xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_ptp.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8  * the fundamental clock design. However, the clock operations are much simpler
9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
10  * Because the field is so wide, we can forgo the cycle counter and just
11  * operate with the nanosecond field directly without fear of overflow.
12  *
13  * Much like the 82599, the update period is dependent upon the link speed:
14  * At 40Gb link or no link, the period is 1.6ns.
15  * At 10Gb link, the period is multiplied by 2. (3.2ns)
16  * At 1Gb link, the period is multiplied by 20. (32ns)
17  * 1588 functionality is not supported at 100Mbps.
18  */
19 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT	2
21 #define I40E_PTP_1GB_INCVAL_MULT	20
22 
23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
25 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
26 
27 /**
28  * i40e_ptp_read - Read the PHC time from the device
29  * @pf: Board private structure
30  * @ts: timespec structure to hold the current time value
31  * @sts: structure to hold the system time before and after reading the PHC
32  *
33  * This function reads the PRTTSYN_TIME registers and stores them in a
34  * timespec. However, since the registers are 64 bits of nanoseconds, we must
35  * convert the result to a timespec before we can return.
36  **/
37 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
38 			  struct ptp_system_timestamp *sts)
39 {
40 	struct i40e_hw *hw = &pf->hw;
41 	u32 hi, lo;
42 	u64 ns;
43 
44 	/* The timer latches on the lowest register read. */
45 	ptp_read_system_prets(sts);
46 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
47 	ptp_read_system_postts(sts);
48 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
49 
50 	ns = (((u64)hi) << 32) | lo;
51 
52 	*ts = ns_to_timespec64(ns);
53 }
54 
55 /**
56  * i40e_ptp_write - Write the PHC time to the device
57  * @pf: Board private structure
58  * @ts: timespec structure that holds the new time value
59  *
60  * This function writes the PRTTSYN_TIME registers with the user value. Since
61  * we receive a timespec from the stack, we must convert that timespec into
62  * nanoseconds before programming the registers.
63  **/
64 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
65 {
66 	struct i40e_hw *hw = &pf->hw;
67 	u64 ns = timespec64_to_ns(ts);
68 
69 	/* The timer will not update until the high register is written, so
70 	 * write the low register first.
71 	 */
72 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
73 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
74 }
75 
76 /**
77  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
78  * @hwtstamps: Timestamp structure to update
79  * @timestamp: Timestamp from the hardware
80  *
81  * We need to convert the NIC clock value into a hwtstamp which can be used by
82  * the upper level timestamping functions. Since the timestamp is simply a 64-
83  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
84  **/
85 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
86 					 u64 timestamp)
87 {
88 	memset(hwtstamps, 0, sizeof(*hwtstamps));
89 
90 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
91 }
92 
93 /**
94  * i40e_ptp_adjfreq - Adjust the PHC frequency
95  * @ptp: The PTP clock structure
96  * @ppb: Parts per billion adjustment from the base
97  *
98  * Adjust the frequency of the PHC by the indicated parts per billion from the
99  * base frequency.
100  **/
101 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
102 {
103 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
104 	struct i40e_hw *hw = &pf->hw;
105 	u64 adj, freq, diff;
106 	int neg_adj = 0;
107 
108 	if (ppb < 0) {
109 		neg_adj = 1;
110 		ppb = -ppb;
111 	}
112 
113 	freq = I40E_PTP_40GB_INCVAL;
114 	freq *= ppb;
115 	diff = div_u64(freq, 1000000000ULL);
116 
117 	if (neg_adj)
118 		adj = I40E_PTP_40GB_INCVAL - diff;
119 	else
120 		adj = I40E_PTP_40GB_INCVAL + diff;
121 
122 	/* At some link speeds, the base incval is so large that directly
123 	 * multiplying by ppb would result in arithmetic overflow even when
124 	 * using a u64. Avoid this by instead calculating the new incval
125 	 * always in terms of the 40GbE clock rate and then multiplying by the
126 	 * link speed factor afterwards. This does result in slightly lower
127 	 * precision at lower link speeds, but it is fairly minor.
128 	 */
129 	smp_mb(); /* Force any pending update before accessing. */
130 	adj *= READ_ONCE(pf->ptp_adj_mult);
131 
132 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
133 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
134 
135 	return 0;
136 }
137 
138 /**
139  * i40e_ptp_adjtime - Adjust the PHC time
140  * @ptp: The PTP clock structure
141  * @delta: Offset in nanoseconds to adjust the PHC time by
142  *
143  * Adjust the current clock time by a delta specified in nanoseconds.
