1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	if (!hw->nvm.blank_nvm_mode)
138 		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
139 }
140 
141 /**
142  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
143  * @hw: pointer to the HW structure
144  *
145  * Polls the SRCTL Shadow RAM register done bit.
146  **/
147 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
148 {
149 	i40e_status ret_code = I40E_ERR_TIMEOUT;
150 	u32 srctl, wait_cnt;
151 
152 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
153 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
154 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
155 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
156 			ret_code = 0;
157 			break;
158 		}
159 		udelay(5);
160 	}
161 	if (ret_code == I40E_ERR_TIMEOUT)
162 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
163 	return ret_code;
164 }
165 
166 /**
167  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
168  * @hw: pointer to the HW structure
169  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
170  * @data: word read from the Shadow RAM
171  *
172  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
173  **/
174 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
175 					    u16 *data)
176 {
177 	i40e_status ret_code = I40E_ERR_TIMEOUT;
178 	u32 sr_reg;
179 
180 	if (offset >= hw->nvm.sr_size) {
181 		i40e_debug(hw, I40E_DEBUG_NVM,
182 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
183 			   offset, hw->nvm.sr_size);
184 		ret_code = I40E_ERR_PARAM;
185 		goto read_nvm_exit;
186 	}
187 
188 	/* Poll the done bit first */
189 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
190 	if (!ret_code) {
191 		/* Write the address and start reading */
192 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
193 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
194 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
195 
196 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
197 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
198 		if (!ret_code) {
199 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
200 			*data = (u16)((sr_reg &
201 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
202 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
203 		}
204 	}
205 	if (ret_code)
206 		i40e_debug(hw, I40E_DEBUG_NVM,
207 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
208 			   offset);
209 
210 read_nvm_exit:
211 	return ret_code;
212 }
213 
214 /**
215  * i40e_read_nvm_aq - Read Shadow RAM.
216  * @hw: pointer to the HW structure.
217  * @module_pointer: module pointer location in words from the NVM beginning
218  * @offset: offset in words from module start
219  * @words: number of words to write
220  * @data: buffer with words to write to the Shadow RAM
221  * @last_command: tells the AdminQ that this is the last command
222  *
223  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
224  **/
225 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
226 				    u32 offset, u16 words, void *data,
227 				    bool last_command)
228 {
229 	i40e_status ret_code = I40E_ERR_NVM;
230 	struct i40e_asq_cmd_details cmd_details;
231 
232 	memset(&cmd_details, 0, sizeof(cmd_details));
233 
234 	/* Here we are checking the SR limit only for the flat memory model.
235 	 * We cannot do it for the module-based model, as we did not acquire
236 	 * the NVM resource yet (we cannot get the module pointer value).
237 	 * Firmware will check the module-based model.
238 	 */
239 	if ((offset + words) > hw->nvm.sr_size)
240 		i40e_debug(hw, I40E_DEBUG_NVM,
241 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
242 			   (offset + words), hw->nvm.sr_size);
243 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
244 		/* We can write only up to 4KB (one sector), in one AQ write */
245 		i40e_debug(hw, I40E_DEBUG_NVM,
246 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
247 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
248 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
249 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
250 		/* A single write cannot spread over two sectors */
251 		i40e_debug(hw, I40E_DEBUG_NVM,
252 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
253 			   offset, words);
254 	else
255 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
256 					    2 * offset,  /*bytes*/
257 					    2 * words,   /*bytes*/
258 					    data, last_command, &cmd_details);
259 
260 	return ret_code;
261 }
262 
263 /**
264  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
265  * @hw: pointer to the HW structure
266  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
267  * @data: word read from the Shadow RAM
268  *
269  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
270  **/
271 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
272 					 u16 *data)
273 {
274 	i40e_status ret_code = I40E_ERR_TIMEOUT;
275 
276 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
277 	*data = le16_to_cpu(*(__le16 *)data);
278 
279 	return ret_code;
280 }
281 
282 /**
283  * i40e_read_nvm_word - Reads Shadow RAM
284  * @hw: pointer to the HW structure
285  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286  * @data: word read from the Shadow RAM
287  *
288  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
289  **/
290 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
291 			       u16 *data)
292 {
293 	enum i40e_status_code ret_code = 0;
294 
295 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
296 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
297 		if (!ret_code) {
298 			ret_code = i40e_read_nvm_word_aq(hw, offset, data);
299 			i40e_release_nvm(hw);
300 		}
301 	} else {
302 		ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
303 	}
304 	return ret_code;
305 }
306 
307 /**
308  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
309  * @hw: pointer to the HW structure
310  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
311  * @words: (in) number of words to read; (out) number of words actually read
312  * @data: words read from the Shadow RAM
313  *
314  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
315  * method. The buffer read is preceded by the NVM ownership take
316  * and followed by the release.
