1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6 
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8  * the fundamental clock design. However, the clock operations are much simpler
9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
10  * Because the field is so wide, we can forgo the cycle counter and just
11  * operate with the nanosecond field directly without fear of overflow.
12  *
13  * Much like the 82599, the update period is dependent upon the link speed:
14  * At 40Gb link or no link, the period is 1.6ns.
15  * At 10Gb link, the period is multiplied by 2. (3.2ns)
16  * At 1Gb link, the period is multiplied by 20. (32ns)
17  * 1588 functionality is not supported at 100Mbps.
18  */
19 #define I40E_PTP_40GB_INCVAL		0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT	2
21 #define I40E_PTP_1GB_INCVAL_MULT	20
22 
23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
25 					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
26 
27 /**
28  * i40e_ptp_read - Read the PHC time from the device
29  * @pf: Board private structure
30  * @ts: timespec structure to hold the current time value
31  * @sts: structure to hold the system time before and after reading the PHC
32  *
33  * This function reads the PRTTSYN_TIME registers and stores them in a
34  * timespec. However, since the registers are 64 bits of nanoseconds, we must
35  * convert the result to a timespec before we can return.
36  **/
37 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
38 			  struct ptp_system_timestamp *sts)
39 {
40 	struct i40e_hw *hw = &pf->hw;
41 	u32 hi, lo;
42 	u64 ns;
43 
44 	/* The timer latches on the lowest register read. */
45 	ptp_read_system_prets(sts);
46 	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
47 	ptp_read_system_postts(sts);
48 	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
49 
50 	ns = (((u64)hi) << 32) | lo;
51 
52 	*ts = ns_to_timespec64(ns);
53 }
54 
55 /**
56  * i40e_ptp_write - Write the PHC time to the device
57  * @pf: Board private structure
58  * @ts: timespec structure that holds the new time value
59  *
60  * This function writes the PRTTSYN_TIME registers with the user value. Since
61  * we receive a timespec from the stack, we must convert that timespec into
62  * nanoseconds before programming the registers.
63  **/
64 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
65 {
66 	struct i40e_hw *hw = &pf->hw;
67 	u64 ns = timespec64_to_ns(ts);
68 
69 	/* The timer will not update until the high register is written, so
70 	 * write the low register first.
71 	 */
72 	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
73 	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
74 }
75 
76 /**
77  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
78  * @hwtstamps: Timestamp structure to update
79  * @timestamp: Timestamp from the hardware
80  *
81  * We need to convert the NIC clock value into a hwtstamp which can be used by
82  * the upper level timestamping functions. Since the timestamp is simply a 64-
83  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
84  **/
85 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
86 					 u64 timestamp)
87 {
88 	memset(hwtstamps, 0, sizeof(*hwtstamps));
89 
90 	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
91 }
92 
93 /**
94  * i40e_ptp_adjfreq - Adjust the PHC frequency
95  * @ptp: The PTP clock structure
96  * @ppb: Parts per billion adjustment from the base
97  *
98  * Adjust the frequency of the PHC by the indicated parts per billion from the
99  * base frequency.
100  **/
101 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
102 {
103 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
104 	struct i40e_hw *hw = &pf->hw;
105 	u64 adj, freq, diff;
106 	int neg_adj = 0;
107 
108 	if (ppb < 0) {
109 		neg_adj = 1;
110 		ppb = -ppb;
111 	}
112 
113 	freq = I40E_PTP_40GB_INCVAL;
114 	freq *= ppb;
115 	diff = div_u64(freq, 1000000000ULL);
116 
117 	if (neg_adj)
118 		adj = I40E_PTP_40GB_INCVAL - diff;
119 	else
120 		adj = I40E_PTP_40GB_INCVAL + diff;
121 
122 	/* At some link speeds, the base incval is so large that directly
123 	 * multiplying by ppb would result in arithmetic overflow even when
124 	 * using a u64. Avoid this by instead calculating the new incval
125 	 * always in terms of the 40GbE clock rate and then multiplying by the
126 	 * link speed factor afterwards. This does result in slightly lower
127 	 * precision at lower link speeds, but it is fairly minor.