144  **/
145 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
146 {
147 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
148 	struct timespec64 now, then;
149 
150 	then = ns_to_timespec64(delta);
151 	mutex_lock(&pf->tmreg_lock);
152 
153 	i40e_ptp_read(pf, &now, NULL);
154 	now = timespec64_add(now, then);
155 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
156 
157 	mutex_unlock(&pf->tmreg_lock);
158 
159 	return 0;
160 }
161 
162 /**
163  * i40e_ptp_gettimex - Get the time of the PHC
164  * @ptp: The PTP clock structure
165  * @ts: timespec structure to hold the current time value
166  * @sts: structure to hold the system time before and after reading the PHC
167  *
168  * Read the device clock and return the correct value on ns, after converting it
169  * into a timespec struct.
170  **/
171 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
172 			     struct ptp_system_timestamp *sts)
173 {
174 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
175 
176 	mutex_lock(&pf->tmreg_lock);
177 	i40e_ptp_read(pf, ts, sts);
178 	mutex_unlock(&pf->tmreg_lock);
179 
180 	return 0;
181 }
182 
183 /**
184  * i40e_ptp_settime - Set the time of the PHC
185  * @ptp: The PTP clock structure
186  * @ts: timespec structure that holds the new time value
187  *
188  * Set the device clock to the user input value. The conversion from timespec
189  * to ns happens in the write function.
190  **/
191 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
192 			    const struct timespec64 *ts)
193 {
194 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
195 
196 	mutex_lock(&pf->tmreg_lock);
197 	i40e_ptp_write(pf, ts);
198 	mutex_unlock(&pf->tmreg_lock);
199 
200 	return 0;
201 }
202 
203 /**
204  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
205  * @ptp: The PTP clock structure
206  * @rq: The requested feature to change
207  * @on: Enable/disable flag
208  *
209  * The XL710 does not support any of the ancillary features of the PHC
210  * subsystem, so this function may just return.
211  **/
212 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
213 				   struct ptp_clock_request *rq, int on)
214 {
215 	return -EOPNOTSUPP;
216 }
217 
218 /**
219  * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
220  * @pf: the PF data structure
221  *
222  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
223  * for noticed latch events. This allows the driver to keep track of the first
224  * time a latch event was noticed which will be used to help clear out Rx
225  * timestamps for packets that got dropped or lost.
226  *
227  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
228  * expected to be called only while under the ptp_rx_lock.
229  **/
230 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
231 {
232 	struct i40e_hw *hw = &pf->hw;
233 	u32 prttsyn_stat, new_latch_events;
234 	int  i;
235 
236 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
237 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
238 
239 	/* Update the jiffies time for any newly latched timestamp. This
240 	 * ensures that we store the time that we first discovered a timestamp
241 	 * was latched by the hardware. The service task will later determine
242 	 * if we should free the latch and drop that timestamp should too much
243 	 * time pass. This flow ensures that we only update jiffies for new
244 	 * events latched since the last time we checked, and not all events
245 	 * currently latched, so that the service task accounting remains
246 	 * accurate.
247 	 */
248 	for (i = 0; i < 4; i++) {
249 		if (new_latch_events & BIT(i))
250 			pf->latch_events[i] = jiffies;
251 	}
252 
253 	/* Finally, we store the current status of the Rx timestamp latches */
254 	pf->latch_event_flags = prttsyn_stat;
255 
256 	return prttsyn_stat;
257 }
258 
259 /**
260  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
261  * @pf: The PF private data structure
262  *
263  * This watchdog task is scheduled to detect error case where hardware has
264  * dropped an Rx packet that was timestamped when the ring is full. The
265  * particular error is rare but leaves the device in a state unable to timestamp
266  * any future packets.
267  **/
268 void i40e_ptp_rx_hang(struct i40e_pf *pf)
269 {
270 	struct i40e_hw *hw = &pf->hw;
271 	unsigned int i, cleared = 0;
272 
273 	/* Since we cannot turn off the Rx timestamp logic if the device is
274 	 * configured for Tx timestamping, we check if Rx timestamping is
275 	 * configured. We don't want to spuriously warn about Rx timestamp
276 	 * hangs if we don't care about the timestamps.
