xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_nvm.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bitfield.h>
5 #include <linux/delay.h>
6 #include "i40e_alloc.h"
7 #include "i40e_prototype.h"
8 
9 /**
10  * i40e_init_nvm - Initialize NVM function pointers
11  * @hw: pointer to the HW structure
12  *
13  * Setup the function pointers and the NVM info structure. Should be called
14  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15  * Please notice that the NVM term is used here (& in all methods covered
16  * in this file) as an equivalent of the FLASH part mapped into the SR.
17  * We are accessing FLASH always thru the Shadow RAM.
18  **/
19 int i40e_init_nvm(struct i40e_hw *hw)
20 {
21 	struct i40e_nvm_info *nvm = &hw->nvm;
22 	int ret_code = 0;
23 	u32 fla, gens;
24 	u8 sr_size;
25 
26 	/* The SR size is stored regardless of the nvm programming mode
27 	 * as the blank mode may be used in the factory line.
28 	 */
29 	gens = rd32(hw, I40E_GLNVM_GENS);
30 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
31 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
32 	/* Switching to words (sr_size contains power of 2KB) */
33 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
34 
35 	/* Check if we are in the normal or blank NVM programming mode */
36 	fla = rd32(hw, I40E_GLNVM_FLA);
37 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
38 		/* Max NVM timeout */
39 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
40 		nvm->blank_nvm_mode = false;
41 	} else { /* Blank programming mode */
42 		nvm->blank_nvm_mode = true;
43 		ret_code = -EIO;
44 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
45 	}
46 
47 	return ret_code;
48 }
49 
50 /**
51  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
52  * @hw: pointer to the HW structure
53  * @access: NVM access type (read or write)
54  *
55  * This function will request NVM ownership for reading
56  * via the proper Admin Command.
57  **/
58 int i40e_acquire_nvm(struct i40e_hw *hw,
59 		     enum i40e_aq_resource_access_type access)
60 {
61 	u64 gtime, timeout;
62 	u64 time_left = 0;
63 	int ret_code = 0;
64 
65 	if (hw->nvm.blank_nvm_mode)
66 		goto i40e_i40e_acquire_nvm_exit;
67 
68 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
69 					    0, &time_left, NULL);
70 	/* Reading the Global Device Timer */
71 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
72 
73 	/* Store the timeout */
74 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
75 
76 	if (ret_code)
77 		i40e_debug(hw, I40E_DEBUG_NVM,
78 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
79 			   access, time_left, ret_code, hw->aq.asq_last_status);
80 
81 	if (ret_code && time_left) {
82 		/* Poll until the current NVM owner timeouts */
83 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
84 		while ((gtime < timeout) && time_left) {
85 			usleep_range(10000, 20000);
86 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
87 			ret_code = i40e_aq_request_resource(hw,
88 							I40E_NVM_RESOURCE_ID,
89 							access, 0, &time_left,
90 							NULL);
91 			if (!ret_code) {
92 				hw->nvm.hw_semaphore_timeout =
93 					    I40E_MS_TO_GTIME(time_left) + gtime;
94 				break;
95 			}
96 		}
97 		if (ret_code) {
98 			hw->nvm.hw_semaphore_timeout = 0;
99 			i40e_debug(hw, I40E_DEBUG_NVM,
100 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
101 				   time_left, ret_code, hw->aq.asq_last_status);
102 		}
103 	}
104 
105 i40e_i40e_acquire_nvm_exit:
106 	return ret_code;
107 }
108 
109 /**
110  * i40e_release_nvm - Generic request for releasing the NVM ownership
111  * @hw: pointer to the HW structure
112  *
113  * This function will release NVM resource via the proper Admin Command.
114  **/
115 void i40e_release_nvm(struct i40e_hw *hw)
116 {
117 	u32 total_delay = 0;
118 	int ret_code = 0;
119 
120 	if (hw->nvm.blank_nvm_mode)
121 		return;
122 
123 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
124 
125 	/* there are some rare cases when trying to release the resource
126 	 * results in an admin Q timeout, so handle them correctly
127 	 */
128 	while ((ret_code == -EIO) &&
129 	       (total_delay < hw->aq.asq_cmd_timeout)) {
130 		usleep_range(1000, 2000);
131 		ret_code = i40e_aq_release_resource(hw,
132 						    I40E_NVM_RESOURCE_ID,
133 						    0, NULL);
134 		total_delay++;
135 	}
136 }
137 
138 /**
139  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
140  * @hw: pointer to the HW structure
141  *
142  * Polls the SRCTL Shadow RAM register done bit.
143  **/
144 static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
145 {
146 	int ret_code = -EIO;
147 	u32 srctl, wait_cnt;
148 
149 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
150 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
151 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
152 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
153 			ret_code = 0;
154 			break;
155 		}
156 		udelay(5);
157 	}
158 	if (ret_code == -EIO)
159 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
160 	return ret_code;
161 }
162 
163 /**
164  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
165  * @hw: pointer to the HW structure
166  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
167  * @data: word read from the Shadow RAM
168  *
169  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
170  **/
171 static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
172 				    u16 *data)
173 {
174 	int ret_code = -EIO;
175 	u32 sr_reg;
176 
177 	if (offset >= hw->nvm.sr_size) {
178 		i40e_debug(hw, I40E_DEBUG_NVM,
179 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
180 			   offset, hw->nvm.sr_size);
181 		ret_code = -EINVAL;
182 		goto read_nvm_exit;
183 	}
184 
185 	/* Poll the done bit first */
186 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
187 	if (!ret_code) {
188 		/* Write the address and start reading */
189 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
190 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
191 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
192 
193 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
194 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
195 		if (!ret_code) {
196 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
197 			*data = (u16)((sr_reg &
198 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
199 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
200 		}
201 	}
202 	if (ret_code)
203 		i40e_debug(hw, I40E_DEBUG_NVM,
204 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
205 			   offset);
206 
207 read_nvm_exit:
208 	return ret_code;
209 }
210 
211 /**
212  * i40e_read_nvm_aq - Read Shadow RAM.
213  * @hw: pointer to the HW structure.
