1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2014 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include <linux/prefetch.h> 28 #include <net/busy_poll.h> 29 #include "i40e.h" 30 #include "i40e_prototype.h" 31 32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, 33 u32 td_tag) 34 { 35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | 36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) | 37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | 38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | 39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT)); 40 } 41 42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) 43 #define I40E_FD_CLEAN_DELAY 10 44 /** 45 * i40e_program_fdir_filter - Program a Flow Director filter 46 * @fdir_data: Packet data that will be filter parameters 47 * @raw_packet: the pre-allocated packet buffer for FDir 48 * @pf: The PF pointer 49 * @add: True for add/update, False for remove 50 **/ 51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet, 52 struct i40e_pf *pf, bool add) 53 { 54 struct i40e_filter_program_desc *fdir_desc; 55 struct i40e_tx_buffer *tx_buf, *first; 56 struct i40e_tx_desc *tx_desc; 57 struct i40e_ring *tx_ring; 58 unsigned int fpt, dcc; 59 struct i40e_vsi *vsi; 60 struct device *dev; 61 dma_addr_t dma; 62 u32 td_cmd = 0; 63 u16 delay = 0; 64 u16 i; 65 66 /* find existing FDIR VSI */ 67 vsi = NULL; 68 for (i = 0; i < pf->num_alloc_vsi; i++) 69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) 70 vsi = pf->vsi[i]; 71 if (!vsi) 72 return -ENOENT; 73 74 tx_ring = vsi->tx_rings[0]; 75 dev = tx_ring->dev; 76 77 /* we need two descriptors to add/del a filter and we can wait */ 78 do { 79 if (I40E_DESC_UNUSED(tx_ring) > 1) 80 break; 81 msleep_interruptible(1); 82 delay++; 83 } while (delay < I40E_FD_CLEAN_DELAY); 84 85 if (!(I40E_DESC_UNUSED(tx_ring) > 1)) 86 return -EAGAIN; 87 88 dma = dma_map_single(dev, raw_packet, 89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); 90 if (dma_mapping_error(dev, dma)) 91 goto dma_fail; 92 93 /* grab the next descriptor */ 94 i = tx_ring->next_to_use; 95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 96 first = &tx_ring->tx_bi[i]; 97 memset(first, 0, sizeof(struct i40e_tx_buffer)); 98 99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 100 101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 102 I40E_TXD_FLTR_QW0_QINDEX_MASK; 103 104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) & 105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK; 106 107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) & 108 I40E_TXD_FLTR_QW0_PCTYPE_MASK; 109 110 /* Use LAN VSI Id if not programmed by user */ 111 if (fdir_data->dest_vsi == 0) 112 fpt |= (pf->vsi[pf->lan_vsi]->id) << 113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 114 else 115 fpt |= ((u32)fdir_data->dest_vsi << 116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) & 117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK; 118 119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG; 120 121 if (add) 122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 123 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 124 else 125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 126 I40E_TXD_FLTR_QW1_PCMD_SHIFT; 127 128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) & 129 I40E_TXD_FLTR_QW1_DEST_MASK; 130 131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) & 132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK; 133 134 if (fdir_data->cnt_index != 0) { 135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 136 dcc |= ((u32)fdir_data->cnt_index << 137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 139 } 140 141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt); 142 fdir_desc->rsvd = cpu_to_le32(0); 143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc); 144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id); 145 146 /* Now program a dummy descriptor */ 147 i = tx_ring->next_to_use; 148 tx_desc = I40E_TX_DESC(tx_ring, i); 149 tx_buf = &tx_ring->tx_bi[i]; 150 151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; 152 153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); 154 155 /* record length, and DMA address */ 156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); 157 dma_unmap_addr_set(tx_buf, dma, dma); 158 159 tx_desc->buffer_addr = cpu_to_le64(dma); 160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; 161 162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; 163 tx_buf->raw_buf = (void *)raw_packet; 164 165 tx_desc->cmd_type_offset_bsz = 166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); 167 168 /* Force memory writes to complete before letting h/w 169 * know there are new descriptors to fetch. 170 */ 171 wmb(); 172 173 /* Mark the data descriptor to be watched */ 174 first->next_to_watch = tx_desc; 175 176 writel(tx_ring->next_to_use, tx_ring->tail); 177 return 0; 178 179 dma_fail: 180 return -1; 181 } 182 183 #define IP_HEADER_OFFSET 14 184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42 185 /** 186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters 187 * @vsi: pointer to the targeted VSI 188 * @fd_data: the flow director data required for the FDir descriptor 189 * @add: true adds a filter, false removes it 190 * 191 * Returns 0 if the filters were successfully added or removed 192 **/ 193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi, 194 struct i40e_fdir_filter *fd_data, 195 bool add) 196 { 197 struct i40e_pf *pf = vsi->back; 198 struct udphdr *udp; 199 struct iphdr *ip; 200 bool err = false; 201 u8 *raw_packet; 202 int ret; 203 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 204 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0, 205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 206 207 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 208 if (!raw_packet) 209 return -ENOMEM; 210 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN); 211 212 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 213 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET 214 + sizeof(struct iphdr)); 215 216 ip->daddr = fd_data->dst_ip[0]; 217 udp->dest = fd_data->dst_port; 218 ip->saddr = fd_data->src_ip[0]; 219 udp->source = fd_data->src_port; 220 221 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP; 222 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 223 if (ret) { 224 dev_info(&pf->pdev->dev, 225 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 226 fd_data->pctype, fd_data->fd_id, ret); 227 err = true; 228 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 229 if (add) 230 dev_info(&pf->pdev->dev, 231 "Filter OK for PCTYPE %d loc = %d\n", 232 fd_data->pctype, fd_data->fd_id); 233 else 234 dev_info(&pf->pdev->dev, 235 "Filter deleted for PCTYPE %d loc = %d\n", 236 fd_data->pctype, fd_data->fd_id); 237 } 238 return err ? -EOPNOTSUPP : 0; 239 } 240 241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54 242 /** 243 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters 244 * @vsi: pointer to the targeted VSI 245 * @fd_data: the flow director data required for the FDir descriptor 246 * @add: true adds a filter, false removes it 247 * 248 * Returns 0 if the filters were successfully added or removed 249 **/ 250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi, 251 struct i40e_fdir_filter *fd_data, 252 bool add) 253 { 254 struct i40e_pf *pf = vsi->back; 255 struct tcphdr *tcp; 256 struct iphdr *ip; 257 bool err = false; 258 u8 *raw_packet; 259 int ret; 260 /* Dummy packet */ 261 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 262 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0, 263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11, 264 0x0, 0x72, 0, 0, 0, 0}; 265 266 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 267 if (!raw_packet) 268 return -ENOMEM; 269 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN); 270 271 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 272 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET 273 + sizeof(struct iphdr)); 274 275 ip->daddr = fd_data->dst_ip[0]; 276 tcp->dest = fd_data->dst_port; 277 ip->saddr = fd_data->src_ip[0]; 278 tcp->source = fd_data->src_port; 279 280 if (add) { 281 pf->fd_tcp_rule++; 282 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) { 283 if (I40E_DEBUG_FD & pf->hw.debug_mask) 284 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); 285 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED; 286 } 287 } else { 288 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ? 289 (pf->fd_tcp_rule - 1) : 0; 290 if (pf->fd_tcp_rule == 0) { 291 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 292 if (I40E_DEBUG_FD & pf->hw.debug_mask) 293 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n"); 294 } 295 } 296 297 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP; 298 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 299 300 if (ret) { 301 dev_info(&pf->pdev->dev, 302 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 303 fd_data->pctype, fd_data->fd_id, ret); 304 err = true; 305 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 306 if (add) 307 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n", 308 fd_data->pctype, fd_data->fd_id); 309 else 310 dev_info(&pf->pdev->dev, 311 "Filter deleted for PCTYPE %d loc = %d\n", 312 fd_data->pctype, fd_data->fd_id); 313 } 314 315 return err ? -EOPNOTSUPP : 0; 316 } 317 318 /** 319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for 320 * a specific flow spec 321 * @vsi: pointer to the targeted VSI 322 * @fd_data: the flow director data required for the FDir descriptor 323 * @add: true adds a filter, false removes it 324 * 325 * Always returns -EOPNOTSUPP 326 **/ 327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi, 328 struct i40e_fdir_filter *fd_data, 329 bool add) 330 { 331 return -EOPNOTSUPP; 332 } 333 334 #define I40E_IP_DUMMY_PACKET_LEN 34 335 /** 336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for 337 * a specific flow spec 338 * @vsi: pointer to the targeted VSI 339 * @fd_data: the flow director data required for the FDir descriptor 340 * @add: true adds a filter, false removes it 341 * 342 * Returns 0 if the filters were successfully added or removed 343 **/ 344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi, 345 struct i40e_fdir_filter *fd_data, 346 bool add) 347 { 348 struct i40e_pf *pf = vsi->back; 349 struct iphdr *ip; 350 bool err = false; 351 u8 *raw_packet; 352 int ret; 353 int i; 354 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0, 355 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0, 356 0, 0, 0, 0}; 357 358 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; 359 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) { 360 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); 361 if (!raw_packet) 362 return -ENOMEM; 363 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN); 364 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET); 365 366 ip->saddr = fd_data->src_ip[0]; 367 ip->daddr = fd_data->dst_ip[0]; 368 ip->protocol = 0; 369 370 fd_data->pctype = i; 371 