1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "i40e.h" 5 #include <linux/ptp_classify.h> 6 7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to 8 * the fundamental clock design. However, the clock operations are much simpler 9 * in the XL710 because the device supports a full 64 bits of nanoseconds. 10 * Because the field is so wide, we can forgo the cycle counter and just 11 * operate with the nanosecond field directly without fear of overflow. 12 * 13 * Much like the 82599, the update period is dependent upon the link speed: 14 * At 40Gb link or no link, the period is 1.6ns. 15 * At 10Gb link, the period is multiplied by 2. (3.2ns) 16 * At 1Gb link, the period is multiplied by 20. (32ns) 17 * 1588 functionality is not supported at 100Mbps. 18 */ 19 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL 20 #define I40E_PTP_10GB_INCVAL_MULT 2 21 #define I40E_PTP_1GB_INCVAL_MULT 20 22 23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \ 25 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT) 26 27 /** 28 * i40e_ptp_read - Read the PHC time from the device 29 * @pf: Board private structure 30 * @ts: timespec structure to hold the current time value 31 * @sts: structure to hold the system time before and after reading the PHC 32 * 33 * This function reads the PRTTSYN_TIME registers and stores them in a 34 * timespec. However, since the registers are 64 bits of nanoseconds, we must 35 * convert the result to a timespec before we can return. 36 **/ 37 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts, 38 struct ptp_system_timestamp *sts) 39 { 40 struct i40e_hw *hw = &pf->hw; 41 u32 hi, lo; 42 u64 ns; 43 44 /* The timer latches on the lowest register read. */ 45 ptp_read_system_prets(sts); 46 lo = rd32(hw, I40E_PRTTSYN_TIME_L); 47 ptp_read_system_postts(sts); 48 hi = rd32(hw, I40E_PRTTSYN_TIME_H); 49 50 ns = (((u64)hi) << 32) | lo; 51 52 *ts = ns_to_timespec64(ns); 53 } 54 55 /** 56 * i40e_ptp_write - Write the PHC time to the device 57 * @pf: Board private structure 58 * @ts: timespec structure that holds the new time value 59 * 60 * This function writes the PRTTSYN_TIME registers with the user value. Since 61 * we receive a timespec from the stack, we must convert that timespec into 62 * nanoseconds before programming the registers. 63 **/ 64 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts) 65 { 66 struct i40e_hw *hw = &pf->hw; 67 u64 ns = timespec64_to_ns(ts); 68 69 /* The timer will not update until the high register is written, so 70 * write the low register first. 71 */ 72 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF); 73 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32); 74 } 75 76 /** 77 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time 78 * @hwtstamps: Timestamp structure to update 79 * @timestamp: Timestamp from the hardware 80 * 81 * We need to convert the NIC clock value into a hwtstamp which can be used by 82 * the upper level timestamping functions. Since the timestamp is simply a 64- 83 * bit nanosecond value, we can call ns_to_ktime directly to handle this. 84 **/ 85 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps, 86 u64 timestamp) 87 { 88 memset(hwtstamps, 0, sizeof(*hwtstamps)); 89 90 hwtstamps->hwtstamp = ns_to_ktime(timestamp); 91 } 92 93 /** 94 * i40e_ptp_adjfreq - Adjust the PHC frequency 95 * @ptp: The PTP clock structure 96 * @ppb: Parts per billion adjustment from the base 97 * 98 * Adjust the frequency of the PHC by the indicated parts per billion from the 99 * base frequency. 100 **/ 101 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 102 { 103 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 104 struct i40e_hw *hw = &pf->hw; 105 u64 adj, freq, diff; 106 int neg_adj = 0; 107 108 if (ppb < 0) { 109 neg_adj = 1; 110 ppb = -ppb; 111 } 112 113 freq = I40E_PTP_40GB_INCVAL; 114 freq *= ppb; 115 diff = div_u64(freq, 1000000000ULL); 116 117 if (neg_adj) 118 adj = I40E_PTP_40GB_INCVAL - diff; 119 else 120 adj = I40E_PTP_40GB_INCVAL + diff; 121 122 /* At some link speeds, the base incval is so large that directly 123 * multiplying by ppb would result in arithmetic overflow even when 124 * using a u64. Avoid this by instead calculating the new incval 125 * always in terms of the 40GbE clock rate and then multiplying by the 126 * link speed factor afterwards. This does result in slightly lower 127 * precision at lower link speeds, but it is fairly minor. 