1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "i40e_prototype.h"
5 
6 /**
7  * i40e_init_nvm - Initialize NVM function pointers
8  * @hw: pointer to the HW structure
9  *
10  * Setup the function pointers and the NVM info structure. Should be called
11  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
12  * Please notice that the NVM term is used here (& in all methods covered
13  * in this file) as an equivalent of the FLASH part mapped into the SR.
14  * We are accessing FLASH always thru the Shadow RAM.
15  **/
16 int i40e_init_nvm(struct i40e_hw *hw)
17 {
18 	struct i40e_nvm_info *nvm = &hw->nvm;
19 	int ret_code = 0;
20 	u32 fla, gens;
21 	u8 sr_size;
22 
23 	/* The SR size is stored regardless of the nvm programming mode
24 	 * as the blank mode may be used in the factory line.
25 	 */
26 	gens = rd32(hw, I40E_GLNVM_GENS);
27 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
28 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
29 	/* Switching to words (sr_size contains power of 2KB) */
30 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
31 
32 	/* Check if we are in the normal or blank NVM programming mode */
33 	fla = rd32(hw, I40E_GLNVM_FLA);
34 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
35 		/* Max NVM timeout */
36 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
37 		nvm->blank_nvm_mode = false;
38 	} else { /* Blank programming mode */
39 		nvm->blank_nvm_mode = true;
40 		ret_code = -EIO;
41 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
42 	}
43 
44 	return ret_code;
45 }
46 
47 /**
48  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
49  * @hw: pointer to the HW structure
50  * @access: NVM access type (read or write)
51  *
52  * This function will request NVM ownership for reading
53  * via the proper Admin Command.
54  **/
55 int i40e_acquire_nvm(struct i40e_hw *hw,
56 		     enum i40e_aq_resource_access_type access)
57 {
58 	u64 gtime, timeout;
59 	u64 time_left = 0;
60 	int ret_code = 0;
61 
62 	if (hw->nvm.blank_nvm_mode)
63 		goto i40e_i40e_acquire_nvm_exit;
64 
65 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
66 					    0, &time_left, NULL);
67 	/* Reading the Global Device Timer */
68 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
69 
70 	/* Store the timeout */
71 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
72 
73 	if (ret_code)
74 		i40e_debug(hw, I40E_DEBUG_NVM,
75 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
76 			   access, time_left, ret_code, hw->aq.asq_last_status);
77 
78 	if (ret_code && time_left) {
79 		/* Poll until the current NVM owner timeouts */
80 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
81 		while ((gtime < timeout) && time_left) {
82 			usleep_range(10000, 20000);
83 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
84 			ret_code = i40e_aq_request_resource(hw,
85 							I40E_NVM_RESOURCE_ID,
86 							access, 0, &time_left,
87 							NULL);
88 			if (!ret_code) {
89 				hw->nvm.hw_semaphore_timeout =
90 					    I40E_MS_TO_GTIME(time_left) + gtime;
91 				break;
92 			}
93 		}
94 		if (ret_code) {
95 			hw->nvm.hw_semaphore_timeout = 0;
96 			i40e_debug(hw, I40E_DEBUG_NVM,
97 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
98 				   time_left, ret_code, hw->aq.asq_last_status);
99 		}
100 	}
101 
102 i40e_i40e_acquire_nvm_exit:
103 	return ret_code;
104 }
105 
106 /**
107  * i40e_release_nvm - Generic request for releasing the NVM ownership
108  * @hw: pointer to the HW structure
109  *
110  * This function will release NVM resource via the proper Admin Command.
111  **/
112 void i40e_release_nvm(struct i40e_hw *hw)
113 {
114 	u32 total_delay = 0;
115 	int ret_code = 0;
116 
117 	if (hw->nvm.blank_nvm_mode)
118 		return;
119 
120 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
121 
122 	/* there are some rare cases when trying to release the resource
123 	 * results in an admin Q timeout, so handle them correctly
124 	 */
125 	while ((ret_code == -EIO) &&
126 	       (total_delay < hw->aq.asq_cmd_timeout)) {
127 		usleep_range(1000, 2000);
128 		ret_code = i40e_aq_release_resource(hw,
129 						    I40E_NVM_RESOURCE_ID,
130 						    0, NULL);
131 		total_delay++;
132 	}
133 }
134 
135 /**
136  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
137  * @hw: pointer to the HW structure
138  *
139  * Polls the SRCTL Shadow RAM register done bit.
140  **/
141 static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
142 {
143 	int ret_code = -EIO;
144 	u32 srctl, wait_cnt;
145 
146 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
147 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
148 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
149 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
150 			ret_code = 0;
151 			break;
152 		}
153 		udelay(5);
154 	}
155 	if (ret_code == -EIO)
156 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
157 	return ret_code;
158 }
159 
160 /**
161  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
162  * @hw: pointer to the HW structure
163  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
164  * @data: word read from the Shadow RAM
165  *
166  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
167  **/
168 static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
169 				    u16 *data)
170 {
171 	int ret_code = -EIO;
172 	u32 sr_reg;
173 
174 	if (offset >= hw->nvm.sr_size) {
175 		i40e_debug(hw, I40E_DEBUG_NVM,
176 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
177 			   offset, hw->nvm.sr_size);
178 		ret_code = -EINVAL;
179 		goto read_nvm_exit;
180 	}
181 
182 	/* Poll the done bit first */
183 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
184 	if (!ret_code) {
185 		/* Write the address and start reading */
186 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
187 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
188 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
189 
190 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
191 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
192 		if (!ret_code) {
193 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
194 			*data = (u16)((sr_reg &
195 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
196 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
197 		}
198 	}
199 	if (ret_code)
200 		i40e_debug(hw, I40E_DEBUG_NVM,
201 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
202 			   offset);
203 
204 read_nvm_exit:
205 	return ret_code;
206 }
207 
208 /**
209  * i40e_read_nvm_aq - Read Shadow RAM.
