact packets on 1917 * @rx_buffer: rx buffer to pull data from 1918 * 1919 * This function will clean up the contents of the rx_buffer. It will 1920 * either recycle the bufer or unmap it and free the associated resources. 1921 */ 1922 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 1923 struct i40e_rx_buffer *rx_buffer) 1924 { 1925 if (i40e_can_reuse_rx_page(rx_buffer)) { 1926 /* hand second half of page back to the ring */ 1927 i40e_reuse_rx_page(rx_ring, rx_buffer); 1928 rx_ring->rx_stats.page_reuse_count++; 1929 } else { 1930 /* we are not reusing the buffer so unmap it */ 1931 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 1932 i40e_rx_pg_size(rx_ring), 1933 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 1934 __page_frag_cache_drain(rx_buffer->page, 1935 rx_buffer->pagecnt_bias); 1936 } 1937 1938 /* clear contents of buffer_info */ 1939 rx_buffer->page = NULL; 1940 } 1941 1942 /** 1943 * i40e_is_non_eop - process handling of non-EOP buffers 1944 * @rx_ring: Rx ring being processed 1945 * @rx_desc: Rx descriptor for current buffer 1946 * @skb: Current socket buffer containing buffer in progress 1947 * 1948 * This function updates next to clean. If the buffer is an EOP buffer 1949 * this function exits returning false, otherwise it will place the 1950 * sk_buff in the next buffer to be chained and return true indicating 1951 * that this is in fact a non-EOP buffer. 1952 **/ 1953 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 1954 union i40e_rx_desc *rx_desc, 1955 struct sk_buff *skb) 1956 { 1957 u32 ntc = rx_ring->next_to_clean + 1; 1958 1959 /* fetch, update, and store next to clean */ 1960 ntc = (ntc < rx_ring->count) ? ntc : 0; 1961 rx_ring->next_to_clean = ntc; 1962 1963 prefetch(I40E_RX_DESC(rx_ring, ntc)); 1964 1965 /* if we are the last buffer then there is nothing else to do */ 1966 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 1967 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 1968 return false; 1969 1970 rx_ring->rx_stats.non_eop_descs++; 1971 1972 return true; 1973 } 1974 1975 #define I40E_XDP_PASS 0 1976 #define I40E_XDP_CONSUMED 1 1977 #define I40E_XDP_TX 2 1978 1979 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 1980 struct i40e_ring *xdp_ring); 1981 1982 /** 1983 * i40e_run_xdp - run an XDP program 1984 * @rx_ring: Rx ring being processed 1985 * @xdp: XDP buffer containing the frame 1986 **/ 1987 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 1988 struct xdp_buff *xdp) 1989 { 1990 int result = I40E_XDP_PASS; 1991 struct i40e_ring *xdp_ring; 1992 struct bpf_prog *xdp_prog; 1993 u32 act; 1994 1995 rcu_read_lock(); 1996 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1997 1998 if (!xdp_prog) 1999 goto xdp_out; 2000 2001 act = bpf_prog_run_xdp(xdp_prog, xdp); 2002 switch (act) { 2003 case XDP_PASS: 2004 break; 2005 case XDP_TX: 2006 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2007 result = i40e_xmit_xdp_ring(xdp, xdp_ring); 2008 break; 2009 default: 2010 bpf_warn_invalid_xdp_action(act); 2011 case XDP_ABORTED: 2012 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2013 /* fallthrough -- handle aborts by dropping packet */ 2014 case XDP_DROP: 2015 result = I40E_XDP_CONSUMED; 2016 break; 2017 } 2018 xdp_out: 2019 rcu_read_unlock(); 2020 return ERR_PTR(-result); 2021 } 2022 2023 /** 2024 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2025 * @rx_ring: Rx ring 2026 * @rx_buffer: Rx buffer to adjust 2027 * @size: Size of adjustment 2028 **/ 2029 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2030 struct i40e_rx_buffer *rx_buffer, 2031 unsigned int size) 2032 { 2033 #if (PAGE_SIZE < 8192) 2034 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2035 2036 rx_buffer->page_offset ^= truesize; 2037 #else 2038 unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size); 2039 2040 rx_buffer->page_offset += truesize; 2041 #endif 2042 } 2043 2044 /** 2045 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2046 * @rx_ring: rx descriptor ring to transact packets on 2047 * @budget: Total limit on number of packets to process 2048 * 2049 * This function provides a "bounce buffer" approach to Rx interrupt 2050 * processing. The advantage to this is that on systems that have 2051 * expensive overhead for IOMMU access this provides a means of avoiding 2052 * it by maintaining the mapping of the page to the system. 2053 * 2054 * Returns amount of work completed 2055 **/ 2056 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2057 { 2058 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2059 struct sk_buff *skb = rx_ring->skb; 2060 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2061 bool failure = false, xdp_xmit = false; 2062 2063 while (likely(total_rx_packets < (unsigned int)budget)) { 2064 struct i40e_rx_buffer *rx_buffer; 2065 union i40e_rx_desc *rx_desc; 2066 struct xdp_buff xdp; 2067 unsigned int size; 2068 u16 vlan_tag; 2069 u8 rx_ptype; 2070 u64 qword; 2071 2072 /* return some buffers to hardware, one at a time is too slow */ 2073 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2074 failure = failure || 2075 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2076 cleaned_count = 0; 2077 } 2078 2079 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2080 2081 /* status_error_len will always be zero for unused descriptors 2082 * because it's cleared in cleanup, and overlaps with hdr_addr 2083 * which is always zero because packet split isn't used, if the 2084 * hardware wrote DD then the length will be non-zero 2085 */ 2086 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2087 2088 /* This memory barrier is needed to keep us from reading 2089 * any other fields out of the rx_desc until we have 2090 * verified the descriptor has been written back. 2091 */ 2092 dma_rmb(); 2093 2094 if (unlikely(i40e_rx_is_programming_status(qword))) { 2095 i40e_clean_programming_status(rx_ring, rx_desc, qword); 2096 continue; 2097 } 2098 