1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <linux/bpf_trace.h> 6 #include <net/xdp.h> 7 #include "i40e.h" 8 #include "i40e_trace.h" 9 #include "i40e_prototype.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 /* Use LAN VSI Id if not programmed by user */ 46 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 47 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 48 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 49 50 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 51 52 dtype_cmd |= add ? 53 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 54 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 55 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 56 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 57 58 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 59 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 62 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 63 64 if (fdata->cnt_index) { 65 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 67 ((u32)fdata->cnt_index << 68 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 69 } 70 71 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 72 fdir_desc->rsvd = cpu_to_le32(0); 73 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 74 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 75 } 76 77 #define I40E_FD_CLEAN_DELAY 10 78 /** 79 * i40e_program_fdir_filter - Program a Flow Director filter 80 * @fdir_data: Packet data that will be filter parameters 81 * @raw_packet: the pre-allocated packet buffer for FDir 82 * @pf: The PF pointer 83 * @add: True for add/update, False for remove 84 **/ 85 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 86 u8 *raw_packet, struct i40e_pf *pf, 87 bool add) 88 { 89 struct i40e_tx_buffer *tx_buf, *first; 90 struct i40e_tx_desc *tx_desc; 91 struct i40e_ring *tx_ring; 92 struct i40e_vsi *vsi; 93 struct device *dev; 94 dma_addr_t dma; 95 u32 td_cmd = 0; 96 u16 i; 97 98 /* find existing FDIR VSI */ 99 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 100 if (!vsi) 101 return -ENOENT; 102 103 tx_ring = vsi->tx_rings[0]; 104 dev = tx_ring->dev; 105 106 /* we need two descriptors to add/del a filter and we can wait */ 107 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 108 if (!i) 109 return -EAGAIN; 110 msleep_interruptible(1); 111 } 112 113 dma = dma_map_single(dev, raw_packet, 114 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 115 if (dma_mapping_error(dev, dma)) 116 goto dma_fail; 117 118 /* grab the next descriptor */ 119 i = tx_ring->next_to_use; 120 first = &tx_ring->tx_bi[i]; 121 i40e_fdir(tx_ring, fdir_data, add); 122 123 /* Now program a dummy descriptor */ 124 i = tx_ring->next_to_use; 125 tx_desc = I40E_TX_DESC(tx_ring, i); 126 tx_buf = &tx_ring->tx_bi[i]; 127 128 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 129 130 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 131 132 /* record length, and DMA address */ 133 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 134 dma_unmap_addr_set(tx_buf, dma, dma); 135 136 tx_desc->buffer_addr = cpu_to_le64(dma); 137 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 138 139 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 140 tx_buf->raw_buf = (void *)raw_packet; 141 142 tx_desc->cmd_type_offset_bsz = 143 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 144 145 /* Force memory writes to complete before letting h/w 146 * know there are new descriptors to fetch. 147 */ 148 wmb(); 149 150 /* Mark the data descriptor to be watched */ 151 first->next_to_watch = tx_desc; 152 153 writel(tx_ring->next_to_use, tx_ring->tail); 154 return 0; 155 156 dma_fail: 157 return -1; 158 } 159 160 /** 161 * i40e_create_dummy_packet - Constructs dummy packet for HW 162 * @dummy_packet: preallocated space for dummy packet 163 * @ipv4: is layer 3 packet of version 4 or 6 164 * @l4proto: next level protocol used in data portion of l3 165 * @data: filter data 166 * 167 * Returns address of layer 4 protocol dummy packet. 168 **/ 169 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, 170 struct i40e_fdir_filter *data) 171 { 172 bool is_vlan = !!data->vlan_tag; 173 struct vlan_hdr vlan; 174 struct ipv6hdr ipv6; 175 struct ethhdr eth; 176 struct iphdr ip; 177 u8 *tmp; 178 179 if (ipv4) { 180 eth.h_proto = cpu_to_be16(ETH_P_IP); 181 ip.protocol = l4proto; 182 ip.version = 0x4; 183 ip.ihl = 0x5; 184 185 ip.daddr = data->dst_ip; 186 ip.saddr = data->src_ip; 187 } else { 188 eth.h_proto = cpu_to_be16(ETH_P_IPV6); 189 ipv6.nexthdr = l4proto; 190 ipv6.version = 0x6; 191 192 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, 193 sizeof(__be32) * 4); 194 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, 195 sizeof(__be32) * 4); 196 } 197 198 if (is_vlan) { 199 vlan.h_vlan_TCI = data->vlan_tag; 200 vlan.h_vlan_encapsulated_proto = eth.h_proto; 201 eth.h_proto = data->vlan_etype; 202 } 203 204 tmp = dummy_packet; 205 memcpy(tmp, ð, sizeof(eth)); 206 tmp += sizeof(eth); 207 208 if (is_vlan) { 209 memcpy(tmp, &vlan, sizeof(vlan)); 210 tmp += sizeof(vlan); 211 } 212 213 if (ipv4) { 214 memcpy(tmp, &ip, sizeof(ip)); 215 tmp += sizeof(ip); 216 } else { 217 memcpy(tmp, &ipv6, sizeof(ipv6)); 218 tmp += sizeof(ipv6); 219 } 220 221 return tmp; 222 } 223 224 /** 225 * i40e_create_dummy_udp_packet - helper function to create UDP packet 226 * @raw_packet: preallocated space for dummy packet 227 * @ipv4: is layer 3 packet of version 4 or 6 228 * @l4proto: next level protocol used in data portion of l3 229 * @data: filter data 230 * 231 * Helper function to populate udp fields. 232 **/ 233 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 234 struct i40e_fdir_filter *data) 235 { 236 struct udphdr *udp; 237 u8 *tmp; 238 239 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data); 240 udp = (struct udphdr *)(tmp); 241 udp->dest = data->dst_port; 242 udp->source = data->src_port; 243 } 244 245 /** 246 * i40e_create_dummy_tcp_packet - helper function to create TCP packet 247 * @raw_packet: preallocated space for dummy packet 248 * @ipv4: is layer 3 packet of version 4 or 6 249 * @l4proto: next level protocol used in data portion of l3 250 * @data: filter data 251 * 252 * Helper function to populate tcp fields. 253 **/ 254 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, 255 struct i40e_fdir_filter *data) 256 { 257 struct tcphdr *tcp; 258 u8 *tmp; 259 /* Dummy tcp packet */ 260 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 261 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; 262 263 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data); 264 265 tcp = (struct tcphdr *)tmp; 266 memcpy(tcp, tcp_packet, sizeof(tcp_packet)); 267 tcp->dest = data->dst_port; 268 tcp->source = data->src_port; 269 } 270 271 /** 272 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet 273 * @raw_packet: preallocated space for dummy packet 274 * @ipv4: is layer 3 packet of version 4 or 6 275 * @l4proto: next level protocol used in data portion of l3 276 * @data: filter data 277 * 278 * Helper function to populate sctp fields. 279 **/ 280 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, 281 u8 l4proto, 282 struct i40e_fdir_filter *data) 283 { 284 struct sctphdr *sctp; 285 u8 *tmp; 286 287 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data); 288 289 sctp = (struct sctphdr *)tmp; 290 sctp->dest = data->dst_port; 291 sctp->source = data->src_port; 292 } 293 294 /** 295 * i40e_prepare_fdir_filter - Prepare and program fdir filter 296 * @pf: physical function to attach filter to 297 * @fd_data: filter data 298 * @add: add or delete filter 299 * @packet_addr: address of dummy packet, used in filtering 300 * @payload_offset: offset from dummy packet address to user defined data 301 * @pctype: Packet type for which filter is used 302 * 303 * Helper function to offset data of dummy packet, program it and 304 * handle errors. 305 **/ 306 static int i40e_prepare_fdir_filter(struct i40e_pf *pf, 307 struct i40e_fdir_filter *fd_data, 308 bool add, char *packet_addr, 309 int payload_offset, u8 pctype) 310 { 311 int ret; 312 313 if (fd_data->flex_filter) { 314 u8 *payload; 315 __be16 pattern = fd_data->flex_word; 316 u16 off = fd_data->flex_offset; 317 318 payload = packet_addr + payload_offset; 319 320 /* If user provided vlan, offset payload by vlan header length */ 321 if (!!fd_data->vlan_tag) 322 payload += VLAN_HLEN; 323 324 *((__force __be16 *)(payload + off)) = pattern; 325 } 326 327 fd_data->pctype = pctype; 328 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add); 329 if (ret) { 330 dev_info(&pf->pdev->dev, 331 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 332 fd_data->pctype, fd_data->fd_id, ret); 333 /* Free the packet buffer since it wasn't added to the ring */ 334 return -EOPNOTSUPP; 335 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 336 if (add) 337 dev_info(&pf->pdev->dev, 338 "Filter OK for PCTYPE %d loc = %d\n", 339 fd_data->pctype, fd_data->fd_id); 340 else 341 dev_info(&pf->pdev->dev, 342 "Filter deleted for PCTYPE %d loc = %d\n", 343 fd_data->pctype, fd_data->fd_id); 344 } 345 346 return ret; 347 } 348 349 /** 350 * i40e_change_filter_num - Prepare and program fdir filter 351 * @ipv4: is layer 3 packet of version 4 or 6 352 * @add: add or delete filter 353 * @ipv4_filter_num: field to update 354 * @ipv6_filter_num: field to update 355 * 356 * Update filter number field for pf. 357 **/ 358 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, 359 u16 *ipv6_filter_num) 360 { 361 if (add) { 362 if (ipv4) 363 (*ipv4_filter_num)++; 364 else 365 (*ipv6_filter_num)++; 366 } else { 367 if (ipv4) 368 (*ipv4_filter_num)--; 369 else 370 (*ipv6_filter_num)--; 371 } 372 } 373 374 #define IP_HEADER_OFFSET 14 375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 377 /** 378 * i40e_add_del_fdir_udp - Add/Remove UDP filters 379 * @vsi: pointer to the targeted VSI 380 * @fd_data: the flow director data required for the FDir descriptor 381 * @add: true adds a filter, false removes it 382 * @ipv4: true is v4, false is v6 383 * 384 * Returns 0 if the filters were successfully added or removed 385 **/ 386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, 387 struct i40e_fdir_filter *fd_data, 388 bool add, 389 bool ipv4) 390 { 391 struct i40e_pf *pf = vsi->back; 392 u8 *raw_packet; 393 int ret; 394 395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 396 if (!raw_packet) 397 return -ENOMEM; 398 399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data); 400 401 if (ipv4) 402 ret = i40e_prepare_fdir_filter 403 (pf, fd_data, add, raw_packet, 404 I40E_UDPIP_DUMMY_PACKET_LEN, 405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP); 406 else 407 ret = i40e_prepare_fdir_filter 408 (pf, fd_data, add, raw_packet, 409 I40E_UDPIP6_DUMMY_PACKET_LEN, 410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP); 411 412 if (ret) { 413 kfree(raw_packet); 414 return ret; 415 } 416 417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt, 418 &pf->fd_udp6_filter_cnt); 419 420 return 0; 421 } 422 423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 425 /** 426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters 427 * @vsi: pointer to the targeted VSI 428 * @fd_data: the flow director data required for the FDir descriptor 429 * @add: true adds a filter, false removes it 430 * @ipv4: true is v4, false is v6 431 * 432 * Returns 0 if the filters were successfully added or removed 433 **/ 434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, 435 struct i40e_fdir_filter *fd_data, 436 bool add, 437 bool ipv4) 438 { 439 struct i40e_pf *pf = vsi->back; 440 u8 *raw_packet; 441 int ret; 442 443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 444 if (!raw_packet) 445 return -ENOMEM; 446 447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data); 448 if (ipv4) 449 ret = i40e_prepare_fdir_filter 450 (pf, fd_data, add, raw_packet, 451 I40E_TCPIP_DUMMY_PACKET_LEN, 452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP); 453 else 454 ret = i40e_prepare_fdir_filter 455 (pf, fd_data, add, raw_packet, 456 I40E_TCPIP6_DUMMY_PACKET_LEN, 457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP); 458 459 if (ret) { 460 kfree(raw_packet); 461 return ret; 462 } 463 464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt, 465 &pf->fd_tcp6_filter_cnt); 466 467 if (add) { 468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 469 I40E_DEBUG_FD & pf->hw.debug_mask) 470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 472 } 473 return 0; 474 } 475 476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 478 /** 479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for 480 * a specific flow spec 481 * @vsi: pointer to the targeted VSI 482 * @fd_data: the flow director data required for the FDir descriptor 483 * @add: true adds a filter, false removes it 484 * @ipv4: true is v4, false is v6 485 * 486 * Returns 0 if the filters were successfully added or removed 487 **/ 488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, 489 struct i40e_fdir_filter *fd_data, 490 bool add, 491 bool ipv4) 492 { 493 struct i40e_pf *pf = vsi->back; 494 u8 *raw_packet; 495 int ret; 496 497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 498 if (!raw_packet) 499 return -ENOMEM; 500 501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data); 502 503 if (ipv4) 504 ret = i40e_prepare_fdir_filter 505 (pf, fd_data, add, raw_packet, 506 I40E_SCTPIP_DUMMY_PACKET_LEN, 507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); 508 else 509 ret = i40e_prepare_fdir_filter 510 (pf, fd_data, add, raw_packet, 511 I40E_SCTPIP6_DUMMY_PACKET_LEN, 512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); 513 514 if (ret) { 515 kfree(raw_packet); 516 return ret; 517 } 518 519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt, 520 &pf->fd_sctp6_filter_cnt); 521 522 return 0; 523 } 524 525 #define I40E_IP_DUMMY_PACKET_LEN 34 526 #define I40E_IP6_DUMMY_PACKET_LEN 54 527 /** 528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for 529 * a specific flow spec 530 * @vsi: pointer to the targeted VSI 531 * @fd_data: the flow director data required for the FDir descriptor 532 * @add: true adds a filter, false removes it 533 * @ipv4: true is v4, false is v6 534 * 535 * Returns 0 if the filters were successfully added or removed 536 **/ 537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, 538 struct i40e_fdir_filter *fd_data, 539 bool add, 540 bool ipv4) 541 { 542 struct i40e_pf *pf = vsi->back; 543 int payload_offset; 544 u8 *raw_packet; 545 int iter_start; 546 int iter_end; 547 int ret; 548 int i; 549 550 if (ipv4) { 551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; 553 } else { 554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; 555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; 556 } 557 558 for (i = iter_start; i <= iter_end; i++) { 559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 560 if (!raw_packet) 561 return -ENOMEM; 562 563 /* IPv6 no header option differs from IPv4 */ 564 (void)i40e_create_dummy_packet 565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE, 566 fd_data); 567 568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : 569 I40E_IP6_DUMMY_PACKET_LEN; 570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet, 571 payload_offset, i); 572 if (ret) 573 goto err; 574 } 575 576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt, 577 &pf->fd_ip6_filter_cnt); 578 579 return 0; 580 err: 581 kfree(raw_packet); 582 return ret; 583 } 584 585 /** 586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 587 * @vsi: pointer to the targeted VSI 588 * @input: filter to add or delete 589 * @add: true adds a filter, false removes it 590 * 591 **/ 592 int i40e_add_del_fdir(struct i40e_vsi *vsi, 593 struct i40e_fdir_filter *input, bool add) 594 { 595 enum ip_ver { ipv6 = 0, ipv4 = 1 }; 596 struct i40e_pf *pf = vsi->back; 597 int ret; 598 599 switch (input->flow_type & ~FLOW_EXT) { 600 case TCP_V4_FLOW: 601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 602 break; 603 case UDP_V4_FLOW: 604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 605 break; 606 case SCTP_V4_FLOW: 607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 608 break; 609 case TCP_V6_FLOW: 610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 611 break; 612 case UDP_V6_FLOW: 613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 614 break; 615 case SCTP_V6_FLOW: 616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 617 break; 618 case IP_USER_FLOW: 619 switch (input->ipl4_proto) { 620 case IPPROTO_TCP: 621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); 622 break; 623 case IPPROTO_UDP: 624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); 625 break; 626 case IPPROTO_SCTP: 627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); 628 break; 629 case IPPROTO_IP: 630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4); 631 break; 632 default: 633 /* We cannot support masking based on protocol */ 634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 635 input->ipl4_proto); 636 return -EINVAL; 637 } 638 break; 639 case IPV6_USER_FLOW: 640 switch (input->ipl4_proto) { 641 case IPPROTO_TCP: 642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); 643 break; 644 case IPPROTO_UDP: 645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); 646 break; 647 case IPPROTO_SCTP: 648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); 649 break; 650 case IPPROTO_IP: 651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6); 652 break; 653 default: 654 /* We cannot support masking based on protocol */ 655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n", 656 input->ipl4_proto); 657 return -EINVAL; 658 } 659 break; 660 default: 661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 662 input->flow_type); 663 return -EINVAL; 664 } 665 666 /* The buffer allocated here will be normally be freed by 667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 668 * completion. In the event of an error adding the buffer to the FDIR 669 * ring, it will immediately be freed. It may also be freed by 670 * i40e_clean_tx_ring() when closing the VSI. 671 */ 672 return ret; 673 } 674 675 /** 676 * i40e_fd_handle_status - check the Programming Status for FD 677 * @rx_ring: the Rx ring for this descriptor 678 * @qword0_raw: qword0 679 * @qword1: qword1 after le_to_cpu 680 * @prog_id: the id originally used for programming 681 * 682 * This is used to verify if the FD programming or invalidation 683 * requested by SW to the HW is successful or not and take actions accordingly. 684 **/ 685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 686 u64 qword1, u8 prog_id) 687 { 688 struct i40e_pf *pf = rx_ring->vsi->back; 689 struct pci_dev *pdev = pf->pdev; 690 struct i40e_16b_rx_wb_qw0 *qw0; 691 u32 fcnt_prog, fcnt_avail; 692 u32 error; 693 694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; 695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 697 698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 700 if (qw0->hi_dword.fd_id != 0 || 701 (I40E_DEBUG_FD & pf->hw.debug_mask)) 702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 703 pf->fd_inv); 704 705 /* Check if the programming error is for ATR. 706 * If so, auto disable ATR and set a state for 707 * flush in progress. Next time we come here if flush is in 708 * progress do nothing, once flush is complete the state will 709 * be cleared. 710 */ 711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 712 return; 713 714 pf->fd_add_err++; 715 /* store the current atr filter count */ 716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 717 718 if (qw0->hi_dword.fd_id == 0 && 719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 720 /* These set_bit() calls aren't atomic with the 721 * test_bit() here, but worse case we potentially 722 * disable ATR and queue a flush right after SB 723 * support is re-enabled. That shouldn't cause an 724 * issue in practice 725 */ 726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 728 } 729 730 /* filter programming failed most likely due to table full */ 731 fcnt_prog = i40e_get_global_fd_count(pf); 732 fcnt_avail = pf->fdir_pf_filter_count; 733 /* If ATR is running fcnt_prog can quickly change, 734 * if we are very close to full, it makes sense to disable 735 * FD ATR/SB and then re-enable it when there is room. 736 */ 737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 740 pf->state)) 741 if (I40E_DEBUG_FD & pf->hw.debug_mask) 742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 743 } 744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 745 if (I40E_DEBUG_FD & pf->hw.debug_mask) 746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 747 qw0->hi_dword.fd_id); 748 } 749 } 750 751 /** 752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 753 * @ring: the ring that owns the buffer 754 * @tx_buffer: the buffer to free 755 **/ 756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 757 struct i40e_tx_buffer *tx_buffer) 758 { 759 if (tx_buffer->skb) { 760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 761 kfree(tx_buffer->raw_buf); 762 else if (ring_is_xdp(ring)) 763 xdp_return_frame(tx_buffer->xdpf); 764 else 765 dev_kfree_skb_any(tx_buffer->skb); 766 if (dma_unmap_len(tx_buffer, len)) 767 dma_unmap_single(ring->dev, 768 dma_unmap_addr(tx_buffer, dma), 769 dma_unmap_len(tx_buffer, len), 770 DMA_TO_DEVICE); 771 } else if (dma_unmap_len(tx_buffer, len)) { 772 dma_unmap_page(ring->dev, 773 dma_unmap_addr(tx_buffer, dma), 774 dma_unmap_len(tx_buffer, len), 775 DMA_TO_DEVICE); 776 } 777 778 tx_buffer->next_to_watch = NULL; 779 tx_buffer->skb = NULL; 780 dma_unmap_len_set(tx_buffer, len, 0); 781 /* tx_buffer must be completely set up in the transmit path */ 782 } 783 784 /** 785 * i40e_clean_tx_ring - Free any empty Tx buffers 786 * @tx_ring: ring to be cleaned 787 **/ 788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 789 { 790 unsigned long bi_size; 791 u16 i; 792 793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 794 i40e_xsk_clean_tx_ring(tx_ring); 795 } else { 796 /* ring already cleared, nothing to do */ 797 if (!tx_ring->tx_bi) 798 return; 799 800 /* Free all the Tx ring sk_buffs */ 801 for (i = 0; i < tx_ring->count; i++) 802 i40e_unmap_and_free_tx_resource(tx_ring, 803 &tx_ring->tx_bi[i]); 804 } 805 806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 807 memset(tx_ring->tx_bi, 0, bi_size); 808 809 /* Zero out the descriptor ring */ 810 memset(tx_ring->desc, 0, tx_ring->size); 811 812 tx_ring->next_to_use = 0; 813 tx_ring->next_to_clean = 0; 814 815 if (!tx_ring->netdev) 816 return; 817 818 /* cleanup Tx queue statistics */ 819 netdev_tx_reset_queue(txring_txq(tx_ring)); 820 } 821 822 /** 823 * i40e_free_tx_resources - Free Tx resources per queue 824 * @tx_ring: Tx descriptor ring for a specific queue 825 * 826 * Free all transmit software resources 827 **/ 828 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 829 { 830 i40e_clean_tx_ring(tx_ring); 831 kfree(tx_ring->tx_bi); 832 tx_ring->tx_bi = NULL; 833 834 if (tx_ring->desc) { 835 dma_free_coherent(tx_ring->dev, tx_ring->size, 836 tx_ring->desc, tx_ring->dma); 837 tx_ring->desc = NULL; 838 } 839 } 840 841 /** 842 * i40e_get_tx_pending - how many tx descriptors not processed 843 * @ring: the ring of descriptors 844 * @in_sw: use SW variables 845 * 846 * Since there is no access to the ring head register 847 * in XL710, we need to use our local copies 848 **/ 849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 850 { 851 u32 head, tail; 852 853 if (!in_sw) { 854 head = i40e_get_head(ring); 855 tail = readl(ring->tail); 856 } else { 857 head = ring->next_to_clean; 858 tail = ring->next_to_use; 859 } 860 861 if (head != tail) 862 return (head < tail) ? 863 tail - head : (tail + ring->count - head); 864 865 return 0; 866 } 867 868 /** 869 * i40e_detect_recover_hung - Function to detect and recover hung_queues 870 * @vsi: pointer to vsi struct with tx queues 871 * 872 * VSI has netdev and netdev has TX queues. This function is to check each of 873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 874 **/ 875 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 876 { 877 struct i40e_ring *tx_ring = NULL; 878 struct net_device *netdev; 879 unsigned int i; 880 int packets; 881 882 if (!vsi) 883 return; 884 885 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 886 return; 887 888 netdev = vsi->netdev; 889 if (!netdev) 890 return; 891 892 if (!netif_carrier_ok(netdev)) 893 return; 894 895 for (i = 0; i < vsi->num_queue_pairs; i++) { 896 tx_ring = vsi->tx_rings[i]; 897 if (tx_ring && tx_ring->desc) { 898 /* If packet counter has not changed the queue is 899 * likely stalled, so force an interrupt for this 900 * queue. 901 * 902 * prev_pkt_ctr would be negative if there was no 903 * pending work. 904 */ 905 packets = tx_ring->stats.packets & INT_MAX; 906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 907 i40e_force_wb(vsi, tx_ring->q_vector); 908 continue; 909 } 910 911 /* Memory barrier between read of packet count and call 912 * to i40e_get_tx_pending() 913 */ 914 smp_rmb(); 915 tx_ring->tx_stats.prev_pkt_ctr = 916 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 917 } 918 } 919 } 920 921 /** 922 * i40e_clean_tx_irq - Reclaim resources after transmit completes 923 * @vsi: the VSI we care about 924 * @tx_ring: Tx ring to clean 925 * @napi_budget: Used to determine if we are in netpoll 926 * 927 * Returns true if there's any budget left (e.g. the clean is finished) 928 **/ 929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 930 struct i40e_ring *tx_ring, int napi_budget) 931 { 932 int i = tx_ring->next_to_clean; 933 struct i40e_tx_buffer *tx_buf; 934 struct i40e_tx_desc *tx_head; 935 struct i40e_tx_desc *tx_desc; 936 unsigned int total_bytes = 0, total_packets = 0; 937 unsigned int budget = vsi->work_limit; 938 939 tx_buf = &tx_ring->tx_bi[i]; 940 tx_desc = I40E_TX_DESC(tx_ring, i); 941 i -= tx_ring->count; 942 943 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 944 945 do { 946 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 947 948 /* if next_to_watch is not set then there is no work pending */ 949 if (!eop_desc) 950 break; 951 952 /* prevent any other reads prior to eop_desc */ 953 smp_rmb(); 954 955 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 956 /* we have caught up to head, no work left to do */ 957 if (tx_head == tx_desc) 958 break; 959 960 /* clear next_to_watch to prevent false hangs */ 961 tx_buf->next_to_watch = NULL; 962 963 /* update the statistics for this packet */ 964 total_bytes += tx_buf->bytecount; 965 total_packets += tx_buf->gso_segs; 966 967 /* free the skb/XDP data */ 968 if (ring_is_xdp(tx_ring)) 969 xdp_return_frame(tx_buf->xdpf); 970 else 971 napi_consume_skb(tx_buf->skb, napi_budget); 972 973 /* unmap skb header data */ 974 dma_unmap_single(tx_ring->dev, 975 dma_unmap_addr(tx_buf, dma), 976 dma_unmap_len(tx_buf, len), 977 DMA_TO_DEVICE); 978 979 /* clear tx_buffer data */ 980 tx_buf->skb = NULL; 981 dma_unmap_len_set(tx_buf, len, 0); 982 983 /* unmap remaining buffers */ 984 while (tx_desc != eop_desc) { 985 i40e_trace(clean_tx_irq_unmap, 986 tx_ring, tx_desc, tx_buf); 987 988 tx_buf++; 989 tx_desc++; 990 i++; 991 if (unlikely(!i)) { 992 i -= tx_ring->count; 993 tx_buf = tx_ring->tx_bi; 994 tx_desc = I40E_TX_DESC(tx_ring, 0); 995 } 996 997 /* unmap any remaining paged data */ 998 if (dma_unmap_len(tx_buf, len)) { 999 dma_unmap_page(tx_ring->dev, 1000 dma_unmap_addr(tx_buf, dma), 1001 dma_unmap_len(tx_buf, len), 1002 DMA_TO_DEVICE); 1003 dma_unmap_len_set(tx_buf, len, 0); 1004 } 1005 } 1006 1007 /* move us one more past the eop_desc for start of next pkt */ 1008 tx_buf++; 1009 tx_desc++; 1010 i++; 1011 if (unlikely(!i)) { 1012 i -= tx_ring->count; 1013 tx_buf = tx_ring->tx_bi; 1014 tx_desc = I40E_TX_DESC(tx_ring, 0); 1015 } 1016 1017 prefetch(tx_desc); 1018 1019 /* update budget accounting */ 1020 budget--; 1021 } while (likely(budget)); 1022 1023 i += tx_ring->count; 1024 tx_ring->next_to_clean = i; 1025 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 1026 i40e_arm_wb(tx_ring, vsi, budget); 1027 1028 if (ring_is_xdp(tx_ring)) 1029 return !!budget; 1030 1031 /* notify netdev of completed buffers */ 1032 netdev_tx_completed_queue(txring_txq(tx_ring), 1033 total_packets, total_bytes); 1034 1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 1036 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 1037 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 1038 /* Make sure that anybody stopping the queue after this 1039 * sees the new next_to_clean. 