1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/prefetch.h> 5 #include <linux/bpf_trace.h> 6 #include <net/xdp.h> 7 #include "i40e.h" 8 #include "i40e_trace.h" 9 #include "i40e_prototype.h" 10 #include "i40e_txrx_common.h" 11 #include "i40e_xsk.h" 12 13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 14 /** 15 * i40e_fdir - Generate a Flow Director descriptor based on fdata 16 * @tx_ring: Tx ring to send buffer on 17 * @fdata: Flow director filter data 18 * @add: Indicate if we are adding a rule or deleting one 19 * 20 **/ 21 static void i40e_fdir(struct i40e_ring *tx_ring, 22 struct i40e_fdir_filter *fdata, bool add) 23 { 24 struct i40e_filter_program_desc *fdir_desc; 25 struct i40e_pf *pf = tx_ring->vsi->back; 26 u32 flex_ptype, dtype_cmd; 27 u16 i; 28 29 /* grab the next descriptor */ 30 i = tx_ring->next_to_use; 31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 32 33 i++; 34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 35 36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & 37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); 38 39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & 40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 41 42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 44 45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & 46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); 47 48 /* Use LAN VSI Id if not programmed by user */ 49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & 50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << 51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); 52 53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 54 55 dtype_cmd |= add ? 56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 57 I40E_TXD_FLTR_QW1_PCMD_SHIFT : 58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 59 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 60 61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & 62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); 63 64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & 65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); 66 67 if (fdata->cnt_index) { 68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & 70 ((u32)fdata->cnt_index << 71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); 72 } 73 74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 75 fdir_desc->rsvd = cpu_to_le32(0); 76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); 78 } 79 80 #define I40E_FD_CLEAN_DELAY 10 81 /** 82 * i40e_program_fdir_filter - Program a Flow Director filter 83 * @fdir_data: Packet data that will be filter parameters 84 * @raw_packet: the pre-allocated packet buffer for FDir 85 * @pf: The PF pointer 86 * @add: True for add/update, False for remove 87 **/ 88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, 89 u8 *raw_packet, struct i40e_pf *pf, 90 bool add) 91 { 92 struct i40e_tx_buffer *tx_buf, *first; 93 struct i40e_tx_desc *tx_desc; 94 struct i40e_ring *tx_ring; 95 struct i40e_vsi *vsi; 96 struct device *dev; 97 dma_addr_t dma; 98 u32 td_cmd = 0; 99 u16 i; 100 101 /* find existing FDIR VSI */ 102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 103 if (!vsi) 104 return -ENOENT; 105 106 tx_ring = vsi->tx_rings[0]; 107 dev = tx_ring->dev; 108 109 /* we need two descriptors to add/del a filter and we can wait */ 110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { 111 if (!i) 112 return -EAGAIN; 113 msleep_interruptible(1); 114 } 115 116 dma = dma_map_single(dev, raw_packet, 117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 118 if (dma_mapping_error(dev, dma)) 119 goto dma_fail; 120 121 /* grab the next descriptor */ 122 i = tx_ring->next_to_use; 123 first = &tx_ring->tx_bi[i]; 124 i40e_fdir(tx_ring, fdir_data, add); 125 126 /* Now program a dummy descriptor */ 127 i = tx_ring->next_to_use; 128 tx_desc = I40E_TX_DESC(tx_ring, i); 129 tx_buf = &tx_ring->tx_bi[i]; 130 131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 132 133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 134 135 /* record length, and DMA address */ 136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 137 dma_unmap_addr_set(tx_buf, dma, dma); 138 139 tx_desc->buffer_addr = cpu_to_le64(dma); 140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 141 142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 143 tx_buf->raw_buf = (void *)raw_packet; 144 145 tx_desc->cmd_type_offset_bsz = 146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 147 148 /* Force memory writes to complete before letting h/w 149 * know there are new descriptors to fetch. 150 */ 151 wmb(); 152 153 /* Mark the data descriptor to be watched */ 154 first->next_to_watch = tx_desc; 155 156 writel(tx_ring->next_to_use, tx_ring->tail); 157 return 0; 158 159 dma_fail: 160 return -1; 161 } 162 163 #define IP_HEADER_OFFSET 14 164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 165 /** 166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 167 * @vsi: pointer to the targeted VSI 168 * @fd_data: the flow director data required for the FDir descriptor 169 * @add: true adds a filter, false removes it 170 * 171 * Returns 0 if the filters were successfully added or removed 172 **/ 173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 174 struct i40e_fdir_filter *fd_data, 175 bool add) 176 { 177 struct i40e_pf *pf = vsi->back; 178 struct udphdr *udp; 179 struct iphdr *ip; 180 u8 *raw_packet; 181 int ret; 182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 185 186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 187 if (!raw_packet) 188 return -ENOMEM; 189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 190 191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 193 + sizeof(struct iphdr)); 194 195 ip->daddr = fd_data->dst_ip; 196 udp->dest = fd_data->dst_port; 197 ip->saddr = fd_data->src_ip; 198 udp->source = fd_data->src_port; 199 200 if (fd_data->flex_filter) { 201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN; 202 __be16 pattern = fd_data->flex_word; 203 u16 off = fd_data->flex_offset; 204 205 *((__force __be16 *)(payload + off)) = pattern; 206 } 207 208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 210 if (ret) { 211 dev_info(&pf->pdev->dev, 212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 213 fd_data->pctype, fd_data->fd_id, ret); 214 /* Free the packet buffer since it wasn't added to the ring */ 215 kfree(raw_packet); 216 return -EOPNOTSUPP; 217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 218 if (add) 219 dev_info(&pf->pdev->dev, 220 "Filter OK for PCTYPE %d loc = %d\n", 221 fd_data->pctype, fd_data->fd_id); 222 else 223 dev_info(&pf->pdev->dev, 224 "Filter deleted for PCTYPE %d loc = %d\n", 225 fd_data->pctype, fd_data->fd_id); 226 } 227 228 if (add) 229 pf->fd_udp4_filter_cnt++; 230 else 231 pf->fd_udp4_filter_cnt--; 232 233 return 0; 234 } 235 236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 237 /** 238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 239 * @vsi: pointer to the targeted VSI 240 * @fd_data: the flow director data required for the FDir descriptor 241 * @add: true adds a filter, false removes it 242 * 243 * Returns 0 if the filters were successfully added or removed 244 **/ 245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 246 struct i40e_fdir_filter *fd_data, 247 bool add) 248 { 249 struct i40e_pf *pf = vsi->back; 250 struct tcphdr *tcp; 251 struct iphdr *ip; 252 u8 *raw_packet; 253 int ret; 254 /* Dummy packet */ 255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 258 0x0, 0x72, 0, 0, 0, 0}; 259 260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 261 if (!raw_packet) 262 return -ENOMEM; 263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 264 265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 267 + sizeof(struct iphdr)); 268 269 ip->daddr = fd_data->dst_ip; 270 tcp->dest = fd_data->dst_port; 271 ip->saddr = fd_data->src_ip; 272 tcp->source = fd_data->src_port; 273 274 if (fd_data->flex_filter) { 275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN; 276 __be16 pattern = fd_data->flex_word; 277 u16 off = fd_data->flex_offset; 278 279 *((__force __be16 *)(payload + off)) = pattern; 280 } 281 282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 284 if (ret) { 285 dev_info(&pf->pdev->dev, 286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 287 fd_data->pctype, fd_data->fd_id, ret); 288 /* Free the packet buffer since it wasn't added to the ring */ 289 kfree(raw_packet); 290 return -EOPNOTSUPP; 291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 292 if (add) 293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 294 fd_data->pctype, fd_data->fd_id); 295 else 296 dev_info(&pf->pdev->dev, 297 "Filter deleted for PCTYPE %d loc = %d\n", 298 fd_data->pctype, fd_data->fd_id); 299 } 300 301 if (add) { 302 pf->fd_tcp4_filter_cnt++; 303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 304 I40E_DEBUG_FD & pf->hw.debug_mask) 305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 307 } else { 308 pf->fd_tcp4_filter_cnt--; 309 } 310 311 return 0; 312 } 313 314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 315 /** 316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 317 * a specific flow spec 318 * @vsi: pointer to the targeted VSI 319 * @fd_data: the flow director data required for the FDir descriptor 320 * @add: true adds a filter, false removes it 321 * 322 * Returns 0 if the filters were successfully added or removed 323 **/ 324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 325 struct i40e_fdir_filter *fd_data, 326 bool add) 327 { 328 struct i40e_pf *pf = vsi->back; 329 struct sctphdr *sctp; 330 struct iphdr *ip; 331 u8 *raw_packet; 332 int ret; 333 /* Dummy packet */ 334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0, 336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 337 338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 339 if (!raw_packet) 340 return -ENOMEM; 341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN); 342 343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET 345 + sizeof(struct iphdr)); 346 347 ip->daddr = fd_data->dst_ip; 348 sctp->dest = fd_data->dst_port; 349 ip->saddr = fd_data->src_ip; 350 sctp->source = fd_data->src_port; 351 352 if (fd_data->flex_filter) { 353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN; 354 __be16 pattern = fd_data->flex_word; 355 u16 off = fd_data->flex_offset; 356 357 *((__force __be16 *)(payload + off)) = pattern; 358 } 359 360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP; 361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 362 if (ret) { 363 dev_info(&pf->pdev->dev, 364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 365 fd_data->pctype, fd_data->fd_id, ret); 366 /* Free the packet buffer since it wasn't added to the ring */ 367 kfree(raw_packet); 368 return -EOPNOTSUPP; 369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 370 if (add) 371 dev_info(&pf->pdev->dev, 372 "Filter OK for PCTYPE %d loc = %d\n", 373 fd_data->pctype, fd_data->fd_id); 374 else 375 dev_info(&pf->pdev->dev, 376 "Filter deleted for PCTYPE %d loc = %d\n", 377 fd_data->pctype, fd_data->fd_id); 378 } 379 380 if (add) 381 pf->fd_sctp4_filter_cnt++; 382 else 383 pf->fd_sctp4_filter_cnt--; 384 385 return 0; 386 } 387 388 #define I40E_IP_DUMMY_PACKET_LEN 34 389 /** 390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 391 * a specific flow spec 392 * @vsi: pointer to the targeted VSI 393 * @fd_data: the flow director data required for the FDir descriptor 394 * @add: true adds a filter, false removes it 395 * 396 * Returns 0 if the filters were successfully added or removed 397 **/ 398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 399 struct i40e_fdir_filter *fd_data, 400 bool add) 401 { 402 struct i40e_pf *pf = vsi->back; 403 struct iphdr *ip; 404 u8 *raw_packet; 405 int ret; 406 int i; 407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 409 0, 0, 0, 0}; 410 411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 414 if (!raw_packet) 415 return -ENOMEM; 416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 418 419 ip->saddr = fd_data->src_ip; 420 ip->daddr = fd_data->dst_ip; 421 ip->protocol = 0; 422 423 if (fd_data->flex_filter) { 424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN; 425 __be16 pattern = fd_data->flex_word; 426 u16 off = fd_data->flex_offset; 427 428 *((__force __be16 *)(payload + off)) = pattern; 429 } 430 431 fd_data->pctype = i; 432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 433 if (ret) { 434 dev_info(&pf->pdev->dev, 435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 436 fd_data->pctype, fd_data->fd_id, ret); 437 /* The packet buffer wasn't added to the ring so we 438 * need to free it now. 439 */ 440 kfree(raw_packet); 441 return -EOPNOTSUPP; 442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 443 if (add) 444 dev_info(&pf->pdev->dev, 445 "Filter OK for PCTYPE %d loc = %d\n", 446 fd_data->pctype, fd_data->fd_id); 447 else 448 dev_info(&pf->pdev->dev, 449 "Filter deleted for PCTYPE %d loc = %d\n", 450 fd_data->pctype, fd_data->fd_id); 451 } 452 } 453 454 if (add) 455 pf->fd_ip4_filter_cnt++; 456 else 457 pf->fd_ip4_filter_cnt--; 458 459 return 0; 460 } 461 462 /** 463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 464 * @vsi: pointer to the targeted VSI 465 * @input: filter to add or delete 466 * @add: true adds a filter, false removes it 467 * 468 **/ 469 int i40e_add_del_fdir(struct i40e_vsi *vsi, 470 struct i40e_fdir_filter *input, bool add) 471 { 472 struct i40e_pf *pf = vsi->back; 473 int ret; 474 475 switch (input->flow_type & ~FLOW_EXT) { 476 case TCP_V4_FLOW: 477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 478 break; 479 case UDP_V4_FLOW: 480 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 481 break; 482 case SCTP_V4_FLOW: 483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 484 break; 485 case IP_USER_FLOW: 486 switch (input->ip4_proto) { 487 case IPPROTO_TCP: 488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 489 break; 490 case IPPROTO_UDP: 491 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 492 break; 493 case IPPROTO_SCTP: 494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 495 break; 496 case IPPROTO_IP: 497 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 498 break; 499 default: 500 /* We cannot support masking based on protocol */ 501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", 502 input->ip4_proto); 503 return -EINVAL; 504 } 505 break; 506 default: 507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", 508 input->flow_type); 509 return -EINVAL; 510 } 511 512 /* The buffer allocated here will be normally be freed by 513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit 514 * completion. In the event of an error adding the buffer to the FDIR 515 * ring, it will immediately be freed. It may also be freed by 516 * i40e_clean_tx_ring() when closing the VSI. 517 */ 518 return ret; 519 } 520 521 /** 522 * i40e_fd_handle_status - check the Programming Status for FD 523 * @rx_ring: the Rx ring for this descriptor 524 * @qword0_raw: qword0 525 * @qword1: qword1 after le_to_cpu 526 * @prog_id: the id originally used for programming 527 * 528 * This is used to verify if the FD programming or invalidation 529 * requested by SW to the HW is successful or not and take actions accordingly. 