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2099 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2100 if (!size) 2101 break; 2102 2103 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2104 rx_buffer = i40e_get_rx_buffer(rx_ring, size); 2105 2106 /* retrieve a buffer from the ring */ 2107 if (!skb) { 2108 xdp.data = page_address(rx_buffer->page) + 2109 rx_buffer->page_offset; 2110 xdp_set_data_meta_invalid(&xdp); 2111 xdp.data_hard_start = xdp.data - 2112 i40e_rx_offset(rx_ring); 2113 xdp.data_end = xdp.data + size; 2114 2115 skb = i40e_run_xdp(rx_ring, &xdp); 2116 } 2117 2118 if (IS_ERR(skb)) { 2119 if (PTR_ERR(skb) == -I40E_XDP_TX) { 2120 xdp_xmit = true; 2121 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2122 } else { 2123 rx_buffer->pagecnt_bias++; 2124 } 2125 total_rx_bytes += size; 2126 total_rx_packets++; 2127 } else if (skb) { 2128 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2129 } else if (ring_uses_build_skb(rx_ring)) { 2130 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2131 } else { 2132 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2133 } 2134 2135 /* exit if we failed to retrieve a buffer */ 2136 if (!skb) { 2137 rx_ring->rx_stats.alloc_buff_failed++; 2138 rx_buffer->pagecnt_bias++; 2139 break; 2140 } 2141 2142 i40e_put_rx_buffer(rx_ring, rx_buffer); 2143 cleaned_count++; 2144 2145 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2146 continue; 2147 2148 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2149 skb = NULL; 2150 continue; 2151 } 2152 2153 /* probably a little skewed due to removing CRC */ 2154 total_rx_bytes += skb->len; 2155 2156 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2157 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 2158 I40E_RXD_QW1_PTYPE_SHIFT; 2159 2160 /* populate checksum, VLAN, and protocol */ 2161 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 2162 2163 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ? 2164 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0; 2165 2166 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2167 i40e_receive_skb(rx_ring, skb, vlan_tag); 2168 skb = NULL; 2169 2170 /* update budget accounting */ 2171 total_rx_packets++; 2172 } 2173 2174 if (xdp_xmit) { 2175 struct i40e_ring *xdp_ring; 2176 2177 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2178 2179 /* Force memory writes to complete before letting h/w 2180 * know there are new descriptors to fetch. 2181 */ 2182 wmb(); 2183 2184 writel(xdp_ring->next_to_use, xdp_ring->tail); 2185 } 2186 2187 rx_ring->skb = skb; 2188 2189 u64_stats_update_begin(&rx_ring->syncp); 2190 rx_ring->stats.packets += total_rx_packets; 2191 rx_ring->stats.bytes += total_rx_bytes; 2192 u64_stats_update_end(&rx_ring->syncp); 2193 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2194 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2195 2196 /* guarantee a trip back through this routine if there was a failure */ 2197 return failure ? budget : (int)total_rx_packets; 2198 } 2199 2200 static u32 i40e_buildreg_itr(const int type, const u16 itr) 2201 { 2202 u32 val; 2203 2204 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2205 /* Don't clear PBA because that can cause lost interrupts that 2206 * came in while we were cleaning/polling 2207 */ 2208 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2209 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT); 2210 2211 return val; 2212 } 2213 2214 /* a small macro to shorten up some long lines */ 2215 #define INTREG I40E_PFINT_DYN_CTLN 2216 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx) 2217 { 2218 return vsi->rx_rings[idx]->rx_itr_setting; 2219 } 2220 2221 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx) 2222 { 2223 return vsi->tx_rings[idx]->tx_itr_setting; 2224 } 2225 2226 /** 2227 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2228 * @vsi: the VSI we care about 2229 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2230 * 2231 **/ 2232 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2233 struct i40e_q_vector *q_vector) 2234 { 2235 struct i40e_hw *hw = &vsi->back->hw; 2236 bool rx = false, tx = false; 2237 u32 rxval, txval; 2238 int vector; 2239 int idx = q_vector->v_idx; 2240 int rx_itr_setting, tx_itr_setting; 2241 2242 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2243 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2244 i40e_irq_dynamic_enable_icr0(vsi->back, false); 2245 return; 2246 } 2247 2248 vector = (q_vector->v_idx + vsi->base_vector); 2249 2250 /* avoid dynamic calculation if in countdown mode OR if 2251 * all dynamic is disabled 2252 */ 2253 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2254 2255 rx_itr_setting = get_rx_itr(vsi, idx); 2256 tx_itr_setting = get_tx_itr(vsi, idx); 2257 2258 if (q_vector->itr_countdown > 0 || 2259 (!ITR_IS_DYNAMIC(rx_itr_setting) && 2260 !ITR_IS_DYNAMIC(tx_itr_setting))) { 2261 goto enable_int; 2262 } 2263 2264 if (ITR_IS_DYNAMIC(tx_itr_setting)) { 2265 rx = i40e_set_new_dynamic_itr(&q_vector->rx); 2266 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr); 2267 } 2268 2269 if (ITR_IS_DYNAMIC(tx_itr_setting)) { 2270 tx = i40e_set_new_dynamic_itr(&q_vector->tx); 2271 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr); 2272 } 2273 2274 if (rx || tx) { 2275 /* get the higher of the two ITR adjustments and 2276 * use the same value for both ITR registers 2277 * when in adaptive mode (Rx and/or Tx) 2278 */ 2279 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr); 2280 2281 q_vector->tx.itr = q_vector->rx.itr = itr; 2282 txval = i40e_buildreg_itr(I40E_TX_ITR, itr); 2283 tx = true; 2284 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr); 2285 rx = true; 2286 } 2287 2288 /* only need to enable the interrupt once, but need 2289 * to possibly update both ITR values 2290 */ 2291 if (rx) { 2292 /* set the INTENA_MSK_MASK so that this first write 2293 * won't actually enable the interrupt, instead just 2294 * updating the ITR (it's bit 31 PF and VF) 2295 */ 2296 rxval |= BIT(31); 2297 /* don't check _DOWN because interrupt isn't being enabled */ 2298 wr32(hw, INTREG(vector - 1), rxval); 2299 } 2300 2301 enable_int: 2302 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2303 wr32(hw, INTREG(vector - 1), txval); 2304 2305 if (q_vector->itr_countdown) 2306 q_vector->itr_countdown--; 2307 else 2308 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2309 } 2310 2311 /** 2312 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2313 * @napi: napi struct with our devices info in it 2314 * @budget: amount of work driver is allowed to do this pass, in packets 2315 * 2316 * This function will clean all queues associated with a q_vector. 