1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8  * the fundamental clock design. However, the clock operations are much simpler
9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
10  * Because the field is so wide, we can forgo the cycle counter and just
11  * operate with the nanosecond field directly without fear of overflow.
12  *
13  * Much like the 82599, the update period is dependent upon the link speed:
14  * At 40Gb link or no link, the period is 1.6ns.
15  * At 10Gb link, the period is multiplied by 2. (3.2ns)
16  * At 1Gb link, the period is multiplied by 20. (32ns)
17  * 1588 functionality is not supported at 100Mbps.
18  */
19 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT	2
21 #define I40E_PTP_1GB_INCVAL_MULT	20
22 
23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
25 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
26 
27 /**
28  * i40e_ptp_read - Read the PHC time from the device
29  * @pf: Board private structure
30  * @ts: timespec structure to hold the current time value
31  * @sts: structure to hold the system time before and after reading the PHC
32  *
33  * This function reads the PRTTSYN_TIME registers and stores them in a
34  * timespec. However, since the registers are 64 bits of nanoseconds, we must
35  * convert the result to a timespec before we can return.
36  **/
37 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
38 			  struct ptp_system_timestamp *sts)
39 {
40 	struct i40e_hw *hw = &pf->hw;
41 	u32 hi, lo;
42 	u64 ns;
43 
44 	/* The timer latches on the lowest register read. */
45 	ptp_read_system_prets(sts);
46 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
47 	ptp_read_system_postts(sts);
48 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
49 
50 	ns = (((u64)hi) << 32) | lo;
51 
52 	*ts = ns_to_timespec64(ns);
53 }
54 
55 /**
56  * i40e_ptp_write - Write the PHC time to the device
57  * @pf: Board private structure
58  * @ts: timespec structure that holds the new time value
59  *
60  * This function writes the PRTTSYN_TIME registers with the user value. Since
61  * we receive a timespec from the stack, we must convert that timespec into
62  * nanoseconds before programming the registers.
63  **/
64 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
65 {
66 	struct i40e_hw *hw = &pf->hw;
67 	u64 ns = timespec64_to_ns(ts);
68 
69 	/* The timer will not update until the high register is written, so
70 	 * write the low register first.
71 	 */
72 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
73 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
74 }
75 
76 /**
77  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
78  * @hwtstamps: Timestamp structure to update
79  * @timestamp: Timestamp from the hardware
80  *
81  * We need to convert the NIC clock value into a hwtstamp which can be used by
82  * the upper level timestamping functions. Since the timestamp is simply a 64-
83  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
84  **/
85 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
86 					 u64 timestamp)
87 {
88 	memset(hwtstamps, 0, sizeof(*hwtstamps));
89 
90 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
91 }
92 
93 /**
94  * i40e_ptp_adjfreq - Adjust the PHC frequency
95  * @ptp: The PTP clock structure
96  * @ppb: Parts per billion adjustment from the base
97  *
98  * Adjust the frequency of the PHC by the indicated parts per billion from the
99  * base frequency.
100  **/
101 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
102 {
103 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
104 	struct i40e_hw *hw = &pf->hw;
105 	u64 adj, freq, diff;
106 	int neg_adj = 0;
107 
108 	if (ppb < 0) {
109 		neg_adj = 1;
110 		ppb = -ppb;
111 	}
112 
113 	freq = I40E_PTP_40GB_INCVAL;
114 	freq *= ppb;
115 	diff = div_u64(freq, 1000000000ULL);
116 
117 	if (neg_adj)
118 		adj = I40E_PTP_40GB_INCVAL - diff;
119 	else
120 		adj = I40E_PTP_40GB_INCVAL + diff;
121 
122 	/* At some link speeds, the base incval is so large that directly
123 	 * multiplying by ppb would result in arithmetic overflow even when
124 	 * using a u64. Avoid this by instead calculating the new incval
125 	 * always in terms of the 40GbE clock rate and then multiplying by the
126 	 * link speed factor afterwards. This does result in slightly lower
127 	 * precision at lower link speeds, but it is fairly minor.
128 	 */
129 	smp_mb(); /* Force any pending update before accessing. */
130 	adj *= READ_ONCE(pf->ptp_adj_mult);
131 
132 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
133 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
134 
135 	return 0;
136 }
137 
138 /**
139  * i40e_ptp_adjtime - Adjust the PHC time
140  * @ptp: The PTP clock structure
141  * @delta: Offset in nanoseconds to adjust the PHC time by
142  *
143  * Adjust the frequency of the PHC by the indicated parts per billion from the
144  * base frequency.
