1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/posix-clock.h>
7 
8 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
9  * the fundamental clock design. However, the clock operations are much simpler
10  * in the XL710 because the device supports a full 64 bits of nanoseconds.
11  * Because the field is so wide, we can forgo the cycle counter and just
12  * operate with the nanosecond field directly without fear of overflow.
13  *
14  * Much like the 82599, the update period is dependent upon the link speed:
15  * At 40Gb, 25Gb, or no link, the period is 1.6ns.
16  * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
17  * At 1Gb link, the period is multiplied by 20. (32ns)
18  * 1588 functionality is not supported at 100Mbps.
19  */
20 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
21 #define I40E_PTP_10GB_INCVAL_MULT	2
22 #define I40E_PTP_5GB_INCVAL_MULT	2
23 #define I40E_PTP_1GB_INCVAL_MULT	20
24 #define I40E_ISGN			0x80000000
25 
26 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
27 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
28 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
29 #define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
30 
31 enum i40e_ptp_pin {
32 	SDP3_2 = 0,
33 	SDP3_3,
34 	GPIO_4
35 };
36 
37 enum i40e_can_set_pins_t {
38 	CANT_DO_PINS = -1,
39 	CAN_SET_PINS,
40 	CAN_DO_PINS
41 };
42 
43 static struct ptp_pin_desc sdp_desc[] = {
44 	/* name     idx      func      chan */
45 	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
46 	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
47 	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
48 };
49 
50 enum i40e_ptp_gpio_pin_state {
51 	end = -2,
52 	invalid,
53 	off,
54 	in_A,
55 	in_B,
56 	out_A,
57 	out_B,
58 };
59 
60 static const char * const i40e_ptp_gpio_pin_state2str[] = {
61 	"off", "in_A", "in_B", "out_A", "out_B"
62 };
63 
64 enum i40e_ptp_led_pin_state {
65 	led_end = -2,
66 	low = 0,
67 	high,
68 };
69 
70 struct i40e_ptp_pins_settings {
71 	enum i40e_ptp_gpio_pin_state sdp3_2;
72 	enum i40e_ptp_gpio_pin_state sdp3_3;
73 	enum i40e_ptp_gpio_pin_state gpio_4;
74 	enum i40e_ptp_led_pin_state led2_0;
75 	enum i40e_ptp_led_pin_state led2_1;
76 	enum i40e_ptp_led_pin_state led3_0;
77 	enum i40e_ptp_led_pin_state led3_1;
78 };
79 
80 static const struct i40e_ptp_pins_settings
81 	i40e_ptp_pin_led_allowed_states[] = {
82 	{off,	off,	off,		high,	high,	high,	high},
83 	{off,	in_A,	off,		high,	high,	high,	low},
84 	{off,	out_A,	off,		high,	low,	high,	high},
85 	{off,	in_B,	off,		high,	high,	high,	low},
86 	{off,	out_B,	off,		high,	low,	high,	high},
87 	{in_A,	off,	off,		high,	high,	high,	low},
88 	{in_A,	in_B,	off,		high,	high,	high,	low},
89 	{in_A,	out_B,	off,		high,	low,	high,	high},
90 	{out_A,	off,	off,		high,	low,	high,	high},
91 	{out_A,	in_B,	off,		high,	low,	high,	high},
92 	{in_B,	off,	off,		high,	high,	high,	low},
93 	{in_B,	in_A,	off,		high,	high,	high,	low},
94 	{in_B,	out_A,	off,		high,	low,	high,	high},
95 	{out_B,	off,	off,		high,	low,	high,	high},
96 	{out_B,	in_A,	off,		high,	low,	high,	high},
97 	{off,	off,	in_A,		high,	high,	low,	high},
98 	{off,	out_A,	in_A,		high,	low,	low,	high},
99 	{off,	in_B,	in_A,		high,	high,	low,	low},
100 	{off,	out_B,	in_A,		high,	low,	low,	high},
101 	{out_A,	off,	in_A,		high,	low,	low,	high},
102 	{out_A,	in_B,	in_A,		high,	low,	low,	high},
103 	{in_B,	off,	in_A,		high,	high,	low,	low},
104 	{in_B,	out_A,	in_A,		high,	low,	low,	high},
105 	{out_B,	off,	in_A,		high,	low,	low,	high},
106 	{off,	off,	out_A,		low,	high,	high,	high},
107 	{off,	in_A,	out_A,		low,	high,	high,	low},
108 	{off,	in_B,	out_A,		low,	high,	high,	low},
109 	{off,	out_B,	out_A,		low,	low,	high,	high},
110 	{in_A,	off,	out_A,		low,	high,	high,	low},
111 	{in_A,	in_B,	out_A,		low,	high,	high,	low},
112 	{in_A,	out_B,	out_A,		low,	low,	high,	high},
113 	{in_B,	off,	out_A,		low,	high,	high,	low},
114 	{in_B,	in_A,	out_A,		low,	high,	high,	low},
115 	{out_B,	off,	out_A,		low,	low,	high,	high},
116 	{out_B,	in_A,	out_A,		low,	low,	high,	high},
117 	{off,	off,	in_B,		high,	high,	low,	high},
118 	{off,	in_A,	in_B,		high,	high,	low,	low},
119 	{off,	out_A,	in_B,		high,	low,	low,	high},
120 	{off,	out_B,	in_B,		high,	low,	low,	high},
121 	{in_A,	off,	in_B,		high,	high,	low,	low},
122 	{in_A,	out_B,	in_B,		high,	low,	low,	high},
123 	{out_A,	off,	in_B,		high,	low,	low,	high},
124 	{out_B,	off,	in_B,		high,	low,	low,	high},
125 	{out_B,	in_A,	in_B,		high,	low,	low,	high},
126 	{off,	off,	out_B,		low,	high,	high,	high},
127 	{off,	in_A,	out_B,		low,	high,	high,	low},
128 	{off,	out_A,	out_B,		low,	low,	high,	high},
129 	{off,	in_B,	out_B,		low,	high,	high,	low},
130 	{in_A,	off,	out_B,		low,	high,	high,	low},
131 	{in_A,	in_B,	out_B,		low,	high,	high,	low},
132 	{out_A,	off,	out_B,		low,	low,	high,	high},
133 	{out_A,	in_B,	out_B,		low,	low,	high,	high},
134 	{in_B,	off,	out_B,		low,	high,	high,	low},
135 	{in_B,	in_A,	out_B,		low,	high,	high,	low},
136 	{in_B,	out_A,	out_B,		low,	low,	high,	high},
137 	{end,	end,	end,	led_end, led_end, led_end, led_end}
138 };
139 
140 static int i40e_ptp_set_pins(struct i40e_pf *pf,
141 			     struct i40e_ptp_pins_settings *pins);
142 
143 /**
144  * i40e_ptp_extts0_work - workqueue task function
145  * @work: workqueue task structure
146  *
147  * Service for PTP external clock event
148  **/
149 static void i40e_ptp_extts0_work(struct work_struct *work)
150 {
151 	struct i40e_pf *pf = container_of(work, struct i40e_pf,
152 					  ptp_extts0_work);
153 	struct i40e_hw *hw = &pf->hw;
154 	struct ptp_clock_event event;
155 	u32 hi, lo;
156 
157 	/* Event time is captured by one of the two matched registers
158 	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
159 	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
160 	 * Event is defined in PRTTSYN_EVNT_0 register
161 	 */
162 	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
163 	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
164 
165 	event.timestamp = (((u64)hi) << 32) | lo;
166 
167 	event.type = PTP_CLOCK_EXTTS;
168 	event.index = hw->pf_id;
169 
170 	/* fire event */
171 	ptp_clock_event(pf->ptp_clock, &event);
172 }
173 
174 /**
175  * i40e_is_ptp_pin_dev - check if device supports PTP pins
176  * @hw: pointer to the hardware structure
177  *
178  * Return true if device supports PTP pins, false otherwise.