210  * @hw: pointer to the HW structure.
211  * @module_pointer: module pointer location in words from the NVM beginning
212  * @offset: offset in words from module start
213  * @words: number of words to read
214  * @data: buffer with words to read to the Shadow RAM
215  * @last_command: tells the AdminQ that this is the last command
216  *
217  * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
218  **/
219 static int i40e_read_nvm_aq(struct i40e_hw *hw,
220 			    u8 module_pointer, u32 offset,
221 			    u16 words, void *data,
222 			    bool last_command)
223 {
224 	struct i40e_asq_cmd_details cmd_details;
225 	int ret_code = -EIO;
226 
227 	memset(&cmd_details, 0, sizeof(cmd_details));
228 	cmd_details.wb_desc = &hw->nvm_wb_desc;
229 
230 	/* Here we are checking the SR limit only for the flat memory model.
231 	 * We cannot do it for the module-based model, as we did not acquire
232 	 * the NVM resource yet (we cannot get the module pointer value).
233 	 * Firmware will check the module-based model.
234 	 */
235 	if ((offset + words) > hw->nvm.sr_size)
236 		i40e_debug(hw, I40E_DEBUG_NVM,
237 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
238 			   (offset + words), hw->nvm.sr_size);
239 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
240 		/* We can read only up to 4KB (one sector), in one AQ write */
241 		i40e_debug(hw, I40E_DEBUG_NVM,
242 			   "NVM read fail error: tried to read %d words, limit is %d.\n",
243 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
244 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
245 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
246 		/* A single read cannot spread over two sectors */
247 		i40e_debug(hw, I40E_DEBUG_NVM,
248 			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
249 			   offset, words);
250 	else
251 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
252 					    2 * offset,  /*bytes*/
253 					    2 * words,   /*bytes*/
254 					    data, last_command, &cmd_details);
255 
256 	return ret_code;
257 }
258 
259 /**
260  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
261  * @hw: pointer to the HW structure
262  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
263  * @data: word read from the Shadow RAM
264  *
265  * Reads one 16 bit word from the Shadow RAM using the AdminQ
266  **/
267 static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
268 				 u16 *data)
269 {
270 	int ret_code = -EIO;
271 
272 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
273 	*data = le16_to_cpu(*(__le16 *)data);
274 
275 	return ret_code;
276 }
277 
278 /**
279  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
280  * @hw: pointer to the HW structure
281  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
282  * @data: word read from the Shadow RAM
283  *
284  * Reads one 16 bit word from the Shadow RAM.
285  *
286  * Do not use this function except in cases where the nvm lock is already
287  * taken via i40e_acquire_nvm().
288  **/
289 static int __i40e_read_nvm_word(struct i40e_hw *hw,
290 				u16 offset, u16 *data)
291 {
292 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
293 		return i40e_read_nvm_word_aq(hw, offset, data);
294 
295 	return i40e_read_nvm_word_srctl(hw, offset, data);
296 }
297 
298 /**
299  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
300  * @hw: pointer to the HW structure
301  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
302  * @data: word read from the Shadow RAM
303  *
304  * Reads one 16 bit word from the Shadow RAM.
305  **/
306 int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
307 		       u16 *data)
308 {
309 	int ret_code = 0;
310 
311 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
312 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
313 	if (ret_code)
314 		return ret_code;
315 
316 	ret_code = __i40e_read_nvm_word(hw, offset, data);
317 
318 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
319 		i40e_release_nvm(hw);
320 
321 	return ret_code;
322 }
323 
324 /**
325  * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
326  * @hw: Pointer to the HW structure
327  * @module_ptr: Pointer to module in words with respect to NVM beginning
328  * @module_offset: Offset in words from module start
329  * @data_offset: Offset in words from reading data area start
330  * @words_data_size: Words to read from NVM
331  * @data_ptr: Pointer to memory location where resulting buffer will be stored
332  **/
333 int i40e_read_nvm_module_data(struct i40e_hw *hw,
334 			      u8 module_ptr,
335 			      u16 module_offset,
336 			      u16 data_offset,
337 			      u16 words_data_size,
338 			      u16 *data_ptr)
339 {
340 	u16 specific_ptr = 0;
341 	u16 ptr_value = 0;
342 	u32 offset = 0;
343 	int status;
344 
345 	if (module_ptr != 0) {
346 		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
347 		if (status) {
348 			i40e_debug(hw, I40E_DEBUG_ALL,
349 				   "Reading nvm word failed.Error code: %d.\n",
350 				   status);
351 			return -EIO;
352 		}
353 	}
354 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF
355 #define I40E_NVM_INVALID_VAL 0xFFFF
356 
357 	/* Pointer not initialized */
358 	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
359 	    ptr_value == I40E_NVM_INVALID_VAL) {
360 		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
361 		return -EINVAL;
362 	}
363 
364 	/* Check whether the module is in SR mapped area or outside */
365 	if (ptr_value & I40E_PTR_TYPE) {
366 		/* Pointer points outside of the Shared RAM mapped area */
367 		i40e_debug(hw, I40E_DEBUG_ALL,
368 			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
369 
370 		return -EINVAL;
371 	} else {
372 		/* Read from the Shadow RAM */
373 
374 		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
375 					    &specific_ptr);
376 		if (status) {
377 			i40e_debug(hw, I40E_DEBUG_ALL,
378 				   "Reading nvm word failed.Error code: %d.\n",
379 				   status);
380 			return -EIO;
381 		}
382 
383 		offset = ptr_value + module_offset + specific_ptr +
384 			data_offset;
385 
386 		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
387 					      data_ptr);
388 		if (status) {
389 			i40e_debug(hw, I40E_DEBUG_ALL,
390 				   "Reading nvm buffer failed.Error code: %d.\n",
391 				   status);
392 		}
393 	}
394 
395 	return status;
396 }
397 
398 /**
399  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
400  * @hw: pointer to the HW structure
401  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
402  * @words: (in) number of words to read; (out) number of words actually read
403  * @data: words read from the Shadow RAM
404  *
405  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
406  * method. The buffer read is preceded by the NVM ownership take
407  * and followed by the release.