128 	 */
129 	smp_mb(); /* Force any pending update before accessing. */
130 	adj *= READ_ONCE(pf->ptp_adj_mult);
131 
132 	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
133 	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
134 
135 	return 0;
136 }
137 
138 /**
139  * i40e_ptp_adjtime - Adjust the PHC time
140  * @ptp: The PTP clock structure
141  * @delta: Offset in nanoseconds to adjust the PHC time by
142  *
143  * Adjust the current clock time by a delta specified in nanoseconds.
144  **/
145 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
146 {
147 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
148 	struct timespec64 now, then;
149 
150 	then = ns_to_timespec64(delta);
151 	mutex_lock(&pf->tmreg_lock);
152 
153 	i40e_ptp_read(pf, &now, NULL);
154 	now = timespec64_add(now, then);
155 	i40e_ptp_write(pf, (const struct timespec64 *)&now);
156 
157 	mutex_unlock(&pf->tmreg_lock);
158 
159 	return 0;
160 }
161 
162 /**
163  * i40e_ptp_gettimex - Get the time of the PHC
164  * @ptp: The PTP clock structure
165  * @ts: timespec structure to hold the current time value
166  * @sts: structure to hold the system time before and after reading the PHC
167  *
168  * Read the device clock and return the correct value on ns, after converting it
169  * into a timespec struct.
170  **/
171 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
172 			     struct ptp_system_timestamp *sts)
173 {
174 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
175 
176 	mutex_lock(&pf->tmreg_lock);
177 	i40e_ptp_read(pf, ts, sts);
178 	mutex_unlock(&pf->tmreg_lock);
179 
180 	return 0;
181 }
182 
183 /**
184  * i40e_ptp_settime - Set the time of the PHC
185  * @ptp: The PTP clock structure
186  * @ts: timespec structure that holds the new time value
187  *
188  * Set the device clock to the user input value. The conversion from timespec
189  * to ns happens in the write function.
190  **/
191 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
192 			    const struct timespec64 *ts)
193 {
194 	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
195 
196 	mutex_lock(&pf->tmreg_lock);
197 	i40e_ptp_write(pf, ts);
198 	mutex_unlock(&pf->tmreg_lock);
199 
200 	return 0;
201 }
202 
203 /**
204  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
205  * @ptp: The PTP clock structure
206  * @rq: The requested feature to change
207  * @on: Enable/disable flag
208  *
209  * The XL710 does not support any of the ancillary features of the PHC
210  * subsystem, so this function may just return.
211  **/
212 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
213 				   struct ptp_clock_request *rq, int on)
214 {
215 	return -EOPNOTSUPP;
216 }
217 
218 /**
219  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
220  * @pf: the PF data structure
221  *
222  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
223  * for noticed latch events. This allows the driver to keep track of the first
224  * time a latch event was noticed which will be used to help clear out Rx
225  * timestamps for packets that got dropped or lost.
226  *
227  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
228  * expected to be called only while under the ptp_rx_lock.
229  **/
230 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
231 {
232 	struct i40e_hw *hw = &pf->hw;
233 	u32 prttsyn_stat, new_latch_events;
234 	int  i;
235 
236 	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
237 	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
238 
239 	/* Update the jiffies time for any newly latched timestamp. This
240 	 * ensures that we store the time that we first discovered a timestamp
241 	 * was latched by the hardware. The service task will later determine
242 	 * if we should free the latch and drop that timestamp should too much
243 	 * time pass. This flow ensures that we only update jiffies for new
244 	 * events latched since the last time we checked, and not all events
245 	 * currently latched, so that the service task accounting remains
246 	 * accurate.