317  **/
318 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
319 					      u16 *words, u16 *data)
320 {
321 	i40e_status ret_code = 0;
322 	u16 index, word;
323 
324 	/* Loop thru the selected region */
325 	for (word = 0; word < *words; word++) {
326 		index = offset + word;
327 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
328 		if (ret_code)
329 			break;
330 	}
331 
332 	/* Update the number of words read from the Shadow RAM */
333 	*words = word;
334 
335 	return ret_code;
336 }
337 
338 /**
339  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
340  * @hw: pointer to the HW structure
341  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
342  * @words: (in) number of words to read; (out) number of words actually read
343  * @data: words read from the Shadow RAM
344  *
345  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
346  * method. The buffer read is preceded by the NVM ownership take
347  * and followed by the release.
348  **/
349 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
350 					   u16 *words, u16 *data)
351 {
352 	i40e_status ret_code;
353 	u16 read_size = *words;
354 	bool last_cmd = false;
355 	u16 words_read = 0;
356 	u16 i = 0;
357 
358 	do {
359 		/* Calculate number of bytes we should read in this step.
360 		 * FVL AQ do not allow to read more than one page at a time or
361 		 * to cross page boundaries.
362 		 */
363 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
364 			read_size = min(*words,
365 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
366 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
367 		else
368 			read_size = min((*words - words_read),
369 					I40E_SR_SECTOR_SIZE_IN_WORDS);
370 
371 		/* Check if this is last command, if so set proper flag */
372 		if ((words_read + read_size) >= *words)
373 			last_cmd = true;
374 
375 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
376 					    data + words_read, last_cmd);
377 		if (ret_code)
378 			goto read_nvm_buffer_aq_exit;
379 
380 		/* Increment counter for words already read and move offset to
381 		 * new read location
382 		 */
383 		words_read += read_size;
384 		offset += read_size;
385 	} while (words_read < *words);
386 
387 	for (i = 0; i < *words; i++)
388 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
389 
390 read_nvm_buffer_aq_exit:
391 	*words = words_read;
392 	return ret_code;
393 }
394 
395 /**
396  * i40e_read_nvm_buffer - Reads Shadow RAM buffer
397  * @hw: pointer to the HW structure
398  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
399  * @words: (in) number of words to read; (out) number of words actually read
400  * @data: words read from the Shadow RAM
401  *
402  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
403  * method. The buffer read is preceded by the NVM ownership take
404  * and followed by the release.
405  **/
406 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
407 				 u16 *words, u16 *data)
408 {
409 	enum i40e_status_code ret_code = 0;
410 
411 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
412 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
413 		if (!ret_code) {
414 			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
415 							   data);
416 			i40e_release_nvm(hw);
417 		}
418 	} else {
419 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
420 	}
421 	return ret_code;
422 }
423 
424 /**
425  * i40e_write_nvm_aq - Writes Shadow RAM.
426  * @hw: pointer to the HW structure.
427  * @module_pointer: module pointer location in words from the NVM beginning
428  * @offset: offset in words from module start
429  * @words: number of words to write
430  * @data: buffer with words to write to the Shadow RAM
431  * @last_command: tells the AdminQ that this is the last command
432  *
433  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
434  **/
435 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
436 				     u32 offset, u16 words, void *data,
437 				     bool last_command)
438 {
439 	i40e_status ret_code = I40E_ERR_NVM;
440 	struct i40e_asq_cmd_details cmd_details;
441 
442 	memset(&cmd_details, 0, sizeof(cmd_details));
443 	cmd_details.wb_desc = &hw->nvm_wb_desc;
444 
445 	/* Here we are checking the SR limit only for the flat memory model.
446 	 * We cannot do it for the module-based model, as we did not acquire
447 	 * the NVM resource yet (we cannot get the module pointer value).
448 	 * Firmware will check the module-based model.
449 	 */
450 	if ((offset + words) > hw->nvm.sr_size)
451 		i40e_debug(hw, I40E_DEBUG_NVM,
452 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
453 			   (offset + words), hw->nvm.sr_size);
454 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
455 		/* We can write only up to 4KB (one sector), in one AQ write */
456 		i40e_debug(hw, I40E_DEBUG_NVM,
457 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
458 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
459 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
460 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
461 		/* A single write cannot spread over two sectors */
462 		i40e_debug(hw, I40E_DEBUG_NVM,
463 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
464 			   offset, words);
465 	else
466 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
467 					      2 * offset,  /*bytes*/
468 					      2 * words,   /*bytes*/
469 					      data, last_command, &cmd_details);
470 
471 	return ret_code;
472 }
473 
474 /**
475  * i40e_calc_nvm_checksum - Calculates and returns the checksum
476  * @hw: pointer to hardware structure
477  * @checksum: pointer to the checksum
478  *
479  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
480  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
481  * is customer specific and unknown. Therefore, this function skips all maximum
482  * possible size of VPD (1kB).
