1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2014 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include "i40e.h" 28 #include <linux/ptp_classify.h> 29 30 /* The XL710 timesync is very much like Intel's 82599 design when it comes to 31 * the fundamental clock design. However, the clock operations are much simpler 32 * in the XL710 because the device supports a full 64 bits of nanoseconds. 33 * Because the field is so wide, we can forgo the cycle counter and just 34 * operate with the nanosecond field directly without fear of overflow. 35 * 36 * Much like the 82599, the update period is dependent upon the link speed: 37 * At 40Gb link or no link, the period is 1.6ns. 38 * At 10Gb link, the period is multiplied by 2. (3.2ns) 39 * At 1Gb link, the period is multiplied by 20. (32ns) 40 * 1588 functionality is not supported at 100Mbps. 41 */ 42 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL 43 #define I40E_PTP_10GB_INCVAL 0x0333333333ULL 44 #define I40E_PTP_1GB_INCVAL 0x2000000000ULL 45 46 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 47 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ 48 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 49 50 /** 51 * i40e_ptp_read - Read the PHC time from the device 52 * @pf: Board private structure 53 * @ts: timespec structure to hold the current time value 54 * 55 * This function reads the PRTTSYN_TIME registers and stores them in a 56 * timespec. However, since the registers are 64 bits of nanoseconds, we must 57 * convert the result to a timespec before we can return. 58 **/ 59 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts) 60 { 61 struct i40e_hw *hw = &pf->hw; 62 u32 hi, lo; 63 u64 ns; 64 65 /* The timer latches on the lowest register read. */ 66 lo = rd32(hw, I40E_PRTTSYN_TIME_L); 67 hi = rd32(hw, I40E_PRTTSYN_TIME_H); 68 69 ns = (((u64)hi) << 32) | lo; 70 71 *ts = ns_to_timespec64(ns); 72 } 73 74 /** 75 * i40e_ptp_write - Write the PHC time to the device 76 * @pf: Board private structure 77 * @ts: timespec structure that holds the new time value 78 * 79 * This function writes the PRTTSYN_TIME registers with the user value. Since 80 * we receive a timespec from the stack, we must convert that timespec into 81 * nanoseconds before programming the registers. 82 **/ 83 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) 84 { 85 struct i40e_hw *hw = &pf->hw; 86 u64 ns = timespec64_to_ns(ts); 87 88 /* The timer will not update until the high register is written, so 89 * write the low register first. 90 */ 91 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); 92 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); 93 } 94 95 /** 96 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time 97 * @hwtstamps: Timestamp structure to update 98 * @timestamp: Timestamp from the hardware 99 * 100 * We need to convert the NIC clock value into a hwtstamp which can be used by 101 * the upper level timestamping functions. Since the timestamp is simply a 64- 102 * bit nanosecond value, we can call ns_to_ktime directly to handle this. 103 **/ 104 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, 105 u64 timestamp) 106 { 107 memset(hwtstamps, 0, sizeof(*hwtstamps)); 108 109 hwtstamps->hwtstamp = ns_to_ktime(timestamp); 110 } 111 112 /** 113 * i40e_ptp_adjfreq - Adjust the PHC frequency 114 * @ptp: The PTP clock structure 115 * @ppb: Parts per billion adjustment from the base 116 * 117 * Adjust the frequency of the PHC by the indicated parts per billion from the 118 * base frequency. 119 **/ 120 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 121 { 122 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 123 struct i40e_hw *hw = &pf->hw; 124 u64 adj, freq, diff; 125 int neg_adj = 0; 126 127 if (ppb < 0) { 128 neg_adj = 1; 129 ppb = -ppb; 130 } 131 132 smp_mb(); /* Force any pending update before accessing. */ 133 adj = ACCESS_ONCE(pf->ptp_base_adj); 134 135 freq = adj; 136 freq *= ppb; 137 diff = div_u64(freq, 1000000000ULL); 138 139 if (neg_adj) 140 adj -= diff; 141 else 142 adj += diff; 143 144 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); 145 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); 146 147 return 0; 148 } 149 150 /** 151 * i40e_ptp_adjtime - Adjust the PHC time 152 * @ptp: The PTP clock structure 153 * @delta: Offset in nanoseconds to adjust the PHC time by 154 * 155 * Adjust the frequency of the PHC by the indicated parts per billion from the 156 * base frequency. 