1040 */ 1041 smp_mb(); 1042 if (__netif_subqueue_stopped(tx_ring->netdev, 1043 tx_ring->queue_index) && 1044 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 1045 netif_wake_subqueue(tx_ring->netdev, 1046 tx_ring->queue_index); 1047 ++tx_ring->tx_stats.restart_queue; 1048 } 1049 } 1050 1051 return !!budget; 1052 } 1053 1054 /** 1055 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 1056 * @vsi: the VSI we care about 1057 * @q_vector: the vector on which to enable writeback 1058 * 1059 **/ 1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 1061 struct i40e_q_vector *q_vector) 1062 { 1063 u16 flags = q_vector->tx.ring[0].flags; 1064 u32 val; 1065 1066 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 1067 return; 1068 1069 if (q_vector->arm_wb_state) 1070 return; 1071 1072 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 1073 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 1074 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 1075 1076 wr32(&vsi->back->hw, 1077 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 1078 val); 1079 } else { 1080 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 1081 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 1082 1083 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1084 } 1085 q_vector->arm_wb_state = true; 1086 } 1087 1088 /** 1089 * i40e_force_wb - Issue SW Interrupt so HW does a wb 1090 * @vsi: the VSI we care about 1091 * @q_vector: the vector on which to force writeback 1092 * 1093 **/ 1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 1095 { 1096 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 1097 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 1098 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 1099 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 1100 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 1101 /* allow 00 to be written to the index */ 1102 1103 wr32(&vsi->back->hw, 1104 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 1105 } else { 1106 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 1107 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 1108 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 1109 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 1110 /* allow 00 to be written to the index */ 1111 1112 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 1113 } 1114 } 1115 1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 1117 struct i40e_ring_container *rc) 1118 { 1119 return &q_vector->rx == rc; 1120 } 1121 1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 1123 { 1124 unsigned int divisor; 1125 1126 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 1127 case I40E_LINK_SPEED_40GB: 1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 1129 break; 1130 case I40E_LINK_SPEED_25GB: 1131 case I40E_LINK_SPEED_20GB: 1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 1133 break; 1134 default: 1135 case I40E_LINK_SPEED_10GB: 1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 1137 break; 1138 case I40E_LINK_SPEED_1GB: 1139 case I40E_LINK_SPEED_100MB: 1140 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 1141 break; 1142 } 1143 1144 return divisor; 1145 } 1146 1147 /** 1148 * i40e_update_itr - update the dynamic ITR value based on statistics 1149 * @q_vector: structure containing interrupt and ring information 1150 * @rc: structure containing ring performance data 1151 * 1152 * Stores a new ITR value based on packets and byte 1153 * counts during the last interrupt. The advantage of per interrupt 1154 * computation is faster updates and more accurate ITR for the current 1155 * traffic pattern. Constants in this function were computed 1156 * based on theoretical maximum wire speed and thresholds were set based 1157 * on testing data as well as attempting to minimize response time 1158 * while increasing bulk throughput. 1159 **/ 1160 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1161 struct i40e_ring_container *rc) 1162 { 1163 unsigned int avg_wire_size, packets, bytes, itr; 1164 unsigned long next_update = jiffies; 1165 1166 /* If we don't have any rings just leave ourselves set for maximum 1167 * possible latency so we take ourselves out of the equation. 1168 */ 1169 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1170 return; 1171 1172 /* For Rx we want to push the delay up and default to low latency. 1173 * for Tx we want to pull the delay down and default to high latency. 1174 */ 1175 itr = i40e_container_is_rx(q_vector, rc) ? 1176 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1177 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1178 1179 /* If we didn't update within up to 1 - 2 jiffies we can assume 1180 * that either packets are coming in so slow there hasn't been 1181 * any work, or that there is so much work that NAPI is dealing 1182 * with interrupt moderation and we don't need to do anything. 1183 */ 1184 if (time_after(next_update, rc->next_update)) 1185 goto clear_counts; 1186 1187 /* If itr_countdown is set it means we programmed an ITR within 1188 * the last 4 interrupt cycles. This has a side effect of us 1189 * potentially firing an early interrupt. In order to work around 1190 * this we need to throw out any data received for a few 1191 * interrupts following the update. 1192 */ 1193 if (q_vector->itr_countdown) { 1194 itr = rc->target_itr; 1195 goto clear_counts; 1196 } 1197 1198 packets = rc->total_packets; 1199 bytes = rc->total_bytes; 1200 1201 if (i40e_container_is_rx(q_vector, rc)) { 1202 /* If Rx there are 1 to 4 packets and bytes are less than 1203 * 9000 assume insufficient data to use bulk rate limiting 1204 * approach unless Tx is already in bulk rate limiting. We 1205 * are likely latency driven. 1206 */ 1207 if (packets && packets < 4 && bytes < 9000 && 1208 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1209 itr = I40E_ITR_ADAPTIVE_LATENCY; 1210 goto adjust_by_size; 1211 } 1212 } else if (packets < 4) { 1213 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1214 * bulk mode and we are receiving 4 or fewer packets just 1215 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1216 * that the Rx can relax. 1217 */ 1218 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1219 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1220 I40E_ITR_ADAPTIVE_MAX_USECS) 1221 goto clear_counts; 1222 } else if (packets > 32) { 1223 /* If we have processed over 32 packets in a single interrupt 1224 * for Tx assume we need to switch over to "bulk" mode. 1225 */ 1226 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1227 } 1228 1229 /* We have no packets to actually measure against. This means 1230 * either one of the other queues on this vector is active or 1231 * we are a Tx queue doing TSO with too high of an interrupt rate. 1232 * 1233 * Between 4 and 56 we can assume that our current interrupt delay 1234 * is only slightly too low. As such we should increase it by a small 1235 * fixed amount. 1236 */ 1237 if (packets < 56) { 1238 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1239 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1240 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1241 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1242 } 1243 goto clear_counts; 1244 } 1245 1246 if (packets <= 256) { 1247 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1248 itr &= I40E_ITR_MASK; 1249 1250 /* Between 56 and 112 is our "goldilocks" zone where we are 1251 * working out "just right". Just report that our current 1252 * ITR is good for us. 1253 */ 1254 if (packets <= 112) 1255 goto clear_counts; 1256 1257 /* If packet count is 128 or greater we are likely looking 1258 * at a slight overrun of the delay we want. Try halving 1259 * our delay to see if that will cut the number of packets 1260 * in half per interrupt. 1261 */ 1262 itr /= 2; 1263 itr &= I40E_ITR_MASK; 1264 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1265 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1266 1267 goto clear_counts; 1268 } 1269 1270 /* The paths below assume we are dealing with a bulk ITR since 1271 * number of packets is greater than 256. We are just going to have 1272 * to compute a value and try to bring the count under control, 1273 * though for smaller packet sizes there isn't much we can do as 1274 * NAPI polling will likely be kicking in sooner rather than later. 1275 */ 1276 itr = I40E_ITR_ADAPTIVE_BULK; 1277 1278 adjust_by_size: 1279 /* If packet counts are 256 or greater we can assume we have a gross 1280 * overestimation of what the rate should be. Instead of trying to fine 1281 * tune it just use the formula below to try and dial in an exact value 1282 * give the current packet size of the frame. 1283 */ 1284 avg_wire_size = bytes / packets; 1285 1286 /* The following is a crude approximation of: 1287 * wmem_default / (size + overhead) = desired_pkts_per_int 1288 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1289 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1290 * 1291 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1292 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1293 * formula down to 1294 * 1295 * (170 * (size + 24)) / (size + 640) = ITR 1296 * 1297 * We first do some math on the packet size and then finally bitshift 1298 * by 8 after rounding up. We also have to account for PCIe link speed 1299 * difference as ITR scales based on this. 1300 */ 1301 if (avg_wire_size <= 60) { 1302 /* Start at 250k ints/sec */ 1303 avg_wire_size = 4096; 1304 } else if (avg_wire_size <= 380) { 1305 /* 250K ints/sec to 60K ints/sec */ 1306 avg_wire_size *= 40; 1307 avg_wire_size += 1696; 1308 } else if (avg_wire_size <= 1084) { 1309 /* 60K ints/sec to 36K ints/sec */ 1310 avg_wire_size *= 15; 1311 avg_wire_size += 11452; 1312 } else if (avg_wire_size <= 1980) { 1313 /* 36K ints/sec to 30K ints/sec */ 1314 avg_wire_size *= 5; 1315 avg_wire_size += 22420; 1316 } else { 1317 /* plateau at a limit of 30K ints/sec */ 1318 avg_wire_size = 32256; 1319 } 1320 1321 /* If we are in low latency mode halve our delay which doubles the 1322 * rate to somewhere between 100K to 16K ints/sec 1323 */ 1324 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1325 avg_wire_size /= 2; 1326 1327 /* Resultant value is 256 times larger than it needs to be. This 1328 * gives us room to adjust the value as needed to either increase 1329 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1330 * 1331 * Use addition as we have already recorded the new latency flag 1332 * for the ITR value. 1333 */ 1334 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1335 I40E_ITR_ADAPTIVE_MIN_INC; 1336 1337 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1338 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1339 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1340 } 1341 1342 clear_counts: 1343 /* write back value */ 1344 rc->target_itr = itr; 1345 1346 /* next update should occur within next jiffy */ 1347 rc->next_update = next_update + 1; 1348 1349 rc->total_bytes = 0; 1350 rc->total_packets = 0; 1351 } 1352 1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1354 { 1355 return &rx_ring->rx_bi[idx]; 1356 } 1357 1358 /** 1359 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1360 * @rx_ring: rx descriptor ring to store buffers on 1361 * @old_buff: donor buffer to have page reused 1362 * 1363 * Synchronizes page for reuse by the adapter 1364 **/ 1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1366 struct i40e_rx_buffer *old_buff) 1367 { 1368 struct i40e_rx_buffer *new_buff; 1369 u16 nta = rx_ring->next_to_alloc; 1370 1371 new_buff = i40e_rx_bi(rx_ring, nta); 1372 1373 /* update, and store next to alloc */ 1374 nta++; 1375 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1376 1377 /* transfer page from old buffer to new buffer */ 1378 new_buff->dma = old_buff->dma; 1379 new_buff->page = old_buff->page; 1380 new_buff->page_offset = old_buff->page_offset; 1381 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1382 1383 rx_ring->rx_stats.page_reuse_count++; 1384 1385 /* clear contents of buffer_info */ 1386 old_buff->page = NULL; 1387 } 1388 1389 /** 1390 * i40e_clean_programming_status - clean the programming status descriptor 1391 * @rx_ring: the rx ring that has this descriptor 1392 * @qword0_raw: qword0 1393 * @qword1: qword1 representing status_error_len in CPU ordering 1394 * 1395 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1396 * status being successful or not and take actions accordingly. FCoE should 1397 * handle its context/filter programming/invalidation status and take actions. 1398 * 1399 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1400 **/ 1401 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1402 u64 qword1) 1403 { 1404 u8 id; 1405 1406 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1407 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1408 1409 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1410 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1411 } 1412 1413 /** 1414 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1415 * @tx_ring: the tx ring to set up 1416 * 1417 * Return 0 on success, negative on error 1418 **/ 1419 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1420 { 1421 struct device *dev = tx_ring->dev; 1422 int bi_size; 1423 1424 if (!dev) 1425 return -ENOMEM; 1426 1427 /* warn if we are about to overwrite the pointer */ 1428 WARN_ON(tx_ring->tx_bi); 1429 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1430 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1431 if (!tx_ring->tx_bi) 1432 goto err; 1433 1434 u64_stats_init(&tx_ring->syncp); 1435 1436 /* round up to nearest 4K */ 1437 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1438 /* add u32 for head writeback, align after this takes care of 1439 * guaranteeing this is at least one cache line in size 1440 */ 1441 tx_ring->size += sizeof(u32); 1442 tx_ring->size = ALIGN(tx_ring->size, 4096); 1443 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1444 &tx_ring->dma, GFP_KERNEL); 1445 if (!tx_ring->desc) { 1446 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1447 tx_ring->size); 1448 goto err; 1449 } 1450 1451 tx_ring->next_to_use = 0; 1452 tx_ring->next_to_clean = 0; 1453 tx_ring->tx_stats.prev_pkt_ctr = -1; 1454 return 0; 1455 1456 err: 1457 kfree(tx_ring->tx_bi); 1458 tx_ring->tx_bi = NULL; 1459 return -ENOMEM; 1460 } 1461 1462 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring) 1463 { 1464 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count; 1465 1466 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL); 1467 return rx_ring->rx_bi ? 0 : -ENOMEM; 1468 } 1469 1470 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1471 { 1472 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1473 } 1474 1475 /** 1476 * i40e_clean_rx_ring - Free Rx buffers 1477 * @rx_ring: ring to be cleaned 1478 **/ 1479 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1480 { 1481 u16 i; 1482 1483 /* ring already cleared, nothing to do */ 1484 if (!rx_ring->rx_bi) 1485 return; 1486 1487 if (rx_ring->skb) { 1488 dev_kfree_skb(rx_ring->skb); 1489 rx_ring->skb = NULL; 1490 } 1491 1492 if (rx_ring->xsk_pool) { 1493 i40e_xsk_clean_rx_ring(rx_ring); 1494 goto skip_free; 1495 } 1496 1497 /* Free all the Rx ring sk_buffs */ 1498 for (i = 0; i < rx_ring->count; i++) { 1499 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1500 1501 if (!rx_bi->page) 1502 continue; 1503 1504 /* Invalidate cache lines that may have been written to by 1505 * device so that we avoid corrupting memory. 