277 	 */
278 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
279 		return;
280 
281 	spin_lock_bh(&pf->ptp_rx_lock);
282 
283 	/* Update current latch times for Rx events */
284 	i40e_ptp_get_rx_events(pf);
285 
286 	/* Check all the currently latched Rx events and see whether they have
287 	 * been latched for over a second. It is assumed that any timestamp
288 	 * should have been cleared within this time, or else it was captured
289 	 * for a dropped frame that the driver never received. Thus, we will
290 	 * clear any timestamp that has been latched for over 1 second.
291 	 */
292 	for (i = 0; i < 4; i++) {
293 		if ((pf->latch_event_flags & BIT(i)) &&
294 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
295 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
296 			pf->latch_event_flags &= ~BIT(i);
297 			cleared++;
298 		}
299 	}
300 
301 	spin_unlock_bh(&pf->ptp_rx_lock);
302 
303 	/* Log a warning if more than 2 timestamps got dropped in the same
304 	 * check. We don't want to warn about all drops because it can occur
305 	 * in normal scenarios such as PTP frames on multicast addresses we
306 	 * aren't listening to. However, administrator should know if this is
307 	 * the reason packets aren't receiving timestamps.
308 	 */
309 	if (cleared > 2)
310 		dev_dbg(&pf->pdev->dev,
311 			"Dropped %d missed RXTIME timestamp events\n",
312 			cleared);
313 
314 	/* Finally, update the rx_hwtstamp_cleared counter */
315 	pf->rx_hwtstamp_cleared += cleared;
316 }
317 
318 /**
319  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
320  * @pf: The PF private data structure
321  *
322  * This watchdog task is run periodically to make sure that we clear the Tx
323  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
324  * time. It is unexpected in the normal case but if it occurs it results in
325  * permanently preventing timestamps of future packets.
326  **/
327 void i40e_ptp_tx_hang(struct i40e_pf *pf)
328 {
329 	struct sk_buff *skb;
330 
331 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
332 		return;
333 
334 	/* Nothing to do if we're not already waiting for a timestamp */
335 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
336 		return;
337 
338 	/* We already have a handler routine which is run when we are notified
339 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
340 	 * within a second it is reasonable to assume that we never will.
341 	 */
342 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
343 		skb = pf->ptp_tx_skb;
344 		pf->ptp_tx_skb = NULL;
345 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
346 
347 		/* Free the skb after we clear the bitlock */
348 		dev_kfree_skb_any(skb);
349 		pf->tx_hwtstamp_timeouts++;
350 	}
351 }
352 
353 /**
354  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
355  * @pf: Board private structure
356  *
357  * Read the value of the Tx timestamp from the registers, convert it into a
358  * value consumable by the stack, and store that result into the shhwtstamps
359  * struct before returning it up the stack.
360  **/
361 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
362 {
363 	struct skb_shared_hwtstamps shhwtstamps;
364 	struct sk_buff *skb = pf->ptp_tx_skb;
365 	struct i40e_hw *hw = &pf->hw;
366 	u32 hi, lo;
367 	u64 ns;
368 
369 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
370 		return;
371 
372 	/* don't attempt to timestamp if we don't have an skb */
373 	if (!pf->ptp_tx_skb)
374 		return;
375 
376 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
377 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
378 
379 	ns = (((u64)hi) << 32) | lo;
380 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
381 
382 	/* Clear the bit lock as soon as possible after reading the register,
383 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
384 	 * applications might wake up and attempt to request another transmit
385 	 * timestamp prior to the bit lock being cleared.
386 	 */
387 	pf->ptp_tx_skb = NULL;
388 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
389 
390 	/* Notify the stack and free the skb after we've unlocked */
391 	skb_tstamp_tx(skb, &shhwtstamps);
392 	dev_kfree_skb_any(skb);
393 }
394 
395 /**
396  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
397  * @pf: Board private structure
398  * @skb: Particular skb to send timestamp with
399  * @index: Index into the receive timestamp registers for the timestamp
400  *
401  * The XL710 receives a notification in the receive descriptor with an offset
402  * into the set of RXTIME registers where the timestamp is for that skb. This
403  * function goes and fetches the receive timestamp from that offset, if a valid
404  * one exists. The RXTIME registers are in ns, so we must convert the result
405  * first.
406  **/
407 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
408 {
409 	u32 prttsyn_stat, hi, lo;
410 	struct i40e_hw *hw;
411 	u64 ns;
412 
413 	/* Since we cannot turn off the Rx timestamp logic if the device is
414 	 * doing Tx timestamping, check if Rx timestamping is configured.