145  **/
146 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
147 {
148 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
149 	struct timespec64 now, then;
150 
151 	then = ns_to_timespec64(delta);
152 	mutex_lock(&pf->tmreg_lock);
153 
154 	i40e_ptp_read(pf, &now, NULL);
155 	now = timespec64_add(now, then);
156 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
157 
158 	mutex_unlock(&pf->tmreg_lock);
159 
160 	return 0;
161 }
162 
163 /**
164  * i40e_ptp_gettimex - Get the time of the PHC
165  * @ptp: The PTP clock structure
166  * @ts: timespec structure to hold the current time value
167  * @sts: structure to hold the system time before and after reading the PHC
168  *
169  * Read the device clock and return the correct value on ns, after converting it
170  * into a timespec struct.
171  **/
172 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
173 			     struct ptp_system_timestamp *sts)
174 {
175 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
176 
177 	mutex_lock(&pf->tmreg_lock);
178 	i40e_ptp_read(pf, ts, sts);
179 	mutex_unlock(&pf->tmreg_lock);
180 
181 	return 0;
182 }
183 
184 /**
185  * i40e_ptp_settime - Set the time of the PHC
186  * @ptp: The PTP clock structure
187  * @ts: timespec structure that holds the new time value
188  *
189  * Set the device clock to the user input value. The conversion from timespec
190  * to ns happens in the write function.
191  **/
192 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
193 			    const struct timespec64 *ts)
194 {
195 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
196 
197 	mutex_lock(&pf->tmreg_lock);
198 	i40e_ptp_write(pf, ts);
199 	mutex_unlock(&pf->tmreg_lock);
200 
201 	return 0;
202 }
203 
204 /**
205  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
206  * @ptp: The PTP clock structure
207  * @rq: The requested feature to change
208  * @on: Enable/disable flag
209  *
210  * The XL710 does not support any of the ancillary features of the PHC
211  * subsystem, so this function may just return.
212  **/
213 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
214 				   struct ptp_clock_request *rq, int on)
215 {
216 	return -EOPNOTSUPP;
217 }
218 
219 /**
220  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
221  * @pf: the PF data structure
222  *
223  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
224  * for noticed latch events. This allows the driver to keep track of the first
225  * time a latch event was noticed which will be used to help clear out Rx
226  * timestamps for packets that got dropped or lost.
227  *
228  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
229  * expected to be called only while under the ptp_rx_lock.
230  **/
231 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
232 {
233 	struct i40e_hw *hw = &pf->hw;
234 	u32 prttsyn_stat, new_latch_events;
235 	int  i;
236 
237 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
238 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
239 
240 	/* Update the jiffies time for any newly latched timestamp. This
241 	 * ensures that we store the time that we first discovered a timestamp
242 	 * was latched by the hardware. The service task will later determine
243 	 * if we should free the latch and drop that timestamp should too much
244 	 * time pass. This flow ensures that we only update jiffies for new
245 	 * events latched since the last time we checked, and not all events
246 	 * currently latched, so that the service task accounting remains
247 	 * accurate.
248 	 */
249 	for (i = 0; i < 4; i++) {
250 		if (new_latch_events & BIT(i))
251 			pf->latch_events[i] = jiffies;
252 	}
253 
254 	/* Finally, we store the current status of the Rx timestamp latches */
255 	pf->latch_event_flags = prttsyn_stat;
256 
257 	return prttsyn_stat;
258 }
259 
260 /**
261  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
262  * @pf: The PF private data structure
263  * @vsi: The VSI with the rings relevant to 1588
264  *
265  * This watchdog task is scheduled to detect error case where hardware has
266  * dropped an Rx packet that was timestamped when the ring is full. The
267  * particular error is rare but leaves the device in a state unable to timestamp
268  * any future packets.
269  **/
270 void i40e_ptp_rx_hang(struct i40e_pf *pf)
271 {
272 	struct i40e_hw *hw = &pf->hw;
273 	unsigned int i, cleared = 0;
274 
275 	/* Since we cannot turn off the Rx timestamp logic if the device is
276 	 * configured for Tx timestamping, we check if Rx timestamping is
277 	 * configured. We don't want to spuriously warn about Rx timestamp
278 	 * hangs if we don't care about the timestamps.