1506 */ 1507 dma_sync_single_range_for_cpu(rx_ring->dev, 1508 rx_bi->dma, 1509 rx_bi->page_offset, 1510 rx_ring->rx_buf_len, 1511 DMA_FROM_DEVICE); 1512 1513 /* free resources associated with mapping */ 1514 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1515 i40e_rx_pg_size(rx_ring), 1516 DMA_FROM_DEVICE, 1517 I40E_RX_DMA_ATTR); 1518 1519 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1520 1521 rx_bi->page = NULL; 1522 rx_bi->page_offset = 0; 1523 } 1524 1525 skip_free: 1526 if (rx_ring->xsk_pool) 1527 i40e_clear_rx_bi_zc(rx_ring); 1528 else 1529 i40e_clear_rx_bi(rx_ring); 1530 1531 /* Zero out the descriptor ring */ 1532 memset(rx_ring->desc, 0, rx_ring->size); 1533 1534 rx_ring->next_to_alloc = 0; 1535 rx_ring->next_to_clean = 0; 1536 rx_ring->next_to_use = 0; 1537 } 1538 1539 /** 1540 * i40e_free_rx_resources - Free Rx resources 1541 * @rx_ring: ring to clean the resources from 1542 * 1543 * Free all receive software resources 1544 **/ 1545 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1546 { 1547 i40e_clean_rx_ring(rx_ring); 1548 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1549 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1550 rx_ring->xdp_prog = NULL; 1551 kfree(rx_ring->rx_bi); 1552 rx_ring->rx_bi = NULL; 1553 1554 if (rx_ring->desc) { 1555 dma_free_coherent(rx_ring->dev, rx_ring->size, 1556 rx_ring->desc, rx_ring->dma); 1557 rx_ring->desc = NULL; 1558 } 1559 } 1560 1561 /** 1562 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1563 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1564 * 1565 * Returns 0 on success, negative on failure 1566 **/ 1567 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1568 { 1569 struct device *dev = rx_ring->dev; 1570 int err; 1571 1572 u64_stats_init(&rx_ring->syncp); 1573 1574 /* Round up to nearest 4K */ 1575 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); 1576 rx_ring->size = ALIGN(rx_ring->size, 4096); 1577 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1578 &rx_ring->dma, GFP_KERNEL); 1579 1580 if (!rx_ring->desc) { 1581 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1582 rx_ring->size); 1583 return -ENOMEM; 1584 } 1585 1586 rx_ring->next_to_alloc = 0; 1587 rx_ring->next_to_clean = 0; 1588 rx_ring->next_to_use = 0; 1589 1590 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1591 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1592 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1593 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id); 1594 if (err < 0) 1595 return err; 1596 } 1597 1598 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1599 1600 return 0; 1601 } 1602 1603 /** 1604 * i40e_release_rx_desc - Store the new tail and head values 1605 * @rx_ring: ring to bump 1606 * @val: new head index 1607 **/ 1608 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1609 { 1610 rx_ring->next_to_use = val; 1611 1612 /* update next to alloc since we have filled the ring */ 1613 rx_ring->next_to_alloc = val; 1614 1615 /* Force memory writes to complete before letting h/w 1616 * know there are new descriptors to fetch. (Only 1617 * applicable for weak-ordered memory model archs, 1618 * such as IA-64). 1619 */ 1620 wmb(); 1621 writel(val, rx_ring->tail); 1622 } 1623 1624 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1625 unsigned int size) 1626 { 1627 unsigned int truesize; 1628 1629 #if (PAGE_SIZE < 8192) 1630 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1631 #else 1632 truesize = rx_ring->rx_offset ? 1633 SKB_DATA_ALIGN(size + rx_ring->rx_offset) + 1634 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1635 SKB_DATA_ALIGN(size); 1636 #endif 1637 return truesize; 1638 } 1639 1640 /** 1641 * i40e_alloc_mapped_page - recycle or make a new page 1642 * @rx_ring: ring to use 1643 * @bi: rx_buffer struct to modify 1644 * 1645 * Returns true if the page was successfully allocated or 1646 * reused. 1647 **/ 1648 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1649 struct i40e_rx_buffer *bi) 1650 { 1651 struct page *page = bi->page; 1652 dma_addr_t dma; 1653 1654 /* since we are recycling buffers we should seldom need to alloc */ 1655 if (likely(page)) { 1656 rx_ring->rx_stats.page_reuse_count++; 1657 return true; 1658 } 1659 1660 /* alloc new page for storage */ 1661 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1662 if (unlikely(!page)) { 1663 rx_ring->rx_stats.alloc_page_failed++; 1664 return false; 1665 } 1666 1667 /* map page for use */ 1668 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1669 i40e_rx_pg_size(rx_ring), 1670 DMA_FROM_DEVICE, 1671 I40E_RX_DMA_ATTR); 1672 1673 /* if mapping failed free memory back to system since 1674 * there isn't much point in holding memory we can't use 1675 */ 1676 if (dma_mapping_error(rx_ring->dev, dma)) { 1677 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1678 rx_ring->rx_stats.alloc_page_failed++; 1679 return false; 1680 } 1681 1682 bi->dma = dma; 1683 bi->page = page; 1684 bi->page_offset = rx_ring->rx_offset; 1685 page_ref_add(page, USHRT_MAX - 1); 1686 bi->pagecnt_bias = USHRT_MAX; 1687 1688 return true; 1689 } 1690 1691 /** 1692 * i40e_alloc_rx_buffers - Replace used receive buffers 1693 * @rx_ring: ring to place buffers on 1694 * @cleaned_count: number of buffers to replace 1695 * 1696 * Returns false if all allocations were successful, true if any fail 1697 **/ 1698 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1699 { 1700 u16 ntu = rx_ring->next_to_use; 1701 union i40e_rx_desc *rx_desc; 1702 struct i40e_rx_buffer *bi; 1703 1704 /* do nothing if no valid netdev defined */ 1705 if (!rx_ring->netdev || !cleaned_count) 1706 return false; 1707 1708 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1709 bi = i40e_rx_bi(rx_ring, ntu); 1710 1711 do { 1712 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1713 goto no_buffers; 1714 1715 /* sync the buffer for use by the device */ 1716 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1717 bi->page_offset, 1718 rx_ring->rx_buf_len, 1719 DMA_FROM_DEVICE); 1720 1721 /* Refresh the desc even if buffer_addrs didn't change 1722 * because each write-back erases this info. 1723 */ 1724 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1725 1726 rx_desc++; 1727 bi++; 1728 ntu++; 1729 if (unlikely(ntu == rx_ring->count)) { 1730 rx_desc = I40E_RX_DESC(rx_ring, 0); 1731 bi = i40e_rx_bi(rx_ring, 0); 1732 ntu = 0; 1733 } 1734 1735 /* clear the status bits for the next_to_use descriptor */ 1736 rx_desc->wb.qword1.status_error_len = 0; 1737 1738 cleaned_count--; 1739 } while (cleaned_count); 1740 1741 if (rx_ring->next_to_use != ntu) 1742 i40e_release_rx_desc(rx_ring, ntu); 1743 1744 return false; 1745 1746 no_buffers: 1747 if (rx_ring->next_to_use != ntu) 1748 i40e_release_rx_desc(rx_ring, ntu); 1749 1750 /* make sure to come back via polling to try again after 1751 * allocation failure 1752 */ 1753 return true; 1754 } 1755 1756 /** 1757 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1758 * @vsi: the VSI we care about 1759 * @skb: skb currently being received and modified 1760 * @rx_desc: the receive descriptor 1761 **/ 1762 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1763 struct sk_buff *skb, 1764 union i40e_rx_desc *rx_desc) 1765 { 1766 struct i40e_rx_ptype_decoded decoded; 1767 u32 rx_error, rx_status; 1768 bool ipv4, ipv6; 1769 u8 ptype; 1770 u64 qword; 1771 1772 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1773 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1774 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1775 I40E_RXD_QW1_ERROR_SHIFT; 1776 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1777 I40E_RXD_QW1_STATUS_SHIFT; 1778 decoded = decode_rx_desc_ptype(ptype); 1779 1780 skb->ip_summed = CHECKSUM_NONE; 1781 1782 skb_checksum_none_assert(skb); 1783 1784 /* Rx csum enabled and ip headers found? */ 1785 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1786 return; 1787 1788 /* did the hardware decode the packet and checksum? */ 1789 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1790 return; 1791 1792 /* both known and outer_ip must be set for the below code to work */ 1793 if (!(decoded.known && decoded.outer_ip)) 1794 return; 1795 1796 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1797 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1798 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1799 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1800 1801 if (ipv4 && 1802 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1803 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1804 goto checksum_fail; 1805 1806 /* likely incorrect csum if alternate IP extension headers found */ 1807 if (ipv6 && 1808 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1809 /* don't increment checksum err here, non-fatal err */ 1810 return; 1811 1812 /* there was some L4 error, count error and punt packet to the stack */ 1813 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1814 goto checksum_fail; 1815 1816 /* handle packets that were not able to be checksummed due 1817 * to arrival speed, in this case the stack can compute 1818 * the csum. 1819 */ 1820 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1821 return; 1822 1823 /* If there is an outer header present that might contain a checksum 1824 * we need to bump the checksum level by 1 to reflect the fact that 1825 * we are indicating we validated the inner checksum. 1826 */ 1827 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1828 skb->csum_level = 1; 1829 1830 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1831 switch (decoded.inner_prot) { 1832 case I40E_RX_PTYPE_INNER_PROT_TCP: 1833 case I40E_RX_PTYPE_INNER_PROT_UDP: 1834 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1835 skb->ip_summed = CHECKSUM_UNNECESSARY; 1836 fallthrough; 1837 default: 1838 break; 1839 } 1840 1841 return; 1842 1843 checksum_fail: 1844 vsi->back->hw_csum_rx_error++; 1845 } 1846 1847 /** 1848 * i40e_ptype_to_htype - get a hash type 1849 * @ptype: the ptype value from the descriptor 1850 * 1851 * Returns a hash type to be used by skb_set_hash 1852 **/ 1853 static inline int i40e_ptype_to_htype(u8 ptype) 1854 { 1855 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1856 1857 if (!decoded.known) 1858 return PKT_HASH_TYPE_NONE; 1859 1860 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1861 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1862 return PKT_HASH_TYPE_L4; 1863 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1864 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1865 return PKT_HASH_TYPE_L3; 1866 else 1867 return PKT_HASH_TYPE_L2; 1868 } 1869 1870 /** 1871 * i40e_rx_hash - set the hash value in the skb 1872 * @ring: descriptor ring 1873 * @rx_desc: specific descriptor 1874 * @skb: skb currently being received and modified 1875 * @rx_ptype: Rx packet type 1876 **/ 1877 static inline void i40e_rx_hash(struct i40e_ring *ring, 1878 union i40e_rx_desc *rx_desc, 1879 struct sk_buff *skb, 1880 u8 rx_ptype) 1881 { 1882 u32 hash; 1883 const __le64 rss_mask = 1884 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1885 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1886 1887 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1888 return; 1889 1890 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1891 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1892 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1893 } 1894 } 1895 1896 /** 1897 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1898 * @rx_ring: rx descriptor ring packet is being transacted on 1899 * @rx_desc: pointer to the EOP Rx descriptor 1900 * @skb: pointer to current skb being populated 1901 * 1902 * This function checks the ring, descriptor, and packet information in 1903 * order to populate the hash, checksum, VLAN, protocol, and 1904 * other fields within the skb. 1905 **/ 1906 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1907 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1908 { 1909 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1910 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1911 I40E_RXD_QW1_STATUS_SHIFT; 1912 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1913 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1914 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1915 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1916 I40E_RXD_QW1_PTYPE_SHIFT; 1917 1918 if (unlikely(tsynvalid)) 1919 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1920 1921 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1922 1923 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1924 1925 skb_record_rx_queue(skb, rx_ring->queue_index); 1926 1927 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1928 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1929 1930 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1931 le16_to_cpu(vlan_tag)); 1932 } 1933 1934 /* modifies the skb - consumes the enet header */ 1935 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1936 } 1937 1938 /** 1939 * i40e_cleanup_headers - Correct empty headers 1940 * @rx_ring: rx descriptor ring packet is being transacted on 1941 * @skb: pointer to current skb being fixed 1942 * @rx_desc: pointer to the EOP Rx descriptor 1943 * 1944 * In addition if skb is not at least 60 bytes we need to pad it so that 1945 * it is large enough to qualify as a valid Ethernet frame. 1946 * 1947 * Returns true if an error was encountered and skb was freed. 1948 **/ 1949 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1950 union i40e_rx_desc *rx_desc) 1951 1952 { 1953 /* ERR_MASK will only have valid bits if EOP set, and 1954 * what we are doing here is actually checking 1955 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1956 * the error field 1957 */ 1958 if (unlikely(i40e_test_staterr(rx_desc, 1959 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1960 dev_kfree_skb_any(skb); 1961 return true; 1962 } 1963 1964 /* if eth_skb_pad returns an error the skb was freed */ 1965 if (eth_skb_pad(skb)) 1966 return true; 1967 1968 return false; 1969 } 1970 1971 /** 1972 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx 1973 * @rx_buffer: buffer containing the page 1974 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call 1975 * 1976 * If page is reusable, we have a green light for calling i40e_reuse_rx_page, 1977 * which will assign the current buffer to the buffer that next_to_alloc is 1978 * pointing to; otherwise, the DMA mapping needs to be destroyed and 1979 * page freed 1980 */ 1981 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, 1982 int rx_buffer_pgcnt) 1983 { 1984 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1985 struct page *page = rx_buffer->page; 1986 1987 /* Is any reuse possible? */ 1988 if (!dev_page_is_reusable(page)) 1989 return false; 1990 1991 #if (PAGE_SIZE < 8192) 1992 /* if we are only owner of page we can reuse it */ 1993 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1994 return false; 1995 #else 1996 #define I40E_LAST_OFFSET \ 1997 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1998 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1999 return false; 2000 #endif 2001 2002 /* If we have drained the page fragment pool we need to update 2003 * the pagecnt_bias and page count so that we fully restock the 2004 * number of references the driver holds. 2005 */ 2006 if (unlikely(pagecnt_bias == 1)) { 2007 page_ref_add(page, USHRT_MAX - 1); 2008 rx_buffer->pagecnt_bias = USHRT_MAX; 2009 } 2010 2011 return true; 2012 } 2013 2014 /** 2015 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 2016 * @rx_ring: rx descriptor ring to transact packets on 2017 * @rx_buffer: buffer containing page to add 2018 * @skb: sk_buff to place the data into 2019 * @size: packet length from rx_desc 2020 * 2021 * This function will add the data contained in rx_buffer->page to the skb. 2022 * It will just attach the page as a frag to the skb. 2023 * 2024 * The function will then update the page offset. 