1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/posix-clock.h>
7 
8 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
9  * the fundamental clock design. However, the clock operations are much simpler
10  * in the XL710 because the device supports a full 64 bits of nanoseconds.
11  * Because the field is so wide, we can forgo the cycle counter and just
12  * operate with the nanosecond field directly without fear of overflow.
13  *
14  * Much like the 82599, the update period is dependent upon the link speed:
15  * At 40Gb, 25Gb, or no link, the period is 1.6ns.
16  * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
17  * At 1Gb link, the period is multiplied by 20. (32ns)
18  * 1588 functionality is not supported at 100Mbps.
19  */
20 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
21 #define I40E_PTP_10GB_INCVAL_MULT	2
22 #define I40E_PTP_5GB_INCVAL_MULT	2
23 #define I40E_PTP_1GB_INCVAL_MULT	20
24 #define I40E_ISGN			0x80000000
25 
26 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
28 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
29 #define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
30 
31 enum i40e_ptp_pin {
32 	SDP3_2 = 0,
33 	SDP3_3,
34 	GPIO_4
35 };
36 
37 enum i40e_can_set_pins_t {
38 	CANT_DO_PINS = -1,
39 	CAN_SET_PINS,
40 	CAN_DO_PINS
41 };
42 
43 static struct ptp_pin_desc sdp_desc[] = {
44 	/* name     idx      func      chan */
45 	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
46 	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
47 	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
48 };
49 
50 enum i40e_ptp_gpio_pin_state {
51 	end = -2,
52 	invalid,
53 	off,
54 	in_A,
55 	in_B,
56 	out_A,
57 	out_B,
58 };
59 
60 static const char * const i40e_ptp_gpio_pin_state2str[] = {
61 	"off", "in_A", "in_B", "out_A", "out_B"
62 };
63 
64 enum i40e_ptp_led_pin_state {
65 	led_end = -2,
66 	low = 0,
67 	high,
68 };
69 
70 struct i40e_ptp_pins_settings {
71 	enum i40e_ptp_gpio_pin_state sdp3_2;
72 	enum i40e_ptp_gpio_pin_state sdp3_3;
73 	enum i40e_ptp_gpio_pin_state gpio_4;
74 	enum i40e_ptp_led_pin_state led2_0;
75 	enum i40e_ptp_led_pin_state led2_1;
76 	enum i40e_ptp_led_pin_state led3_0;
77 	enum i40e_ptp_led_pin_state led3_1;
78 };
79 
80 static const struct i40e_ptp_pins_settings
81 	i40e_ptp_pin_led_allowed_states[] = {
82 	{off,	off,	off,		high,	high,	high,	high},
83 	{off,	in_A,	off,		high,	high,	high,	low},
84 	{off,	out_A,	off,		high,	low,	high,	high},
85 	{off,	in_B,	off,		high,	high,	high,	low},
86 	{off,	out_B,	off,		high,	low,	high,	high},
87 	{in_A,	off,	off,		high,	high,	high,	low},
88 	{in_A,	in_B,	off,		high,	high,	high,	low},
89 	{in_A,	out_B,	off,		high,	low,	high,	high},
90 	{out_A,	off,	off,		high,	low,	high,	high},
91 	{out_A,	in_B,	off,		high,	low,	high,	high},
92 	{in_B,	off,	off,		high,	high,	high,	low},
93 	{in_B,	in_A,	off,		high,	high,	high,	low},
94 	{in_B,	out_A,	off,		high,	low,	high,	high},
95 	{out_B,	off,	off,		high,	low,	high,	high},
96 	{out_B,	in_A,	off,		high,	low,	high,	high},
97 	{off,	off,	in_A,		high,	high,	low,	high},
98 	{off,	out_A,	in_A,		high,	low,	low,	high},
99 	{off,	in_B,	in_A,		high,	high,	low,	low},
100 	{off,	out_B,	in_A,		high,	low,	low,	high},
101 	{out_A,	off,	in_A,		high,	low,	low,	high},
102 	{out_A,	in_B,	in_A,		high,	low,	low,	high},
103 	{in_B,	off,	in_A,		high,	high,	low,	low},
104 	{in_B,	out_A,	in_A,		high,	low,	low,	high},
105 	{out_B,	off,	in_A,		high,	low,	low,	high},
106 	{off,	off,	out_A,		low,	high,	high,	high},
107 	{off,	in_A,	out_A,		low,	high,	high,	low},
108 	{off,	in_B,	out_A,		low,	high,	high,	low},
109 	{off,	out_B,	out_A,		low,	low,	high,	high},
110 	{in_A,	off,	out_A,		low,	high,	high,	low},
111 	{in_A,	in_B,	out_A,		low,	high,	high,	low},
112 	{in_A,	out_B,	out_A,		low,	low,	high,	high},
113 	{in_B,	off,	out_A,		low,	high,	high,	low},
114 	{in_B,	in_A,	out_A,		low,	high,	high,	low},
115 	{out_B,	off,	out_A,		low,	low,	high,	high},
116 	{out_B,	in_A,	out_A,		low,	low,	high,	high},
117 	{off,	off,	in_B,		high,	high,	low,	high},
118 	{off,	in_A,	in_B,		high,	high,	low,	low},
119 	{off,	out_A,	in_B,		high,	low,	low,	high},
120 	{off,	out_B,	in_B,		high,	low,	low,	high},
121 	{in_A,	off,	in_B,		high,	high,	low,	low},
122 	{in_A,	out_B,	in_B,		high,	low,	low,	high},
123 	{out_A,	off,	in_B,		high,	low,	low,	high},
124 	{out_B,	off,	in_B,		high,	low,	low,	high},
125 	{out_B,	in_A,	in_B,		high,	low,	low,	high},
126 	{off,	off,	out_B,		low,	high,	high,	high},
127 	{off,	in_A,	out_B,		low,	high,	high,	low},
128 	{off,	out_A,	out_B,		low,	low,	high,	high},
129 	{off,	in_B,	out_B,		low,	high,	high,	low},
130 	{in_A,	off,	out_B,		low,	high,	high,	low},
131 	{in_A,	in_B,	out_B,		low,	high,	high,	low},
132 	{out_A,	off,	out_B,		low,	low,	high,	high},
133 	{out_A,	in_B,	out_B,		low,	low,	high,	high},
134 	{in_B,	off,	out_B,		low,	high,	high,	low},
135 	{in_B,	in_A,	out_B,		low,	high,	high,	low},
136 	{in_B,	out_A,	out_B,		low,	low,	high,	high},
137 	{end,	end,	end,	led_end, led_end, led_end, led_end}
138 };
139 
140 static int i40e_ptp_set_pins(struct i40e_pf *pf,
141 			     struct i40e_ptp_pins_settings *pins);
142 
143 /**
144  * i40e_ptp_extts0_work - workqueue task function
145  * @work: workqueue task structure
146  *
147  * Service for PTP external clock event
148  **/
149 static void i40e_ptp_extts0_work(struct work_struct *work)
150 {
151 	struct i40e_pf *pf = container_of(work, struct i40e_pf,
152 					  ptp_extts0_work);
153 	struct i40e_hw *hw = &pf->hw;
154 	struct ptp_clock_event event;
155 	u32 hi, lo;
156 
157 	/* Event time is captured by one of the two matched registers
158 	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
159 	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
160 	 * Event is defined in PRTTSYN_EVNT_0 register
161 	 */
162 	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
163 	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
164 
165 	event.timestamp = (((u64)hi) << 32) | lo;
166 
167 	event.type = PTP_CLOCK_EXTTS;
168 	event.index = hw->pf_id;
169 
170 	/* fire event */
171 	ptp_clock_event(pf->ptp_clock, &event);
172 }
173 
174 /**
175  * i40e_is_ptp_pin_dev - check if device supports PTP pins
176  * @hw: pointer to the hardware structure
177  *
178  * Return true if device supports PTP pins, false otherwise.