214  * @module_pointer: module pointer location in words from the NVM beginning
215  * @offset: offset in words from module start
216  * @words: number of words to read
217  * @data: buffer with words to read to the Shadow RAM
218  * @last_command: tells the AdminQ that this is the last command
219  *
220  * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
221  **/
222 static int i40e_read_nvm_aq(struct i40e_hw *hw,
223 			    u8 module_pointer, u32 offset,
224 			    u16 words, void *data,
225 			    bool last_command)
226 {
227 	struct i40e_asq_cmd_details cmd_details;
228 	int ret_code = -EIO;
229 
230 	memset(&cmd_details, 0, sizeof(cmd_details));
231 	cmd_details.wb_desc = &hw->nvm_wb_desc;
232 
233 	/* Here we are checking the SR limit only for the flat memory model.
234 	 * We cannot do it for the module-based model, as we did not acquire
235 	 * the NVM resource yet (we cannot get the module pointer value).
236 	 * Firmware will check the module-based model.
237 	 */
238 	if ((offset + words) > hw->nvm.sr_size)
239 		i40e_debug(hw, I40E_DEBUG_NVM,
240 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
241 			   (offset + words), hw->nvm.sr_size);
242 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
243 		/* We can read only up to 4KB (one sector), in one AQ write */
244 		i40e_debug(hw, I40E_DEBUG_NVM,
245 			   "NVM read fail error: tried to read %d words, limit is %d.\n",
246 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
247 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
248 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
249 		/* A single read cannot spread over two sectors */
250 		i40e_debug(hw, I40E_DEBUG_NVM,
251 			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
252 			   offset, words);
253 	else
254 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
255 					    2 * offset,  /*bytes*/
256 					    2 * words,   /*bytes*/
257 					    data, last_command, &cmd_details);
258 
259 	return ret_code;
260 }
261 
262 /**
263  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
264  * @hw: pointer to the HW structure
265  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
266  * @data: word read from the Shadow RAM
267  *
268  * Reads one 16 bit word from the Shadow RAM using the AdminQ
269  **/
270 static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
271 				 u16 *data)
272 {
273 	int ret_code = -EIO;
274 
275 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
276 	*data = le16_to_cpu(*(__le16 *)data);
277 
278 	return ret_code;
279 }
280 
281 /**
282  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
283  * @hw: pointer to the HW structure
284  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
285  * @data: word read from the Shadow RAM
286  *
287  * Reads one 16 bit word from the Shadow RAM.
288  *
289  * Do not use this function except in cases where the nvm lock is already
290  * taken via i40e_acquire_nvm().
291  **/
292 static int __i40e_read_nvm_word(struct i40e_hw *hw,
293 				u16 offset, u16 *data)
294 {
295 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
296 		return i40e_read_nvm_word_aq(hw, offset, data);
297 
298 	return i40e_read_nvm_word_srctl(hw, offset, data);
299 }
300 
301 /**
302  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
303  * @hw: pointer to the HW structure
304  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
305  * @data: word read from the Shadow RAM
306  *
307  * Reads one 16 bit word from the Shadow RAM.
308  **/
309 int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
310 		       u16 *data)
311 {
312 	int ret_code = 0;
313 
314 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
315 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
316 	if (ret_code)
317 		return ret_code;
318 
319 	ret_code = __i40e_read_nvm_word(hw, offset, data);
320 
321 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
322 		i40e_release_nvm(hw);
323 
324 	return ret_code;
325 }
326 
327 /**
328  * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
329  * @hw: Pointer to the HW structure
330  * @module_ptr: Pointer to module in words with respect to NVM beginning
331  * @module_offset: Offset in words from module start
332  * @data_offset: Offset in words from reading data area start
333  * @words_data_size: Words to read from NVM
334  * @data_ptr: Pointer to memory location where resulting buffer will be stored
335  **/
336 int i40e_read_nvm_module_data(struct i40e_hw *hw,
337 			      u8 module_ptr,
338 			      u16 module_offset,
339 			      u16 data_offset,
340 			      u16 words_data_size,
341 			      u16 *data_ptr)
342 {
343 	u16 specific_ptr = 0;
344 	u16 ptr_value = 0;
345 	u32 offset = 0;
346 	int status;
347 
348 	if (module_ptr != 0) {
349 		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
350 		if (status) {
351 			i40e_debug(hw, I40E_DEBUG_ALL,
352 				   "Reading nvm word failed.Error code: %d.\n",
353 				   status);
354 			return -EIO;
355 		}
356 	}
357 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF
358 #define I40E_NVM_INVALID_VAL 0xFFFF
359 
360 	/* Pointer not initialized */
361 	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
362 	    ptr_value == I40E_NVM_INVALID_VAL) {
363 		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
364 		return -EINVAL;
365 	}
366 
367 	/* Check whether the module is in SR mapped area or outside */
368 	if (ptr_value & I40E_PTR_TYPE) {
369 		/* Pointer points outside of the Shared RAM mapped area */
370 		i40e_debug(hw, I40E_DEBUG_ALL,
371 			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
372 
373 		return -EINVAL;
374 	} else {
375 		/* Read from the Shadow RAM */
376 
377 		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
378 					    &specific_ptr);
379 		if (status) {
380 			i40e_debug(hw, I40E_DEBUG_ALL,
381 				   "Reading nvm word failed.Error code: %d.\n",
382 				   status);
383 			return -EIO;
384 		}
385 
386 		offset = ptr_value + module_offset + specific_ptr +
387 			data_offset;
388 
389 		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
390 					      data_ptr);
391 		if (status) {
392 			i40e_debug(hw, I40E_DEBUG_ALL,
393 				   "Reading nvm buffer failed.Error code: %d.\n",
394 				   status);
395 		}
396 	}
397 
398 	return status;
399 }
400 
401 /**
402  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
403  * @hw: pointer to the HW structure
404  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
405  * @words: (in) number of words to read; (out) number of words actually read
406  * @data: words read from the Shadow RAM
407  *
408  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
409  * method. The buffer read is preceded by the NVM ownership take
410  * and followed by the release.
411  **/
412 static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
413 				      u16 *words, u16 *data)
414 {
415 	int ret_code = 0;
416 	u16 index, word;
417 
418 	/* Loop thru the selected region */
419 	for (word = 0; word < *words; word++) {
420 		index = offset + word;
421 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
422 		if (ret_code)
423 			break;
424 	}
425 
426 	/* Update the number of words read from the Shadow RAM */
427 	*words = word;
428 
429 	return ret_code;
430 }
431 
432 /**
433  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
434  * @hw: pointer to the HW structure
435  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
436  * @words: (in) number of words to read; (out) number of words actually read
437  * @data: words read from the Shadow RAM
438  *
439  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
440  * method. The buffer read is preceded by the NVM ownership take
441  * and followed by the release.