408  **/
409 static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
410 				      u16 *words, u16 *data)
411 {
412 	int ret_code = 0;
413 	u16 index, word;
414 
415 	/* Loop thru the selected region */
416 	for (word = 0; word < *words; word++) {
417 		index = offset + word;
418 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
419 		if (ret_code)
420 			break;
421 	}
422 
423 	/* Update the number of words read from the Shadow RAM */
424 	*words = word;
425 
426 	return ret_code;
427 }
428 
429 /**
430  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
431  * @hw: pointer to the HW structure
432  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
433  * @words: (in) number of words to read; (out) number of words actually read
434  * @data: words read from the Shadow RAM
435  *
436  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
437  * method. The buffer read is preceded by the NVM ownership take
438  * and followed by the release.
439  **/
440 static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
441 				   u16 *words, u16 *data)
442 {
443 	bool last_cmd = false;
444 	u16 words_read = 0;
445 	u16 read_size;
446 	int ret_code;
447 	u16 i = 0;
448 
449 	do {
450 		/* Calculate number of bytes we should read in this step.
451 		 * FVL AQ do not allow to read more than one page at a time or
452 		 * to cross page boundaries.
453 		 */
454 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
455 			read_size = min(*words,
456 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
457 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
458 		else
459 			read_size = min((*words - words_read),
460 					I40E_SR_SECTOR_SIZE_IN_WORDS);
461 
462 		/* Check if this is last command, if so set proper flag */
463 		if ((words_read + read_size) >= *words)
464 			last_cmd = true;
465 
466 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
467 					    data + words_read, last_cmd);
468 		if (ret_code)
469 			goto read_nvm_buffer_aq_exit;
470 
471 		/* Increment counter for words already read and move offset to
472 		 * new read location
473 		 */
474 		words_read += read_size;
475 		offset += read_size;
476 	} while (words_read < *words);
477 
478 	for (i = 0; i < *words; i++)
479 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
480 
481 read_nvm_buffer_aq_exit:
482 	*words = words_read;
483 	return ret_code;
484 }
485 
486 /**
487  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
488  * @hw: pointer to the HW structure
489  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
490  * @words: (in) number of words to read; (out) number of words actually read
491  * @data: words read from the Shadow RAM
492  *
493  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
494  * method.
495  **/
496 static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
497 				  u16 offset, u16 *words,
498 				  u16 *data)
499 {
500 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
501 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
502 
503 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
504 }
505 
506 /**
507  * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
508  * @hw: pointer to the HW structure
509  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
510  * @words: (in) number of words to read; (out) number of words actually read
511  * @data: words read from the Shadow RAM
512  *
513  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
514  * method. The buffer read is preceded by the NVM ownership take
515  * and followed by the release.
516  **/
517 int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
518 			 u16 *words, u16 *data)
519 {
520 	int ret_code = 0;
521 
522 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
523 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
524 		if (!ret_code) {
525 			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
526 							   data);
527 			i40e_release_nvm(hw);
528 		}
529 	} else {
530 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
531 	}
532 
533 	return ret_code;
534 }
535 
536 /**
537  * i40e_write_nvm_aq - Writes Shadow RAM.
538  * @hw: pointer to the HW structure.
539  * @module_pointer: module pointer location in words from the NVM beginning
540  * @offset: offset in words from module start
541  * @words: number of words to write
542  * @data: buffer with words to write to the Shadow RAM
543  * @last_command: tells the AdminQ that this is the last command
544  *
545  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
546  **/
547 static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
548 			     u32 offset, u16 words, void *data,
549 			     bool last_command)
550 {
551 	struct i40e_asq_cmd_details cmd_details;
552 	int ret_code = -EIO;
553 
554 	memset(&cmd_details, 0, sizeof(cmd_details));
555 	cmd_details.wb_desc = &hw->nvm_wb_desc;
556 
557 	/* Here we are checking the SR limit only for the flat memory model.
558 	 * We cannot do it for the module-based model, as we did not acquire
559 	 * the NVM resource yet (we cannot get the module pointer value).
560 	 * Firmware will check the module-based model.