2317 * 2318 * Returns the amount of work done 2319 **/ 2320 int i40e_napi_poll(struct napi_struct *napi, int budget) 2321 { 2322 struct i40e_q_vector *q_vector = 2323 container_of(napi, struct i40e_q_vector, napi); 2324 struct i40e_vsi *vsi = q_vector->vsi; 2325 struct i40e_ring *ring; 2326 bool clean_complete = true; 2327 bool arm_wb = false; 2328 int budget_per_ring; 2329 int work_done = 0; 2330 2331 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2332 napi_complete(napi); 2333 return 0; 2334 } 2335 2336 /* Since the actual Tx work is minimal, we can give the Tx a larger 2337 * budget and be more aggressive about cleaning up the Tx descriptors. 2338 */ 2339 i40e_for_each_ring(ring, q_vector->tx) { 2340 if (!i40e_clean_tx_irq(vsi, ring, budget)) { 2341 clean_complete = false; 2342 continue; 2343 } 2344 arm_wb |= ring->arm_wb; 2345 ring->arm_wb = false; 2346 } 2347 2348 /* Handle case where we are called by netpoll with a budget of 0 */ 2349 if (budget <= 0) 2350 goto tx_only; 2351 2352 /* We attempt to distribute budget to each Rx queue fairly, but don't 2353 * allow the budget to go below 1 because that would exit polling early. 2354 */ 2355 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 2356 2357 i40e_for_each_ring(ring, q_vector->rx) { 2358 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring); 2359 2360 work_done += cleaned; 2361 /* if we clean as many as budgeted, we must not be done */ 2362 if (cleaned >= budget_per_ring) 2363 clean_complete = false; 2364 } 2365 2366 /* If work not completed, return budget and polling will return */ 2367 if (!clean_complete) { 2368 int cpu_id = smp_processor_id(); 2369 2370 /* It is possible that the interrupt affinity has changed but, 2371 * if the cpu is pegged at 100%, polling will never exit while 2372 * traffic continues and the interrupt will be stuck on this 2373 * cpu. We check to make sure affinity is correct before we 2374 * continue to poll, otherwise we must stop polling so the 2375 * interrupt can move to the correct cpu. 2376 */ 2377 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2378 /* Tell napi that we are done polling */ 2379 napi_complete_done(napi, work_done); 2380 2381 /* Force an interrupt */ 2382 i40e_force_wb(vsi, q_vector); 2383 2384 /* Return budget-1 so that polling stops */ 2385 return budget - 1; 2386 } 2387 tx_only: 2388 if (arm_wb) { 2389 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2390 i40e_enable_wb_on_itr(vsi, q_vector); 2391 } 2392 return budget; 2393 } 2394 2395 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2396 q_vector->arm_wb_state = false; 2397 2398 /* Work is done so exit the polling mode and re-enable the interrupt */ 2399 napi_complete_done(napi, work_done); 2400 2401 i40e_update_enable_itr(vsi, q_vector); 2402 2403 return min(work_done, budget - 1); 2404 } 2405 2406 /** 2407 * i40e_atr - Add a Flow Director ATR filter 2408 * @tx_ring: ring to add programming descriptor to 2409 * @skb: send buffer 2410 * @tx_flags: send tx flags 2411 **/ 2412 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2413 u32 tx_flags) 2414 { 2415 struct i40e_filter_program_desc *fdir_desc; 2416 struct i40e_pf *pf = tx_ring->vsi->back; 2417 union { 2418 unsigned char *network; 2419 struct iphdr *ipv4; 2420 struct ipv6hdr *ipv6; 2421 } hdr; 2422 struct tcphdr *th; 2423 unsigned int hlen; 2424 u32 flex_ptype, dtype_cmd; 2425 int l4_proto; 2426 u16 i; 2427 2428 /* make sure ATR is enabled */ 2429 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2430 return; 2431 2432 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) 2433 return; 2434 2435 /* if sampling is disabled do nothing */ 2436 if (!tx_ring->atr_sample_rate) 2437 return; 2438 2439 /* Currently only IPv4/IPv6 with TCP is supported */ 2440 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2441 return; 2442 2443 /* snag network header to get L4 type and address */ 2444 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2445 skb_inner_network_header(skb) : skb_network_header(skb); 2446 2447 /* Note: tx_flags gets modified to reflect inner protocols in 2448 * tx_enable_csum function if encap is enabled. 2449 */ 2450 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2451 /* access ihl as u8 to avoid unaligned access on ia64 */ 2452 hlen = (hdr.network[0] & 0x0F) << 2; 2453 l4_proto = hdr.ipv4->protocol; 2454 } else { 2455 /* find the start of the innermost ipv6 header */ 2456 unsigned int inner_hlen = hdr.network - skb->data; 2457 unsigned int h_offset = inner_hlen; 2458 2459 /* this function updates h_offset to the end of the header */ 2460 l4_proto = 2461 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2462 /* hlen will contain our best estimate of the tcp header */ 2463 hlen = h_offset - inner_hlen; 2464 } 2465 2466 if (l4_proto != IPPROTO_TCP) 2467 return; 2468 2469 th = (struct tcphdr *)(hdr.network + hlen); 2470 2471 /* Due to lack of space, no more new filters can be programmed */ 2472 if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)) 2473 return; 2474 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2475 /* HW ATR eviction will take care of removing filters on FIN 2476 * and RST packets. 