179  **/
180 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
181 {
182 	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
183 	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
184 }
185 
186 /**
187  * i40e_can_set_pins - check possibility of manipulating the pins
188  * @pf: board private structure
189  *
190  * Check if all conditions are satisfied to manipulate PTP pins.
191  * Return CAN_SET_PINS if pins can be set on a specific PF or
192  * return CAN_DO_PINS if pins can be manipulated within a NIC or
193  * return CANT_DO_PINS otherwise.
194  **/
195 static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
196 {
197 	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
198 		dev_warn(&pf->pdev->dev,
199 			 "PTP external clock not supported.\n");
200 		return CANT_DO_PINS;
201 	}
202 
203 	if (!pf->ptp_pins) {
204 		dev_warn(&pf->pdev->dev,
205 			 "PTP PIN manipulation not allowed.\n");
206 		return CANT_DO_PINS;
207 	}
208 
209 	if (pf->hw.pf_id) {
210 		dev_warn(&pf->pdev->dev,
211 			 "PTP PINs should be accessed via PF0.\n");
212 		return CAN_DO_PINS;
213 	}
214 
215 	return CAN_SET_PINS;
216 }
217 
218 /**
219  * i40_ptp_reset_timing_events - Reset PTP timing events
220  * @pf: Board private structure
221  *
222  * This function resets timing events for pf.
223  **/
224 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
225 {
226 	u32 i;
227 
228 	spin_lock_bh(&pf->ptp_rx_lock);
229 	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
230 		/* reading and automatically clearing timing events registers */
231 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
232 		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
233 		pf->latch_events[i] = 0;
234 	}
235 	/* reading and automatically clearing timing events registers */
236 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
237 	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
238 
239 	pf->tx_hwtstamp_timeouts = 0;
240 	pf->tx_hwtstamp_skipped = 0;
241 	pf->rx_hwtstamp_cleared = 0;
242 	pf->latch_event_flags = 0;
243 	spin_unlock_bh(&pf->ptp_rx_lock);
244 }
245 
246 /**
247  * i40e_ptp_verify - check pins
248  * @ptp: ptp clock
249  * @pin: pin index
250  * @func: assigned function
251  * @chan: channel
252  *
253  * Check pins consistency.
254  * Return 0 on success or error on failure.
255  **/
256 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
257 			   enum ptp_pin_function func, unsigned int chan)
258 {
259 	switch (func) {
260 	case PTP_PF_NONE:
261 	case PTP_PF_EXTTS:
262 	case PTP_PF_PEROUT:
263 		break;
264 	case PTP_PF_PHYSYNC:
265 		return -EOPNOTSUPP;
266 	}
267 	return 0;
268 }
269 
270 /**
271  * i40e_ptp_read - Read the PHC time from the device
272  * @pf: Board private structure
273  * @ts: timespec structure to hold the current time value
274  * @sts: structure to hold the system time before and after reading the PHC
275  *
276  * This function reads the PRTTSYN_TIME registers and stores them in a
277  * timespec. However, since the registers are 64 bits of nanoseconds, we must
278  * convert the result to a timespec before we can return.
279  **/
280 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
281 			  struct ptp_system_timestamp *sts)
282 {
283 	struct i40e_hw *hw = &pf->hw;
284 	u32 hi, lo;
285 	u64 ns;
286 
287 	/* The timer latches on the lowest register read. */
288 	ptp_read_system_prets(sts);
289 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
290 	ptp_read_system_postts(sts);
291 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
292 
293 	ns = (((u64)hi) << 32) | lo;
294 
295 	*ts = ns_to_timespec64(ns);
296 }
297 
298 /**
299  * i40e_ptp_write - Write the PHC time to the device
300  * @pf: Board private structure
301  * @ts: timespec structure that holds the new time value
302  *
303  * This function writes the PRTTSYN_TIME registers with the user value. Since
304  * we receive a timespec from the stack, we must convert that timespec into
305  * nanoseconds before programming the registers.
306  **/
307 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
308 {
309 	struct i40e_hw *hw = &pf->hw;
310 	u64 ns = timespec64_to_ns(ts);
311 
312 	/* The timer will not update until the high register is written, so
313 	 * write the low register first.