128 */ 129 smp_mb(); /* Force any pending update before accessing. */ 130 adj *= READ_ONCE(pf->ptp_adj_mult); 131 132 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF); 133 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32); 134 135 return 0; 136 } 137 138 /** 139 * i40e_ptp_adjtime - Adjust the PHC time 140 * @ptp: The PTP clock structure 141 * @delta: Offset in nanoseconds to adjust the PHC time by 142 * 143 * Adjust the current clock time by a delta specified in nanoseconds. 144 **/ 145 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 146 { 147 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 148 struct timespec64 now, then; 149 150 then = ns_to_timespec64(delta); 151 mutex_lock(&pf->tmreg_lock); 152 153 i40e_ptp_read(pf, &now, NULL); 154 now = timespec64_add(now, then); 155 i40e_ptp_write(pf, (const struct timespec64 *)&now); 156 157 mutex_unlock(&pf->tmreg_lock); 158 159 return 0; 160 } 161 162 /** 163 * i40e_ptp_gettimex - Get the time of the PHC 164 * @ptp: The PTP clock structure 165 * @ts: timespec structure to hold the current time value 166 * @sts: structure to hold the system time before and after reading the PHC 167 * 168 * Read the device clock and return the correct value on ns, after converting it 169 * into a timespec struct. 170 **/ 171 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, 172 struct ptp_system_timestamp *sts) 173 { 174 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 175 176 mutex_lock(&pf->tmreg_lock); 177 i40e_ptp_read(pf, ts, sts); 178 mutex_unlock(&pf->tmreg_lock); 179 180 return 0; 181 } 182 183 /** 184 * i40e_ptp_settime - Set the time of the PHC 185 * @ptp: The PTP clock structure 186 * @ts: timespec structure that holds the new time value 187 * 188 * Set the device clock to the user input value. The conversion from timespec 189 * to ns happens in the write function. 190 **/ 191 static int i40e_ptp_settime(struct ptp_clock_info *ptp, 192 const struct timespec64 *ts) 193 { 194 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps); 195 196 mutex_lock(&pf->tmreg_lock); 197 i40e_ptp_write(pf, ts); 198 mutex_unlock(&pf->tmreg_lock); 199 200 return 0; 201 } 202 203 /** 204 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem 205 * @ptp: The PTP clock structure 206 * @rq: The requested feature to change 207 * @on: Enable/disable flag 208 * 209 * The XL710 does not support any of the ancillary features of the PHC 210 * subsystem, so this function may just return. 211 **/ 212 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp, 213 struct ptp_clock_request *rq, int on) 214 { 215 return -EOPNOTSUPP; 216 } 217 218 /** 219 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events 220 * @pf: the PF data structure 221 * 222 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers 223 * for noticed latch events. This allows the driver to keep track of the first 224 * time a latch event was noticed which will be used to help clear out Rx 225 * timestamps for packets that got dropped or lost. 226 * 227 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is 228 * expected to be called only while under the ptp_rx_lock. 229 **/ 230 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf) 231 { 232 struct i40e_hw *hw = &pf->hw; 233 u32 prttsyn_stat, new_latch_events; 234 int i; 235 236 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1); 237 new_latch_events = prttsyn_stat & ~pf->latch_event_flags; 238 239 /* Update the jiffies time for any newly latched timestamp. This 240 * ensures that we store the time that we first discovered a timestamp 241 * was latched by the hardware. The service task will later determine 242 * if we should free the latch and drop that timestamp should too much 243 * time pass. This flow ensures that we only update jiffies for new 244 * events latched since the last time we checked, and not all events 245 * currently latched, so that the service task accounting remains 246 * accurate. 