442  **/
443 static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
444 				   u16 *words, u16 *data)
445 {
446 	bool last_cmd = false;
447 	u16 words_read = 0;
448 	u16 read_size;
449 	int ret_code;
450 	u16 i = 0;
451 
452 	do {
453 		/* Calculate number of bytes we should read in this step.
454 		 * FVL AQ do not allow to read more than one page at a time or
455 		 * to cross page boundaries.
456 		 */
457 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
458 			read_size = min(*words,
459 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
460 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
461 		else
462 			read_size = min((*words - words_read),
463 					I40E_SR_SECTOR_SIZE_IN_WORDS);
464 
465 		/* Check if this is last command, if so set proper flag */
466 		if ((words_read + read_size) >= *words)
467 			last_cmd = true;
468 
469 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
470 					    data + words_read, last_cmd);
471 		if (ret_code)
472 			goto read_nvm_buffer_aq_exit;
473 
474 		/* Increment counter for words already read and move offset to
475 		 * new read location
476 		 */
477 		words_read += read_size;
478 		offset += read_size;
479 	} while (words_read < *words);
480 
481 	for (i = 0; i < *words; i++)
482 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
483 
484 read_nvm_buffer_aq_exit:
485 	*words = words_read;
486 	return ret_code;
487 }
488 
489 /**
490  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
491  * @hw: pointer to the HW structure
492  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
493  * @words: (in) number of words to read; (out) number of words actually read
494  * @data: words read from the Shadow RAM
495  *
496  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
497  * method.
498  **/
499 static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
500 				  u16 offset, u16 *words,
501 				  u16 *data)
502 {
503 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
504 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
505 
506 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
507 }
508 
509 /**
510  * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
511  * @hw: pointer to the HW structure
512  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
513  * @words: (in) number of words to read; (out) number of words actually read
514  * @data: words read from the Shadow RAM
515  *
516  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
517  * method. The buffer read is preceded by the NVM ownership take
518  * and followed by the release.
519  **/
520 int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
521 			 u16 *words, u16 *data)
522 {
523 	int ret_code = 0;
524 
525 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
526 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
527 		if (!ret_code) {
528 			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
529 							   data);
530 			i40e_release_nvm(hw);
531 		}
532 	} else {
533 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
534 	}
535 
536 	return ret_code;
537 }
538 
539 /**
540  * i40e_write_nvm_aq - Writes Shadow RAM.
541  * @hw: pointer to the HW structure.
542  * @module_pointer: module pointer location in words from the NVM beginning
543  * @offset: offset in words from module start
544  * @words: number of words to write
545  * @data: buffer with words to write to the Shadow RAM
546  * @last_command: tells the AdminQ that this is the last command
547  *
548  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
549  **/
550 static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
551 			     u32 offset, u16 words, void *data,
552 			     bool last_command)
553 {
554 	struct i40e_asq_cmd_details cmd_details;
555 	int ret_code = -EIO;
556 
557 	memset(&cmd_details, 0, sizeof(cmd_details));
558 	cmd_details.wb_desc = &hw->nvm_wb_desc;
559 
560 	/* Here we are checking the SR limit only for the flat memory model.
561 	 * We cannot do it for the module-based model, as we did not acquire
562 	 * the NVM resource yet (we cannot get the module pointer value).
563 	 * Firmware will check the module-based model.
564 	 */
565 	if ((offset + words) > hw->nvm.sr_size)
566 		i40e_debug(hw, I40E_DEBUG_NVM,
567 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
568 			   (offset + words), hw->nvm.sr_size);
569 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
570 		/* We can write only up to 4KB (one sector), in one AQ write */
571 		i40e_debug(hw, I40E_DEBUG_NVM,
572 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
573 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
574 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
575 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
576 		/* A single write cannot spread over two sectors */
577 		i40e_debug(hw, I40E_DEBUG_NVM,
578 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
579 			   offset, words);
580 	else
581 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
582 					      2 * offset,  /*bytes*/
583 					      2 * words,   /*bytes*/
584 					      data, last_command, 0,
585 					      &cmd_details);
586 
587 	return ret_code;
588 }
589 
590 /**
591  * i40e_calc_nvm_checksum - Calculates and returns the checksum
592  * @hw: pointer to hardware structure
593  * @checksum: pointer to the checksum
594  *
595  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
596  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
597  * is customer specific and unknown. Therefore, this function skips all maximum
598  * possible size of VPD (1kB).
599  **/
600 static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
601 				  u16 *checksum)
602 {
603 	struct i40e_virt_mem vmem;
604 	u16 pcie_alt_module = 0;
605 	u16 checksum_local = 0;
606 	u16 vpd_module = 0;
607 	int ret_code;
608 	u16 *data;
609 	u16 i = 0;
610 
611 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
612 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
613 	if (ret_code)
614 		goto i40e_calc_nvm_checksum_exit;
615 	data = (u16 *)vmem.va;
616 
617 	/* read pointer to VPD area */
618 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
619 	if (ret_code) {
620 		ret_code = -EIO;
621 		goto i40e_calc_nvm_checksum_exit;
622 	}
623 
624 	/* read pointer to PCIe Alt Auto-load module */
625 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
626 					&pcie_alt_module);
627 	if (ret_code) {
628 		ret_code = -EIO;
629 		goto i40e_calc_nvm_checksum_exit;
630 	}
631 
632 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
633 	 * except the VPD and PCIe ALT Auto-load modules
634 	 */
635 	for (i = 0; i < hw->nvm.sr_size; i++) {
636 		/* Read SR page */
637 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
638 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
639 
640 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
641 			if (ret_code) {
642 				ret_code = -EIO;
643 				goto i40e_calc_nvm_checksum_exit;
644 			}
645 		}
646 
647 		/* Skip Checksum word */
648 		if (i == I40E_SR_SW_CHECKSUM_WORD)
649 			continue;
650 		/* Skip VPD module (convert byte size to word count) */
651 		if ((i >= (u32)vpd_module) &&
652 		    (i < ((u32)vpd_module +
653 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
654 			continue;
655 		}
656 		/* Skip PCIe ALT module (convert byte size to word count) */
657 		if ((i >= (u32)pcie_alt_module) &&
658 		    (i < ((u32)pcie_alt_module +
659 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
660 			continue;
661 		}
662 
663 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
664 	}
665 
666 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
667 
668 i40e_calc_nvm_checksum_exit:
669 	i40e_free_virt_mem(hw, &vmem);
670 	return ret_code;
671 }
672 
673 /**
674  * i40e_update_nvm_checksum - Updates the NVM checksum
675  * @hw: pointer to hardware structure
676  *
677  * NVM ownership must be acquired before calling this function and released
678  * on ARQ completion event reception by caller.