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add); 372 373 if (ret) { 374 dev_info(&pf->pdev->dev, 375 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", 376 fd_data->pctype, fd_data->fd_id, ret); 377 err = true; 378 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { 379 if (add) 380 dev_info(&pf->pdev->dev, 381 "Filter OK for PCTYPE %d loc = %d\n", 382 fd_data->pctype, fd_data->fd_id); 383 else 384 dev_info(&pf->pdev->dev, 385 "Filter deleted for PCTYPE %d loc = %d\n", 386 fd_data->pctype, fd_data->fd_id); 387 } 388 } 389 390 return err ? -EOPNOTSUPP : 0; 391 } 392 393 /** 394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter 395 * @vsi: pointer to the targeted VSI 396 * @cmd: command to get or set RX flow classification rules 397 * @add: true adds a filter, false removes it 398 * 399 **/ 400 int i40e_add_del_fdir(struct i40e_vsi *vsi, 401 struct i40e_fdir_filter *input, bool add) 402 { 403 struct i40e_pf *pf = vsi->back; 404 int ret; 405 406 switch (input->flow_type & ~FLOW_EXT) { 407 case TCP_V4_FLOW: 408 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 409 break; 410 case UDP_V4_FLOW: 411 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 412 break; 413 case SCTP_V4_FLOW: 414 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 415 break; 416 case IPV4_FLOW: 417 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 418 break; 419 case IP_USER_FLOW: 420 switch (input->ip4_proto) { 421 case IPPROTO_TCP: 422 ret = i40e_add_del_fdir_tcpv4(vsi, input, add); 423 break; 424 case IPPROTO_UDP: 425 ret = i40e_add_del_fdir_udpv4(vsi, input, add); 426 break; 427 case IPPROTO_SCTP: 428 ret = i40e_add_del_fdir_sctpv4(vsi, input, add); 429 break; 430 default: 431 ret = i40e_add_del_fdir_ipv4(vsi, input, add); 432 break; 433 } 434 break; 435 default: 436 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n", 437 input->flow_type); 438 ret = -EINVAL; 439 } 440 441 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */ 442 return ret; 443 } 444 445 /** 446 * i40e_fd_handle_status - check the Programming Status for FD 447 * @rx_ring: the Rx ring for this descriptor 448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor. 449 * @prog_id: the id originally used for programming 450 * 451 * This is used to verify if the FD programming or invalidation 452 * requested by SW to the HW is successful or not and take actions accordingly. 453 **/ 454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, 455 union i40e_rx_desc *rx_desc, u8 prog_id) 456 { 457 struct i40e_pf *pf = rx_ring->vsi->back; 458 struct pci_dev *pdev = pf->pdev; 459 u32 fcnt_prog, fcnt_avail; 460 u32 error; 461 u64 qw; 462 463 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 464 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> 465 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; 466 467 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { 468 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id); 469 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) || 470 (I40E_DEBUG_FD & pf->hw.debug_mask)) 471 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", 472 pf->fd_inv); 473 474 /* Check if the programming error is for ATR. 475 * If so, auto disable ATR and set a state for 476 * flush in progress. Next time we come here if flush is in 477 * progress do nothing, once flush is complete the state will 478 * be cleared. 479 */ 480 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state)) 481 return; 482 483 pf->fd_add_err++; 484 /* store the current atr filter count */ 485 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); 486 487 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) && 488 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) { 489 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED; 490 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state); 491 } 492 493 /* filter programming failed most likely due to table full */ 494 fcnt_prog = i40e_get_global_fd_count(pf); 495 fcnt_avail = pf->fdir_pf_filter_count; 496 /* If ATR is running fcnt_prog can quickly change, 497 * if we are very close to full, it makes sense to disable 498 * FD ATR/SB and then re-enable it when there is room. 499 */ 500 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { 501 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 502 !(pf->auto_disable_flags & 503 I40E_FLAG_FD_SB_ENABLED)) { 504 if (I40E_DEBUG_FD & pf->hw.debug_mask) 505 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); 506 pf->auto_disable_flags |= 507 I40E_FLAG_FD_SB_ENABLED; 508 } 509 } else { 510 dev_info(&pdev->dev, 511 "FD filter programming failed due to incorrect filter parameters\n"); 512 } 513 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { 514 if (I40E_DEBUG_FD & pf->hw.debug_mask) 515 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", 516 rx_desc->wb.qword0.hi_dword.fd_id); 517 } 518 } 519 520 /** 521 * i40e_unmap_and_free_tx_resource - Release a Tx buffer 522 * @ring: the ring that owns the buffer 523 * @tx_buffer: the buffer to free 524 **/ 525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, 526 struct i40e_tx_buffer *tx_buffer) 527 { 528 if (tx_buffer->skb) { 529 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) 530 kfree(tx_buffer->raw_buf); 531 else 532 dev_kfree_skb_any(tx_buffer->skb); 533 534 if (dma_unmap_len(tx_buffer, len)) 535 dma_unmap_single(ring->dev, 536 dma_unmap_addr(tx_buffer, dma), 537 dma_unmap_len(tx_buffer, len), 538 DMA_TO_DEVICE); 539 } else if (dma_unmap_len(tx_buffer, len)) { 540 dma_unmap_page(ring->dev, 541 dma_unmap_addr(tx_buffer, dma), 542 dma_unmap_len(tx_buffer, len), 543 DMA_TO_DEVICE); 544 } 545 tx_buffer->next_to_watch = NULL; 546 tx_buffer->skb = NULL; 547 dma_unmap_len_set(tx_buffer, len, 0); 548 /* tx_buffer must be completely set up in the transmit path */ 549 } 550 551 /** 552 * i40e_clean_tx_ring - Free any empty Tx buffers 553 * @tx_ring: ring to be cleaned 554 **/ 555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring) 556 { 557 unsigned long bi_size; 558 u16 i; 559 560 /* ring already cleared, nothing to do */ 561 if (!tx_ring->tx_bi) 562 return; 563 564 /* Free all the Tx ring sk_buffs */ 565 for (i = 0; i < tx_ring->count; i++) 566 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); 567 568 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 569 memset(tx_ring->tx_bi, 0, bi_size); 570 571 /* Zero out the descriptor ring */ 572 memset(tx_ring->desc, 0, tx_ring->size); 573 574 tx_ring->next_to_use = 0; 575 tx_ring->next_to_clean = 0; 576 577 if (!tx_ring->netdev) 578 return; 579 580 /* cleanup Tx queue statistics */ 581 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 582 tx_ring->queue_index)); 583 } 584 585 /** 586 * i40e_free_tx_resources - Free Tx resources per queue 587 * @tx_ring: Tx descriptor ring for a specific queue 588 * 589 * Free all transmit software resources 590 **/ 591 void i40e_free_tx_resources(struct i40e_ring *tx_ring) 592 { 593 i40e_clean_tx_ring(tx_ring); 594 kfree(tx_ring->tx_bi); 595 tx_ring->tx_bi = NULL; 596 597 if (tx_ring->desc) { 598 dma_free_coherent(tx_ring->dev, tx_ring->size, 599 tx_ring->desc, tx_ring->dma); 600 tx_ring->desc = NULL; 601 } 602 } 603 604 /** 605 * i40e_get_tx_pending - how many tx descriptors not processed 606 * @tx_ring: the ring of descriptors 607 * 608 * Since there is no access to the ring head register 609 * in XL710, we need to use our local copies 610 **/ 611 u32 i40e_get_tx_pending(struct i40e_ring *ring) 612 { 613 u32 head, tail; 614 615 head = i40e_get_head(ring); 616 tail = readl(ring->tail); 617 618 if (head != tail) 619 return (head < tail) ? 620 tail - head : (tail + ring->count - head); 621 622 return 0; 623 } 624 625 #define WB_STRIDE 0x3 626 627 /** 628 * i40e_clean_tx_irq - Reclaim resources after transmit completes 629 * @tx_ring: tx ring to clean 630 * @budget: how many cleans we're allowed 631 * 632 * Returns true if there's any budget left (e.g. the clean is finished) 633 **/ 634 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget) 635 { 636 u16 i = tx_ring->next_to_clean; 637 struct i40e_tx_buffer *tx_buf; 638 struct i40e_tx_desc *tx_head; 639 struct i40e_tx_desc *tx_desc; 640 unsigned int total_packets = 0; 641 unsigned int total_bytes = 0; 642 643 tx_buf = &tx_ring->tx_bi[i]; 644 tx_desc = I40E_TX_DESC(tx_ring, i); 645 i -= tx_ring->count; 646 647 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); 648 649 do { 650 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 651 652 /* if next_to_watch is not set then there is no work pending */ 653 if (!eop_desc) 654 break; 655 656 /* prevent any other reads prior to eop_desc */ 657 read_barrier_depends(); 658 659 /* we have caught up to head, no work left to do */ 660 if (tx_head == tx_desc) 661 break; 662 663 /* clear next_to_watch to prevent false hangs */ 664 tx_buf->next_to_watch = NULL; 665 666 /* update the statistics for this packet */ 667 total_bytes += tx_buf->bytecount; 668 total_packets += tx_buf->gso_segs; 669 670 /* free the skb */ 671 dev_consume_skb_any(tx_buf->skb); 672 673 /* unmap skb header data */ 674 dma_unmap_single(tx_ring->dev, 675 dma_unmap_addr(tx_buf, dma), 676 dma_unmap_len(tx_buf, len), 677 DMA_TO_DEVICE); 678 679 /* clear tx_buffer data */ 680 tx_buf->skb = NULL; 681 dma_unmap_len_set(tx_buf, len, 0); 682 683 /* unmap remaining buffers */ 684 while (tx_desc != eop_desc) { 685 686 tx_buf++; 687 tx_desc++; 688 i++; 689 if (unlikely(!i)) { 690 i -= tx_ring->count; 691 tx_buf = tx_ring->tx_bi; 692 tx_desc = I40E_TX_DESC(tx_ring, 0); 693 } 694 695 /* unmap any remaining paged data */ 696 if (dma_unmap_len(tx_buf, len)) { 697 dma_unmap_page(tx_ring->dev, 698 dma_unmap_addr(tx_buf, dma), 699 dma_unmap_len(tx_buf, len), 700 DMA_TO_DEVICE); 701 dma_unmap_len_set(tx_buf, len, 0); 702 } 703 } 704 705 /* move us one more past the eop_desc for start of next pkt */ 706 tx_buf++; 707 tx_desc++; 708 i++; 709 if (unlikely(!i)) { 710 i -= tx_ring->count; 711 tx_buf = tx_ring->tx_bi; 712 tx_desc = I40E_TX_DESC(tx_ring, 0); 713 } 714 715 prefetch(tx_desc); 716 717 /* update budget accounting */ 718 budget--; 719 } while (likely(budget)); 720 721 i += tx_ring->count; 722 tx_ring->next_to_clean = i; 723 u64_stats_update_begin(&tx_ring->syncp); 724 tx_ring->stats.bytes += total_bytes; 725 tx_ring->stats.packets += total_packets; 726 u64_stats_update_end(&tx_ring->syncp); 727 tx_ring->q_vector->tx.total_bytes += total_bytes; 728 tx_ring->q_vector->tx.total_packets += total_packets; 729 730 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) { 731 unsigned int j = 0; 732 733 /* check to see if there are < 4 descriptors 734 * waiting to be written back, then kick the hardware to force 735 * them to be written back in case we stay in NAPI. 736 * In this mode on X722 we do not enable Interrupt. 737 */ 738 j = i40e_get_tx_pending(tx_ring); 739 740 if (budget && 741 ((j / (WB_STRIDE + 1)) == 0) && (j != 0) && 742 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) && 743 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count)) 744 tx_ring->arm_wb = true; 745 } 746 747 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev, 748 tx_ring->queue_index), 749 total_packets, total_bytes); 750 751 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 752 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 753 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { 754 /* Make sure that anybody stopping the queue after this 755 * sees the new next_to_clean. 