530 **/ 531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, 532 u64 qword1, u8 prog_id) 533 { 534 struct i40e_pf *pf = rx_ring->vsi->back; 535 struct pci_dev *pdev = pf->pdev; 536 struct i40e_16b_rx_wb_qw0 *qw0; 537 u32 fcnt_prog, fcnt_avail; 538 u32 error; 539 540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; 541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 543 544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); 546 if (qw0->hi_dword.fd_id != 0 || 547 (I40E_DEBUG_FD & pf->hw.debug_mask)) 548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 549 pf->fd_inv); 550 551 /* Check if the programming error is for ATR. 552 * If so, auto disable ATR and set a state for 553 * flush in progress. Next time we come here if flush is in 554 * progress do nothing, once flush is complete the state will 555 * be cleared. 556 */ 557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 558 return; 559 560 pf->fd_add_err++; 561 /* store the current atr filter count */ 562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 563 564 if (qw0->hi_dword.fd_id == 0 && 565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { 566 /* These set_bit() calls aren't atomic with the 567 * test_bit() here, but worse case we potentially 568 * disable ATR and queue a flush right after SB 569 * support is re-enabled. That shouldn't cause an 570 * issue in practice 571 */ 572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 574 } 575 576 /* filter programming failed most likely due to table full */ 577 fcnt_prog = i40e_get_global_fd_count(pf); 578 fcnt_avail = pf->fdir_pf_filter_count; 579 /* If ATR is running fcnt_prog can quickly change, 580 * if we are very close to full, it makes sense to disable 581 * FD ATR/SB and then re-enable it when there is room. 582 */ 583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, 586 pf->state)) 587 if (I40E_DEBUG_FD & pf->hw.debug_mask) 588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 589 } 590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 591 if (I40E_DEBUG_FD & pf->hw.debug_mask) 592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 593 qw0->hi_dword.fd_id); 594 } 595 } 596 597 /** 598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 599 * @ring: the ring that owns the buffer 600 * @tx_buffer: the buffer to free 601 **/ 602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 603 struct i40e_tx_buffer *tx_buffer) 604 { 605 if (tx_buffer->skb) { 606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 607 kfree(tx_buffer->raw_buf); 608 else if (ring_is_xdp(ring)) 609 xdp_return_frame(tx_buffer->xdpf); 610 else 611 dev_kfree_skb_any(tx_buffer->skb); 612 if (dma_unmap_len(tx_buffer, len)) 613 dma_unmap_single(ring->dev, 614 dma_unmap_addr(tx_buffer, dma), 615 dma_unmap_len(tx_buffer, len), 616 DMA_TO_DEVICE); 617 } else if (dma_unmap_len(tx_buffer, len)) { 618 dma_unmap_page(ring->dev, 619 dma_unmap_addr(tx_buffer, dma), 620 dma_unmap_len(tx_buffer, len), 621 DMA_TO_DEVICE); 622 } 623 624 tx_buffer->next_to_watch = NULL; 625 tx_buffer->skb = NULL; 626 dma_unmap_len_set(tx_buffer, len, 0); 627 /* tx_buffer must be completely set up in the transmit path */ 628 } 629 630 /** 631 * i40e_clean_tx_ring - Free any empty Tx buffers 632 * @tx_ring: ring to be cleaned 633 **/ 634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 635 { 636 unsigned long bi_size; 637 u16 i; 638 639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { 640 i40e_xsk_clean_tx_ring(tx_ring); 641 } else { 642 /* ring already cleared, nothing to do */ 643 if (!tx_ring->tx_bi) 644 return; 645 646 /* Free all the Tx ring sk_buffs */ 647 for (i = 0; i < tx_ring->count; i++) 648 i40e_unmap_and_free_tx_resource(tx_ring, 649 &tx_ring->tx_bi[i]); 650 } 651 652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 653 memset(tx_ring->tx_bi, 0, bi_size); 654 655 /* Zero out the descriptor ring */ 656 memset(tx_ring->desc, 0, tx_ring->size); 657 658 tx_ring->next_to_use = 0; 659 tx_ring->next_to_clean = 0; 660 661 if (!tx_ring->netdev) 662 return; 663 664 /* cleanup Tx queue statistics */ 665 netdev_tx_reset_queue(txring_txq(tx_ring)); 666 } 667 668 /** 669 * i40e_free_tx_resources - Free Tx resources per queue 670 * @tx_ring: Tx descriptor ring for a specific queue 671 * 672 * Free all transmit software resources 673 **/ 674 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 675 { 676 i40e_clean_tx_ring(tx_ring); 677 kfree(tx_ring->tx_bi); 678 tx_ring->tx_bi = NULL; 679 kfree(tx_ring->xsk_descs); 680 tx_ring->xsk_descs = NULL; 681 682 if (tx_ring->desc) { 683 dma_free_coherent(tx_ring->dev, tx_ring->size, 684 tx_ring->desc, tx_ring->dma); 685 tx_ring->desc = NULL; 686 } 687 } 688 689 /** 690 * i40e_get_tx_pending - how many tx descriptors not processed 691 * @ring: the ring of descriptors 692 * @in_sw: use SW variables 693 * 694 * Since there is no access to the ring head register 695 * in XL710, we need to use our local copies 696 **/ 697 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) 698 { 699 u32 head, tail; 700 701 if (!in_sw) { 702 head = i40e_get_head(ring); 703 tail = readl(ring->tail); 704 } else { 705 head = ring->next_to_clean; 706 tail = ring->next_to_use; 707 } 708 709 if (head != tail) 710 return (head < tail) ? 711 tail - head : (tail + ring->count - head); 712 713 return 0; 714 } 715 716 /** 717 * i40e_detect_recover_hung - Function to detect and recover hung_queues 718 * @vsi: pointer to vsi struct with tx queues 719 * 720 * VSI has netdev and netdev has TX queues. This function is to check each of 721 * those TX queues if they are hung, trigger recovery by issuing SW interrupt. 722 **/ 723 void i40e_detect_recover_hung(struct i40e_vsi *vsi) 724 { 725 struct i40e_ring *tx_ring = NULL; 726 struct net_device *netdev; 727 unsigned int i; 728 int packets; 729 730 if (!vsi) 731 return; 732 733 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 734 return; 735 736 netdev = vsi->netdev; 737 if (!netdev) 738 return; 739 740 if (!netif_carrier_ok(netdev)) 741 return; 742 743 for (i = 0; i < vsi->num_queue_pairs; i++) { 744 tx_ring = vsi->tx_rings[i]; 745 if (tx_ring && tx_ring->desc) { 746 /* If packet counter has not changed the queue is 747 * likely stalled, so force an interrupt for this 748 * queue. 749 * 750 * prev_pkt_ctr would be negative if there was no 751 * pending work. 752 */ 753 packets = tx_ring->stats.packets & INT_MAX; 754 if (tx_ring->tx_stats.prev_pkt_ctr == packets) { 755 i40e_force_wb(vsi, tx_ring->q_vector); 756 continue; 757 } 758 759 /* Memory barrier between read of packet count and call 760 * to i40e_get_tx_pending() 761 */ 762 smp_rmb(); 763 tx_ring->tx_stats.prev_pkt_ctr = 764 i40e_get_tx_pending(tx_ring, true) ? packets : -1; 765 } 766 } 767 } 768 769 /** 770 * i40e_clean_tx_irq - Reclaim resources after transmit completes 771 * @vsi: the VSI we care about 772 * @tx_ring: Tx ring to clean 773 * @napi_budget: Used to determine if we are in netpoll 774 * 775 * Returns true if there's any budget left (e.g. the clean is finished) 776 **/ 777 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, 778 struct i40e_ring *tx_ring, int napi_budget) 779 { 780 int i = tx_ring->next_to_clean; 781 struct i40e_tx_buffer *tx_buf; 782 struct i40e_tx_desc *tx_head; 783 struct i40e_tx_desc *tx_desc; 784 unsigned int total_bytes = 0, total_packets = 0; 785 unsigned int budget = vsi->work_limit; 786 787 tx_buf = &tx_ring->tx_bi[i]; 788 tx_desc = I40E_TX_DESC(tx_ring, i); 789 i -= tx_ring->count; 790 791 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 792 793 do { 794 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 795 796 /* if next_to_watch is not set then there is no work pending */ 797 if (!eop_desc) 798 break; 799 800 /* prevent any other reads prior to eop_desc */ 801 smp_rmb(); 802 803 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); 804 /* we have caught up to head, no work left to do */ 805 if (tx_head == tx_desc) 806 break; 807 808 /* clear next_to_watch to prevent false hangs */ 809 tx_buf->next_to_watch = NULL; 810 811 /* update the statistics for this packet */ 812 total_bytes += tx_buf->bytecount; 813 total_packets += tx_buf->gso_segs; 814 815 /* free the skb/XDP data */ 816 if (ring_is_xdp(tx_ring)) 817 xdp_return_frame(tx_buf->xdpf); 818 else 819 napi_consume_skb(tx_buf->skb, napi_budget); 820 821 /* unmap skb header data */ 822 dma_unmap_single(tx_ring->dev, 823 dma_unmap_addr(tx_buf, dma), 824 dma_unmap_len(tx_buf, len), 825 DMA_TO_DEVICE); 826 827 /* clear tx_buffer data */ 828 tx_buf->skb = NULL; 829 dma_unmap_len_set(tx_buf, len, 0); 830 831 /* unmap remaining buffers */ 832 while (tx_desc != eop_desc) { 833 i40e_trace(clean_tx_irq_unmap, 834 tx_ring, tx_desc, tx_buf); 835 836 tx_buf++; 837 tx_desc++; 838 i++; 839 if (unlikely(!i)) { 840 i -= tx_ring->count; 841 tx_buf = tx_ring->tx_bi; 842 tx_desc = I40E_TX_DESC(tx_ring, 0); 843 } 844 845 /* unmap any remaining paged data */ 846 if (dma_unmap_len(tx_buf, len)) { 847 dma_unmap_page(tx_ring->dev, 848 dma_unmap_addr(tx_buf, dma), 849 dma_unmap_len(tx_buf, len), 850 DMA_TO_DEVICE); 851 dma_unmap_len_set(tx_buf, len, 0); 852 } 853 } 854 855 /* move us one more past the eop_desc for start of next pkt */ 856 tx_buf++; 857 tx_desc++; 858 i++; 859 if (unlikely(!i)) { 860 i -= tx_ring->count; 861 tx_buf = tx_ring->tx_bi; 862 tx_desc = I40E_TX_DESC(tx_ring, 0); 863 } 864 865 prefetch(tx_desc); 866 867 /* update budget accounting */ 868 budget--; 869 } while (likely(budget)); 870 871 i += tx_ring->count; 872 tx_ring->next_to_clean = i; 873 i40e_update_tx_stats(tx_ring, total_packets, total_bytes); 874 i40e_arm_wb(tx_ring, vsi, budget); 875 876 if (ring_is_xdp(tx_ring)) 877 return !!budget; 878 879 /* notify netdev of completed buffers */ 880 netdev_tx_completed_queue(txring_txq(tx_ring), 881 total_packets, total_bytes); 882 883 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) 884 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 885 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 886 /* Make sure that anybody stopping the queue after this 887 * sees the new next_to_clean. 888 */ 889 smp_mb(); 890 if (__netif_subqueue_stopped(tx_ring->netdev, 891 tx_ring->queue_index) && 892 !test_bit(__I40E_VSI_DOWN, vsi->state)) { 893 netif_wake_subqueue(tx_ring->netdev, 894 tx_ring->queue_index); 895 ++tx_ring->tx_stats.restart_queue; 896 } 897 } 898 899 return !!budget; 900 } 901 902 /** 903 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled 904 * @vsi: the VSI we care about 905 * @q_vector: the vector on which to enable writeback 906 * 907 **/ 908 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, 909 struct i40e_q_vector *q_vector) 910 { 911 u16 flags = q_vector->tx.ring[0].flags; 912 u32 val; 913 914 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) 915 return; 916 917 if (q_vector->arm_wb_state) 918 return; 919 920 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 921 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | 922 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ 923 924 wr32(&vsi->back->hw, 925 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), 926 val); 927 } else { 928 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | 929 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ 930 931 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 932 } 933 q_vector->arm_wb_state = true; 934 } 935 936 /** 937 * i40e_force_wb - Issue SW Interrupt so HW does a wb 938 * @vsi: the VSI we care about 939 * @q_vector: the vector on which to force writeback 940 * 941 **/ 942 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 943 { 944 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 945 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 946 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 947 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 948 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 949 /* allow 00 to be written to the index */ 950 951 wr32(&vsi->back->hw, 952 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); 953 } else { 954 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 955 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 956 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 957 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 958 /* allow 00 to be written to the index */ 959 960 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 961 } 962 } 963 964 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, 965 struct i40e_ring_container *rc) 966 { 967 return &q_vector->rx == rc; 968 } 969 970 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) 971 { 972 unsigned int divisor; 973 974 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { 975 case I40E_LINK_SPEED_40GB: 976 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; 977 break; 978 case I40E_LINK_SPEED_25GB: 979 case I40E_LINK_SPEED_20GB: 980 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; 981 break; 982 default: 983 case I40E_LINK_SPEED_10GB: 984 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; 985 break; 986 case I40E_LINK_SPEED_1GB: 987 case I40E_LINK_SPEED_100MB: 988 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; 989 break; 990 } 991 992 return divisor; 993 } 994 995 /** 996 * i40e_update_itr - update the dynamic ITR value based on statistics 997 * @q_vector: structure containing interrupt and ring information 998 * @rc: structure containing ring performance data 999 * 1000 * Stores a new ITR value based on packets and byte 1001 * counts during the last interrupt. The advantage of per interrupt 1002 * computation is faster updates and more accurate ITR for the current 1003 * traffic pattern. Constants in this function were computed 1004 * based on theoretical maximum wire speed and thresholds were set based 1005 * on testing data as well as attempting to minimize response time 1006 * while increasing bulk throughput. 1007 **/ 1008 static void i40e_update_itr(struct i40e_q_vector *q_vector, 1009 struct i40e_ring_container *rc) 1010 { 1011 unsigned int avg_wire_size, packets, bytes, itr; 1012 unsigned long next_update = jiffies; 1013 1014 /* If we don't have any rings just leave ourselves set for maximum 1015 * possible latency so we take ourselves out of the equation. 