2025 **/ 2026 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 2027 struct i40e_rx_buffer *rx_buffer, 2028 struct sk_buff *skb, 2029 unsigned int size) 2030 { 2031 #if (PAGE_SIZE < 8192) 2032 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2033 #else 2034 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); 2035 #endif 2036 2037 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 2038 rx_buffer->page_offset, size, truesize); 2039 2040 /* page is being used so we must update the page offset */ 2041 #if (PAGE_SIZE < 8192) 2042 rx_buffer->page_offset ^= truesize; 2043 #else 2044 rx_buffer->page_offset += truesize; 2045 #endif 2046 } 2047 2048 /** 2049 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 2050 * @rx_ring: rx descriptor ring to transact packets on 2051 * @size: size of buffer to add to skb 2052 * @rx_buffer_pgcnt: buffer page refcount 2053 * 2054 * This function will pull an Rx buffer from the ring and synchronize it 2055 * for use by the CPU. 2056 */ 2057 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 2058 const unsigned int size, 2059 int *rx_buffer_pgcnt) 2060 { 2061 struct i40e_rx_buffer *rx_buffer; 2062 2063 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2064 *rx_buffer_pgcnt = 2065 #if (PAGE_SIZE < 8192) 2066 page_count(rx_buffer->page); 2067 #else 2068 0; 2069 #endif 2070 prefetch_page_address(rx_buffer->page); 2071 2072 /* we are reusing so sync this buffer for CPU use */ 2073 dma_sync_single_range_for_cpu(rx_ring->dev, 2074 rx_buffer->dma, 2075 rx_buffer->page_offset, 2076 size, 2077 DMA_FROM_DEVICE); 2078 2079 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 2080 rx_buffer->pagecnt_bias--; 2081 2082 return rx_buffer; 2083 } 2084 2085 /** 2086 * i40e_construct_skb - Allocate skb and populate it 2087 * @rx_ring: rx descriptor ring to transact packets on 2088 * @rx_buffer: rx buffer to pull data from 2089 * @xdp: xdp_buff pointing to the data 2090 * 2091 * This function allocates an skb. It then populates it with the page 2092 * data from the current receive descriptor, taking care to set up the 2093 * skb correctly. 2094 */ 2095 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2096 struct i40e_rx_buffer *rx_buffer, 2097 struct xdp_buff *xdp) 2098 { 2099 unsigned int size = xdp->data_end - xdp->data; 2100 #if (PAGE_SIZE < 8192) 2101 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2102 #else 2103 unsigned int truesize = SKB_DATA_ALIGN(size); 2104 #endif 2105 unsigned int headlen; 2106 struct sk_buff *skb; 2107 2108 /* prefetch first cache line of first page */ 2109 net_prefetch(xdp->data); 2110 2111 /* Note, we get here by enabling legacy-rx via: 2112 * 2113 * ethtool --set-priv-flags <dev> legacy-rx on 2114 * 2115 * In this mode, we currently get 0 extra XDP headroom as 2116 * opposed to having legacy-rx off, where we process XDP 2117 * packets going to stack via i40e_build_skb(). The latter 2118 * provides us currently with 192 bytes of headroom. 2119 * 2120 * For i40e_construct_skb() mode it means that the 2121 * xdp->data_meta will always point to xdp->data, since 2122 * the helper cannot expand the head. Should this ever 2123 * change in future for legacy-rx mode on, then lets also 2124 * add xdp->data_meta handling here. 2125 */ 2126 2127 /* allocate a skb to store the frags */ 2128 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2129 I40E_RX_HDR_SIZE, 2130 GFP_ATOMIC | __GFP_NOWARN); 2131 if (unlikely(!skb)) 2132 return NULL; 2133 2134 /* Determine available headroom for copy */ 2135 headlen = size; 2136 if (headlen > I40E_RX_HDR_SIZE) 2137 headlen = eth_get_headlen(skb->dev, xdp->data, 2138 I40E_RX_HDR_SIZE); 2139 2140 /* align pull length to size of long to optimize memcpy performance */ 2141 memcpy(__skb_put(skb, headlen), xdp->data, 2142 ALIGN(headlen, sizeof(long))); 2143 2144 /* update all of the pointers */ 2145 size -= headlen; 2146 if (size) { 2147 skb_add_rx_frag(skb, 0, rx_buffer->page, 2148 rx_buffer->page_offset + headlen, 2149 size, truesize); 2150 2151 /* buffer is used by skb, update page_offset */ 2152 #if (PAGE_SIZE < 8192) 2153 rx_buffer->page_offset ^= truesize; 2154 #else 2155 rx_buffer->page_offset += truesize; 2156 #endif 2157 } else { 2158 /* buffer is unused, reset bias back to rx_buffer */ 2159 rx_buffer->pagecnt_bias++; 2160 } 2161 2162 return skb; 2163 } 2164 2165 /** 2166 * i40e_build_skb - Build skb around an existing buffer 2167 * @rx_ring: Rx descriptor ring to transact packets on 2168 * @rx_buffer: Rx buffer to pull data from 2169 * @xdp: xdp_buff pointing to the data 2170 * 2171 * This function builds an skb around an existing Rx buffer, taking care 2172 * to set up the skb correctly and avoid any memcpy overhead. 2173 */ 2174 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2175 struct i40e_rx_buffer *rx_buffer, 2176 struct xdp_buff *xdp) 2177 { 2178 unsigned int metasize = xdp->data - xdp->data_meta; 2179 #if (PAGE_SIZE < 8192) 2180 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2181 #else 2182 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2183 SKB_DATA_ALIGN(xdp->data_end - 2184 xdp->data_hard_start); 2185 #endif 2186 struct sk_buff *skb; 2187 2188 /* Prefetch first cache line of first page. If xdp->data_meta 2189 * is unused, this points exactly as xdp->data, otherwise we 2190 * likely have a consumer accessing first few bytes of meta 2191 * data, and then actual data. 2192 */ 2193 net_prefetch(xdp->data_meta); 2194 2195 /* build an skb around the page buffer */ 2196 skb = napi_build_skb(xdp->data_hard_start, truesize); 2197 if (unlikely(!skb)) 2198 return NULL; 2199 2200 /* update pointers within the skb to store the data */ 2201 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2202 __skb_put(skb, xdp->data_end - xdp->data); 2203 if (metasize) 2204 skb_metadata_set(skb, metasize); 2205 2206 /* buffer is used by skb, update page_offset */ 2207 #if (PAGE_SIZE < 8192) 2208 rx_buffer->page_offset ^= truesize; 2209 #else 2210 rx_buffer->page_offset += truesize; 2211 #endif 2212 2213 return skb; 2214 } 2215 2216 /** 2217 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2218 * @rx_ring: rx descriptor ring to transact packets on 2219 * @rx_buffer: rx buffer to pull data from 2220 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call 2221 * 2222 * This function will clean up the contents of the rx_buffer. It will 2223 * either recycle the buffer or unmap it and free the associated resources. 2224 */ 2225 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2226 struct i40e_rx_buffer *rx_buffer, 2227 int rx_buffer_pgcnt) 2228 { 2229 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2230 /* hand second half of page back to the ring */ 2231 i40e_reuse_rx_page(rx_ring, rx_buffer); 2232 } else { 2233 /* we are not reusing the buffer so unmap it */ 2234 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2235 i40e_rx_pg_size(rx_ring), 2236 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2237 __page_frag_cache_drain(rx_buffer->page, 2238 rx_buffer->pagecnt_bias); 2239 /* clear contents of buffer_info */ 2240 rx_buffer->page = NULL; 2241 } 2242 } 2243 2244 /** 2245 * i40e_is_non_eop - process handling of non-EOP buffers 2246 * @rx_ring: Rx ring being processed 2247 * @rx_desc: Rx descriptor for current buffer 2248 * 2249 * If the buffer is an EOP buffer, this function exits returning false, 2250 * otherwise return true indicating that this is in fact a non-EOP buffer. 2251 */ 2252 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2253 union i40e_rx_desc *rx_desc) 2254 { 2255 /* if we are the last buffer then there is nothing else to do */ 2256 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2257 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2258 return false; 2259 2260 rx_ring->rx_stats.non_eop_descs++; 2261 2262 return true; 2263 } 2264 2265 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2266 struct i40e_ring *xdp_ring); 2267 2268 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2269 { 2270 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2271 2272 if (unlikely(!xdpf)) 2273 return I40E_XDP_CONSUMED; 2274 2275 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2276 } 2277 2278 /** 2279 * i40e_run_xdp - run an XDP program 2280 * @rx_ring: Rx ring being processed 2281 * @xdp: XDP buffer containing the frame 2282 **/ 2283 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp) 2284 { 2285 int err, result = I40E_XDP_PASS; 2286 struct i40e_ring *xdp_ring; 2287 struct bpf_prog *xdp_prog; 2288 u32 act; 2289 2290 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2291 2292 if (!xdp_prog) 2293 goto xdp_out; 2294 2295 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2296 2297 act = bpf_prog_run_xdp(xdp_prog, xdp); 2298 switch (act) { 2299 case XDP_PASS: 2300 break; 2301 case XDP_TX: 2302 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2303 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2304 if (result == I40E_XDP_CONSUMED) 2305 goto out_failure; 2306 break; 2307 case XDP_REDIRECT: 2308 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2309 if (err) 2310 goto out_failure; 2311 result = I40E_XDP_REDIR; 2312 break; 2313 default: 2314 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 2315 fallthrough; 2316 case XDP_ABORTED: 2317 out_failure: 2318 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2319 fallthrough; /* handle aborts by dropping packet */ 2320 case XDP_DROP: 2321 result = I40E_XDP_CONSUMED; 2322 break; 2323 } 2324 xdp_out: 2325 return result; 2326 } 2327 2328 /** 2329 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2330 * @rx_ring: Rx ring 2331 * @rx_buffer: Rx buffer to adjust 2332 * @size: Size of adjustment 2333 **/ 2334 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2335 struct i40e_rx_buffer *rx_buffer, 2336 unsigned int size) 2337 { 2338 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size); 2339 2340 #if (PAGE_SIZE < 8192) 2341 rx_buffer->page_offset ^= truesize; 2342 #else 2343 rx_buffer->page_offset += truesize; 2344 #endif 2345 } 2346 2347 /** 2348 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2349 * @xdp_ring: XDP Tx ring 2350 * 2351 * This function updates the XDP Tx ring tail register. 2352 **/ 2353 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2354 { 2355 /* Force memory writes to complete before letting h/w 2356 * know there are new descriptors to fetch. 2357 */ 2358 wmb(); 2359 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2360 } 2361 2362 /** 2363 * i40e_update_rx_stats - Update Rx ring statistics 2364 * @rx_ring: rx descriptor ring 2365 * @total_rx_bytes: number of bytes received 2366 * @total_rx_packets: number of packets received 2367 * 2368 * This function updates the Rx ring statistics. 2369 **/ 2370 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2371 unsigned int total_rx_bytes, 2372 unsigned int total_rx_packets) 2373 { 2374 u64_stats_update_begin(&rx_ring->syncp); 2375 rx_ring->stats.packets += total_rx_packets; 2376 rx_ring->stats.bytes += total_rx_bytes; 2377 u64_stats_update_end(&rx_ring->syncp); 2378 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2379 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2380 } 2381 2382 /** 2383 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2384 * @rx_ring: Rx ring 2385 * @xdp_res: Result of the receive batch 2386 * 2387 * This function bumps XDP Tx tail and/or flush redirect map, and 2388 * should be called when a batch of packets has been processed in the 2389 * napi loop. 2390 **/ 2391 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2392 { 2393 if (xdp_res & I40E_XDP_REDIR) 2394 xdp_do_flush_map(); 2395 2396 if (xdp_res & I40E_XDP_TX) { 2397 struct i40e_ring *xdp_ring = 2398 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2399 2400 i40e_xdp_ring_update_tail(xdp_ring); 2401 } 2402 } 2403 2404 /** 2405 * i40e_inc_ntc: Advance the next_to_clean index 2406 * @rx_ring: Rx ring 2407 **/ 2408 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 2409 { 2410 u32 ntc = rx_ring->next_to_clean + 1; 2411 2412 ntc = (ntc < rx_ring->count) ? ntc : 0; 2413 rx_ring->next_to_clean = ntc; 2414 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2415 } 2416 2417 /** 2418 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2419 * @rx_ring: rx descriptor ring to transact packets on 2420 * @budget: Total limit on number of packets to process 2421 * 2422 * This function provides a "bounce buffer" approach to Rx interrupt 2423 * processing. The advantage to this is that on systems that have 2424 * expensive overhead for IOMMU access this provides a means of avoiding 2425 * it by maintaining the mapping of the page to the system. 