247 	 */
248 	for (i = 0; i < 4; i++) {
249 		if (new_latch_events & BIT(i))
250 			pf->latch_events[i] = jiffies;
251 	}
252 
253 	/* Finally, we store the current status of the Rx timestamp latches */
254 	pf->latch_event_flags = prttsyn_stat;
255 
256 	return prttsyn_stat;
257 }
258 
259 /**
260  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
261  * @pf: The PF private data structure
262  * @vsi: The VSI with the rings relevant to 1588
263  *
264  * This watchdog task is scheduled to detect error case where hardware has
265  * dropped an Rx packet that was timestamped when the ring is full. The
266  * particular error is rare but leaves the device in a state unable to timestamp
267  * any future packets.
268  **/
269 void i40e_ptp_rx_hang(struct i40e_pf *pf)
270 {
271 	struct i40e_hw *hw = &pf->hw;
272 	unsigned int i, cleared = 0;
273 
274 	/* Since we cannot turn off the Rx timestamp logic if the device is
275 	 * configured for Tx timestamping, we check if Rx timestamping is
276 	 * configured. We don't want to spuriously warn about Rx timestamp
277 	 * hangs if we don't care about the timestamps.
278 	 */
279 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
280 		return;
281 
282 	spin_lock_bh(&pf->ptp_rx_lock);
283 
284 	/* Update current latch times for Rx events */
285 	i40e_ptp_get_rx_events(pf);
286 
287 	/* Check all the currently latched Rx events and see whether they have
288 	 * been latched for over a second. It is assumed that any timestamp
289 	 * should have been cleared within this time, or else it was captured
290 	 * for a dropped frame that the driver never received. Thus, we will
291 	 * clear any timestamp that has been latched for over 1 second.
292 	 */
293 	for (i = 0; i < 4; i++) {
294 		if ((pf->latch_event_flags & BIT(i)) &&
295 		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
296 			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
297 			pf->latch_event_flags &= ~BIT(i);
298 			cleared++;
299 		}
300 	}
301 
302 	spin_unlock_bh(&pf->ptp_rx_lock);
303 
304 	/* Log a warning if more than 2 timestamps got dropped in the same
305 	 * check. We don't want to warn about all drops because it can occur
306 	 * in normal scenarios such as PTP frames on multicast addresses we
307 	 * aren't listening to. However, administrator should know if this is
308 	 * the reason packets aren't receiving timestamps.
309 	 */
310 	if (cleared > 2)
311 		dev_dbg(&pf->pdev->dev,
312 			"Dropped %d missed RXTIME timestamp events\n",
313 			cleared);
314 
315 	/* Finally, update the rx_hwtstamp_cleared counter */
316 	pf->rx_hwtstamp_cleared += cleared;
317 }
318 
319 /**
320  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
321  * @pf: The PF private data structure
322  *
323  * This watchdog task is run periodically to make sure that we clear the Tx
324  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
325  * time. It is unexpected in the normal case but if it occurs it results in
326  * permanently preventing timestamps of future packets.
327  **/
328 void i40e_ptp_tx_hang(struct i40e_pf *pf)
329 {
330 	struct sk_buff *skb;
331 
332 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
333 		return;
334 
335 	/* Nothing to do if we're not already waiting for a timestamp */
336 	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
337 		return;
338 
339 	/* We already have a handler routine which is run when we are notified
340 	 * of a Tx timestamp in the hardware. If we don't get an interrupt
341 	 * within a second it is reasonable to assume that we never will.
342 	 */
343 	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
344 		skb = pf->ptp_tx_skb;
345 		pf->ptp_tx_skb = NULL;
346 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
347 
348 		/* Free the skb after we clear the bitlock */
349 		dev_kfree_skb_any(skb);
350 		pf->tx_hwtstamp_timeouts++;
351 	}
352 }
353 
354 /**
355  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
356  * @pf: Board private structure
357  *
358  * Read the value of the Tx timestamp from the registers, convert it into a
359  * value consumable by the stack, and store that result into the shhwtstamps
360  * struct before returning it up the stack.