483  **/
484 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
485 						    u16 *checksum)
486 {
487 	i40e_status ret_code;
488 	struct i40e_virt_mem vmem;
489 	u16 pcie_alt_module = 0;
490 	u16 checksum_local = 0;
491 	u16 vpd_module = 0;
492 	u16 *data;
493 	u16 i = 0;
494 
495 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
496 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
497 	if (ret_code)
498 		goto i40e_calc_nvm_checksum_exit;
499 	data = (u16 *)vmem.va;
500 
501 	/* read pointer to VPD area */
502 	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
503 	if (ret_code) {
504 		ret_code = I40E_ERR_NVM_CHECKSUM;
505 		goto i40e_calc_nvm_checksum_exit;
506 	}
507 
508 	/* read pointer to PCIe Alt Auto-load module */
509 	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
510 				      &pcie_alt_module);
511 	if (ret_code) {
512 		ret_code = I40E_ERR_NVM_CHECKSUM;
513 		goto i40e_calc_nvm_checksum_exit;
514 	}
515 
516 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
517 	 * except the VPD and PCIe ALT Auto-load modules
518 	 */
519 	for (i = 0; i < hw->nvm.sr_size; i++) {
520 		/* Read SR page */
521 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
522 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
523 
524 			ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
525 			if (ret_code) {
526 				ret_code = I40E_ERR_NVM_CHECKSUM;
527 				goto i40e_calc_nvm_checksum_exit;
528 			}
529 		}
530 
531 		/* Skip Checksum word */
532 		if (i == I40E_SR_SW_CHECKSUM_WORD)
533 			continue;
534 		/* Skip VPD module (convert byte size to word count) */
535 		if ((i >= (u32)vpd_module) &&
536 		    (i < ((u32)vpd_module +
537 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
538 			continue;
539 		}
540 		/* Skip PCIe ALT module (convert byte size to word count) */
541 		if ((i >= (u32)pcie_alt_module) &&
542 		    (i < ((u32)pcie_alt_module +
543 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
544 			continue;
545 		}
546 
547 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
548 	}
549 
550 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
551 
552 i40e_calc_nvm_checksum_exit:
553 	i40e_free_virt_mem(hw, &vmem);
554 	return ret_code;
555 }
556 
557 /**
558  * i40e_update_nvm_checksum - Updates the NVM checksum
559  * @hw: pointer to hardware structure
560  *
561  * NVM ownership must be acquired before calling this function and released
562  * on ARQ completion event reception by caller.
563  * This function will commit SR to NVM.
564  **/
565 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
566 {
567 	i40e_status ret_code;
568 	u16 checksum;
569 	__le16 le_sum;
570 
571 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
572 	if (!ret_code) {
573 		le_sum = cpu_to_le16(checksum);
574 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
575 					     1, &le_sum, true);
576 	}
577 
578 	return ret_code;
579 }
580 
581 /**
582  * i40e_validate_nvm_checksum - Validate EEPROM checksum
583  * @hw: pointer to hardware structure
584  * @checksum: calculated checksum
585  *
586  * Performs checksum calculation and validates the NVM SW checksum. If the
587  * caller does not need checksum, the value can be NULL.
588  **/
589 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
590 						 u16 *checksum)
591 {
592 	i40e_status ret_code = 0;
593 	u16 checksum_sr = 0;
594 	u16 checksum_local = 0;
595 
596 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
597 	if (ret_code)
598 		goto i40e_validate_nvm_checksum_exit;
599 
600 	/* Do not use i40e_read_nvm_word() because we do not want to take
601 	 * the synchronization semaphores twice here.
602 	 */
603 	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
604 
605 	/* Verify read checksum from EEPROM is the same as
606 	 * calculated checksum
607 	 */
608 	if (checksum_local != checksum_sr)
609 		ret_code = I40E_ERR_NVM_CHECKSUM;
610 
611 	/* If the user cares, return the calculated checksum */
612 	if (checksum)
613 		*checksum = checksum_local;
614 
615 i40e_validate_nvm_checksum_exit:
616 	return ret_code;
617 }
618 
619 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
620 					  struct i40e_nvm_access *cmd,
621 					  u8 *bytes, int *perrno);
622 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
623 					     struct i40e_nvm_access *cmd,
624 					     u8 *bytes, int *perrno);
625 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
626 					     struct i40e_nvm_access *cmd,
627 					     u8 *bytes, int *errno);
628 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