1016 */ 1017 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) 1018 return; 1019 1020 /* For Rx we want to push the delay up and default to low latency. 1021 * for Tx we want to pull the delay down and default to high latency. 1022 */ 1023 itr = i40e_container_is_rx(q_vector, rc) ? 1024 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : 1025 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; 1026 1027 /* If we didn't update within up to 1 - 2 jiffies we can assume 1028 * that either packets are coming in so slow there hasn't been 1029 * any work, or that there is so much work that NAPI is dealing 1030 * with interrupt moderation and we don't need to do anything. 1031 */ 1032 if (time_after(next_update, rc->next_update)) 1033 goto clear_counts; 1034 1035 /* If itr_countdown is set it means we programmed an ITR within 1036 * the last 4 interrupt cycles. This has a side effect of us 1037 * potentially firing an early interrupt. In order to work around 1038 * this we need to throw out any data received for a few 1039 * interrupts following the update. 1040 */ 1041 if (q_vector->itr_countdown) { 1042 itr = rc->target_itr; 1043 goto clear_counts; 1044 } 1045 1046 packets = rc->total_packets; 1047 bytes = rc->total_bytes; 1048 1049 if (i40e_container_is_rx(q_vector, rc)) { 1050 /* If Rx there are 1 to 4 packets and bytes are less than 1051 * 9000 assume insufficient data to use bulk rate limiting 1052 * approach unless Tx is already in bulk rate limiting. We 1053 * are likely latency driven. 1054 */ 1055 if (packets && packets < 4 && bytes < 9000 && 1056 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { 1057 itr = I40E_ITR_ADAPTIVE_LATENCY; 1058 goto adjust_by_size; 1059 } 1060 } else if (packets < 4) { 1061 /* If we have Tx and Rx ITR maxed and Tx ITR is running in 1062 * bulk mode and we are receiving 4 or fewer packets just 1063 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so 1064 * that the Rx can relax. 1065 */ 1066 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && 1067 (q_vector->rx.target_itr & I40E_ITR_MASK) == 1068 I40E_ITR_ADAPTIVE_MAX_USECS) 1069 goto clear_counts; 1070 } else if (packets > 32) { 1071 /* If we have processed over 32 packets in a single interrupt 1072 * for Tx assume we need to switch over to "bulk" mode. 1073 */ 1074 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; 1075 } 1076 1077 /* We have no packets to actually measure against. This means 1078 * either one of the other queues on this vector is active or 1079 * we are a Tx queue doing TSO with too high of an interrupt rate. 1080 * 1081 * Between 4 and 56 we can assume that our current interrupt delay 1082 * is only slightly too low. As such we should increase it by a small 1083 * fixed amount. 1084 */ 1085 if (packets < 56) { 1086 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; 1087 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1088 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1089 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1090 } 1091 goto clear_counts; 1092 } 1093 1094 if (packets <= 256) { 1095 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); 1096 itr &= I40E_ITR_MASK; 1097 1098 /* Between 56 and 112 is our "goldilocks" zone where we are 1099 * working out "just right". Just report that our current 1100 * ITR is good for us. 1101 */ 1102 if (packets <= 112) 1103 goto clear_counts; 1104 1105 /* If packet count is 128 or greater we are likely looking 1106 * at a slight overrun of the delay we want. Try halving 1107 * our delay to see if that will cut the number of packets 1108 * in half per interrupt. 1109 */ 1110 itr /= 2; 1111 itr &= I40E_ITR_MASK; 1112 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) 1113 itr = I40E_ITR_ADAPTIVE_MIN_USECS; 1114 1115 goto clear_counts; 1116 } 1117 1118 /* The paths below assume we are dealing with a bulk ITR since 1119 * number of packets is greater than 256. We are just going to have 1120 * to compute a value and try to bring the count under control, 1121 * though for smaller packet sizes there isn't much we can do as 1122 * NAPI polling will likely be kicking in sooner rather than later. 1123 */ 1124 itr = I40E_ITR_ADAPTIVE_BULK; 1125 1126 adjust_by_size: 1127 /* If packet counts are 256 or greater we can assume we have a gross 1128 * overestimation of what the rate should be. Instead of trying to fine 1129 * tune it just use the formula below to try and dial in an exact value 1130 * give the current packet size of the frame. 1131 */ 1132 avg_wire_size = bytes / packets; 1133 1134 /* The following is a crude approximation of: 1135 * wmem_default / (size + overhead) = desired_pkts_per_int 1136 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate 1137 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value 1138 * 1139 * Assuming wmem_default is 212992 and overhead is 640 bytes per 1140 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the 1141 * formula down to 1142 * 1143 * (170 * (size + 24)) / (size + 640) = ITR 1144 * 1145 * We first do some math on the packet size and then finally bitshift 1146 * by 8 after rounding up. We also have to account for PCIe link speed 1147 * difference as ITR scales based on this. 1148 */ 1149 if (avg_wire_size <= 60) { 1150 /* Start at 250k ints/sec */ 1151 avg_wire_size = 4096; 1152 } else if (avg_wire_size <= 380) { 1153 /* 250K ints/sec to 60K ints/sec */ 1154 avg_wire_size *= 40; 1155 avg_wire_size += 1696; 1156 } else if (avg_wire_size <= 1084) { 1157 /* 60K ints/sec to 36K ints/sec */ 1158 avg_wire_size *= 15; 1159 avg_wire_size += 11452; 1160 } else if (avg_wire_size <= 1980) { 1161 /* 36K ints/sec to 30K ints/sec */ 1162 avg_wire_size *= 5; 1163 avg_wire_size += 22420; 1164 } else { 1165 /* plateau at a limit of 30K ints/sec */ 1166 avg_wire_size = 32256; 1167 } 1168 1169 /* If we are in low latency mode halve our delay which doubles the 1170 * rate to somewhere between 100K to 16K ints/sec 1171 */ 1172 if (itr & I40E_ITR_ADAPTIVE_LATENCY) 1173 avg_wire_size /= 2; 1174 1175 /* Resultant value is 256 times larger than it needs to be. This 1176 * gives us room to adjust the value as needed to either increase 1177 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. 1178 * 1179 * Use addition as we have already recorded the new latency flag 1180 * for the ITR value. 1181 */ 1182 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * 1183 I40E_ITR_ADAPTIVE_MIN_INC; 1184 1185 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { 1186 itr &= I40E_ITR_ADAPTIVE_LATENCY; 1187 itr += I40E_ITR_ADAPTIVE_MAX_USECS; 1188 } 1189 1190 clear_counts: 1191 /* write back value */ 1192 rc->target_itr = itr; 1193 1194 /* next update should occur within next jiffy */ 1195 rc->next_update = next_update + 1; 1196 1197 rc->total_bytes = 0; 1198 rc->total_packets = 0; 1199 } 1200 1201 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) 1202 { 1203 return &rx_ring->rx_bi[idx]; 1204 } 1205 1206 /** 1207 * i40e_reuse_rx_page - page flip buffer and store it back on the ring 1208 * @rx_ring: rx descriptor ring to store buffers on 1209 * @old_buff: donor buffer to have page reused 1210 * 1211 * Synchronizes page for reuse by the adapter 1212 **/ 1213 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, 1214 struct i40e_rx_buffer *old_buff) 1215 { 1216 struct i40e_rx_buffer *new_buff; 1217 u16 nta = rx_ring->next_to_alloc; 1218 1219 new_buff = i40e_rx_bi(rx_ring, nta); 1220 1221 /* update, and store next to alloc */ 1222 nta++; 1223 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 1224 1225 /* transfer page from old buffer to new buffer */ 1226 new_buff->dma = old_buff->dma; 1227 new_buff->page = old_buff->page; 1228 new_buff->page_offset = old_buff->page_offset; 1229 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 1230 1231 rx_ring->rx_stats.page_reuse_count++; 1232 1233 /* clear contents of buffer_info */ 1234 old_buff->page = NULL; 1235 } 1236 1237 /** 1238 * i40e_clean_programming_status - clean the programming status descriptor 1239 * @rx_ring: the rx ring that has this descriptor 1240 * @qword0_raw: qword0 1241 * @qword1: qword1 representing status_error_len in CPU ordering 1242 * 1243 * Flow director should handle FD_FILTER_STATUS to check its filter programming 1244 * status being successful or not and take actions accordingly. FCoE should 1245 * handle its context/filter programming/invalidation status and take actions. 1246 * 1247 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. 1248 **/ 1249 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, 1250 u64 qword1) 1251 { 1252 u8 id; 1253 1254 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 1255 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 1256 1257 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 1258 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); 1259 } 1260 1261 /** 1262 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 1263 * @tx_ring: the tx ring to set up 1264 * 1265 * Return 0 on success, negative on error 1266 **/ 1267 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 1268 { 1269 struct device *dev = tx_ring->dev; 1270 int bi_size; 1271 1272 if (!dev) 1273 return -ENOMEM; 1274 1275 /* warn if we are about to overwrite the pointer */ 1276 WARN_ON(tx_ring->tx_bi); 1277 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 1278 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 1279 if (!tx_ring->tx_bi) 1280 goto err; 1281 1282 if (ring_is_xdp(tx_ring)) { 1283 tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs), 1284 GFP_KERNEL); 1285 if (!tx_ring->xsk_descs) 1286 goto err; 1287 } 1288 1289 u64_stats_init(&tx_ring->syncp); 1290 1291 /* round up to nearest 4K */ 1292 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 1293 /* add u32 for head writeback, align after this takes care of 1294 * guaranteeing this is at least one cache line in size 1295 */ 1296 tx_ring->size += sizeof(u32); 1297 tx_ring->size = ALIGN(tx_ring->size, 4096); 1298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 1299 &tx_ring->dma, GFP_KERNEL); 1300 if (!tx_ring->desc) { 1301 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 1302 tx_ring->size); 1303 goto err; 1304 } 1305 1306 tx_ring->next_to_use = 0; 1307 tx_ring->next_to_clean = 0; 1308 tx_ring->tx_stats.prev_pkt_ctr = -1; 1309 return 0; 1310 1311 err: 1312 kfree(tx_ring->xsk_descs); 1313 tx_ring->xsk_descs = NULL; 1314 kfree(tx_ring->tx_bi); 1315 tx_ring->tx_bi = NULL; 1316 return -ENOMEM; 1317 } 1318 1319 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring) 1320 { 1321 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count; 1322 1323 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL); 1324 return rx_ring->rx_bi ? 0 : -ENOMEM; 1325 } 1326 1327 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) 1328 { 1329 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); 1330 } 1331 1332 /** 1333 * i40e_clean_rx_ring - Free Rx buffers 1334 * @rx_ring: ring to be cleaned 1335 **/ 1336 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 1337 { 1338 u16 i; 1339 1340 /* ring already cleared, nothing to do */ 1341 if (!rx_ring->rx_bi) 1342 return; 1343 1344 if (rx_ring->skb) { 1345 dev_kfree_skb(rx_ring->skb); 1346 rx_ring->skb = NULL; 1347 } 1348 1349 if (rx_ring->xsk_pool) { 1350 i40e_xsk_clean_rx_ring(rx_ring); 1351 goto skip_free; 1352 } 1353 1354 /* Free all the Rx ring sk_buffs */ 1355 for (i = 0; i < rx_ring->count; i++) { 1356 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); 1357 1358 if (!rx_bi->page) 1359 continue; 1360 1361 /* Invalidate cache lines that may have been written to by 1362 * device so that we avoid corrupting memory. 1363 */ 1364 dma_sync_single_range_for_cpu(rx_ring->dev, 1365 rx_bi->dma, 1366 rx_bi->page_offset, 1367 rx_ring->rx_buf_len, 1368 DMA_FROM_DEVICE); 1369 1370 /* free resources associated with mapping */ 1371 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, 1372 i40e_rx_pg_size(rx_ring), 1373 DMA_FROM_DEVICE, 1374 I40E_RX_DMA_ATTR); 1375 1376 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); 1377 1378 rx_bi->page = NULL; 1379 rx_bi->page_offset = 0; 1380 } 1381 1382 skip_free: 1383 if (rx_ring->xsk_pool) 1384 i40e_clear_rx_bi_zc(rx_ring); 1385 else 1386 i40e_clear_rx_bi(rx_ring); 1387 1388 /* Zero out the descriptor ring */ 1389 memset(rx_ring->desc, 0, rx_ring->size); 1390 1391 rx_ring->next_to_alloc = 0; 1392 rx_ring->next_to_clean = 0; 1393 rx_ring->next_to_use = 0; 1394 } 1395 1396 /** 1397 * i40e_free_rx_resources - Free Rx resources 1398 * @rx_ring: ring to clean the resources from 1399 * 1400 * Free all receive software resources 1401 **/ 1402 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1403 { 1404 i40e_clean_rx_ring(rx_ring); 1405 if (rx_ring->vsi->type == I40E_VSI_MAIN) 1406 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 1407 rx_ring->xdp_prog = NULL; 1408 kfree(rx_ring->rx_bi); 1409 rx_ring->rx_bi = NULL; 1410 1411 if (rx_ring->desc) { 1412 dma_free_coherent(rx_ring->dev, rx_ring->size, 1413 rx_ring->desc, rx_ring->dma); 1414 rx_ring->desc = NULL; 1415 } 1416 } 1417 1418 /** 1419 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1420 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1421 * 1422 * Returns 0 on success, negative on failure 1423 **/ 1424 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1425 { 1426 struct device *dev = rx_ring->dev; 1427 int err; 1428 1429 u64_stats_init(&rx_ring->syncp); 1430 1431 /* Round up to nearest 4K */ 1432 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); 1433 rx_ring->size = ALIGN(rx_ring->size, 4096); 1434 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1435 &rx_ring->dma, GFP_KERNEL); 1436 1437 if (!rx_ring->desc) { 1438 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1439 rx_ring->size); 1440 return -ENOMEM; 1441 } 1442 1443 rx_ring->next_to_alloc = 0; 1444 rx_ring->next_to_clean = 0; 1445 rx_ring->next_to_use = 0; 1446 1447 /* XDP RX-queue info only needed for RX rings exposed to XDP */ 1448 if (rx_ring->vsi->type == I40E_VSI_MAIN) { 1449 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, 1450 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id); 1451 if (err < 0) 1452 return err; 1453 } 1454 1455 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * i40e_release_rx_desc - Store the new tail and head values 1462 * @rx_ring: ring to bump 1463 * @val: new head index 1464 **/ 1465 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1466 { 1467 rx_ring->next_to_use = val; 1468 1469 /* update next to alloc since we have filled the ring */ 1470 rx_ring->next_to_alloc = val; 1471 1472 /* Force memory writes to complete before letting h/w 1473 * know there are new descriptors to fetch. (Only 1474 * applicable for weak-ordered memory model archs, 1475 * such as IA-64). 