756 */ 757 smp_mb(); 758 if (__netif_subqueue_stopped(tx_ring->netdev, 759 tx_ring->queue_index) && 760 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) { 761 netif_wake_subqueue(tx_ring->netdev, 762 tx_ring->queue_index); 763 ++tx_ring->tx_stats.restart_queue; 764 } 765 } 766 767 return !!budget; 768 } 769 770 /** 771 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors 772 * @vsi: the VSI we care about 773 * @q_vector: the vector on which to force writeback 774 * 775 **/ 776 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) 777 { 778 u16 flags = q_vector->tx.ring[0].flags; 779 780 if (flags & I40E_TXR_FLAGS_WB_ON_ITR) { 781 u32 val; 782 783 if (q_vector->arm_wb_state) 784 return; 785 786 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK; 787 788 wr32(&vsi->back->hw, 789 I40E_PFINT_DYN_CTLN(q_vector->v_idx + 790 vsi->base_vector - 1), 791 val); 792 q_vector->arm_wb_state = true; 793 } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 794 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 795 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ 796 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | 797 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; 798 /* allow 00 to be written to the index */ 799 800 wr32(&vsi->back->hw, 801 I40E_PFINT_DYN_CTLN(q_vector->v_idx + 802 vsi->base_vector - 1), val); 803 } else { 804 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 805 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ 806 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | 807 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; 808 /* allow 00 to be written to the index */ 809 810 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); 811 } 812 } 813 814 /** 815 * i40e_set_new_dynamic_itr - Find new ITR level 816 * @rc: structure containing ring performance data 817 * 818 * Returns true if ITR changed, false if not 819 * 820 * Stores a new ITR value based on packets and byte counts during 821 * the last interrupt. The advantage of per interrupt computation 822 * is faster updates and more accurate ITR for the current traffic 823 * pattern. Constants in this function were computed based on 824 * theoretical maximum wire speed and thresholds were set based on 825 * testing data as well as attempting to minimize response time 826 * while increasing bulk throughput. 827 **/ 828 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc) 829 { 830 enum i40e_latency_range new_latency_range = rc->latency_range; 831 struct i40e_q_vector *qv = rc->ring->q_vector; 832 u32 new_itr = rc->itr; 833 int bytes_per_int; 834 int usecs; 835 836 if (rc->total_packets == 0 || !rc->itr) 837 return false; 838 839 /* simple throttlerate management 840 * 0-10MB/s lowest (50000 ints/s) 841 * 10-20MB/s low (20000 ints/s) 842 * 20-1249MB/s bulk (18000 ints/s) 843 * > 40000 Rx packets per second (8000 ints/s) 844 * 845 * The math works out because the divisor is in 10^(-6) which 846 * turns the bytes/us input value into MB/s values, but 847 * make sure to use usecs, as the register values written 848 * are in 2 usec increments in the ITR registers, and make sure 849 * to use the smoothed values that the countdown timer gives us. 850 */ 851 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START; 852 bytes_per_int = rc->total_bytes / usecs; 853 854 switch (new_latency_range) { 855 case I40E_LOWEST_LATENCY: 856 if (bytes_per_int > 10) 857 new_latency_range = I40E_LOW_LATENCY; 858 break; 859 case I40E_LOW_LATENCY: 860 if (bytes_per_int > 20) 861 new_latency_range = I40E_BULK_LATENCY; 862 else if (bytes_per_int <= 10) 863 new_latency_range = I40E_LOWEST_LATENCY; 864 break; 865 case I40E_BULK_LATENCY: 866 case I40E_ULTRA_LATENCY: 867 default: 868 if (bytes_per_int <= 20) 869 new_latency_range = I40E_LOW_LATENCY; 870 break; 871 } 872 873 /* this is to adjust RX more aggressively when streaming small 874 * packets. The value of 40000 was picked as it is just beyond 875 * what the hardware can receive per second if in low latency 876 * mode. 877 */ 878 #define RX_ULTRA_PACKET_RATE 40000 879 880 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) && 881 (&qv->rx == rc)) 882 new_latency_range = I40E_ULTRA_LATENCY; 883 884 rc->latency_range = new_latency_range; 885 886 switch (new_latency_range) { 887 case I40E_LOWEST_LATENCY: 888 new_itr = I40E_ITR_50K; 889 break; 890 case I40E_LOW_LATENCY: 891 new_itr = I40E_ITR_20K; 892 break; 893 case I40E_BULK_LATENCY: 894 new_itr = I40E_ITR_18K; 895 break; 896 case I40E_ULTRA_LATENCY: 897 new_itr = I40E_ITR_8K; 898 break; 899 default: 900 break; 901 } 902 903 rc->total_bytes = 0; 904 rc->total_packets = 0; 905 906 if (new_itr != rc->itr) { 907 rc->itr = new_itr; 908 return true; 909 } 910 911 return false; 912 } 913 914 /** 915 * i40e_clean_programming_status - clean the programming status descriptor 916 * @rx_ring: the rx ring that has this descriptor 917 * @rx_desc: the rx descriptor written back by HW 918 * 919 * Flow director should handle FD_FILTER_STATUS to check its filter programming 920 * status being successful or not and take actions accordingly. FCoE should 921 * handle its context/filter programming/invalidation status and take actions. 922 * 923 **/ 924 static void i40e_clean_programming_status(struct i40e_ring *rx_ring, 925 union i40e_rx_desc *rx_desc) 926 { 927 u64 qw; 928 u8 id; 929 930 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 931 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> 932 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; 933 934 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) 935 i40e_fd_handle_status(rx_ring, rx_desc, id); 936 #ifdef I40E_FCOE 937 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) || 938 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS)) 939 i40e_fcoe_handle_status(rx_ring, rx_desc, id); 940 #endif 941 } 942 943 /** 944 * i40e_setup_tx_descriptors - Allocate the Tx descriptors 945 * @tx_ring: the tx ring to set up 946 * 947 * Return 0 on success, negative on error 948 **/ 949 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) 950 { 951 struct device *dev = tx_ring->dev; 952 int bi_size; 953 954 if (!dev) 955 return -ENOMEM; 956 957 /* warn if we are about to overwrite the pointer */ 958 WARN_ON(tx_ring->tx_bi); 959 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; 960 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); 961 if (!tx_ring->tx_bi) 962 goto err; 963 964 /* round up to nearest 4K */ 965 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); 966 /* add u32 for head writeback, align after this takes care of 967 * guaranteeing this is at least one cache line in size 968 */ 969 tx_ring->size += sizeof(u32); 970 tx_ring->size = ALIGN(tx_ring->size, 4096); 971 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 972 &tx_ring->dma, GFP_KERNEL); 973 if (!tx_ring->desc) { 974 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", 975 tx_ring->size); 976 goto err; 977 } 978 979 tx_ring->next_to_use = 0; 980 tx_ring->next_to_clean = 0; 981 return 0; 982 983 err: 984 kfree(tx_ring->tx_bi); 985 tx_ring->tx_bi = NULL; 986 return -ENOMEM; 987 } 988 989 /** 990 * i40e_clean_rx_ring - Free Rx buffers 991 * @rx_ring: ring to be cleaned 992 **/ 993 void i40e_clean_rx_ring(struct i40e_ring *rx_ring) 994 { 995 struct device *dev = rx_ring->dev; 996 struct i40e_rx_buffer *rx_bi; 997 unsigned long bi_size; 998 u16 i; 999 1000 /* ring already cleared, nothing to do */ 1001 if (!rx_ring->rx_bi) 1002 return; 1003 1004 if (ring_is_ps_enabled(rx_ring)) { 1005 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count; 1006 1007 rx_bi = &rx_ring->rx_bi[0]; 1008 if (rx_bi->hdr_buf) { 1009 dma_free_coherent(dev, 1010 bufsz, 1011 rx_bi->hdr_buf, 1012 rx_bi->dma); 1013 for (i = 0; i < rx_ring->count; i++) { 1014 rx_bi = &rx_ring->rx_bi[i]; 1015 rx_bi->dma = 0; 1016 rx_bi->hdr_buf = NULL; 1017 } 1018 } 1019 } 1020 /* Free all the Rx ring sk_buffs */ 1021 for (i = 0; i < rx_ring->count; i++) { 1022 rx_bi = &rx_ring->rx_bi[i]; 1023 if (rx_bi->dma) { 1024 dma_unmap_single(dev, 1025 rx_bi->dma, 1026 rx_ring->rx_buf_len, 1027 DMA_FROM_DEVICE); 1028 rx_bi->dma = 0; 1029 } 1030 if (rx_bi->skb) { 1031 dev_kfree_skb(rx_bi->skb); 1032 rx_bi->skb = NULL; 1033 } 1034 if (rx_bi->page) { 1035 if (rx_bi->page_dma) { 1036 dma_unmap_page(dev, 1037 rx_bi->page_dma, 1038 PAGE_SIZE / 2, 1039 DMA_FROM_DEVICE); 1040 rx_bi->page_dma = 0; 1041 } 1042 __free_page(rx_bi->page); 1043 rx_bi->page = NULL; 1044 rx_bi->page_offset = 0; 1045 } 1046 } 1047 1048 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1049 memset(rx_ring->rx_bi, 0, bi_size); 1050 1051 /* Zero out the descriptor ring */ 1052 memset(rx_ring->desc, 0, rx_ring->size); 1053 1054 rx_ring->next_to_clean = 0; 1055 rx_ring->next_to_use = 0; 1056 } 1057 1058 /** 1059 * i40e_free_rx_resources - Free Rx resources 1060 * @rx_ring: ring to clean the resources from 1061 * 1062 * Free all receive software resources 1063 **/ 1064 void i40e_free_rx_resources(struct i40e_ring *rx_ring) 1065 { 1066 i40e_clean_rx_ring(rx_ring); 1067 kfree(rx_ring->rx_bi); 1068 rx_ring->rx_bi = NULL; 1069 1070 if (rx_ring->desc) { 1071 dma_free_coherent(rx_ring->dev, rx_ring->size, 1072 rx_ring->desc, rx_ring->dma); 1073 rx_ring->desc = NULL; 1074 } 1075 } 1076 1077 /** 1078 * i40e_alloc_rx_headers - allocate rx header buffers 1079 * @rx_ring: ring to alloc buffers 1080 * 1081 * Allocate rx header buffers for the entire ring. As these are static, 1082 * this is only called when setting up a new ring. 1083 **/ 1084 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring) 1085 { 1086 struct device *dev = rx_ring->dev; 1087 struct i40e_rx_buffer *rx_bi; 1088 dma_addr_t dma; 1089 void *buffer; 1090 int buf_size; 1091 int i; 1092 1093 if (rx_ring->rx_bi[0].hdr_buf) 1094 return; 1095 /* Make sure the buffers don't cross cache line boundaries. */ 1096 buf_size = ALIGN(rx_ring->rx_hdr_len, 256); 1097 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count, 1098 &dma, GFP_KERNEL); 1099 if (!buffer) 1100 return; 1101 for (i = 0; i < rx_ring->count; i++) { 1102 rx_bi = &rx_ring->rx_bi[i]; 1103 rx_bi->dma = dma + (i * buf_size); 1104 rx_bi->hdr_buf = buffer + (i * buf_size); 1105 } 1106 } 1107 1108 /** 1109 * i40e_setup_rx_descriptors - Allocate Rx descriptors 1110 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 1111 * 1112 * Returns 0 on success, negative on failure 1113 **/ 1114 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) 1115 { 1116 struct device *dev = rx_ring->dev; 1117 int bi_size; 1118 1119 /* warn if we are about to overwrite the pointer */ 1120 WARN_ON(rx_ring->rx_bi); 1121 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; 1122 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); 1123 if (!rx_ring->rx_bi) 1124 goto err; 1125 1126 u64_stats_init(&rx_ring->syncp); 1127 1128 /* Round up to nearest 4K */ 1129 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring) 1130 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc) 1131 : rx_ring->count * sizeof(union i40e_32byte_rx_desc); 1132 rx_ring->size = ALIGN(rx_ring->size, 4096); 1133 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 1134 &rx_ring->dma, GFP_KERNEL); 1135 1136 if (!rx_ring->desc) { 1137 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", 1138 rx_ring->size); 1139 goto err; 1140 } 1141 1142 rx_ring->next_to_clean = 0; 1143 rx_ring->next_to_use = 0; 1144 1145 return 0; 1146 err: 1147 kfree(rx_ring->rx_bi); 1148 rx_ring->rx_bi = NULL; 1149 return -ENOMEM; 1150 } 1151 1152 /** 1153 * i40e_release_rx_desc - Store the new tail and head values 1154 * @rx_ring: ring to bump 1155 * @val: new head index 1156 **/ 1157 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) 1158 { 1159 rx_ring->next_to_use = val; 1160 /* Force memory writes to complete before letting h/w 1161 * know there are new descriptors to fetch. (Only 1162 * applicable for weak-ordered memory model archs, 1163 * such as IA-64). 