179  **/
180 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
181 {
182 	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
183 	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
184 }
185 
186 /**
187  * i40e_can_set_pins - check possibility of manipulating the pins
188  * @pf: board private structure
189  *
190  * Check if all conditions are satisfied to manipulate PTP pins.
191  * Return CAN_SET_PINS if pins can be set on a specific PF or
192  * return CAN_DO_PINS if pins can be manipulated within a NIC or
193  * return CANT_DO_PINS otherwise.
194  **/
195 static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
196 {
197 	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
198 		dev_warn(&pf->pdev->dev,
199 			 "PTP external clock not supported.\n");
200 		return CANT_DO_PINS;
201 	}
202 
203 	if (!pf->ptp_pins) {
204 		dev_warn(&pf->pdev->dev,
205 			 "PTP PIN manipulation not allowed.\n");
206 		return CANT_DO_PINS;
207 	}
208 
209 	if (pf->hw.pf_id) {
210 		dev_warn(&pf->pdev->dev,
211 			 "PTP PINs should be accessed via PF0.\n");
212 		return CAN_DO_PINS;
213 	}
214 
215 	return CAN_SET_PINS;
216 }
217 
218 /**
219  * i40_ptp_reset_timing_events - Reset PTP timing events
220  * @pf: Board private structure
221  *
222  * This function resets timing events for pf.
223  **/
224 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
225 {
226 	u32 i;
227 
228 	spin_lock_bh(&pf->ptp_rx_lock);
229 	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
230 		/* reading and automatically clearing timing events registers */
231 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
232 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
233 		pf->latch_events[i] = 0;
234 	}
235 	/* reading and automatically clearing timing events registers */
236 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
237 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
238 
239 	pf->tx_hwtstamp_timeouts = 0;
240 	pf->tx_hwtstamp_skipped = 0;
241 	pf->rx_hwtstamp_cleared = 0;
242 	pf->latch_event_flags = 0;
243 	spin_unlock_bh(&pf->ptp_rx_lock);
244 }
245 
246 /**
247  * i40e_ptp_verify - check pins
248  * @ptp: ptp clock
249  * @pin: pin index
250  * @func: assigned function
251  * @chan: channel
252  *
253  * Check pins consistency.
254  * Return 0 on success or error on failure.
255  **/
256 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
257 			   enum ptp_pin_function func, unsigned int chan)
258 {
259 	switch (func) {
260 	case PTP_PF_NONE:
261 	case PTP_PF_EXTTS:
262 	case PTP_PF_PEROUT:
263 		break;
264 	case PTP_PF_PHYSYNC:
265 		return -EOPNOTSUPP;
266 	}
267 	return 0;
268 }
269 
270 /**
271  * i40e_ptp_read - Read the PHC time from the device
272  * @pf: Board private structure
273  * @ts: timespec structure to hold the current time value
274  * @sts: structure to hold the system time before and after reading the PHC
275  *
276  * This function reads the PRTTSYN_TIME registers and stores them in a
277  * timespec. However, since the registers are 64 bits of nanoseconds, we must
278  * convert the result to a timespec before we can return.
279  **/
280 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
281 			  struct ptp_system_timestamp *sts)
282 {
283 	struct i40e_hw *hw = &pf->hw;
284 	u32 hi, lo;
285 	u64 ns;
286 
287 	/* The timer latches on the lowest register read. */
288 	ptp_read_system_prets(sts);
289 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
290 	ptp_read_system_postts(sts);
291 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
292 
293 	ns = (((u64)hi) << 32) | lo;
294 
295 	*ts = ns_to_timespec64(ns);
296 }
297 
298 /**
299  * i40e_ptp_write - Write the PHC time to the device
300  * @pf: Board private structure
301  * @ts: timespec structure that holds the new time value
302  *
303  * This function writes the PRTTSYN_TIME registers with the user value. Since
304  * we receive a timespec from the stack, we must convert that timespec into
305  * nanoseconds before programming the registers.
306  **/
307 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
308 {
309 	struct i40e_hw *hw = &pf->hw;
310 	u64 ns = timespec64_to_ns(ts);
311 
312 	/* The timer will not update until the high register is written, so
313 	 * write the low register first.