2477 */ 2478 if (th->fin || th->rst) 2479 return; 2480 } 2481 2482 tx_ring->atr_count++; 2483 2484 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2485 if (!th->fin && 2486 !th->syn && 2487 !th->rst && 2488 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2489 return; 2490 2491 tx_ring->atr_count = 0; 2492 2493 /* grab the next descriptor */ 2494 i = tx_ring->next_to_use; 2495 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2496 2497 i++; 2498 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2499 2500 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2501 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2502 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2503 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2504 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2505 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2506 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2507 2508 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2509 2510 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2511 2512 dtype_cmd |= (th->fin || th->rst) ? 2513 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2514 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2515 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2516 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2517 2518 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2519 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2520 2521 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2522 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2523 2524 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2525 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2526 dtype_cmd |= 2527 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2528 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2529 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2530 else 2531 dtype_cmd |= 2532 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2533 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2534 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2535 2536 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2537 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2538 2539 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2540 fdir_desc->rsvd = cpu_to_le32(0); 2541 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2542 fdir_desc->fd_id = cpu_to_le32(0); 2543 } 2544 2545 /** 2546 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2547 * @skb: send buffer 2548 * @tx_ring: ring to send buffer on 2549 * @flags: the tx flags to be set 2550 * 2551 * Checks the skb and set up correspondingly several generic transmit flags 2552 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2553 * 2554 * Returns error code indicate the frame should be dropped upon error and the 2555 * otherwise returns 0 to indicate the flags has been set properly. 2556 **/ 2557 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2558 struct i40e_ring *tx_ring, 2559 u32 *flags) 2560 { 2561 __be16 protocol = skb->protocol; 2562 u32 tx_flags = 0; 2563 2564 if (protocol == htons(ETH_P_8021Q) && 2565 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2566 /* When HW VLAN acceleration is turned off by the user the 2567 * stack sets the protocol to 8021q so that the driver 2568 * can take any steps required to support the SW only 2569 * VLAN handling. In our case the driver doesn't need 2570 * to take any further steps so just set the protocol 2571 * to the encapsulated ethertype. 2572 */ 2573 skb->protocol = vlan_get_protocol(skb); 2574 goto out; 2575 } 2576 2577 /* if we have a HW VLAN tag being added, default to the HW one */ 2578 if (skb_vlan_tag_present(skb)) { 2579 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2580 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2581 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2582 } else if (protocol == htons(ETH_P_8021Q)) { 2583 struct vlan_hdr *vhdr, _vhdr; 2584 2585 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2586 if (!vhdr) 2587 return -EINVAL; 2588 2589 protocol = vhdr->h_vlan_encapsulated_proto; 2590 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2591 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2592 } 2593 2594 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2595 goto out; 2596 2597 /* Insert 802.1p priority into VLAN header */ 2598 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2599 (skb->priority != TC_PRIO_CONTROL)) { 2600 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2601 tx_flags |= (skb->priority & 0x7) << 2602 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2603 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2604 struct vlan_ethhdr *vhdr; 2605 int rc; 2606 2607 rc = skb_cow_head(skb, 0); 2608 if (rc < 0) 2609 return rc; 2610 vhdr = (struct vlan_ethhdr *)skb->data; 2611 vhdr->h_vlan_TCI = htons(tx_flags >> 2612 I40E_TX_FLAGS_VLAN_SHIFT); 2613 } else { 2614 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2615 } 2616 } 2617 2618 out: 2619 *flags = tx_flags; 2620 return 0; 2621 } 2622 2623 /** 2624 * i40e_tso - set up the tso context descriptor 2625 * @first: pointer to first Tx buffer for xmit 2626 * @hdr_len: ptr to the size of the packet header 2627 * @cd_type_cmd_tso_mss: Quad Word 1 2628 * 2629 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2630 **/ 2631 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2632 u64 *cd_type_cmd_tso_mss) 2633 { 2634 struct sk_buff *skb = first->skb; 2635 u64 cd_cmd, cd_tso_len, cd_mss; 2636 union { 2637 struct iphdr *v4; 2638 struct ipv6hdr *v6; 2639 unsigned char *hdr; 2640 } ip; 2641 union { 2642 struct tcphdr *tcp; 2643 struct udphdr *udp; 2644 unsigned char *hdr; 2645 } l4; 2646 u32 paylen, l4_offset; 2647 u16 gso_segs, gso_size; 2648 int err; 2649 2650 if (skb->ip_summed != CHECKSUM_PARTIAL) 2651 return 0; 2652 2653 if (!skb_is_gso(skb)) 2654 return 0; 2655 2656 err = skb_cow_head(skb, 0); 2657 if (err < 0) 2658 return err; 2659 2660 ip.hdr = skb_network_header(skb); 2661 l4.hdr = skb_transport_header(skb); 2662 2663 /* initialize outer IP header fields */ 2664 if (ip.v4->version == 4) { 2665 ip.v4->tot_len = 0; 2666 ip.v4->check = 0; 2667 } else { 2668 ip.v6->payload_len = 0; 2669 } 2670 2671 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2672 SKB_GSO_GRE_CSUM | 2673 SKB_GSO_IPXIP4 | 2674 SKB_GSO_IPXIP6 | 2675 SKB_GSO_UDP_TUNNEL | 2676 SKB_GSO_UDP_TUNNEL_CSUM)) { 2677 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2678 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2679 l4.udp->len = 0; 2680 2681 /* determine offset of outer transport header */ 2682 l4_offset = l4.hdr - skb->data; 2683 2684 /* remove payload length from outer checksum */ 2685 paylen = skb->len - l4_offset; 2686 csum_replace_by_diff(&l4.udp->check, 2687 (__force __wsum)htonl(paylen)); 2688 } 2689 2690 /* reset pointers to inner headers */ 2691 ip.hdr = skb_inner_network_header(skb); 2692 l4.hdr = skb_inner_transport_header(skb); 2693 2694 /* initialize inner IP header fields */ 2695 if (ip.v4->version == 4) { 2696 ip.v4->tot_len = 0; 2697 ip.v4->check = 0; 2698 } else { 2699 ip.v6->payload_len = 0; 2700 } 2701 } 2702 2703 /* determine offset of inner transport header */ 2704 l4_offset = l4.hdr - skb->data; 2705 2706 /* remove payload length from inner checksum */ 2707 paylen = skb->len - l4_offset; 2708 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 2709 2710 /* compute length of segmentation header */ 2711 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 2712 2713 /* pull values out of skb_shinfo */ 2714 gso_size = skb_shinfo(skb)->gso_size; 2715 gso_segs = skb_shinfo(skb)->gso_segs; 2716 2717 /* update GSO size and bytecount with header size */ 2718 first->gso_segs = gso_segs; 2719 first->bytecount += (first->gso_segs - 1) * *hdr_len; 2720 2721 /* find the field values */ 2722 cd_cmd = I40E_TX_CTX_DESC_TSO; 2723 cd_tso_len = skb->len - *hdr_len; 2724 cd_mss = gso_size; 2725 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2726 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2727 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2728 return 1; 2729 } 2730 2731 /** 2732 * i40e_tsyn - set up the tsyn context descriptor 2733 * @tx_ring: ptr to the ring to send 2734 * @skb: ptr to the skb we're sending 2735 * @tx_flags: the collected send information 2736 * @cd_type_cmd_tso_mss: Quad Word 1 2737 * 2738 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2739 **/ 2740 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2741 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2742 { 2743 struct i40e_pf *pf; 2744 2745 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2746 return 0; 2747 2748 /* Tx timestamps cannot be sampled when doing TSO */ 2749 if (tx_flags & I40E_TX_FLAGS_TSO) 2750 return 0; 2751 2752 /* only timestamp the outbound packet if the user has requested it and 2753 * we are not already transmitting a packet to be timestamped 2754 */ 2755 pf = i40e_netdev_to_pf(tx_ring->netdev); 2756 if (!(pf->flags & I40E_FLAG_PTP)) 2757 return 0; 2758 2759 if (pf->ptp_tx && 2760 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 2761 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2762 pf->ptp_tx_start = jiffies; 2763 pf->ptp_tx_skb = skb_get(skb); 2764 } else { 2765 pf->tx_hwtstamp_skipped++; 2766 return 0; 2767 } 2768 2769 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 2770 I40E_TXD_CTX_QW1_CMD_SHIFT; 2771 2772 return 1; 2773 } 2774 2775 /** 2776 * i40e_tx_enable_csum - Enable Tx checksum offloads 2777 * @skb: send buffer 2778 * @tx_flags: pointer to Tx flags currently set 2779 * @td_cmd: Tx descriptor command bits to set 2780 * @td_offset: Tx descriptor header offsets to set 2781 * @tx_ring: Tx descriptor ring 2782 * @cd_tunneling: ptr to context desc bits 2783 **/ 2784 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 2785 u32 *td_cmd, u32 *td_offset, 2786 struct i40e_ring *tx_ring, 2787 u32 *cd_tunneling) 2788 { 2789 union { 2790 struct iphdr *v4; 2791 struct ipv6hdr *v6; 2792 unsigned char *hdr; 2793 } ip; 2794 union { 2795 struct tcphdr *tcp; 2796 struct udphdr *udp; 2797 unsigned char *hdr; 2798 } l4; 2799 unsigned char *exthdr; 2800 u32 offset, cmd = 0; 2801 __be16 frag_off; 2802 u8 l4_proto = 0; 2803 2804 if (skb->ip_summed != CHECKSUM_PARTIAL) 2805 return 0; 2806 2807 ip.hdr = skb_network_header(skb); 2808 l4.hdr = skb_transport_header(skb); 2809 2810 /* compute outer L2 header size */ 2811 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 2812 2813 if (skb->encapsulation) { 2814 u32 tunnel = 0; 2815 /* define outer network header type */ 2816 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2817 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 2818 I40E_TX_CTX_EXT_IP_IPV4 : 2819 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 2820 2821 l4_proto = ip.v4->protocol; 2822 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2823 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 2824 2825 exthdr = ip.hdr + sizeof(*ip.v6); 2826 l4_proto = ip.v6->nexthdr; 2827 if (l4.hdr != exthdr) 2828 ipv6_skip_exthdr(skb, exthdr - skb->data, 2829 &l4_proto, &frag_off); 2830 } 2831 2832 /* define outer transport */ 2833 switch (l4_proto) { 2834 case IPPROTO_UDP: 2835 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 2836 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 2837 break; 2838 case IPPROTO_GRE: 2839 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 2840 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 2841 break; 2842 case IPPROTO_IPIP: 2843 case IPPROTO_IPV6: 2844 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 2845 l4.hdr = skb_inner_network_header(skb); 2846 break; 2847 default: 2848 if (*tx_flags & I40E_TX_FLAGS_TSO) 2849 return -1; 2850 2851 skb_checksum_help(skb); 2852 return 0; 2853 } 2854 2855 /* compute outer L3 header size */ 2856 tunnel |= ((l4.hdr - ip.hdr) / 4) << 2857 