415 	 */
416 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
417 		return;
418 
419 	hw = &pf->hw;
420 
421 	spin_lock_bh(&pf->ptp_rx_lock);
422 
423 	/* Get current Rx events and update latch times */
424 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
425 
426 	/* TODO: Should we warn about missing Rx timestamp event? */
427 	if (!(prttsyn_stat & BIT(index))) {
428 		spin_unlock_bh(&pf->ptp_rx_lock);
429 		return;
430 	}
431 
432 	/* Clear the latched event since we're about to read its register */
433 	pf->latch_event_flags &= ~BIT(index);
434 
435 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
436 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
437 
438 	spin_unlock_bh(&pf->ptp_rx_lock);
439 
440 	ns = (((u64)hi) << 32) | lo;
441 
442 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
443 }
444 
445 /**
446  * i40e_ptp_set_increment - Utility function to update clock increment rate
447  * @pf: Board private structure
448  *
449  * During a link change, the DMA frequency that drives the 1588 logic will
450  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
451  * we must update the increment value per clock tick.
452  **/
453 void i40e_ptp_set_increment(struct i40e_pf *pf)
454 {
455 	struct i40e_link_status *hw_link_info;
456 	struct i40e_hw *hw = &pf->hw;
457 	u64 incval;
458 	u32 mult;
459 
460 	hw_link_info = &hw->phy.link_info;
461 
462 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
463 
464 	switch (hw_link_info->link_speed) {
465 	case I40E_LINK_SPEED_10GB:
466 		mult = I40E_PTP_10GB_INCVAL_MULT;
467 		break;
468 	case I40E_LINK_SPEED_1GB:
469 		mult = I40E_PTP_1GB_INCVAL_MULT;
470 		break;
471 	case I40E_LINK_SPEED_100MB:
472 	{
473 		static int warn_once;
474 
475 		if (!warn_once) {
476 			dev_warn(&pf->pdev->dev,
477 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
478 			warn_once++;
479 		}
480 		mult = 0;
481 		break;
482 	}
483 	case I40E_LINK_SPEED_40GB:
484 	default:
485 		mult = 1;
486 		break;
487 	}
488 
489 	/* The increment value is calculated by taking the base 40GbE incvalue
490 	 * and multiplying it by a factor based on the link speed.
491 	 */
492 	incval = I40E_PTP_40GB_INCVAL * mult;
493 
494 	/* Write the new increment value into the increment register. The
495 	 * hardware will not update the clock until both registers have been
496 	 * written.
497 	 */
498 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
499 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
500 
501 	/* Update the base adjustement value. */
502 	WRITE_ONCE(pf->ptp_adj_mult, mult);
503 	smp_mb(); /* Force the above update. */
504 }
505 
506 /**
507  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
508  * @pf: Board private structure
509  * @ifr: ioctl data
510  *
511  * Obtain the current hardware timestamping settigs as requested. To do this,
512  * keep a shadow copy of the timestamp settings rather than attempting to
513  * deconstruct it from the registers.
514  **/
515 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
516 {
517 	struct hwtstamp_config *config = &pf->tstamp_config;
518 
519 	if (!(pf->flags & I40E_FLAG_PTP))
520 		return -EOPNOTSUPP;
521 
522 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
523 		-EFAULT : 0;
524 }
525 
526 /**
527  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
528  * @pf: Board private structure
529  * @config: hwtstamp settings requested or saved
530  *
531  * Control hardware registers to enter the specific mode requested by the
532  * user. Also used during reset path to ensure that timestamp settings are
533  * maintained.
534  *
535  * Note: modifies config in place, and may update the requested mode to be
536  * more broad if the specific filter is not directly supported.
537  **/
538 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
539 				       struct hwtstamp_config *config)
540 {
541 	struct i40e_hw *hw = &pf->hw;
542 	u32 tsyntype, regval;
543 
544 	/* Reserved for future extensions. */
545 	if (config->flags)
546 		return -EINVAL;
547 
548 	switch (config->tx_type) {
549 	case HWTSTAMP_TX_OFF:
550 		pf->ptp_tx = false;
551 		break;
552 	case HWTSTAMP_TX_ON:
553 		pf->ptp_tx = true;
554 		break;
555 	default:
556 		return -ERANGE;
557 	}
558 
559 	switch (config->rx_filter) {
560 	case HWTSTAMP_FILTER_NONE:
561 		pf->ptp_rx = false;
562 		/* We set the type to V1, but do not enable UDP packet
563 		 * recognition. In this way, we should be as close to
564 		 * disabling PTP Rx timestamps as possible since V1 packets
565 		 * are always UDP, since L2 packets are a V2 feature.