157 **/ 158 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 159 { 160 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 161 struct timespec64 now, then; 162 163 then = ns_to_timespec64(delta); 164 mutex_lock(&pf->tmreg_lock); 165 166 i40e_ptp_read(pf, &now); 167 now = timespec64_add(now, then); 168 i40e_ptp_write(pf, (const struct timespec64 *)&now); 169 170 mutex_unlock(&pf->tmreg_lock); 171 172 return 0; 173 } 174 175 /** 176 * i40e_ptp_gettime - Get the time of the PHC 177 * @ptp: The PTP clock structure 178 * @ts: timespec structure to hold the current time value 179 * 180 * Read the device clock and return the correct value on ns, after converting it 181 * into a timespec struct. 182 **/ 183 static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 184 { 185 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 186 187 mutex_lock(&pf->tmreg_lock); 188 i40e_ptp_read(pf, ts); 189 mutex_unlock(&pf->tmreg_lock); 190 191 return 0; 192 } 193 194 /** 195 * i40e_ptp_settime - Set the time of the PHC 196 * @ptp: The PTP clock structure 197 * @ts: timespec structure that holds the new time value 198 * 199 * Set the device clock to the user input value. The conversion from timespec 200 * to ns happens in the write function. 201 **/ 202 static int i40e_ptp_settime(struct ptp_clock_info *ptp, 203 const struct timespec64 *ts) 204 { 205 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 206 207 mutex_lock(&pf->tmreg_lock); 208 i40e_ptp_write(pf, ts); 209 mutex_unlock(&pf->tmreg_lock); 210 211 return 0; 212 } 213 214 /** 215 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem 216 * @ptp: The PTP clock structure 217 * @rq: The requested feature to change 218 * @on: Enable/disable flag 219 * 220 * The XL710 does not support any of the ancillary features of the PHC 221 * subsystem, so this function may just return. 222 **/ 223 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, 224 struct ptp_clock_request *rq, int on) 225 { 226 return -EOPNOTSUPP; 227 } 228 229 /** 230 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events 231 * @pf: the PF data structure 232 * 233 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers 234 * for noticed latch events. This allows the driver to keep track of the first 235 * time a latch event was noticed which will be used to help clear out Rx 236 * timestamps for packets that got dropped or lost. 237 * 238 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is 239 * expected to be called only while under the ptp_rx_lock. 240 **/ 241 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) 242 { 243 struct i40e_hw *hw = &pf->hw; 244 u32 prttsyn_stat, new_latch_events; 245 int i; 246 247 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); 248 new_latch_events = prttsyn_stat & ~pf->latch_event_flags; 249 250 /* Update the jiffies time for any newly latched timestamp. This 251 * ensures that we store the time that we first discovered a timestamp 252 * was latched by the hardware. The service task will later determine 253 * if we should free the latch and drop that timestamp should too much 254 * time pass. This flow ensures that we only update jiffies for new 255 * events latched since the last time we checked, and not all events 256 * currently latched, so that the service task accounting remains 257 * accurate. 258 */ 259 for (i = 0; i < 4; i++) { 260 if (new_latch_events & BIT(i)) 261 pf->latch_events[i] = jiffies; 262 } 263 264 /* Finally, we store the current status of the Rx timestamp latches */ 265 pf->latch_event_flags = prttsyn_stat; 266 267 return prttsyn_stat; 268 } 269 270 /** 271 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung 272 * @pf: The PF private data structure 273 * @vsi: The VSI with the rings relevant to 1588 274 * 275 * This watchdog task is scheduled to detect error case where hardware has 276 * dropped an Rx packet that was timestamped when the ring is full. The 277 * particular error is rare but leaves the device in a state unable to timestamp 278 * any future packets. 279 **/ 280 void i40e_ptp_rx_hang(struct i40e_pf *pf) 281 { 282 struct i40e_hw *hw = &pf->hw; 283 unsigned int i, cleared = 0; 284 285 /* Since we cannot turn off the Rx timestamp logic if the device is 286 * configured for Tx timestamping, we check if Rx timestamping is 287 * configured. We don't want to spuriously warn about Rx timestamp 288 * hangs if we don't care about the timestamps. 