1476 */ 1477 wmb(); 1478 writel(val, rx_ring->tail); 1479 } 1480 1481 /** 1482 * i40e_rx_offset - Return expected offset into page to access data 1483 * @rx_ring: Ring we are requesting offset of 1484 * 1485 * Returns the offset value for ring into the data buffer. 1486 */ 1487 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 1488 { 1489 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 1490 } 1491 1492 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, 1493 unsigned int size) 1494 { 1495 unsigned int truesize; 1496 1497 #if (PAGE_SIZE < 8192) 1498 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1499 #else 1500 truesize = i40e_rx_offset(rx_ring) ? 1501 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) + 1502 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1503 SKB_DATA_ALIGN(size); 1504 #endif 1505 return truesize; 1506 } 1507 1508 /** 1509 * i40e_alloc_mapped_page - recycle or make a new page 1510 * @rx_ring: ring to use 1511 * @bi: rx_buffer struct to modify 1512 * 1513 * Returns true if the page was successfully allocated or 1514 * reused. 1515 **/ 1516 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, 1517 struct i40e_rx_buffer *bi) 1518 { 1519 struct page *page = bi->page; 1520 dma_addr_t dma; 1521 1522 /* since we are recycling buffers we should seldom need to alloc */ 1523 if (likely(page)) { 1524 rx_ring->rx_stats.page_reuse_count++; 1525 return true; 1526 } 1527 1528 /* alloc new page for storage */ 1529 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); 1530 if (unlikely(!page)) { 1531 rx_ring->rx_stats.alloc_page_failed++; 1532 return false; 1533 } 1534 1535 /* map page for use */ 1536 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 1537 i40e_rx_pg_size(rx_ring), 1538 DMA_FROM_DEVICE, 1539 I40E_RX_DMA_ATTR); 1540 1541 /* if mapping failed free memory back to system since 1542 * there isn't much point in holding memory we can't use 1543 */ 1544 if (dma_mapping_error(rx_ring->dev, dma)) { 1545 __free_pages(page, i40e_rx_pg_order(rx_ring)); 1546 rx_ring->rx_stats.alloc_page_failed++; 1547 return false; 1548 } 1549 1550 bi->dma = dma; 1551 bi->page = page; 1552 bi->page_offset = i40e_rx_offset(rx_ring); 1553 page_ref_add(page, USHRT_MAX - 1); 1554 bi->pagecnt_bias = USHRT_MAX; 1555 1556 return true; 1557 } 1558 1559 /** 1560 * i40e_alloc_rx_buffers - Replace used receive buffers 1561 * @rx_ring: ring to place buffers on 1562 * @cleaned_count: number of buffers to replace 1563 * 1564 * Returns false if all allocations were successful, true if any fail 1565 **/ 1566 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) 1567 { 1568 u16 ntu = rx_ring->next_to_use; 1569 union i40e_rx_desc *rx_desc; 1570 struct i40e_rx_buffer *bi; 1571 1572 /* do nothing if no valid netdev defined */ 1573 if (!rx_ring->netdev || !cleaned_count) 1574 return false; 1575 1576 rx_desc = I40E_RX_DESC(rx_ring, ntu); 1577 bi = i40e_rx_bi(rx_ring, ntu); 1578 1579 do { 1580 if (!i40e_alloc_mapped_page(rx_ring, bi)) 1581 goto no_buffers; 1582 1583 /* sync the buffer for use by the device */ 1584 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 1585 bi->page_offset, 1586 rx_ring->rx_buf_len, 1587 DMA_FROM_DEVICE); 1588 1589 /* Refresh the desc even if buffer_addrs didn't change 1590 * because each write-back erases this info. 1591 */ 1592 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 1593 1594 rx_desc++; 1595 bi++; 1596 ntu++; 1597 if (unlikely(ntu == rx_ring->count)) { 1598 rx_desc = I40E_RX_DESC(rx_ring, 0); 1599 bi = i40e_rx_bi(rx_ring, 0); 1600 ntu = 0; 1601 } 1602 1603 /* clear the status bits for the next_to_use descriptor */ 1604 rx_desc->wb.qword1.status_error_len = 0; 1605 1606 cleaned_count--; 1607 } while (cleaned_count); 1608 1609 if (rx_ring->next_to_use != ntu) 1610 i40e_release_rx_desc(rx_ring, ntu); 1611 1612 return false; 1613 1614 no_buffers: 1615 if (rx_ring->next_to_use != ntu) 1616 i40e_release_rx_desc(rx_ring, ntu); 1617 1618 /* make sure to come back via polling to try again after 1619 * allocation failure 1620 */ 1621 return true; 1622 } 1623 1624 /** 1625 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1626 * @vsi: the VSI we care about 1627 * @skb: skb currently being received and modified 1628 * @rx_desc: the receive descriptor 1629 **/ 1630 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1631 struct sk_buff *skb, 1632 union i40e_rx_desc *rx_desc) 1633 { 1634 struct i40e_rx_ptype_decoded decoded; 1635 u32 rx_error, rx_status; 1636 bool ipv4, ipv6; 1637 u8 ptype; 1638 u64 qword; 1639 1640 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1641 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; 1642 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1643 I40E_RXD_QW1_ERROR_SHIFT; 1644 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1645 I40E_RXD_QW1_STATUS_SHIFT; 1646 decoded = decode_rx_desc_ptype(ptype); 1647 1648 skb->ip_summed = CHECKSUM_NONE; 1649 1650 skb_checksum_none_assert(skb); 1651 1652 /* Rx csum enabled and ip headers found? */ 1653 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1654 return; 1655 1656 /* did the hardware decode the packet and checksum? */ 1657 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1658 return; 1659 1660 /* both known and outer_ip must be set for the below code to work */ 1661 if (!(decoded.known && decoded.outer_ip)) 1662 return; 1663 1664 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1665 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); 1666 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && 1667 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); 1668 1669 if (ipv4 && 1670 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1671 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1672 goto checksum_fail; 1673 1674 /* likely incorrect csum if alternate IP extension headers found */ 1675 if (ipv6 && 1676 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1677 /* don't increment checksum err here, non-fatal err */ 1678 return; 1679 1680 /* there was some L4 error, count error and punt packet to the stack */ 1681 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1682 goto checksum_fail; 1683 1684 /* handle packets that were not able to be checksummed due 1685 * to arrival speed, in this case the stack can compute 1686 * the csum. 1687 */ 1688 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1689 return; 1690 1691 /* If there is an outer header present that might contain a checksum 1692 * we need to bump the checksum level by 1 to reflect the fact that 1693 * we are indicating we validated the inner checksum. 1694 */ 1695 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) 1696 skb->csum_level = 1; 1697 1698 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 1699 switch (decoded.inner_prot) { 1700 case I40E_RX_PTYPE_INNER_PROT_TCP: 1701 case I40E_RX_PTYPE_INNER_PROT_UDP: 1702 case I40E_RX_PTYPE_INNER_PROT_SCTP: 1703 skb->ip_summed = CHECKSUM_UNNECESSARY; 1704 fallthrough; 1705 default: 1706 break; 1707 } 1708 1709 return; 1710 1711 checksum_fail: 1712 vsi->back->hw_csum_rx_error++; 1713 } 1714 1715 /** 1716 * i40e_ptype_to_htype - get a hash type 1717 * @ptype: the ptype value from the descriptor 1718 * 1719 * Returns a hash type to be used by skb_set_hash 1720 **/ 1721 static inline int i40e_ptype_to_htype(u8 ptype) 1722 { 1723 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1724 1725 if (!decoded.known) 1726 return PKT_HASH_TYPE_NONE; 1727 1728 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1729 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1730 return PKT_HASH_TYPE_L4; 1731 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1732 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1733 return PKT_HASH_TYPE_L3; 1734 else 1735 return PKT_HASH_TYPE_L2; 1736 } 1737 1738 /** 1739 * i40e_rx_hash - set the hash value in the skb 1740 * @ring: descriptor ring 1741 * @rx_desc: specific descriptor 1742 * @skb: skb currently being received and modified 1743 * @rx_ptype: Rx packet type 1744 **/ 1745 static inline void i40e_rx_hash(struct i40e_ring *ring, 1746 union i40e_rx_desc *rx_desc, 1747 struct sk_buff *skb, 1748 u8 rx_ptype) 1749 { 1750 u32 hash; 1751 const __le64 rss_mask = 1752 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1753 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1754 1755 if (!(ring->netdev->features & NETIF_F_RXHASH)) 1756 return; 1757 1758 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { 1759 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1760 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); 1761 } 1762 } 1763 1764 /** 1765 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor 1766 * @rx_ring: rx descriptor ring packet is being transacted on 1767 * @rx_desc: pointer to the EOP Rx descriptor 1768 * @skb: pointer to current skb being populated 1769 * 1770 * This function checks the ring, descriptor, and packet information in 1771 * order to populate the hash, checksum, VLAN, protocol, and 1772 * other fields within the skb. 1773 **/ 1774 void i40e_process_skb_fields(struct i40e_ring *rx_ring, 1775 union i40e_rx_desc *rx_desc, struct sk_buff *skb) 1776 { 1777 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1778 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1779 I40E_RXD_QW1_STATUS_SHIFT; 1780 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; 1781 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1782 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; 1783 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1784 I40E_RXD_QW1_PTYPE_SHIFT; 1785 1786 if (unlikely(tsynvalid)) 1787 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); 1788 1789 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); 1790 1791 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); 1792 1793 skb_record_rx_queue(skb, rx_ring->queue_index); 1794 1795 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { 1796 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; 1797 1798 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1799 le16_to_cpu(vlan_tag)); 1800 } 1801 1802 /* modifies the skb - consumes the enet header */ 1803 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1804 } 1805 1806 /** 1807 * i40e_cleanup_headers - Correct empty headers 1808 * @rx_ring: rx descriptor ring packet is being transacted on 1809 * @skb: pointer to current skb being fixed 1810 * @rx_desc: pointer to the EOP Rx descriptor 1811 * 1812 * Also address the case where we are pulling data in on pages only 1813 * and as such no data is present in the skb header. 1814 * 1815 * In addition if skb is not at least 60 bytes we need to pad it so that 1816 * it is large enough to qualify as a valid Ethernet frame. 1817 * 1818 * Returns true if an error was encountered and skb was freed. 1819 **/ 1820 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, 1821 union i40e_rx_desc *rx_desc) 1822 1823 { 1824 /* XDP packets use error pointer so abort at this point */ 1825 if (IS_ERR(skb)) 1826 return true; 1827 1828 /* ERR_MASK will only have valid bits if EOP set, and 1829 * what we are doing here is actually checking 1830 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in 1831 * the error field 1832 */ 1833 if (unlikely(i40e_test_staterr(rx_desc, 1834 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { 1835 dev_kfree_skb_any(skb); 1836 return true; 1837 } 1838 1839 /* if eth_skb_pad returns an error the skb was freed */ 1840 if (eth_skb_pad(skb)) 1841 return true; 1842 1843 return false; 1844 } 1845 1846 /** 1847 * i40e_page_is_reusable - check if any reuse is possible 1848 * @page: page struct to check 1849 * 1850 * A page is not reusable if it was allocated under low memory 1851 * conditions, or it's not in the same NUMA node as this CPU. 1852 */ 1853 static inline bool i40e_page_is_reusable(struct page *page) 1854 { 1855 return (page_to_nid(page) == numa_mem_id()) && 1856 !page_is_pfmemalloc(page); 1857 } 1858 1859 /** 1860 * i40e_can_reuse_rx_page - Determine if this page can be reused by 1861 * the adapter for another receive 1862 * 1863 * @rx_buffer: buffer containing the page 1864 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call 1865 * 1866 * If page is reusable, rx_buffer->page_offset is adjusted to point to 1867 * an unused region in the page. 1868 * 1869 * For small pages, @truesize will be a constant value, half the size 1870 * of the memory at page. We'll attempt to alternate between high and 1871 * low halves of the page, with one half ready for use by the hardware 1872 * and the other half being consumed by the stack. We use the page 1873 * ref count to determine whether the stack has finished consuming the 1874 * portion of this page that was passed up with a previous packet. If 1875 * the page ref count is >1, we'll assume the "other" half page is 1876 * still busy, and this page cannot be reused. 1877 * 1878 * For larger pages, @truesize will be the actual space used by the 1879 * received packet (adjusted upward to an even multiple of the cache 1880 * line size). This will advance through the page by the amount 1881 * actually consumed by the received packets while there is still 1882 * space for a buffer. Each region of larger pages will be used at 1883 * most once, after which the page will not be reused. 1884 * 1885 * In either case, if the page is reusable its refcount is increased. 1886 **/ 1887 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, 1888 int rx_buffer_pgcnt) 1889 { 1890 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 1891 struct page *page = rx_buffer->page; 1892 1893 /* Is any reuse possible? */ 1894 if (unlikely(!i40e_page_is_reusable(page))) 1895 return false; 1896 1897 #if (PAGE_SIZE < 8192) 1898 /* if we are only owner of page we can reuse it */ 1899 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) 1900 return false; 1901 #else 1902 #define I40E_LAST_OFFSET \ 1903 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) 1904 if (rx_buffer->page_offset > I40E_LAST_OFFSET) 1905 return false; 1906 #endif 1907 1908 /* If we have drained the page fragment pool we need to update 1909 * the pagecnt_bias and page count so that we fully restock the 1910 * number of references the driver holds. 1911 */ 1912 if (unlikely(pagecnt_bias == 1)) { 1913 page_ref_add(page, USHRT_MAX - 1); 1914 rx_buffer->pagecnt_bias = USHRT_MAX; 1915 } 1916 1917 return true; 1918 } 1919 1920 /** 1921 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff 1922 * @rx_ring: rx descriptor ring to transact packets on 1923 * @rx_buffer: buffer containing page to add 1924 * @skb: sk_buff to place the data into 1925 * @size: packet length from rx_desc 1926 * 1927 * This function will add the data contained in rx_buffer->page to the skb. 1928 * It will just attach the page as a frag to the skb. 1929 * 1930 * The function will then update the page offset. 