629 						struct i40e_nvm_access *cmd,
630 						int *perrno);
631 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
632 					 struct i40e_nvm_access *cmd,
633 					 int *perrno);
634 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
635 					 struct i40e_nvm_access *cmd,
636 					 u8 *bytes, int *perrno);
637 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
638 					struct i40e_nvm_access *cmd,
639 					u8 *bytes, int *perrno);
640 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
641 				       struct i40e_nvm_access *cmd,
642 				       u8 *bytes, int *perrno);
643 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
644 					     struct i40e_nvm_access *cmd,
645 					     u8 *bytes, int *perrno);
646 static inline u8 i40e_nvmupd_get_module(u32 val)
647 {
648 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
649 }
650 static inline u8 i40e_nvmupd_get_transaction(u32 val)
651 {
652 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
653 }
654 
655 static const char * const i40e_nvm_update_state_str[] = {
656 	"I40E_NVMUPD_INVALID",
657 	"I40E_NVMUPD_READ_CON",
658 	"I40E_NVMUPD_READ_SNT",
659 	"I40E_NVMUPD_READ_LCB",
660 	"I40E_NVMUPD_READ_SA",
661 	"I40E_NVMUPD_WRITE_ERA",
662 	"I40E_NVMUPD_WRITE_CON",
663 	"I40E_NVMUPD_WRITE_SNT",
664 	"I40E_NVMUPD_WRITE_LCB",
665 	"I40E_NVMUPD_WRITE_SA",
666 	"I40E_NVMUPD_CSUM_CON",
667 	"I40E_NVMUPD_CSUM_SA",
668 	"I40E_NVMUPD_CSUM_LCB",
669 	"I40E_NVMUPD_STATUS",
670 	"I40E_NVMUPD_EXEC_AQ",
671 	"I40E_NVMUPD_GET_AQ_RESULT",
672 };
673 
674 /**
675  * i40e_nvmupd_command - Process an NVM update command
676  * @hw: pointer to hardware structure
677  * @cmd: pointer to nvm update command
678  * @bytes: pointer to the data buffer
679  * @perrno: pointer to return error code
680  *
681  * Dispatches command depending on what update state is current
682  **/
683 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
684 				struct i40e_nvm_access *cmd,
685 				u8 *bytes, int *perrno)
686 {
687 	i40e_status status;
688 	enum i40e_nvmupd_cmd upd_cmd;
689 
690 	/* assume success */
691 	*perrno = 0;
692 
693 	/* early check for status command and debug msgs */
694 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
695 
696 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
697 		   i40e_nvm_update_state_str[upd_cmd],
698 		   hw->nvmupd_state,
699 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
700 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
701 
702 	if (upd_cmd == I40E_NVMUPD_INVALID) {
703 		*perrno = -EFAULT;
704 		i40e_debug(hw, I40E_DEBUG_NVM,
705 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
706 			   upd_cmd, *perrno);
707 	}
708 
709 	/* a status request returns immediately rather than
710 	 * going into the state machine
711 	 */
712 	if (upd_cmd == I40E_NVMUPD_STATUS) {
713 		if (!cmd->data_size) {
714 			*perrno = -EFAULT;
715 			return I40E_ERR_BUF_TOO_SHORT;
716 		}
717 
718 		bytes[0] = hw->nvmupd_state;
719 
720 		if (cmd->data_size >= 4) {
721 			bytes[1] = 0;
722 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
723 		}
724 
725 		return 0;
726 	}
727 
728 	switch (hw->nvmupd_state) {
729 	case I40E_NVMUPD_STATE_INIT:
730 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
731 		break;
732 
733 	case I40E_NVMUPD_STATE_READING:
734 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
735 		break;
736 
737 	case I40E_NVMUPD_STATE_WRITING:
738 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
739 		break;
740 
741 	case I40E_NVMUPD_STATE_INIT_WAIT:
742 	case I40E_NVMUPD_STATE_WRITE_WAIT:
743 		/* if we need to stop waiting for an event, clear
744 		 * the wait info and return before doing anything else
745 		 */
746 		if (cmd->offset == 0xffff) {
747 			i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode);
748 			return 0;
749 		}
750 
751 		status = I40E_ERR_NOT_READY;
752 		*perrno = -EBUSY;
753 		break;
754 
755 	default:
756 		/* invalid state, should never happen */
757 		i40e_debug(hw, I40E_DEBUG_NVM,
758 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
759 		status = I40E_NOT_SUPPORTED;
760 		*perrno = -ESRCH;
761 		break;
762 	}
763 	return status;
764 }
765 
766 /**
767  * i40e_nvmupd_state_init - Handle NVM update state Init
768  * @hw: pointer to hardware structure
769  * @cmd: pointer to nvm update command buffer
770  * @bytes: pointer to the data buffer
771  * @perrno: pointer to return error code
772  *
773  * Process legitimate commands of the Init state and conditionally set next
774  * state. Reject all other commands.