289 */ 290 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 291 return; 292 293 spin_lock_bh(&pf->ptp_rx_lock); 294 295 /* Update current latch times for Rx events */ 296 i40e_ptp_get_rx_events(pf); 297 298 /* Check all the currently latched Rx events and see whether they have 299 * been latched for over a second. It is assumed that any timestamp 300 * should have been cleared within this time, or else it was captured 301 * for a dropped frame that the driver never received. Thus, we will 302 * clear any timestamp that has been latched for over 1 second. 303 */ 304 for (i = 0; i < 4; i++) { 305 if ((pf->latch_event_flags & BIT(i)) && 306 time_is_before_jiffies(pf->latch_events[i] + HZ)) { 307 rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); 308 pf->latch_event_flags &= ~BIT(i); 309 cleared++; 310 } 311 } 312 313 spin_unlock_bh(&pf->ptp_rx_lock); 314 315 /* Log a warning if more than 2 timestamps got dropped in the same 316 * check. We don't want to warn about all drops because it can occur 317 * in normal scenarios such as PTP frames on multicast addresses we 318 * aren't listening to. However, administrator should know if this is 319 * the reason packets aren't receiving timestamps. 320 */ 321 if (cleared > 2) 322 dev_dbg(&pf->pdev->dev, 323 "Dropped %d missed RXTIME timestamp events\n", 324 cleared); 325 326 /* Finally, update the rx_hwtstamp_cleared counter */ 327 pf->rx_hwtstamp_cleared += cleared; 328 } 329 330 /** 331 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung 332 * @pf: The PF private data structure 333 * 334 * This watchdog task is run periodically to make sure that we clear the Tx 335 * timestamp logic if we don't obtain a timestamp in a reasonable amount of 336 * time. It is unexpected in the normal case but if it occurs it results in 337 * permanently prevent timestamps of future packets 338 **/ 339 void i40e_ptp_tx_hang(struct i40e_pf *pf) 340 { 341 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) 342 return; 343 344 /* Nothing to do if we're not already waiting for a timestamp */ 345 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) 346 return; 347 348 /* We already have a handler routine which is run when we are notified 349 * of a Tx timestamp in the hardware. If we don't get an interrupt 350 * within a second it is reasonable to assume that we never will. 351 */ 352 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { 353 dev_kfree_skb_any(pf->ptp_tx_skb); 354 pf->ptp_tx_skb = NULL; 355 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 356 pf->tx_hwtstamp_timeouts++; 357 } 358 } 359 360 /** 361 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp 362 * @pf: Board private structure 363 * 364 * Read the value of the Tx timestamp from the registers, convert it into a 365 * value consumable by the stack, and store that result into the shhwtstamps 366 * struct before returning it up the stack. 367 **/ 368 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) 369 { 370 struct skb_shared_hwtstamps shhwtstamps; 371 struct sk_buff *skb = pf->ptp_tx_skb; 372 struct i40e_hw *hw = &pf->hw; 373 u32 hi, lo; 374 u64 ns; 375 376 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) 377 return; 378 379 /* don't attempt to timestamp if we don't have an skb */ 380 if (!pf->ptp_tx_skb) 381 return; 382 383 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); 384 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); 385 386 ns = (((u64)hi) << 32) | lo; 387 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); 388 389 /* Clear the bit lock as soon as possible after reading the register, 390 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise 391 * applications might wake up and attempt to request another transmit 392 * timestamp prior to the bit lock being cleared. 393 */ 394 pf->ptp_tx_skb = NULL; 395 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 396 397 /* Notify the stack and free the skb after we've unlocked */ 398 skb_tstamp_tx(skb, &shhwtstamps); 399 dev_kfree_skb_any(skb); 400 } 401 402 /** 403 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp 404 * @pf: Board private structure 405 * @skb: Particular skb to send timestamp with 406 * @index: Index into the receive timestamp registers for the timestamp 407 * 408 * The XL710 receives a notification in the receive descriptor with an offset 409 * into the set of RXTIME registers where the timestamp is for that skb. This 410 * function goes and fetches the receive timestamp from that offset, if a valid 411 * one exists. The RXTIME registers are in ns, so we must convert the result 412 * first. 