279 	 */
280 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
281 		return;
282 
283 	spin_lock_bh(&pf->ptp_rx_lock);
284 
285 	/* Update current latch times for Rx events */
286 	i40e_ptp_get_rx_events(pf);
287 
288 	/* Check all the currently latched Rx events and see whether they have
289 	 * been latched for over a second. It is assumed that any timestamp
290 	 * should have been cleared within this time, or else it was captured
291 	 * for a dropped frame that the driver never received. Thus, we will
292 	 * clear any timestamp that has been latched for over 1 second.
293 	 */
294 	for (i = 0; i < 4; i++) {
295 		if ((pf->latch_event_flags & BIT(i)) &&
296 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
297 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
298 			pf->latch_event_flags &= ~BIT(i);
299 			cleared++;
300 		}
301 	}
302 
303 	spin_unlock_bh(&pf->ptp_rx_lock);
304 
305 	/* Log a warning if more than 2 timestamps got dropped in the same
306 	 * check. We don't want to warn about all drops because it can occur
307 	 * in normal scenarios such as PTP frames on multicast addresses we
308 	 * aren't listening to. However, administrator should know if this is
309 	 * the reason packets aren't receiving timestamps.
310 	 */
311 	if (cleared > 2)
312 		dev_dbg(&pf->pdev->dev,
313 			"Dropped %d missed RXTIME timestamp events\n",
314 			cleared);
315 
316 	/* Finally, update the rx_hwtstamp_cleared counter */
317 	pf->rx_hwtstamp_cleared += cleared;
318 }
319 
320 /**
321  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
322  * @pf: The PF private data structure
323  *
324  * This watchdog task is run periodically to make sure that we clear the Tx
325  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
326  * time. It is unexpected in the normal case but if it occurs it results in
327  * permanently preventing timestamps of future packets.
328  **/
329 void i40e_ptp_tx_hang(struct i40e_pf *pf)
330 {
331 	struct sk_buff *skb;
332 
333 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
334 		return;
335 
336 	/* Nothing to do if we're not already waiting for a timestamp */
337 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
338 		return;
339 
340 	/* We already have a handler routine which is run when we are notified
341 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
342 	 * within a second it is reasonable to assume that we never will.
343 	 */
344 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
345 		skb = pf->ptp_tx_skb;
346 		pf->ptp_tx_skb = NULL;
347 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
348 
349 		/* Free the skb after we clear the bitlock */
350 		dev_kfree_skb_any(skb);
351 		pf->tx_hwtstamp_timeouts++;
352 	}
353 }
354 
355 /**
356  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
357  * @pf: Board private structure
358  *
359  * Read the value of the Tx timestamp from the registers, convert it into a
360  * value consumable by the stack, and store that result into the shhwtstamps
361  * struct before returning it up the stack.
362  **/
363 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
364 {
365 	struct skb_shared_hwtstamps shhwtstamps;
366 	struct sk_buff *skb = pf->ptp_tx_skb;
367 	struct i40e_hw *hw = &pf->hw;
368 	u32 hi, lo;
369 	u64 ns;
370 
371 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
372 		return;
373 
374 	/* don't attempt to timestamp if we don't have an skb */
375 	if (!pf->ptp_tx_skb)
376 		return;
377 
378 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
379 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
380 
381 	ns = (((u64)hi) << 32) | lo;
382 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
383 
384 	/* Clear the bit lock as soon as possible after reading the register,
385 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
386 	 * applications might wake up and attempt to request another transmit
387 	 * timestamp prior to the bit lock being cleared.
388 	 */
389 	pf->ptp_tx_skb = NULL;
390 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
391 
392 	/* Notify the stack and free the skb after we've unlocked */
393 	skb_tstamp_tx(skb, &shhwtstamps);
394 	dev_kfree_skb_any(skb);
395 }
396 
397 /**
398  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
399  * @pf: Board private structure
400  * @skb: Particular skb to send timestamp with
401  * @index: Index into the receive timestamp registers for the timestamp
402  *
403  * The XL710 receives a notification in the receive descriptor with an offset
404  * into the set of RXTIME registers where the timestamp is for that skb. This
405  * function goes and fetches the receive timestamp from that offset, if a valid
406  * one exists. The RXTIME registers are in ns, so we must convert the result
407  * first.
408  **/
409 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
410 {
411 	u32 prttsyn_stat, hi, lo;
412 	struct i40e_hw *hw;
413 	u64 ns;
414 
415 	/* Since we cannot turn off the Rx timestamp logic if the device is
416 	 * doing Tx timestamping, check if Rx timestamping is configured.