2426 * 2427 * Returns amount of work completed 2428 **/ 2429 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2430 { 2431 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 2432 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2433 unsigned int offset = rx_ring->rx_offset; 2434 struct sk_buff *skb = rx_ring->skb; 2435 unsigned int xdp_xmit = 0; 2436 bool failure = false; 2437 struct xdp_buff xdp; 2438 int xdp_res = 0; 2439 2440 #if (PAGE_SIZE < 8192) 2441 frame_sz = i40e_rx_frame_truesize(rx_ring, 0); 2442 #endif 2443 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 2444 2445 while (likely(total_rx_packets < (unsigned int)budget)) { 2446 struct i40e_rx_buffer *rx_buffer; 2447 union i40e_rx_desc *rx_desc; 2448 int rx_buffer_pgcnt; 2449 unsigned int size; 2450 u64 qword; 2451 2452 /* return some buffers to hardware, one at a time is too slow */ 2453 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2454 failure = failure || 2455 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2456 cleaned_count = 0; 2457 } 2458 2459 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2460 2461 /* status_error_len will always be zero for unused descriptors 2462 * because it's cleared in cleanup, and overlaps with hdr_addr 2463 * which is always zero because packet split isn't used, if the 2464 * hardware wrote DD then the length will be non-zero 2465 */ 2466 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2467 2468 /* This memory barrier is needed to keep us from reading 2469 * any other fields out of the rx_desc until we have 2470 * verified the descriptor has been written back. 2471 */ 2472 dma_rmb(); 2473 2474 if (i40e_rx_is_programming_status(qword)) { 2475 i40e_clean_programming_status(rx_ring, 2476 rx_desc->raw.qword[0], 2477 qword); 2478 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2479 i40e_inc_ntc(rx_ring); 2480 i40e_reuse_rx_page(rx_ring, rx_buffer); 2481 cleaned_count++; 2482 continue; 2483 } 2484 2485 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2486 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2487 if (!size) 2488 break; 2489 2490 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2491 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2492 2493 /* retrieve a buffer from the ring */ 2494 if (!skb) { 2495 unsigned char *hard_start; 2496 2497 hard_start = page_address(rx_buffer->page) + 2498 rx_buffer->page_offset - offset; 2499 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 2500 #if (PAGE_SIZE > 4096) 2501 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2502 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2503 #endif 2504 xdp_res = i40e_run_xdp(rx_ring, &xdp); 2505 } 2506 2507 if (xdp_res) { 2508 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2509 xdp_xmit |= xdp_res; 2510 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2511 } else { 2512 rx_buffer->pagecnt_bias++; 2513 } 2514 total_rx_bytes += size; 2515 total_rx_packets++; 2516 } else if (skb) { 2517 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2518 } else if (ring_uses_build_skb(rx_ring)) { 2519 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2520 } else { 2521 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2522 } 2523 2524 /* exit if we failed to retrieve a buffer */ 2525 if (!xdp_res && !skb) { 2526 rx_ring->rx_stats.alloc_buff_failed++; 2527 rx_buffer->pagecnt_bias++; 2528 break; 2529 } 2530 2531 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2532 cleaned_count++; 2533 2534 i40e_inc_ntc(rx_ring); 2535 if (i40e_is_non_eop(rx_ring, rx_desc)) 2536 continue; 2537 2538 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2539 skb = NULL; 2540 continue; 2541 } 2542 2543 /* probably a little skewed due to removing CRC */ 2544 total_rx_bytes += skb->len; 2545 2546 /* populate checksum, VLAN, and protocol */ 2547 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2548 2549 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2550 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2551 skb = NULL; 2552 2553 /* update budget accounting */ 2554 total_rx_packets++; 2555 } 2556 2557 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2558 rx_ring->skb = skb; 2559 2560 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2561 2562 /* guarantee a trip back through this routine if there was a failure */ 2563 return failure ? budget : (int)total_rx_packets; 2564 } 2565 2566 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2567 { 2568 u32 val; 2569 2570 /* We don't bother with setting the CLEARPBA bit as the data sheet 2571 * points out doing so is "meaningless since it was already 2572 * auto-cleared". The auto-clearing happens when the interrupt is 2573 * asserted. 2574 * 2575 * Hardware errata 28 for also indicates that writing to a 2576 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2577 * an event in the PBA anyway so we need to rely on the automask 2578 * to hold pending events for us until the interrupt is re-enabled 2579 * 2580 * The itr value is reported in microseconds, and the register 2581 * value is recorded in 2 microsecond units. For this reason we 2582 * only need to shift by the interval shift - 1 instead of the 2583 * full value. 2584 */ 2585 itr &= I40E_ITR_MASK; 2586 2587 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2588 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2589 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2590 2591 return val; 2592 } 2593 2594 /* a small macro to shorten up some long lines */ 2595 #define INTREG I40E_PFINT_DYN_CTLN 2596 2597 /* The act of updating the ITR will cause it to immediately trigger. In order 2598 * to prevent this from throwing off adaptive update statistics we defer the 2599 * update so that it can only happen so often. So after either Tx or Rx are 2600 * updated we make the adaptive scheme wait until either the ITR completely 2601 * expires via the next_update expiration or we have been through at least 2602 * 3 interrupts. 2603 */ 2604 #define ITR_COUNTDOWN_START 3 2605 2606 /** 2607 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2608 * @vsi: the VSI we care about 2609 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2610 * 2611 **/ 2612 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2613 struct i40e_q_vector *q_vector) 2614 { 2615 struct i40e_hw *hw = &vsi->back->hw; 2616 u32 intval; 2617 2618 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2619 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2620 i40e_irq_dynamic_enable_icr0(vsi->back); 2621 return; 2622 } 2623 2624 /* These will do nothing if dynamic updates are not enabled */ 2625 i40e_update_itr(q_vector, &q_vector->tx); 2626 i40e_update_itr(q_vector, &q_vector->rx); 2627 2628 /* This block of logic allows us to get away with only updating 2629 * one ITR value with each interrupt. The idea is to perform a 2630 * pseudo-lazy update with the following criteria. 2631 * 2632 * 1. Rx is given higher priority than Tx if both are in same state 2633 * 2. If we must reduce an ITR that is given highest priority. 2634 * 3. We then give priority to increasing ITR based on amount. 2635 */ 2636 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2637 /* Rx ITR needs to be reduced, this is highest priority */ 2638 intval = i40e_buildreg_itr(I40E_RX_ITR, 2639 q_vector->rx.target_itr); 2640 q_vector->rx.current_itr = q_vector->rx.target_itr; 2641 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2642 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2643 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2644 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2645 /* Tx ITR needs to be reduced, this is second priority 2646 * Tx ITR needs to be increased more than Rx, fourth priority 2647 */ 2648 intval = i40e_buildreg_itr(I40E_TX_ITR, 2649 q_vector->tx.target_itr); 2650 q_vector->tx.current_itr = q_vector->tx.target_itr; 2651 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2652 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2653 /* Rx ITR needs to be increased, third priority */ 2654 intval = i40e_buildreg_itr(I40E_RX_ITR, 2655 q_vector->rx.target_itr); 2656 q_vector->rx.current_itr = q_vector->rx.target_itr; 2657 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2658 } else { 2659 /* No ITR update, lowest priority */ 2660 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2661 if (q_vector->itr_countdown) 2662 q_vector->itr_countdown--; 2663 } 2664 2665 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2666 wr32(hw, INTREG(q_vector->reg_idx), intval); 2667 } 2668 2669 /** 2670 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2671 * @napi: napi struct with our devices info in it 2672 * @budget: amount of work driver is allowed to do this pass, in packets 2673 * 2674 * This function will clean all queues associated with a q_vector. 2675 * 2676 * Returns the amount of work done 2677 **/ 2678 int i40e_napi_poll(struct napi_struct *napi, int budget) 2679 { 2680 struct i40e_q_vector *q_vector = 2681 container_of(napi, struct i40e_q_vector, napi); 2682 struct i40e_vsi *vsi = q_vector->vsi; 2683 struct i40e_ring *ring; 2684 bool clean_complete = true; 2685 bool arm_wb = false; 2686 int budget_per_ring; 2687 int work_done = 0; 2688 2689 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2690 napi_complete(napi); 2691 return 0; 2692 } 2693 2694 /* Since the actual Tx work is minimal, we can give the Tx a larger 2695 * budget and be more aggressive about cleaning up the Tx descriptors. 2696 */ 2697 i40e_for_each_ring(ring, q_vector->tx) { 2698 bool wd = ring->xsk_pool ? 2699 i40e_clean_xdp_tx_irq(vsi, ring) : 2700 i40e_clean_tx_irq(vsi, ring, budget); 2701 2702 if (!wd) { 2703 clean_complete = false; 2704 continue; 2705 } 2706 arm_wb |= ring->arm_wb; 2707 ring->arm_wb = false; 2708 } 2709 2710 /* Handle case where we are called by netpoll with a budget of 0 */ 2711 if (budget <= 0) 2712 goto tx_only; 2713 2714 /* normally we have 1 Rx ring per q_vector */ 2715 if (unlikely(q_vector->num_ringpairs > 1)) 2716 /* We attempt to distribute budget to each Rx queue fairly, but 2717 * don't allow the budget to go below 1 because that would exit 2718 * polling early. 2719 */ 2720 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2721 else 2722 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2723 budget_per_ring = budget; 2724 2725 i40e_for_each_ring(ring, q_vector->rx) { 2726 int cleaned = ring->xsk_pool ? 2727 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2728 i40e_clean_rx_irq(ring, budget_per_ring); 2729 2730 work_done += cleaned; 2731 /* if we clean as many as budgeted, we must not be done */ 2732 if (cleaned >= budget_per_ring) 2733 clean_complete = false; 2734 } 2735 2736 /* If work not completed, return budget and polling will return */ 2737 if (!clean_complete) { 2738 int cpu_id = smp_processor_id(); 2739 2740 /* It is possible that the interrupt affinity has changed but, 2741 * if the cpu is pegged at 100%, polling will never exit while 2742 * traffic continues and the interrupt will be stuck on this 2743 * cpu. We check to make sure affinity is correct before we 2744 * continue to poll, otherwise we must stop polling so the 2745 * interrupt can move to the correct cpu. 2746 */ 2747 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2748 /* Tell napi that we are done polling */ 2749 napi_complete_done(napi, work_done); 2750 2751 /* Force an interrupt */ 2752 i40e_force_wb(vsi, q_vector); 2753 2754 /* Return budget-1 so that polling stops */ 2755 return budget - 1; 2756 } 2757 tx_only: 2758 if (arm_wb) { 2759 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2760 i40e_enable_wb_on_itr(vsi, q_vector); 2761 } 2762 return budget; 2763 } 2764 2765 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2766 q_vector->arm_wb_state = false; 2767 2768 /* Exit the polling mode, but don't re-enable interrupts if stack might 2769 * poll us due to busy-polling 2770 */ 2771 if (likely(napi_complete_done(napi, work_done))) 2772 i40e_update_enable_itr(vsi, q_vector); 2773 2774 return min(work_done, budget - 1); 2775 } 2776 2777 /** 2778 * i40e_atr - Add a Flow Director ATR filter 2779 * @tx_ring: ring to add programming descriptor to 2780 * @skb: send buffer 2781 * @tx_flags: send tx flags 2782 **/ 2783 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2784 u32 tx_flags) 2785 { 2786 struct i40e_filter_program_desc *fdir_desc; 2787 struct i40e_pf *pf = tx_ring->vsi->back; 2788 union { 2789 unsigned char *network; 2790 struct iphdr *ipv4; 2791 struct ipv6hdr *ipv6; 2792 } hdr; 2793 struct tcphdr *th; 2794 unsigned int hlen; 2795 u32 flex_ptype, dtype_cmd; 2796 int l4_proto; 2797 u16 i; 2798 2799 /* make sure ATR is enabled */ 2800 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2801 return; 2802 2803 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2804 return; 2805 2806 /* if sampling is disabled do nothing */ 2807 if (!tx_ring->atr_sample_rate) 2808 return; 2809 2810 /* Currently only IPv4/IPv6 with TCP is supported */ 2811 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2812 return; 2813 2814 /* snag network header to get L4 type and address */ 2815 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2816 skb_inner_network_header(skb) : skb_network_header(skb); 2817 2818 /* Note: tx_flags gets modified to reflect inner protocols in 2819 * tx_enable_csum function if encap is enabled. 2820 */ 2821 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2822 /* access ihl as u8 to avoid unaligned access on ia64 */ 2823 hlen = (hdr.network[0] & 0x0F) << 2; 2824 l4_proto = hdr.ipv4->protocol; 2825 } else { 2826 /* find the start of the innermost ipv6 header */ 2827 unsigned int inner_hlen = hdr.network - skb->data; 2828 unsigned int h_offset = inner_hlen; 2829 2830 /* this function updates h_offset to the end of the header */ 2831 l4_proto = 2832 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2833 /* hlen will contain our best estimate of the tcp header */ 2834 hlen = h_offset - inner_hlen; 2835 } 2836 2837 if (l4_proto != IPPROTO_TCP) 2838 return; 2839 2840 th = (struct tcphdr *)(hdr.network + hlen); 2841 2842 /* Due to lack of space, no more new filters can be programmed */ 2843 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2844 return; 2845 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2846 /* HW ATR eviction will take care of removing filters on FIN 2847 * and RST packets. 2848 */ 2849 if (th->fin || th->rst) 2850 return; 2851 } 2852 2853 tx_ring->atr_count++; 2854 2855 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2856 if (!th->fin && 2857 !th->syn && 2858 !th->rst && 2859 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2860 return; 2861 2862 tx_ring->atr_count = 0; 2863 2864 /* grab the next descriptor */ 2865 i = tx_ring->next_to_use; 2866 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2867 2868 i++; 2869 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2870 2871 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2872 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2873 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2874 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2875 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2876 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2877 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2878 2879 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2880 2881 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2882 2883 dtype_cmd |= (th->fin || th->rst) ? 2884 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2885 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2886 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2887 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2888 2889 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2890 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2891 2892 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2893 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2894 2895 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2896 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2897 dtype_cmd |= 2898 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2899 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2900 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2901 else 2902 dtype_cmd |= 2903 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2904 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2905 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2906 2907 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2908 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2909 2910 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2911 fdir_desc->rsvd = cpu_to_le32(0); 2912 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2913 fdir_desc->fd_id = cpu_to_le32(0); 2914 } 2915 2916 /** 2917 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2918 * @skb: send buffer 2919 * @tx_ring: ring to send buffer on 2920 * @flags: the tx flags to be set 2921 * 2922 * Checks the skb and set up correspondingly several generic transmit flags 2923 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2924 * 2925 * Returns error code indicate the frame should be dropped upon error and the 2926 * otherwise returns 0 to indicate the flags has been set properly. 