361  **/
362 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
363 {
364 	struct skb_shared_hwtstamps shhwtstamps;
365 	struct sk_buff *skb = pf->ptp_tx_skb;
366 	struct i40e_hw *hw = &pf->hw;
367 	u32 hi, lo;
368 	u64 ns;
369 
370 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
371 		return;
372 
373 	/* don't attempt to timestamp if we don't have an skb */
374 	if (!pf->ptp_tx_skb)
375 		return;
376 
377 	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
378 	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
379 
380 	ns = (((u64)hi) << 32) | lo;
381 	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
382 
383 	/* Clear the bit lock as soon as possible after reading the register,
384 	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
385 	 * applications might wake up and attempt to request another transmit
386 	 * timestamp prior to the bit lock being cleared.
387 	 */
388 	pf->ptp_tx_skb = NULL;
389 	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
390 
391 	/* Notify the stack and free the skb after we've unlocked */
392 	skb_tstamp_tx(skb, &shhwtstamps);
393 	dev_kfree_skb_any(skb);
394 }
395 
396 /**
397  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
398  * @pf: Board private structure
399  * @skb: Particular skb to send timestamp with
400  * @index: Index into the receive timestamp registers for the timestamp
401  *
402  * The XL710 receives a notification in the receive descriptor with an offset
403  * into the set of RXTIME registers where the timestamp is for that skb. This
404  * function goes and fetches the receive timestamp from that offset, if a valid
405  * one exists. The RXTIME registers are in ns, so we must convert the result
406  * first.
407  **/
408 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
409 {
410 	u32 prttsyn_stat, hi, lo;
411 	struct i40e_hw *hw;
412 	u64 ns;
413 
414 	/* Since we cannot turn off the Rx timestamp logic if the device is
415 	 * doing Tx timestamping, check if Rx timestamping is configured.
416 	 */
417 	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
418 		return;
419 
420 	hw = &pf->hw;
421 
422 	spin_lock_bh(&pf->ptp_rx_lock);
423 
424 	/* Get current Rx events and update latch times */
425 	prttsyn_stat = i40e_ptp_get_rx_events(pf);
426 
427 	/* TODO: Should we warn about missing Rx timestamp event? */
428 	if (!(prttsyn_stat & BIT(index))) {
429 		spin_unlock_bh(&pf->ptp_rx_lock);
430 		return;
431 	}
432 
433 	/* Clear the latched event since we're about to read its register */
434 	pf->latch_event_flags &= ~BIT(index);
435 
436 	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
437 	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
438 
439 	spin_unlock_bh(&pf->ptp_rx_lock);
440 
441 	ns = (((u64)hi) << 32) | lo;
442 
443 	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
444 }
445 
446 /**
447  * i40e_ptp_set_increment - Utility function to update clock increment rate
448  * @pf: Board private structure
449  *
450  * During a link change, the DMA frequency that drives the 1588 logic will
451  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
452  * we must update the increment value per clock tick.
453  **/
454 void i40e_ptp_set_increment(struct i40e_pf *pf)
455 {
456 	struct i40e_link_status *hw_link_info;
457 	struct i40e_hw *hw = &pf->hw;
458 	u64 incval;
459 	u32 mult;
460 
461 	hw_link_info = &hw->phy.link_info;
462 
463 	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
464 
465 	switch (hw_link_info->link_speed) {
466 	case I40E_LINK_SPEED_10GB:
467 		mult = I40E_PTP_10GB_INCVAL_MULT;
468 		break;
469 	case I40E_LINK_SPEED_1GB:
470 		mult = I40E_PTP_1GB_INCVAL_MULT;
471 		break;
472 	case I40E_LINK_SPEED_100MB:
473 	{
474 		static int warn_once;
475 
476 		if (!warn_once) {
477 			dev_warn(&pf->pdev->dev,
478 				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
479 			warn_once++;
480 		}
481 		mult = 0;
482 		break;
483 	}
484 	case I40E_LINK_SPEED_40GB:
485 	default:
486 		mult = 1;
487 		break;
488 	}
489 
490 	/* The increment value is calculated by taking the base 40GbE incvalue
491 	 * and multiplying it by a factor based on the link speed.