314 	 */
315 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
316 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
317 }
318 
319 /**
320  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
321  * @hwtstamps: Timestamp structure to update
322  * @timestamp: Timestamp from the hardware
323  *
324  * We need to convert the NIC clock value into a hwtstamp which can be used by
325  * the upper level timestamping functions. Since the timestamp is simply a 64-
326  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
327  **/
328 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
329 					 u64 timestamp)
330 {
331 	memset(hwtstamps, 0, sizeof(*hwtstamps));
332 
333 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
334 }
335 
336 /**
337  * i40e_ptp_adjfine - Adjust the PHC frequency
338  * @ptp: The PTP clock structure
339  * @scaled_ppm: Scaled parts per million adjustment from base
340  *
341  * Adjust the frequency of the PHC by the indicated delta from the base
342  * frequency.
343  *
344  * Scaled parts per million is ppm with a 16 bit binary fractional field.
345  **/
346 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
347 {
348 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
349 	struct i40e_hw *hw = &pf->hw;
350 	u64 adj, freq, diff;
351 	int neg_adj = 0;
352 
353 	if (scaled_ppm < 0) {
354 		neg_adj = 1;
355 		scaled_ppm = -scaled_ppm;
356 	}
357 
358 	smp_mb(); /* Force any pending update before accessing. */
359 	freq = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
360 	diff = mul_u64_u64_div_u64(freq, (u64)scaled_ppm,
361 				   1000000ULL << 16);
362 
363 	if (neg_adj)
364 		adj = I40E_PTP_40GB_INCVAL - diff;
365 	else
366 		adj = I40E_PTP_40GB_INCVAL + diff;
367 
368 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
369 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
370 
371 	return 0;
372 }
373 
374 /**
375  * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
376  * @pf: the PF private data structure
377  *
378  * Configure 1PPS signal used for PTP pins
379  **/
380 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
381 {
382 	struct i40e_hw *hw = &pf->hw;
383 	struct timespec64 now;
384 	u64 ns;
385 
386 	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
387 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
388 	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
389 
390 	i40e_ptp_read(pf, &now, NULL);
391 	now.tv_sec += I40E_PTP_2_SEC_DELAY;
392 	now.tv_nsec = 0;
393 	ns = timespec64_to_ns(&now);
394 
395 	/* I40E_PRTTSYN_TGT_L(1) */
396 	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
397 	/* I40E_PRTTSYN_TGT_H(1) */
398 	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
399 	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
400 	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
401 	wr32(hw, I40E_PRTTSYN_AUX_0(1),
402 	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
403 }
404 
405 /**
406  * i40e_ptp_adjtime - Adjust the PHC time
407  * @ptp: The PTP clock structure
408  * @delta: Offset in nanoseconds to adjust the PHC time by
409  *
410  * Adjust the current clock time by a delta specified in nanoseconds.
411  **/
412 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
413 {
414 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
415 	struct i40e_hw *hw = &pf->hw;
416 
417 	mutex_lock(&pf->tmreg_lock);
418 
419 	if (delta > -999999900LL && delta < 999999900LL) {
420 		int neg_adj = 0;
421 		u32 timadj;
422 		u64 tohw;
423 
424 		if (delta < 0) {
425 			neg_adj = 1;
426 			tohw = -delta;
427 		} else {
428 			tohw = delta;
429 		}
430 
431 		timadj = tohw & 0x3FFFFFFF;
432 		if (neg_adj)
433 			timadj |= I40E_ISGN;
434 		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
435 	} else {
436 		struct timespec64 then, now;
437 
438 		then = ns_to_timespec64(delta);
439 		i40e_ptp_read(pf, &now, NULL);
440 		now = timespec64_add(now, then);
441 		i40e_ptp_write(pf, (const struct timespec64 *)&now);
442 		i40e_ptp_set_1pps_signal_hw(pf);
443 	}
444 
445 	mutex_unlock(&pf->tmreg_lock);
446 
447 	return 0;
448 }
449 
450 /**
451  * i40e_ptp_gettimex - Get the time of the PHC
452  * @ptp: The PTP clock structure
453  * @ts: timespec structure to hold the current time value
454  * @sts: structure to hold the system time before and after reading the PHC
455  *
456  * Read the device clock and return the correct value on ns, after converting it
457  * into a timespec struct.
458  **/
459 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
460 			     struct ptp_system_timestamp *sts)
461 {
462 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
463 
464 	mutex_lock(&pf->tmreg_lock);
465 	i40e_ptp_read(pf, ts, sts);
466 	mutex_unlock(&pf->tmreg_lock);
467 
468 	return 0;
469 }
470 
471 /**
472  * i40e_ptp_settime - Set the time of the PHC
473  * @ptp: The PTP clock structure
474  * @ts: timespec64 structure that holds the new time value
475  *
476  * Set the device clock to the user input value. The conversion from timespec
477  * to ns happens in the write function.
478  **/
479 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
480 			    const struct timespec64 *ts)
481 {
482 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
483 
484 	mutex_lock(&pf->tmreg_lock);
485 	i40e_ptp_write(pf, ts);
486 	mutex_unlock(&pf->tmreg_lock);
487 
488 	return 0;
489 }
490 
491 /**
492  * i40e_pps_configure - configure PPS events
493  * @ptp: ptp clock
494  * @rq: clock request
495  * @on: status
496  *
497  * Configure PPS events for external clock source.
498  * Return 0 on success or error on failure.
499  **/
500 static int i40e_pps_configure(struct ptp_clock_info *ptp,
501 			      struct ptp_clock_request *rq,
502 			      int on)
503 {
504 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
505 
506 	if (!!on)
507 		i40e_ptp_set_1pps_signal_hw(pf);
508 
509 	return 0;
510 }
511 
512 /**
513  * i40e_pin_state - determine PIN state
514  * @index: PIN index
515  * @func: function assigned to PIN
516  *
517  * Determine PIN state based on PIN index and function assigned.
518  * Return PIN state.
519  **/
520 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
521 {
522 	enum i40e_ptp_gpio_pin_state state = off;
523 
524 	if (index == 0 && func == PTP_PF_EXTTS)
525 		state = in_A;
526 	if (index == 1 && func == PTP_PF_EXTTS)
527 		state = in_B;
528 	if (index == 0 && func == PTP_PF_PEROUT)
529 		state = out_A;
530 	if (index == 1 && func == PTP_PF_PEROUT)
531 		state = out_B;
532 
533 	return state;
534 }
535 
536 /**
537  * i40e_ptp_enable_pin - enable PINs.