775  **/
776 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
777 					  struct i40e_nvm_access *cmd,
778 					  u8 *bytes, int *perrno)
779 {
780 	i40e_status status = 0;
781 	enum i40e_nvmupd_cmd upd_cmd;
782 
783 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
784 
785 	switch (upd_cmd) {
786 	case I40E_NVMUPD_READ_SA:
787 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
788 		if (status) {
789 			*perrno = i40e_aq_rc_to_posix(status,
790 						     hw->aq.asq_last_status);
791 		} else {
792 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
793 			i40e_release_nvm(hw);
794 		}
795 		break;
796 
797 	case I40E_NVMUPD_READ_SNT:
798 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
799 		if (status) {
800 			*perrno = i40e_aq_rc_to_posix(status,
801 						     hw->aq.asq_last_status);
802 		} else {
803 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
804 			if (status)
805 				i40e_release_nvm(hw);
806 			else
807 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
808 		}
809 		break;
810 
811 	case I40E_NVMUPD_WRITE_ERA:
812 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
813 		if (status) {
814 			*perrno = i40e_aq_rc_to_posix(status,
815 						     hw->aq.asq_last_status);
816 		} else {
817 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
818 			if (status) {
819 				i40e_release_nvm(hw);
820 			} else {
821 				hw->nvm_release_on_done = true;
822 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
823 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
824 			}
825 		}
826 		break;
827 
828 	case I40E_NVMUPD_WRITE_SA:
829 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
830 		if (status) {
831 			*perrno = i40e_aq_rc_to_posix(status,
832 						     hw->aq.asq_last_status);
833 		} else {
834 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
835 			if (status) {
836 				i40e_release_nvm(hw);
837 			} else {
838 				hw->nvm_release_on_done = true;
839 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
840 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
841 			}
842 		}
843 		break;
844 
845 	case I40E_NVMUPD_WRITE_SNT:
846 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
847 		if (status) {
848 			*perrno = i40e_aq_rc_to_posix(status,
849 						     hw->aq.asq_last_status);
850 		} else {
851 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
852 			if (status) {
853 				i40e_release_nvm(hw);
854 			} else {
855 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
856 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
857 			}
858 		}
859 		break;
860 
861 	case I40E_NVMUPD_CSUM_SA:
862 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
863 		if (status) {
864 			*perrno = i40e_aq_rc_to_posix(status,
865 						     hw->aq.asq_last_status);
866 		} else {
867 			status = i40e_update_nvm_checksum(hw);
868 			if (status) {
869 				*perrno = hw->aq.asq_last_status ?
870 				   i40e_aq_rc_to_posix(status,
871 						       hw->aq.asq_last_status) :
872 				   -EIO;
873 				i40e_release_nvm(hw);
874 			} else {
875 				hw->nvm_release_on_done = true;
876 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
877 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
878 			}
879 		}
880 		break;
881 
882 	case I40E_NVMUPD_EXEC_AQ:
883 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
884 		break;
885 
886 	case I40E_NVMUPD_GET_AQ_RESULT:
887 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
888 		break;
889 
890 	default:
891 		i40e_debug(hw, I40E_DEBUG_NVM,
892 			   "NVMUPD: bad cmd %s in init state\n",
893 			   i40e_nvm_update_state_str[upd_cmd]);
894 		status = I40E_ERR_NVM;
895 		*perrno = -ESRCH;
896 		break;
897 	}
898 	return status;
899 }
900 
901 /**
902  * i40e_nvmupd_state_reading - Handle NVM update state Reading
903  * @hw: pointer to hardware structure
904  * @cmd: pointer to nvm update command buffer
905  * @bytes: pointer to the data buffer
906  * @perrno: pointer to return error code
907  *
908  * NVM ownership is already held.  Process legitimate commands and set any
909  * change in state; reject all other commands.
910  **/
911 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
912 					     struct i40e_nvm_access *cmd,
913 					     u8 *bytes, int *perrno)
914 {
915 	i40e_status status = 0;
916 	enum i40e_nvmupd_cmd upd_cmd;
917 
918 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
919 
920 	switch (upd_cmd) {
921 	case I40E_NVMUPD_READ_SA:
922 	case I40E_NVMUPD_READ_CON:
923 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
924 		break;
925 
926 	case I40E_NVMUPD_READ_LCB:
927 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
928 		i40e_release_nvm(hw);
929 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
930 		break;
931 
932 	default:
933 		i40e_debug(hw, I40E_DEBUG_NVM,
934 			   "NVMUPD: bad cmd %s in reading state.\n",
935 			   i40e_nvm_update_state_str[upd_cmd]);
936 		status = I40E_NOT_SUPPORTED;
937 		*perrno = -ESRCH;
938 		break;
939 	}
940 	return status;
941 }
942 
943 /**
944  * i40e_nvmupd_state_writing - Handle NVM update state Writing
945  * @hw: pointer to hardware structure
946  * @cmd: pointer to nvm update command buffer
947  * @bytes: pointer to the data buffer
948  * @perrno: pointer to return error code
949  *
950  * NVM ownership is already held.  Process legitimate commands and set any
951  * change in state; reject all other commands
952  **/
953 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
954 					     struct i40e_nvm_access *cmd,
955 					     u8 *bytes, int *perrno)
956 {
957 	i40e_status status = 0;
958 	enum i40e_nvmupd_cmd upd_cmd;
959 	bool retry_attempt = false;
960 
961 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
962 
963 retry:
964 	switch (upd_cmd) {
965 	case I40E_NVMUPD_WRITE_CON:
966 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
967 		if (!status) {
968 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
969 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
970 		}
971 		break;
972 
973 	case I40E_NVMUPD_WRITE_LCB:
974 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
975 		if (status) {
976 			*perrno = hw->aq.asq_last_status ?
