xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_ptp.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8  * the fundamental clock design. However, the clock operations are much simpler
9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
10  * Because the field is so wide, we can forgo the cycle counter and just
11  * operate with the nanosecond field directly without fear of overflow.
12  *
13  * Much like the 82599, the update period is dependent upon the link speed:
14  * At 40Gb link or no link, the period is 1.6ns.
15  * At 10Gb link, the period is multiplied by 2. (3.2ns)
16  * At 1Gb link, the period is multiplied by 20. (32ns)
17  * 1588 functionality is not supported at 100Mbps.
18  */
19 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT	2
21 #define I40E_PTP_1GB_INCVAL_MULT	20
22 
23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
25 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
26 
27 /**
28  * i40e_ptp_read - Read the PHC time from the device
29  * @pf: Board private structure
30  * @ts: timespec structure to hold the current time value
31  *
32  * This function reads the PRTTSYN_TIME registers and stores them in a
33  * timespec. However, since the registers are 64 bits of nanoseconds, we must
34  * convert the result to a timespec before we can return.
35  **/
36 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
37 {
38 	struct i40e_hw *hw = &pf->hw;
39 	u32 hi, lo;
40 	u64 ns;
41 
42 	/* The timer latches on the lowest register read. */
43 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
44 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
45 
46 	ns = (((u64)hi) << 32) | lo;
47 
48 	*ts = ns_to_timespec64(ns);
49 }
50 
51 /**
52  * i40e_ptp_write - Write the PHC time to the device
53  * @pf: Board private structure
54  * @ts: timespec structure that holds the new time value
55  *
56  * This function writes the PRTTSYN_TIME registers with the user value. Since
57  * we receive a timespec from the stack, we must convert that timespec into
58  * nanoseconds before programming the registers.
59  **/
60 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
61 {
62 	struct i40e_hw *hw = &pf->hw;
63 	u64 ns = timespec64_to_ns(ts);
64 
65 	/* The timer will not update until the high register is written, so
66 	 * write the low register first.
67 	 */
68 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
69 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
70 }
71 
72 /**
73  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
74  * @hwtstamps: Timestamp structure to update
75  * @timestamp: Timestamp from the hardware
76  *
77  * We need to convert the NIC clock value into a hwtstamp which can be used by
78  * the upper level timestamping functions. Since the timestamp is simply a 64-
79  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
80  **/
81 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
82 					 u64 timestamp)
83 {
84 	memset(hwtstamps, 0, sizeof(*hwtstamps));
85 
86 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
87 }
88 
89 /**
90  * i40e_ptp_adjfreq - Adjust the PHC frequency
91  * @ptp: The PTP clock structure
92  * @ppb: Parts per billion adjustment from the base
93  *
94  * Adjust the frequency of the PHC by the indicated parts per billion from the
95  * base frequency.
96  **/
97 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
98 {
99 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
100 	struct i40e_hw *hw = &pf->hw;
101 	u64 adj, freq, diff;
102 	int neg_adj = 0;
103 
104 	if (ppb < 0) {
105 		neg_adj = 1;
106 		ppb = -ppb;
107 	}
108 
109 	freq = I40E_PTP_40GB_INCVAL;
110 	freq *= ppb;
111 	diff = div_u64(freq, 1000000000ULL);
112 
113 	if (neg_adj)
114 		adj = I40E_PTP_40GB_INCVAL - diff;
115 	else
116 		adj = I40E_PTP_40GB_INCVAL + diff;
117 
118 	/* At some link speeds, the base incval is so large that directly
119 	 * multiplying by ppb would result in arithmetic overflow even when
120 	 * using a u64. Avoid this by instead calculating the new incval
121 	 * always in terms of the 40GbE clock rate and then multiplying by the
122 	 * link speed factor afterwards. This does result in slightly lower
123 	 * precision at lower link speeds, but it is fairly minor.
124 	 */
125 	smp_mb(); /* Force any pending update before accessing. */
126 	adj *= READ_ONCE(pf->ptp_adj_mult);
127 
128 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
129 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
130 
131 	return 0;
132 }
133 
134 /**
135  * i40e_ptp_adjtime - Adjust the PHC time
136  * @ptp: The PTP clock structure
137  * @delta: Offset in nanoseconds to adjust the PHC time by
138  *
139  * Adjust the frequency of the PHC by the indicated parts per billion from the
140  * base frequency.