247 */ 248 for (i = 0; i < 4; i++) { 249 if (new_latch_events & BIT(i)) 250 pf->latch_events[i] = jiffies; 251 } 252 253 /* Finally, we store the current status of the Rx timestamp latches */ 254 pf->latch_event_flags = prttsyn_stat; 255 256 return prttsyn_stat; 257 } 258 259 /** 260 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung 261 * @pf: The PF private data structure 262 * @vsi: The VSI with the rings relevant to 1588 263 * 264 * This watchdog task is scheduled to detect error case where hardware has 265 * dropped an Rx packet that was timestamped when the ring is full. The 266 * particular error is rare but leaves the device in a state unable to timestamp 267 * any future packets. 268 **/ 269 void i40e_ptp_rx_hang(struct i40e_pf *pf) 270 { 271 struct i40e_hw *hw = &pf->hw; 272 unsigned int i, cleared = 0; 273 274 /* Since we cannot turn off the Rx timestamp logic if the device is 275 * configured for Tx timestamping, we check if Rx timestamping is 276 * configured. We don't want to spuriously warn about Rx timestamp 277 * hangs if we don't care about the timestamps. 278 */ 279 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 280 return; 281 282 spin_lock_bh(&pf->ptp_rx_lock); 283 284 /* Update current latch times for Rx events */ 285 i40e_ptp_get_rx_events(pf); 286 287 /* Check all the currently latched Rx events and see whether they have 288 * been latched for over a second. It is assumed that any timestamp 289 * should have been cleared within this time, or else it was captured 290 * for a dropped frame that the driver never received. Thus, we will 291 * clear any timestamp that has been latched for over 1 second. 292 */ 293 for (i = 0; i < 4; i++) { 294 if ((pf->latch_event_flags & BIT(i)) && 295 time_is_before_jiffies(pf->latch_events[i] + HZ)) { 296 rd32(hw, I40E_PRTTSYN_RXTIME_H(i)); 297 pf->latch_event_flags &= ~BIT(i); 298 cleared++; 299 } 300 } 301 302 spin_unlock_bh(&pf->ptp_rx_lock); 303 304 /* Log a warning if more than 2 timestamps got dropped in the same 305 * check. We don't want to warn about all drops because it can occur 306 * in normal scenarios such as PTP frames on multicast addresses we 307 * aren't listening to. However, administrator should know if this is 308 * the reason packets aren't receiving timestamps. 309 */ 310 if (cleared > 2) 311 dev_dbg(&pf->pdev->dev, 312 "Dropped %d missed RXTIME timestamp events\n", 313 cleared); 314 315 /* Finally, update the rx_hwtstamp_cleared counter */ 316 pf->rx_hwtstamp_cleared += cleared; 317 } 318 319 /** 320 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung 321 * @pf: The PF private data structure 322 * 323 * This watchdog task is run periodically to make sure that we clear the Tx 324 * timestamp logic if we don't obtain a timestamp in a reasonable amount of 325 * time. It is unexpected in the normal case but if it occurs it results in 326 * permanently preventing timestamps of future packets. 327 **/ 328 void i40e_ptp_tx_hang(struct i40e_pf *pf) 329 { 330 struct sk_buff *skb; 331 332 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) 333 return; 334 335 /* Nothing to do if we're not already waiting for a timestamp */ 336 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state)) 337 return; 338 339 /* We already have a handler routine which is run when we are notified 340 * of a Tx timestamp in the hardware. If we don't get an interrupt 341 * within a second it is reasonable to assume that we never will. 342 */ 343 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) { 344 skb = pf->ptp_tx_skb; 345 pf->ptp_tx_skb = NULL; 346 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 347 348 /* Free the skb after we clear the bitlock */ 349 dev_kfree_skb_any(skb); 350 pf->tx_hwtstamp_timeouts++; 351 } 352 } 353 354 /** 355 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp 356 * @pf: Board private structure 357 * 358 * Read the value of the Tx timestamp from the registers, convert it into a 359 * value consumable by the stack, and store that result into the shhwtstamps 360 * struct before returning it up the stack. 