1931 **/ 1932 static void i40e_add_rx_frag(struct i40e_ring *rx_ring, 1933 struct i40e_rx_buffer *rx_buffer, 1934 struct sk_buff *skb, 1935 unsigned int size) 1936 { 1937 #if (PAGE_SIZE < 8192) 1938 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 1939 #else 1940 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)); 1941 #endif 1942 1943 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 1944 rx_buffer->page_offset, size, truesize); 1945 1946 /* page is being used so we must update the page offset */ 1947 #if (PAGE_SIZE < 8192) 1948 rx_buffer->page_offset ^= truesize; 1949 #else 1950 rx_buffer->page_offset += truesize; 1951 #endif 1952 } 1953 1954 /** 1955 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use 1956 * @rx_ring: rx descriptor ring to transact packets on 1957 * @size: size of buffer to add to skb 1958 * @rx_buffer_pgcnt: buffer page refcount 1959 * 1960 * This function will pull an Rx buffer from the ring and synchronize it 1961 * for use by the CPU. 1962 */ 1963 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, 1964 const unsigned int size, 1965 int *rx_buffer_pgcnt) 1966 { 1967 struct i40e_rx_buffer *rx_buffer; 1968 1969 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 1970 *rx_buffer_pgcnt = 1971 #if (PAGE_SIZE < 8192) 1972 page_count(rx_buffer->page); 1973 #else 1974 0; 1975 #endif 1976 prefetch_page_address(rx_buffer->page); 1977 1978 /* we are reusing so sync this buffer for CPU use */ 1979 dma_sync_single_range_for_cpu(rx_ring->dev, 1980 rx_buffer->dma, 1981 rx_buffer->page_offset, 1982 size, 1983 DMA_FROM_DEVICE); 1984 1985 /* We have pulled a buffer for use, so decrement pagecnt_bias */ 1986 rx_buffer->pagecnt_bias--; 1987 1988 return rx_buffer; 1989 } 1990 1991 /** 1992 * i40e_construct_skb - Allocate skb and populate it 1993 * @rx_ring: rx descriptor ring to transact packets on 1994 * @rx_buffer: rx buffer to pull data from 1995 * @xdp: xdp_buff pointing to the data 1996 * 1997 * This function allocates an skb. It then populates it with the page 1998 * data from the current receive descriptor, taking care to set up the 1999 * skb correctly. 2000 */ 2001 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, 2002 struct i40e_rx_buffer *rx_buffer, 2003 struct xdp_buff *xdp) 2004 { 2005 unsigned int size = xdp->data_end - xdp->data; 2006 #if (PAGE_SIZE < 8192) 2007 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2008 #else 2009 unsigned int truesize = SKB_DATA_ALIGN(size); 2010 #endif 2011 unsigned int headlen; 2012 struct sk_buff *skb; 2013 2014 /* prefetch first cache line of first page */ 2015 net_prefetch(xdp->data); 2016 2017 /* Note, we get here by enabling legacy-rx via: 2018 * 2019 * ethtool --set-priv-flags <dev> legacy-rx on 2020 * 2021 * In this mode, we currently get 0 extra XDP headroom as 2022 * opposed to having legacy-rx off, where we process XDP 2023 * packets going to stack via i40e_build_skb(). The latter 2024 * provides us currently with 192 bytes of headroom. 2025 * 2026 * For i40e_construct_skb() mode it means that the 2027 * xdp->data_meta will always point to xdp->data, since 2028 * the helper cannot expand the head. Should this ever 2029 * change in future for legacy-rx mode on, then lets also 2030 * add xdp->data_meta handling here. 2031 */ 2032 2033 /* allocate a skb to store the frags */ 2034 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, 2035 I40E_RX_HDR_SIZE, 2036 GFP_ATOMIC | __GFP_NOWARN); 2037 if (unlikely(!skb)) 2038 return NULL; 2039 2040 /* Determine available headroom for copy */ 2041 headlen = size; 2042 if (headlen > I40E_RX_HDR_SIZE) 2043 headlen = eth_get_headlen(skb->dev, xdp->data, 2044 I40E_RX_HDR_SIZE); 2045 2046 /* align pull length to size of long to optimize memcpy performance */ 2047 memcpy(__skb_put(skb, headlen), xdp->data, 2048 ALIGN(headlen, sizeof(long))); 2049 2050 /* update all of the pointers */ 2051 size -= headlen; 2052 if (size) { 2053 skb_add_rx_frag(skb, 0, rx_buffer->page, 2054 rx_buffer->page_offset + headlen, 2055 size, truesize); 2056 2057 /* buffer is used by skb, update page_offset */ 2058 #if (PAGE_SIZE < 8192) 2059 rx_buffer->page_offset ^= truesize; 2060 #else 2061 rx_buffer->page_offset += truesize; 2062 #endif 2063 } else { 2064 /* buffer is unused, reset bias back to rx_buffer */ 2065 rx_buffer->pagecnt_bias++; 2066 } 2067 2068 return skb; 2069 } 2070 2071 /** 2072 * i40e_build_skb - Build skb around an existing buffer 2073 * @rx_ring: Rx descriptor ring to transact packets on 2074 * @rx_buffer: Rx buffer to pull data from 2075 * @xdp: xdp_buff pointing to the data 2076 * 2077 * This function builds an skb around an existing Rx buffer, taking care 2078 * to set up the skb correctly and avoid any memcpy overhead. 2079 */ 2080 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, 2081 struct i40e_rx_buffer *rx_buffer, 2082 struct xdp_buff *xdp) 2083 { 2084 unsigned int metasize = xdp->data - xdp->data_meta; 2085 #if (PAGE_SIZE < 8192) 2086 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2; 2087 #else 2088 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 2089 SKB_DATA_ALIGN(xdp->data_end - 2090 xdp->data_hard_start); 2091 #endif 2092 struct sk_buff *skb; 2093 2094 /* Prefetch first cache line of first page. If xdp->data_meta 2095 * is unused, this points exactly as xdp->data, otherwise we 2096 * likely have a consumer accessing first few bytes of meta 2097 * data, and then actual data. 2098 */ 2099 net_prefetch(xdp->data_meta); 2100 2101 /* build an skb around the page buffer */ 2102 skb = build_skb(xdp->data_hard_start, truesize); 2103 if (unlikely(!skb)) 2104 return NULL; 2105 2106 /* update pointers within the skb to store the data */ 2107 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2108 __skb_put(skb, xdp->data_end - xdp->data); 2109 if (metasize) 2110 skb_metadata_set(skb, metasize); 2111 2112 /* buffer is used by skb, update page_offset */ 2113 #if (PAGE_SIZE < 8192) 2114 rx_buffer->page_offset ^= truesize; 2115 #else 2116 rx_buffer->page_offset += truesize; 2117 #endif 2118 2119 return skb; 2120 } 2121 2122 /** 2123 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free 2124 * @rx_ring: rx descriptor ring to transact packets on 2125 * @rx_buffer: rx buffer to pull data from 2126 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call 2127 * 2128 * This function will clean up the contents of the rx_buffer. It will 2129 * either recycle the buffer or unmap it and free the associated resources. 2130 */ 2131 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, 2132 struct i40e_rx_buffer *rx_buffer, 2133 int rx_buffer_pgcnt) 2134 { 2135 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { 2136 /* hand second half of page back to the ring */ 2137 i40e_reuse_rx_page(rx_ring, rx_buffer); 2138 } else { 2139 /* we are not reusing the buffer so unmap it */ 2140 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 2141 i40e_rx_pg_size(rx_ring), 2142 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); 2143 __page_frag_cache_drain(rx_buffer->page, 2144 rx_buffer->pagecnt_bias); 2145 /* clear contents of buffer_info */ 2146 rx_buffer->page = NULL; 2147 } 2148 } 2149 2150 /** 2151 * i40e_is_non_eop - process handling of non-EOP buffers 2152 * @rx_ring: Rx ring being processed 2153 * @rx_desc: Rx descriptor for current buffer 2154 * @skb: Current socket buffer containing buffer in progress 2155 * 2156 * This function updates next to clean. If the buffer is an EOP buffer 2157 * this function exits returning false, otherwise it will place the 2158 * sk_buff in the next buffer to be chained and return true indicating 2159 * that this is in fact a non-EOP buffer. 2160 **/ 2161 static bool i40e_is_non_eop(struct i40e_ring *rx_ring, 2162 union i40e_rx_desc *rx_desc, 2163 struct sk_buff *skb) 2164 { 2165 u32 ntc = rx_ring->next_to_clean + 1; 2166 2167 /* fetch, update, and store next to clean */ 2168 ntc = (ntc < rx_ring->count) ? ntc : 0; 2169 rx_ring->next_to_clean = ntc; 2170 2171 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2172 2173 /* if we are the last buffer then there is nothing else to do */ 2174 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) 2175 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) 2176 return false; 2177 2178 rx_ring->rx_stats.non_eop_descs++; 2179 2180 return true; 2181 } 2182 2183 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 2184 struct i40e_ring *xdp_ring); 2185 2186 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) 2187 { 2188 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 2189 2190 if (unlikely(!xdpf)) 2191 return I40E_XDP_CONSUMED; 2192 2193 return i40e_xmit_xdp_ring(xdpf, xdp_ring); 2194 } 2195 2196 /** 2197 * i40e_run_xdp - run an XDP program 2198 * @rx_ring: Rx ring being processed 2199 * @xdp: XDP buffer containing the frame 2200 **/ 2201 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring, 2202 struct xdp_buff *xdp) 2203 { 2204 int err, result = I40E_XDP_PASS; 2205 struct i40e_ring *xdp_ring; 2206 struct bpf_prog *xdp_prog; 2207 u32 act; 2208 2209 rcu_read_lock(); 2210 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 2211 2212 if (!xdp_prog) 2213 goto xdp_out; 2214 2215 prefetchw(xdp->data_hard_start); /* xdp_frame write */ 2216 2217 act = bpf_prog_run_xdp(xdp_prog, xdp); 2218 switch (act) { 2219 case XDP_PASS: 2220 break; 2221 case XDP_TX: 2222 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2223 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); 2224 break; 2225 case XDP_REDIRECT: 2226 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 2227 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; 2228 break; 2229 default: 2230 bpf_warn_invalid_xdp_action(act); 2231 fallthrough; 2232 case XDP_ABORTED: 2233 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 2234 fallthrough; /* handle aborts by dropping packet */ 2235 case XDP_DROP: 2236 result = I40E_XDP_CONSUMED; 2237 break; 2238 } 2239 xdp_out: 2240 rcu_read_unlock(); 2241 return ERR_PTR(-result); 2242 } 2243 2244 /** 2245 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region 2246 * @rx_ring: Rx ring 2247 * @rx_buffer: Rx buffer to adjust 2248 * @size: Size of adjustment 2249 **/ 2250 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring, 2251 struct i40e_rx_buffer *rx_buffer, 2252 unsigned int size) 2253 { 2254 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size); 2255 2256 #if (PAGE_SIZE < 8192) 2257 rx_buffer->page_offset ^= truesize; 2258 #else 2259 rx_buffer->page_offset += truesize; 2260 #endif 2261 } 2262 2263 /** 2264 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register 2265 * @xdp_ring: XDP Tx ring 2266 * 2267 * This function updates the XDP Tx ring tail register. 2268 **/ 2269 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) 2270 { 2271 /* Force memory writes to complete before letting h/w 2272 * know there are new descriptors to fetch. 2273 */ 2274 wmb(); 2275 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); 2276 } 2277 2278 /** 2279 * i40e_update_rx_stats - Update Rx ring statistics 2280 * @rx_ring: rx descriptor ring 2281 * @total_rx_bytes: number of bytes received 2282 * @total_rx_packets: number of packets received 2283 * 2284 * This function updates the Rx ring statistics. 2285 **/ 2286 void i40e_update_rx_stats(struct i40e_ring *rx_ring, 2287 unsigned int total_rx_bytes, 2288 unsigned int total_rx_packets) 2289 { 2290 u64_stats_update_begin(&rx_ring->syncp); 2291 rx_ring->stats.packets += total_rx_packets; 2292 rx_ring->stats.bytes += total_rx_bytes; 2293 u64_stats_update_end(&rx_ring->syncp); 2294 rx_ring->q_vector->rx.total_packets += total_rx_packets; 2295 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 2296 } 2297 2298 /** 2299 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 2300 * @rx_ring: Rx ring 2301 * @xdp_res: Result of the receive batch 2302 * 2303 * This function bumps XDP Tx tail and/or flush redirect map, and 2304 * should be called when a batch of packets has been processed in the 2305 * napi loop. 2306 **/ 2307 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) 2308 { 2309 if (xdp_res & I40E_XDP_REDIR) 2310 xdp_do_flush_map(); 2311 2312 if (xdp_res & I40E_XDP_TX) { 2313 struct i40e_ring *xdp_ring = 2314 rx_ring->vsi->xdp_rings[rx_ring->queue_index]; 2315 2316 i40e_xdp_ring_update_tail(xdp_ring); 2317 } 2318 } 2319 2320 /** 2321 * i40e_inc_ntc: Advance the next_to_clean index 2322 * @rx_ring: Rx ring 2323 **/ 2324 static void i40e_inc_ntc(struct i40e_ring *rx_ring) 2325 { 2326 u32 ntc = rx_ring->next_to_clean + 1; 2327 2328 ntc = (ntc < rx_ring->count) ? ntc : 0; 2329 rx_ring->next_to_clean = ntc; 2330 prefetch(I40E_RX_DESC(rx_ring, ntc)); 2331 } 2332 2333 /** 2334 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf 2335 * @rx_ring: rx descriptor ring to transact packets on 2336 * @budget: Total limit on number of packets to process 2337 * 2338 * This function provides a "bounce buffer" approach to Rx interrupt 2339 * processing. The advantage to this is that on systems that have 2340 * expensive overhead for IOMMU access this provides a means of avoiding 2341 * it by maintaining the mapping of the page to the system. 