141  **/
142 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
143 {
144 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
145 	struct timespec64 now;
146 
147 	mutex_lock(&pf->tmreg_lock);
148 
149 	i40e_ptp_read(pf, &now);
150 	timespec64_add_ns(&now, delta);
151 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
152 
153 	mutex_unlock(&pf->tmreg_lock);
154 
155 	return 0;
156 }
157 
158 /**
159  * i40e_ptp_gettime - Get the time of the PHC
160  * @ptp: The PTP clock structure
161  * @ts: timespec structure to hold the current time value
162  *
163  * Read the device clock and return the correct value on ns, after converting it
164  * into a timespec struct.
165  **/
166 static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
167 {
168 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
169 
170 	mutex_lock(&pf->tmreg_lock);
171 	i40e_ptp_read(pf, ts);
172 	mutex_unlock(&pf->tmreg_lock);
173 
174 	return 0;
175 }
176 
177 /**
178  * i40e_ptp_settime - Set the time of the PHC
179  * @ptp: The PTP clock structure
180  * @ts: timespec structure that holds the new time value
181  *
182  * Set the device clock to the user input value. The conversion from timespec
183  * to ns happens in the write function.
184  **/
185 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
186 			    const struct timespec64 *ts)
187 {
188 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
189 
190 	mutex_lock(&pf->tmreg_lock);
191 	i40e_ptp_write(pf, ts);
192 	mutex_unlock(&pf->tmreg_lock);
193 
194 	return 0;
195 }
196 
197 /**
198  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
199  * @ptp: The PTP clock structure
200  * @rq: The requested feature to change
201  * @on: Enable/disable flag
202  *
203  * The XL710 does not support any of the ancillary features of the PHC
204  * subsystem, so this function may just return.
205  **/
206 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
207 				   struct ptp_clock_request *rq, int on)
208 {
209 	return -EOPNOTSUPP;
210 }
211 
212 /**
213  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
214  * @pf: the PF data structure
215  *
216  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
217  * for noticed latch events. This allows the driver to keep track of the first
218  * time a latch event was noticed which will be used to help clear out Rx
219  * timestamps for packets that got dropped or lost.
220  *
221  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
222  * expected to be called only while under the ptp_rx_lock.
223  **/
224 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
225 {
226 	struct i40e_hw *hw = &pf->hw;
227 	u32 prttsyn_stat, new_latch_events;
228 	int  i;
229 
230 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
231 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
232 
233 	/* Update the jiffies time for any newly latched timestamp. This
234 	 * ensures that we store the time that we first discovered a timestamp
235 	 * was latched by the hardware. The service task will later determine
236 	 * if we should free the latch and drop that timestamp should too much
237 	 * time pass. This flow ensures that we only update jiffies for new
238 	 * events latched since the last time we checked, and not all events
239 	 * currently latched, so that the service task accounting remains
240 	 * accurate.
241 	 */
242 	for (i = 0; i < 4; i++) {
243 		if (new_latch_events & BIT(i))
244 			pf->latch_events[i] = jiffies;
245 	}
246 
247 	/* Finally, we store the current status of the Rx timestamp latches */
248 	pf->latch_event_flags = prttsyn_stat;
249 
250 	return prttsyn_stat;
251 }
252 
253 /**
254  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
255  * @pf: The PF private data structure
256  * @vsi: The VSI with the rings relevant to 1588
257  *
258  * This watchdog task is scheduled to detect error case where hardware has
259  * dropped an Rx packet that was timestamped when the ring is full. The
260  * particular error is rare but leaves the device in a state unable to timestamp
261  * any future packets.
262  **/
263 void i40e_ptp_rx_hang(struct i40e_pf *pf)
264 {
265 	struct i40e_hw *hw = &pf->hw;
266 	unsigned int i, cleared = 0;
267 
268 	/* Since we cannot turn off the Rx timestamp logic if the device is
269 	 * configured for Tx timestamping, we check if Rx timestamping is
270 	 * configured. We don't want to spuriously warn about Rx timestamp
271 	 * hangs if we don't care about the timestamps.