2927 **/ 2928 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2929 struct i40e_ring *tx_ring, 2930 u32 *flags) 2931 { 2932 __be16 protocol = skb->protocol; 2933 u32 tx_flags = 0; 2934 2935 if (protocol == htons(ETH_P_8021Q) && 2936 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2937 /* When HW VLAN acceleration is turned off by the user the 2938 * stack sets the protocol to 8021q so that the driver 2939 * can take any steps required to support the SW only 2940 * VLAN handling. In our case the driver doesn't need 2941 * to take any further steps so just set the protocol 2942 * to the encapsulated ethertype. 2943 */ 2944 skb->protocol = vlan_get_protocol(skb); 2945 goto out; 2946 } 2947 2948 /* if we have a HW VLAN tag being added, default to the HW one */ 2949 if (skb_vlan_tag_present(skb)) { 2950 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2951 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2952 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2953 } else if (protocol == htons(ETH_P_8021Q)) { 2954 struct vlan_hdr *vhdr, _vhdr; 2955 2956 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2957 if (!vhdr) 2958 return -EINVAL; 2959 2960 protocol = vhdr->h_vlan_encapsulated_proto; 2961 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2962 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2963 } 2964 2965 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2966 goto out; 2967 2968 /* Insert 802.1p priority into VLAN header */ 2969 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2970 (skb->priority != TC_PRIO_CONTROL)) { 2971 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2972 tx_flags |= (skb->priority & 0x7) << 2973 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2974 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2975 struct vlan_ethhdr *vhdr; 2976 int rc; 2977 2978 rc = skb_cow_head(skb, 0); 2979 if (rc < 0) 2980 return rc; 2981 vhdr = (struct vlan_ethhdr *)skb->data; 2982 vhdr->h_vlan_TCI = htons(tx_flags >> 2983 I40E_TX_FLAGS_VLAN_SHIFT); 2984 } else { 2985 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2986 } 2987 } 2988 2989 out: 2990 *flags = tx_flags; 2991 return 0; 2992 } 2993 2994 /** 2995 * i40e_tso - set up the tso context descriptor 2996 * @first: pointer to first Tx buffer for xmit 2997 * @hdr_len: ptr to the size of the packet header 2998 * @cd_type_cmd_tso_mss: Quad Word 1 2999 * 3000 * Returns 0 if no TSO can happen, 1 if tso is going, or error 3001 **/ 3002 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 3003 u64 *cd_type_cmd_tso_mss) 3004 { 3005 struct sk_buff *skb = first->skb; 3006 u64 cd_cmd, cd_tso_len, cd_mss; 3007 union { 3008 struct iphdr *v4; 3009 struct ipv6hdr *v6; 3010 unsigned char *hdr; 3011 } ip; 3012 union { 3013 struct tcphdr *tcp; 3014 struct udphdr *udp; 3015 unsigned char *hdr; 3016 } l4; 3017 u32 paylen, l4_offset; 3018 u16 gso_segs, gso_size; 3019 int err; 3020 3021 if (skb->ip_summed != CHECKSUM_PARTIAL) 3022 return 0; 3023 3024 if (!skb_is_gso(skb)) 3025 return 0; 3026 3027 err = skb_cow_head(skb, 0); 3028 if (err < 0) 3029 return err; 3030 3031 ip.hdr = skb_network_header(skb); 3032 l4.hdr = skb_transport_header(skb); 3033 3034 /* initialize outer IP header fields */ 3035 if (ip.v4->version == 4) { 3036 ip.v4->tot_len = 0; 3037 ip.v4->check = 0; 3038 } else { 3039 ip.v6->payload_len = 0; 3040 } 3041 3042 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 3043 SKB_GSO_GRE_CSUM | 3044 SKB_GSO_IPXIP4 | 3045 SKB_GSO_IPXIP6 | 3046 SKB_GSO_UDP_TUNNEL | 3047 SKB_GSO_UDP_TUNNEL_CSUM)) { 3048 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3049 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 3050 l4.udp->len = 0; 3051 3052 /* determine offset of outer transport header */ 3053 l4_offset = l4.hdr - skb->data; 3054 3055 /* remove payload length from outer checksum */ 3056 paylen = skb->len - l4_offset; 3057 csum_replace_by_diff(&l4.udp->check, 3058 (__force __wsum)htonl(paylen)); 3059 } 3060 3061 /* reset pointers to inner headers */ 3062 ip.hdr = skb_inner_network_header(skb); 3063 l4.hdr = skb_inner_transport_header(skb); 3064 3065 /* initialize inner IP header fields */ 3066 if (ip.v4->version == 4) { 3067 ip.v4->tot_len = 0; 3068 ip.v4->check = 0; 3069 } else { 3070 ip.v6->payload_len = 0; 3071 } 3072 } 3073 3074 /* determine offset of inner transport header */ 3075 l4_offset = l4.hdr - skb->data; 3076 3077 /* remove payload length from inner checksum */ 3078 paylen = skb->len - l4_offset; 3079 3080 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3081 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 3082 /* compute length of segmentation header */ 3083 *hdr_len = sizeof(*l4.udp) + l4_offset; 3084 } else { 3085 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3086 /* compute length of segmentation header */ 3087 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3088 } 3089 3090 /* pull values out of skb_shinfo */ 3091 gso_size = skb_shinfo(skb)->gso_size; 3092 gso_segs = skb_shinfo(skb)->gso_segs; 3093 3094 /* update GSO size and bytecount with header size */ 3095 first->gso_segs = gso_segs; 3096 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3097 3098 /* find the field values */ 3099 cd_cmd = I40E_TX_CTX_DESC_TSO; 3100 cd_tso_len = skb->len - *hdr_len; 3101 cd_mss = gso_size; 3102 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 3103 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 3104 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 3105 return 1; 3106 } 3107 3108 /** 3109 * i40e_tsyn - set up the tsyn context descriptor 3110 * @tx_ring: ptr to the ring to send 3111 * @skb: ptr to the skb we're sending 3112 * @tx_flags: the collected send information 3113 * @cd_type_cmd_tso_mss: Quad Word 1 3114 * 3115 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3116 **/ 3117 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3118 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3119 { 3120 struct i40e_pf *pf; 3121 3122 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3123 return 0; 3124 3125 /* Tx timestamps cannot be sampled when doing TSO */ 3126 if (tx_flags & I40E_TX_FLAGS_TSO) 3127 return 0; 3128 3129 /* only timestamp the outbound packet if the user has requested it and 3130 * we are not already transmitting a packet to be timestamped 3131 */ 3132 pf = i40e_netdev_to_pf(tx_ring->netdev); 3133 if (!(pf->flags & I40E_FLAG_PTP)) 3134 return 0; 3135 3136 if (pf->ptp_tx && 3137 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3138 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3139 pf->ptp_tx_start = jiffies; 3140 pf->ptp_tx_skb = skb_get(skb); 3141 } else { 3142 pf->tx_hwtstamp_skipped++; 3143 return 0; 3144 } 3145 3146 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3147 I40E_TXD_CTX_QW1_CMD_SHIFT; 3148 3149 return 1; 3150 } 3151 3152 /** 3153 * i40e_tx_enable_csum - Enable Tx checksum offloads 3154 * @skb: send buffer 3155 * @tx_flags: pointer to Tx flags currently set 3156 * @td_cmd: Tx descriptor command bits to set 3157 * @td_offset: Tx descriptor header offsets to set 3158 * @tx_ring: Tx descriptor ring 3159 * @cd_tunneling: ptr to context desc bits 3160 **/ 3161 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3162 u32 *td_cmd, u32 *td_offset, 3163 struct i40e_ring *tx_ring, 3164 u32 *cd_tunneling) 3165 { 3166 union { 3167 struct iphdr *v4; 3168 struct ipv6hdr *v6; 3169 unsigned char *hdr; 3170 } ip; 3171 union { 3172 struct tcphdr *tcp; 3173 struct udphdr *udp; 3174 unsigned char *hdr; 3175 } l4; 3176 unsigned char *exthdr; 3177 u32 offset, cmd = 0; 3178 __be16 frag_off; 3179 u8 l4_proto = 0; 3180 3181 if (skb->ip_summed != CHECKSUM_PARTIAL) 3182 return 0; 3183 3184 ip.hdr = skb_network_header(skb); 3185 l4.hdr = skb_transport_header(skb); 3186 3187 /* compute outer L2 header size */ 3188 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3189 3190 if (skb->encapsulation) { 3191 u32 tunnel = 0; 3192 /* define outer network header type */ 3193 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3194 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3195 I40E_TX_CTX_EXT_IP_IPV4 : 3196 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3197 3198 l4_proto = ip.v4->protocol; 3199 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3200 int ret; 3201 3202 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3203 3204 exthdr = ip.hdr + sizeof(*ip.v6); 3205 l4_proto = ip.v6->nexthdr; 3206 ret = ipv6_skip_exthdr(skb, exthdr - skb->data, 3207 &l4_proto, &frag_off); 3208 if (ret < 0) 3209 return -1; 3210 } 3211 3212 /* define outer transport */ 3213 switch (l4_proto) { 3214 case IPPROTO_UDP: 3215 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3216 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3217 break; 3218 case IPPROTO_GRE: 3219 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3220 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3221 break; 3222 case IPPROTO_IPIP: 3223 case IPPROTO_IPV6: 3224 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3225 l4.hdr = skb_inner_network_header(skb); 3226 break; 3227 default: 3228 if (*tx_flags & I40E_TX_FLAGS_TSO) 3229 return -1; 3230 3231 skb_checksum_help(skb); 3232 return 0; 3233 } 3234 3235 /* compute outer L3 header size */ 3236 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3237 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3238 3239 /* switch IP header pointer from outer to inner header */ 3240 ip.hdr = skb_inner_network_header(skb); 3241 3242 /* compute tunnel header size */ 3243 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3244 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3245 3246 /* indicate if we need to offload outer UDP header */ 3247 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3248 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3249 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3250 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3251 3252 /* record tunnel offload values */ 3253 *cd_tunneling |= tunnel; 3254 3255 /* switch L4 header pointer from outer to inner */ 3256 l4.hdr = skb_inner_transport_header(skb); 3257 l4_proto = 0; 3258 3259 /* reset type as we transition from outer to inner headers */ 3260 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3261 if (ip.v4->version == 4) 3262 *tx_flags |= I40E_TX_FLAGS_IPV4; 3263 if (ip.v6->version == 6) 3264 *tx_flags |= I40E_TX_FLAGS_IPV6; 3265 } 3266 3267 /* Enable IP checksum offloads */ 3268 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3269 l4_proto = ip.v4->protocol; 3270 /* the stack computes the IP header already, the only time we 3271 * need the hardware to recompute it is in the case of TSO. 3272 */ 3273 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3274 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3275 I40E_TX_DESC_CMD_IIPT_IPV4; 3276 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3277 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3278 3279 exthdr = ip.hdr + sizeof(*ip.v6); 3280 l4_proto = ip.v6->nexthdr; 3281 if (l4.hdr != exthdr) 3282 ipv6_skip_exthdr(skb, exthdr - skb->data, 3283 &l4_proto, &frag_off); 3284 } 3285 3286 /* compute inner L3 header size */ 3287 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3288 3289 /* Enable L4 checksum offloads */ 3290 switch (l4_proto) { 3291 case IPPROTO_TCP: 3292 /* enable checksum offloads */ 3293 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3294 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3295 break; 3296 case IPPROTO_SCTP: 3297 /* enable SCTP checksum offload */ 3298 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3299 offset |= (sizeof(struct sctphdr) >> 2) << 3300 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3301 break; 3302 case IPPROTO_UDP: 3303 /* enable UDP checksum offload */ 3304 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3305 offset |= (sizeof(struct udphdr) >> 2) << 3306 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3307 break; 3308 default: 3309 if (*tx_flags & I40E_TX_FLAGS_TSO) 3310 return -1; 3311 skb_checksum_help(skb); 3312 return 0; 3313 } 3314 3315 *td_cmd |= cmd; 3316 *td_offset |= offset; 3317 3318 return 1; 3319 } 3320 3321 /** 3322 * i40e_create_tx_ctx - Build the Tx context descriptor 3323 * @tx_ring: ring to create the descriptor on 3324 * @cd_type_cmd_tso_mss: Quad Word 1 3325 * @cd_tunneling: Quad Word 0 - bits 0-31 3326 * @cd_l2tag2: Quad Word 0 - bits 32-63 3327 **/ 3328 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3329 const u64 cd_type_cmd_tso_mss, 3330 const u32 cd_tunneling, const u32 cd_l2tag2) 3331 { 3332 struct i40e_tx_context_desc *context_desc; 3333 int i = tx_ring->next_to_use; 3334 3335 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3336 !cd_tunneling && !cd_l2tag2) 3337 return; 3338 3339 /* grab the next descriptor */ 3340 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3341 3342 i++; 3343 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3344 3345 /* cpu_to_le32 and assign to struct fields */ 3346 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3347 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3348 context_desc->rsvd = cpu_to_le16(0); 3349 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3350 } 3351 3352 /** 3353 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3354 * @tx_ring: the ring to be checked 3355 * @size: the size buffer we want to assure is available 3356 * 3357 * Returns -EBUSY if a stop is needed, else 0 3358 **/ 3359 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3360 { 3361 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3362 /* Memory barrier before checking head and tail */ 3363 smp_mb(); 3364 3365 /* Check again in a case another CPU has just made room available. */ 3366 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3367 return -EBUSY; 3368 3369 /* A reprieve! - use start_queue because it doesn't call schedule */ 3370 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3371 ++tx_ring->tx_stats.restart_queue; 3372 return 0; 3373 } 3374 3375 /** 3376 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3377 * @skb: send buffer 3378 * 3379 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3380 * and so we need to figure out the cases where we need to linearize the skb. 3381 * 3382 * For TSO we need to count the TSO header and segment payload separately. 3383 * As such we need to check cases where we have 7 fragments or more as we 3384 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3385 * the segment payload in the first descriptor, and another 7 for the 3386 * fragments. 