417 	 */
418 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
419 		return;
420 
421 	hw = &pf->hw;
422 
423 	spin_lock_bh(&pf->ptp_rx_lock);
424 
425 	/* Get current Rx events and update latch times */
426 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
427 
428 	/* TODO: Should we warn about missing Rx timestamp event? */
429 	if (!(prttsyn_stat & BIT(index))) {
430 		spin_unlock_bh(&pf->ptp_rx_lock);
431 		return;
432 	}
433 
434 	/* Clear the latched event since we're about to read its register */
435 	pf->latch_event_flags &= ~BIT(index);
436 
437 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
438 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
439 
440 	spin_unlock_bh(&pf->ptp_rx_lock);
441 
442 	ns = (((u64)hi) << 32) | lo;
443 
444 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
445 }
446 
447 /**
448  * i40e_ptp_set_increment - Utility function to update clock increment rate
449  * @pf: Board private structure
450  *
451  * During a link change, the DMA frequency that drives the 1588 logic will
452  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
453  * we must update the increment value per clock tick.
454  **/
455 void i40e_ptp_set_increment(struct i40e_pf *pf)
456 {
457 	struct i40e_link_status *hw_link_info;
458 	struct i40e_hw *hw = &pf->hw;
459 	u64 incval;
460 	u32 mult;
461 
462 	hw_link_info = &hw->phy.link_info;
463 
464 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
465 
466 	switch (hw_link_info->link_speed) {
467 	case I40E_LINK_SPEED_10GB:
468 		mult = I40E_PTP_10GB_INCVAL_MULT;
469 		break;
470 	case I40E_LINK_SPEED_1GB:
471 		mult = I40E_PTP_1GB_INCVAL_MULT;
472 		break;
473 	case I40E_LINK_SPEED_100MB:
474 	{
475 		static int warn_once;
476 
477 		if (!warn_once) {
478 			dev_warn(&pf->pdev->dev,
479 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
480 			warn_once++;
481 		}
482 		mult = 0;
483 		break;
484 	}
485 	case I40E_LINK_SPEED_40GB:
486 	default:
487 		mult = 1;
488 		break;
489 	}
490 
491 	/* The increment value is calculated by taking the base 40GbE incvalue
492 	 * and multiplying it by a factor based on the link speed.
493 	 */
494 	incval = I40E_PTP_40GB_INCVAL * mult;
495 
496 	/* Write the new increment value into the increment register. The
497 	 * hardware will not update the clock until both registers have been
498 	 * written.
499 	 */
500 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
501 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
502 
503 	/* Update the base adjustement value. */
504 	WRITE_ONCE(pf->ptp_adj_mult, mult);
505 	smp_mb(); /* Force the above update. */
506 }
507 
508 /**
509  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
510  * @pf: Board private structure
511  * @ifr: ioctl data
512  *
513  * Obtain the current hardware timestamping settigs as requested. To do this,
514  * keep a shadow copy of the timestamp settings rather than attempting to
515  * deconstruct it from the registers.
516  **/
517 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
518 {
519 	struct hwtstamp_config *config = &pf->tstamp_config;
520 
521 	if (!(pf->flags & I40E_FLAG_PTP))
522 		return -EOPNOTSUPP;
523 
524 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
525 		-EFAULT : 0;
526 }
527 
528 /**
529  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
530  * @pf: Board private structure
531  * @config: hwtstamp settings requested or saved
532  *
533  * Control hardware registers to enter the specific mode requested by the
534  * user. Also used during reset path to ensure that timestamp settings are
535  * maintained.
536  *
537  * Note: modifies config in place, and may update the requested mode to be
538  * more broad if the specific filter is not directly supported.
539  **/
540 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
541 				       struct hwtstamp_config *config)
542 {
543 	struct i40e_hw *hw = &pf->hw;
544 	u32 tsyntype, regval;
545 
546 	/* Reserved for future extensions. */
547 	if (config->flags)
548 		return -EINVAL;
549 
550 	switch (config->tx_type) {
551 	case HWTSTAMP_TX_OFF:
552 		pf->ptp_tx = false;
553 		break;
554 	case HWTSTAMP_TX_ON:
555 		pf->ptp_tx = true;
556 		break;
557 	default:
558 		return -ERANGE;
559 	}
560 
561 	switch (config->rx_filter) {
562 	case HWTSTAMP_FILTER_NONE:
563 		pf->ptp_rx = false;
564 		/* We set the type to V1, but do not enable UDP packet
565 		 * recognition. In this way, we should be as close to
566 		 * disabling PTP Rx timestamps as possible since V1 packets
567 		 * are always UDP, since L2 packets are a V2 feature.