413 **/ 414 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) 415 { 416 u32 prttsyn_stat, hi, lo; 417 struct i40e_hw *hw; 418 u64 ns; 419 420 /* Since we cannot turn off the Rx timestamp logic if the device is 421 * doing Tx timestamping, check if Rx timestamping is configured. 422 */ 423 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 424 return; 425 426 hw = &pf->hw; 427 428 spin_lock_bh(&pf->ptp_rx_lock); 429 430 /* Get current Rx events and update latch times */ 431 prttsyn_stat = i40e_ptp_get_rx_events(pf); 432 433 /* TODO: Should we warn about missing Rx timestamp event? */ 434 if (!(prttsyn_stat & BIT(index))) { 435 spin_unlock_bh(&pf->ptp_rx_lock); 436 return; 437 } 438 439 /* Clear the latched event since we're about to read its register */ 440 pf->latch_event_flags &= ~BIT(index); 441 442 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); 443 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); 444 445 spin_unlock_bh(&pf->ptp_rx_lock); 446 447 ns = (((u64)hi) << 32) | lo; 448 449 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); 450 } 451 452 /** 453 * i40e_ptp_set_increment - Utility function to update clock increment rate 454 * @pf: Board private structure 455 * 456 * During a link change, the DMA frequency that drives the 1588 logic will 457 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, 458 * we must update the increment value per clock tick. 459 **/ 460 void i40e_ptp_set_increment(struct i40e_pf *pf) 461 { 462 struct i40e_link_status *hw_link_info; 463 struct i40e_hw *hw = &pf->hw; 464 u64 incval; 465 466 hw_link_info = &hw->phy.link_info; 467 468 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); 469 470 switch (hw_link_info->link_speed) { 471 case I40E_LINK_SPEED_10GB: 472 incval = I40E_PTP_10GB_INCVAL; 473 break; 474 case I40E_LINK_SPEED_1GB: 475 incval = I40E_PTP_1GB_INCVAL; 476 break; 477 case I40E_LINK_SPEED_100MB: 478 { 479 static int warn_once; 480 481 if (!warn_once) { 482 dev_warn(&pf->pdev->dev, 483 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); 484 warn_once++; 485 } 486 incval = 0; 487 break; 488 } 489 case I40E_LINK_SPEED_40GB: 490 default: 491 incval = I40E_PTP_40GB_INCVAL; 492 break; 493 } 494 495 /* Write the new increment value into the increment register. The 496 * hardware will not update the clock until both registers have been 497 * written. 498 */ 499 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); 500 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); 501 502 /* Update the base adjustement value. */ 503 ACCESS_ONCE(pf->ptp_base_adj) = incval; 504 smp_mb(); /* Force the above update. */ 505 } 506 507 /** 508 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping 509 * @pf: Board private structure 510 * @ifreq: ioctl data 511 * 512 * Obtain the current hardware timestamping settigs as requested. To do this, 513 * keep a shadow copy of the timestamp settings rather than attempting to 514 * deconstruct it from the registers. 515 **/ 516 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 517 { 518 struct hwtstamp_config *config = &pf->tstamp_config; 519 520 if (!(pf->flags & I40E_FLAG_PTP)) 521 return -EOPNOTSUPP; 522 523 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 524 -EFAULT : 0; 525 } 526 527 /** 528 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode 529 * @pf: Board private structure 530 * @config: hwtstamp settings requested or saved 531 * 532 * Control hardware registers to enter the specific mode requested by the 533 * user. Also used during reset path to ensure that timestamp settings are 534 * maintained. 535 * 536 * Note: modifies config in place, and may update the requested mode to be 537 * more broad if the specific filter is not directly supported. 538 **/ 539 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, 540 struct hwtstamp_config *config) 541 { 542 struct i40e_hw *hw = &pf->hw; 543 u32 tsyntype, regval; 544 545 /* Reserved for future extensions. */ 546 if (config->flags) 547 return -EINVAL; 548 549 switch (config->tx_type) { 550 case HWTSTAMP_TX_OFF: 551 pf->ptp_tx = false; 552 break; 553 case HWTSTAMP_TX_ON: 554 pf->ptp_tx = true; 555 break; 556 default: 557 return -ERANGE; 558 } 559 560 switch (config->rx_filter) { 561 case HWTSTAMP_FILTER_NONE: 562 pf->ptp_rx = false; 563 /* We set the type to V1, but do not enable UDP packet 564 * recognition. In this way, we should be as close to 565 * disabling PTP Rx timestamps as possible since V1 packets 566 * are always UDP, since L2 packets are a V2 feature. 