2342 * 2343 * Returns amount of work completed 2344 **/ 2345 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) 2346 { 2347 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 2348 struct sk_buff *skb = rx_ring->skb; 2349 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 2350 unsigned int xdp_xmit = 0; 2351 bool failure = false; 2352 struct xdp_buff xdp; 2353 2354 #if (PAGE_SIZE < 8192) 2355 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0); 2356 #endif 2357 xdp.rxq = &rx_ring->xdp_rxq; 2358 2359 while (likely(total_rx_packets < (unsigned int)budget)) { 2360 struct i40e_rx_buffer *rx_buffer; 2361 union i40e_rx_desc *rx_desc; 2362 int rx_buffer_pgcnt; 2363 unsigned int size; 2364 u64 qword; 2365 2366 /* return some buffers to hardware, one at a time is too slow */ 2367 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 2368 failure = failure || 2369 i40e_alloc_rx_buffers(rx_ring, cleaned_count); 2370 cleaned_count = 0; 2371 } 2372 2373 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); 2374 2375 /* status_error_len will always be zero for unused descriptors 2376 * because it's cleared in cleanup, and overlaps with hdr_addr 2377 * which is always zero because packet split isn't used, if the 2378 * hardware wrote DD then the length will be non-zero 2379 */ 2380 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 2381 2382 /* This memory barrier is needed to keep us from reading 2383 * any other fields out of the rx_desc until we have 2384 * verified the descriptor has been written back. 2385 */ 2386 dma_rmb(); 2387 2388 if (i40e_rx_is_programming_status(qword)) { 2389 i40e_clean_programming_status(rx_ring, 2390 rx_desc->raw.qword[0], 2391 qword); 2392 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); 2393 i40e_inc_ntc(rx_ring); 2394 i40e_reuse_rx_page(rx_ring, rx_buffer); 2395 cleaned_count++; 2396 continue; 2397 } 2398 2399 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 2400 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 2401 if (!size) 2402 break; 2403 2404 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb); 2405 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); 2406 2407 /* retrieve a buffer from the ring */ 2408 if (!skb) { 2409 xdp.data = page_address(rx_buffer->page) + 2410 rx_buffer->page_offset; 2411 xdp.data_meta = xdp.data; 2412 xdp.data_hard_start = xdp.data - 2413 i40e_rx_offset(rx_ring); 2414 xdp.data_end = xdp.data + size; 2415 #if (PAGE_SIZE > 4096) 2416 /* At larger PAGE_SIZE, frame_sz depend on len size */ 2417 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size); 2418 #endif 2419 skb = i40e_run_xdp(rx_ring, &xdp); 2420 } 2421 2422 if (IS_ERR(skb)) { 2423 unsigned int xdp_res = -PTR_ERR(skb); 2424 2425 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { 2426 xdp_xmit |= xdp_res; 2427 i40e_rx_buffer_flip(rx_ring, rx_buffer, size); 2428 } else { 2429 rx_buffer->pagecnt_bias++; 2430 } 2431 total_rx_bytes += size; 2432 total_rx_packets++; 2433 } else if (skb) { 2434 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size); 2435 } else if (ring_uses_build_skb(rx_ring)) { 2436 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp); 2437 } else { 2438 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp); 2439 } 2440 2441 /* exit if we failed to retrieve a buffer */ 2442 if (!skb) { 2443 rx_ring->rx_stats.alloc_buff_failed++; 2444 rx_buffer->pagecnt_bias++; 2445 break; 2446 } 2447 2448 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); 2449 cleaned_count++; 2450 2451 if (i40e_is_non_eop(rx_ring, rx_desc, skb)) 2452 continue; 2453 2454 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) { 2455 skb = NULL; 2456 continue; 2457 } 2458 2459 /* probably a little skewed due to removing CRC */ 2460 total_rx_bytes += skb->len; 2461 2462 /* populate checksum, VLAN, and protocol */ 2463 i40e_process_skb_fields(rx_ring, rx_desc, skb); 2464 2465 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); 2466 napi_gro_receive(&rx_ring->q_vector->napi, skb); 2467 skb = NULL; 2468 2469 /* update budget accounting */ 2470 total_rx_packets++; 2471 } 2472 2473 i40e_finalize_xdp_rx(rx_ring, xdp_xmit); 2474 rx_ring->skb = skb; 2475 2476 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); 2477 2478 /* guarantee a trip back through this routine if there was a failure */ 2479 return failure ? budget : (int)total_rx_packets; 2480 } 2481 2482 static inline u32 i40e_buildreg_itr(const int type, u16 itr) 2483 { 2484 u32 val; 2485 2486 /* We don't bother with setting the CLEARPBA bit as the data sheet 2487 * points out doing so is "meaningless since it was already 2488 * auto-cleared". The auto-clearing happens when the interrupt is 2489 * asserted. 2490 * 2491 * Hardware errata 28 for also indicates that writing to a 2492 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear 2493 * an event in the PBA anyway so we need to rely on the automask 2494 * to hold pending events for us until the interrupt is re-enabled 2495 * 2496 * The itr value is reported in microseconds, and the register 2497 * value is recorded in 2 microsecond units. For this reason we 2498 * only need to shift by the interval shift - 1 instead of the 2499 * full value. 2500 */ 2501 itr &= I40E_ITR_MASK; 2502 2503 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 2504 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 2505 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); 2506 2507 return val; 2508 } 2509 2510 /* a small macro to shorten up some long lines */ 2511 #define INTREG I40E_PFINT_DYN_CTLN 2512 2513 /* The act of updating the ITR will cause it to immediately trigger. In order 2514 * to prevent this from throwing off adaptive update statistics we defer the 2515 * update so that it can only happen so often. So after either Tx or Rx are 2516 * updated we make the adaptive scheme wait until either the ITR completely 2517 * expires via the next_update expiration or we have been through at least 2518 * 3 interrupts. 2519 */ 2520 #define ITR_COUNTDOWN_START 3 2521 2522 /** 2523 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 2524 * @vsi: the VSI we care about 2525 * @q_vector: q_vector for which itr is being updated and interrupt enabled 2526 * 2527 **/ 2528 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 2529 struct i40e_q_vector *q_vector) 2530 { 2531 struct i40e_hw *hw = &vsi->back->hw; 2532 u32 intval; 2533 2534 /* If we don't have MSIX, then we only need to re-enable icr0 */ 2535 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { 2536 i40e_irq_dynamic_enable_icr0(vsi->back); 2537 return; 2538 } 2539 2540 /* These will do nothing if dynamic updates are not enabled */ 2541 i40e_update_itr(q_vector, &q_vector->tx); 2542 i40e_update_itr(q_vector, &q_vector->rx); 2543 2544 /* This block of logic allows us to get away with only updating 2545 * one ITR value with each interrupt. The idea is to perform a 2546 * pseudo-lazy update with the following criteria. 2547 * 2548 * 1. Rx is given higher priority than Tx if both are in same state 2549 * 2. If we must reduce an ITR that is given highest priority. 2550 * 3. We then give priority to increasing ITR based on amount. 2551 */ 2552 if (q_vector->rx.target_itr < q_vector->rx.current_itr) { 2553 /* Rx ITR needs to be reduced, this is highest priority */ 2554 intval = i40e_buildreg_itr(I40E_RX_ITR, 2555 q_vector->rx.target_itr); 2556 q_vector->rx.current_itr = q_vector->rx.target_itr; 2557 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2558 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || 2559 ((q_vector->rx.target_itr - q_vector->rx.current_itr) < 2560 (q_vector->tx.target_itr - q_vector->tx.current_itr))) { 2561 /* Tx ITR needs to be reduced, this is second priority 2562 * Tx ITR needs to be increased more than Rx, fourth priority 2563 */ 2564 intval = i40e_buildreg_itr(I40E_TX_ITR, 2565 q_vector->tx.target_itr); 2566 q_vector->tx.current_itr = q_vector->tx.target_itr; 2567 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2568 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { 2569 /* Rx ITR needs to be increased, third priority */ 2570 intval = i40e_buildreg_itr(I40E_RX_ITR, 2571 q_vector->rx.target_itr); 2572 q_vector->rx.current_itr = q_vector->rx.target_itr; 2573 q_vector->itr_countdown = ITR_COUNTDOWN_START; 2574 } else { 2575 /* No ITR update, lowest priority */ 2576 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 2577 if (q_vector->itr_countdown) 2578 q_vector->itr_countdown--; 2579 } 2580 2581 if (!test_bit(__I40E_VSI_DOWN, vsi->state)) 2582 wr32(hw, INTREG(q_vector->reg_idx), intval); 2583 } 2584 2585 /** 2586 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 2587 * @napi: napi struct with our devices info in it 2588 * @budget: amount of work driver is allowed to do this pass, in packets 2589 * 2590 * This function will clean all queues associated with a q_vector. 2591 * 2592 * Returns the amount of work done 2593 **/ 2594 int i40e_napi_poll(struct napi_struct *napi, int budget) 2595 { 2596 struct i40e_q_vector *q_vector = 2597 container_of(napi, struct i40e_q_vector, napi); 2598 struct i40e_vsi *vsi = q_vector->vsi; 2599 struct i40e_ring *ring; 2600 bool clean_complete = true; 2601 bool arm_wb = false; 2602 int budget_per_ring; 2603 int work_done = 0; 2604 2605 if (test_bit(__I40E_VSI_DOWN, vsi->state)) { 2606 napi_complete(napi); 2607 return 0; 2608 } 2609 2610 /* Since the actual Tx work is minimal, we can give the Tx a larger 2611 * budget and be more aggressive about cleaning up the Tx descriptors. 2612 */ 2613 i40e_for_each_ring(ring, q_vector->tx) { 2614 bool wd = ring->xsk_pool ? 2615 i40e_clean_xdp_tx_irq(vsi, ring) : 2616 i40e_clean_tx_irq(vsi, ring, budget); 2617 2618 if (!wd) { 2619 clean_complete = false; 2620 continue; 2621 } 2622 arm_wb |= ring->arm_wb; 2623 ring->arm_wb = false; 2624 } 2625 2626 /* Handle case where we are called by netpoll with a budget of 0 */ 2627 if (budget <= 0) 2628 goto tx_only; 2629 2630 /* normally we have 1 Rx ring per q_vector */ 2631 if (unlikely(q_vector->num_ringpairs > 1)) 2632 /* We attempt to distribute budget to each Rx queue fairly, but 2633 * don't allow the budget to go below 1 because that would exit 2634 * polling early. 2635 */ 2636 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); 2637 else 2638 /* Max of 1 Rx ring in this q_vector so give it the budget */ 2639 budget_per_ring = budget; 2640 2641 i40e_for_each_ring(ring, q_vector->rx) { 2642 int cleaned = ring->xsk_pool ? 2643 i40e_clean_rx_irq_zc(ring, budget_per_ring) : 2644 i40e_clean_rx_irq(ring, budget_per_ring); 2645 2646 work_done += cleaned; 2647 /* if we clean as many as budgeted, we must not be done */ 2648 if (cleaned >= budget_per_ring) 2649 clean_complete = false; 2650 } 2651 2652 /* If work not completed, return budget and polling will return */ 2653 if (!clean_complete) { 2654 int cpu_id = smp_processor_id(); 2655 2656 /* It is possible that the interrupt affinity has changed but, 2657 * if the cpu is pegged at 100%, polling will never exit while 2658 * traffic continues and the interrupt will be stuck on this 2659 * cpu. We check to make sure affinity is correct before we 2660 * continue to poll, otherwise we must stop polling so the 2661 * interrupt can move to the correct cpu. 2662 */ 2663 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { 2664 /* Tell napi that we are done polling */ 2665 napi_complete_done(napi, work_done); 2666 2667 /* Force an interrupt */ 2668 i40e_force_wb(vsi, q_vector); 2669 2670 /* Return budget-1 so that polling stops */ 2671 return budget - 1; 2672 } 2673 tx_only: 2674 if (arm_wb) { 2675 q_vector->tx.ring[0].tx_stats.tx_force_wb++; 2676 i40e_enable_wb_on_itr(vsi, q_vector); 2677 } 2678 return budget; 2679 } 2680 2681 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 2682 q_vector->arm_wb_state = false; 2683 2684 /* Exit the polling mode, but don't re-enable interrupts if stack might 2685 * poll us due to busy-polling 2686 */ 2687 if (likely(napi_complete_done(napi, work_done))) 2688 i40e_update_enable_itr(vsi, q_vector); 2689 2690 return min(work_done, budget - 1); 2691 } 2692 2693 /** 2694 * i40e_atr - Add a Flow Director ATR filter 2695 * @tx_ring: ring to add programming descriptor to 2696 * @skb: send buffer 2697 * @tx_flags: send tx flags 2698 **/ 2699 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 2700 u32 tx_flags) 2701 { 2702 struct i40e_filter_program_desc *fdir_desc; 2703 struct i40e_pf *pf = tx_ring->vsi->back; 2704 union { 2705 unsigned char *network; 2706 struct iphdr *ipv4; 2707 struct ipv6hdr *ipv6; 2708 } hdr; 2709 struct tcphdr *th; 2710 unsigned int hlen; 2711 u32 flex_ptype, dtype_cmd; 2712 int l4_proto; 2713 u16 i; 2714 2715 /* make sure ATR is enabled */ 2716 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 2717 return; 2718 2719 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2720 return; 2721 2722 /* if sampling is disabled do nothing */ 2723 if (!tx_ring->atr_sample_rate) 2724 return; 2725 2726 /* Currently only IPv4/IPv6 with TCP is supported */ 2727 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 2728 return; 2729 2730 /* snag network header to get L4 type and address */ 2731 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? 2732 skb_inner_network_header(skb) : skb_network_header(skb); 2733 2734 /* Note: tx_flags gets modified to reflect inner protocols in 2735 * tx_enable_csum function if encap is enabled. 2736 */ 2737 if (tx_flags & I40E_TX_FLAGS_IPV4) { 2738 /* access ihl as u8 to avoid unaligned access on ia64 */ 2739 hlen = (hdr.network[0] & 0x0F) << 2; 2740 l4_proto = hdr.ipv4->protocol; 2741 } else { 2742 /* find the start of the innermost ipv6 header */ 2743 unsigned int inner_hlen = hdr.network - skb->data; 2744 unsigned int h_offset = inner_hlen; 2745 2746 /* this function updates h_offset to the end of the header */ 2747 l4_proto = 2748 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); 2749 /* hlen will contain our best estimate of the tcp header */ 2750 hlen = h_offset - inner_hlen; 2751 } 2752 2753 if (l4_proto != IPPROTO_TCP) 2754 return; 2755 2756 th = (struct tcphdr *)(hdr.network + hlen); 2757 2758 /* Due to lack of space, no more new filters can be programmed */ 2759 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 2760 return; 2761 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { 2762 /* HW ATR eviction will take care of removing filters on FIN 2763 * and RST packets. 2764 */ 2765 if (th->fin || th->rst) 2766 return; 2767 } 2768 2769 tx_ring->atr_count++; 2770 2771 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2772 if (!th->fin && 2773 !th->syn && 2774 !th->rst && 2775 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2776 return; 2777 2778 tx_ring->atr_count = 0; 2779 2780 /* grab the next descriptor */ 2781 i = tx_ring->next_to_use; 2782 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2783 2784 i++; 2785 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2786 2787 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2788 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2789 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? 2790 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2791 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2792 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2793 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2794 2795 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2796 2797 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2798 2799 dtype_cmd |= (th->fin || th->rst) ? 