538  * @pf: private board structure
539  * @chan: channel
540  * @func: PIN function
541  * @on: state
542  *
543  * Enable PTP pins for external clock source.
544  * Return 0 on success or error code on failure.
545  **/
546 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
547 			       enum ptp_pin_function func, int on)
548 {
549 	enum i40e_ptp_gpio_pin_state *pin = NULL;
550 	struct i40e_ptp_pins_settings pins;
551 	int pin_index;
552 
553 	/* Use PF0 to set pins. Return success for user space tools */
554 	if (pf->hw.pf_id)
555 		return 0;
556 
557 	/* Preserve previous state of pins that we don't touch */
558 	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
559 	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
560 	pins.gpio_4 = pf->ptp_pins->gpio_4;
561 
562 	/* To turn on the pin - find the corresponding one based on
563 	 * the given index. To to turn the function off - find
564 	 * which pin had it assigned. Don't use ptp_find_pin here
565 	 * because it tries to lock the pincfg_mux which is locked by
566 	 * ptp_pin_store() that calls here.
567 	 */
568 	if (on) {
569 		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
570 		if (pin_index < 0)
571 			return -EBUSY;
572 
573 		switch (pin_index) {
574 		case SDP3_2:
575 			pin = &pins.sdp3_2;
576 			break;
577 		case SDP3_3:
578 			pin = &pins.sdp3_3;
579 			break;
580 		case GPIO_4:
581 			pin = &pins.gpio_4;
582 			break;
583 		default:
584 			return -EINVAL;
585 		}
586 
587 		*pin = i40e_pin_state(chan, func);
588 	} else {
589 		pins.sdp3_2 = off;
590 		pins.sdp3_3 = off;
591 		pins.gpio_4 = off;
592 	}
593 
594 	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
595 }
596 
597 /**
598  * i40e_ptp_feature_enable - Enable external clock pins
599  * @ptp: The PTP clock structure
600  * @rq: The PTP clock request structure
601  * @on: To turn feature on/off
602  *
603  * Setting on/off PTP PPS feature for pin.
604  **/
605 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
606 				   struct ptp_clock_request *rq,
607 				   int on)
608 {
609 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
610 
611 	enum ptp_pin_function func;
612 	unsigned int chan;
613 
614 	/* TODO: Implement flags handling for EXTTS and PEROUT */
615 	switch (rq->type) {
616 	case PTP_CLK_REQ_EXTTS:
617 		func = PTP_PF_EXTTS;
618 		chan = rq->extts.index;
619 		break;
620 	case PTP_CLK_REQ_PEROUT:
621 		func = PTP_PF_PEROUT;
622 		chan = rq->perout.index;
623 		break;
624 	case PTP_CLK_REQ_PPS:
625 		return i40e_pps_configure(ptp, rq, on);
626 	default:
627 		return -EOPNOTSUPP;
628 	}
629 
630 	return i40e_ptp_enable_pin(pf, chan, func, on);
631 }
632 
633 /**
634  * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
635  * @pf: the PF data structure
636  *
637  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
638  * for noticed latch events. This allows the driver to keep track of the first
639  * time a latch event was noticed which will be used to help clear out Rx
640  * timestamps for packets that got dropped or lost.
641  *
642  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
643  * expected to be called only while under the ptp_rx_lock.
644  **/
645 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
646 {
647 	struct i40e_hw *hw = &pf->hw;
648 	u32 prttsyn_stat, new_latch_events;
649 	int  i;
650 
651 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
652 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
653 
654 	/* Update the jiffies time for any newly latched timestamp. This
655 	 * ensures that we store the time that we first discovered a timestamp
656 	 * was latched by the hardware. The service task will later determine
657 	 * if we should free the latch and drop that timestamp should too much
658 	 * time pass. This flow ensures that we only update jiffies for new
659 	 * events latched since the last time we checked, and not all events
660 	 * currently latched, so that the service task accounting remains
661 	 * accurate.
662 	 */
663 	for (i = 0; i < 4; i++) {
664 		if (new_latch_events & BIT(i))
665 			pf->latch_events[i] = jiffies;
666 	}
667 
668 	/* Finally, we store the current status of the Rx timestamp latches */
669 	pf->latch_event_flags = prttsyn_stat;
670 
671 	return prttsyn_stat;
672 }
673 
674 /**
675  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
676  * @pf: The PF private data structure
677  *
678  * This watchdog task is scheduled to detect error case where hardware has
679  * dropped an Rx packet that was timestamped when the ring is full. The
680  * particular error is rare but leaves the device in a state unable to timestamp
681  * any future packets.
682  **/
683 void i40e_ptp_rx_hang(struct i40e_pf *pf)
684 {
685 	struct i40e_hw *hw = &pf->hw;
686 	unsigned int i, cleared = 0;
687 
688 	/* Since we cannot turn off the Rx timestamp logic if the device is
689 	 * configured for Tx timestamping, we check if Rx timestamping is
690 	 * configured. We don't want to spuriously warn about Rx timestamp
691 	 * hangs if we don't care about the timestamps.
692 	 */
693 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
694 		return;
695 
696 	spin_lock_bh(&pf->ptp_rx_lock);
697 
698 	/* Update current latch times for Rx events */
699 	i40e_ptp_get_rx_events(pf);
700 
701 	/* Check all the currently latched Rx events and see whether they have
702 	 * been latched for over a second. It is assumed that any timestamp
703 	 * should have been cleared within this time, or else it was captured
704 	 * for a dropped frame that the driver never received. Thus, we will
705 	 * clear any timestamp that has been latched for over 1 second.
706 	 */
707 	for (i = 0; i < 4; i++) {
708 		if ((pf->latch_event_flags & BIT(i)) &&
709 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
710 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
711 			pf->latch_event_flags &= ~BIT(i);
712 			cleared++;
713 		}
714 	}
715 
716 	spin_unlock_bh(&pf->ptp_rx_lock);
717 
718 	/* Log a warning if more than 2 timestamps got dropped in the same
719 	 * check. We don't want to warn about all drops because it can occur
720 	 * in normal scenarios such as PTP frames on multicast addresses we
721 	 * aren't listening to. However, administrator should know if this is
722 	 * the reason packets aren't receiving timestamps.