977 				   i40e_aq_rc_to_posix(status,
978 						       hw->aq.asq_last_status) :
979 				   -EIO;
980 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
981 		} else {
982 			hw->nvm_release_on_done = true;
983 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
984 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
985 		}
986 		break;
987 
988 	case I40E_NVMUPD_CSUM_CON:
989 		status = i40e_update_nvm_checksum(hw);
990 		if (status) {
991 			*perrno = hw->aq.asq_last_status ?
992 				   i40e_aq_rc_to_posix(status,
993 						       hw->aq.asq_last_status) :
994 				   -EIO;
995 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
996 		} else {
997 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
998 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
999 		}
1000 		break;
1001 
1002 	case I40E_NVMUPD_CSUM_LCB:
1003 		status = i40e_update_nvm_checksum(hw);
1004 		if (status) {
1005 			*perrno = hw->aq.asq_last_status ?
1006 				   i40e_aq_rc_to_posix(status,
1007 						       hw->aq.asq_last_status) :
1008 				   -EIO;
1009 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1010 		} else {
1011 			hw->nvm_release_on_done = true;
1012 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1013 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1014 		}
1015 		break;
1016 
1017 	default:
1018 		i40e_debug(hw, I40E_DEBUG_NVM,
1019 			   "NVMUPD: bad cmd %s in writing state.\n",
1020 			   i40e_nvm_update_state_str[upd_cmd]);
1021 		status = I40E_NOT_SUPPORTED;
1022 		*perrno = -ESRCH;
1023 		break;
1024 	}
1025 
1026 	/* In some circumstances, a multi-write transaction takes longer
1027 	 * than the default 3 minute timeout on the write semaphore.  If
1028 	 * the write failed with an EBUSY status, this is likely the problem,
1029 	 * so here we try to reacquire the semaphore then retry the write.
1030 	 * We only do one retry, then give up.
1031 	 */
1032 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1033 	    !retry_attempt) {
1034 		i40e_status old_status = status;
1035 		u32 old_asq_status = hw->aq.asq_last_status;
1036 		u32 gtime;
1037 
1038 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1039 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1040 			i40e_debug(hw, I40E_DEBUG_ALL,
1041 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1042 				   gtime, hw->nvm.hw_semaphore_timeout);
1043 			i40e_release_nvm(hw);
1044 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1045 			if (status) {
1046 				i40e_debug(hw, I40E_DEBUG_ALL,
1047 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1048 					   hw->aq.asq_last_status);
1049 				status = old_status;
1050 				hw->aq.asq_last_status = old_asq_status;
1051 			} else {
1052 				retry_attempt = true;
1053 				goto retry;
1054 			}
1055 		}
1056 	}
1057 
1058 	return status;
1059 }
1060 
1061 /**
1062  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1063  * @hw: pointer to the hardware structure
1064  * @opcode: the event that just happened
1065  **/
1066 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode)
1067 {
1068 	if (opcode == hw->nvm_wait_opcode) {
1069 		i40e_debug(hw, I40E_DEBUG_NVM,
1070 			   "NVMUPD: clearing wait on opcode 0x%04x\n", opcode);
1071 		if (hw->nvm_release_on_done) {
1072 			i40e_release_nvm(hw);
1073 			hw->nvm_release_on_done = false;
1074 		}
1075 		hw->nvm_wait_opcode = 0;
1076 
1077 		switch (hw->nvmupd_state) {
1078 		case I40E_NVMUPD_STATE_INIT_WAIT:
1079 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1080 			break;
1081 
1082 		case I40E_NVMUPD_STATE_WRITE_WAIT:
1083 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1084 			break;
1085 
1086 		default:
1087 			break;
1088 		}
1089 	}
1090 }
1091 
1092 /**
1093  * i40e_nvmupd_validate_command - Validate given command
1094  * @hw: pointer to hardware structure
1095  * @cmd: pointer to nvm update command buffer
1096  * @perrno: pointer to return error code
1097  *
1098  * Return one of the valid command types or I40E_NVMUPD_INVALID
1099  **/
1100 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1101 						 struct i40e_nvm_access *cmd,
1102 						 int *perrno)
1103 {
1104 	enum i40e_nvmupd_cmd upd_cmd;
1105 	u8 module, transaction;
1106 
1107 	/* anything that doesn't match a recognized case is an error */
1108 	upd_cmd = I40E_NVMUPD_INVALID;
1109 
1110 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1111 	module = i40e_nvmupd_get_module(cmd->config);
1112 
1113 	/* limits on data size */
1114 	if ((cmd->data_size < 1) ||
1115 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1116 		i40e_debug(hw, I40E_DEBUG_NVM,
1117 			   "i40e_nvmupd_validate_command data_size %d\n",
1118 			   cmd->data_size);
1119 		*perrno = -EFAULT;
1120 		return I40E_NVMUPD_INVALID;
1121 	}
1122 
1123 	switch (cmd->command) {
1124 	case I40E_NVM_READ:
1125 		switch (transaction) {
1126 		case I40E_NVM_CON:
1127 			upd_cmd = I40E_NVMUPD_READ_CON;
1128 			break;
1129 		case I40E_NVM_SNT:
1130 			upd_cmd = I40E_NVMUPD_READ_SNT;
1131 			break;
1132 		case I40E_NVM_LCB:
1133 			upd_cmd = I40E_NVMUPD_READ_LCB;