1164 */ 1165 wmb(); 1166 writel(val, rx_ring->tail); 1167 } 1168 1169 /** 1170 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split 1171 * @rx_ring: ring to place buffers on 1172 * @cleaned_count: number of buffers to replace 1173 **/ 1174 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count) 1175 { 1176 u16 i = rx_ring->next_to_use; 1177 union i40e_rx_desc *rx_desc; 1178 struct i40e_rx_buffer *bi; 1179 1180 /* do nothing if no valid netdev defined */ 1181 if (!rx_ring->netdev || !cleaned_count) 1182 return; 1183 1184 while (cleaned_count--) { 1185 rx_desc = I40E_RX_DESC(rx_ring, i); 1186 bi = &rx_ring->rx_bi[i]; 1187 1188 if (bi->skb) /* desc is in use */ 1189 goto no_buffers; 1190 if (!bi->page) { 1191 bi->page = alloc_page(GFP_ATOMIC); 1192 if (!bi->page) { 1193 rx_ring->rx_stats.alloc_page_failed++; 1194 goto no_buffers; 1195 } 1196 } 1197 1198 if (!bi->page_dma) { 1199 /* use a half page if we're re-using */ 1200 bi->page_offset ^= PAGE_SIZE / 2; 1201 bi->page_dma = dma_map_page(rx_ring->dev, 1202 bi->page, 1203 bi->page_offset, 1204 PAGE_SIZE / 2, 1205 DMA_FROM_DEVICE); 1206 if (dma_mapping_error(rx_ring->dev, 1207 bi->page_dma)) { 1208 rx_ring->rx_stats.alloc_page_failed++; 1209 bi->page_dma = 0; 1210 goto no_buffers; 1211 } 1212 } 1213 1214 dma_sync_single_range_for_device(rx_ring->dev, 1215 bi->dma, 1216 0, 1217 rx_ring->rx_hdr_len, 1218 DMA_FROM_DEVICE); 1219 /* Refresh the desc even if buffer_addrs didn't change 1220 * because each write-back erases this info. 1221 */ 1222 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma); 1223 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma); 1224 i++; 1225 if (i == rx_ring->count) 1226 i = 0; 1227 } 1228 1229 no_buffers: 1230 if (rx_ring->next_to_use != i) 1231 i40e_release_rx_desc(rx_ring, i); 1232 } 1233 1234 /** 1235 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer 1236 * @rx_ring: ring to place buffers on 1237 * @cleaned_count: number of buffers to replace 1238 **/ 1239 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count) 1240 { 1241 u16 i = rx_ring->next_to_use; 1242 union i40e_rx_desc *rx_desc; 1243 struct i40e_rx_buffer *bi; 1244 struct sk_buff *skb; 1245 1246 /* do nothing if no valid netdev defined */ 1247 if (!rx_ring->netdev || !cleaned_count) 1248 return; 1249 1250 while (cleaned_count--) { 1251 rx_desc = I40E_RX_DESC(rx_ring, i); 1252 bi = &rx_ring->rx_bi[i]; 1253 skb = bi->skb; 1254 1255 if (!skb) { 1256 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 1257 rx_ring->rx_buf_len); 1258 if (!skb) { 1259 rx_ring->rx_stats.alloc_buff_failed++; 1260 goto no_buffers; 1261 } 1262 /* initialize queue mapping */ 1263 skb_record_rx_queue(skb, rx_ring->queue_index); 1264 bi->skb = skb; 1265 } 1266 1267 if (!bi->dma) { 1268 bi->dma = dma_map_single(rx_ring->dev, 1269 skb->data, 1270 rx_ring->rx_buf_len, 1271 DMA_FROM_DEVICE); 1272 if (dma_mapping_error(rx_ring->dev, bi->dma)) { 1273 rx_ring->rx_stats.alloc_buff_failed++; 1274 bi->dma = 0; 1275 goto no_buffers; 1276 } 1277 } 1278 1279 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); 1280 rx_desc->read.hdr_addr = 0; 1281 i++; 1282 if (i == rx_ring->count) 1283 i = 0; 1284 } 1285 1286 no_buffers: 1287 if (rx_ring->next_to_use != i) 1288 i40e_release_rx_desc(rx_ring, i); 1289 } 1290 1291 /** 1292 * i40e_receive_skb - Send a completed packet up the stack 1293 * @rx_ring: rx ring in play 1294 * @skb: packet to send up 1295 * @vlan_tag: vlan tag for packet 1296 **/ 1297 static void i40e_receive_skb(struct i40e_ring *rx_ring, 1298 struct sk_buff *skb, u16 vlan_tag) 1299 { 1300 struct i40e_q_vector *q_vector = rx_ring->q_vector; 1301 1302 if (vlan_tag & VLAN_VID_MASK) 1303 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1304 1305 napi_gro_receive(&q_vector->napi, skb); 1306 } 1307 1308 /** 1309 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum 1310 * @vsi: the VSI we care about 1311 * @skb: skb currently being received and modified 1312 * @rx_status: status value of last descriptor in packet 1313 * @rx_error: error value of last descriptor in packet 1314 * @rx_ptype: ptype value of last descriptor in packet 1315 **/ 1316 static inline void i40e_rx_checksum(struct i40e_vsi *vsi, 1317 struct sk_buff *skb, 1318 u32 rx_status, 1319 u32 rx_error, 1320 u16 rx_ptype) 1321 { 1322 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype); 1323 bool ipv4 = false, ipv6 = false; 1324 bool ipv4_tunnel, ipv6_tunnel; 1325 __wsum rx_udp_csum; 1326 struct iphdr *iph; 1327 __sum16 csum; 1328 1329 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) && 1330 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4); 1331 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) && 1332 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4); 1333 1334 skb->ip_summed = CHECKSUM_NONE; 1335 1336 /* Rx csum enabled and ip headers found? */ 1337 if (!(vsi->netdev->features & NETIF_F_RXCSUM)) 1338 return; 1339 1340 /* did the hardware decode the packet and checksum? */ 1341 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) 1342 return; 1343 1344 /* both known and outer_ip must be set for the below code to work */ 1345 if (!(decoded.known && decoded.outer_ip)) 1346 return; 1347 1348 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1349 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4) 1350 ipv4 = true; 1351 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1352 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6) 1353 ipv6 = true; 1354 1355 if (ipv4 && 1356 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | 1357 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) 1358 goto checksum_fail; 1359 1360 /* likely incorrect csum if alternate IP extension headers found */ 1361 if (ipv6 && 1362 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) 1363 /* don't increment checksum err here, non-fatal err */ 1364 return; 1365 1366 /* there was some L4 error, count error and punt packet to the stack */ 1367 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) 1368 goto checksum_fail; 1369 1370 /* handle packets that were not able to be checksummed due 1371 * to arrival speed, in this case the stack can compute 1372 * the csum. 1373 */ 1374 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) 1375 return; 1376 1377 /* If VXLAN traffic has an outer UDPv4 checksum we need to check 1378 * it in the driver, hardware does not do it for us. 1379 * Since L3L4P bit was set we assume a valid IHL value (>=5) 1380 * so the total length of IPv4 header is IHL*4 bytes 1381 * The UDP_0 bit *may* bet set if the *inner* header is UDP 1382 */ 1383 if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) && 1384 (ipv4_tunnel)) { 1385 skb->transport_header = skb->mac_header + 1386 sizeof(struct ethhdr) + 1387 (ip_hdr(skb)->ihl * 4); 1388 1389 /* Add 4 bytes for VLAN tagged packets */ 1390 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) || 1391 skb->protocol == htons(ETH_P_8021AD)) 1392 ? VLAN_HLEN : 0; 1393 1394 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) && 1395 (udp_hdr(skb)->check != 0)) { 1396 rx_udp_csum = udp_csum(skb); 1397 iph = ip_hdr(skb); 1398 csum = csum_tcpudp_magic( 1399 iph->saddr, iph->daddr, 1400 (skb->len - skb_transport_offset(skb)), 1401 IPPROTO_UDP, rx_udp_csum); 1402 1403 if (udp_hdr(skb)->check != csum) 1404 goto checksum_fail; 1405 1406 } /* else its GRE and so no outer UDP header */ 1407 } 1408 1409 skb->ip_summed = CHECKSUM_UNNECESSARY; 1410 skb->csum_level = ipv4_tunnel || ipv6_tunnel; 1411 1412 return; 1413 1414 checksum_fail: 1415 vsi->back->hw_csum_rx_error++; 1416 } 1417 1418 /** 1419 * i40e_rx_hash - returns the hash value from the Rx descriptor 1420 * @ring: descriptor ring 1421 * @rx_desc: specific descriptor 1422 **/ 1423 static inline u32 i40e_rx_hash(struct i40e_ring *ring, 1424 union i40e_rx_desc *rx_desc) 1425 { 1426 const __le64 rss_mask = 1427 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << 1428 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); 1429 1430 if ((ring->netdev->features & NETIF_F_RXHASH) && 1431 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) 1432 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); 1433 else 1434 return 0; 1435 } 1436 1437 /** 1438 * i40e_ptype_to_hash - get a hash type 1439 * @ptype: the ptype value from the descriptor 1440 * 1441 * Returns a hash type to be used by skb_set_hash 1442 **/ 1443 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype) 1444 { 1445 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); 1446 1447 if (!decoded.known) 1448 return PKT_HASH_TYPE_NONE; 1449 1450 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1451 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) 1452 return PKT_HASH_TYPE_L4; 1453 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && 1454 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) 1455 return PKT_HASH_TYPE_L3; 1456 else 1457 return PKT_HASH_TYPE_L2; 1458 } 1459 1460 /** 1461 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split 1462 * @rx_ring: rx ring to clean 1463 * @budget: how many cleans we're allowed 1464 * 1465 * Returns true if there's any budget left (e.g. the clean is finished) 1466 **/ 1467 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget) 1468 { 1469 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1470 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo; 1471 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 1472 const int current_node = numa_mem_id(); 1473 struct i40e_vsi *vsi = rx_ring->vsi; 1474 u16 i = rx_ring->next_to_clean; 1475 union i40e_rx_desc *rx_desc; 1476 u32 rx_error, rx_status; 1477 u8 rx_ptype; 1478 u64 qword; 1479 1480 if (budget <= 0) 1481 return 0; 1482 1483 do { 1484 struct i40e_rx_buffer *rx_bi; 1485 struct sk_buff *skb; 1486 u16 vlan_tag; 1487 /* return some buffers to hardware, one at a time is too slow */ 1488 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 1489 i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count); 1490 cleaned_count = 0; 1491 } 1492 1493 i = rx_ring->next_to_clean; 1494 rx_desc = I40E_RX_DESC(rx_ring, i); 1495 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1496 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1497 I40E_RXD_QW1_STATUS_SHIFT; 1498 1499 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) 1500 break; 1501 1502 /* This memory barrier is needed to keep us from reading 1503 * any other fields out of the rx_desc until we know the 1504 * DD bit is set. 1505 */ 1506 dma_rmb(); 1507 if (i40e_rx_is_programming_status(qword)) { 1508 i40e_clean_programming_status(rx_ring, rx_desc); 1509 I40E_RX_INCREMENT(rx_ring, i); 1510 continue; 1511 } 1512 rx_bi = &rx_ring->rx_bi[i]; 1513 skb = rx_bi->skb; 1514 if (likely(!skb)) { 1515 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 1516 rx_ring->rx_hdr_len); 1517 if (!skb) { 1518 rx_ring->rx_stats.alloc_buff_failed++; 1519 break; 1520 } 1521 1522 /* initialize queue mapping */ 1523 skb_record_rx_queue(skb, rx_ring->queue_index); 1524 /* we are reusing so sync this buffer for CPU use */ 1525 dma_sync_single_range_for_cpu(rx_ring->dev, 1526 rx_bi->dma, 1527 0, 1528 rx_ring->rx_hdr_len, 1529 DMA_FROM_DEVICE); 1530 } 1531 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 1532 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 1533 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >> 1534 I40E_RXD_QW1_LENGTH_HBUF_SHIFT; 1535 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >> 1536 I40E_RXD_QW1_LENGTH_SPH_SHIFT; 1537 1538 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1539 I40E_RXD_QW1_ERROR_SHIFT; 1540 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1541 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1542 1543 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1544 I40E_RXD_QW1_PTYPE_SHIFT; 1545 prefetch(rx_bi->page); 1546 rx_bi->skb = NULL; 1547 cleaned_count++; 1548 if (rx_hbo || rx_sph) { 1549 int len; 1550 1551 if (rx_hbo) 1552 len = I40E_RX_HDR_SIZE; 1553 else 1554 len = rx_header_len; 1555 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len); 1556 } else if (skb->len == 0) { 1557 int len; 1558 1559 len = (rx_packet_len > skb_headlen(skb) ? 1560 skb_headlen(skb) : rx_packet_len); 1561 memcpy(__skb_put(skb, len), 1562 rx_bi->page + rx_bi->page_offset, 1563 len); 1564 rx_bi->page_offset += len; 1565 rx_packet_len -= len; 1566 } 1567 1568 /* Get the rest of the data if this was a header split */ 1569 if (rx_packet_len) { 1570 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 1571 rx_bi->page, 1572 rx_bi->page_offset, 1573 rx_packet_len); 1574 1575 skb->len += rx_packet_len; 1576 skb->data_len += rx_packet_len; 1577 skb->truesize += rx_packet_len; 1578 1579 if ((page_count(rx_bi->page) == 1) && 1580 (page_to_nid(rx_bi->page) == current_node)) 1581 get_page(rx_bi->page); 1582 else 1583 rx_bi->page = NULL; 1584 1585 dma_unmap_page(rx_ring->dev, 1586 rx_bi->page_dma, 1587 PAGE_SIZE / 2, 1588 DMA_FROM_DEVICE); 1589 rx_bi->page_dma = 0; 1590 } 1591 I40E_RX_INCREMENT(rx_ring, i); 1592 1593 if (unlikely( 1594 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { 1595 struct i40e_rx_buffer *next_buffer; 1596 1597 next_buffer = &rx_ring->rx_bi[i]; 1598 next_buffer->skb = skb; 1599 rx_ring->rx_stats.non_eop_descs++; 1600 continue; 1601 } 1602 1603 /* ERR_MASK will only have valid bits if EOP set */ 1604 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { 1605 dev_kfree_skb_any(skb); 1606 continue; 1607 } 1608 1609 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc), 1610 i40e_ptype_to_hash(rx_ptype)); 1611 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) { 1612 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status & 1613 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1614 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT); 1615 rx_ring->last_rx_timestamp = jiffies; 1616 } 1617 1618 /* probably a little skewed due to removing CRC */ 1619 total_rx_bytes += skb->len; 1620 total_rx_packets++; 1621 1622 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1623 1624 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); 1625 1626 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) 1627 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) 1628 : 0; 1629 #ifdef I40E_FCOE 1630 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) { 1631 dev_kfree_skb_any(skb); 1632 continue; 1633 } 1634 #endif 1635 i40e_receive_skb(rx_ring, skb, vlan_tag); 1636 1637 rx_desc->wb.qword1.status_error_len = 0; 1638 1639 } while (likely(total_rx_packets < budget)); 1640 1641 u64_stats_update_begin(&rx_ring->syncp); 1642 rx_ring->stats.packets += total_rx_packets; 1643 rx_ring->stats.bytes += total_rx_bytes; 1644 u64_stats_update_end(&rx_ring->syncp); 1645 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1646 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1647 1648 return total_rx_packets; 1649 } 1650 1651 /** 1652 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer 1653 * @rx_ring: rx ring to clean 1654 * @budget: how many cleans we're allowed 1655 * 1656 * Returns number of packets cleaned 1657 **/ 1658 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget) 1659 { 1660 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1661 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); 1662 struct i40e_vsi *vsi = rx_ring->vsi; 1663 union i40e_rx_desc *rx_desc; 1664 u32 rx_error, rx_status; 1665 u16 rx_packet_len; 1666 u8 rx_ptype; 1667 u64 qword; 1668 u16 i; 1669 1670 do { 1671 struct i40e_rx_buffer *rx_bi; 1672 struct sk_buff *skb; 1673 u16 vlan_tag; 1674 /* return some buffers to hardware, one at a time is too slow */ 1675 if (cleaned_count >= I40E_RX_BUFFER_WRITE) { 1676 i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count); 1677 cleaned_count = 0; 1678 } 1679 1680 i = rx_ring->next_to_clean; 1681 rx_desc = I40E_RX_DESC(rx_ring, i); 1682 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); 1683 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> 1684 I40E_RXD_QW1_STATUS_SHIFT; 1685 1686 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT))) 1687 break; 1688 1689 /* This memory barrier is needed to keep us from reading 1690 * any other fields out of the rx_desc until we know the 1691 * DD bit is set. 1692 */ 1693 dma_rmb(); 1694 1695 if (i40e_rx_is_programming_status(qword)) { 1696 i40e_clean_programming_status(rx_ring, rx_desc); 1697 I40E_RX_INCREMENT(rx_ring, i); 1698 continue; 1699 } 1700 rx_bi = &rx_ring->rx_bi[i]; 1701 skb = rx_bi->skb; 1702 prefetch(skb->data); 1703 1704 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> 1705 I40E_RXD_QW1_LENGTH_PBUF_SHIFT; 1706 1707 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> 1708 I40E_RXD_QW1_ERROR_SHIFT; 1709 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT); 1710 1711 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> 1712 I40E_RXD_QW1_PTYPE_SHIFT; 1713 rx_bi->skb = NULL; 1714 cleaned_count++; 1715 1716 /* Get the header and possibly the whole packet 1717 * If this is an skb from previous receive dma will be 0 1718 */ 1719 skb_put(skb, rx_packet_len); 1720 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len, 1721 DMA_FROM_DEVICE); 1722 rx_bi->dma = 0; 1723 1724 I40E_RX_INCREMENT(rx_ring, i); 1725 1726 if (unlikely( 1727 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) { 1728 rx_ring->rx_stats.non_eop_descs++; 1729 continue; 1730 } 1731 1732 /* ERR_MASK will only have valid bits if EOP set */ 1733 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) { 1734 dev_kfree_skb_any(skb); 1735 continue; 1736 } 1737 1738 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc), 1739 i40e_ptype_to_hash(rx_ptype)); 1740 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) { 1741 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status & 1742 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> 1743 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT); 1744 rx_ring->last_rx_timestamp = jiffies; 1745 } 1746 1747 /* probably a little skewed due to removing CRC */ 1748 total_rx_bytes += skb->len; 1749 total_rx_packets++; 1750 1751 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1752 1753 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); 1754 1755 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) 1756 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) 1757 : 0; 1758 #ifdef I40E_FCOE 1759 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) { 1760 dev_kfree_skb_any(skb); 1761 continue; 1762 } 1763 #endif 1764 i40e_receive_skb(rx_ring, skb, vlan_tag); 1765 1766 rx_desc->wb.qword1.status_error_len = 0; 1767 } while (likely(total_rx_packets < budget)); 1768 1769 u64_stats_update_begin(&rx_ring->syncp); 1770 rx_ring->stats.packets += total_rx_packets; 1771 rx_ring->stats.bytes += total_rx_bytes; 1772 u64_stats_update_end(&rx_ring->syncp); 1773 rx_ring->q_vector->rx.total_packets += total_rx_packets; 1774 rx_ring->q_vector->rx.total_bytes += total_rx_bytes; 1775 1776 return total_rx_packets; 1777 } 1778 1779 static u32 i40e_buildreg_itr(const int type, const u16 itr) 1780 { 1781 u32 val; 1782 1783 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | 1784 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | 1785 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | 1786 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT); 1787 1788 return val; 1789 } 1790 1791 /* a small macro to shorten up some long lines */ 1792 #define INTREG I40E_PFINT_DYN_CTLN 1793 1794 /** 1795 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt 1796 * @vsi: the VSI we care about 1797 * @q_vector: q_vector for which itr is being updated and interrupt enabled 1798 * 1799 **/ 1800 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, 1801 struct i40e_q_vector *q_vector) 1802 { 1803 struct i40e_hw *hw = &vsi->back->hw; 1804 bool rx = false, tx = false; 1805 u32 rxval, txval; 1806 int vector; 1807 1808 vector = (q_vector->v_idx + vsi->base_vector); 1809 1810 /* avoid dynamic calculation if in countdown mode OR if 1811 * all dynamic is disabled 1812 */ 1813 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0); 1814 1815 if (q_vector->itr_countdown > 0 || 1816 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) && 1817 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) { 1818 goto enable_int; 1819 } 1820 1821 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) { 1822 rx = i40e_set_new_dynamic_itr(&q_vector->rx); 1823 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr); 1824 } 1825 1826 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) { 1827 tx = i40e_set_new_dynamic_itr(&q_vector->tx); 1828 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr); 1829 } 1830 1831 if (rx || tx) { 1832 /* get the higher of the two ITR adjustments and 1833 * use the same value for both ITR registers 1834 * when in adaptive mode (Rx and/or Tx) 1835 */ 1836 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr); 1837 1838 q_vector->tx.itr = q_vector->rx.itr = itr; 1839 txval = i40e_buildreg_itr(I40E_TX_ITR, itr); 1840 tx = true; 1841 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr); 1842 rx = true; 1843 } 1844 1845 /* only need to enable the interrupt once, but need 1846 * to possibly update both ITR values 1847 */ 1848 if (rx) { 1849 /* set the INTENA_MSK_MASK so that this first write 1850 * won't actually enable the interrupt, instead just 1851 * updating the ITR (it's bit 31 PF and VF) 1852 */ 1853 rxval |= BIT(31); 1854 /* don't check _DOWN because interrupt isn't being enabled */ 1855 wr32(hw, INTREG(vector - 1), rxval); 1856 } 1857 1858 enable_int: 1859 if (!test_bit(__I40E_DOWN, &vsi->state)) 1860 wr32(hw, INTREG(vector - 1), txval); 1861 1862 if (q_vector->itr_countdown) 1863 q_vector->itr_countdown--; 1864 else 1865 q_vector->itr_countdown = ITR_COUNTDOWN_START; 1866 1867 } 1868 1869 /** 1870 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine 1871 * @napi: napi struct with our devices info in it 1872 * @budget: amount of work driver is allowed to do this pass, in packets 1873 * 1874 * This function will clean all queues associated with a q_vector. 