679  * This function will commit SR to NVM.
680  **/
681 int i40e_update_nvm_checksum(struct i40e_hw *hw)
682 {
683 	__le16 le_sum;
684 	int ret_code;
685 	u16 checksum;
686 
687 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
688 	if (!ret_code) {
689 		le_sum = cpu_to_le16(checksum);
690 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
691 					     1, &le_sum, true);
692 	}
693 
694 	return ret_code;
695 }
696 
697 /**
698  * i40e_validate_nvm_checksum - Validate EEPROM checksum
699  * @hw: pointer to hardware structure
700  * @checksum: calculated checksum
701  *
702  * Performs checksum calculation and validates the NVM SW checksum. If the
703  * caller does not need checksum, the value can be NULL.
704  **/
705 int i40e_validate_nvm_checksum(struct i40e_hw *hw,
706 			       u16 *checksum)
707 {
708 	u16 checksum_local = 0;
709 	u16 checksum_sr = 0;
710 	int ret_code = 0;
711 
712 	/* We must acquire the NVM lock in order to correctly synchronize the
713 	 * NVM accesses across multiple PFs. Without doing so it is possible
714 	 * for one of the PFs to read invalid data potentially indicating that
715 	 * the checksum is invalid.
716 	 */
717 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
718 	if (ret_code)
719 		return ret_code;
720 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
721 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
722 	i40e_release_nvm(hw);
723 	if (ret_code)
724 		return ret_code;
725 
726 	/* Verify read checksum from EEPROM is the same as
727 	 * calculated checksum
728 	 */
729 	if (checksum_local != checksum_sr)
730 		ret_code = -EIO;
731 
732 	/* If the user cares, return the calculated checksum */
733 	if (checksum)
734 		*checksum = checksum_local;
735 
736 	return ret_code;
737 }
738 
739 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
740 				  struct i40e_nvm_access *cmd,
741 				  u8 *bytes, int *perrno);
742 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
743 				     struct i40e_nvm_access *cmd,
744 				     u8 *bytes, int *perrno);
745 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
746 				     struct i40e_nvm_access *cmd,
747 				     u8 *bytes, int *errno);
748 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
749 						struct i40e_nvm_access *cmd,
750 						int *perrno);
751 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
752 				 struct i40e_nvm_access *cmd,
753 				 int *perrno);
754 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
755 				 struct i40e_nvm_access *cmd,
756 				 u8 *bytes, int *perrno);
757 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
758 				struct i40e_nvm_access *cmd,
759 				u8 *bytes, int *perrno);
760 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
761 			       struct i40e_nvm_access *cmd,
762 			       u8 *bytes, int *perrno);
763 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
764 				     struct i40e_nvm_access *cmd,
765 				     u8 *bytes, int *perrno);
766 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
767 				    struct i40e_nvm_access *cmd,
768 				    u8 *bytes, int *perrno);
769 static inline u8 i40e_nvmupd_get_module(u32 val)
770 {
771 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
772 }
773 static inline u8 i40e_nvmupd_get_transaction(u32 val)
774 {
775 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
776 }
777 
778 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
779 {
780 	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
781 		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
782 }
783 
784 static const char * const i40e_nvm_update_state_str[] = {
785 	"I40E_NVMUPD_INVALID",
786 	"I40E_NVMUPD_READ_CON",
787 	"I40E_NVMUPD_READ_SNT",
788 	"I40E_NVMUPD_READ_LCB",
789 	"I40E_NVMUPD_READ_SA",
790 	"I40E_NVMUPD_WRITE_ERA",
791 	"I40E_NVMUPD_WRITE_CON",
792 	"I40E_NVMUPD_WRITE_SNT",
793 	"I40E_NVMUPD_WRITE_LCB",
794 	"I40E_NVMUPD_WRITE_SA",
795 	"I40E_NVMUPD_CSUM_CON",
796 	"I40E_NVMUPD_CSUM_SA",
797 	"I40E_NVMUPD_CSUM_LCB",
798 	"I40E_NVMUPD_STATUS",
799 	"I40E_NVMUPD_EXEC_AQ",
800 	"I40E_NVMUPD_GET_AQ_RESULT",
801 	"I40E_NVMUPD_GET_AQ_EVENT",
802 };
803 
804 /**
805  * i40e_nvmupd_command - Process an NVM update command
806  * @hw: pointer to hardware structure
807  * @cmd: pointer to nvm update command
808  * @bytes: pointer to the data buffer
809  * @perrno: pointer to return error code
810  *
811  * Dispatches command depending on what update state is current
812  **/
813 int i40e_nvmupd_command(struct i40e_hw *hw,
814 			struct i40e_nvm_access *cmd,
815 			u8 *bytes, int *perrno)
816 {
817 	enum i40e_nvmupd_cmd upd_cmd;
818 	int status;
819 
820 	/* assume success */
821 	*perrno = 0;
822 
823 	/* early check for status command and debug msgs */
824 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
825 
826 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
827 		   i40e_nvm_update_state_str[upd_cmd],
828 		   hw->nvmupd_state,
829 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
830 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
831 
832 	if (upd_cmd == I40E_NVMUPD_INVALID) {
833 		*perrno = -EFAULT;
834 		i40e_debug(hw, I40E_DEBUG_NVM,
835 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
836 			   upd_cmd, *perrno);
837 	}
838 
839 	/* a status request returns immediately rather than
840 	 * going into the state machine
841 	 */
842 	if (upd_cmd == I40E_NVMUPD_STATUS) {
843 		if (!cmd->data_size) {
844 			*perrno = -EFAULT;
845 			return -EINVAL;
846 		}
847 
848 		bytes[0] = hw->nvmupd_state;
849 
850 		if (cmd->data_size >= 4) {
851 			bytes[1] = 0;
852 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
853 		}
854 
855 		/* Clear error status on read */
856 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
857 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
858 
859 		return 0;
860 	}
861 
862 	/* Clear status even it is not read and log */
863 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
864 		i40e_debug(hw, I40E_DEBUG_NVM,
865 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
866 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
867 	}
868 
869 	/* Acquire lock to prevent race condition where adminq_task
870 	 * can execute after i40e_nvmupd_nvm_read/write but before state
871 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
872 	 *
873 	 * During NVMUpdate, it is observed that lock could be held for
874 	 * ~5ms for most commands. However lock is held for ~60ms for
875 	 * NVMUPD_CSUM_LCB command.