2800 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2801 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2802 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2803 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2804 2805 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2806 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2807 2808 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2809 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2810 2811 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2812 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) 2813 dtype_cmd |= 2814 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2815 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2816 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2817 else 2818 dtype_cmd |= 2819 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2820 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2821 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2822 2823 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) 2824 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2825 2826 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2827 fdir_desc->rsvd = cpu_to_le32(0); 2828 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2829 fdir_desc->fd_id = cpu_to_le32(0); 2830 } 2831 2832 /** 2833 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2834 * @skb: send buffer 2835 * @tx_ring: ring to send buffer on 2836 * @flags: the tx flags to be set 2837 * 2838 * Checks the skb and set up correspondingly several generic transmit flags 2839 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2840 * 2841 * Returns error code indicate the frame should be dropped upon error and the 2842 * otherwise returns 0 to indicate the flags has been set properly. 2843 **/ 2844 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2845 struct i40e_ring *tx_ring, 2846 u32 *flags) 2847 { 2848 __be16 protocol = skb->protocol; 2849 u32 tx_flags = 0; 2850 2851 if (protocol == htons(ETH_P_8021Q) && 2852 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2853 /* When HW VLAN acceleration is turned off by the user the 2854 * stack sets the protocol to 8021q so that the driver 2855 * can take any steps required to support the SW only 2856 * VLAN handling. In our case the driver doesn't need 2857 * to take any further steps so just set the protocol 2858 * to the encapsulated ethertype. 2859 */ 2860 skb->protocol = vlan_get_protocol(skb); 2861 goto out; 2862 } 2863 2864 /* if we have a HW VLAN tag being added, default to the HW one */ 2865 if (skb_vlan_tag_present(skb)) { 2866 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2867 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2868 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2869 } else if (protocol == htons(ETH_P_8021Q)) { 2870 struct vlan_hdr *vhdr, _vhdr; 2871 2872 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2873 if (!vhdr) 2874 return -EINVAL; 2875 2876 protocol = vhdr->h_vlan_encapsulated_proto; 2877 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2878 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2879 } 2880 2881 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2882 goto out; 2883 2884 /* Insert 802.1p priority into VLAN header */ 2885 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2886 (skb->priority != TC_PRIO_CONTROL)) { 2887 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2888 tx_flags |= (skb->priority & 0x7) << 2889 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2890 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2891 struct vlan_ethhdr *vhdr; 2892 int rc; 2893 2894 rc = skb_cow_head(skb, 0); 2895 if (rc < 0) 2896 return rc; 2897 vhdr = (struct vlan_ethhdr *)skb->data; 2898 vhdr->h_vlan_TCI = htons(tx_flags >> 2899 I40E_TX_FLAGS_VLAN_SHIFT); 2900 } else { 2901 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2902 } 2903 } 2904 2905 out: 2906 *flags = tx_flags; 2907 return 0; 2908 } 2909 2910 /** 2911 * i40e_tso - set up the tso context descriptor 2912 * @first: pointer to first Tx buffer for xmit 2913 * @hdr_len: ptr to the size of the packet header 2914 * @cd_type_cmd_tso_mss: Quad Word 1 2915 * 2916 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2917 **/ 2918 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, 2919 u64 *cd_type_cmd_tso_mss) 2920 { 2921 struct sk_buff *skb = first->skb; 2922 u64 cd_cmd, cd_tso_len, cd_mss; 2923 union { 2924 struct iphdr *v4; 2925 struct ipv6hdr *v6; 2926 unsigned char *hdr; 2927 } ip; 2928 union { 2929 struct tcphdr *tcp; 2930 struct udphdr *udp; 2931 unsigned char *hdr; 2932 } l4; 2933 u32 paylen, l4_offset; 2934 u16 gso_segs, gso_size; 2935 int err; 2936 2937 if (skb->ip_summed != CHECKSUM_PARTIAL) 2938 return 0; 2939 2940 if (!skb_is_gso(skb)) 2941 return 0; 2942 2943 err = skb_cow_head(skb, 0); 2944 if (err < 0) 2945 return err; 2946 2947 ip.hdr = skb_network_header(skb); 2948 l4.hdr = skb_transport_header(skb); 2949 2950 /* initialize outer IP header fields */ 2951 if (ip.v4->version == 4) { 2952 ip.v4->tot_len = 0; 2953 ip.v4->check = 0; 2954 } else { 2955 ip.v6->payload_len = 0; 2956 } 2957 2958 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 2959 SKB_GSO_GRE_CSUM | 2960 SKB_GSO_IPXIP4 | 2961 SKB_GSO_IPXIP6 | 2962 SKB_GSO_UDP_TUNNEL | 2963 SKB_GSO_UDP_TUNNEL_CSUM)) { 2964 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 2965 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { 2966 l4.udp->len = 0; 2967 2968 /* determine offset of outer transport header */ 2969 l4_offset = l4.hdr - skb->data; 2970 2971 /* remove payload length from outer checksum */ 2972 paylen = skb->len - l4_offset; 2973 csum_replace_by_diff(&l4.udp->check, 2974 (__force __wsum)htonl(paylen)); 2975 } 2976 2977 /* reset pointers to inner headers */ 2978 ip.hdr = skb_inner_network_header(skb); 2979 l4.hdr = skb_inner_transport_header(skb); 2980 2981 /* initialize inner IP header fields */ 2982 if (ip.v4->version == 4) { 2983 ip.v4->tot_len = 0; 2984 ip.v4->check = 0; 2985 } else { 2986 ip.v6->payload_len = 0; 2987 } 2988 } 2989 2990 /* determine offset of inner transport header */ 2991 l4_offset = l4.hdr - skb->data; 2992 2993 /* remove payload length from inner checksum */ 2994 paylen = skb->len - l4_offset; 2995 2996 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2997 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); 2998 /* compute length of segmentation header */ 2999 *hdr_len = sizeof(*l4.udp) + l4_offset; 3000 } else { 3001 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3002 /* compute length of segmentation header */ 3003 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3004 } 3005 3006 /* pull values out of skb_shinfo */ 3007 gso_size = skb_shinfo(skb)->gso_size; 3008 gso_segs = skb_shinfo(skb)->gso_segs; 3009 3010 /* update GSO size and bytecount with header size */ 3011 first->gso_segs = gso_segs; 3012 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3013 3014 /* find the field values */ 3015 cd_cmd = I40E_TX_CTX_DESC_TSO; 3016 cd_tso_len = skb->len - *hdr_len; 3017 cd_mss = gso_size; 3018 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 3019 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 3020 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 3021 return 1; 3022 } 3023 3024 /** 3025 * i40e_tsyn - set up the tsyn context descriptor 3026 * @tx_ring: ptr to the ring to send 3027 * @skb: ptr to the skb we're sending 3028 * @tx_flags: the collected send information 3029 * @cd_type_cmd_tso_mss: Quad Word 1 3030 * 3031 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 3032 **/ 3033 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 3034 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 3035 { 3036 struct i40e_pf *pf; 3037 3038 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 3039 return 0; 3040 3041 /* Tx timestamps cannot be sampled when doing TSO */ 3042 if (tx_flags & I40E_TX_FLAGS_TSO) 3043 return 0; 3044 3045 /* only timestamp the outbound packet if the user has requested it and 3046 * we are not already transmitting a packet to be timestamped 3047 */ 3048 pf = i40e_netdev_to_pf(tx_ring->netdev); 3049 if (!(pf->flags & I40E_FLAG_PTP)) 3050 return 0; 3051 3052 if (pf->ptp_tx && 3053 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { 3054 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3055 pf->ptp_tx_start = jiffies; 3056 pf->ptp_tx_skb = skb_get(skb); 3057 } else { 3058 pf->tx_hwtstamp_skipped++; 3059 return 0; 3060 } 3061 3062 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 3063 I40E_TXD_CTX_QW1_CMD_SHIFT; 3064 3065 return 1; 3066 } 3067 3068 /** 3069 * i40e_tx_enable_csum - Enable Tx checksum offloads 3070 * @skb: send buffer 3071 * @tx_flags: pointer to Tx flags currently set 3072 * @td_cmd: Tx descriptor command bits to set 3073 * @td_offset: Tx descriptor header offsets to set 3074 * @tx_ring: Tx descriptor ring 3075 * @cd_tunneling: ptr to context desc bits 3076 **/ 3077 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 3078 u32 *td_cmd, u32 *td_offset, 3079 struct i40e_ring *tx_ring, 3080 u32 *cd_tunneling) 3081 { 3082 union { 3083 struct iphdr *v4; 3084 struct ipv6hdr *v6; 3085 unsigned char *hdr; 3086 } ip; 3087 union { 3088 struct tcphdr *tcp; 3089 struct udphdr *udp; 3090 unsigned char *hdr; 3091 } l4; 3092 unsigned char *exthdr; 3093 u32 offset, cmd = 0; 3094 __be16 frag_off; 3095 u8 l4_proto = 0; 3096 3097 if (skb->ip_summed != CHECKSUM_PARTIAL) 3098 return 0; 3099 3100 ip.hdr = skb_network_header(skb); 3101 l4.hdr = skb_transport_header(skb); 3102 3103 /* compute outer L2 header size */ 3104 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 3105 3106 if (skb->encapsulation) { 3107 u32 tunnel = 0; 3108 /* define outer network header type */ 3109 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3110 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3111 I40E_TX_CTX_EXT_IP_IPV4 : 3112 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 3113 3114 l4_proto = ip.v4->protocol; 3115 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3116 tunnel |= I40E_TX_CTX_EXT_IP_IPV6; 3117 3118 exthdr = ip.hdr + sizeof(*ip.v6); 3119 l4_proto = ip.v6->nexthdr; 3120 if (l4.hdr != exthdr) 3121 ipv6_skip_exthdr(skb, exthdr - skb->data, 3122 &l4_proto, &frag_off); 3123 } 3124 3125 /* define outer transport */ 3126 switch (l4_proto) { 3127 case IPPROTO_UDP: 3128 tunnel |= I40E_TXD_CTX_UDP_TUNNELING; 3129 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3130 break; 3131 case IPPROTO_GRE: 3132 tunnel |= I40E_TXD_CTX_GRE_TUNNELING; 3133 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3134 break; 3135 case IPPROTO_IPIP: 3136 case IPPROTO_IPV6: 3137 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; 3138 l4.hdr = skb_inner_network_header(skb); 3139 break; 3140 default: 3141 if (*tx_flags & I40E_TX_FLAGS_TSO) 3142 return -1; 3143 3144 skb_checksum_help(skb); 3145 return 0; 3146 } 3147 3148 /* compute outer L3 header size */ 3149 tunnel |= ((l4.hdr - ip.hdr) / 4) << 3150 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; 3151 3152 /* switch IP header pointer from outer to inner header */ 3153 ip.hdr = skb_inner_network_header(skb); 3154 3155 /* compute tunnel header size */ 3156 tunnel |= ((ip.hdr - l4.hdr) / 2) << 3157 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 3158 3159 /* indicate if we need to offload outer UDP header */ 3160 if ((*tx_flags & I40E_TX_FLAGS_TSO) && 3161 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && 3162 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) 3163 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 3164 3165 /* record tunnel offload values */ 3166 *cd_tunneling |= tunnel; 3167 3168 /* switch L4 header pointer from outer to inner */ 3169 l4.hdr = skb_inner_transport_header(skb); 3170 l4_proto = 0; 3171 3172 /* reset type as we transition from outer to inner headers */ 3173 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); 3174 if (ip.v4->version == 4) 3175 *tx_flags |= I40E_TX_FLAGS_IPV4; 3176 if (ip.v6->version == 6) 3177 *tx_flags |= I40E_TX_FLAGS_IPV6; 3178 } 3179 3180 /* Enable IP checksum offloads */ 3181 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 3182 l4_proto = ip.v4->protocol; 3183 /* the stack computes the IP header already, the only time we 3184 * need the hardware to recompute it is in the case of TSO. 3185 */ 3186 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? 3187 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : 3188 I40E_TX_DESC_CMD_IIPT_IPV4; 3189 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 3190 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 3191 3192 exthdr = ip.hdr + sizeof(*ip.v6); 3193 l4_proto = ip.v6->nexthdr; 3194 if (l4.hdr != exthdr) 3195 ipv6_skip_exthdr(skb, exthdr - skb->data, 3196 &l4_proto, &frag_off); 3197 } 3198 3199 /* compute inner L3 header size */ 3200 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 3201 3202 /* Enable L4 checksum offloads */ 3203 switch (l4_proto) { 3204 case IPPROTO_TCP: 3205 /* enable checksum offloads */ 3206 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 3207 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3208 break; 3209 case IPPROTO_SCTP: 3210 /* enable SCTP checksum offload */ 3211 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 3212 offset |= (sizeof(struct sctphdr) >> 2) << 3213 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3214 break; 3215 case IPPROTO_UDP: 3216 /* enable UDP checksum offload */ 3217 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 3218 offset |= (sizeof(struct udphdr) >> 2) << 3219 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 3220 break; 3221 default: 3222 if (*tx_flags & I40E_TX_FLAGS_TSO) 3223 return -1; 3224 skb_checksum_help(skb); 3225 return 0; 3226 } 3227 3228 *td_cmd |= cmd; 3229 *td_offset |= offset; 3230 3231 return 1; 3232 } 3233 3234 /** 3235 * i40e_create_tx_ctx Build the Tx context descriptor 3236 * @tx_ring: ring to create the descriptor on 3237 * @cd_type_cmd_tso_mss: Quad Word 1 3238 * @cd_tunneling: Quad Word 0 - bits 0-31 3239 * @cd_l2tag2: Quad Word 0 - bits 32-63 3240 **/ 3241 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 3242 const u64 cd_type_cmd_tso_mss, 3243 const u32 cd_tunneling, const u32 cd_l2tag2) 3244 { 3245 struct i40e_tx_context_desc *context_desc; 3246 int i = tx_ring->next_to_use; 3247 3248 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 3249 !cd_tunneling && !cd_l2tag2) 3250 return; 3251 3252 /* grab the next descriptor */ 3253 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 3254 3255 i++; 3256 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3257 3258 /* cpu_to_le32 and assign to struct fields */ 3259 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 3260 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 3261 context_desc->rsvd = cpu_to_le16(0); 3262 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 3263 } 3264 3265 /** 3266 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 3267 * @tx_ring: the ring to be checked 3268 * @size: the size buffer we want to assure is available 3269 * 3270 * Returns -EBUSY if a stop is needed, else 0 3271 **/ 3272 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 3273 { 3274 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3275 /* Memory barrier before checking head and tail */ 3276 smp_mb(); 3277 3278 /* Check again in a case another CPU has just made room available. */ 3279 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 3280 return -EBUSY; 3281 3282 /* A reprieve! - use start_queue because it doesn't call schedule */ 3283 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3284 ++tx_ring->tx_stats.restart_queue; 3285 return 0; 3286 } 3287 3288 /** 3289 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet 3290 * @skb: send buffer 3291 * 3292 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire 3293 * and so we need to figure out the cases where we need to linearize the skb. 3294 * 3295 * For TSO we need to count the TSO header and segment payload separately. 