272 	 */
273 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
274 		return;
275 
276 	spin_lock_bh(&pf->ptp_rx_lock);
277 
278 	/* Update current latch times for Rx events */
279 	i40e_ptp_get_rx_events(pf);
280 
281 	/* Check all the currently latched Rx events and see whether they have
282 	 * been latched for over a second. It is assumed that any timestamp
283 	 * should have been cleared within this time, or else it was captured
284 	 * for a dropped frame that the driver never received. Thus, we will
285 	 * clear any timestamp that has been latched for over 1 second.
286 	 */
287 	for (i = 0; i < 4; i++) {
288 		if ((pf->latch_event_flags & BIT(i)) &&
289 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
290 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
291 			pf->latch_event_flags &= ~BIT(i);
292 			cleared++;
293 		}
294 	}
295 
296 	spin_unlock_bh(&pf->ptp_rx_lock);
297 
298 	/* Log a warning if more than 2 timestamps got dropped in the same
299 	 * check. We don't want to warn about all drops because it can occur
300 	 * in normal scenarios such as PTP frames on multicast addresses we
301 	 * aren't listening to. However, administrator should know if this is
302 	 * the reason packets aren't receiving timestamps.
303 	 */
304 	if (cleared > 2)
305 		dev_dbg(&pf->pdev->dev,
306 			"Dropped %d missed RXTIME timestamp events\n",
307 			cleared);
308 
309 	/* Finally, update the rx_hwtstamp_cleared counter */
310 	pf->rx_hwtstamp_cleared += cleared;
311 }
312 
313 /**
314  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
315  * @pf: The PF private data structure
316  *
317  * This watchdog task is run periodically to make sure that we clear the Tx
318  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
319  * time. It is unexpected in the normal case but if it occurs it results in
320  * permanently preventing timestamps of future packets.
321  **/
322 void i40e_ptp_tx_hang(struct i40e_pf *pf)
323 {
324 	struct sk_buff *skb;
325 
326 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
327 		return;
328 
329 	/* Nothing to do if we're not already waiting for a timestamp */
330 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
331 		return;
332 
333 	/* We already have a handler routine which is run when we are notified
334 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
335 	 * within a second it is reasonable to assume that we never will.
336 	 */
337 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
338 		skb = pf->ptp_tx_skb;
339 		pf->ptp_tx_skb = NULL;
340 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
341 
342 		/* Free the skb after we clear the bitlock */
343 		dev_kfree_skb_any(skb);
344 		pf->tx_hwtstamp_timeouts++;
345 	}
346 }
347 
348 /**
349  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
350  * @pf: Board private structure
351  *
352  * Read the value of the Tx timestamp from the registers, convert it into a
353  * value consumable by the stack, and store that result into the shhwtstamps
354  * struct before returning it up the stack.
355  **/
356 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
357 {
358 	struct skb_shared_hwtstamps shhwtstamps;
359 	struct sk_buff *skb = pf->ptp_tx_skb;
360 	struct i40e_hw *hw = &pf->hw;
361 	u32 hi, lo;
362 	u64 ns;
363 
364 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
365 		return;
366 
367 	/* don't attempt to timestamp if we don't have an skb */
368 	if (!pf->ptp_tx_skb)
369 		return;
370 
371 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
372 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
373 
374 	ns = (((u64)hi) << 32) | lo;
375 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
376 
377 	/* Clear the bit lock as soon as possible after reading the register,
378 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
379 	 * applications might wake up and attempt to request another transmit
380 	 * timestamp prior to the bit lock being cleared.
381 	 */
382 	pf->ptp_tx_skb = NULL;
383 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
384 
385 	/* Notify the stack and free the skb after we've unlocked */
386 	skb_tstamp_tx(skb, &shhwtstamps);
387 	dev_kfree_skb_any(skb);
388 }
389 
390 /**
391  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
392  * @pf: Board private structure
393  * @skb: Particular skb to send timestamp with
394  * @index: Index into the receive timestamp registers for the timestamp
395  *
396  * The XL710 receives a notification in the receive descriptor with an offset
397  * into the set of RXTIME registers where the timestamp is for that skb. This
398  * function goes and fetches the receive timestamp from that offset, if a valid
399  * one exists. The RXTIME registers are in ns, so we must convert the result
400  * first.