561 	 */
562 	if ((offset + words) > hw->nvm.sr_size)
563 		i40e_debug(hw, I40E_DEBUG_NVM,
564 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
565 			   (offset + words), hw->nvm.sr_size);
566 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
567 		/* We can write only up to 4KB (one sector), in one AQ write */
568 		i40e_debug(hw, I40E_DEBUG_NVM,
569 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
570 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
571 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
572 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
573 		/* A single write cannot spread over two sectors */
574 		i40e_debug(hw, I40E_DEBUG_NVM,
575 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
576 			   offset, words);
577 	else
578 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
579 					      2 * offset,  /*bytes*/
580 					      2 * words,   /*bytes*/
581 					      data, last_command, 0,
582 					      &cmd_details);
583 
584 	return ret_code;
585 }
586 
587 /**
588  * i40e_calc_nvm_checksum - Calculates and returns the checksum
589  * @hw: pointer to hardware structure
590  * @checksum: pointer to the checksum
591  *
592  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
593  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
594  * is customer specific and unknown. Therefore, this function skips all maximum
595  * possible size of VPD (1kB).
596  **/
597 static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
598 				  u16 *checksum)
599 {
600 	struct i40e_virt_mem vmem;
601 	u16 pcie_alt_module = 0;
602 	u16 checksum_local = 0;
603 	u16 vpd_module = 0;
604 	int ret_code;
605 	u16 *data;
606 	u16 i = 0;
607 
608 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
609 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
610 	if (ret_code)
611 		goto i40e_calc_nvm_checksum_exit;
612 	data = (u16 *)vmem.va;
613 
614 	/* read pointer to VPD area */
615 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
616 	if (ret_code) {
617 		ret_code = -EIO;
618 		goto i40e_calc_nvm_checksum_exit;
619 	}
620 
621 	/* read pointer to PCIe Alt Auto-load module */
622 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
623 					&pcie_alt_module);
624 	if (ret_code) {
625 		ret_code = -EIO;
626 		goto i40e_calc_nvm_checksum_exit;
627 	}
628 
629 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
630 	 * except the VPD and PCIe ALT Auto-load modules
631 	 */
632 	for (i = 0; i < hw->nvm.sr_size; i++) {
633 		/* Read SR page */
634 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
635 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
636 
637 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
638 			if (ret_code) {
639 				ret_code = -EIO;
640 				goto i40e_calc_nvm_checksum_exit;
641 			}
642 		}
643 
644 		/* Skip Checksum word */
645 		if (i == I40E_SR_SW_CHECKSUM_WORD)
646 			continue;
647 		/* Skip VPD module (convert byte size to word count) */
648 		if ((i >= (u32)vpd_module) &&
649 		    (i < ((u32)vpd_module +
650 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
651 			continue;
652 		}
653 		/* Skip PCIe ALT module (convert byte size to word count) */
654 		if ((i >= (u32)pcie_alt_module) &&
655 		    (i < ((u32)pcie_alt_module +
656 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
657 			continue;
658 		}
659 
660 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
661 	}
662 
663 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
664 
665 i40e_calc_nvm_checksum_exit:
666 	i40e_free_virt_mem(hw, &vmem);
667 	return ret_code;
668 }
669 
670 /**
671  * i40e_update_nvm_checksum - Updates the NVM checksum
672  * @hw: pointer to hardware structure
673  *
674  * NVM ownership must be acquired before calling this function and released
675  * on ARQ completion event reception by caller.
676  * This function will commit SR to NVM.
677  **/
678 int i40e_update_nvm_checksum(struct i40e_hw *hw)
679 {
680 	__le16 le_sum;
681 	int ret_code;
682 	u16 checksum;
683 
684 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
685 	if (!ret_code) {
686 		le_sum = cpu_to_le16(checksum);
687 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
688 					     1, &le_sum, true);
689 	}
690 
691 	return ret_code;
692 }
693 
694 /**
695  * i40e_validate_nvm_checksum - Validate EEPROM checksum
696  * @hw: pointer to hardware structure
697  * @checksum: calculated checksum
698  *
699  * Performs checksum calculation and validates the NVM SW checksum. If the
700  * caller does not need checksum, the value can be NULL.
701  **/
702 int i40e_validate_nvm_checksum(struct i40e_hw *hw,
703 			       u16 *checksum)
704 {
705 	u16 checksum_local = 0;
706 	u16 checksum_sr = 0;
707 	int ret_code = 0;
708 
709 	/* We must acquire the NVM lock in order to correctly synchronize the
710 	 * NVM accesses across multiple PFs. Without doing so it is possible
711 	 * for one of the PFs to read invalid data potentially indicating that
712 	 * the checksum is invalid.