876 	 */
877 	mutex_lock(&hw->aq.arq_mutex);
878 	switch (hw->nvmupd_state) {
879 	case I40E_NVMUPD_STATE_INIT:
880 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
881 		break;
882 
883 	case I40E_NVMUPD_STATE_READING:
884 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
885 		break;
886 
887 	case I40E_NVMUPD_STATE_WRITING:
888 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
889 		break;
890 
891 	case I40E_NVMUPD_STATE_INIT_WAIT:
892 	case I40E_NVMUPD_STATE_WRITE_WAIT:
893 		/* if we need to stop waiting for an event, clear
894 		 * the wait info and return before doing anything else
895 		 */
896 		if (cmd->offset == 0xffff) {
897 			i40e_nvmupd_clear_wait_state(hw);
898 			status = 0;
899 			break;
900 		}
901 
902 		status = -EBUSY;
903 		*perrno = -EBUSY;
904 		break;
905 
906 	default:
907 		/* invalid state, should never happen */
908 		i40e_debug(hw, I40E_DEBUG_NVM,
909 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
910 		status = -EOPNOTSUPP;
911 		*perrno = -ESRCH;
912 		break;
913 	}
914 
915 	mutex_unlock(&hw->aq.arq_mutex);
916 	return status;
917 }
918 
919 /**
920  * i40e_nvmupd_state_init - Handle NVM update state Init
921  * @hw: pointer to hardware structure
922  * @cmd: pointer to nvm update command buffer
923  * @bytes: pointer to the data buffer
924  * @perrno: pointer to return error code
925  *
926  * Process legitimate commands of the Init state and conditionally set next
927  * state. Reject all other commands.
928  **/
929 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
930 				  struct i40e_nvm_access *cmd,
931 				  u8 *bytes, int *perrno)
932 {
933 	enum i40e_nvmupd_cmd upd_cmd;
934 	int status = 0;
935 
936 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
937 
938 	switch (upd_cmd) {
939 	case I40E_NVMUPD_READ_SA:
940 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
941 		if (status) {
942 			*perrno = i40e_aq_rc_to_posix(status,
943 						     hw->aq.asq_last_status);
944 		} else {
945 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
946 			i40e_release_nvm(hw);
947 		}
948 		break;
949 
950 	case I40E_NVMUPD_READ_SNT:
951 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
952 		if (status) {
953 			*perrno = i40e_aq_rc_to_posix(status,
954 						     hw->aq.asq_last_status);
955 		} else {
956 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
957 			if (status)
958 				i40e_release_nvm(hw);
959 			else
960 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
961 		}
962 		break;
963 
964 	case I40E_NVMUPD_WRITE_ERA:
965 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
966 		if (status) {
967 			*perrno = i40e_aq_rc_to_posix(status,
968 						     hw->aq.asq_last_status);
969 		} else {
970 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
971 			if (status) {
972 				i40e_release_nvm(hw);
973 			} else {
974 				hw->nvm_release_on_done = true;
975 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
976 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
977 			}
978 		}
979 		break;
980 
981 	case I40E_NVMUPD_WRITE_SA:
982 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
983 		if (status) {
984 			*perrno = i40e_aq_rc_to_posix(status,
985 						     hw->aq.asq_last_status);
986 		} else {
987 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
988 			if (status) {
989 				i40e_release_nvm(hw);
990 			} else {
991 				hw->nvm_release_on_done = true;
992 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
993 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
994 			}
995 		}
996 		break;
997 
998 	case I40E_NVMUPD_WRITE_SNT:
999 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1000 		if (status) {
1001 			*perrno = i40e_aq_rc_to_posix(status,
1002 						     hw->aq.asq_last_status);
1003 		} else {
1004 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1005 			if (status) {
1006 				i40e_release_nvm(hw);
1007 			} else {
1008 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1009 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1010 			}
1011 		}
1012 		break;
1013 
1014 	case I40E_NVMUPD_CSUM_SA:
1015 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1016 		if (status) {
1017 			*perrno = i40e_aq_rc_to_posix(status,
1018 						     hw->aq.asq_last_status);
1019 		} else {
1020 			status = i40e_update_nvm_checksum(hw);
1021 			if (status) {
1022 				*perrno = hw->aq.asq_last_status ?
1023 				   i40e_aq_rc_to_posix(status,
1024 						       hw->aq.asq_last_status) :
1025 				   -EIO;
1026 				i40e_release_nvm(hw);
1027 			} else {
1028 				hw->nvm_release_on_done = true;
1029 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1030 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1031 			}
1032 		}
1033 		break;
1034 
1035 	case I40E_NVMUPD_EXEC_AQ:
1036 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1037 		break;
1038 
1039 	case I40E_NVMUPD_GET_AQ_RESULT:
1040 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1041 		break;
1042 
1043 	case I40E_NVMUPD_GET_AQ_EVENT:
1044 		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1045 		break;
1046 
1047 	default:
1048 		i40e_debug(hw, I40E_DEBUG_NVM,
1049 			   "NVMUPD: bad cmd %s in init state\n",
1050 			   i40e_nvm_update_state_str[upd_cmd]);
1051 		status = -EIO;
1052 		*perrno = -ESRCH;
1053 		break;
1054 	}
1055 	return status;
1056 }
1057 
1058 /**
1059  * i40e_nvmupd_state_reading - Handle NVM update state Reading
1060  * @hw: pointer to hardware structure
1061  * @cmd: pointer to nvm update command buffer
1062  * @bytes: pointer to the data buffer
1063  * @perrno: pointer to return error code
1064  *
1065  * NVM ownership is already held.  Process legitimate commands and set any
1066  * change in state; reject all other commands.