1875 * 1876 * Returns the amount of work done 1877 **/ 1878 int i40e_napi_poll(struct napi_struct *napi, int budget) 1879 { 1880 struct i40e_q_vector *q_vector = 1881 container_of(napi, struct i40e_q_vector, napi); 1882 struct i40e_vsi *vsi = q_vector->vsi; 1883 struct i40e_ring *ring; 1884 bool clean_complete = true; 1885 bool arm_wb = false; 1886 int budget_per_ring; 1887 int work_done = 0; 1888 1889 if (test_bit(__I40E_DOWN, &vsi->state)) { 1890 napi_complete(napi); 1891 return 0; 1892 } 1893 1894 /* Since the actual Tx work is minimal, we can give the Tx a larger 1895 * budget and be more aggressive about cleaning up the Tx descriptors. 1896 */ 1897 i40e_for_each_ring(ring, q_vector->tx) { 1898 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit); 1899 arm_wb |= ring->arm_wb; 1900 ring->arm_wb = false; 1901 } 1902 1903 /* Handle case where we are called by netpoll with a budget of 0 */ 1904 if (budget <= 0) 1905 goto tx_only; 1906 1907 /* We attempt to distribute budget to each Rx queue fairly, but don't 1908 * allow the budget to go below 1 because that would exit polling early. 1909 */ 1910 budget_per_ring = max(budget/q_vector->num_ringpairs, 1); 1911 1912 i40e_for_each_ring(ring, q_vector->rx) { 1913 int cleaned; 1914 1915 if (ring_is_ps_enabled(ring)) 1916 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring); 1917 else 1918 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring); 1919 1920 work_done += cleaned; 1921 /* if we didn't clean as many as budgeted, we must be done */ 1922 clean_complete &= (budget_per_ring != cleaned); 1923 } 1924 1925 /* If work not completed, return budget and polling will return */ 1926 if (!clean_complete) { 1927 tx_only: 1928 if (arm_wb) 1929 i40e_force_wb(vsi, q_vector); 1930 return budget; 1931 } 1932 1933 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR) 1934 q_vector->arm_wb_state = false; 1935 1936 /* Work is done so exit the polling mode and re-enable the interrupt */ 1937 napi_complete_done(napi, work_done); 1938 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { 1939 i40e_update_enable_itr(vsi, q_vector); 1940 } else { /* Legacy mode */ 1941 struct i40e_hw *hw = &vsi->back->hw; 1942 /* We re-enable the queue 0 cause, but 1943 * don't worry about dynamic_enable 1944 * because we left it on for the other 1945 * possible interrupts during napi 1946 */ 1947 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) | 1948 I40E_QINT_RQCTL_CAUSE_ENA_MASK; 1949 1950 wr32(hw, I40E_QINT_RQCTL(0), qval); 1951 qval = rd32(hw, I40E_QINT_TQCTL(0)) | 1952 I40E_QINT_TQCTL_CAUSE_ENA_MASK; 1953 wr32(hw, I40E_QINT_TQCTL(0), qval); 1954 i40e_irq_dynamic_enable_icr0(vsi->back); 1955 } 1956 return 0; 1957 } 1958 1959 /** 1960 * i40e_atr - Add a Flow Director ATR filter 1961 * @tx_ring: ring to add programming descriptor to 1962 * @skb: send buffer 1963 * @tx_flags: send tx flags 1964 * @protocol: wire protocol 1965 **/ 1966 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, 1967 u32 tx_flags, __be16 protocol) 1968 { 1969 struct i40e_filter_program_desc *fdir_desc; 1970 struct i40e_pf *pf = tx_ring->vsi->back; 1971 union { 1972 unsigned char *network; 1973 struct iphdr *ipv4; 1974 struct ipv6hdr *ipv6; 1975 } hdr; 1976 struct tcphdr *th; 1977 unsigned int hlen; 1978 u32 flex_ptype, dtype_cmd; 1979 u16 i; 1980 1981 /* make sure ATR is enabled */ 1982 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) 1983 return; 1984 1985 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) 1986 return; 1987 1988 /* if sampling is disabled do nothing */ 1989 if (!tx_ring->atr_sample_rate) 1990 return; 1991 1992 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) 1993 return; 1994 1995 if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) { 1996 /* snag network header to get L4 type and address */ 1997 hdr.network = skb_network_header(skb); 1998 1999 /* Currently only IPv4/IPv6 with TCP is supported 2000 * access ihl as u8 to avoid unaligned access on ia64 2001 */ 2002 if (tx_flags & I40E_TX_FLAGS_IPV4) 2003 hlen = (hdr.network[0] & 0x0F) << 2; 2004 else if (protocol == htons(ETH_P_IPV6)) 2005 hlen = sizeof(struct ipv6hdr); 2006 else 2007 return; 2008 } else { 2009 hdr.network = skb_inner_network_header(skb); 2010 hlen = skb_inner_network_header_len(skb); 2011 } 2012 2013 /* Currently only IPv4/IPv6 with TCP is supported 2014 * Note: tx_flags gets modified to reflect inner protocols in 2015 * tx_enable_csum function if encap is enabled. 2016 */ 2017 if ((tx_flags & I40E_TX_FLAGS_IPV4) && 2018 (hdr.ipv4->protocol != IPPROTO_TCP)) 2019 return; 2020 else if ((tx_flags & I40E_TX_FLAGS_IPV6) && 2021 (hdr.ipv6->nexthdr != IPPROTO_TCP)) 2022 return; 2023 2024 th = (struct tcphdr *)(hdr.network + hlen); 2025 2026 /* Due to lack of space, no more new filters can be programmed */ 2027 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) 2028 return; 2029 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) { 2030 /* HW ATR eviction will take care of removing filters on FIN 2031 * and RST packets. 2032 */ 2033 if (th->fin || th->rst) 2034 return; 2035 } 2036 2037 tx_ring->atr_count++; 2038 2039 /* sample on all syn/fin/rst packets or once every atr sample rate */ 2040 if (!th->fin && 2041 !th->syn && 2042 !th->rst && 2043 (tx_ring->atr_count < tx_ring->atr_sample_rate)) 2044 return; 2045 2046 tx_ring->atr_count = 0; 2047 2048 /* grab the next descriptor */ 2049 i = tx_ring->next_to_use; 2050 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); 2051 2052 i++; 2053 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2054 2055 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & 2056 I40E_TXD_FLTR_QW0_QINDEX_MASK; 2057 flex_ptype |= (protocol == htons(ETH_P_IP)) ? 2058 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << 2059 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : 2060 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << 2061 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); 2062 2063 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; 2064 2065 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; 2066 2067 dtype_cmd |= (th->fin || th->rst) ? 2068 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << 2069 I40E_TXD_FLTR_QW1_PCMD_SHIFT) : 2070 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << 2071 I40E_TXD_FLTR_QW1_PCMD_SHIFT); 2072 2073 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << 2074 I40E_TXD_FLTR_QW1_DEST_SHIFT; 2075 2076 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << 2077 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; 2078 2079 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; 2080 if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) 2081 dtype_cmd |= 2082 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << 2083 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2084 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2085 else 2086 dtype_cmd |= 2087 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << 2088 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & 2089 I40E_TXD_FLTR_QW1_CNTINDEX_MASK; 2090 2091 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) 2092 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; 2093 2094 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); 2095 fdir_desc->rsvd = cpu_to_le32(0); 2096 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); 2097 fdir_desc->fd_id = cpu_to_le32(0); 2098 } 2099 2100 /** 2101 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW 2102 * @skb: send buffer 2103 * @tx_ring: ring to send buffer on 2104 * @flags: the tx flags to be set 2105 * 2106 * Checks the skb and set up correspondingly several generic transmit flags 2107 * related to VLAN tagging for the HW, such as VLAN, DCB, etc. 2108 * 2109 * Returns error code indicate the frame should be dropped upon error and the 2110 * otherwise returns 0 to indicate the flags has been set properly. 2111 **/ 2112 #ifdef I40E_FCOE 2113 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2114 struct i40e_ring *tx_ring, 2115 u32 *flags) 2116 #else 2117 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, 2118 struct i40e_ring *tx_ring, 2119 u32 *flags) 2120 #endif 2121 { 2122 __be16 protocol = skb->protocol; 2123 u32 tx_flags = 0; 2124 2125 if (protocol == htons(ETH_P_8021Q) && 2126 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 2127 /* When HW VLAN acceleration is turned off by the user the 2128 * stack sets the protocol to 8021q so that the driver 2129 * can take any steps required to support the SW only 2130 * VLAN handling. In our case the driver doesn't need 2131 * to take any further steps so just set the protocol 2132 * to the encapsulated ethertype. 