713 	 */
714 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
715 	if (ret_code)
716 		return ret_code;
717 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
718 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
719 	i40e_release_nvm(hw);
720 	if (ret_code)
721 		return ret_code;
722 
723 	/* Verify read checksum from EEPROM is the same as
724 	 * calculated checksum
725 	 */
726 	if (checksum_local != checksum_sr)
727 		ret_code = -EIO;
728 
729 	/* If the user cares, return the calculated checksum */
730 	if (checksum)
731 		*checksum = checksum_local;
732 
733 	return ret_code;
734 }
735 
736 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
737 				  struct i40e_nvm_access *cmd,
738 				  u8 *bytes, int *perrno);
739 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
740 				     struct i40e_nvm_access *cmd,
741 				     u8 *bytes, int *perrno);
742 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
743 				     struct i40e_nvm_access *cmd,
744 				     u8 *bytes, int *errno);
745 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
746 						struct i40e_nvm_access *cmd,
747 						int *perrno);
748 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
749 				 struct i40e_nvm_access *cmd,
750 				 int *perrno);
751 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
752 				 struct i40e_nvm_access *cmd,
753 				 u8 *bytes, int *perrno);
754 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
755 				struct i40e_nvm_access *cmd,
756 				u8 *bytes, int *perrno);
757 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
758 			       struct i40e_nvm_access *cmd,
759 			       u8 *bytes, int *perrno);
760 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
761 				     struct i40e_nvm_access *cmd,
762 				     u8 *bytes, int *perrno);
763 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
764 				    struct i40e_nvm_access *cmd,
765 				    u8 *bytes, int *perrno);
766 static inline u8 i40e_nvmupd_get_module(u32 val)
767 {
768 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
769 }
770 static inline u8 i40e_nvmupd_get_transaction(u32 val)
771 {
772 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
773 }
774 
775 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
776 {
777 	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
778 		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
779 }
780 
781 static const char * const i40e_nvm_update_state_str[] = {
782 	"I40E_NVMUPD_INVALID",
783 	"I40E_NVMUPD_READ_CON",
784 	"I40E_NVMUPD_READ_SNT",
785 	"I40E_NVMUPD_READ_LCB",
786 	"I40E_NVMUPD_READ_SA",
787 	"I40E_NVMUPD_WRITE_ERA",
788 	"I40E_NVMUPD_WRITE_CON",
789 	"I40E_NVMUPD_WRITE_SNT",
790 	"I40E_NVMUPD_WRITE_LCB",
791 	"I40E_NVMUPD_WRITE_SA",
792 	"I40E_NVMUPD_CSUM_CON",
793 	"I40E_NVMUPD_CSUM_SA",
794 	"I40E_NVMUPD_CSUM_LCB",
795 	"I40E_NVMUPD_STATUS",
796 	"I40E_NVMUPD_EXEC_AQ",
797 	"I40E_NVMUPD_GET_AQ_RESULT",
798 	"I40E_NVMUPD_GET_AQ_EVENT",
799 };
800 
801 /**
802  * i40e_nvmupd_command - Process an NVM update command
803  * @hw: pointer to hardware structure
804  * @cmd: pointer to nvm update command
805  * @bytes: pointer to the data buffer
806  * @perrno: pointer to return error code
807  *
808  * Dispatches command depending on what update state is current
809  **/
810 int i40e_nvmupd_command(struct i40e_hw *hw,
811 			struct i40e_nvm_access *cmd,
812 			u8 *bytes, int *perrno)
813 {
814 	enum i40e_nvmupd_cmd upd_cmd;
815 	int status;
816 
817 	/* assume success */
818 	*perrno = 0;
819 
820 	/* early check for status command and debug msgs */
821 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
822 
823 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
824 		   i40e_nvm_update_state_str[upd_cmd],
825 		   hw->nvmupd_state,
826 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
827 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
828 
829 	if (upd_cmd == I40E_NVMUPD_INVALID) {
830 		*perrno = -EFAULT;
831 		i40e_debug(hw, I40E_DEBUG_NVM,
832 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
833 			   upd_cmd, *perrno);
834 	}
835 
836 	/* a status request returns immediately rather than
837 	 * going into the state machine
838 	 */
839 	if (upd_cmd == I40E_NVMUPD_STATUS) {
840 		if (!cmd->data_size) {
841 			*perrno = -EFAULT;
842 			return -EINVAL;
843 		}
844 
845 		bytes[0] = hw->nvmupd_state;
846 
847 		if (cmd->data_size >= 4) {
848 			bytes[1] = 0;
849 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
850 		}
851 
852 		/* Clear error status on read */
853 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
854 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
855 
856 		return 0;
857 	}
858 
859 	/* Clear status even it is not read and log */
860 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
861 		i40e_debug(hw, I40E_DEBUG_NVM,
862 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
863 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
864 	}
865 
866 	/* Acquire lock to prevent race condition where adminq_task
867 	 * can execute after i40e_nvmupd_nvm_read/write but before state
868 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
869 	 *
870 	 * During NVMUpdate, it is observed that lock could be held for
871 	 * ~5ms for most commands. However lock is held for ~60ms for
872 	 * NVMUPD_CSUM_LCB command.
873 	 */
874 	mutex_lock(&hw->aq.arq_mutex);
875 	switch (hw->nvmupd_state) {
876 	case I40E_NVMUPD_STATE_INIT:
877 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
878 		break;
879 
880 	case I40E_NVMUPD_STATE_READING:
881 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
882 		break;
883 
884 	case I40E_NVMUPD_STATE_WRITING:
885 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
886 		break;
887 
888 	case I40E_NVMUPD_STATE_INIT_WAIT:
889 	case I40E_NVMUPD_STATE_WRITE_WAIT:
890 		/* if we need to stop waiting for an event, clear
891 		 * the wait info and return before doing anything else
892 		 */
893 		if (cmd->offset == 0xffff) {
894 			i40e_nvmupd_clear_wait_state(hw);
895 			status = 0;
896 			break;
897 		}
898 
899 		status = -EBUSY;
900 		*perrno = -EBUSY;
901 		break;
902 
903 	default:
904 		/* invalid state, should never happen */
905 		i40e_debug(hw, I40E_DEBUG_NVM,
906 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
907 		status = -EOPNOTSUPP;
908 		*perrno = -ESRCH;
909 		break;
910 	}
911 
912 	mutex_unlock(&hw->aq.arq_mutex);
913 	return status;
914 }
915 
916 /**
917  * i40e_nvmupd_state_init - Handle NVM update state Init
918  * @hw: pointer to hardware structure
919  * @cmd: pointer to nvm update command buffer
920  * @bytes: pointer to the data buffer
921  * @perrno: pointer to return error code
922  *
923  * Process legitimate commands of the Init state and conditionally set next
924  * state. Reject all other commands.