3296 * As such we need to check cases where we have 7 fragments or more as we 3297 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for 3298 * the segment payload in the first descriptor, and another 7 for the 3299 * fragments. 3300 **/ 3301 bool __i40e_chk_linearize(struct sk_buff *skb) 3302 { 3303 const skb_frag_t *frag, *stale; 3304 int nr_frags, sum; 3305 3306 /* no need to check if number of frags is less than 7 */ 3307 nr_frags = skb_shinfo(skb)->nr_frags; 3308 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) 3309 return false; 3310 3311 /* We need to walk through the list and validate that each group 3312 * of 6 fragments totals at least gso_size. 3313 */ 3314 nr_frags -= I40E_MAX_BUFFER_TXD - 2; 3315 frag = &skb_shinfo(skb)->frags[0]; 3316 3317 /* Initialize size to the negative value of gso_size minus 1. We 3318 * use this as the worst case scenerio in which the frag ahead 3319 * of us only provides one byte which is why we are limited to 6 3320 * descriptors for a single transmit as the header and previous 3321 * fragment are already consuming 2 descriptors. 3322 */ 3323 sum = 1 - skb_shinfo(skb)->gso_size; 3324 3325 /* Add size of frags 0 through 4 to create our initial sum */ 3326 sum += skb_frag_size(frag++); 3327 sum += skb_frag_size(frag++); 3328 sum += skb_frag_size(frag++); 3329 sum += skb_frag_size(frag++); 3330 sum += skb_frag_size(frag++); 3331 3332 /* Walk through fragments adding latest fragment, testing it, and 3333 * then removing stale fragments from the sum. 3334 */ 3335 for (stale = &skb_shinfo(skb)->frags[0];; stale++) { 3336 int stale_size = skb_frag_size(stale); 3337 3338 sum += skb_frag_size(frag++); 3339 3340 /* The stale fragment may present us with a smaller 3341 * descriptor than the actual fragment size. To account 3342 * for that we need to remove all the data on the front and 3343 * figure out what the remainder would be in the last 3344 * descriptor associated with the fragment. 3345 */ 3346 if (stale_size > I40E_MAX_DATA_PER_TXD) { 3347 int align_pad = -(skb_frag_off(stale)) & 3348 (I40E_MAX_READ_REQ_SIZE - 1); 3349 3350 sum -= align_pad; 3351 stale_size -= align_pad; 3352 3353 do { 3354 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3355 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; 3356 } while (stale_size > I40E_MAX_DATA_PER_TXD); 3357 } 3358 3359 /* if sum is negative we failed to make sufficient progress */ 3360 if (sum < 0) 3361 return true; 3362 3363 if (!nr_frags--) 3364 break; 3365 3366 sum -= stale_size; 3367 } 3368 3369 return false; 3370 } 3371 3372 /** 3373 * i40e_tx_map - Build the Tx descriptor 3374 * @tx_ring: ring to send buffer on 3375 * @skb: send buffer 3376 * @first: first buffer info buffer to use 3377 * @tx_flags: collected send information 3378 * @hdr_len: size of the packet header 3379 * @td_cmd: the command field in the descriptor 3380 * @td_offset: offset for checksum or crc 3381 * 3382 * Returns 0 on success, -1 on failure to DMA 3383 **/ 3384 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 3385 struct i40e_tx_buffer *first, u32 tx_flags, 3386 const u8 hdr_len, u32 td_cmd, u32 td_offset) 3387 { 3388 unsigned int data_len = skb->data_len; 3389 unsigned int size = skb_headlen(skb); 3390 skb_frag_t *frag; 3391 struct i40e_tx_buffer *tx_bi; 3392 struct i40e_tx_desc *tx_desc; 3393 u16 i = tx_ring->next_to_use; 3394 u32 td_tag = 0; 3395 dma_addr_t dma; 3396 u16 desc_count = 1; 3397 3398 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 3399 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 3400 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 3401 I40E_TX_FLAGS_VLAN_SHIFT; 3402 } 3403 3404 first->tx_flags = tx_flags; 3405 3406 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3407 3408 tx_desc = I40E_TX_DESC(tx_ring, i); 3409 tx_bi = first; 3410 3411 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3412 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3413 3414 if (dma_mapping_error(tx_ring->dev, dma)) 3415 goto dma_error; 3416 3417 /* record length, and DMA address */ 3418 dma_unmap_len_set(tx_bi, len, size); 3419 dma_unmap_addr_set(tx_bi, dma, dma); 3420 3421 /* align size to end of page */ 3422 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); 3423 tx_desc->buffer_addr = cpu_to_le64(dma); 3424 3425 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 3426 tx_desc->cmd_type_offset_bsz = 3427 build_ctob(td_cmd, td_offset, 3428 max_data, td_tag); 3429 3430 tx_desc++; 3431 i++; 3432 desc_count++; 3433 3434 if (i == tx_ring->count) { 3435 tx_desc = I40E_TX_DESC(tx_ring, 0); 3436 i = 0; 3437 } 3438 3439 dma += max_data; 3440 size -= max_data; 3441 3442 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; 3443 tx_desc->buffer_addr = cpu_to_le64(dma); 3444 } 3445 3446 if (likely(!data_len)) 3447 break; 3448 3449 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 3450 size, td_tag); 3451 3452 tx_desc++; 3453 i++; 3454 desc_count++; 3455 3456 if (i == tx_ring->count) { 3457 tx_desc = I40E_TX_DESC(tx_ring, 0); 3458 i = 0; 3459 } 3460 3461 size = skb_frag_size(frag); 3462 data_len -= size; 3463 3464 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3465 DMA_TO_DEVICE); 3466 3467 tx_bi = &tx_ring->tx_bi[i]; 3468 } 3469 3470 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 3471 3472 i++; 3473 if (i == tx_ring->count) 3474 i = 0; 3475 3476 tx_ring->next_to_use = i; 3477 3478 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 3479 3480 /* write last descriptor with EOP bit */ 3481 td_cmd |= I40E_TX_DESC_CMD_EOP; 3482 3483 /* We OR these values together to check both against 4 (WB_STRIDE) 3484 * below. This is safe since we don't re-use desc_count afterwards. 3485 */ 3486 desc_count |= ++tx_ring->packet_stride; 3487 3488 if (desc_count >= WB_STRIDE) { 3489 /* write last descriptor with RS bit set */ 3490 td_cmd |= I40E_TX_DESC_CMD_RS; 3491 tx_ring->packet_stride = 0; 3492 } 3493 3494 tx_desc->cmd_type_offset_bsz = 3495 build_ctob(td_cmd, td_offset, size, td_tag); 3496 3497 skb_tx_timestamp(skb); 3498 3499 /* Force memory writes to complete before letting h/w know there 3500 * are new descriptors to fetch. 3501 * 3502 * We also use this memory barrier to make certain all of the 3503 * status bits have been updated before next_to_watch is written. 3504 */ 3505 wmb(); 3506 3507 /* set next_to_watch value indicating a packet is present */ 3508 first->next_to_watch = tx_desc; 3509 3510 /* notify HW of packet */ 3511 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { 3512 writel(i, tx_ring->tail); 3513 } 3514 3515 return 0; 3516 3517 dma_error: 3518 dev_info(tx_ring->dev, "TX DMA map failed\n"); 3519 3520 /* clear dma mappings for failed tx_bi map */ 3521 for (;;) { 3522 tx_bi = &tx_ring->tx_bi[i]; 3523 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 3524 if (tx_bi == first) 3525 break; 3526 if (i == 0) 3527 i = tx_ring->count; 3528 i--; 3529 } 3530 3531 tx_ring->next_to_use = i; 3532 3533 return -1; 3534 } 3535 3536 /** 3537 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring 3538 * @xdpf: data to transmit 3539 * @xdp_ring: XDP Tx ring 3540 **/ 3541 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, 3542 struct i40e_ring *xdp_ring) 3543 { 3544 u16 i = xdp_ring->next_to_use; 3545 struct i40e_tx_buffer *tx_bi; 3546 struct i40e_tx_desc *tx_desc; 3547 void *data = xdpf->data; 3548 u32 size = xdpf->len; 3549 dma_addr_t dma; 3550 3551 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { 3552 xdp_ring->tx_stats.tx_busy++; 3553 return I40E_XDP_CONSUMED; 3554 } 3555 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 3556 if (dma_mapping_error(xdp_ring->dev, dma)) 3557 return I40E_XDP_CONSUMED; 3558 3559 tx_bi = &xdp_ring->tx_bi[i]; 3560 tx_bi->bytecount = size; 3561 tx_bi->gso_segs = 1; 3562 tx_bi->xdpf = xdpf; 3563 3564 /* record length, and DMA address */ 3565 dma_unmap_len_set(tx_bi, len, size); 3566 dma_unmap_addr_set(tx_bi, dma, dma); 3567 3568 tx_desc = I40E_TX_DESC(xdp_ring, i); 3569 tx_desc->buffer_addr = cpu_to_le64(dma); 3570 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC 3571 | I40E_TXD_CMD, 3572 0, size, 0); 3573 3574 /* Make certain all of the status bits have been updated 3575 * before next_to_watch is written. 3576 */ 3577 smp_wmb(); 3578 3579 xdp_ring->xdp_tx_active++; 3580 i++; 3581 if (i == xdp_ring->count) 3582 i = 0; 3583 3584 tx_bi->next_to_watch = tx_desc; 3585 xdp_ring->next_to_use = i; 3586 3587 return I40E_XDP_TX; 3588 } 3589 3590 /** 3591 * i40e_xmit_frame_ring - Sends buffer on Tx ring 3592 * @skb: send buffer 3593 * @tx_ring: ring to send buffer on 3594 * 3595 * Returns NETDEV_TX_OK if sent, else an error code 3596 **/ 3597 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 3598 struct i40e_ring *tx_ring) 3599 { 3600 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 3601 u32 cd_tunneling = 0, cd_l2tag2 = 0; 3602 struct i40e_tx_buffer *first; 3603 u32 td_offset = 0; 3604 u32 tx_flags = 0; 3605 __be16 protocol; 3606 u32 td_cmd = 0; 3607 u8 hdr_len = 0; 3608 int tso, count; 3609 int tsyn; 3610 3611 /* prefetch the data, we'll need it later */ 3612 prefetch(skb->data); 3613 3614 i40e_trace(xmit_frame_ring, skb, tx_ring); 3615 3616 count = i40e_xmit_descriptor_count(skb); 3617 if (i40e_chk_linearize(skb, count)) { 3618 if (__skb_linearize(skb)) { 3619 dev_kfree_skb_any(skb); 3620 return NETDEV_TX_OK; 3621 } 3622 count = i40e_txd_use_count(skb->len); 3623 tx_ring->tx_stats.tx_linearize++; 3624 } 3625 3626 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 3627 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 3628 * + 4 desc gap to avoid the cache line where head is, 3629 * + 1 desc for context descriptor, 3630 * otherwise try next time 3631 */ 3632 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 3633 tx_ring->tx_stats.tx_busy++; 3634 return NETDEV_TX_BUSY; 3635 } 3636 3637 /* record the location of the first descriptor for this packet */ 3638 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 3639 first->skb = skb; 3640 first->bytecount = skb->len; 3641 first->gso_segs = 1; 3642 3643 /* prepare the xmit flags */ 3644 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 3645 goto out_drop; 3646 3647 /* obtain protocol of skb */ 3648 protocol = vlan_get_protocol(skb); 3649 3650 /* setup IPv4/IPv6 offloads */ 3651 if (protocol == htons(ETH_P_IP)) 3652 tx_flags |= I40E_TX_FLAGS_IPV4; 3653 else if (protocol == htons(ETH_P_IPV6)) 3654 tx_flags |= I40E_TX_FLAGS_IPV6; 3655 3656 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); 3657 3658 if (tso < 0) 3659 goto out_drop; 3660 else if (tso) 3661 tx_flags |= I40E_TX_FLAGS_TSO; 3662 3663 /* Always offload the checksum, since it's in the data descriptor */ 3664 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 3665 tx_ring, &cd_tunneling); 3666 if (tso < 0) 3667 goto out_drop; 3668 3669 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 3670 3671 if (tsyn) 3672 tx_flags |= I40E_TX_FLAGS_TSYN; 3673 3674 /* always enable CRC insertion offload */ 3675 td_cmd |= I40E_TX_DESC_CMD_ICRC; 3676 3677 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 3678 cd_tunneling, cd_l2tag2); 3679 3680 /* Add Flow Director ATR if it's enabled. 3681 * 3682 * NOTE: this must always be directly before the data descriptor. 3683 */ 3684 i40e_atr(tx_ring, skb, tx_flags); 3685 3686 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 3687 td_cmd, td_offset)) 3688 goto cleanup_tx_tstamp; 3689 3690 return NETDEV_TX_OK; 3691 3692 out_drop: 3693 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); 3694 dev_kfree_skb_any(first->skb); 3695 first->skb = NULL; 3696 cleanup_tx_tstamp: 3697 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { 3698 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); 3699 3700 dev_kfree_skb_any(pf->ptp_tx_skb); 3701 pf->ptp_tx_skb = NULL; 3702 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 3703 } 3704 3705 return NETDEV_TX_OK; 3706 } 3707 3708 /** 3709 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 3710 * @skb: send buffer 3711 * @netdev: network interface device structure 3712 * 3713 * Returns NETDEV_TX_OK if sent, else an error code 3714 **/ 3715 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3716 { 3717 struct i40e_netdev_priv *np = netdev_priv(netdev); 3718 struct i40e_vsi *vsi = np->vsi; 3719 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 3720 3721 /* hardware can't handle really short frames, hardware padding works 3722 * beyond this point 3723 */ 3724 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 3725 return NETDEV_TX_OK; 3726 3727 return i40e_xmit_frame_ring(skb, tx_ring); 3728 } 3729 3730 /** 3731 * i40e_xdp_xmit - Implements ndo_xdp_xmit 3732 * @dev: netdev 3733 * @n: number of frames 3734 * @frames: array of XDP buffer pointers 3735 * @flags: XDP extra info 3736 * 3737 * Returns number of frames successfully sent. Frames that fail are 3738 * free'ed via XDP return API. 3739 * 3740 * For error cases, a negative errno code is returned and no-frames 3741 * are transmitted (caller must handle freeing frames). 3742 **/ 3743 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 3744 u32 flags) 3745 { 3746 struct i40e_netdev_priv *np = netdev_priv(dev); 3747 unsigned int queue_index = smp_processor_id(); 3748 struct i40e_vsi *vsi = np->vsi; 3749 struct i40e_pf *pf = vsi->back; 3750 struct i40e_ring *xdp_ring; 3751 int drops = 0; 3752 int i; 3753 3754 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 3755 return -ENETDOWN; 3756 3757 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || 3758 test_bit(__I40E_CONFIG_BUSY, pf->state)) 3759 return -ENXIO; 3760 3761 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3762 return -EINVAL; 3763 3764 xdp_ring = vsi->xdp_rings[queue_index]; 3765 3766 for (i = 0; i < n; i++) { 3767 struct xdp_frame *xdpf = frames[i]; 3768 int err; 3769 3770 err = i40e_xmit_xdp_ring(xdpf, xdp_ring); 3771 if (err != I40E_XDP_TX) { 3772 xdp_return_frame_rx_napi(xdpf); 3773 drops++; 3774 } 3775 } 3776 3777 if (unlikely(flags & XDP_XMIT_FLUSH)) 3778 i40e_xdp_ring_update_tail(xdp_ring); 3779 3780 return n - drops; 3781 } 3782