723 	 */
724 	if (cleared > 2)
725 		dev_dbg(&pf->pdev->dev,
726 			"Dropped %d missed RXTIME timestamp events\n",
727 			cleared);
728 
729 	/* Finally, update the rx_hwtstamp_cleared counter */
730 	pf->rx_hwtstamp_cleared += cleared;
731 }
732 
733 /**
734  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
735  * @pf: The PF private data structure
736  *
737  * This watchdog task is run periodically to make sure that we clear the Tx
738  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
739  * time. It is unexpected in the normal case but if it occurs it results in
740  * permanently preventing timestamps of future packets.
741  **/
742 void i40e_ptp_tx_hang(struct i40e_pf *pf)
743 {
744 	struct sk_buff *skb;
745 
746 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
747 		return;
748 
749 	/* Nothing to do if we're not already waiting for a timestamp */
750 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
751 		return;
752 
753 	/* We already have a handler routine which is run when we are notified
754 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
755 	 * within a second it is reasonable to assume that we never will.
756 	 */
757 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
758 		skb = pf->ptp_tx_skb;
759 		pf->ptp_tx_skb = NULL;
760 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
761 
762 		/* Free the skb after we clear the bitlock */
763 		dev_kfree_skb_any(skb);
764 		pf->tx_hwtstamp_timeouts++;
765 	}
766 }
767 
768 /**
769  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
770  * @pf: Board private structure
771  *
772  * Read the value of the Tx timestamp from the registers, convert it into a
773  * value consumable by the stack, and store that result into the shhwtstamps
774  * struct before returning it up the stack.
775  **/
776 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
777 {
778 	struct skb_shared_hwtstamps shhwtstamps;
779 	struct sk_buff *skb = pf->ptp_tx_skb;
780 	struct i40e_hw *hw = &pf->hw;
781 	u32 hi, lo;
782 	u64 ns;
783 
784 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
785 		return;
786 
787 	/* don't attempt to timestamp if we don't have an skb */
788 	if (!pf->ptp_tx_skb)
789 		return;
790 
791 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
792 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
793 
794 	ns = (((u64)hi) << 32) | lo;
795 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
796 
797 	/* Clear the bit lock as soon as possible after reading the register,
798 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
799 	 * applications might wake up and attempt to request another transmit
800 	 * timestamp prior to the bit lock being cleared.
801 	 */
802 	pf->ptp_tx_skb = NULL;
803 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
804 
805 	/* Notify the stack and free the skb after we've unlocked */
806 	skb_tstamp_tx(skb, &shhwtstamps);
807 	dev_kfree_skb_any(skb);
808 }
809 
810 /**
811  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
812  * @pf: Board private structure
813  * @skb: Particular skb to send timestamp with
814  * @index: Index into the receive timestamp registers for the timestamp
815  *
816  * The XL710 receives a notification in the receive descriptor with an offset
817  * into the set of RXTIME registers where the timestamp is for that skb. This
818  * function goes and fetches the receive timestamp from that offset, if a valid
819  * one exists. The RXTIME registers are in ns, so we must convert the result
820  * first.
821  **/
822 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
823 {
824 	u32 prttsyn_stat, hi, lo;
825 	struct i40e_hw *hw;
826 	u64 ns;
827 
828 	/* Since we cannot turn off the Rx timestamp logic if the device is
829 	 * doing Tx timestamping, check if Rx timestamping is configured.
830 	 */
831 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
832 		return;
833 
834 	hw = &pf->hw;
835 
836 	spin_lock_bh(&pf->ptp_rx_lock);
837 
838 	/* Get current Rx events and update latch times */
839 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
840 
841 	/* TODO: Should we warn about missing Rx timestamp event? */
842 	if (!(prttsyn_stat & BIT(index))) {
843 		spin_unlock_bh(&pf->ptp_rx_lock);
844 		return;
845 	}
846 
847 	/* Clear the latched event since we're about to read its register */
848 	pf->latch_event_flags &= ~BIT(index);
849 
850 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
851 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
852 
853 	spin_unlock_bh(&pf->ptp_rx_lock);
854 
855 	ns = (((u64)hi) << 32) | lo;
856 
857 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
858 }
859 
860 /**
861  * i40e_ptp_set_increment - Utility function to update clock increment rate
862  * @pf: Board private structure
863  *
864  * During a link change, the DMA frequency that drives the 1588 logic will
865  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
866  * we must update the increment value per clock tick.
867  **/
868 void i40e_ptp_set_increment(struct i40e_pf *pf)
869 {
870 	struct i40e_link_status *hw_link_info;
871 	struct i40e_hw *hw = &pf->hw;
872 	u64 incval;
873 	u32 mult;
874 
875 	hw_link_info = &hw->phy.link_info;
876 
877 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
878 
879 	switch (hw_link_info->link_speed) {
880 	case I40E_LINK_SPEED_10GB:
881 		mult = I40E_PTP_10GB_INCVAL_MULT;
882 		break;
883 	case I40E_LINK_SPEED_5GB:
884 		mult = I40E_PTP_5GB_INCVAL_MULT;
885 		break;
886 	case I40E_LINK_SPEED_1GB:
887 		mult = I40E_PTP_1GB_INCVAL_MULT;
888 		break;
889 	case I40E_LINK_SPEED_100MB:
890 	{
891 		static int warn_once;
892 
893 		if (!warn_once) {
894 			dev_warn(&pf->pdev->dev,
895 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
896 			warn_once++;
897 		}
898 		mult = 0;
899 		break;
900 	}
901 	case I40E_LINK_SPEED_40GB:
902 	default:
903 		mult = 1;
904 		break;
905 	}
906 
907 	/* The increment value is calculated by taking the base 40GbE incvalue
908 	 * and multiplying it by a factor based on the link speed.
909 	 */
910 	incval = I40E_PTP_40GB_INCVAL * mult;
911 
912 	/* Write the new increment value into the increment register. The
913 	 * hardware will not update the clock until both registers have been
914 	 * written.