1067  **/
1068 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1069 				     struct i40e_nvm_access *cmd,
1070 				     u8 *bytes, int *perrno)
1071 {
1072 	enum i40e_nvmupd_cmd upd_cmd;
1073 	int status = 0;
1074 
1075 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1076 
1077 	switch (upd_cmd) {
1078 	case I40E_NVMUPD_READ_SA:
1079 	case I40E_NVMUPD_READ_CON:
1080 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1081 		break;
1082 
1083 	case I40E_NVMUPD_READ_LCB:
1084 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1085 		i40e_release_nvm(hw);
1086 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1087 		break;
1088 
1089 	default:
1090 		i40e_debug(hw, I40E_DEBUG_NVM,
1091 			   "NVMUPD: bad cmd %s in reading state.\n",
1092 			   i40e_nvm_update_state_str[upd_cmd]);
1093 		status = -EOPNOTSUPP;
1094 		*perrno = -ESRCH;
1095 		break;
1096 	}
1097 	return status;
1098 }
1099 
1100 /**
1101  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1102  * @hw: pointer to hardware structure
1103  * @cmd: pointer to nvm update command buffer
1104  * @bytes: pointer to the data buffer
1105  * @perrno: pointer to return error code
1106  *
1107  * NVM ownership is already held.  Process legitimate commands and set any
1108  * change in state; reject all other commands
1109  **/
1110 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1111 				     struct i40e_nvm_access *cmd,
1112 				     u8 *bytes, int *perrno)
1113 {
1114 	enum i40e_nvmupd_cmd upd_cmd;
1115 	bool retry_attempt = false;
1116 	int status = 0;
1117 
1118 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1119 
1120 retry:
1121 	switch (upd_cmd) {
1122 	case I40E_NVMUPD_WRITE_CON:
1123 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1124 		if (!status) {
1125 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1126 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1127 		}
1128 		break;
1129 
1130 	case I40E_NVMUPD_WRITE_LCB:
1131 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1132 		if (status) {
1133 			*perrno = hw->aq.asq_last_status ?
1134 				   i40e_aq_rc_to_posix(status,
1135 						       hw->aq.asq_last_status) :
1136 				   -EIO;
1137 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1138 		} else {
1139 			hw->nvm_release_on_done = true;
1140 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1141 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1142 		}
1143 		break;
1144 
1145 	case I40E_NVMUPD_CSUM_CON:
1146 		/* Assumes the caller has acquired the nvm */
1147 		status = i40e_update_nvm_checksum(hw);
1148 		if (status) {
1149 			*perrno = hw->aq.asq_last_status ?
1150 				   i40e_aq_rc_to_posix(status,
1151 						       hw->aq.asq_last_status) :
1152 				   -EIO;
1153 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1154 		} else {
1155 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1156 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1157 		}
1158 		break;
1159 
1160 	case I40E_NVMUPD_CSUM_LCB:
1161 		/* Assumes the caller has acquired the nvm */
1162 		status = i40e_update_nvm_checksum(hw);
1163 		if (status) {
1164 			*perrno = hw->aq.asq_last_status ?
1165 				   i40e_aq_rc_to_posix(status,
1166 						       hw->aq.asq_last_status) :
1167 				   -EIO;
1168 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1169 		} else {
1170 			hw->nvm_release_on_done = true;
1171 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1172 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1173 		}
1174 		break;
1175 
1176 	default:
1177 		i40e_debug(hw, I40E_DEBUG_NVM,
1178 			   "NVMUPD: bad cmd %s in writing state.\n",
1179 			   i40e_nvm_update_state_str[upd_cmd]);
1180 		status = -EOPNOTSUPP;
1181 		*perrno = -ESRCH;
1182 		break;
1183 	}
1184 
1185 	/* In some circumstances, a multi-write transaction takes longer
1186 	 * than the default 3 minute timeout on the write semaphore.  If
1187 	 * the write failed with an EBUSY status, this is likely the problem,
1188 	 * so here we try to reacquire the semaphore then retry the write.
1189 	 * We only do one retry, then give up.
1190 	 */
1191 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1192 	    !retry_attempt) {
1193 		u32 old_asq_status = hw->aq.asq_last_status;
1194 		int old_status = status;
1195 		u32 gtime;
1196 
1197 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1198 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1199 			i40e_debug(hw, I40E_DEBUG_ALL,
1200 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1201 				   gtime, hw->nvm.hw_semaphore_timeout);
1202 			i40e_release_nvm(hw);
1203 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1204 			if (status) {
1205 				i40e_debug(hw, I40E_DEBUG_ALL,
1206 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1207 					   hw->aq.asq_last_status);
1208 				status = old_status;
1209 				hw->aq.asq_last_status = old_asq_status;
1210 			} else {
1211 				retry_attempt = true;
1212 				goto retry;
1213 			}
1214 		}
1215 	}
1216 
1217 	return status;
1218 }
1219 
1220 /**
1221  * i40e_nvmupd_clear_wait_state - clear wait state on hw
1222  * @hw: pointer to the hardware structure
1223  **/
1224 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1225 {
1226 	i40e_debug(hw, I40E_DEBUG_NVM,
1227 		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1228 		   hw->nvm_wait_opcode);
1229 
1230 	if (hw->nvm_release_on_done) {
1231 		i40e_release_nvm(hw);
1232 		hw->nvm_release_on_done = false;
1233 	}
1234 	hw->nvm_wait_opcode = 0;
1235 
1236 	if (hw->aq.arq_last_status) {
1237 		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1238 		return;
1239 	}
1240 
1241 	switch (hw->nvmupd_state) {
1242 	case I40E_NVMUPD_STATE_INIT_WAIT:
1243 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1244 		break;
1245 
1246 	case I40E_NVMUPD_STATE_WRITE_WAIT:
1247 		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1248 		break;
1249 
1250 	default:
1251 		break;
1252 	}
1253 }
1254 
1255 /**
1256  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1257  * @hw: pointer to the hardware structure
1258  * @opcode: the event that just happened
1259  * @desc: AdminQ descriptor
1260  **/
1261 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1262 				  struct i40e_aq_desc *desc)
1263 {
1264 	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1265 
1266 	if (opcode == hw->nvm_wait_opcode) {
1267 		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1268 		i40e_nvmupd_clear_wait_state(hw);