3387 **/ 3388 bool __i40e_chk_linearize(struct sk_buff *skb) 3389 { 3390 const skb_frag_t *frag, *stale; 3391 int nr_frags, sum; 3392 3393 /* no need to check if number of frags is less than 7 */ 3394 nr_frags = skb_shinfo(skb)->nr_frags; 3395 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3396 return false; 3397 3398 /* We need to walk through the list and validate that each group 3399 * of 6 fragments totals at least gso_size. 3400 */ 3401 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3402 frag = &skb_shinfo(skb)->frags[0]; 3403 3404 /* Initialize size to the negative value of gso_size minus 1. We 3405 * use this as the worst case scenerio in which the frag ahead 3406 * of us only provides one byte which is why we are limited to 6 3407 * descriptors for a single transmit as the header and previous 3408 * fragment are already consuming 2 descriptors. 3409 */ 3410 sum = 1 - skb_shinfo(skb)->gso_size; 3411 3412 /* Add size of frags 0 through 4 to create our initial sum */ 3413 sum += skb_frag_size(frag++); 3414 sum += skb_frag_size(frag++); 3415 sum += skb_frag_size(frag++); 3416 sum += skb_frag_size(frag++); 3417 sum += skb_frag_size(frag++); 3418 3419 /* Walk through fragments adding latest fragment, testing it, and 3420 * then removing stale fragments from the sum. 3421 */ 3422 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3423 int stale_size = skb_frag_size(stale); 3424 3425 sum += skb_frag_size(frag++); 3426 3427 /* The stale fragment may present us with a smaller 3428 * descriptor than the actual fragment size. To account 3429 * for that we need to remove all the data on the front and 3430 * figure out what the remainder would be in the last 3431 * descriptor associated with the fragment. 3432 */ 3433 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3434 int align_pad = -(skb_frag_off(stale)) & 3435 (I40E_MAX_READ_REQ_SIZE - 1); 3436 3437 sum -= align_pad; 3438 stale_size -= align_pad; 3439 3440 do { 3441 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3442 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3443 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3444 } 3445 3446 /* if sum is negative we failed to make sufficient progress */ 3447 if (sum < 0) 3448 return true; 3449 3450 if (!nr_frags--) 3451 break; 3452 3453 sum -= stale_size; 3454 } 3455 3456 return false; 3457 } 3458 3459 /** 3460 * i40e_tx_map - Build the Tx descriptor 3461 * @tx_ring: ring to send buffer on 3462 * @skb: send buffer 3463 * @first: first buffer info buffer to use 3464 * @tx_flags: collected send information 3465 * @hdr_len: size of the packet header 3466 * @td_cmd: the command field in the descriptor 3467 * @td_offset: offset for checksum or crc 3468 * 3469 * Returns 0 on success, -1 on failure to DMA 3470 **/ 3471 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3472 struct i40e_tx_buffer *first, u32 tx_flags, 3473 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3474 { 3475 unsigned int data_len = skb->data_len; 3476 unsigned int size = skb_headlen(skb); 3477 skb_frag_t *frag; 3478 struct i40e_tx_buffer *tx_bi; 3479 struct i40e_tx_desc *tx_desc; 3480 u16 i = tx_ring->next_to_use; 3481 u32 td_tag = 0; 3482 dma_addr_t dma; 3483 u16 desc_count = 1; 3484 3485 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3486 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3487 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3488 I40E_TX_FLAGS_VLAN_SHIFT; 3489 } 3490 3491 first->tx_flags = tx_flags; 3492 3493 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3494 3495 tx_desc = I40E_TX_DESC(tx_ring, i); 3496 tx_bi = first; 3497 3498 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3499 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3500 3501 if (dma_mapping_error(tx_ring->dev, dma)) 3502 goto dma_error; 3503 3504 /* record length, and DMA address */ 3505 dma_unmap_len_set(tx_bi, len, size); 3506 dma_unmap_addr_set(tx_bi, dma, dma); 3507 3508 /* align size to end of page */ 3509 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3510 tx_desc->buffer_addr = cpu_to_le64(dma); 3511 3512 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3513 tx_desc->cmd_type_offset_bsz = 3514 build_ctob(td_cmd, td_offset, 3515 max_data, td_tag); 3516 3517 tx_desc++; 3518 i++; 3519 desc_count++; 3520 3521 if (i == tx_ring->count) { 3522 tx_desc = I40E_TX_DESC(tx_ring, 0); 3523 i = 0; 3524 } 3525 3526 dma += max_data; 3527 size -= max_data; 3528 3529 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3530 tx_desc->buffer_addr = cpu_to_le64(dma); 3531 } 3532 3533 if (likely(!data_len)) 3534 break; 3535 3536 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3537 size, td_tag); 3538 3539 tx_desc++; 3540 i++; 3541 desc_count++; 3542 3543 if (i == tx_ring->count) { 3544 tx_desc = I40E_TX_DESC(tx_ring, 0); 3545 i = 0; 3546 } 3547 3548 size = skb_frag_size(frag); 3549 data_len -= size; 3550 3551 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3552 DMA_TO_DEVICE); 3553 3554 tx_bi = &tx_ring->tx_bi[i]; 3555 } 3556 3557 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3558 3559 i++; 3560 if (i == tx_ring->count) 3561 i = 0; 3562 3563 tx_ring->next_to_use = i; 3564 3565 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3566 3567 /* write last descriptor with EOP bit */ 3568 td_cmd |= I40E_TX_DESC_CMD_EOP; 3569 3570 /* We OR these values together to check both against 4 (WB_STRIDE) 3571 * below. This is safe since we don't re-use desc_count afterwards. 3572 */ 3573 desc_count |= ++tx_ring->packet_stride; 3574 3575 if (desc_count >= WB_STRIDE) { 3576 /* write last descriptor with RS bit set */ 3577 td_cmd |= I40E_TX_DESC_CMD_RS; 3578 tx_ring->packet_stride = 0; 3579 } 3580 3581 tx_desc->cmd_type_offset_bsz = 3582 build_ctob(td_cmd, td_offset, size, td_tag); 3583 3584 skb_tx_timestamp(skb); 3585 3586 /* Force memory writes to complete before letting h/w know there 3587 * are new descriptors to fetch. 3588 * 3589 * We also use this memory barrier to make certain all of the 3590 * status bits have been updated before next_to_watch is written. 3591 */ 3592 wmb(); 3593 3594 /* set next_to_watch value indicating a packet is present */ 3595 first->next_to_watch = tx_desc; 3596 3597 /* notify HW of packet */ 3598 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3599 writel(i, tx_ring->tail); 3600 } 3601 3602 return 0; 3603 3604 dma_error: 3605 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3606 3607 /* clear dma mappings for failed tx_bi map */ 3608 for (;;) { 3609 tx_bi = &tx_ring->tx_bi[i]; 3610 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3611 if (tx_bi == first) 3612 break; 3613 if (i == 0) 3614 i = tx_ring->count; 3615 i--; 3616 } 3617 3618 tx_ring->next_to_use = i; 3619 3620 return -1; 3621 } 3622 3623 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, 3624 const struct sk_buff *skb, 3625 u16 num_tx_queues) 3626 { 3627 u32 jhash_initval_salt = 0xd631614b; 3628 u32 hash; 3629 3630 if (skb->sk && skb->sk->sk_hash) 3631 hash = skb->sk->sk_hash; 3632 else 3633 hash = (__force u16)skb->protocol ^ skb->hash; 3634 3635 hash = jhash_1word(hash, jhash_initval_salt); 3636 3637 return (u16)(((u64)hash * num_tx_queues) >> 32); 3638 } 3639 3640 u16 i40e_lan_select_queue(struct net_device *netdev, 3641 struct sk_buff *skb, 3642 struct net_device __always_unused *sb_dev) 3643 { 3644 struct i40e_netdev_priv *np = netdev_priv(netdev); 3645 struct i40e_vsi *vsi = np->vsi; 3646 struct i40e_hw *hw; 3647 u16 qoffset; 3648 u16 qcount; 3649 u8 tclass; 3650 u16 hash; 3651 u8 prio; 3652 3653 /* is DCB enabled at all? */ 3654 if (vsi->tc_config.numtc == 1) 3655 return netdev_pick_tx(netdev, skb, sb_dev); 3656 3657 prio = skb->priority; 3658 hw = &vsi->back->hw; 3659 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; 3660 /* sanity check */ 3661 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) 3662 tclass = 0; 3663 3664 /* select a queue assigned for the given TC */ 3665 qcount = vsi->tc_config.tc_info[tclass].qcount; 3666 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount); 3667 3668 qoffset = vsi->tc_config.tc_info[tclass].qoffset; 3669 return qoffset + hash; 3670 } 3671 3672 /** 3673 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3674 * @xdpf: data to transmit 3675 * @xdp_ring: XDP Tx ring 3676 **/ 3677 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3678 struct i40e_ring *xdp_ring) 3679 { 3680 u16 i = xdp_ring->next_to_use; 3681 struct i40e_tx_buffer *tx_bi; 3682 struct i40e_tx_desc *tx_desc; 3683 void *data = xdpf->data; 3684 u32 size = xdpf->len; 3685 dma_addr_t dma; 3686 3687 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3688 xdp_ring->tx_stats.tx_busy++; 3689 return I40E_XDP_CONSUMED; 3690 } 3691 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3692 if (dma_mapping_error(xdp_ring->dev, dma)) 3693 return I40E_XDP_CONSUMED; 3694 3695 tx_bi = &xdp_ring->tx_bi[i]; 3696 tx_bi->bytecount = size; 3697 tx_bi->gso_segs = 1; 3698 tx_bi->xdpf = xdpf; 3699 3700 /* record length, and DMA address */ 3701 dma_unmap_len_set(tx_bi, len, size); 3702 dma_unmap_addr_set(tx_bi, dma, dma); 3703 3704 tx_desc = I40E_TX_DESC(xdp_ring, i); 3705 tx_desc->buffer_addr = cpu_to_le64(dma); 3706 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3707 | I40E_TXD_CMD, 3708 0, size, 0); 3709 3710 /* Make certain all of the status bits have been updated 3711 * before next_to_watch is written. 3712 */ 3713 smp_wmb(); 3714 3715 xdp_ring->xdp_tx_active++; 3716 i++; 3717 if (i == xdp_ring->count) 3718 i = 0; 3719 3720 tx_bi->next_to_watch = tx_desc; 3721 xdp_ring->next_to_use = i; 3722 3723 return I40E_XDP_TX; 3724 } 3725 3726 /** 3727 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3728 * @skb: send buffer 3729 * @tx_ring: ring to send buffer on 3730 * 3731 * Returns NETDEV_TX_OK if sent, else an error code 3732 **/ 3733 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3734 struct i40e_ring *tx_ring) 3735 { 3736 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3737 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3738 struct i40e_tx_buffer *first; 3739 u32 td_offset = 0; 3740 u32 tx_flags = 0; 3741 __be16 protocol; 3742 u32 td_cmd = 0; 3743 u8 hdr_len = 0; 3744 int tso, count; 3745 int tsyn; 3746 3747 /* prefetch the data, we'll need it later */ 3748 prefetch(skb->data); 3749 3750 i40e_trace(xmit_frame_ring, skb, tx_ring); 3751 3752 count = i40e_xmit_descriptor_count(skb); 3753 if (i40e_chk_linearize(skb, count)) { 3754 if (__skb_linearize(skb)) { 3755 dev_kfree_skb_any(skb); 3756 return NETDEV_TX_OK; 3757 } 3758 count = i40e_txd_use_count(skb->len); 3759 tx_ring->tx_stats.tx_linearize++; 3760 } 3761 3762 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3763 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3764 * + 4 desc gap to avoid the cache line where head is, 3765 * + 1 desc for context descriptor, 3766 * otherwise try next time 3767 */ 3768 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3769 tx_ring->tx_stats.tx_busy++; 3770 return NETDEV_TX_BUSY; 3771 } 3772 3773 /* record the location of the first descriptor for this packet */ 3774 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3775 first->skb = skb; 3776 first->bytecount = skb->len; 3777 first->gso_segs = 1; 3778 3779 /* prepare the xmit flags */ 3780 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3781 goto out_drop; 3782 3783 /* obtain protocol of skb */ 3784 protocol = vlan_get_protocol(skb); 3785 3786 /* setup IPv4/IPv6 offloads */ 3787 if (protocol == htons(ETH_P_IP)) 3788 tx_flags |= I40E_TX_FLAGS_IPV4; 3789 else if (protocol == htons(ETH_P_IPV6)) 3790 tx_flags |= I40E_TX_FLAGS_IPV6; 3791 3792 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3793 3794 if (tso < 0) 3795 goto out_drop; 3796 else if (tso) 3797 tx_flags |= I40E_TX_FLAGS_TSO; 3798 3799 /* Always offload the checksum, since it's in the data descriptor */ 3800 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3801 tx_ring, &cd_tunneling); 3802 if (tso < 0) 3803 goto out_drop; 3804 3805 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3806 3807 if (tsyn) 3808 tx_flags |= I40E_TX_FLAGS_TSYN; 3809 3810 /* always enable CRC insertion offload */ 3811 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3812 3813 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3814 cd_tunneling, cd_l2tag2); 3815 3816 /* Add Flow Director ATR if it's enabled. 3817 * 3818 * NOTE: this must always be directly before the data descriptor. 3819 */ 3820 i40e_atr(tx_ring, skb, tx_flags); 3821 3822 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3823 td_cmd, td_offset)) 3824 goto cleanup_tx_tstamp; 3825 3826 return NETDEV_TX_OK; 3827 3828 out_drop: 3829 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3830 dev_kfree_skb_any(first->skb); 3831 first->skb = NULL; 3832 cleanup_tx_tstamp: 3833 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3834 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3835 3836 dev_kfree_skb_any(pf->ptp_tx_skb); 3837 pf->ptp_tx_skb = NULL; 3838 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3839 } 3840 3841 return NETDEV_TX_OK; 3842 } 3843 3844 /** 3845 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3846 * @skb: send buffer 3847 * @netdev: network interface device structure 3848 * 3849 * Returns NETDEV_TX_OK if sent, else an error code 3850 **/ 3851 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3852 { 3853 struct i40e_netdev_priv *np = netdev_priv(netdev); 3854 struct i40e_vsi *vsi = np->vsi; 3855 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3856 3857 /* hardware can't handle really short frames, hardware padding works 3858 * beyond this point 3859 */ 3860 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3861 return NETDEV_TX_OK; 3862 3863 return i40e_xmit_frame_ring(skb, tx_ring); 3864 } 3865 3866 /** 3867 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3868 * @dev: netdev 3869 * @n: number of frames 3870 * @frames: array of XDP buffer pointers 3871 * @flags: XDP extra info 3872 * 3873 * Returns number of frames successfully sent. Failed frames 3874 * will be free'ed by XDP core. 3875 * 3876 * For error cases, a negative errno code is returned and no-frames 3877 * are transmitted (caller must handle freeing frames). 3878 **/ 3879 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3880 u32 flags) 3881 { 3882 struct i40e_netdev_priv *np = netdev_priv(dev); 3883 unsigned int queue_index = smp_processor_id(); 3884 struct i40e_vsi *vsi = np->vsi; 3885 struct i40e_pf *pf = vsi->back; 3886 struct i40e_ring *xdp_ring; 3887 int nxmit = 0; 3888 int i; 3889 3890 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3891 return -ENETDOWN; 3892 3893 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 3894 test_bit(__I40E_CONFIG_BUSY, pf->state)) 3895 return -ENXIO; 3896 3897 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3898 return -EINVAL; 3899 3900 xdp_ring = vsi->xdp_rings[queue_index]; 3901 3902 for (i = 0; i < n; i++) { 3903 struct xdp_frame *xdpf = frames[i]; 3904 int err; 3905 3906 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3907 if (err != I40E_XDP_TX) 3908 break; 3909 nxmit++; 3910 } 3911 3912 if (unlikely(flags & XDP_XMIT_FLUSH)) 3913 i40e_xdp_ring_update_tail(xdp_ring); 3914 3915 return nxmit; 3916 } 3917