492 	 */
493 	incval = I40E_PTP_40GB_INCVAL * mult;
494 
495 	/* Write the new increment value into the increment register. The
496 	 * hardware will not update the clock until both registers have been
497 	 * written.
498 	 */
499 	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
500 	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
501 
502 	/* Update the base adjustement value. */
503 	WRITE_ONCE(pf->ptp_adj_mult, mult);
504 	smp_mb(); /* Force the above update. */
505 }
506 
507 /**
508  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
509  * @pf: Board private structure
510  * @ifr: ioctl data
511  *
512  * Obtain the current hardware timestamping settigs as requested. To do this,
513  * keep a shadow copy of the timestamp settings rather than attempting to
514  * deconstruct it from the registers.
515  **/
516 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
517 {
518 	struct hwtstamp_config *config = &pf->tstamp_config;
519 
520 	if (!(pf->flags & I40E_FLAG_PTP))
521 		return -EOPNOTSUPP;
522 
523 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
524 		-EFAULT : 0;
525 }
526 
527 /**
528  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
529  * @pf: Board private structure
530  * @config: hwtstamp settings requested or saved
531  *
532  * Control hardware registers to enter the specific mode requested by the
533  * user. Also used during reset path to ensure that timestamp settings are
534  * maintained.
535  *
536  * Note: modifies config in place, and may update the requested mode to be
537  * more broad if the specific filter is not directly supported.
538  **/
539 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
540 				       struct hwtstamp_config *config)
541 {
542 	struct i40e_hw *hw = &pf->hw;
543 	u32 tsyntype, regval;
544 
545 	/* Reserved for future extensions. */
546 	if (config->flags)
547 		return -EINVAL;
548 
549 	switch (config->tx_type) {
550 	case HWTSTAMP_TX_OFF:
551 		pf->ptp_tx = false;
552 		break;
553 	case HWTSTAMP_TX_ON:
554 		pf->ptp_tx = true;
555 		break;
556 	default:
557 		return -ERANGE;
558 	}
559 
560 	switch (config->rx_filter) {
561 	case HWTSTAMP_FILTER_NONE:
562 		pf->ptp_rx = false;
563 		/* We set the type to V1, but do not enable UDP packet
564 		 * recognition. In this way, we should be as close to
565 		 * disabling PTP Rx timestamps as possible since V1 packets
566 		 * are always UDP, since L2 packets are a V2 feature.
567 		 */
568 		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
569 		break;
570 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
571 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
572 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
573 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
574 			return -ERANGE;
575 		pf->ptp_rx = true;
576 		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
577 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
578 			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
579 		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
580 		break;
581 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
582 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
583 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
584 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
585 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
586 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
587 		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
588 			return -ERANGE;
589 		/* fall through */
590 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
591 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
592 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
593 		pf->ptp_rx = true;
594 		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
595 			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
596 		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
597 			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
598 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
599 		} else {
600 			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
601 		}
602 		break;
603 	case HWTSTAMP_FILTER_NTP_ALL:
604 	case HWTSTAMP_FILTER_ALL:
605 	default:
606 		return -ERANGE;
607 	}
608 
609 	/* Clear out all 1588-related registers to clear and unlatch them. */
610 	spin_lock_bh(&pf->ptp_rx_lock);
611 	rd32(hw, I40E_PRTTSYN_STAT_0);
612 	rd32(hw, I40E_PRTTSYN_TXTIME_H);
613 	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
614 	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
615 	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
616 	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
617 	pf->latch_event_flags = 0;
618 	spin_unlock_bh(&pf->ptp_rx_lock);
619 
620 	/* Enable/disable the Tx timestamp interrupt based on user input. */
621 	regval = rd32(hw, I40E_PRTTSYN_CTL0);
622 	if (pf->ptp_tx)
623 		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
624 	else
625 		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
626 	wr32(hw, I40E_PRTTSYN_CTL0, regval);
627 
628 	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
629 	if (pf->ptp_tx)
630 		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
631 	else
632 		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
633 	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
634 
635 	/* Although there is no simple on/off switch for Rx, we "disable" Rx
636 	 * timestamps by setting to V1 only mode and clear the UDP
637 	 * recognition. This ought to disable all PTP Rx timestamps as V1
638 	 * packets are always over UDP. Note that software is configured to
639 	 * ignore Rx timestamps via the pf->ptp_rx flag.