1269 	}
1270 }
1271 
1272 /**
1273  * i40e_nvmupd_validate_command - Validate given command
1274  * @hw: pointer to hardware structure
1275  * @cmd: pointer to nvm update command buffer
1276  * @perrno: pointer to return error code
1277  *
1278  * Return one of the valid command types or I40E_NVMUPD_INVALID
1279  **/
1280 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1281 						 struct i40e_nvm_access *cmd,
1282 						 int *perrno)
1283 {
1284 	enum i40e_nvmupd_cmd upd_cmd;
1285 	u8 module, transaction;
1286 
1287 	/* anything that doesn't match a recognized case is an error */
1288 	upd_cmd = I40E_NVMUPD_INVALID;
1289 
1290 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1291 	module = i40e_nvmupd_get_module(cmd->config);
1292 
1293 	/* limits on data size */
1294 	if ((cmd->data_size < 1) ||
1295 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1296 		i40e_debug(hw, I40E_DEBUG_NVM,
1297 			   "i40e_nvmupd_validate_command data_size %d\n",
1298 			   cmd->data_size);
1299 		*perrno = -EFAULT;
1300 		return I40E_NVMUPD_INVALID;
1301 	}
1302 
1303 	switch (cmd->command) {
1304 	case I40E_NVM_READ:
1305 		switch (transaction) {
1306 		case I40E_NVM_CON:
1307 			upd_cmd = I40E_NVMUPD_READ_CON;
1308 			break;
1309 		case I40E_NVM_SNT:
1310 			upd_cmd = I40E_NVMUPD_READ_SNT;
1311 			break;
1312 		case I40E_NVM_LCB:
1313 			upd_cmd = I40E_NVMUPD_READ_LCB;
1314 			break;
1315 		case I40E_NVM_SA:
1316 			upd_cmd = I40E_NVMUPD_READ_SA;
1317 			break;
1318 		case I40E_NVM_EXEC:
1319 			if (module == 0xf)
1320 				upd_cmd = I40E_NVMUPD_STATUS;
1321 			else if (module == 0)
1322 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1323 			break;
1324 		case I40E_NVM_AQE:
1325 			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1326 			break;
1327 		}
1328 		break;
1329 
1330 	case I40E_NVM_WRITE:
1331 		switch (transaction) {
1332 		case I40E_NVM_CON:
1333 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1334 			break;
1335 		case I40E_NVM_SNT:
1336 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1337 			break;
1338 		case I40E_NVM_LCB:
1339 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1340 			break;
1341 		case I40E_NVM_SA:
1342 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1343 			break;
1344 		case I40E_NVM_ERA:
1345 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1346 			break;
1347 		case I40E_NVM_CSUM:
1348 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1349 			break;
1350 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1351 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1352 			break;
1353 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1354 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1355 			break;
1356 		case I40E_NVM_EXEC:
1357 			if (module == 0)
1358 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1359 			break;
1360 		}
1361 		break;
1362 	}
1363 
1364 	return upd_cmd;
1365 }
1366 
1367 /**
1368  * i40e_nvmupd_exec_aq - Run an AQ command
1369  * @hw: pointer to hardware structure
1370  * @cmd: pointer to nvm update command buffer
1371  * @bytes: pointer to the data buffer
1372  * @perrno: pointer to return error code
1373  *
1374  * cmd structure contains identifiers and data buffer
1375  **/
1376 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1377 			       struct i40e_nvm_access *cmd,
1378 			       u8 *bytes, int *perrno)
1379 {
1380 	struct i40e_asq_cmd_details cmd_details;
1381 	struct i40e_aq_desc *aq_desc;
1382 	u32 buff_size = 0;
1383 	u8 *buff = NULL;
1384 	u32 aq_desc_len;
1385 	u32 aq_data_len;
1386 	int status;
1387 
1388 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1389 	if (cmd->offset == 0xffff)
1390 		return 0;
1391 
1392 	memset(&cmd_details, 0, sizeof(cmd_details));
1393 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1394 
1395 	aq_desc_len = sizeof(struct i40e_aq_desc);
1396 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1397 
1398 	/* get the aq descriptor */
1399 	if (cmd->data_size < aq_desc_len) {
1400 		i40e_debug(hw, I40E_DEBUG_NVM,
1401 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1402 			   cmd->data_size, aq_desc_len);
1403 		*perrno = -EINVAL;
1404 		return -EINVAL;
1405 	}
1406 	aq_desc = (struct i40e_aq_desc *)bytes;
1407 
1408 	/* if data buffer needed, make sure it's ready */
1409 	aq_data_len = cmd->data_size - aq_desc_len;
1410 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1411 	if (buff_size) {
1412 		if (!hw->nvm_buff.va) {
1413 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1414 							hw->aq.asq_buf_size);
1415 			if (status)
1416 				i40e_debug(hw, I40E_DEBUG_NVM,
1417 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1418 					   status);
1419 		}
1420 
1421 		if (hw->nvm_buff.va) {
1422 			buff = hw->nvm_buff.va;
1423 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1424 		}
1425 	}
1426 
1427 	if (cmd->offset)
1428 		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1429 
1430 	/* and away we go! */
1431 	status = i40e_asq_send_command(hw, aq_desc, buff,
1432 				       buff_size, &cmd_details);
1433 	if (status) {
1434 		i40e_debug(hw, I40E_DEBUG_NVM,
1435 			   "%s err %pe aq_err %s\n",
1436 			   __func__, ERR_PTR(status),
1437 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1438 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1439 		return status;
1440 	}
1441 
1442 	/* should we wait for a followup event? */
1443 	if (cmd->offset) {
1444 		hw->nvm_wait_opcode = cmd->offset;
1445 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1446 	}
1447 
1448 	return status;
1449 }
1450 
1451 /**
1452  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1453  * @hw: pointer to hardware structure
1454  * @cmd: pointer to nvm update command buffer
1455  * @bytes: pointer to the data buffer
1456  * @perrno: pointer to return error code
1457  *
1458  * cmd structure contains identifiers and data buffer
1459  **/
1460 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1461 				     struct i40e_nvm_access *cmd,
1462 				     u8 *bytes, int *perrno)
1463 {
1464 	u32 aq_total_len;
1465 	u32 aq_desc_len;
1466 	int remainder;
1467 	u8 *buff;
1468 
1469 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1470 
1471 	aq_desc_len = sizeof(struct i40e_aq_desc);
1472 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1473 
1474 	/* check offset range */
1475 	if (cmd->offset > aq_total_len) {