568 		 */
569 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
570 		break;
571 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
573 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
574 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
575 			return -ERANGE;
576 		pf->ptp_rx = true;
577 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
578 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
579 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
580 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
581 		break;
582 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
583 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
584 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
585 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
586 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
587 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
588 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
589 			return -ERANGE;
590 		/* fall through */
591 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
592 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
593 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
594 		pf->ptp_rx = true;
595 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
596 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
597 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
598 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
599 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
600 		} else {
601 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
602 		}
603 		break;
604 	case HWTSTAMP_FILTER_NTP_ALL:
605 	case HWTSTAMP_FILTER_ALL:
606 	default:
607 		return -ERANGE;
608 	}
609 
610 	/* Clear out all 1588-related registers to clear and unlatch them. */
611 	spin_lock_bh(&pf->ptp_rx_lock);
612 	rd32(hw, I40E_PRTTSYN_STAT_0);
613 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
614 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
615 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
616 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
617 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
618 	pf->latch_event_flags = 0;
619 	spin_unlock_bh(&pf->ptp_rx_lock);
620 
621 	/* Enable/disable the Tx timestamp interrupt based on user input. */
622 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
623 	if (pf->ptp_tx)
624 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
625 	else
626 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
627 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
628 
629 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
630 	if (pf->ptp_tx)
631 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
632 	else
633 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
634 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
635 
636 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
637 	 * timestamps by setting to V1 only mode and clear the UDP
638 	 * recognition. This ought to disable all PTP Rx timestamps as V1
639 	 * packets are always over UDP. Note that software is configured to
640 	 * ignore Rx timestamps via the pf->ptp_rx flag.
641 	 */
642 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
643 	/* clear everything but the enable bit */
644 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
645 	/* now enable bits for desired Rx timestamps */
646 	regval |= tsyntype;
647 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
648 
649 	return 0;
650 }
651 
652 /**
653  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
654  * @pf: Board private structure
655  * @ifr: ioctl data
656  *
657  * Respond to the user filter requests and make the appropriate hardware
658  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
659  * logic, so keep track in software of whether to indicate these timestamps
660  * or not.
661  *
662  * It is permissible to "upgrade" the user request to a broader filter, as long
663  * as the user receives the timestamps they care about and the user is notified
664  * the filter has been broadened.
665  **/
666 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
667 {
668 	struct hwtstamp_config config;
669 	int err;
670 
671 	if (!(pf->flags & I40E_FLAG_PTP))
672 		return -EOPNOTSUPP;
673 
674 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
675 		return -EFAULT;
676 
677 	err = i40e_ptp_set_timestamp_mode(pf, &config);
678 	if (err)
679 		return err;
680 
681 	/* save these settings for future reference */
682 	pf->tstamp_config = config;
683 
684 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
685 		-EFAULT : 0;
686 }
687 
688 /**
689  * i40e_ptp_create_clock - Create PTP clock device for userspace
690  * @pf: Board private structure
691  *
692  * This function creates a new PTP clock device. It only creates one if we
693  * don't already have one, so it is safe to call. Will return error if it
694  * can't create one, but success if we already have a device. Should be used
695  * by i40e_ptp_init to create clock initially, and prevent global resets from
696  * creating new clock devices.
697  **/
698 static long i40e_ptp_create_clock(struct i40e_pf *pf)
699 {
700 	/* no need to create a clock device if we already have one */
701 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
702 		return 0;
703 
704 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
705 		sizeof(pf->ptp_caps.name) - 1);
706 	pf->ptp_caps.owner = THIS_MODULE;
707 	pf->ptp_caps.max_adj = 999999999;
708 	pf->ptp_caps.n_ext_ts = 0;
709 	pf->ptp_caps.pps = 0;
710 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
711 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
712 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
713 	pf->ptp_caps.settime64 = i40e_ptp_settime;
714 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
715 
716 	/* Attempt to register the clock before enabling the hardware. */
717 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
718 	if (IS_ERR(pf->ptp_clock))
719 		return PTR_ERR(pf->ptp_clock);
720 
721 	/* clear the hwtstamp settings here during clock create, instead of
722 	 * during regular init, so that we can maintain settings across a
723 	 * reset or suspend.