640 	 */
641 	regval = rd32(hw, I40E_PRTTSYN_CTL1);
642 	/* clear everything but the enable bit */
643 	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
644 	/* now enable bits for desired Rx timestamps */
645 	regval |= tsyntype;
646 	wr32(hw, I40E_PRTTSYN_CTL1, regval);
647 
648 	return 0;
649 }
650 
651 /**
652  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
653  * @pf: Board private structure
654  * @ifr: ioctl data
655  *
656  * Respond to the user filter requests and make the appropriate hardware
657  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
658  * logic, so keep track in software of whether to indicate these timestamps
659  * or not.
660  *
661  * It is permissible to "upgrade" the user request to a broader filter, as long
662  * as the user receives the timestamps they care about and the user is notified
663  * the filter has been broadened.
664  **/
665 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
666 {
667 	struct hwtstamp_config config;
668 	int err;
669 
670 	if (!(pf->flags & I40E_FLAG_PTP))
671 		return -EOPNOTSUPP;
672 
673 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
674 		return -EFAULT;
675 
676 	err = i40e_ptp_set_timestamp_mode(pf, &config);
677 	if (err)
678 		return err;
679 
680 	/* save these settings for future reference */
681 	pf->tstamp_config = config;
682 
683 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
684 		-EFAULT : 0;
685 }
686 
687 /**
688  * i40e_ptp_create_clock - Create PTP clock device for userspace
689  * @pf: Board private structure
690  *
691  * This function creates a new PTP clock device. It only creates one if we
692  * don't already have one, so it is safe to call. Will return error if it
693  * can't create one, but success if we already have a device. Should be used
694  * by i40e_ptp_init to create clock initially, and prevent global resets from
695  * creating new clock devices.
696  **/
697 static long i40e_ptp_create_clock(struct i40e_pf *pf)
698 {
699 	/* no need to create a clock device if we already have one */
700 	if (!IS_ERR_OR_NULL(pf->ptp_clock))
701 		return 0;
702 
703 	strlcpy(pf->ptp_caps.name, i40e_driver_name,
704 		sizeof(pf->ptp_caps.name) - 1);
705 	pf->ptp_caps.owner = THIS_MODULE;
706 	pf->ptp_caps.max_adj = 999999999;
707 	pf->ptp_caps.n_ext_ts = 0;
708 	pf->ptp_caps.pps = 0;
709 	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
710 	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
711 	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
712 	pf->ptp_caps.settime64 = i40e_ptp_settime;
713 	pf->ptp_caps.enable = i40e_ptp_feature_enable;
714 
715 	/* Attempt to register the clock before enabling the hardware. */
716 	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
717 	if (IS_ERR(pf->ptp_clock))
718 		return PTR_ERR(pf->ptp_clock);
719 
720 	/* clear the hwtstamp settings here during clock create, instead of
721 	 * during regular init, so that we can maintain settings across a
722 	 * reset or suspend.
723 	 */
724 	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
725 	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
726 
727 	/* Set the previous "reset" time to the current Kernel clock time */
728 	pf->ptp_prev_hw_time = ktime_to_timespec64(ktime_get_real());
729 	pf->ptp_reset_start = ktime_get();
730 
731 	return 0;
732 }
733 
734 /**
735  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
736  * @pf: Board private structure
737  *
738  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
739  * be called at the end of preparing to reset, just before hardware reset
740  * occurs, in order to preserve the PTP time as close as possible across
741  * resets.