1476 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1477 			   __func__, cmd->offset, aq_total_len);
1478 		*perrno = -EINVAL;
1479 		return -EINVAL;
1480 	}
1481 
1482 	/* check copylength range */
1483 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1484 		int new_len = aq_total_len - cmd->offset;
1485 
1486 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1487 			   __func__, cmd->data_size, new_len);
1488 		cmd->data_size = new_len;
1489 	}
1490 
1491 	remainder = cmd->data_size;
1492 	if (cmd->offset < aq_desc_len) {
1493 		u32 len = aq_desc_len - cmd->offset;
1494 
1495 		len = min(len, cmd->data_size);
1496 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1497 			   __func__, cmd->offset, cmd->offset + len);
1498 
1499 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1500 		memcpy(bytes, buff, len);
1501 
1502 		bytes += len;
1503 		remainder -= len;
1504 		buff = hw->nvm_buff.va;
1505 	} else {
1506 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1507 	}
1508 
1509 	if (remainder > 0) {
1510 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1511 
1512 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1513 			   __func__, start_byte, start_byte + remainder);
1514 		memcpy(bytes, buff, remainder);
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /**
1521  * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1522  * @hw: pointer to hardware structure
1523  * @cmd: pointer to nvm update command buffer
1524  * @bytes: pointer to the data buffer
1525  * @perrno: pointer to return error code
1526  *
1527  * cmd structure contains identifiers and data buffer
1528  **/
1529 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1530 				    struct i40e_nvm_access *cmd,
1531 				    u8 *bytes, int *perrno)
1532 {
1533 	u32 aq_total_len;
1534 	u32 aq_desc_len;
1535 
1536 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1537 
1538 	aq_desc_len = sizeof(struct i40e_aq_desc);
1539 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1540 
1541 	/* check copylength range */
1542 	if (cmd->data_size > aq_total_len) {
1543 		i40e_debug(hw, I40E_DEBUG_NVM,
1544 			   "%s: copy length %d too big, trimming to %d\n",
1545 			   __func__, cmd->data_size, aq_total_len);
1546 		cmd->data_size = aq_total_len;
1547 	}
1548 
1549 	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * i40e_nvmupd_nvm_read - Read NVM
1556  * @hw: pointer to hardware structure
1557  * @cmd: pointer to nvm update command buffer
1558  * @bytes: pointer to the data buffer
1559  * @perrno: pointer to return error code
1560  *
1561  * cmd structure contains identifiers and data buffer
1562  **/
1563 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1564 				struct i40e_nvm_access *cmd,
1565 				u8 *bytes, int *perrno)
1566 {
1567 	struct i40e_asq_cmd_details cmd_details;
1568 	u8 module, transaction;
1569 	int status;
1570 	bool last;
1571 
1572 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1573 	module = i40e_nvmupd_get_module(cmd->config);
1574 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1575 
1576 	memset(&cmd_details, 0, sizeof(cmd_details));
1577 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1578 
1579 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1580 				  bytes, last, &cmd_details);
1581 	if (status) {
1582 		i40e_debug(hw, I40E_DEBUG_NVM,
1583 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1584 			   module, cmd->offset, cmd->data_size);
1585 		i40e_debug(hw, I40E_DEBUG_NVM,
1586 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1587 			   status, hw->aq.asq_last_status);
1588 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1589 	}
1590 
1591 	return status;
1592 }
1593 
1594 /**
1595  * i40e_nvmupd_nvm_erase - Erase an NVM module
1596  * @hw: pointer to hardware structure
1597  * @cmd: pointer to nvm update command buffer
1598  * @perrno: pointer to return error code
1599  *
1600  * module, offset, data_size and data are in cmd structure
1601  **/
1602 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1603 				 struct i40e_nvm_access *cmd,
1604 				 int *perrno)
1605 {
1606 	struct i40e_asq_cmd_details cmd_details;
1607 	u8 module, transaction;
1608 	int status = 0;
1609 	bool last;
1610 
1611 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1612 	module = i40e_nvmupd_get_module(cmd->config);
1613 	last = (transaction & I40E_NVM_LCB);
1614 
1615 	memset(&cmd_details, 0, sizeof(cmd_details));
1616 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1617 
1618 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1619 				   last, &cmd_details);
1620 	if (status) {
1621 		i40e_debug(hw, I40E_DEBUG_NVM,
1622 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1623 			   module, cmd->offset, cmd->data_size);
1624 		i40e_debug(hw, I40E_DEBUG_NVM,
1625 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1626 			   status, hw->aq.asq_last_status);
1627 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1628 	}
1629 
1630 	return status;
1631 }
1632 
1633 /**
1634  * i40e_nvmupd_nvm_write - Write NVM
1635  * @hw: pointer to hardware structure
1636  * @cmd: pointer to nvm update command buffer
1637  * @bytes: pointer to the data buffer
1638  * @perrno: pointer to return error code
1639  *
1640  * module, offset, data_size and data are in cmd structure
1641  **/
1642 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1643 				 struct i40e_nvm_access *cmd,
1644 				 u8 *bytes, int *perrno)
1645 {
1646 	struct i40e_asq_cmd_details cmd_details;
1647 	u8 module, transaction;
1648 	u8 preservation_flags;
1649 	int status = 0;
1650 	bool last;
1651 
1652 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1653 	module = i40e_nvmupd_get_module(cmd->config);
1654 	last = (transaction & I40E_NVM_LCB);
1655 	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1656 
1657 	memset(&cmd_details, 0, sizeof(cmd_details));
1658 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1659 
1660 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1661 				    (u16)cmd->data_size, bytes, last,
1662 				    preservation_flags, &cmd_details);
1663 	if (status) {
1664 		i40e_debug(hw, I40E_DEBUG_NVM,
1665 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1666 			   module, cmd->offset, cmd->data_size);
1667 		i40e_debug(hw, I40E_DEBUG_NVM,
1668 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1669 			   status, hw->aq.asq_last_status);
1670 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1671 	}
1672 
1673 	return status;
1674 }
1675