2133 */ 2134 skb->protocol = vlan_get_protocol(skb); 2135 goto out; 2136 } 2137 2138 /* if we have a HW VLAN tag being added, default to the HW one */ 2139 if (skb_vlan_tag_present(skb)) { 2140 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; 2141 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2142 /* else if it is a SW VLAN, check the next protocol and store the tag */ 2143 } else if (protocol == htons(ETH_P_8021Q)) { 2144 struct vlan_hdr *vhdr, _vhdr; 2145 2146 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); 2147 if (!vhdr) 2148 return -EINVAL; 2149 2150 protocol = vhdr->h_vlan_encapsulated_proto; 2151 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; 2152 tx_flags |= I40E_TX_FLAGS_SW_VLAN; 2153 } 2154 2155 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) 2156 goto out; 2157 2158 /* Insert 802.1p priority into VLAN header */ 2159 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || 2160 (skb->priority != TC_PRIO_CONTROL)) { 2161 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; 2162 tx_flags |= (skb->priority & 0x7) << 2163 I40E_TX_FLAGS_VLAN_PRIO_SHIFT; 2164 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { 2165 struct vlan_ethhdr *vhdr; 2166 int rc; 2167 2168 rc = skb_cow_head(skb, 0); 2169 if (rc < 0) 2170 return rc; 2171 vhdr = (struct vlan_ethhdr *)skb->data; 2172 vhdr->h_vlan_TCI = htons(tx_flags >> 2173 I40E_TX_FLAGS_VLAN_SHIFT); 2174 } else { 2175 tx_flags |= I40E_TX_FLAGS_HW_VLAN; 2176 } 2177 } 2178 2179 out: 2180 *flags = tx_flags; 2181 return 0; 2182 } 2183 2184 /** 2185 * i40e_tso - set up the tso context descriptor 2186 * @tx_ring: ptr to the ring to send 2187 * @skb: ptr to the skb we're sending 2188 * @hdr_len: ptr to the size of the packet header 2189 * @cd_type_cmd_tso_mss: ptr to u64 object 2190 * @cd_tunneling: ptr to context descriptor bits 2191 * 2192 * Returns 0 if no TSO can happen, 1 if tso is going, or error 2193 **/ 2194 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb, 2195 u8 *hdr_len, u64 *cd_type_cmd_tso_mss, 2196 u32 *cd_tunneling) 2197 { 2198 u32 cd_cmd, cd_tso_len, cd_mss; 2199 struct ipv6hdr *ipv6h; 2200 struct tcphdr *tcph; 2201 struct iphdr *iph; 2202 u32 l4len; 2203 int err; 2204 2205 if (!skb_is_gso(skb)) 2206 return 0; 2207 2208 err = skb_cow_head(skb, 0); 2209 if (err < 0) 2210 return err; 2211 2212 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 2213 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 2214 2215 if (iph->version == 4) { 2216 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); 2217 iph->tot_len = 0; 2218 iph->check = 0; 2219 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 2220 0, IPPROTO_TCP, 0); 2221 } else if (ipv6h->version == 6) { 2222 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); 2223 ipv6h->payload_len = 0; 2224 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 2225 0, IPPROTO_TCP, 0); 2226 } 2227 2228 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); 2229 *hdr_len = (skb->encapsulation 2230 ? (skb_inner_transport_header(skb) - skb->data) 2231 : skb_transport_offset(skb)) + l4len; 2232 2233 /* find the field values */ 2234 cd_cmd = I40E_TX_CTX_DESC_TSO; 2235 cd_tso_len = skb->len - *hdr_len; 2236 cd_mss = skb_shinfo(skb)->gso_size; 2237 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | 2238 ((u64)cd_tso_len << 2239 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | 2240 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); 2241 return 1; 2242 } 2243 2244 /** 2245 * i40e_tsyn - set up the tsyn context descriptor 2246 * @tx_ring: ptr to the ring to send 2247 * @skb: ptr to the skb we're sending 2248 * @tx_flags: the collected send information 2249 * @cd_type_cmd_tso_mss: ptr to u64 object 2250 * 2251 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen 2252 **/ 2253 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, 2254 u32 tx_flags, u64 *cd_type_cmd_tso_mss) 2255 { 2256 struct i40e_pf *pf; 2257 2258 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 2259 return 0; 2260 2261 /* Tx timestamps cannot be sampled when doing TSO */ 2262 if (tx_flags & I40E_TX_FLAGS_TSO) 2263 return 0; 2264 2265 /* only timestamp the outbound packet if the user has requested it and 2266 * we are not already transmitting a packet to be timestamped 2267 */ 2268 pf = i40e_netdev_to_pf(tx_ring->netdev); 2269 if (!(pf->flags & I40E_FLAG_PTP)) 2270 return 0; 2271 2272 if (pf->ptp_tx && 2273 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) { 2274 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2275 pf->ptp_tx_skb = skb_get(skb); 2276 } else { 2277 return 0; 2278 } 2279 2280 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << 2281 I40E_TXD_CTX_QW1_CMD_SHIFT; 2282 2283 return 1; 2284 } 2285 2286 /** 2287 * i40e_tx_enable_csum - Enable Tx checksum offloads 2288 * @skb: send buffer 2289 * @tx_flags: pointer to Tx flags currently set 2290 * @td_cmd: Tx descriptor command bits to set 2291 * @td_offset: Tx descriptor header offsets to set 2292 * @tx_ring: Tx descriptor ring 2293 * @cd_tunneling: ptr to context desc bits 2294 **/ 2295 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, 2296 u32 *td_cmd, u32 *td_offset, 2297 struct i40e_ring *tx_ring, 2298 u32 *cd_tunneling) 2299 { 2300 struct ipv6hdr *this_ipv6_hdr; 2301 unsigned int this_tcp_hdrlen; 2302 struct iphdr *this_ip_hdr; 2303 u32 network_hdr_len; 2304 u8 l4_hdr = 0; 2305 struct udphdr *oudph; 2306 struct iphdr *oiph; 2307 u32 l4_tunnel = 0; 2308 2309 if (skb->encapsulation) { 2310 switch (ip_hdr(skb)->protocol) { 2311 case IPPROTO_UDP: 2312 oudph = udp_hdr(skb); 2313 oiph = ip_hdr(skb); 2314 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING; 2315 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL; 2316 break; 2317 case IPPROTO_GRE: 2318 l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING; 2319 break; 2320 default: 2321 return; 2322 } 2323 network_hdr_len = skb_inner_network_header_len(skb); 2324 this_ip_hdr = inner_ip_hdr(skb); 2325 this_ipv6_hdr = inner_ipv6_hdr(skb); 2326 this_tcp_hdrlen = inner_tcp_hdrlen(skb); 2327 2328 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2329 if (*tx_flags & I40E_TX_FLAGS_TSO) { 2330 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4; 2331 ip_hdr(skb)->check = 0; 2332 } else { 2333 *cd_tunneling |= 2334 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; 2335 } 2336 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2337 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6; 2338 if (*tx_flags & I40E_TX_FLAGS_TSO) 2339 ip_hdr(skb)->check = 0; 2340 } 2341 2342 /* Now set the ctx descriptor fields */ 2343 *cd_tunneling |= (skb_network_header_len(skb) >> 2) << 2344 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT | 2345 l4_tunnel | 2346 ((skb_inner_network_offset(skb) - 2347 skb_transport_offset(skb)) >> 1) << 2348 I40E_TXD_CTX_QW0_NATLEN_SHIFT; 2349 if (this_ip_hdr->version == 6) { 2350 *tx_flags &= ~I40E_TX_FLAGS_IPV4; 2351 *tx_flags |= I40E_TX_FLAGS_IPV6; 2352 } 2353 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) && 2354 (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) && 2355 (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) { 2356 oudph->check = ~csum_tcpudp_magic(oiph->saddr, 2357 oiph->daddr, 2358 (skb->len - skb_transport_offset(skb)), 2359 IPPROTO_UDP, 0); 2360 *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK; 2361 } 2362 } else { 2363 network_hdr_len = skb_network_header_len(skb); 2364 this_ip_hdr = ip_hdr(skb); 2365 this_ipv6_hdr = ipv6_hdr(skb); 2366 this_tcp_hdrlen = tcp_hdrlen(skb); 2367 } 2368 2369 /* Enable IP checksum offloads */ 2370 if (*tx_flags & I40E_TX_FLAGS_IPV4) { 2371 l4_hdr = this_ip_hdr->protocol; 2372 /* the stack computes the IP header already, the only time we 2373 * need the hardware to recompute it is in the case of TSO. 2374 */ 2375 if (*tx_flags & I40E_TX_FLAGS_TSO) { 2376 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM; 2377 this_ip_hdr->check = 0; 2378 } else { 2379 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4; 2380 } 2381 /* Now set the td_offset for IP header length */ 2382 *td_offset = (network_hdr_len >> 2) << 2383 I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 2384 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { 2385 l4_hdr = this_ipv6_hdr->nexthdr; 2386 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; 2387 /* Now set the td_offset for IP header length */ 2388 *td_offset = (network_hdr_len >> 2) << 2389 I40E_TX_DESC_LENGTH_IPLEN_SHIFT; 2390 } 2391 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */ 2392 *td_offset |= (skb_network_offset(skb) >> 1) << 2393 I40E_TX_DESC_LENGTH_MACLEN_SHIFT; 2394 2395 /* Enable L4 checksum offloads */ 2396 switch (l4_hdr) { 2397 case IPPROTO_TCP: 2398 /* enable checksum offloads */ 2399 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; 2400 *td_offset |= (this_tcp_hdrlen >> 2) << 2401 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2402 break; 2403 case IPPROTO_SCTP: 2404 /* enable SCTP checksum offload */ 2405 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; 2406 *td_offset |= (sizeof(struct sctphdr) >> 2) << 2407 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2408 break; 2409 case IPPROTO_UDP: 2410 /* enable UDP checksum offload */ 2411 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; 2412 *td_offset |= (sizeof(struct udphdr) >> 2) << 2413 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; 2414 break; 2415 default: 2416 break; 2417 } 2418 } 2419 2420 /** 2421 * i40e_create_tx_ctx Build the Tx context descriptor 2422 * @tx_ring: ring to create the descriptor on 2423 * @cd_type_cmd_tso_mss: Quad Word 1 2424 * @cd_tunneling: Quad Word 0 - bits 0-31 2425 * @cd_l2tag2: Quad Word 0 - bits 32-63 2426 **/ 2427 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, 2428 const u64 cd_type_cmd_tso_mss, 2429 const u32 cd_tunneling, const u32 cd_l2tag2) 2430 { 2431 struct i40e_tx_context_desc *context_desc; 2432 int i = tx_ring->next_to_use; 2433 2434 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && 2435 !cd_tunneling && !cd_l2tag2) 2436 return; 2437 2438 /* grab the next descriptor */ 2439 context_desc = I40E_TX_CTXTDESC(tx_ring, i); 2440 2441 i++; 2442 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 2443 2444 /* cpu_to_le32 and assign to struct fields */ 2445 context_desc->tunneling_params = cpu_to_le32(cd_tunneling); 2446 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); 2447 context_desc->rsvd = cpu_to_le16(0); 2448 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); 2449 } 2450 2451 /** 2452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions 2453 * @tx_ring: the ring to be checked 2454 * @size: the size buffer we want to assure is available 2455 * 2456 * Returns -EBUSY if a stop is needed, else 0 2457 **/ 2458 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 2459 { 2460 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 2461 /* Memory barrier before checking head and tail */ 2462 smp_mb(); 2463 2464 /* Check again in a case another CPU has just made room available. */ 2465 if (likely(I40E_DESC_UNUSED(tx_ring) < size)) 2466 return -EBUSY; 2467 2468 /* A reprieve! - use start_queue because it doesn't call schedule */ 2469 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 2470 ++tx_ring->tx_stats.restart_queue; 2471 return 0; 2472 } 2473 2474 /** 2475 * i40e_maybe_stop_tx - 1st level check for tx stop conditions 2476 * @tx_ring: the ring to be checked 2477 * @size: the size buffer we want to assure is available 2478 * 2479 * Returns 0 if stop is not needed 2480 **/ 2481 #ifdef I40E_FCOE 2482 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 2483 #else 2484 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 2485 #endif 2486 { 2487 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 2488 return 0; 2489 return __i40e_maybe_stop_tx(tx_ring, size); 2490 } 2491 2492 /** 2493 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 2494 * @skb: send buffer 2495 * @tx_flags: collected send information 2496 * 2497 * Note: Our HW can't scatter-gather more than 8 fragments to build 2498 * a packet on the wire and so we need to figure out the cases where we 2499 * need to linearize the skb. 2500 **/ 2501 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags) 2502 { 2503 struct skb_frag_struct *frag; 2504 bool linearize = false; 2505 unsigned int size = 0; 2506 u16 num_frags; 2507 u16 gso_segs; 2508 2509 num_frags = skb_shinfo(skb)->nr_frags; 2510 gso_segs = skb_shinfo(skb)->gso_segs; 2511 2512 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) { 2513 u16 j = 0; 2514 2515 if (num_frags < (I40E_MAX_BUFFER_TXD)) 2516 goto linearize_chk_done; 2517 /* try the simple math, if we have too many frags per segment */ 2518 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) > 2519 I40E_MAX_BUFFER_TXD) { 2520 linearize = true; 2521 goto linearize_chk_done; 2522 } 2523 frag = &skb_shinfo(skb)->frags[0]; 2524 /* we might still have more fragments per segment */ 2525 do { 2526 size += skb_frag_size(frag); 2527 frag++; j++; 2528 if ((size >= skb_shinfo(skb)->gso_size) && 2529 (j < I40E_MAX_BUFFER_TXD)) { 2530 size = (size % skb_shinfo(skb)->gso_size); 2531 j = (size) ? 