314 	 */
315 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
316 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
317 }
318 
319 /**
320  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
321  * @hwtstamps: Timestamp structure to update
322  * @timestamp: Timestamp from the hardware
323  *
324  * We need to convert the NIC clock value into a hwtstamp which can be used by
325  * the upper level timestamping functions. Since the timestamp is simply a 64-
326  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
327  **/
328 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
329 					 u64 timestamp)
330 {
331 	memset(hwtstamps, 0, sizeof(*hwtstamps));
332 
333 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
334 }
335 
336 /**
337  * i40e_ptp_adjfreq - Adjust the PHC frequency
338  * @ptp: The PTP clock structure
339  * @ppb: Parts per billion adjustment from the base
340  *
341  * Adjust the frequency of the PHC by the indicated parts per billion from the
342  * base frequency.
343  **/
344 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
345 {
346 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
347 	struct i40e_hw *hw = &pf->hw;
348 	u64 adj, freq, diff;
349 	int neg_adj = 0;
350 
351 	if (ppb < 0) {
352 		neg_adj = 1;
353 		ppb = -ppb;
354 	}
355 
356 	freq = I40E_PTP_40GB_INCVAL;
357 	freq *= ppb;
358 	diff = div_u64(freq, 1000000000ULL);
359 
360 	if (neg_adj)
361 		adj = I40E_PTP_40GB_INCVAL - diff;
362 	else
363 		adj = I40E_PTP_40GB_INCVAL + diff;
364 
365 	/* At some link speeds, the base incval is so large that directly
366 	 * multiplying by ppb would result in arithmetic overflow even when
367 	 * using a u64. Avoid this by instead calculating the new incval
368 	 * always in terms of the 40GbE clock rate and then multiplying by the
369 	 * link speed factor afterwards. This does result in slightly lower
370 	 * precision at lower link speeds, but it is fairly minor.
371 	 */
372 	smp_mb(); /* Force any pending update before accessing. */
373 	adj *= READ_ONCE(pf->ptp_adj_mult);
374 
375 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
376 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
377 
378 	return 0;
379 }
380 
381 /**
382  * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
383  * @pf: the PF private data structure
384  *
385  * Configure 1PPS signal used for PTP pins
386  **/
387 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
388 {
389 	struct i40e_hw *hw = &pf->hw;
390 	struct timespec64 now;
391 	u64 ns;
392 
393 	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
394 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
395 	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
396 
397 	i40e_ptp_read(pf, &now, NULL);
398 	now.tv_sec += I40E_PTP_2_SEC_DELAY;
399 	now.tv_nsec = 0;
400 	ns = timespec64_to_ns(&now);
401 
402 	/* I40E_PRTTSYN_TGT_L(1) */
403 	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
404 	/* I40E_PRTTSYN_TGT_H(1) */
405 	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
406 	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
407 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
408 	wr32(hw, I40E_PRTTSYN_AUX_0(1),
409 	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
410 }
411 
412 /**
413  * i40e_ptp_adjtime - Adjust the PHC time
414  * @ptp: The PTP clock structure
415  * @delta: Offset in nanoseconds to adjust the PHC time by
416  *
417  * Adjust the current clock time by a delta specified in nanoseconds.
418  **/
419 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
420 {
421 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
422 	struct i40e_hw *hw = &pf->hw;
423 
424 	mutex_lock(&pf->tmreg_lock);
425 
426 	if (delta > -999999900LL && delta < 999999900LL) {
427 		int neg_adj = 0;
428 		u32 timadj;
429 		u64 tohw;
430 
431 		if (delta < 0) {
432 			neg_adj = 1;
433 			tohw = -delta;
434 		} else {
435 			tohw = delta;
436 		}
437 
438 		timadj = tohw & 0x3FFFFFFF;
439 		if (neg_adj)
440 			timadj |= I40E_ISGN;
441 		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
442 	} else {
443 		struct timespec64 then, now;
444 
445 		then = ns_to_timespec64(delta);
446 		i40e_ptp_read(pf, &now, NULL);
447 		now = timespec64_add(now, then);
448 		i40e_ptp_write(pf, (const struct timespec64 *)&now);
449 		i40e_ptp_set_1pps_signal_hw(pf);
450 	}
451 
452 	mutex_unlock(&pf->tmreg_lock);
453 
454 	return 0;
455 }
456 
457 /**
458  * i40e_ptp_gettimex - Get the time of the PHC
459  * @ptp: The PTP clock structure
460  * @ts: timespec structure to hold the current time value
461  * @sts: structure to hold the system time before and after reading the PHC
462  *
463  * Read the device clock and return the correct value on ns, after converting it
464  * into a timespec struct.
465  **/
466 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
467 			     struct ptp_system_timestamp *sts)
468 {
469 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
470 
471 	mutex_lock(&pf->tmreg_lock);
472 	i40e_ptp_read(pf, ts, sts);
473 	mutex_unlock(&pf->tmreg_lock);
474 
475 	return 0;
476 }
477 
478 /**
479  * i40e_ptp_settime - Set the time of the PHC
480  * @ptp: The PTP clock structure
481  * @ts: timespec64 structure that holds the new time value
482  *
483  * Set the device clock to the user input value. The conversion from timespec
484  * to ns happens in the write function.
485  **/
486 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
487 			    const struct timespec64 *ts)
488 {
489 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
490 
491 	mutex_lock(&pf->tmreg_lock);
492 	i40e_ptp_write(pf, ts);
493 	mutex_unlock(&pf->tmreg_lock);
494 
495 	return 0;
496 }
497 
498 /**
499  * i40e_pps_configure - configure PPS events
500  * @ptp: ptp clock
501  * @rq: clock request
502  * @on: status
503  *
504  * Configure PPS events for external clock source.
505  * Return 0 on success or error on failure.
506  **/
507 static int i40e_pps_configure(struct ptp_clock_info *ptp,
508 			      struct ptp_clock_request *rq,
509 			      int on)
510 {
511 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
512 
513 	if (!!on)
514 		i40e_ptp_set_1pps_signal_hw(pf);
515 
516 	return 0;
517 }
518 
519 /**
520  * i40e_pin_state - determine PIN state
521  * @index: PIN index
522  * @func: function assigned to PIN
523  *
524  * Determine PIN state based on PIN index and function assigned.
525  * Return PIN state.