401  **/
402 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
403 {
404 	u32 prttsyn_stat, hi, lo;
405 	struct i40e_hw *hw;
406 	u64 ns;
407 
408 	/* Since we cannot turn off the Rx timestamp logic if the device is
409 	 * doing Tx timestamping, check if Rx timestamping is configured.
410 	 */
411 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
412 		return;
413 
414 	hw = &pf->hw;
415 
416 	spin_lock_bh(&pf->ptp_rx_lock);
417 
418 	/* Get current Rx events and update latch times */
419 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
420 
421 	/* TODO: Should we warn about missing Rx timestamp event? */
422 	if (!(prttsyn_stat & BIT(index))) {
423 		spin_unlock_bh(&pf->ptp_rx_lock);
424 		return;
425 	}
426 
427 	/* Clear the latched event since we're about to read its register */
428 	pf->latch_event_flags &= ~BIT(index);
429 
430 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
431 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
432 
433 	spin_unlock_bh(&pf->ptp_rx_lock);
434 
435 	ns = (((u64)hi) << 32) | lo;
436 
437 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
438 }
439 
440 /**
441  * i40e_ptp_set_increment - Utility function to update clock increment rate
442  * @pf: Board private structure
443  *
444  * During a link change, the DMA frequency that drives the 1588 logic will
445  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
446  * we must update the increment value per clock tick.
447  **/
448 void i40e_ptp_set_increment(struct i40e_pf *pf)
449 {
450 	struct i40e_link_status *hw_link_info;
451 	struct i40e_hw *hw = &pf->hw;
452 	u64 incval;
453 	u32 mult;
454 
455 	hw_link_info = &hw->phy.link_info;
456 
457 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
458 
459 	switch (hw_link_info->link_speed) {
460 	case I40E_LINK_SPEED_10GB:
461 		mult = I40E_PTP_10GB_INCVAL_MULT;
462 		break;
463 	case I40E_LINK_SPEED_1GB:
464 		mult = I40E_PTP_1GB_INCVAL_MULT;
465 		break;
466 	case I40E_LINK_SPEED_100MB:
467 	{
468 		static int warn_once;
469 
470 		if (!warn_once) {
471 			dev_warn(&pf->pdev->dev,
472 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
473 			warn_once++;
474 		}
475 		mult = 0;
476 		break;
477 	}
478 	case I40E_LINK_SPEED_40GB:
479 	default:
480 		mult = 1;
481 		break;
482 	}
483 
484 	/* The increment value is calculated by taking the base 40GbE incvalue
485 	 * and multiplying it by a factor based on the link speed.
486 	 */
487 	incval = I40E_PTP_40GB_INCVAL * mult;
488 
489 	/* Write the new increment value into the increment register. The
490 	 * hardware will not update the clock until both registers have been
491 	 * written.
492 	 */
493 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
494 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
495 
496 	/* Update the base adjustement value. */
497 	WRITE_ONCE(pf->ptp_adj_mult, mult);
498 	smp_mb(); /* Force the above update. */
499 }
500 
501 /**
502  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
503  * @pf: Board private structure
504  * @ifr: ioctl data
505  *
506  * Obtain the current hardware timestamping settigs as requested. To do this,
507  * keep a shadow copy of the timestamp settings rather than attempting to
508  * deconstruct it from the registers.
509  **/
510 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
511 {
512 	struct hwtstamp_config *config = &pf->tstamp_config;
513 
514 	if (!(pf->flags & I40E_FLAG_PTP))
515 		return -EOPNOTSUPP;
516 
517 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
518 		-EFAULT : 0;
519 }
520 
521 /**
522  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
523  * @pf: Board private structure
524  * @config: hwtstamp settings requested or saved
525  *
526  * Control hardware registers to enter the specific mode requested by the
527  * user. Also used during reset path to ensure that timestamp settings are
528  * maintained.