361 **/ 362 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf) 363 { 364 struct skb_shared_hwtstamps shhwtstamps; 365 struct sk_buff *skb = pf->ptp_tx_skb; 366 struct i40e_hw *hw = &pf->hw; 367 u32 hi, lo; 368 u64 ns; 369 370 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx) 371 return; 372 373 /* don't attempt to timestamp if we don't have an skb */ 374 if (!pf->ptp_tx_skb) 375 return; 376 377 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L); 378 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H); 379 380 ns = (((u64)hi) << 32) | lo; 381 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns); 382 383 /* Clear the bit lock as soon as possible after reading the register, 384 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise 385 * applications might wake up and attempt to request another transmit 386 * timestamp prior to the bit lock being cleared. 387 */ 388 pf->ptp_tx_skb = NULL; 389 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 390 391 /* Notify the stack and free the skb after we've unlocked */ 392 skb_tstamp_tx(skb, &shhwtstamps); 393 dev_kfree_skb_any(skb); 394 } 395 396 /** 397 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp 398 * @pf: Board private structure 399 * @skb: Particular skb to send timestamp with 400 * @index: Index into the receive timestamp registers for the timestamp 401 * 402 * The XL710 receives a notification in the receive descriptor with an offset 403 * into the set of RXTIME registers where the timestamp is for that skb. This 404 * function goes and fetches the receive timestamp from that offset, if a valid 405 * one exists. The RXTIME registers are in ns, so we must convert the result 406 * first. 407 **/ 408 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index) 409 { 410 u32 prttsyn_stat, hi, lo; 411 struct i40e_hw *hw; 412 u64 ns; 413 414 /* Since we cannot turn off the Rx timestamp logic if the device is 415 * doing Tx timestamping, check if Rx timestamping is configured. 416 */ 417 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx) 418 return; 419 420 hw = &pf->hw; 421 422 spin_lock_bh(&pf->ptp_rx_lock); 423 424 /* Get current Rx events and update latch times */ 425 prttsyn_stat = i40e_ptp_get_rx_events(pf); 426 427 /* TODO: Should we warn about missing Rx timestamp event? */ 428 if (!(prttsyn_stat & BIT(index))) { 429 spin_unlock_bh(&pf->ptp_rx_lock); 430 return; 431 } 432 433 /* Clear the latched event since we're about to read its register */ 434 pf->latch_event_flags &= ~BIT(index); 435 436 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index)); 437 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index)); 438 439 spin_unlock_bh(&pf->ptp_rx_lock); 440 441 ns = (((u64)hi) << 32) | lo; 442 443 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns); 444 } 445 446 /** 447 * i40e_ptp_set_increment - Utility function to update clock increment rate 448 * @pf: Board private structure 449 * 450 * During a link change, the DMA frequency that drives the 1588 logic will 451 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds, 452 * we must update the increment value per clock tick. 453 **/ 454 void i40e_ptp_set_increment(struct i40e_pf *pf) 455 { 456 struct i40e_link_status *hw_link_info; 457 struct i40e_hw *hw = &pf->hw; 458 u64 incval; 459 u32 mult; 460 461 hw_link_info = &hw->phy.link_info; 462 463 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL); 464 465 switch (hw_link_info->link_speed) { 466 case I40E_LINK_SPEED_10GB: 467 mult = I40E_PTP_10GB_INCVAL_MULT; 468 break; 469 case I40E_LINK_SPEED_1GB: 470 mult = I40E_PTP_1GB_INCVAL_MULT; 471 break; 472 case I40E_LINK_SPEED_100MB: 473 { 474 static int warn_once; 475 476 if (!warn_once) { 477 dev_warn(&pf->pdev->dev, 478 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n"); 479 warn_once++; 480 } 481 mult = 0; 482 break; 483 } 484 case I40E_LINK_SPEED_40GB: 485 default: 486 mult = 1; 487 break; 488 } 489 490 /* The increment value is calculated by taking the base 40GbE incvalue 491 * and multiplying it by a factor based on the link speed. 492 */ 493 incval = I40E_PTP_40GB_INCVAL * mult; 494 495 /* Write the new increment value into the increment register. The 496 * hardware will not update the clock until both registers have been 497 * written. 498 */ 499 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF); 500 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32); 501 502 /* Update the base adjustement value. */ 503 WRITE_ONCE(pf->ptp_adj_mult, mult); 504 smp_mb(); /* Force the above update. */ 505 } 506 507 /** 508 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping 509 * @pf: Board private structure 510 * @ifr: ioctl data 511 * 512 * Obtain the current hardware timestamping settigs as requested. To do this, 513 * keep a shadow copy of the timestamp settings rather than attempting to 514 * deconstruct it from the registers. 