526  **/
527 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
528 {
529 	enum i40e_ptp_gpio_pin_state state = off;
530 
531 	if (index == 0 && func == PTP_PF_EXTTS)
532 		state = in_A;
533 	if (index == 1 && func == PTP_PF_EXTTS)
534 		state = in_B;
535 	if (index == 0 && func == PTP_PF_PEROUT)
536 		state = out_A;
537 	if (index == 1 && func == PTP_PF_PEROUT)
538 		state = out_B;
539 
540 	return state;
541 }
542 
543 /**
544  * i40e_ptp_enable_pin - enable PINs.
545  * @pf: private board structure
546  * @chan: channel
547  * @func: PIN function
548  * @on: state
549  *
550  * Enable PTP pins for external clock source.
551  * Return 0 on success or error code on failure.
552  **/
553 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
554 			       enum ptp_pin_function func, int on)
555 {
556 	enum i40e_ptp_gpio_pin_state *pin = NULL;
557 	struct i40e_ptp_pins_settings pins;
558 	int pin_index;
559 
560 	/* Use PF0 to set pins. Return success for user space tools */
561 	if (pf->hw.pf_id)
562 		return 0;
563 
564 	/* Preserve previous state of pins that we don't touch */
565 	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
566 	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
567 	pins.gpio_4 = pf->ptp_pins->gpio_4;
568 
569 	/* To turn on the pin - find the corresponding one based on
570 	 * the given index. To to turn the function off - find
571 	 * which pin had it assigned. Don't use ptp_find_pin here
572 	 * because it tries to lock the pincfg_mux which is locked by
573 	 * ptp_pin_store() that calls here.
574 	 */
575 	if (on) {
576 		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
577 		if (pin_index < 0)
578 			return -EBUSY;
579 
580 		switch (pin_index) {
581 		case SDP3_2:
582 			pin = &pins.sdp3_2;
583 			break;
584 		case SDP3_3:
585 			pin = &pins.sdp3_3;
586 			break;
587 		case GPIO_4:
588 			pin = &pins.gpio_4;
589 			break;
590 		default:
591 			return -EINVAL;
592 		}
593 
594 		*pin = i40e_pin_state(chan, func);
595 	} else {
596 		pins.sdp3_2 = off;
597 		pins.sdp3_3 = off;
598 		pins.gpio_4 = off;
599 	}
600 
601 	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
602 }
603 
604 /**
605  * i40e_ptp_feature_enable - Enable external clock pins
606  * @ptp: The PTP clock structure
607  * @rq: The PTP clock request structure
608  * @on: To turn feature on/off
609  *
610  * Setting on/off PTP PPS feature for pin.
611  **/
612 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
613 				   struct ptp_clock_request *rq,
614 				   int on)
615 {
616 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
617 
618 	enum ptp_pin_function func;
619 	unsigned int chan;
620 
621 	/* TODO: Implement flags handling for EXTTS and PEROUT */
622 	switch (rq->type) {
623 	case PTP_CLK_REQ_EXTTS:
624 		func = PTP_PF_EXTTS;
625 		chan = rq->extts.index;
626 		break;
627 	case PTP_CLK_REQ_PEROUT:
628 		func = PTP_PF_PEROUT;
629 		chan = rq->perout.index;
630 		break;
631 	case PTP_CLK_REQ_PPS:
632 		return i40e_pps_configure(ptp, rq, on);
633 	default:
634 		return -EOPNOTSUPP;
635 	}
636 
637 	return i40e_ptp_enable_pin(pf, chan, func, on);
638 }
639 
640 /**
641  * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
642  * @pf: the PF data structure
643  *
644  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
645  * for noticed latch events. This allows the driver to keep track of the first
646  * time a latch event was noticed which will be used to help clear out Rx
647  * timestamps for packets that got dropped or lost.
648  *
649  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
650  * expected to be called only while under the ptp_rx_lock.
651  **/
652 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
653 {
654 	struct i40e_hw *hw = &pf->hw;
655 	u32 prttsyn_stat, new_latch_events;
656 	int  i;
657 
658 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
659 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
660 
661 	/* Update the jiffies time for any newly latched timestamp. This
662 	 * ensures that we store the time that we first discovered a timestamp
663 	 * was latched by the hardware. The service task will later determine
664 	 * if we should free the latch and drop that timestamp should too much
665 	 * time pass. This flow ensures that we only update jiffies for new
666 	 * events latched since the last time we checked, and not all events
667 	 * currently latched, so that the service task accounting remains
668 	 * accurate.
669 	 */
670 	for (i = 0; i < 4; i++) {
671 		if (new_latch_events & BIT(i))
672 			pf->latch_events[i] = jiffies;
673 	}
674 
675 	/* Finally, we store the current status of the Rx timestamp latches */
676 	pf->latch_event_flags = prttsyn_stat;
677 
678 	return prttsyn_stat;
679 }
680 
681 /**
682  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
683  * @pf: The PF private data structure
684  *
685  * This watchdog task is scheduled to detect error case where hardware has
686  * dropped an Rx packet that was timestamped when the ring is full. The
687  * particular error is rare but leaves the device in a state unable to timestamp
688  * any future packets.
689  **/
690 void i40e_ptp_rx_hang(struct i40e_pf *pf)
691 {
692 	struct i40e_hw *hw = &pf->hw;
693 	unsigned int i, cleared = 0;
694 
695 	/* Since we cannot turn off the Rx timestamp logic if the device is
696 	 * configured for Tx timestamping, we check if Rx timestamping is
697 	 * configured. We don't want to spuriously warn about Rx timestamp
698 	 * hangs if we don't care about the timestamps.
699 	 */
700 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
701 		return;
702 
703 	spin_lock_bh(&pf->ptp_rx_lock);
704 
705 	/* Update current latch times for Rx events */
706 	i40e_ptp_get_rx_events(pf);
707 
708 	/* Check all the currently latched Rx events and see whether they have
709 	 * been latched for over a second. It is assumed that any timestamp
710 	 * should have been cleared within this time, or else it was captured
711 	 * for a dropped frame that the driver never received. Thus, we will
712 	 * clear any timestamp that has been latched for over 1 second.
713 	 */
714 	for (i = 0; i < 4; i++) {
715 		if ((pf->latch_event_flags & BIT(i)) &&
716 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
717 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
718 			pf->latch_event_flags &= ~BIT(i);
719 			cleared++;
720 		}
721 	}
722 
723 	spin_unlock_bh(&pf->ptp_rx_lock);
724 
725 	/* Log a warning if more than 2 timestamps got dropped in the same
726 	 * check. We don't want to warn about all drops because it can occur
727 	 * in normal scenarios such as PTP frames on multicast addresses we
728 	 * aren't listening to. However, administrator should know if this is
729 	 * the reason packets aren't receiving timestamps.