529  *
530  * Note: modifies config in place, and may update the requested mode to be
531  * more broad if the specific filter is not directly supported.
532  **/
533 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
534 				       struct hwtstamp_config *config)
535 {
536 	struct i40e_hw *hw = &pf->hw;
537 	u32 tsyntype, regval;
538 
539 	/* Reserved for future extensions. */
540 	if (config->flags)
541 		return -EINVAL;
542 
543 	switch (config->tx_type) {
544 	case HWTSTAMP_TX_OFF:
545 		pf->ptp_tx = false;
546 		break;
547 	case HWTSTAMP_TX_ON:
548 		pf->ptp_tx = true;
549 		break;
550 	default:
551 		return -ERANGE;
552 	}
553 
554 	switch (config->rx_filter) {
555 	case HWTSTAMP_FILTER_NONE:
556 		pf->ptp_rx = false;
557 		/* We set the type to V1, but do not enable UDP packet
558 		 * recognition. In this way, we should be as close to
559 		 * disabling PTP Rx timestamps as possible since V1 packets
560 		 * are always UDP, since L2 packets are a V2 feature.
561 		 */
562 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
563 		break;
564 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
565 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
566 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
567 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
568 			return -ERANGE;
569 		pf->ptp_rx = true;
570 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
571 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
572 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
573 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
574 		break;
575 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
576 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
577 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
578 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
579 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
580 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
581 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
582 			return -ERANGE;
583 		/* fall through */
584 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
585 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
586 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
587 		pf->ptp_rx = true;
588 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
589 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
590 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
591 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
592 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
593 		} else {
594 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
595 		}
596 		break;
597 	case HWTSTAMP_FILTER_NTP_ALL:
598 	case HWTSTAMP_FILTER_ALL:
599 	default:
600 		return -ERANGE;
601 	}
602 
603 	/* Clear out all 1588-related registers to clear and unlatch them. */
604 	spin_lock_bh(&pf->ptp_rx_lock);
605 	rd32(hw, I40E_PRTTSYN_STAT_0);
606 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
607 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
608 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
609 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
610 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
611 	pf->latch_event_flags = 0;
612 	spin_unlock_bh(&pf->ptp_rx_lock);
613 
614 	/* Enable/disable the Tx timestamp interrupt based on user input. */
615 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
616 	if (pf->ptp_tx)
617 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
618 	else
619 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
620 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
621 
622 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
623 	if (pf->ptp_tx)
624 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
625 	else
626 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
627 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
628 
629 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
630 	 * timestamps by setting to V1 only mode and clear the UDP
631 	 * recognition. This ought to disable all PTP Rx timestamps as V1
632 	 * packets are always over UDP. Note that software is configured to
633 	 * ignore Rx timestamps via the pf->ptp_rx flag.
634 	 */
635 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
636 	/* clear everything but the enable bit */
637 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
638 	/* now enable bits for desired Rx timestamps */
639 	regval |= tsyntype;
640 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
641 
642 	return 0;
643 }
644 
645 /**
646  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
647  * @pf: Board private structure
648  * @ifr: ioctl data
649  *
650  * Respond to the user filter requests and make the appropriate hardware
651  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
652  * logic, so keep track in software of whether to indicate these timestamps
653  * or not.
654  *
655  * It is permissible to "upgrade" the user request to a broader filter, as long
656  * as the user receives the timestamps they care about and the user is notified
657  * the filter has been broadened.
658  **/
659 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
660 {
661 	struct hwtstamp_config config;
662 	int err;
663 
664 	if (!(pf->flags & I40E_FLAG_PTP))
665 		return -EOPNOTSUPP;
666 
667 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
668 		return -EFAULT;
669 
670 	err = i40e_ptp_set_timestamp_mode(pf, &config);
671 	if (err)
672 		return err;
673 
674 	/* save these settings for future reference */
675 	pf->tstamp_config = config;
676 
677 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
678 		-EFAULT : 0;
679 }
680 
681 /**
682  * i40e_ptp_create_clock - Create PTP clock device for userspace
683  * @pf: Board private structure
684  *
685  * This function creates a new PTP clock device. It only creates one if we
686  * don't already have one, so it is safe to call. Will return error if it
687  * can't create one, but success if we already have a device. Should be used
688  * by i40e_ptp_init to create clock initially, and prevent global resets from
689  * creating new clock devices.