915 	 */
916 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
917 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
918 
919 	/* Update the base adjustement value. */
920 	WRITE_ONCE(pf->ptp_adj_mult, mult);
921 	smp_mb(); /* Force the above update. */
922 }
923 
924 /**
925  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
926  * @pf: Board private structure
927  * @ifr: ioctl data
928  *
929  * Obtain the current hardware timestamping settigs as requested. To do this,
930  * keep a shadow copy of the timestamp settings rather than attempting to
931  * deconstruct it from the registers.
932  **/
933 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
934 {
935 	struct hwtstamp_config *config = &pf->tstamp_config;
936 
937 	if (!(pf->flags & I40E_FLAG_PTP))
938 		return -EOPNOTSUPP;
939 
940 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
941 		-EFAULT : 0;
942 }
943 
944 /**
945  * i40e_ptp_free_pins - free memory used by PTP pins
946  * @pf: Board private structure
947  *
948  * Release memory allocated for PTP pins.
949  **/
950 static void i40e_ptp_free_pins(struct i40e_pf *pf)
951 {
952 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
953 		kfree(pf->ptp_pins);
954 		kfree(pf->ptp_caps.pin_config);
955 		pf->ptp_pins = NULL;
956 	}
957 }
958 
959 /**
960  * i40e_ptp_set_pin_hw - Set HW GPIO pin
961  * @hw: pointer to the hardware structure
962  * @pin: pin index
963  * @state: pin state
964  *
965  * Set status of GPIO pin for external clock handling.
966  **/
967 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
968 				unsigned int pin,
969 				enum i40e_ptp_gpio_pin_state state)
970 {
971 	switch (state) {
972 	case off:
973 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
974 		break;
975 	case in_A:
976 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
977 		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
978 		break;
979 	case in_B:
980 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
981 		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
982 		break;
983 	case out_A:
984 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
985 		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
986 		break;
987 	case out_B:
988 		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
989 		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
990 		break;
991 	default:
992 		break;
993 	}
994 }
995 
996 /**
997  * i40e_ptp_set_led_hw - Set HW GPIO led
998  * @hw: pointer to the hardware structure
999  * @led: led index
1000  * @state: led state
1001  *
1002  * Set status of GPIO led for external clock handling.
1003  **/
1004 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
1005 				unsigned int led,
1006 				enum i40e_ptp_led_pin_state state)
1007 {
1008 	switch (state) {
1009 	case low:
1010 		wr32(hw, I40E_GLGEN_GPIO_SET,
1011 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1012 		break;
1013 	case high:
1014 		wr32(hw, I40E_GLGEN_GPIO_SET,
1015 		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1016 		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1017 		break;
1018 	default:
1019 		break;
1020 	}
1021 }
1022 
1023 /**
1024  * i40e_ptp_init_leds_hw - init LEDs
1025  * @hw: pointer to a hardware structure
1026  *
1027  * Set initial state of LEDs
1028  **/
1029 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1030 {
1031 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1032 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1033 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1034 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1035 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1036 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1037 	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1038 	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1039 }
1040 
1041 /**
1042  * i40e_ptp_set_pins_hw - Set HW GPIO pins
1043  * @pf: Board private structure
1044  *
1045  * This function sets GPIO pins for PTP
1046  **/
1047 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1048 {
1049 	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1050 	struct i40e_hw *hw = &pf->hw;
1051 
1052 	/* pin must be disabled before it may be used */
1053 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1054 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1055 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1056 
1057 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1058 	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1059 	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1060 
1061 	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1062 	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1063 	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1064 	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1065 
1066 	dev_info(&pf->pdev->dev,
1067 		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1068 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1069 		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1070 		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1071 }
1072 
1073 /**
1074  * i40e_ptp_set_pins - set PTP pins in HW
1075  * @pf: Board private structure
1076  * @pins: PTP pins to be applied
1077  *
1078  * Validate and set PTP pins in HW for specific PF.
1079  * Return 0 on success or negative value on error.
1080  **/
1081 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1082 			     struct i40e_ptp_pins_settings *pins)
1083 {
1084 	enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1085 	int i = 0;
1086 
1087 	if (pin_caps == CANT_DO_PINS)
1088 		return -EOPNOTSUPP;
1089 	else if (pin_caps == CAN_DO_PINS)
1090 		return 0;
1091 
1092 	if (pins->sdp3_2 == invalid)
1093 		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1094 	if (pins->sdp3_3 == invalid)
1095 		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1096 	if (pins->gpio_4 == invalid)
1097 		pins->gpio_4 = pf->ptp_pins->gpio_4;
1098 	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1099 		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1100 		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1101 		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1102 			pins->led2_0 =
1103 				i40e_ptp_pin_led_allowed_states[i].led2_0;
1104 			pins->led2_1 =
1105 				i40e_ptp_pin_led_allowed_states[i].led2_1;
1106 			pins->led3_0 =
1107 				i40e_ptp_pin_led_allowed_states[i].led3_0;
1108 			pins->led3_1 =
1109 				i40e_ptp_pin_led_allowed_states[i].led3_1;
1110 			break;
1111 		}
1112 		i++;
1113 	}
1114 	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1115 		dev_warn(&pf->pdev->dev,
1116 			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1117 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1118 			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1119 			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1120 
1121 		return -EPERM;
1122 	}
1123 	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1124 	i40e_ptp_set_pins_hw(pf);
1125 	i40_ptp_reset_timing_events(pf);
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  * i40e_ptp_alloc_pins - allocate PTP pins structure
1132  * @pf: Board private structure
1133  *
1134  * allocate PTP pins structure
1135  **/
1136 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1137 {
1138 	if (!i40e_is_ptp_pin_dev(&pf->hw))
1139 		return 0;
1140 
1141 	pf->ptp_pins =
1142 		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1143 
1144 	if (!pf->ptp_pins) {
1145 		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1146 		return -I40E_ERR_NO_MEMORY;
1147 	}
1148 
1149 	pf->ptp_pins->sdp3_2 = off;
1150 	pf->ptp_pins->sdp3_3 = off;
1151 	pf->ptp_pins->gpio_4 = off;
1152 	pf->ptp_pins->led2_0 = high;
1153 	pf->ptp_pins->led2_1 = high;
1154 	pf->ptp_pins->led3_0 = high;
1155 	pf->ptp_pins->led3_1 = high;
1156 
1157 	/* Use PF0 to set pins in HW. Return success for user space tools */
1158 	if (pf->hw.pf_id)
1159 		return 0;
1160 
1161 	i40e_ptp_init_leds_hw(&pf->hw);
1162 	i40e_ptp_set_pins_hw(pf);
1163 
1164 	return 0;
1165 }
1166 
1167 /**
1168  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1169  * @pf: Board private structure
1170  * @config: hwtstamp settings requested or saved
1171  *
1172  * Control hardware registers to enter the specific mode requested by the
1173  * user. Also used during reset path to ensure that timestamp settings are
1174  * maintained.