925  **/
926 static int i40e_nvmupd_state_init(struct i40e_hw *hw,
927 				  struct i40e_nvm_access *cmd,
928 				  u8 *bytes, int *perrno)
929 {
930 	enum i40e_nvmupd_cmd upd_cmd;
931 	int status = 0;
932 
933 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
934 
935 	switch (upd_cmd) {
936 	case I40E_NVMUPD_READ_SA:
937 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
938 		if (status) {
939 			*perrno = i40e_aq_rc_to_posix(status,
940 						     hw->aq.asq_last_status);
941 		} else {
942 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
943 			i40e_release_nvm(hw);
944 		}
945 		break;
946 
947 	case I40E_NVMUPD_READ_SNT:
948 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
949 		if (status) {
950 			*perrno = i40e_aq_rc_to_posix(status,
951 						     hw->aq.asq_last_status);
952 		} else {
953 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
954 			if (status)
955 				i40e_release_nvm(hw);
956 			else
957 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
958 		}
959 		break;
960 
961 	case I40E_NVMUPD_WRITE_ERA:
962 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
963 		if (status) {
964 			*perrno = i40e_aq_rc_to_posix(status,
965 						     hw->aq.asq_last_status);
966 		} else {
967 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
968 			if (status) {
969 				i40e_release_nvm(hw);
970 			} else {
971 				hw->nvm_release_on_done = true;
972 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
973 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
974 			}
975 		}
976 		break;
977 
978 	case I40E_NVMUPD_WRITE_SA:
979 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
980 		if (status) {
981 			*perrno = i40e_aq_rc_to_posix(status,
982 						     hw->aq.asq_last_status);
983 		} else {
984 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
985 			if (status) {
986 				i40e_release_nvm(hw);
987 			} else {
988 				hw->nvm_release_on_done = true;
989 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
990 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
991 			}
992 		}
993 		break;
994 
995 	case I40E_NVMUPD_WRITE_SNT:
996 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
997 		if (status) {
998 			*perrno = i40e_aq_rc_to_posix(status,
999 						     hw->aq.asq_last_status);
1000 		} else {
1001 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002 			if (status) {
1003 				i40e_release_nvm(hw);
1004 			} else {
1005 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007 			}
1008 		}
1009 		break;
1010 
1011 	case I40E_NVMUPD_CSUM_SA:
1012 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013 		if (status) {
1014 			*perrno = i40e_aq_rc_to_posix(status,
1015 						     hw->aq.asq_last_status);
1016 		} else {
1017 			status = i40e_update_nvm_checksum(hw);
1018 			if (status) {
1019 				*perrno = hw->aq.asq_last_status ?
1020 				   i40e_aq_rc_to_posix(status,
1021 						       hw->aq.asq_last_status) :
1022 				   -EIO;
1023 				i40e_release_nvm(hw);
1024 			} else {
1025 				hw->nvm_release_on_done = true;
1026 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028 			}
1029 		}
1030 		break;
1031 
1032 	case I40E_NVMUPD_EXEC_AQ:
1033 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034 		break;
1035 
1036 	case I40E_NVMUPD_GET_AQ_RESULT:
1037 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038 		break;
1039 
1040 	case I40E_NVMUPD_GET_AQ_EVENT:
1041 		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042 		break;
1043 
1044 	default:
1045 		i40e_debug(hw, I40E_DEBUG_NVM,
1046 			   "NVMUPD: bad cmd %s in init state\n",
1047 			   i40e_nvm_update_state_str[upd_cmd]);
1048 		status = -EIO;
1049 		*perrno = -ESRCH;
1050 		break;
1051 	}
1052 	return status;
1053 }
1054 
1055 /**
1056  * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057  * @hw: pointer to hardware structure
1058  * @cmd: pointer to nvm update command buffer
1059  * @bytes: pointer to the data buffer
1060  * @perrno: pointer to return error code
1061  *
1062  * NVM ownership is already held.  Process legitimate commands and set any
1063  * change in state; reject all other commands.
1064  **/
1065 static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066 				     struct i40e_nvm_access *cmd,
1067 				     u8 *bytes, int *perrno)
1068 {
1069 	enum i40e_nvmupd_cmd upd_cmd;
1070 	int status = 0;
1071 
1072 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073 
1074 	switch (upd_cmd) {
1075 	case I40E_NVMUPD_READ_SA:
1076 	case I40E_NVMUPD_READ_CON:
1077 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078 		break;
1079 
1080 	case I40E_NVMUPD_READ_LCB:
1081 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082 		i40e_release_nvm(hw);
1083 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084 		break;
1085 
1086 	default:
1087 		i40e_debug(hw, I40E_DEBUG_NVM,
1088 			   "NVMUPD: bad cmd %s in reading state.\n",
1089 			   i40e_nvm_update_state_str[upd_cmd]);
1090 		status = -EOPNOTSUPP;
1091 		*perrno = -ESRCH;
1092 		break;
1093 	}
1094 	return status;
1095 }
1096 
1097 /**
1098  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099  * @hw: pointer to hardware structure
1100  * @cmd: pointer to nvm update command buffer
1101  * @bytes: pointer to the data buffer
1102  * @perrno: pointer to return error code
1103  *
1104  * NVM ownership is already held.  Process legitimate commands and set any
1105  * change in state; reject all other commands
1106  **/
1107 static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108 				     struct i40e_nvm_access *cmd,
1109 				     u8 *bytes, int *perrno)
1110 {
1111 	enum i40e_nvmupd_cmd upd_cmd;
1112 	bool retry_attempt = false;
1113 	int status = 0;
1114 
1115 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116 
1117 retry:
1118 	switch (upd_cmd) {
1119 	case I40E_NVMUPD_WRITE_CON:
1120 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121 		if (!status) {
1122 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124 		}
1125 		break;
1126 
1127 	case I40E_NVMUPD_WRITE_LCB:
1128 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129 		if (status) {
1130 			*perrno = hw->aq.asq_last_status ?