515 **/ 516 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 517 { 518 struct hwtstamp_config *config = &pf->tstamp_config; 519 520 if (!(pf->flags & I40E_FLAG_PTP)) 521 return -EOPNOTSUPP; 522 523 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? 524 -EFAULT : 0; 525 } 526 527 /** 528 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode 529 * @pf: Board private structure 530 * @config: hwtstamp settings requested or saved 531 * 532 * Control hardware registers to enter the specific mode requested by the 533 * user. Also used during reset path to ensure that timestamp settings are 534 * maintained. 535 * 536 * Note: modifies config in place, and may update the requested mode to be 537 * more broad if the specific filter is not directly supported. 538 **/ 539 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf, 540 struct hwtstamp_config *config) 541 { 542 struct i40e_hw *hw = &pf->hw; 543 u32 tsyntype, regval; 544 545 /* Reserved for future extensions. */ 546 if (config->flags) 547 return -EINVAL; 548 549 switch (config->tx_type) { 550 case HWTSTAMP_TX_OFF: 551 pf->ptp_tx = false; 552 break; 553 case HWTSTAMP_TX_ON: 554 pf->ptp_tx = true; 555 break; 556 default: 557 return -ERANGE; 558 } 559 560 switch (config->rx_filter) { 561 case HWTSTAMP_FILTER_NONE: 562 pf->ptp_rx = false; 563 /* We set the type to V1, but do not enable UDP packet 564 * recognition. In this way, we should be as close to 565 * disabling PTP Rx timestamps as possible since V1 packets 566 * are always UDP, since L2 packets are a V2 feature. 567 */ 568 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1; 569 break; 570 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 571 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 572 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 573 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) 574 return -ERANGE; 575 pf->ptp_rx = true; 576 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK | 577 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 | 578 I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 579 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 580 break; 581 case HWTSTAMP_FILTER_PTP_V2_EVENT: 582 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 583 case HWTSTAMP_FILTER_PTP_V2_SYNC: 584 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 585 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 586 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 587 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE)) 588 return -ERANGE; 589 fallthrough; 590 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 591 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 592 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 593 pf->ptp_rx = true; 594 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK | 595 I40E_PRTTSYN_CTL1_TSYNTYPE_V2; 596 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) { 597 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK; 598 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 599 } else { 600 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 601 } 602 break; 603 case HWTSTAMP_FILTER_NTP_ALL: 604 case HWTSTAMP_FILTER_ALL: 605 default: 606 return -ERANGE; 607 } 608 609 /* Clear out all 1588-related registers to clear and unlatch them. */ 610 spin_lock_bh(&pf->ptp_rx_lock); 611 rd32(hw, I40E_PRTTSYN_STAT_0); 612 rd32(hw, I40E_PRTTSYN_TXTIME_H); 613 rd32(hw, I40E_PRTTSYN_RXTIME_H(0)); 614 rd32(hw, I40E_PRTTSYN_RXTIME_H(1)); 615 rd32(hw, I40E_PRTTSYN_RXTIME_H(2)); 616 rd32(hw, I40E_PRTTSYN_RXTIME_H(3)); 617 pf->latch_event_flags = 0; 618 spin_unlock_bh(&pf->ptp_rx_lock); 619 620 /* Enable/disable the Tx timestamp interrupt based on user input. */ 621 regval = rd32(hw, I40E_PRTTSYN_CTL0); 622 if (pf->ptp_tx) 623 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 624 else 625 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK; 626 wr32(hw, I40E_PRTTSYN_CTL0, regval); 627 628 regval = rd32(hw, I40E_PFINT_ICR0_ENA); 629 if (pf->ptp_tx) 630 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 631 else 632 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 633 wr32(hw, I40E_PFINT_ICR0_ENA, regval); 634 635 /* Although there is no simple on/off switch for Rx, we "disable" Rx 636 * timestamps by setting to V1 only mode and clear the UDP 637 * recognition. This ought to disable all PTP Rx timestamps as V1 638 * packets are always over UDP. Note that software is configured to 639 * ignore Rx timestamps via the pf->ptp_rx flag. 640 */ 641 regval = rd32(hw, I40E_PRTTSYN_CTL1); 642 /* clear everything but the enable bit */ 643 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 644 /* now enable bits for desired Rx timestamps */ 645 regval |= tsyntype; 646 wr32(hw, I40E_PRTTSYN_CTL1, regval); 647 648 return 0; 649 } 650 651 /** 652 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping 653 * @pf: Board private structure 654 * @ifr: ioctl data 655 * 656 * Respond to the user filter requests and make the appropriate hardware 657 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping 658 * logic, so keep track in software of whether to indicate these timestamps 659 * or not. 660 * 661 * It is permissible to "upgrade" the user request to a broader filter, as long 662 * as the user receives the timestamps they care about and the user is notified 663 * the filter has been broadened. 664 **/ 665 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr) 666 { 667 struct hwtstamp_config config; 668 int err; 669 670 if (!(pf->flags & I40E_FLAG_PTP)) 671 return -EOPNOTSUPP; 672 673 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 674 return -EFAULT; 675 676 err = i40e_ptp_set_timestamp_mode(pf, &config); 677 if (err) 678 return err; 679 680 /* save these settings for future reference */ 681 pf->tstamp_config = config; 682 683 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 684 -EFAULT : 0; 685 } 686 687 /** 688 * i40e_ptp_create_clock - Create PTP clock device for userspace 689 * @pf: Board private structure 690 * 691 * This function creates a new PTP clock device. It only creates one if we 692 * don't already have one, so it is safe to call. Will return error if it 693 * can't create one, but success if we already have a device. Should be used 694 * by i40e_ptp_init to create clock initially, and prevent global resets from 695 * creating new clock devices. 696 **/ 697 static long i40e_ptp_create_clock(struct i40e_pf *pf) 698 { 699 /* no need to create a clock device if we already have one */ 700 if (!IS_ERR_OR_NULL(pf->ptp_clock)) 701 return 0; 702 703 strlcpy(pf->ptp_caps.name, i40e_driver_name, 704 sizeof(pf->ptp_caps.name) - 1); 705 pf->ptp_caps.owner = THIS_MODULE; 706 pf->ptp_caps.max_adj = 999999999; 707 pf->ptp_caps.n_ext_ts = 0; 708 pf->ptp_caps.pps = 0; 709 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq; 710 pf->ptp_caps.adjtime = i40e_ptp_adjtime; 711 pf->ptp_caps.gettimex64 = i40e_ptp_gettimex; 712 pf->ptp_caps.settime64 = i40e_ptp_settime; 713 pf->ptp_caps.enable = i40e_ptp_feature_enable; 714 715 /* Attempt to register the clock before enabling the hardware. */ 716 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev); 717 if (IS_ERR(pf->ptp_clock)) 718 return PTR_ERR(pf->ptp_clock); 719 720 /* clear the hwtstamp settings here during clock create, instead of 721 * during regular init, so that we can maintain settings across a 722 * reset or suspend. 723 */ 724 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 725 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 726 727 /* Set the previous "reset" time to the current Kernel clock time */ 728 ktime_get_real_ts64(&pf->ptp_prev_hw_time); 729 pf->ptp_reset_start = ktime_get(); 730 731 return 0; 732 } 733 734 /** 735 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time 736 * @pf: Board private structure 737 * 738 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should 739 * be called at the end of preparing to reset, just before hardware reset 740 * occurs, in order to preserve the PTP time as close as possible across 741 * resets. 742 */ 743 void i40e_ptp_save_hw_time(struct i40e_pf *pf) 744 { 745 /* don't try to access the PTP clock if it's not enabled */ 746 if (!