1175  *
1176  * Note: modifies config in place, and may update the requested mode to be
1177  * more broad if the specific filter is not directly supported.
1178  **/
1179 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1180 				       struct hwtstamp_config *config)
1181 {
1182 	struct i40e_hw *hw = &pf->hw;
1183 	u32 tsyntype, regval;
1184 
1185 	/* Selects external trigger to cause event */
1186 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1187 	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1188 	regval &= 0;
1189 	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1190 	/* regval: 0001 0000 0000 0000 0000 */
1191 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1192 
1193 	/* Enabel interrupts */
1194 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1195 	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1196 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1197 
1198 	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1199 
1200 	switch (config->tx_type) {
1201 	case HWTSTAMP_TX_OFF:
1202 		pf->ptp_tx = false;
1203 		break;
1204 	case HWTSTAMP_TX_ON:
1205 		pf->ptp_tx = true;
1206 		break;
1207 	default:
1208 		return -ERANGE;
1209 	}
1210 
1211 	switch (config->rx_filter) {
1212 	case HWTSTAMP_FILTER_NONE:
1213 		pf->ptp_rx = false;
1214 		/* We set the type to V1, but do not enable UDP packet
1215 		 * recognition. In this way, we should be as close to
1216 		 * disabling PTP Rx timestamps as possible since V1 packets
1217 		 * are always UDP, since L2 packets are a V2 feature.
1218 		 */
1219 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1220 		break;
1221 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1222 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1223 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1224 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1225 			return -ERANGE;
1226 		pf->ptp_rx = true;
1227 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1228 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1229 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1230 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1231 		break;
1232 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1233 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1234 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1235 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1236 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1237 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1238 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1239 			return -ERANGE;
1240 		fallthrough;
1241 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1242 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1243 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1244 		pf->ptp_rx = true;
1245 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1246 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1247 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1248 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1249 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1250 		} else {
1251 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1252 		}
1253 		break;
1254 	case HWTSTAMP_FILTER_NTP_ALL:
1255 	case HWTSTAMP_FILTER_ALL:
1256 	default:
1257 		return -ERANGE;
1258 	}
1259 
1260 	/* Clear out all 1588-related registers to clear and unlatch them. */
1261 	spin_lock_bh(&pf->ptp_rx_lock);
1262 	rd32(hw, I40E_PRTTSYN_STAT_0);
1263 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1264 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1265 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1266 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1267 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1268 	pf->latch_event_flags = 0;
1269 	spin_unlock_bh(&pf->ptp_rx_lock);
1270 
1271 	/* Enable/disable the Tx timestamp interrupt based on user input. */
1272 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1273 	if (pf->ptp_tx)
1274 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1275 	else
1276 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1277 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1278 
1279 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1280 	if (pf->ptp_tx)
1281 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1282 	else
1283 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1284 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1285 
1286 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1287 	 * timestamps by setting to V1 only mode and clear the UDP
1288 	 * recognition. This ought to disable all PTP Rx timestamps as V1
1289 	 * packets are always over UDP. Note that software is configured to
1290 	 * ignore Rx timestamps via the pf->ptp_rx flag.
1291 	 */
1292 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1293 	/* clear everything but the enable bit */
1294 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1295 	/* now enable bits for desired Rx timestamps */
1296 	regval |= tsyntype;
1297 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1304  * @pf: Board private structure
1305  * @ifr: ioctl data
1306  *
1307  * Respond to the user filter requests and make the appropriate hardware
1308  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1309  * logic, so keep track in software of whether to indicate these timestamps
1310  * or not.
1311  *
1312  * It is permissible to "upgrade" the user request to a broader filter, as long
1313  * as the user receives the timestamps they care about and the user is notified
1314  * the filter has been broadened.
1315  **/
1316 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1317 {
1318 	struct hwtstamp_config config;
1319 	int err;
1320 
1321 	if (!(pf->flags & I40E_FLAG_PTP))
1322 		return -EOPNOTSUPP;
1323 
1324 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1325 		return -EFAULT;
1326 
1327 	err = i40e_ptp_set_timestamp_mode(pf, &config);
1328 	if (err)
1329 		return err;
1330 
1331 	/* save these settings for future reference */
1332 	pf->tstamp_config = config;
1333 
1334 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1335 		-EFAULT : 0;
1336 }
1337 
1338 /**
1339  * i40e_init_pin_config - initialize pins.
1340  * @pf: private board structure
1341  *
1342  * Initialize pins for external clock source.
1343  * Return 0 on success or error code on failure.
1344  **/
1345 static int i40e_init_pin_config(struct i40e_pf *pf)
1346 {
1347 	int i;
1348 
1349 	pf->ptp_caps.n_pins = 3;
1350 	pf->ptp_caps.n_ext_ts = 2;
1351 	pf->ptp_caps.pps = 1;
1352 	pf->ptp_caps.n_per_out = 2;
1353 
1354 	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1355 					  sizeof(*pf->ptp_caps.pin_config),
1356 					  GFP_KERNEL);
1357 	if (!pf->ptp_caps.pin_config)
1358 		return -ENOMEM;
1359 
1360 	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1361 		snprintf(pf->ptp_caps.pin_config[i].name,
1362 			 sizeof(pf->ptp_caps.pin_config[i].name),
1363 			 "%s", sdp_desc[i].name);
1364 		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1365 		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1366 		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1367 	}
1368 
1369 	pf->ptp_caps.verify = i40e_ptp_verify;
1370 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1371 
1372 	pf->ptp_caps.pps = 1;
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * i40e_ptp_create_clock - Create PTP clock device for userspace
1379  * @pf: Board private structure
1380  *
1381  * This function creates a new PTP clock device. It only creates one if we
1382  * don't already have one, so it is safe to call. Will return error if it
1383  * can't create one, but success if we already have a device. Should be used
1384  * by i40e_ptp_init to create clock initially, and prevent global resets from
1385  * creating new clock devices.