567 */ 568 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; 569 break; 570 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 571 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 572 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 573 if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE)) 574 return -ERANGE; 575 pf->ptp_rx = true; 576 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | 577 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | 578 I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 579 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 580 break; 581 case HWTSTAMP_FILTER_PTP_V2_EVENT: 582 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 583 case HWTSTAMP_FILTER_PTP_V2_SYNC: 584 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 585 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 586 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 587 if (!(pf->flags & I40E_FLAG_PTP_L4_CAPABLE)) 588 return -ERANGE; 589 /* fall through */ 590 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 591 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 592 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 593 pf->ptp_rx = true; 594 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | 595 I40E_PRTTSYN_CTL1_TSYNTYPE_V2; 596 if (pf->flags & I40E_FLAG_PTP_L4_CAPABLE) { 597 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 598 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 599 } else { 600 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 601 } 602 break; 603 case HWTSTAMP_FILTER_NTP_ALL: 604 case HWTSTAMP_FILTER_ALL: 605 default: 606 return -ERANGE; 607 } 608 609 /* Clear out all 1588-related registers to clear and unlatch them. */ 610 spin_lock_bh(&pf->ptp_rx_lock); 611 rd32(hw, I40E_PRTTSYN_STAT_0); 612 rd32(hw, I40E_PRTTSYN_TXTIME_H); 613 rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); 614 rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); 615 rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); 616 rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); 617 pf->latch_event_flags = 0; 618 spin_unlock_bh(&pf->ptp_rx_lock); 619 620 /* Enable/disable the Tx timestamp interrupt based on user input. */ 621 regval = rd32(hw, I40E_PRTTSYN_CTL0); 622 if (pf->ptp_tx) 623 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 624 else 625 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 626 wr32(hw, I40E_PRTTSYN_CTL0, regval); 627 628 regval = rd32(hw, I40E_PFINT_ICR0_ENA); 629 if (pf->ptp_tx) 630 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 631 else 632 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 633 wr32(hw, I40E_PFINT_ICR0_ENA, regval); 634 635 /* Although there is no simple on/off switch for Rx, we "disable" Rx 636 * timestamps by setting to V1 only mode and clear the UDP 637 * recognition. This ought to disable all PTP Rx timestamps as V1 638 * packets are always over UDP. Note that software is configured to 639 * ignore Rx timestamps via the pf->ptp_rx flag. 640 */ 641 regval = rd32(hw, I40E_PRTTSYN_CTL1); 642 /* clear everything but the enable bit */ 643 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 644 /* now enable bits for desired Rx timestamps */ 645 regval |= tsyntype; 646 wr32(hw, I40E_PRTTSYN_CTL1, regval); 647 648 return 0; 649 } 650 651 /** 652 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping 653 * @pf: Board private structure 654 * @ifreq: ioctl data 655 * 656 * Respond to the user filter requests and make the appropriate hardware 657 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping 658 * logic, so keep track in software of whether to indicate these timestamps 659 * or not. 660 * 661 * It is permissible to "upgrade" the user request to a broader filter, as long 662 * as the user receives the timestamps they care about and the user is notified 663 * the filter has been broadened. 664 **/ 665 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 666 { 667 struct hwtstamp_config config; 668 int err; 669 670 if (!