730 	 */
731 	if (cleared > 2)
732 		dev_dbg(&pf->pdev->dev,
733 			"Dropped %d missed RXTIME timestamp events\n",
734 			cleared);
735 
736 	/* Finally, update the rx_hwtstamp_cleared counter */
737 	pf->rx_hwtstamp_cleared += cleared;
738 }
739 
740 /**
741  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
742  * @pf: The PF private data structure
743  *
744  * This watchdog task is run periodically to make sure that we clear the Tx
745  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
746  * time. It is unexpected in the normal case but if it occurs it results in
747  * permanently preventing timestamps of future packets.
748  **/
749 void i40e_ptp_tx_hang(struct i40e_pf *pf)
750 {
751 	struct sk_buff *skb;
752 
753 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
754 		return;
755 
756 	/* Nothing to do if we're not already waiting for a timestamp */
757 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
758 		return;
759 
760 	/* We already have a handler routine which is run when we are notified
761 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
762 	 * within a second it is reasonable to assume that we never will.
763 	 */
764 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
765 		skb = pf->ptp_tx_skb;
766 		pf->ptp_tx_skb = NULL;
767 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
768 
769 		/* Free the skb after we clear the bitlock */
770 		dev_kfree_skb_any(skb);
771 		pf->tx_hwtstamp_timeouts++;
772 	}
773 }
774 
775 /**
776  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
777  * @pf: Board private structure
778  *
779  * Read the value of the Tx timestamp from the registers, convert it into a
780  * value consumable by the stack, and store that result into the shhwtstamps
781  * struct before returning it up the stack.
782  **/
783 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
784 {
785 	struct skb_shared_hwtstamps shhwtstamps;
786 	struct sk_buff *skb = pf->ptp_tx_skb;
787 	struct i40e_hw *hw = &pf->hw;
788 	u32 hi, lo;
789 	u64 ns;
790 
791 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
792 		return;
793 
794 	/* don't attempt to timestamp if we don't have an skb */
795 	if (!pf->ptp_tx_skb)
796 		return;
797 
798 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
799 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
800 
801 	ns = (((u64)hi) << 32) | lo;
802 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
803 
804 	/* Clear the bit lock as soon as possible after reading the register,
805 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
806 	 * applications might wake up and attempt to request another transmit
807 	 * timestamp prior to the bit lock being cleared.
808 	 */
809 	pf->ptp_tx_skb = NULL;
810 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
811 
812 	/* Notify the stack and free the skb after we've unlocked */
813 	skb_tstamp_tx(skb, &shhwtstamps);
814 	dev_kfree_skb_any(skb);
815 }
816 
817 /**
818  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
819  * @pf: Board private structure
820  * @skb: Particular skb to send timestamp with
821  * @index: Index into the receive timestamp registers for the timestamp
822  *
823  * The XL710 receives a notification in the receive descriptor with an offset
824  * into the set of RXTIME registers where the timestamp is for that skb. This
825  * function goes and fetches the receive timestamp from that offset, if a valid
826  * one exists. The RXTIME registers are in ns, so we must convert the result
827  * first.
828  **/
829 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
830 {
831 	u32 prttsyn_stat, hi, lo;
832 	struct i40e_hw *hw;
833 	u64 ns;
834 
835 	/* Since we cannot turn off the Rx timestamp logic if the device is
836 	 * doing Tx timestamping, check if Rx timestamping is configured.
837 	 */
838 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
839 		return;
840 
841 	hw = &pf->hw;
842 
843 	spin_lock_bh(&pf->ptp_rx_lock);
844 
845 	/* Get current Rx events and update latch times */
846 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
847 
848 	/* TODO: Should we warn about missing Rx timestamp event? */
849 	if (!(prttsyn_stat & BIT(index))) {
850 		spin_unlock_bh(&pf->ptp_rx_lock);
851 		return;
852 	}
853 
854 	/* Clear the latched event since we're about to read its register */
855 	pf->latch_event_flags &= ~BIT(index);
856 
857 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
858 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
859 
860 	spin_unlock_bh(&pf->ptp_rx_lock);
861 
862 	ns = (((u64)hi) << 32) | lo;
863 
864 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
865 }
866 
867 /**
868  * i40e_ptp_set_increment - Utility function to update clock increment rate
869  * @pf: Board private structure
870  *
871  * During a link change, the DMA frequency that drives the 1588 logic will
872  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
873  * we must update the increment value per clock tick.
874  **/
875 void i40e_ptp_set_increment(struct i40e_pf *pf)
876 {
877 	struct i40e_link_status *hw_link_info;
878 	struct i40e_hw *hw = &pf->hw;
879 	u64 incval;
880 	u32 mult;
881 
882 	hw_link_info = &hw->phy.link_info;
883 
884 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
885 
886 	switch (hw_link_info->link_speed) {
887 	case I40E_LINK_SPEED_10GB:
888 		mult = I40E_PTP_10GB_INCVAL_MULT;
889 		break;
890 	case I40E_LINK_SPEED_5GB:
891 		mult = I40E_PTP_5GB_INCVAL_MULT;
892 		break;
893 	case I40E_LINK_SPEED_1GB:
894 		mult = I40E_PTP_1GB_INCVAL_MULT;
895 		break;
896 	case I40E_LINK_SPEED_100MB:
897 	{
898 		static int warn_once;
899 
900 		if (!warn_once) {
901 			dev_warn(&pf->pdev->dev,
902 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
903 			warn_once++;
904 		}
905 		mult = 0;
906 		break;
907 	}
908 	case I40E_LINK_SPEED_40GB:
909 	default:
910 		mult = 1;
911 		break;
912 	}
913 
914 	/* The increment value is calculated by taking the base 40GbE incvalue
915 	 * and multiplying it by a factor based on the link speed.
916 	 */
917 	incval = I40E_PTP_40GB_INCVAL * mult;
918 
919 	/* Write the new increment value into the increment register. The
920 	 * hardware will not update the clock until both registers have been
921 	 * written.