1386  **/
1387 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1388 {
1389 	/* no need to create a clock device if we already have one */
1390 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1391 		return 0;
1392 
1393 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
1394 		sizeof(pf->ptp_caps.name) - 1);
1395 	pf->ptp_caps.owner = THIS_MODULE;
1396 	pf->ptp_caps.max_adj = 999999999;
1397 	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1398 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1399 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1400 	pf->ptp_caps.settime64 = i40e_ptp_settime;
1401 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1402 		int err = i40e_init_pin_config(pf);
1403 
1404 		if (err)
1405 			return err;
1406 	}
1407 
1408 	/* Attempt to register the clock before enabling the hardware. */
1409 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1410 	if (IS_ERR(pf->ptp_clock))
1411 		return PTR_ERR(pf->ptp_clock);
1412 
1413 	/* clear the hwtstamp settings here during clock create, instead of
1414 	 * during regular init, so that we can maintain settings across a
1415 	 * reset or suspend.
1416 	 */
1417 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1418 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1419 
1420 	/* Set the previous "reset" time to the current Kernel clock time */
1421 	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1422 	pf->ptp_reset_start = ktime_get();
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1429  * @pf: Board private structure
1430  *
1431  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1432  * be called at the end of preparing to reset, just before hardware reset
1433  * occurs, in order to preserve the PTP time as close as possible across
1434  * resets.
1435  */
1436 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1437 {
1438 	/* don't try to access the PTP clock if it's not enabled */
1439 	if (!(pf->flags & I40E_FLAG_PTP))
1440 		return;
1441 
1442 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1443 	/* Get a monotonic starting time for this reset */
1444 	pf->ptp_reset_start = ktime_get();
1445 }
1446 
1447 /**
1448  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1449  * @pf: Board private structure
1450  *
1451  * Restore the PTP hardware clock registers. We previously cached the PTP
1452  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1453  * update this value based on the time delta since the time was saved, using
1454  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1455  *
1456  * This ensures that the hardware clock is restored to nearly what it should
1457  * have been if a reset had not occurred.
1458  */
1459 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1460 {
1461 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1462 
1463 	/* Update the previous HW time with the ktime delta */
1464 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1465 
1466 	/* Restore the hardware clock registers */
1467 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1468 }
1469 
1470 /**
1471  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1472  * @pf: Board private structure
1473  *
1474  * This function sets device up for 1588 support. The first time it is run, it
1475  * will create a PHC clock device. It does not create a clock device if one
1476  * already exists. It also reconfigures the device after a reset.
1477  *
1478  * The first time a clock is created, i40e_ptp_create_clock will set
1479  * pf->ptp_prev_hw_time to the current system time. During resets, it is
1480  * expected that this timespec will be set to the last known PTP clock time,
1481  * in order to preserve the clock time as close as possible across a reset.
1482  **/
1483 void i40e_ptp_init(struct i40e_pf *pf)
1484 {
1485 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1486 	struct i40e_hw *hw = &pf->hw;
1487 	u32 pf_id;
1488 	long err;
1489 
1490 	/* Only one PF is assigned to control 1588 logic per port. Do not
1491 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1492 	 */
1493 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1494 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1495 	if (hw->pf_id != pf_id) {
1496 		pf->flags &= ~I40E_FLAG_PTP;
1497 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1498 			 __func__,
1499 			 netdev->name);
1500 		return;
1501 	}
1502 
1503 	mutex_init(&pf->tmreg_lock);
1504 	spin_lock_init(&pf->ptp_rx_lock);
1505 
1506 	/* ensure we have a clock device */
1507 	err = i40e_ptp_create_clock(pf);
1508 	if (err) {
1509 		pf->ptp_clock = NULL;
1510 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1511 			__func__);
1512 	} else if (pf->ptp_clock) {
1513 		u32 regval;
1514 
1515 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1516 			dev_info(&pf->pdev->dev, "PHC enabled\n");
1517 		pf->flags |= I40E_FLAG_PTP;
1518 
1519 		/* Ensure the clocks are running. */
1520 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1521 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1522 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1523 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1524 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1525 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1526 
1527 		/* Set the increment value per clock tick. */
1528 		i40e_ptp_set_increment(pf);
1529 
1530 		/* reset timestamping mode */
1531 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1532 
1533 		/* Restore the clock time based on last known value */
1534 		i40e_ptp_restore_hw_time(pf);
1535 	}
1536 
1537 	i40e_ptp_set_1pps_signal_hw(pf);
1538 }
1539 
1540 /**
1541  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1542  * @pf: Board private structure
1543  *
1544  * This function handles the cleanup work required from the initialization by
1545  * clearing out the important information and unregistering the PHC.
1546  **/
1547 void i40e_ptp_stop(struct i40e_pf *pf)
1548 {
1549 	struct i40e_hw *hw = &pf->hw;
1550 	u32 regval;
1551 
1552 	pf->flags &= ~I40E_FLAG_PTP;
1553 	pf->ptp_tx = false;
1554 	pf->ptp_rx = false;
1555 
1556 	if (pf->ptp_tx_skb) {
1557 		struct sk_buff *skb = pf->ptp_tx_skb;
1558 
1559 		pf->ptp_tx_skb = NULL;
1560 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1561 		dev_kfree_skb_any(skb);
1562 	}
1563 
1564 	if (pf->ptp_clock) {
1565 		ptp_clock_unregister(pf->ptp_clock);
1566 		pf->ptp_clock = NULL;
1567 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1568 			 pf->vsi[pf->lan_vsi]->netdev->name);
1569 	}
1570 
1571 	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1572 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1573 		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1574 		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1575 	}
1576 
1577 	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1578 	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1579 	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1580 
1581 	/* Disable interrupts */
1582 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1583 	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1584 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1585 
1586 	i40e_ptp_free_pins(pf);
1587 }
1588