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 2858 2859 /* switch IP header pointer from outer to inner header */ 2860 ip.hdr = skb_inner_network_header(skb); 2861 2862 /* compute tunnel header size */ 2863 tunnel |= ((ip.hdr - l4.hdr) / 2) << 2864 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 2865 2866 /* indicate if we need to offload outer UDP header */ 2867 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 2868 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2869 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 2870 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 2871 2872 /* record tunnel offload values */ 2873 *cd_tunneling |= tunnel; 2874 2875 /* switch L4 header pointer from outer to inner */ 2876 l4.hdr = skb_inner_transport_header(skb); 2877 l4_proto = 0; 2878 2879 /* reset type as we transition from outer to inner headers */ 2880 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 2881 if (ip.v4->version == 4) 2882 *tx_flags |= I40E_TX_FLAGS_IPV4; 2883 if (ip.v6->version == 6) 2884 *tx_flags |= I40E_TX_FLAGS_IPV6; 2885 } 2886 2887 /* Enable IP checksum offloads */ 2888 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2889 l4_proto = ip.v4->protocol; 2890 /* the stack computes the IP header already, the only time we 2891 * need the hardware to recompute it is in the case of TSO. 2892 */ 2893 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 2894 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 2895 I40E_TX_DESC_CMD_IIPT_IPV4; 2896 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2897 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 2898 2899 exthdr = ip.hdr + sizeof(*ip.v6); 2900 l4_proto = ip.v6->nexthdr; 2901 if (l4.hdr != exthdr) 2902 ipv6_skip_exthdr(skb, exthdr - skb->data, 2903 &l4_proto, &frag_off); 2904 } 2905 2906 /* compute inner L3 header size */ 2907 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 2908 2909 /* Enable L4 checksum offloads */ 2910 switch (l4_proto) { 2911 case IPPROTO_TCP: 2912 /* enable checksum offloads */ 2913 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 2914 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2915 break; 2916 case IPPROTO_SCTP: 2917 /* enable SCTP checksum offload */ 2918 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 2919 offset |= (sizeof(struct sctphdr) >> 2) << 2920 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2921 break; 2922 case IPPROTO_UDP: 2923 /* enable UDP checksum offload */ 2924 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 2925 offset |= (sizeof(struct udphdr) >> 2) << 2926 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2927 break; 2928 default: 2929 if (*tx_flags & I40E_TX_FLAGS_TSO) 2930 return -1; 2931 skb_checksum_help(skb); 2932 return 0; 2933 } 2934 2935 *td_cmd |= cmd; 2936 *td_offset |= offset; 2937 2938 return 1; 2939 } 2940 2941 /** 2942 * i40e_create_tx_ctx Build the Tx context descriptor 2943 * @tx_ring: ring to create the descriptor on 2944 * @cd_type_cmd_tso_mss: Quad Word 1 2945 * @cd_tunneling: Quad Word 0 - bits 0-31 2946 * @cd_l2tag2: Quad Word 0 - bits 32-63 2947 **/ 2948 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 2949 const u64 cd_type_cmd_tso_mss, 2950 const u32 cd_tunneling, const u32 cd_l2tag2) 2951 { 2952 struct i40e_tx_context_desc *context_desc; 2953 int i = tx_ring->next_to_use; 2954 2955 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 2956 !cd_tunneling && !cd_l2tag2) 2957 return; 2958 2959 /* grab the next descriptor */ 2960 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 2961 2962 i++; 2963 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2964 2965 /* cpu_to_le32 and assign to struct fields */ 2966 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2967 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2968 context_desc->rsvd = cpu_to_le16(0); 2969 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2970 } 2971 2972 /** 2973 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 2974 * @tx_ring: the ring to be checked 2975 * @size: the size buffer we want to assure is available 2976 * 2977 * Returns -EBUSY if a stop is needed, else 0 2978 **/ 2979 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 2980 { 2981 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2982 /* Memory barrier before checking head and tail */ 2983 smp_mb(); 2984 2985 /* Check again in a case another CPU has just made room available. */ 2986 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 2987 return -EBUSY; 2988 2989 /* A reprieve! - use start_queue because it doesn't call schedule */ 2990 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2991 ++tx_ring->tx_stats.restart_queue; 2992 return 0; 2993 } 2994 2995 /** 2996 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 2997 * @skb: send buffer 2998 * 2999 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3000 * and so we need to figure out the cases where we need to linearize the skb. 3001 * 3002 * For TSO we need to count the TSO header and segment payload separately. 3003 * As such we need to check cases where we have 7 fragments or more as we 3004 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3005 * the segment payload in the first descriptor, and another 7 for the 3006 * fragments. 3007 **/ 3008 bool __i40e_chk_linearize(struct sk_buff *skb) 3009 { 3010 const struct skb_frag_struct *frag, *stale; 3011 int nr_frags, sum; 3012 3013 /* no need to check if number of frags is less than 7 */ 3014 nr_frags = skb_shinfo(skb)->nr_frags; 3015 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3016 return false; 3017 3018 /* We need to walk through the list and validate that each group 3019 * of 6 fragments totals at least gso_size. 3020 */ 3021 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3022 frag = &skb_shinfo(skb)->frags[0]; 3023 3024 /* Initialize size to the negative value of gso_size minus 1. We 3025 * use this as the worst case scenerio in which the frag ahead 3026 * of us only provides one byte which is why we are limited to 6 3027 * descriptors for a single transmit as the header and previous 3028 * fragment are already consuming 2 descriptors. 