690  **/
691 static long i40e_ptp_create_clock(struct i40e_pf *pf)
692 {
693 	/* no need to create a clock device if we already have one */
694 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
695 		return 0;
696 
697 	strncpy(pf->ptp_caps.name, i40e_driver_name,
698 		sizeof(pf->ptp_caps.name) - 1);
699 	pf->ptp_caps.owner = THIS_MODULE;
700 	pf->ptp_caps.max_adj = 999999999;
701 	pf->ptp_caps.n_ext_ts = 0;
702 	pf->ptp_caps.pps = 0;
703 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
704 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
705 	pf->ptp_caps.gettime64 = i40e_ptp_gettime;
706 	pf->ptp_caps.settime64 = i40e_ptp_settime;
707 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
708 
709 	/* Attempt to register the clock before enabling the hardware. */
710 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
711 	if (IS_ERR(pf->ptp_clock))
712 		return PTR_ERR(pf->ptp_clock);
713 
714 	/* clear the hwtstamp settings here during clock create, instead of
715 	 * during regular init, so that we can maintain settings across a
716 	 * reset or suspend.
717 	 */
718 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
719 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
720 
721 	return 0;
722 }
723 
724 /**
725  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
726  * @pf: Board private structure
727  *
728  * This function sets device up for 1588 support. The first time it is run, it
729  * will create a PHC clock device. It does not create a clock device if one
730  * already exists. It also reconfigures the device after a reset.
731  **/
732 void i40e_ptp_init(struct i40e_pf *pf)
733 {
734 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
735 	struct i40e_hw *hw = &pf->hw;
736 	u32 pf_id;
737 	long err;
738 
739 	/* Only one PF is assigned to control 1588 logic per port. Do not
740 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
741 	 */
742 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
743 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
744 	if (hw->pf_id != pf_id) {
745 		pf->flags &= ~I40E_FLAG_PTP;
746 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
747 			 __func__,
748 			 netdev->name);
749 		return;
750 	}
751 
752 	mutex_init(&pf->tmreg_lock);
753 	spin_lock_init(&pf->ptp_rx_lock);
754 
755 	/* ensure we have a clock device */
756 	err = i40e_ptp_create_clock(pf);
757 	if (err) {
758 		pf->ptp_clock = NULL;
759 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
760 			__func__);
761 	} else if (pf->ptp_clock) {
762 		struct timespec64 ts;
763 		u32 regval;
764 
765 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
766 			dev_info(&pf->pdev->dev, "PHC enabled\n");
767 		pf->flags |= I40E_FLAG_PTP;
768 
769 		/* Ensure the clocks are running. */
770 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
771 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
772 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
773 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
774 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
775 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
776 
777 		/* Set the increment value per clock tick. */
778 		i40e_ptp_set_increment(pf);
779 
780 		/* reset timestamping mode */
781 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
782 
783 		/* Set the clock value. */
784 		ts = ktime_to_timespec64(ktime_get_real());
785 		i40e_ptp_settime(&pf->ptp_caps, &ts);
786 	}
787 }
788 
789 /**
790  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
791  * @pf: Board private structure
792  *
793  * This function handles the cleanup work required from the initialization by
794  * clearing out the important information and unregistering the PHC.
795  **/
796 void i40e_ptp_stop(struct i40e_pf *pf)
797 {
798 	pf->flags &= ~I40E_FLAG_PTP;
799 	pf->ptp_tx = false;
800 	pf->ptp_rx = false;
801 
802 	if (pf->ptp_tx_skb) {
803 		struct sk_buff *skb = pf->ptp_tx_skb;
804 
805 		pf->ptp_tx_skb = NULL;
806 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
807 		dev_kfree_skb_any(skb);
808 	}
809 
810 	if (pf->ptp_clock) {
811 		ptp_clock_unregister(pf->ptp_clock);
812 		pf->ptp_clock = NULL;
813 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
814 			 pf->vsi[pf->lan_vsi]->netdev->name);
815 	}
816 }
817