724 	 */
725 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
726 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
727 
728 	/* Set the previous "reset" time to the current Kernel clock time */
729 	pf->ptp_prev_hw_time = ktime_to_timespec64(ktime_get_real());
730 	pf->ptp_reset_start = ktime_get();
731 
732 	return 0;
733 }
734 
735 /**
736  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
737  * @pf: Board private structure
738  *
739  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
740  * be called at the end of preparing to reset, just before hardware reset
741  * occurs, in order to preserve the PTP time as close as possible across
742  * resets.
743  */
744 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
745 {
746 	/* don't try to access the PTP clock if it's not enabled */
747 	if (!(pf->flags & I40E_FLAG_PTP))
748 		return;
749 
750 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
751 	/* Get a monotonic starting time for this reset */
752 	pf->ptp_reset_start = ktime_get();
753 }
754 
755 /**
756  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
757  * @pf: Board private structure
758  *
759  * Restore the PTP hardware clock registers. We previously cached the PTP
760  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
761  * update this value based on the time delta since the time was saved, using
762  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
763  *
764  * This ensures that the hardware clock is restored to nearly what it should
765  * have been if a reset had not occurred.
766  */
767 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
768 {
769 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
770 
771 	/* Update the previous HW time with the ktime delta */
772 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
773 
774 	/* Restore the hardware clock registers */
775 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
776 }
777 
778 /**
779  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
780  * @pf: Board private structure
781  *
782  * This function sets device up for 1588 support. The first time it is run, it
783  * will create a PHC clock device. It does not create a clock device if one
784  * already exists. It also reconfigures the device after a reset.
785  *
786  * The first time a clock is created, i40e_ptp_create_clock will set
787  * pf->ptp_prev_hw_time to the current system time. During resets, it is
788  * expected that this timespec will be set to the last known PTP clock time,
789  * in order to preserve the clock time as close as possible across a reset.
790  **/
791 void i40e_ptp_init(struct i40e_pf *pf)
792 {
793 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
794 	struct i40e_hw *hw = &pf->hw;
795 	u32 pf_id;
796 	long err;
797 
798 	/* Only one PF is assigned to control 1588 logic per port. Do not
799 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
800 	 */
801 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
802 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
803 	if (hw->pf_id != pf_id) {
804 		pf->flags &= ~I40E_FLAG_PTP;
805 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
806 			 __func__,
807 			 netdev->name);
808 		return;
809 	}
810 
811 	mutex_init(&pf->tmreg_lock);
812 	spin_lock_init(&pf->ptp_rx_lock);
813 
814 	/* ensure we have a clock device */
815 	err = i40e_ptp_create_clock(pf);
816 	if (err) {
817 		pf->ptp_clock = NULL;
818 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
819 			__func__);
820 	} else if (pf->ptp_clock) {
821 		u32 regval;
822 
823 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
824 			dev_info(&pf->pdev->dev, "PHC enabled\n");
825 		pf->flags |= I40E_FLAG_PTP;
826 
827 		/* Ensure the clocks are running. */
828 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
829 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
830 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
831 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
832 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
833 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
834 
835 		/* Set the increment value per clock tick. */
836 		i40e_ptp_set_increment(pf);
837 
838 		/* reset timestamping mode */
839 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
840 
841 		/* Restore the clock time based on last known value */
842 		i40e_ptp_restore_hw_time(pf);
843 	}
844 }
845 
846 /**
847  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
848  * @pf: Board private structure
849  *
850  * This function handles the cleanup work required from the initialization by
851  * clearing out the important information and unregistering the PHC.
852  **/
853 void i40e_ptp_stop(struct i40e_pf *pf)
854 {
855 	pf->flags &= ~I40E_FLAG_PTP;
856 	pf->ptp_tx = false;
857 	pf->ptp_rx = false;
858 
859 	if (pf->ptp_tx_skb) {
860 		struct sk_buff *skb = pf->ptp_tx_skb;
861 
862 		pf->ptp_tx_skb = NULL;
863 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
864 		dev_kfree_skb_any(skb);
865 	}
866 
867 	if (pf->ptp_clock) {
868 		ptp_clock_unregister(pf->ptp_clock);
869 		pf->ptp_clock = NULL;
870 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
871 			 pf->vsi[pf->lan_vsi]->netdev->name);
872 	}
873 }
874