(pf->flags & I40E_FLAG_PTP)) 747 return; 748 749 i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL); 750 /* Get a monotonic starting time for this reset */ 751 pf->ptp_reset_start = ktime_get(); 752 } 753 754 /** 755 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs 756 * @pf: Board private structure 757 * 758 * Restore the PTP hardware clock registers. We previously cached the PTP 759 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible, 760 * update this value based on the time delta since the time was saved, using 761 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference. 762 * 763 * This ensures that the hardware clock is restored to nearly what it should 764 * have been if a reset had not occurred. 765 */ 766 void i40e_ptp_restore_hw_time(struct i40e_pf *pf) 767 { 768 ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start); 769 770 /* Update the previous HW time with the ktime delta */ 771 timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta)); 772 773 /* Restore the hardware clock registers */ 774 i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time); 775 } 776 777 /** 778 * i40e_ptp_init - Initialize the 1588 support after device probe or reset 779 * @pf: Board private structure 780 * 781 * This function sets device up for 1588 support. The first time it is run, it 782 * will create a PHC clock device. It does not create a clock device if one 783 * already exists. It also reconfigures the device after a reset. 784 * 785 * The first time a clock is created, i40e_ptp_create_clock will set 786 * pf->ptp_prev_hw_time to the current system time. During resets, it is 787 * expected that this timespec will be set to the last known PTP clock time, 788 * in order to preserve the clock time as close as possible across a reset. 789 **/ 790 void i40e_ptp_init(struct i40e_pf *pf) 791 { 792 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev; 793 struct i40e_hw *hw = &pf->hw; 794 u32 pf_id; 795 long err; 796 797 /* Only one PF is assigned to control 1588 logic per port. Do not 798 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID 799 */ 800 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >> 801 I40E_PRTTSYN_CTL0_PF_ID_SHIFT; 802 if (hw->pf_id != pf_id) { 803 pf->flags &= ~I40E_FLAG_PTP; 804 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n", 805 __func__, 806 netdev->name); 807 return; 808 } 809 810 mutex_init(&pf->tmreg_lock); 811 spin_lock_init(&pf->ptp_rx_lock); 812 813 /* ensure we have a clock device */ 814 err = i40e_ptp_create_clock(pf); 815 if (err) { 816 pf->ptp_clock = NULL; 817 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n", 818 __func__); 819 } else if (pf->ptp_clock) { 820 u32 regval; 821 822 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 823 dev_info(&pf->pdev->dev, "PHC enabled\n"); 824 pf->flags |= I40E_FLAG_PTP; 825 826 /* Ensure the clocks are running. */ 827 regval = rd32(hw, I40E_PRTTSYN_CTL0); 828 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK; 829 wr32(hw, I40E_PRTTSYN_CTL0, regval); 830 regval = rd32(hw, I40E_PRTTSYN_CTL1); 831 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK; 832 wr32(hw, I40E_PRTTSYN_CTL1, regval); 833 834 /* Set the increment value per clock tick. */ 835 i40e_ptp_set_increment(pf); 836 837 /* reset timestamping mode */ 838 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config); 839 840 /* Restore the clock time based on last known value */ 841 i40e_ptp_restore_hw_time(pf); 842 } 843 } 844 845 /** 846 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC 847 * @pf: Board private structure 848 * 849 * This function handles the cleanup work required from the initialization by 850 * clearing out the important information and unregistering the PHC. 851 **/ 852 void i40e_ptp_stop(struct i40e_pf *pf) 853 { 854 pf->flags &= ~I40E_FLAG_PTP; 855 pf->ptp_tx = false; 856 pf->ptp_rx = false; 857 858 if (pf->ptp_tx_skb) { 859 struct sk_buff *skb = pf->ptp_tx_skb; 860 861 pf->ptp_tx_skb = NULL; 862 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); 863 dev_kfree_skb_any(skb); 864 } 865 866 if (pf->ptp_clock) { 867 ptp_clock_unregister(pf->ptp_clock); 868 pf->ptp_clock = NULL; 869 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__, 870 pf->vsi[pf->lan_vsi]->netdev->name); 871 } 872 } 873