1134 			break;
1135 		case I40E_NVM_SA:
1136 			upd_cmd = I40E_NVMUPD_READ_SA;
1137 			break;
1138 		case I40E_NVM_EXEC:
1139 			if (module == 0xf)
1140 				upd_cmd = I40E_NVMUPD_STATUS;
1141 			else if (module == 0)
1142 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1143 			break;
1144 		}
1145 		break;
1146 
1147 	case I40E_NVM_WRITE:
1148 		switch (transaction) {
1149 		case I40E_NVM_CON:
1150 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1151 			break;
1152 		case I40E_NVM_SNT:
1153 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1154 			break;
1155 		case I40E_NVM_LCB:
1156 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1157 			break;
1158 		case I40E_NVM_SA:
1159 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1160 			break;
1161 		case I40E_NVM_ERA:
1162 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1163 			break;
1164 		case I40E_NVM_CSUM:
1165 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1166 			break;
1167 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1168 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1169 			break;
1170 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1171 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1172 			break;
1173 		case I40E_NVM_EXEC:
1174 			if (module == 0)
1175 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1176 			break;
1177 		}
1178 		break;
1179 	}
1180 
1181 	return upd_cmd;
1182 }
1183 
1184 /**
1185  * i40e_nvmupd_exec_aq - Run an AQ command
1186  * @hw: pointer to hardware structure
1187  * @cmd: pointer to nvm update command buffer
1188  * @bytes: pointer to the data buffer
1189  * @perrno: pointer to return error code
1190  *
1191  * cmd structure contains identifiers and data buffer
1192  **/
1193 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1194 				       struct i40e_nvm_access *cmd,
1195 				       u8 *bytes, int *perrno)
1196 {
1197 	struct i40e_asq_cmd_details cmd_details;
1198 	i40e_status status;
1199 	struct i40e_aq_desc *aq_desc;
1200 	u32 buff_size = 0;
1201 	u8 *buff = NULL;
1202 	u32 aq_desc_len;
1203 	u32 aq_data_len;
1204 
1205 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1206 	memset(&cmd_details, 0, sizeof(cmd_details));
1207 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1208 
1209 	aq_desc_len = sizeof(struct i40e_aq_desc);
1210 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1211 
1212 	/* get the aq descriptor */
1213 	if (cmd->data_size < aq_desc_len) {
1214 		i40e_debug(hw, I40E_DEBUG_NVM,
1215 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1216 			   cmd->data_size, aq_desc_len);
1217 		*perrno = -EINVAL;
1218 		return I40E_ERR_PARAM;
1219 	}
1220 	aq_desc = (struct i40e_aq_desc *)bytes;
1221 
1222 	/* if data buffer needed, make sure it's ready */
1223 	aq_data_len = cmd->data_size - aq_desc_len;
1224 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1225 	if (buff_size) {
1226 		if (!hw->nvm_buff.va) {
1227 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1228 							hw->aq.asq_buf_size);
1229 			if (status)
1230 				i40e_debug(hw, I40E_DEBUG_NVM,
1231 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1232 					   status);
1233 		}
1234 
1235 		if (hw->nvm_buff.va) {
1236 			buff = hw->nvm_buff.va;
1237 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1238 		}
1239 	}
1240 
1241 	/* and away we go! */
1242 	status = i40e_asq_send_command(hw, aq_desc, buff,
1243 				       buff_size, &cmd_details);
1244 	if (status) {
1245 		i40e_debug(hw, I40E_DEBUG_NVM,
1246 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1247 			   i40e_stat_str(hw, status),
1248 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1249 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1250 	}
1251 
1252 	/* should we wait for a followup event? */
1253 	if (cmd->offset) {
1254 		hw->nvm_wait_opcode = cmd->offset;
1255 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1256 	}
1257 
1258 	return status;
1259 }
1260 
1261 /**
1262  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1263  * @hw: pointer to hardware structure
1264  * @cmd: pointer to nvm update command buffer
1265  * @bytes: pointer to the data buffer
1266  * @perrno: pointer to return error code
1267  *
1268  * cmd structure contains identifiers and data buffer
1269  **/
1270 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1271 					     struct i40e_nvm_access *cmd,
1272 					     u8 *bytes, int *perrno)
1273 {
1274 	u32 aq_total_len;
1275 	u32 aq_desc_len;
1276 	int remainder;
1277 	u8 *buff;
1278 
1279 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1280 
1281 	aq_desc_len = sizeof(struct i40e_aq_desc);
1282 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1283 
1284 	/* check offset range */
1285 	if (cmd->offset > aq_total_len) {
1286 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1287 			   __func__, cmd->offset, aq_total_len);
1288 		*perrno = -EINVAL;
1289 		return I40E_ERR_PARAM;
1290 	}
1291 
1292 	/* check copylength range */
1293 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1294 		int new_len = aq_total_len - cmd->offset;