922 	 */
923 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
924 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
925 
926 	/* Update the base adjustement value. */
927 	WRITE_ONCE(pf->ptp_adj_mult, mult);
928 	smp_mb(); /* Force the above update. */
929 }
930 
931 /**
932  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
933  * @pf: Board private structure
934  * @ifr: ioctl data
935  *
936  * Obtain the current hardware timestamping settigs as requested. To do this,
937  * keep a shadow copy of the timestamp settings rather than attempting to
938  * deconstruct it from the registers.
939  **/
940 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
941 {
942 	struct hwtstamp_config *config = &pf->tstamp_config;
943 
944 	if (!(pf->flags & I40E_FLAG_PTP))
945 		return -EOPNOTSUPP;
946 
947 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
948 		-EFAULT : 0;
949 }
950 
951 /**
952  * i40e_ptp_free_pins - free memory used by PTP pins
953  * @pf: Board private structure
954  *
955  * Release memory allocated for PTP pins.
956  **/
957 static void i40e_ptp_free_pins(struct i40e_pf *pf)
958 {
959 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
960 		kfree(pf->ptp_pins);
961 		kfree(pf->ptp_caps.pin_config);
962 		pf->ptp_pins = NULL;
963 	}
964 }
965 
966 /**
967  * i40e_ptp_set_pin_hw - Set HW GPIO pin
968  * @hw: pointer to the hardware structure
969  * @pin: pin index
970  * @state: pin state
971  *
972  * Set status of GPIO pin for external clock handling.
973  **/
974 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
975 				unsigned int pin,
976 				enum i40e_ptp_gpio_pin_state state)
977 {
978 	switch (state) {
979 	case off:
980 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
981 		break;
982 	case in_A:
983 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
984 		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
985 		break;
986 	case in_B:
987 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
988 		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
989 		break;
990 	case out_A:
991 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
992 		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
993 		break;
994 	case out_B:
995 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
996 		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
997 		break;
998 	default:
999 		break;
1000 	}
1001 }
1002 
1003 /**
1004  * i40e_ptp_set_led_hw - Set HW GPIO led
1005  * @hw: pointer to the hardware structure
1006  * @led: led index
1007  * @state: led state
1008  *
1009  * Set status of GPIO led for external clock handling.
1010  **/
1011 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
1012 				unsigned int led,
1013 				enum i40e_ptp_led_pin_state state)
1014 {
1015 	switch (state) {
1016 	case low:
1017 		wr32(hw, I40E_GLGEN_GPIO_SET,
1018 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1019 		break;
1020 	case high:
1021 		wr32(hw, I40E_GLGEN_GPIO_SET,
1022 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1023 		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1024 		break;
1025 	default:
1026 		break;
1027 	}
1028 }
1029 
1030 /**
1031  * i40e_ptp_init_leds_hw - init LEDs
1032  * @hw: pointer to a hardware structure
1033  *
1034  * Set initial state of LEDs
1035  **/
1036 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1037 {
1038 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1039 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1040 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1041 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1042 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1043 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1044 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1045 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1046 }
1047 
1048 /**
1049  * i40e_ptp_set_pins_hw - Set HW GPIO pins
1050  * @pf: Board private structure
1051  *
1052  * This function sets GPIO pins for PTP
1053  **/
1054 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1055 {
1056 	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1057 	struct i40e_hw *hw = &pf->hw;
1058 
1059 	/* pin must be disabled before it may be used */
1060 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1061 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1062 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1063 
1064 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1065 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1066 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1067 
1068 	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1069 	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1070 	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1071 	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1072 
1073 	dev_info(&pf->pdev->dev,
1074 		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1075 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1076 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1077 		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1078 }
1079 
1080 /**
1081  * i40e_ptp_set_pins - set PTP pins in HW
1082  * @pf: Board private structure
1083  * @pins: PTP pins to be applied
1084  *
1085  * Validate and set PTP pins in HW for specific PF.
1086  * Return 0 on success or negative value on error.
1087  **/
1088 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1089 			     struct i40e_ptp_pins_settings *pins)
1090 {
1091 	enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1092 	int i = 0;
1093 
1094 	if (pin_caps == CANT_DO_PINS)
1095 		return -EOPNOTSUPP;
1096 	else if (pin_caps == CAN_DO_PINS)
1097 		return 0;
1098 
1099 	if (pins->sdp3_2 == invalid)
1100 		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1101 	if (pins->sdp3_3 == invalid)
1102 		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1103 	if (pins->gpio_4 == invalid)
1104 		pins->gpio_4 = pf->ptp_pins->gpio_4;
1105 	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1106 		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1107 		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1108 		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1109 			pins->led2_0 =
1110 				i40e_ptp_pin_led_allowed_states[i].led2_0;
1111 			pins->led2_1 =
1112 				i40e_ptp_pin_led_allowed_states[i].led2_1;
1113 			pins->led3_0 =
1114 				i40e_ptp_pin_led_allowed_states[i].led3_0;
1115 			pins->led3_1 =
1116 				i40e_ptp_pin_led_allowed_states[i].led3_1;
1117 			break;
1118 		}
1119 		i++;
1120 	}
1121 	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1122 		dev_warn(&pf->pdev->dev,
1123 			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1124 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1125 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1126 			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1127 
1128 		return -EPERM;
1129 	}
1130 	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1131 	i40e_ptp_set_pins_hw(pf);
1132 	i40_ptp_reset_timing_events(pf);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * i40e_ptp_alloc_pins - allocate PTP pins structure
1139  * @pf: Board private structure
1140  *
1141  * allocate PTP pins structure
1142  **/
1143 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1144 {
1145 	if (!i40e_is_ptp_pin_dev(&pf->hw))
1146 		return 0;
1147 
1148 	pf->ptp_pins =
1149 		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1150 
1151 	if (!pf->ptp_pins) {
1152 		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1153 		return -I40E_ERR_NO_MEMORY;
1154 	}
1155 
1156 	pf->ptp_pins->sdp3_2 = off;
1157 	pf->ptp_pins->sdp3_3 = off;
1158 	pf->ptp_pins->gpio_4 = off;
1159 	pf->ptp_pins->led2_0 = high;
1160 	pf->ptp_pins->led2_1 = high;
1161 	pf->ptp_pins->led3_0 = high;
1162 	pf->ptp_pins->led3_1 = high;
1163 
1164 	/* Use PF0 to set pins in HW. Return success for user space tools */
1165 	if (pf->hw.pf_id)
1166 		return 0;
1167 
1168 	i40e_ptp_init_leds_hw(&pf->hw);
1169 	i40e_ptp_set_pins_hw(pf);
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1176  * @pf: Board private structure
1177  * @config: hwtstamp settings requested or saved
1178  *
1179  * Control hardware registers to enter the specific mode requested by the
1180  * user. Also used during reset path to ensure that timestamp settings are
1181  * maintained.