566 		 */
567 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
568 		break;
569 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
571 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
572 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
573 			return -ERANGE;
574 		pf->ptp_rx = true;
575 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
576 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
577 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
578 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
579 		break;
580 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
581 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
582 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
583 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
584 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
585 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
586 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
587 			return -ERANGE;
588 		fallthrough;
589 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
590 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
591 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
592 		pf->ptp_rx = true;
593 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
594 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
595 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
596 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
597 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
598 		} else {
599 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
600 		}
601 		break;
602 	case HWTSTAMP_FILTER_NTP_ALL:
603 	case HWTSTAMP_FILTER_ALL:
604 	default:
605 		return -ERANGE;
606 	}
607 
608 	/* Clear out all 1588-related registers to clear and unlatch them. */
609 	spin_lock_bh(&pf->ptp_rx_lock);
610 	rd32(hw, I40E_PRTTSYN_STAT_0);
611 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
612 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
613 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
614 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
615 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
616 	pf->latch_event_flags = 0;
617 	spin_unlock_bh(&pf->ptp_rx_lock);
618 
619 	/* Enable/disable the Tx timestamp interrupt based on user input. */
620 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
621 	if (pf->ptp_tx)
622 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
623 	else
624 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
625 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
626 
627 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
628 	if (pf->ptp_tx)
629 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
630 	else
631 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
632 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
633 
634 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
635 	 * timestamps by setting to V1 only mode and clear the UDP
636 	 * recognition. This ought to disable all PTP Rx timestamps as V1
637 	 * packets are always over UDP. Note that software is configured to
638 	 * ignore Rx timestamps via the pf->ptp_rx flag.
639 	 */
640 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
641 	/* clear everything but the enable bit */
642 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
643 	/* now enable bits for desired Rx timestamps */
644 	regval |= tsyntype;
645 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
646 
647 	return 0;
648 }
649 
650 /**
651  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
652  * @pf: Board private structure
653  * @ifr: ioctl data
654  *
655  * Respond to the user filter requests and make the appropriate hardware
656  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
657  * logic, so keep track in software of whether to indicate these timestamps
658  * or not.
659  *
660  * It is permissible to "upgrade" the user request to a broader filter, as long
661  * as the user receives the timestamps they care about and the user is notified
662  * the filter has been broadened.
663  **/
664 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
665 {
666 	struct hwtstamp_config config;
667 	int err;
668 
669 	if (!(pf->flags & I40E_FLAG_PTP))
670 		return -EOPNOTSUPP;
671 
672 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
673 		return -EFAULT;
674 
675 	err = i40e_ptp_set_timestamp_mode(pf, &config);
676 	if (err)
677 		return err;
678 
679 	/* save these settings for future reference */
680 	pf->tstamp_config = config;
681 
682 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
683 		-EFAULT : 0;
684 }
685 
686 /**
687  * i40e_ptp_create_clock - Create PTP clock device for userspace
688  * @pf: Board private structure
689  *
690  * This function creates a new PTP clock device. It only creates one if we
691  * don't already have one, so it is safe to call. Will return error if it
692  * can't create one, but success if we already have a device. Should be used
693  * by i40e_ptp_init to create clock initially, and prevent global resets from
694  * creating new clock devices.
695  **/
696 static long i40e_ptp_create_clock(struct i40e_pf *pf)
697 {
698 	/* no need to create a clock device if we already have one */
699 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
700 		return 0;
701 
702 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
703 		sizeof(pf->ptp_caps.name) - 1);
704 	pf->ptp_caps.owner = THIS_MODULE;
705 	pf->ptp_caps.max_adj = 999999999;
706 	pf->ptp_caps.n_ext_ts = 0;
707 	pf->ptp_caps.pps = 0;
708 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
709 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
710 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
711 	pf->ptp_caps.settime64 = i40e_ptp_settime;
712 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
713 
714 	/* Attempt to register the clock before enabling the hardware. */
715 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
716 	if (IS_ERR(pf->ptp_clock))
717 		return PTR_ERR(pf->ptp_clock);
718 
719 	/* clear the hwtstamp settings here during clock create, instead of
720 	 * during regular init, so that we can maintain settings across a
721 	 * reset or suspend.