(pf->flags & I40E_FLAG_PTP)) 671 return -EOPNOTSUPP; 672 673 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 674 return -EFAULT; 675 676 err = i40e_ptp_set_timestamp_mode(pf, &config); 677 if (err) 678 return err; 679 680 /* save these settings for future reference */ 681 pf->tstamp_config = config; 682 683 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 684 -EFAULT : 0; 685 } 686 687 /** 688 * i40e_ptp_create_clock - Create PTP clock device for userspace 689 * @pf: Board private structure 690 * 691 * This function creates a new PTP clock device. It only creates one if we 692 * don't already have one, so it is safe to call. Will return error if it 693 * can't create one, but success if we already have a device. Should be used 694 * by i40e_ptp_init to create clock initially, and prevent global resets from 695 * creating new clock devices. 696 **/ 697 static long i40e_ptp_create_clock(struct i40e_pf *pf) 698 { 699 /* no need to create a clock device if we already have one */ 700 if (!IS_ERR_OR_NULL(pf->ptp_clock)) 701 return 0; 702 703 strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name)); 704 pf->ptp_caps.owner = THIS_MODULE; 705 pf->ptp_caps.max_adj = 999999999; 706 pf->ptp_caps.n_ext_ts = 0; 707 pf->ptp_caps.pps = 0; 708 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq; 709 pf->ptp_caps.adjtime = i40e_ptp_adjtime; 710 pf->ptp_caps.gettime64 = i40e_ptp_gettime; 711 pf->ptp_caps.settime64 = i40e_ptp_settime; 712 pf->ptp_caps.enable = i40e_ptp_feature_enable; 713 714 /* Attempt to register the clock before enabling the hardware. */ 715 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); 716 if (IS_ERR(pf->ptp_clock)) 717 return PTR_ERR(pf->ptp_clock); 718 719 /* clear the hwtstamp settings here during clock create, instead of 720 * during regular init, so that we can maintain settings across a 721 * reset or suspend. 722 */ 723 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 724 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 725 726 return 0; 727 } 728 729 /** 730 * i40e_ptp_init - Initialize the 1588 support after device probe or reset 731 * @pf: Board private structure 732 * 733 * This function sets device up for 1588 support. The first time it is run, it 734 * will create a PHC clock device. It does not create a clock device if one 735 * already exists. It also reconfigures the device after a reset. 736 **/ 737 void i40e_ptp_init(struct i40e_pf *pf) 738 { 739 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; 740 struct i40e_hw *hw = &pf->hw; 741 u32 pf_id; 742 long err; 743 744 /* Only one PF is assigned to control 1588 logic per port. Do not 745 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID 746 */ 747 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> 748 I40E_PRTTSYN_CTL0_PF_ID_SHIFT; 749 if (hw->pf_id != pf_id) { 750 pf->flags &= ~I40E_FLAG_PTP; 751 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", 752 __func__, 753 netdev->name); 754 return; 755 } 756 757 mutex_init(&pf->tmreg_lock); 758 spin_lock_init(&pf->ptp_rx_lock); 759 760 /* ensure we have a clock device */ 761 err = i40e_ptp_create_clock(pf); 762 if (err) { 763 pf->ptp_clock = NULL; 764 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", 765 __func__); 766 } else if (pf->ptp_clock) { 767 struct timespec64 ts; 768 u32 regval; 769 770 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 771 dev_info(&pf->pdev->dev, "PHC enabled\n"); 772 pf->flags |= I40E_FLAG_PTP; 773 774 /* Ensure the clocks are running. */ 775 regval = rd32(hw, I40E_PRTTSYN_CTL0); 776 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; 777 wr32(hw, I40E_PRTTSYN_CTL0, regval); 778 regval = rd32(hw, I40E_PRTTSYN_CTL1); 779 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 780 wr32(hw, I40E_PRTTSYN_CTL1, regval); 781 782 /* Set the increment value per clock tick. */ 783 i40e_ptp_set_increment(pf); 784 785 /* reset timestamping mode */ 786 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); 787 788 /* Set the clock value. */ 789 ts = ktime_to_timespec64(ktime_get_real()); 790 i40e_ptp_settime(&pf->ptp_caps, &ts); 791 } 792 } 793 794 /** 795 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC 796 * @pf: Board private structure 797 * 798 * This function handles the cleanup work required from the initialization by 799 * clearing out the important information and unregistering the PHC. 800 **/ 801 void i40e_ptp_stop(struct i40e_pf *pf) 802 { 803 pf->flags &= ~I40E_FLAG_PTP; 804 pf->ptp_tx = false; 805 pf->ptp_rx = false; 806 807 if (pf->ptp_tx_skb) { 808 dev_kfree_skb_any(pf->ptp_tx_skb); 809 pf->ptp_tx_skb = NULL; 810 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 811 } 812 813 if (pf->ptp_clock) { 814 ptp_clock_unregister(pf->ptp_clock); 815 pf->ptp_clock = NULL; 816 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, 817 pf->vsi[pf->lan_vsi]->netdev->name); 818 } 819 } 820