1182  *
1183  * Note: modifies config in place, and may update the requested mode to be
1184  * more broad if the specific filter is not directly supported.
1185  **/
1186 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1187 				       struct hwtstamp_config *config)
1188 {
1189 	struct i40e_hw *hw = &pf->hw;
1190 	u32 tsyntype, regval;
1191 
1192 	/* Selects external trigger to cause event */
1193 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1194 	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1195 	regval &= 0;
1196 	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1197 	/* regval: 0001 0000 0000 0000 0000 */
1198 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1199 
1200 	/* Enabel interrupts */
1201 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1202 	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1203 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1204 
1205 	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1206 
1207 	switch (config->tx_type) {
1208 	case HWTSTAMP_TX_OFF:
1209 		pf->ptp_tx = false;
1210 		break;
1211 	case HWTSTAMP_TX_ON:
1212 		pf->ptp_tx = true;
1213 		break;
1214 	default:
1215 		return -ERANGE;
1216 	}
1217 
1218 	switch (config->rx_filter) {
1219 	case HWTSTAMP_FILTER_NONE:
1220 		pf->ptp_rx = false;
1221 		/* We set the type to V1, but do not enable UDP packet
1222 		 * recognition. In this way, we should be as close to
1223 		 * disabling PTP Rx timestamps as possible since V1 packets
1224 		 * are always UDP, since L2 packets are a V2 feature.
1225 		 */
1226 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1227 		break;
1228 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1229 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1230 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1231 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1232 			return -ERANGE;
1233 		pf->ptp_rx = true;
1234 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1235 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1236 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1237 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1238 		break;
1239 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1240 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1241 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1242 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1243 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1244 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1245 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1246 			return -ERANGE;
1247 		fallthrough;
1248 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1249 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1250 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1251 		pf->ptp_rx = true;
1252 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1253 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1254 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1255 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1256 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1257 		} else {
1258 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1259 		}
1260 		break;
1261 	case HWTSTAMP_FILTER_NTP_ALL:
1262 	case HWTSTAMP_FILTER_ALL:
1263 	default:
1264 		return -ERANGE;
1265 	}
1266 
1267 	/* Clear out all 1588-related registers to clear and unlatch them. */
1268 	spin_lock_bh(&pf->ptp_rx_lock);
1269 	rd32(hw, I40E_PRTTSYN_STAT_0);
1270 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1271 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1272 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1273 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1274 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1275 	pf->latch_event_flags = 0;
1276 	spin_unlock_bh(&pf->ptp_rx_lock);
1277 
1278 	/* Enable/disable the Tx timestamp interrupt based on user input. */
1279 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1280 	if (pf->ptp_tx)
1281 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1282 	else
1283 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1284 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1285 
1286 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1287 	if (pf->ptp_tx)
1288 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1289 	else
1290 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1291 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1292 
1293 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1294 	 * timestamps by setting to V1 only mode and clear the UDP
1295 	 * recognition. This ought to disable all PTP Rx timestamps as V1
1296 	 * packets are always over UDP. Note that software is configured to
1297 	 * ignore Rx timestamps via the pf->ptp_rx flag.
1298 	 */
1299 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1300 	/* clear everything but the enable bit */
1301 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1302 	/* now enable bits for desired Rx timestamps */
1303 	regval |= tsyntype;
1304 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1311  * @pf: Board private structure
1312  * @ifr: ioctl data
1313  *
1314  * Respond to the user filter requests and make the appropriate hardware
1315  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1316  * logic, so keep track in software of whether to indicate these timestamps
1317  * or not.
1318  *
1319  * It is permissible to "upgrade" the user request to a broader filter, as long
1320  * as the user receives the timestamps they care about and the user is notified
1321  * the filter has been broadened.
1322  **/
1323 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1324 {
1325 	struct hwtstamp_config config;
1326 	int err;
1327 
1328 	if (!(pf->flags & I40E_FLAG_PTP))
1329 		return -EOPNOTSUPP;
1330 
1331 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1332 		return -EFAULT;
1333 
1334 	err = i40e_ptp_set_timestamp_mode(pf, &config);
1335 	if (err)
1336 		return err;
1337 
1338 	/* save these settings for future reference */
1339 	pf->tstamp_config = config;
1340 
1341 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1342 		-EFAULT : 0;
1343 }
1344 
1345 /**
1346  * i40e_init_pin_config - initialize pins.
1347  * @pf: private board structure
1348  *
1349  * Initialize pins for external clock source.
1350  * Return 0 on success or error code on failure.
1351  **/
1352 static int i40e_init_pin_config(struct i40e_pf *pf)
1353 {
1354 	int i;
1355 
1356 	pf->ptp_caps.n_pins = 3;
1357 	pf->ptp_caps.n_ext_ts = 2;
1358 	pf->ptp_caps.pps = 1;
1359 	pf->ptp_caps.n_per_out = 2;
1360 
1361 	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1362 					  sizeof(*pf->ptp_caps.pin_config),
1363 					  GFP_KERNEL);
1364 	if (!pf->ptp_caps.pin_config)
1365 		return -ENOMEM;
1366 
1367 	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1368 		snprintf(pf->ptp_caps.pin_config[i].name,
1369 			 sizeof(pf->ptp_caps.pin_config[i].name),
1370 			 "%s", sdp_desc[i].name);
1371 		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1372 		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1373 		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1374 	}
1375 
1376 	pf->ptp_caps.verify = i40e_ptp_verify;
1377 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1378 
1379 	pf->ptp_caps.pps = 1;
1380 
1381 	return 0;
1382 }
1383 
1384 /**
1385  * i40e_ptp_create_clock - Create PTP clock device for userspace
1386  * @pf: Board private structure
1387  *
1388  * This function creates a new PTP clock device. It only creates one if we
1389  * don't already have one, so it is safe to call. Will return error if it
1390  * can't create one, but success if we already have a device. Should be used
1391  * by i40e_ptp_init to create clock initially, and prevent global resets from
1392  * creating new clock devices.