742  */
743 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
744 {
745 	/* don't try to access the PTP clock if it's not enabled */
746 	if (!(pf->flags & I40E_FLAG_PTP))
747 		return;
748 
749 	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
750 	/* Get a monotonic starting time for this reset */
751 	pf->ptp_reset_start = ktime_get();
752 }
753 
754 /**
755  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
756  * @pf: Board private structure
757  *
758  * Restore the PTP hardware clock registers. We previously cached the PTP
759  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
760  * update this value based on the time delta since the time was saved, using
761  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
762  *
763  * This ensures that the hardware clock is restored to nearly what it should
764  * have been if a reset had not occurred.
765  */
766 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
767 {
768 	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
769 
770 	/* Update the previous HW time with the ktime delta */
771 	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
772 
773 	/* Restore the hardware clock registers */
774 	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
775 }
776 
777 /**
778  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
779  * @pf: Board private structure
780  *
781  * This function sets device up for 1588 support. The first time it is run, it
782  * will create a PHC clock device. It does not create a clock device if one
783  * already exists. It also reconfigures the device after a reset.
784  *
785  * The first time a clock is created, i40e_ptp_create_clock will set
786  * pf->ptp_prev_hw_time to the current system time. During resets, it is
787  * expected that this timespec will be set to the last known PTP clock time,
788  * in order to preserve the clock time as close as possible across a reset.
789  **/
790 void i40e_ptp_init(struct i40e_pf *pf)
791 {
792 	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
793 	struct i40e_hw *hw = &pf->hw;
794 	u32 pf_id;
795 	long err;
796 
797 	/* Only one PF is assigned to control 1588 logic per port. Do not
798 	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
799 	 */
800 	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
801 		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
802 	if (hw->pf_id != pf_id) {
803 		pf->flags &= ~I40E_FLAG_PTP;
804 		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
805 			 __func__,
806 			 netdev->name);
807 		return;
808 	}
809 
810 	mutex_init(&pf->tmreg_lock);
811 	spin_lock_init(&pf->ptp_rx_lock);
812 
813 	/* ensure we have a clock device */
814 	err = i40e_ptp_create_clock(pf);
815 	if (err) {
816 		pf->ptp_clock = NULL;
817 		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
818 			__func__);
819 	} else if (pf->ptp_clock) {
820 		u32 regval;
821 
822 		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
823 			dev_info(&pf->pdev->dev, "PHC enabled\n");
824 		pf->flags |= I40E_FLAG_PTP;
825 
826 		/* Ensure the clocks are running. */
827 		regval = rd32(hw, I40E_PRTTSYN_CTL0);
828 		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
829 		wr32(hw, I40E_PRTTSYN_CTL0, regval);
830 		regval = rd32(hw, I40E_PRTTSYN_CTL1);
831 		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
832 		wr32(hw, I40E_PRTTSYN_CTL1, regval);
833 
834 		/* Set the increment value per clock tick. */
835 		i40e_ptp_set_increment(pf);
836 
837 		/* reset timestamping mode */
838 		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
839 
840 		/* Restore the clock time based on last known value */
841 		i40e_ptp_restore_hw_time(pf);
842 	}
843 }
844 
845 /**
846  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
847  * @pf: Board private structure
848  *
849  * This function handles the cleanup work required from the initialization by
850  * clearing out the important information and unregistering the PHC.
851  **/
852 void i40e_ptp_stop(struct i40e_pf *pf)
853 {
854 	pf->flags &= ~I40E_FLAG_PTP;
855 	pf->ptp_tx = false;
856 	pf->ptp_rx = false;
857 
858 	if (pf->ptp_tx_skb) {
859 		struct sk_buff *skb = pf->ptp_tx_skb;
860 
861 		pf->ptp_tx_skb = NULL;
862 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
863 		dev_kfree_skb_any(skb);
864 	}
865 
866 	if (pf->ptp_clock) {
867 		ptp_clock_unregister(pf->ptp_clock);
868 		pf->ptp_clock = NULL;
869 		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
870 			 pf->vsi[pf->lan_vsi]->netdev->name);
871 	}
872 }
873