3029 */ 3030 sum = 1 - skb_shinfo(skb)->gso_size; 3031 3032 /* Add size of frags 0 through 4 to create our initial sum */ 3033 sum += skb_frag_size(frag++); 3034 sum += skb_frag_size(frag++); 3035 sum += skb_frag_size(frag++); 3036 sum += skb_frag_size(frag++); 3037 sum += skb_frag_size(frag++); 3038 3039 /* Walk through fragments adding latest fragment, testing it, and 3040 * then removing stale fragments from the sum. 3041 */ 3042 stale = &skb_shinfo(skb)->frags[0]; 3043 for (;;) { 3044 sum += skb_frag_size(frag++); 3045 3046 /* if sum is negative we failed to make sufficient progress */ 3047 if (sum < 0) 3048 return true; 3049 3050 if (!nr_frags--) 3051 break; 3052 3053 sum -= skb_frag_size(stale++); 3054 } 3055 3056 return false; 3057 } 3058 3059 /** 3060 * i40e_tx_map - Build the Tx descriptor 3061 * @tx_ring: ring to send buffer on 3062 * @skb: send buffer 3063 * @first: first buffer info buffer to use 3064 * @tx_flags: collected send information 3065 * @hdr_len: size of the packet header 3066 * @td_cmd: the command field in the descriptor 3067 * @td_offset: offset for checksum or crc 3068 * 3069 * Returns 0 on success, -1 on failure to DMA 3070 **/ 3071 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3072 struct i40e_tx_buffer *first, u32 tx_flags, 3073 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3074 { 3075 unsigned int data_len = skb->data_len; 3076 unsigned int size = skb_headlen(skb); 3077 struct skb_frag_struct *frag; 3078 struct i40e_tx_buffer *tx_bi; 3079 struct i40e_tx_desc *tx_desc; 3080 u16 i = tx_ring->next_to_use; 3081 u32 td_tag = 0; 3082 dma_addr_t dma; 3083 u16 desc_count = 1; 3084 3085 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3086 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3087 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3088 I40E_TX_FLAGS_VLAN_SHIFT; 3089 } 3090 3091 first->tx_flags = tx_flags; 3092 3093 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3094 3095 tx_desc = I40E_TX_DESC(tx_ring, i); 3096 tx_bi = first; 3097 3098 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3099 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3100 3101 if (dma_mapping_error(tx_ring->dev, dma)) 3102 goto dma_error; 3103 3104 /* record length, and DMA address */ 3105 dma_unmap_len_set(tx_bi, len, size); 3106 dma_unmap_addr_set(tx_bi, dma, dma); 3107 3108 /* align size to end of page */ 3109 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3110 tx_desc->buffer_addr = cpu_to_le64(dma); 3111 3112 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3113 tx_desc->cmd_type_offset_bsz = 3114 build_ctob(td_cmd, td_offset, 3115 max_data, td_tag); 3116 3117 tx_desc++; 3118 i++; 3119 desc_count++; 3120 3121 if (i == tx_ring->count) { 3122 tx_desc = I40E_TX_DESC(tx_ring, 0); 3123 i = 0; 3124 } 3125 3126 dma += max_data; 3127 size -= max_data; 3128 3129 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3130 tx_desc->buffer_addr = cpu_to_le64(dma); 3131 } 3132 3133 if (likely(!data_len)) 3134 break; 3135 3136 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3137 size, td_tag); 3138 3139 tx_desc++; 3140 i++; 3141 desc_count++; 3142 3143 if (i == tx_ring->count) { 3144 tx_desc = I40E_TX_DESC(tx_ring, 0); 3145 i = 0; 3146 } 3147 3148 size = skb_frag_size(frag); 3149 data_len -= size; 3150 3151 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3152 DMA_TO_DEVICE); 3153 3154 tx_bi = &tx_ring->tx_bi[i]; 3155 } 3156 3157 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3158 3159 i++; 3160 if (i == tx_ring->count) 3161 i = 0; 3162 3163 tx_ring->next_to_use = i; 3164 3165 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3166 3167 /* write last descriptor with EOP bit */ 3168 td_cmd |= I40E_TX_DESC_CMD_EOP; 3169 3170 /* We can OR these values together as they both are checked against 3171 * 4 below and at this point desc_count will be used as a boolean value 3172 * after this if/else block. 3173 */ 3174 desc_count |= ++tx_ring->packet_stride; 3175 3176 /* Algorithm to optimize tail and RS bit setting: 3177 * if queue is stopped 3178 * mark RS bit 3179 * reset packet counter 3180 * else if xmit_more is supported and is true 3181 * advance packet counter to 4 3182 * reset desc_count to 0 3183 * 3184 * if desc_count >= 4 3185 * mark RS bit 3186 * reset packet counter 3187 * if desc_count > 0 3188 * update tail 3189 * 3190 * Note: If there are less than 4 descriptors 3191 * pending and interrupts were disabled the service task will 3192 * trigger a force WB. 3193 */ 3194 if (netif_xmit_stopped(txring_txq(tx_ring))) { 3195 goto do_rs; 3196 } else if (skb->xmit_more) { 3197 /* set stride to arm on next packet and reset desc_count */ 3198 tx_ring->packet_stride = WB_STRIDE; 3199 desc_count = 0; 3200 } else if (desc_count >= WB_STRIDE) { 3201 do_rs: 3202 /* write last descriptor with RS bit set */ 3203 td_cmd |= I40E_TX_DESC_CMD_RS; 3204 tx_ring->packet_stride = 0; 3205 } 3206 3207 tx_desc->cmd_type_offset_bsz = 3208 build_ctob(td_cmd, td_offset, size, td_tag); 3209 3210 /* Force memory writes to complete before letting h/w know there 3211 * are new descriptors to fetch. 3212 * 3213 * We also use this memory barrier to make certain all of the 3214 * status bits have been updated before next_to_watch is written. 