1393  **/
1394 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1395 {
1396 	/* no need to create a clock device if we already have one */
1397 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1398 		return 0;
1399 
1400 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
1401 		sizeof(pf->ptp_caps.name) - 1);
1402 	pf->ptp_caps.owner = THIS_MODULE;
1403 	pf->ptp_caps.max_adj = 999999999;
1404 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
1405 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1406 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1407 	pf->ptp_caps.settime64 = i40e_ptp_settime;
1408 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1409 		int err = i40e_init_pin_config(pf);
1410 
1411 		if (err)
1412 			return err;
1413 	}
1414 
1415 	/* Attempt to register the clock before enabling the hardware. */
1416 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1417 	if (IS_ERR(pf->ptp_clock))
1418 		return PTR_ERR(pf->ptp_clock);
1419 
1420 	/* clear the hwtstamp settings here during clock create, instead of
1421 	 * during regular init, so that we can maintain settings across a
1422 	 * reset or suspend.
1423 	 */
1424 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1425 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1426 
1427 	/* Set the previous "reset" time to the current Kernel clock time */
1428 	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1429 	pf->ptp_reset_start = ktime_get();
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1436  * @pf: Board private structure
1437  *
1438  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1439  * be called at the end of preparing to reset, just before hardware reset
1440  * occurs, in order to preserve the PTP time as close as possible across
1441  * resets.
1442  */
1443 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1444 {
1445 	/* don't try to access the PTP clock if it's not enabled */
1446 	if (!(pf->flags & I40E_FLAG_PTP))
1447 		return;
1448 
1449 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1450 	/* Get a monotonic starting time for this reset */
1451 	pf->ptp_reset_start = ktime_get();
1452 }
1453 
1454 /**
1455  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1456  * @pf: Board private structure
1457  *
1458  * Restore the PTP hardware clock registers. We previously cached the PTP
1459  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1460  * update this value based on the time delta since the time was saved, using
1461  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1462  *
1463  * This ensures that the hardware clock is restored to nearly what it should
1464  * have been if a reset had not occurred.
1465  */
1466 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1467 {
1468 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1469 
1470 	/* Update the previous HW time with the ktime delta */
1471 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1472 
1473 	/* Restore the hardware clock registers */
1474 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1475 }
1476 
1477 /**
1478  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1479  * @pf: Board private structure
1480  *
1481  * This function sets device up for 1588 support. The first time it is run, it
1482  * will create a PHC clock device. It does not create a clock device if one
1483  * already exists. It also reconfigures the device after a reset.
1484  *
1485  * The first time a clock is created, i40e_ptp_create_clock will set
1486  * pf->ptp_prev_hw_time to the current system time. During resets, it is
1487  * expected that this timespec will be set to the last known PTP clock time,
1488  * in order to preserve the clock time as close as possible across a reset.
1489  **/
1490 void i40e_ptp_init(struct i40e_pf *pf)
1491 {
1492 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1493 	struct i40e_hw *hw = &pf->hw;
1494 	u32 pf_id;
1495 	long err;
1496 
1497 	/* Only one PF is assigned to control 1588 logic per port. Do not
1498 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1499 	 */
1500 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1501 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1502 	if (hw->pf_id != pf_id) {
1503 		pf->flags &= ~I40E_FLAG_PTP;
1504 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1505 			 __func__,
1506 			 netdev->name);
1507 		return;
1508 	}
1509 
1510 	mutex_init(&pf->tmreg_lock);
1511 	spin_lock_init(&pf->ptp_rx_lock);
1512 
1513 	/* ensure we have a clock device */
1514 	err = i40e_ptp_create_clock(pf);
1515 	if (err) {
1516 		pf->ptp_clock = NULL;
1517 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1518 			__func__);
1519 	} else if (pf->ptp_clock) {
1520 		u32 regval;
1521 
1522 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1523 			dev_info(&pf->pdev->dev, "PHC enabled\n");
1524 		pf->flags |= I40E_FLAG_PTP;
1525 
1526 		/* Ensure the clocks are running. */
1527 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1528 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1529 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1530 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1531 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1532 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1533 
1534 		/* Set the increment value per clock tick. */
1535 		i40e_ptp_set_increment(pf);
1536 
1537 		/* reset timestamping mode */
1538 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1539 
1540 		/* Restore the clock time based on last known value */
1541 		i40e_ptp_restore_hw_time(pf);
1542 	}
1543 
1544 	i40e_ptp_set_1pps_signal_hw(pf);
1545 }
1546 
1547 /**
1548  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1549  * @pf: Board private structure
1550  *
1551  * This function handles the cleanup work required from the initialization by
1552  * clearing out the important information and unregistering the PHC.
1553  **/
1554 void i40e_ptp_stop(struct i40e_pf *pf)
1555 {
1556 	struct i40e_hw *hw = &pf->hw;
1557 	u32 regval;
1558 
1559 	pf->flags &= ~I40E_FLAG_PTP;
1560 	pf->ptp_tx = false;
1561 	pf->ptp_rx = false;
1562 
1563 	if (pf->ptp_tx_skb) {
1564 		struct sk_buff *skb = pf->ptp_tx_skb;
1565 
1566 		pf->ptp_tx_skb = NULL;
1567 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1568 		dev_kfree_skb_any(skb);
1569 	}
1570 
1571 	if (pf->ptp_clock) {
1572 		ptp_clock_unregister(pf->ptp_clock);
1573 		pf->ptp_clock = NULL;
1574 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1575 			 pf->vsi[pf->lan_vsi]->netdev->name);
1576 	}
1577 
1578 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1579 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1580 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1581 		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1582 	}
1583 
1584 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1585 	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1586 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1587 
1588 	/* Disable interrupts */
1589 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1590 	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1591 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1592 
1593 	i40e_ptp_free_pins(pf);
1594 }
1595