1295 
1296 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1297 			   __func__, cmd->data_size, new_len);
1298 		cmd->data_size = new_len;
1299 	}
1300 
1301 	remainder = cmd->data_size;
1302 	if (cmd->offset < aq_desc_len) {
1303 		u32 len = aq_desc_len - cmd->offset;
1304 
1305 		len = min(len, cmd->data_size);
1306 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1307 			   __func__, cmd->offset, cmd->offset + len);
1308 
1309 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1310 		memcpy(bytes, buff, len);
1311 
1312 		bytes += len;
1313 		remainder -= len;
1314 		buff = hw->nvm_buff.va;
1315 	} else {
1316 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1317 	}
1318 
1319 	if (remainder > 0) {
1320 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1321 
1322 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1323 			   __func__, start_byte, start_byte + remainder);
1324 		memcpy(bytes, buff, remainder);
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * i40e_nvmupd_nvm_read - Read NVM
1332  * @hw: pointer to hardware structure
1333  * @cmd: pointer to nvm update command buffer
1334  * @bytes: pointer to the data buffer
1335  * @perrno: pointer to return error code
1336  *
1337  * cmd structure contains identifiers and data buffer
1338  **/
1339 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1340 					struct i40e_nvm_access *cmd,
1341 					u8 *bytes, int *perrno)
1342 {
1343 	struct i40e_asq_cmd_details cmd_details;
1344 	i40e_status status;
1345 	u8 module, transaction;
1346 	bool last;
1347 
1348 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1349 	module = i40e_nvmupd_get_module(cmd->config);
1350 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1351 
1352 	memset(&cmd_details, 0, sizeof(cmd_details));
1353 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1354 
1355 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1356 				  bytes, last, &cmd_details);
1357 	if (status) {
1358 		i40e_debug(hw, I40E_DEBUG_NVM,
1359 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1360 			   module, cmd->offset, cmd->data_size);
1361 		i40e_debug(hw, I40E_DEBUG_NVM,
1362 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1363 			   status, hw->aq.asq_last_status);
1364 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1365 	}
1366 
1367 	return status;
1368 }
1369 
1370 /**
1371  * i40e_nvmupd_nvm_erase - Erase an NVM module
1372  * @hw: pointer to hardware structure
1373  * @cmd: pointer to nvm update command buffer
1374  * @perrno: pointer to return error code
1375  *
1376  * module, offset, data_size and data are in cmd structure
1377  **/
1378 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1379 					 struct i40e_nvm_access *cmd,
1380 					 int *perrno)
1381 {
1382 	i40e_status status = 0;
1383 	struct i40e_asq_cmd_details cmd_details;
1384 	u8 module, transaction;
1385 	bool last;
1386 
1387 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1388 	module = i40e_nvmupd_get_module(cmd->config);
1389 	last = (transaction & I40E_NVM_LCB);
1390 
1391 	memset(&cmd_details, 0, sizeof(cmd_details));
1392 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1393 
1394 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1395 				   last, &cmd_details);
1396 	if (status) {
1397 		i40e_debug(hw, I40E_DEBUG_NVM,
1398 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1399 			   module, cmd->offset, cmd->data_size);
1400 		i40e_debug(hw, I40E_DEBUG_NVM,
1401 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1402 			   status, hw->aq.asq_last_status);
1403 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1404 	}
1405 
1406 	return status;
1407 }
1408 
1409 /**
1410  * i40e_nvmupd_nvm_write - Write NVM
1411  * @hw: pointer to hardware structure
1412  * @cmd: pointer to nvm update command buffer
1413  * @bytes: pointer to the data buffer
1414  * @perrno: pointer to return error code
1415  *
1416  * module, offset, data_size and data are in cmd structure
1417  **/
1418 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1419 					 struct i40e_nvm_access *cmd,
1420 					 u8 *bytes, int *perrno)
1421 {
1422 	i40e_status status = 0;
1423 	struct i40e_asq_cmd_details cmd_details;
1424 	u8 module, transaction;
1425 	bool last;
1426 
1427 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1428 	module = i40e_nvmupd_get_module(cmd->config);
1429 	last = (transaction & I40E_NVM_LCB);
1430 
1431 	memset(&cmd_details, 0, sizeof(cmd_details));
1432 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1433 
1434 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1435 				    (u16)cmd->data_size, bytes, last,
1436 				    &cmd_details);
1437 	if (status) {
1438 		i40e_debug(hw, I40E_DEBUG_NVM,
1439 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1440 			   module, cmd->offset, cmd->data_size);
1441 		i40e_debug(hw, I40E_DEBUG_NVM,
1442 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1443 			   status, hw->aq.asq_last_status);
1444 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1445 	}
1446 
1447 	return status;
1448 }
1449