3215 */ 3216 wmb(); 3217 3218 /* set next_to_watch value indicating a packet is present */ 3219 first->next_to_watch = tx_desc; 3220 3221 /* notify HW of packet */ 3222 if (desc_count) { 3223 writel(i, tx_ring->tail); 3224 3225 /* we need this if more than one processor can write to our tail 3226 * at a time, it synchronizes IO on IA64/Altix systems 3227 */ 3228 mmiowb(); 3229 } 3230 3231 return 0; 3232 3233 dma_error: 3234 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3235 3236 /* clear dma mappings for failed tx_bi map */ 3237 for (;;) { 3238 tx_bi = &tx_ring->tx_bi[i]; 3239 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3240 if (tx_bi == first) 3241 break; 3242 if (i == 0) 3243 i = tx_ring->count; 3244 i--; 3245 } 3246 3247 tx_ring->next_to_use = i; 3248 3249 return -1; 3250 } 3251 3252 /** 3253 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3254 * @xdp: data to transmit 3255 * @xdp_ring: XDP Tx ring 3256 **/ 3257 static int i40e_xmit_xdp_ring(struct xdp_buff *xdp, 3258 struct i40e_ring *xdp_ring) 3259 { 3260 u32 size = xdp->data_end - xdp->data; 3261 u16 i = xdp_ring->next_to_use; 3262 struct i40e_tx_buffer *tx_bi; 3263 struct i40e_tx_desc *tx_desc; 3264 dma_addr_t dma; 3265 3266 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3267 xdp_ring->tx_stats.tx_busy++; 3268 return I40E_XDP_CONSUMED; 3269 } 3270 3271 dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE); 3272 if (dma_mapping_error(xdp_ring->dev, dma)) 3273 return I40E_XDP_CONSUMED; 3274 3275 tx_bi = &xdp_ring->tx_bi[i]; 3276 tx_bi->bytecount = size; 3277 tx_bi->gso_segs = 1; 3278 tx_bi->raw_buf = xdp->data; 3279 3280 /* record length, and DMA address */ 3281 dma_unmap_len_set(tx_bi, len, size); 3282 dma_unmap_addr_set(tx_bi, dma, dma); 3283 3284 tx_desc = I40E_TX_DESC(xdp_ring, i); 3285 tx_desc->buffer_addr = cpu_to_le64(dma); 3286 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3287 | I40E_TXD_CMD, 3288 0, size, 0); 3289 3290 /* Make certain all of the status bits have been updated 3291 * before next_to_watch is written. 3292 */ 3293 smp_wmb(); 3294 3295 i++; 3296 if (i == xdp_ring->count) 3297 i = 0; 3298 3299 tx_bi->next_to_watch = tx_desc; 3300 xdp_ring->next_to_use = i; 3301 3302 return I40E_XDP_TX; 3303 } 3304 3305 /** 3306 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3307 * @skb: send buffer 3308 * @tx_ring: ring to send buffer on 3309 * 3310 * Returns NETDEV_TX_OK if sent, else an error code 3311 **/ 3312 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3313 struct i40e_ring *tx_ring) 3314 { 3315 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3316 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3317 struct i40e_tx_buffer *first; 3318 u32 td_offset = 0; 3319 u32 tx_flags = 0; 3320 __be16 protocol; 3321 u32 td_cmd = 0; 3322 u8 hdr_len = 0; 3323 int tso, count; 3324 int tsyn; 3325 3326 /* prefetch the data, we'll need it later */ 3327 prefetch(skb->data); 3328 3329 i40e_trace(xmit_frame_ring, skb, tx_ring); 3330 3331 count = i40e_xmit_descriptor_count(skb); 3332 if (i40e_chk_linearize(skb, count)) { 3333 if (__skb_linearize(skb)) { 3334 dev_kfree_skb_any(skb); 3335 return NETDEV_TX_OK; 3336 } 3337 count = i40e_txd_use_count(skb->len); 3338 tx_ring->tx_stats.tx_linearize++; 3339 } 3340 3341 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3342 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3343 * + 4 desc gap to avoid the cache line where head is, 3344 * + 1 desc for context descriptor, 3345 * otherwise try next time 3346 */ 3347 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3348 tx_ring->tx_stats.tx_busy++; 3349 return NETDEV_TX_BUSY; 3350 } 3351 3352 /* record the location of the first descriptor for this packet */ 3353 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3354 first->skb = skb; 3355 first->bytecount = skb->len; 3356 first->gso_segs = 1; 3357 3358 /* prepare the xmit flags */ 3359 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3360 goto out_drop; 3361 3362 /* obtain protocol of skb */ 3363 protocol = vlan_get_protocol(skb); 3364 3365 /* setup IPv4/IPv6 offloads */ 3366 if (protocol == htons(ETH_P_IP)) 3367 tx_flags |= I40E_TX_FLAGS_IPV4; 3368 else if (protocol == htons(ETH_P_IPV6)) 3369 tx_flags |= I40E_TX_FLAGS_IPV6; 3370 3371 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3372 3373 if (tso < 0) 3374 goto out_drop; 3375 else if (tso) 3376 tx_flags |= I40E_TX_FLAGS_TSO; 3377 3378 /* Always offload the checksum, since it's in the data descriptor */ 3379 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3380 tx_ring, &cd_tunneling); 3381 if (tso < 0) 3382 goto out_drop; 3383 3384 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3385 3386 if (tsyn) 3387 tx_flags |= I40E_TX_FLAGS_TSYN; 3388 3389 skb_tx_timestamp(skb); 3390 3391 /* always enable CRC insertion offload */ 3392 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3393 3394 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3395 cd_tunneling, cd_l2tag2); 3396 3397 /* Add Flow Director ATR if it's enabled. 3398 * 3399 * NOTE: this must always be directly before the data descriptor. 3400 */ 3401 i40e_atr(tx_ring, skb, tx_flags); 3402 3403 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3404 td_cmd, td_offset)) 3405 goto cleanup_tx_tstamp; 3406 3407 return NETDEV_TX_OK; 3408 3409 out_drop: 3410 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3411 dev_kfree_skb_any(first->skb); 3412 first->skb = NULL; 3413 cleanup_tx_tstamp: 3414 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3415 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3416 3417 dev_kfree_skb_any(pf->ptp_tx_skb); 3418 pf->ptp_tx_skb = NULL; 3419 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3420 } 3421 3422 return NETDEV_TX_OK; 3423 } 3424 3425 /** 3426 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3427 * @skb: send buffer 3428 * @netdev: network interface device structure 3429 * 3430 * Returns NETDEV_TX_OK if sent, else an error code 3431 **/ 3432 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3433 { 3434 struct i40e_netdev_priv *np = netdev_priv(netdev); 3435 struct i40e_vsi *vsi = np->vsi; 3436 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3437 3438 /* hardware can't handle really short frames, hardware padding works 3439 * beyond this point 3440 */ 3441 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3442 return NETDEV_TX_OK; 3443 3444 return i40e_xmit_frame_ring(skb, tx_ring); 3445 } 3446