722 	 */
723 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
724 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
725 
726 	/* Set the previous "reset" time to the current Kernel clock time */
727 	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
728 	pf->ptp_reset_start = ktime_get();
729 
730 	return 0;
731 }
732 
733 /**
734  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
735  * @pf: Board private structure
736  *
737  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
738  * be called at the end of preparing to reset, just before hardware reset
739  * occurs, in order to preserve the PTP time as close as possible across
740  * resets.
741  */
742 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
743 {
744 	/* don't try to access the PTP clock if it's not enabled */
745 	if (!(pf->flags & I40E_FLAG_PTP))
746 		return;
747 
748 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
749 	/* Get a monotonic starting time for this reset */
750 	pf->ptp_reset_start = ktime_get();
751 }
752 
753 /**
754  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
755  * @pf: Board private structure
756  *
757  * Restore the PTP hardware clock registers. We previously cached the PTP
758  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
759  * update this value based on the time delta since the time was saved, using
760  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
761  *
762  * This ensures that the hardware clock is restored to nearly what it should
763  * have been if a reset had not occurred.
764  */
765 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
766 {
767 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
768 
769 	/* Update the previous HW time with the ktime delta */
770 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
771 
772 	/* Restore the hardware clock registers */
773 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
774 }
775 
776 /**
777  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
778  * @pf: Board private structure
779  *
780  * This function sets device up for 1588 support. The first time it is run, it
781  * will create a PHC clock device. It does not create a clock device if one
782  * already exists. It also reconfigures the device after a reset.
783  *
784  * The first time a clock is created, i40e_ptp_create_clock will set
785  * pf->ptp_prev_hw_time to the current system time. During resets, it is
786  * expected that this timespec will be set to the last known PTP clock time,
787  * in order to preserve the clock time as close as possible across a reset.
788  **/
789 void i40e_ptp_init(struct i40e_pf *pf)
790 {
791 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
792 	struct i40e_hw *hw = &pf->hw;
793 	u32 pf_id;
794 	long err;
795 
796 	/* Only one PF is assigned to control 1588 logic per port. Do not
797 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
798 	 */
799 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
800 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
801 	if (hw->pf_id != pf_id) {
802 		pf->flags &= ~I40E_FLAG_PTP;
803 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
804 			 __func__,
805 			 netdev->name);
806 		return;
807 	}
808 
809 	mutex_init(&pf->tmreg_lock);
810 	spin_lock_init(&pf->ptp_rx_lock);
811 
812 	/* ensure we have a clock device */
813 	err = i40e_ptp_create_clock(pf);
814 	if (err) {
815 		pf->ptp_clock = NULL;
816 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
817 			__func__);
818 	} else if (pf->ptp_clock) {
819 		u32 regval;
820 
821 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
822 			dev_info(&pf->pdev->dev, "PHC enabled\n");
823 		pf->flags |= I40E_FLAG_PTP;
824 
825 		/* Ensure the clocks are running. */
826 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
827 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
828 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
829 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
830 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
831 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
832 
833 		/* Set the increment value per clock tick. */
834 		i40e_ptp_set_increment(pf);
835 
836 		/* reset timestamping mode */
837 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
838 
839 		/* Restore the clock time based on last known value */
840 		i40e_ptp_restore_hw_time(pf);
841 	}
842 }
843 
844 /**
845  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
846  * @pf: Board private structure
847  *
848  * This function handles the cleanup work required from the initialization by
849  * clearing out the important information and unregistering the PHC.
850  **/
851 void i40e_ptp_stop(struct i40e_pf *pf)
852 {
853 	pf->flags &= ~I40E_FLAG_PTP;
854 	pf->ptp_tx = false;
855 	pf->ptp_rx = false;
856 
857 	if (pf->ptp_tx_skb) {
858 		struct sk_buff *skb = pf->ptp_tx_skb;
859 
860 		pf->ptp_tx_skb = NULL;
861 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
862 		dev_kfree_skb_any(skb);
863 	}
864 
865 	if (pf->ptp_clock) {
866 		ptp_clock_unregister(pf->ptp_clock);
867 		pf->ptp_clock = NULL;
868 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
869 			 pf->vsi[pf->lan_vsi]->netdev->name);
870 	}
871 }
872