1 : 0; 2532 } 2533 if (j == I40E_MAX_BUFFER_TXD) { 2534 linearize = true; 2535 break; 2536 } 2537 num_frags--; 2538 } while (num_frags); 2539 } else { 2540 if (num_frags >= I40E_MAX_BUFFER_TXD) 2541 linearize = true; 2542 } 2543 2544 linearize_chk_done: 2545 return linearize; 2546 } 2547 2548 /** 2549 * i40e_tx_map - Build the Tx descriptor 2550 * @tx_ring: ring to send buffer on 2551 * @skb: send buffer 2552 * @first: first buffer info buffer to use 2553 * @tx_flags: collected send information 2554 * @hdr_len: size of the packet header 2555 * @td_cmd: the command field in the descriptor 2556 * @td_offset: offset for checksum or crc 2557 **/ 2558 #ifdef I40E_FCOE 2559 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 2560 struct i40e_tx_buffer *first, u32 tx_flags, 2561 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2562 #else 2563 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, 2564 struct i40e_tx_buffer *first, u32 tx_flags, 2565 const u8 hdr_len, u32 td_cmd, u32 td_offset) 2566 #endif 2567 { 2568 unsigned int data_len = skb->data_len; 2569 unsigned int size = skb_headlen(skb); 2570 struct skb_frag_struct *frag; 2571 struct i40e_tx_buffer *tx_bi; 2572 struct i40e_tx_desc *tx_desc; 2573 u16 i = tx_ring->next_to_use; 2574 u32 td_tag = 0; 2575 dma_addr_t dma; 2576 u16 gso_segs; 2577 u16 desc_count = 0; 2578 bool tail_bump = true; 2579 bool do_rs = false; 2580 2581 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { 2582 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; 2583 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> 2584 I40E_TX_FLAGS_VLAN_SHIFT; 2585 } 2586 2587 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) 2588 gso_segs = skb_shinfo(skb)->gso_segs; 2589 else 2590 gso_segs = 1; 2591 2592 /* multiply data chunks by size of headers */ 2593 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len); 2594 first->gso_segs = gso_segs; 2595 first->skb = skb; 2596 first->tx_flags = tx_flags; 2597 2598 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 2599 2600 tx_desc = I40E_TX_DESC(tx_ring, i); 2601 tx_bi = first; 2602 2603 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 2604 if (dma_mapping_error(tx_ring->dev, dma)) 2605 goto dma_error; 2606 2607 /* record length, and DMA address */ 2608 dma_unmap_len_set(tx_bi, len, size); 2609 dma_unmap_addr_set(tx_bi, dma, dma); 2610 2611 tx_desc->buffer_addr = cpu_to_le64(dma); 2612 2613 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { 2614 tx_desc->cmd_type_offset_bsz = 2615 build_ctob(td_cmd, td_offset, 2616 I40E_MAX_DATA_PER_TXD, td_tag); 2617 2618 tx_desc++; 2619 i++; 2620 desc_count++; 2621 2622 if (i == tx_ring->count) { 2623 tx_desc = I40E_TX_DESC(tx_ring, 0); 2624 i = 0; 2625 } 2626 2627 dma += I40E_MAX_DATA_PER_TXD; 2628 size -= I40E_MAX_DATA_PER_TXD; 2629 2630 tx_desc->buffer_addr = cpu_to_le64(dma); 2631 } 2632 2633 if (likely(!data_len)) 2634 break; 2635 2636 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, 2637 size, td_tag); 2638 2639 tx_desc++; 2640 i++; 2641 desc_count++; 2642 2643 if (i == tx_ring->count) { 2644 tx_desc = I40E_TX_DESC(tx_ring, 0); 2645 i = 0; 2646 } 2647 2648 size = skb_frag_size(frag); 2649 data_len -= size; 2650 2651 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 2652 DMA_TO_DEVICE); 2653 2654 tx_bi = &tx_ring->tx_bi[i]; 2655 } 2656 2657 /* set next_to_watch value indicating a packet is present */ 2658 first->next_to_watch = tx_desc; 2659 2660 i++; 2661 if (i == tx_ring->count) 2662 i = 0; 2663 2664 tx_ring->next_to_use = i; 2665 2666 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev, 2667 tx_ring->queue_index), 2668 first->bytecount); 2669 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); 2670 2671 /* Algorithm to optimize tail and RS bit setting: 2672 * if xmit_more is supported 2673 * if xmit_more is true 2674 * do not update tail and do not mark RS bit. 2675 * if xmit_more is false and last xmit_more was false 2676 * if every packet spanned less than 4 desc 2677 * then set RS bit on 4th packet and update tail 2678 * on every packet 2679 * else 2680 * update tail and set RS bit on every packet. 2681 * if xmit_more is false and last_xmit_more was true 2682 * update tail and set RS bit. 2683 * 2684 * Optimization: wmb to be issued only in case of tail update. 2685 * Also optimize the Descriptor WB path for RS bit with the same 2686 * algorithm. 2687 * 2688 * Note: If there are less than 4 packets 2689 * pending and interrupts were disabled the service task will 2690 * trigger a force WB. 2691 */ 2692 if (skb->xmit_more && 2693 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev, 2694 tx_ring->queue_index))) { 2695 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET; 2696 tail_bump = false; 2697 } else if (!skb->xmit_more && 2698 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev, 2699 tx_ring->queue_index)) && 2700 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) && 2701 (tx_ring->packet_stride < WB_STRIDE) && 2702 (desc_count < WB_STRIDE)) { 2703 tx_ring->packet_stride++; 2704 } else { 2705 tx_ring->packet_stride = 0; 2706 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET; 2707 do_rs = true; 2708 } 2709 if (do_rs) 2710 tx_ring->packet_stride = 0; 2711 2712 tx_desc->cmd_type_offset_bsz = 2713 build_ctob(td_cmd, td_offset, size, td_tag) | 2714 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD : 2715 I40E_TX_DESC_CMD_EOP) << 2716 I40E_TXD_QW1_CMD_SHIFT); 2717 2718 /* notify HW of packet */ 2719 if (!tail_bump) 2720 prefetchw(tx_desc + 1); 2721 2722 if (tail_bump) { 2723 /* Force memory writes to complete before letting h/w 2724 * know there are new descriptors to fetch. (Only 2725 * applicable for weak-ordered memory model archs, 2726 * such as IA-64). 2727 */ 2728 wmb(); 2729 writel(i, tx_ring->tail); 2730 } 2731 2732 return; 2733 2734 dma_error: 2735 dev_info(tx_ring->dev, "TX DMA map failed\n"); 2736 2737 /* clear dma mappings for failed tx_bi map */ 2738 for (;;) { 2739 tx_bi = &tx_ring->tx_bi[i]; 2740 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); 2741 if (tx_bi == first) 2742 break; 2743 if (i == 0) 2744 i = tx_ring->count; 2745 i--; 2746 } 2747 2748 tx_ring->next_to_use = i; 2749 } 2750 2751 /** 2752 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed 2753 * @skb: send buffer 2754 * @tx_ring: ring to send buffer on 2755 * 2756 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 2757 * there is not enough descriptors available in this ring since we need at least 2758 * one descriptor. 2759 **/ 2760 #ifdef I40E_FCOE 2761 inline int i40e_xmit_descriptor_count(struct sk_buff *skb, 2762 struct i40e_ring *tx_ring) 2763 #else 2764 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb, 2765 struct i40e_ring *tx_ring) 2766 #endif 2767 { 2768 unsigned int f; 2769 int count = 0; 2770 2771 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, 2772 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, 2773 * + 4 desc gap to avoid the cache line where head is, 2774 * + 1 desc for context descriptor, 2775 * otherwise try next time 2776 */ 2777 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 2778 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 2779 2780 count += TXD_USE_COUNT(skb_headlen(skb)); 2781 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { 2782 tx_ring->tx_stats.tx_busy++; 2783 return 0; 2784 } 2785 return count; 2786 } 2787 2788 /** 2789 * i40e_xmit_frame_ring - Sends buffer on Tx ring 2790 * @skb: send buffer 2791 * @tx_ring: ring to send buffer on 2792 * 2793 * Returns NETDEV_TX_OK if sent, else an error code 2794 **/ 2795 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, 2796 struct i40e_ring *tx_ring) 2797 { 2798 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; 2799 u32 cd_tunneling = 0, cd_l2tag2 = 0; 2800 struct i40e_tx_buffer *first; 2801 u32 td_offset = 0; 2802 u32 tx_flags = 0; 2803 __be16 protocol; 2804 u32 td_cmd = 0; 2805 u8 hdr_len = 0; 2806 int tsyn; 2807 int tso; 2808 2809 if (0 == i40e_xmit_descriptor_count(skb, tx_ring)) 2810 return NETDEV_TX_BUSY; 2811 2812 /* prepare the xmit flags */ 2813 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) 2814 goto out_drop; 2815 2816 /* obtain protocol of skb */ 2817 protocol = vlan_get_protocol(skb); 2818 2819 /* record the location of the first descriptor for this packet */ 2820 first = &tx_ring->tx_bi[tx_ring->next_to_use]; 2821 2822 /* setup IPv4/IPv6 offloads */ 2823 if (protocol == htons(ETH_P_IP)) 2824 tx_flags |= I40E_TX_FLAGS_IPV4; 2825 else if (protocol == htons(ETH_P_IPV6)) 2826 tx_flags |= I40E_TX_FLAGS_IPV6; 2827 2828 tso = i40e_tso(tx_ring, skb, &hdr_len, 2829 &cd_type_cmd_tso_mss, &cd_tunneling); 2830 2831 if (tso < 0) 2832 goto out_drop; 2833 else if (tso) 2834 tx_flags |= I40E_TX_FLAGS_TSO; 2835 2836 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); 2837 2838 if (tsyn) 2839 tx_flags |= I40E_TX_FLAGS_TSYN; 2840 2841 if (i40e_chk_linearize(skb, tx_flags)) { 2842 if (skb_linearize(skb)) 2843 goto out_drop; 2844 tx_ring->tx_stats.tx_linearize++; 2845 } 2846 skb_tx_timestamp(skb); 2847 2848 /* always enable CRC insertion offload */ 2849 td_cmd |= I40E_TX_DESC_CMD_ICRC; 2850 2851 /* Always offload the checksum, since it's in the data descriptor */ 2852 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2853 tx_flags |= I40E_TX_FLAGS_CSUM; 2854 2855 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, 2856 tx_ring, &cd_tunneling); 2857 } 2858 2859 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, 2860 cd_tunneling, cd_l2tag2); 2861 2862 /* Add Flow Director ATR if it's enabled. 2863 * 2864 * NOTE: this must always be directly before the data descriptor. 2865 */ 2866 i40e_atr(tx_ring, skb, tx_flags, protocol); 2867 2868 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, 2869 td_cmd, td_offset); 2870 2871 return NETDEV_TX_OK; 2872 2873 out_drop: 2874 dev_kfree_skb_any(skb); 2875 return NETDEV_TX_OK; 2876 } 2877 2878 /** 2879 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer 2880 * @skb: send buffer 2881 * @netdev: network interface device structure 2882 * 2883 * Returns NETDEV_TX_OK if sent, else an error code 2884 **/ 2885 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 2886 { 2887 struct i40e_netdev_priv *np = netdev_priv(netdev); 2888 struct i40e_vsi *vsi = np->vsi; 2889 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; 2890 2891 /* hardware can't handle really short frames, hardware padding works 2892 * beyond this point 2893 */ 2894 if (skb_put_padto(skb, I40E_MIN_TX_LEN)) 2895 return NETDEV_TX_OK; 2896 2897 return i40e_xmit_frame_ring(skb, tx_ring); 2898 } 2899