1131 				   i40e_aq_rc_to_posix(status,
1132 						       hw->aq.asq_last_status) :
1133 				   -EIO;
1134 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135 		} else {
1136 			hw->nvm_release_on_done = true;
1137 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139 		}
1140 		break;
1141 
1142 	case I40E_NVMUPD_CSUM_CON:
1143 		/* Assumes the caller has acquired the nvm */
1144 		status = i40e_update_nvm_checksum(hw);
1145 		if (status) {
1146 			*perrno = hw->aq.asq_last_status ?
1147 				   i40e_aq_rc_to_posix(status,
1148 						       hw->aq.asq_last_status) :
1149 				   -EIO;
1150 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151 		} else {
1152 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154 		}
1155 		break;
1156 
1157 	case I40E_NVMUPD_CSUM_LCB:
1158 		/* Assumes the caller has acquired the nvm */
1159 		status = i40e_update_nvm_checksum(hw);
1160 		if (status) {
1161 			*perrno = hw->aq.asq_last_status ?
1162 				   i40e_aq_rc_to_posix(status,
1163 						       hw->aq.asq_last_status) :
1164 				   -EIO;
1165 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166 		} else {
1167 			hw->nvm_release_on_done = true;
1168 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170 		}
1171 		break;
1172 
1173 	default:
1174 		i40e_debug(hw, I40E_DEBUG_NVM,
1175 			   "NVMUPD: bad cmd %s in writing state.\n",
1176 			   i40e_nvm_update_state_str[upd_cmd]);
1177 		status = -EOPNOTSUPP;
1178 		*perrno = -ESRCH;
1179 		break;
1180 	}
1181 
1182 	/* In some circumstances, a multi-write transaction takes longer
1183 	 * than the default 3 minute timeout on the write semaphore.  If
1184 	 * the write failed with an EBUSY status, this is likely the problem,
1185 	 * so here we try to reacquire the semaphore then retry the write.
1186 	 * We only do one retry, then give up.
1187 	 */
1188 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189 	    !retry_attempt) {
1190 		u32 old_asq_status = hw->aq.asq_last_status;
1191 		int old_status = status;
1192 		u32 gtime;
1193 
1194 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196 			i40e_debug(hw, I40E_DEBUG_ALL,
1197 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198 				   gtime, hw->nvm.hw_semaphore_timeout);
1199 			i40e_release_nvm(hw);
1200 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201 			if (status) {
1202 				i40e_debug(hw, I40E_DEBUG_ALL,
1203 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204 					   hw->aq.asq_last_status);
1205 				status = old_status;
1206 				hw->aq.asq_last_status = old_asq_status;
1207 			} else {
1208 				retry_attempt = true;
1209 				goto retry;
1210 			}
1211 		}
1212 	}
1213 
1214 	return status;
1215 }
1216 
1217 /**
1218  * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219  * @hw: pointer to the hardware structure
1220  **/
1221 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222 {
1223 	i40e_debug(hw, I40E_DEBUG_NVM,
1224 		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1225 		   hw->nvm_wait_opcode);
1226 
1227 	if (hw->nvm_release_on_done) {
1228 		i40e_release_nvm(hw);
1229 		hw->nvm_release_on_done = false;
1230 	}
1231 	hw->nvm_wait_opcode = 0;
1232 
1233 	if (hw->aq.arq_last_status) {
1234 		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235 		return;
1236 	}
1237 
1238 	switch (hw->nvmupd_state) {
1239 	case I40E_NVMUPD_STATE_INIT_WAIT:
1240 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241 		break;
1242 
1243 	case I40E_NVMUPD_STATE_WRITE_WAIT:
1244 		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245 		break;
1246 
1247 	default:
1248 		break;
1249 	}
1250 }
1251 
1252 /**
1253  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254  * @hw: pointer to the hardware structure
1255  * @opcode: the event that just happened
1256  * @desc: AdminQ descriptor
1257  **/
1258 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259 				  struct i40e_aq_desc *desc)
1260 {
1261 	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262 
1263 	if (opcode == hw->nvm_wait_opcode) {
1264 		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265 		i40e_nvmupd_clear_wait_state(hw);
1266 	}
1267 }
1268 
1269 /**
1270  * i40e_nvmupd_validate_command - Validate given command
1271  * @hw: pointer to hardware structure
1272  * @cmd: pointer to nvm update command buffer
1273  * @perrno: pointer to return error code
1274  *
1275  * Return one of the valid command types or I40E_NVMUPD_INVALID
1276  **/
1277 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278 						 struct i40e_nvm_access *cmd,
1279 						 int *perrno)
1280 {
1281 	enum i40e_nvmupd_cmd upd_cmd;
1282 	u8 module, transaction;
1283 
1284 	/* anything that doesn't match a recognized case is an error */
1285 	upd_cmd = I40E_NVMUPD_INVALID;
1286 
1287 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1288 	module = i40e_nvmupd_get_module(cmd->config);
1289 
1290 	/* limits on data size */
1291 	if ((cmd->data_size < 1) ||
1292 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293 		i40e_debug(hw, I40E_DEBUG_NVM,
1294 			   "i40e_nvmupd_validate_command data_size %d\n",
1295 			   cmd->data_size);
1296 		*perrno = -EFAULT;
1297 		return I40E_NVMUPD_INVALID;
1298 	}
1299 
1300 	switch (cmd->command) {
1301 	case I40E_NVM_READ:
1302 		switch (transaction) {
1303 		case I40E_NVM_CON:
1304 			upd_cmd = I40E_NVMUPD_READ_CON;
1305 			break;
1306 		case I40E_NVM_SNT:
1307 			upd_cmd = I40E_NVMUPD_READ_SNT;
1308 			break;
1309 		case I40E_NVM_LCB:
1310 			upd_cmd = I40E_NVMUPD_READ_LCB;
1311 			break;
1312 		case I40E_NVM_SA:
1313 			upd_cmd = I40E_NVMUPD_READ_SA;
1314 			break;
1315 		case I40E_NVM_EXEC:
1316 			if (module == 0xf)
1317 				upd_cmd = I40E_NVMUPD_STATUS;
1318 			else if (module == 0)
1319 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320 			break;
1321 		case I40E_NVM_AQE:
1322 			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323 			break;
1324 		}
1325 		break;
1326 
1327 	case I40E_NVM_WRITE:
1328 		switch (transaction) {
1329 		case I40E_NVM_CON:
1330 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1331 			break;
1332 		case I40E_NVM_SNT:
1333 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334 			break;
1335 		case I40E_NVM_LCB:
1336 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337 			break;
1338 		case I40E_NVM_SA:
1339 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1340 			break;
1341 		case I40E_NVM_ERA:
1342 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343 			break;
1344 		case I40E_NVM_CSUM:
1345 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1346 			break;
1347 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1348 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1349 			break;
1350 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352 			break;
1353 		case I40E_NVM_EXEC:
1354 			if (module == 0)
1355 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356 			break;
1357 		}
1358 		break;
1359 	}
1360 
1361 	return upd_cmd;
1362 }
1363 
1364 /**
1365  * i40e_nvmupd_exec_aq - Run an AQ command
1366  * @hw: pointer to hardware structure
1367  * @cmd: pointer to nvm update command buffer
1368  * @bytes: pointer to the data buffer
1369  * @perrno: pointer to return error code
1370  *
1371  * cmd structure contains identifiers and data buffer
1372  **/
1373 static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374 			       struct i40e_nvm_access *cmd,
1375 			       u8 *bytes, int *perrno)
1376 {
1377 	struct i40e_asq_cmd_details cmd_details;
1378 	struct i40e_aq_desc *aq_desc;
1379 	u32 buff_size = 0;
1380 	u8 *buff = NULL;
1381 	u32 aq_desc_len;
1382 	u32 aq_data_len;
1383 	int status;
1384 
1385 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386 	if (cmd->offset == 0xffff)
1387 		return 0;
1388 
1389 	memset(&cmd_details, 0, sizeof(cmd_details));
1390 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1391 
1392 	aq_desc_len = sizeof(struct i40e_aq_desc);
1393 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394 
1395 	/* get the aq descriptor */
1396 	if (cmd->data_size < aq_desc_len) {
1397 		i40e_debug(hw, I40E_DEBUG_NVM,
1398 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399 			   cmd->data_size, aq_desc_len);
1400 		*perrno = -EINVAL;
1401 		return -EINVAL;
1402 	}
1403 	aq_desc = (struct i40e_aq_desc *)bytes;
1404 
1405 	/* if data buffer needed, make sure it's ready */
1406 	aq_data_len = cmd->data_size - aq_desc_len;
1407 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408 	if (buff_size) {
1409 		if (!hw->nvm_buff.va) {
1410 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411 							hw->aq.asq_buf_size);
1412 			if (status)
1413 				i40e_debug(hw, I40E_DEBUG_NVM,
1414 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415 					   status);
1416 		}
1417 
1418 		if (hw->nvm_buff.va) {
1419 			buff = hw->nvm_buff.va;
1420 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421 		}
1422 	}
1423 
1424 	if (cmd->offset)
1425 		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426 
1427 	/* and away we go! */
1428 	status = i40e_asq_send_command(hw, aq_desc, buff,
1429 				       buff_size, &cmd_details);
1430 	if (status) {
1431 		i40e_debug(hw, I40E_DEBUG_NVM,
1432 			   "%s err %pe aq_err %s\n",
1433 			   __func__, ERR_PTR(status),
1434 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1435 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436 		return status;
1437 	}
1438 
1439 	/* should we wait for a followup event? */
1440 	if (cmd->offset) {
1441 		hw->nvm_wait_opcode = cmd->offset;
1442 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443 	}
1444 
1445 	return status;
1446 }
1447 
1448 /**
1449  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450  * @hw: pointer to hardware structure
1451  * @cmd: pointer to nvm update command buffer
1452  * @bytes: pointer to the data buffer
1453  * @perrno: pointer to return error code
1454  *
1455  * cmd structure contains identifiers and data buffer
1456  **/
1457 static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458 				     struct i40e_nvm_access *cmd,
1459 				     u8 *bytes, int *perrno)
1460 {
1461 	u32 aq_total_len;
1462 	u32 aq_desc_len;
1463 	int remainder;
1464 	u8 *buff;
1465 
1466 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467 
1468 	aq_desc_len = sizeof(struct i40e_aq_desc);
1469 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470 
1471 	/* check offset range */
1472 	if (cmd->offset > aq_total_len) {
1473 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474 			   __func__, cmd->offset, aq_total_len);
1475 		*perrno = -EINVAL;
1476 		return -EINVAL;
1477 	}
1478 
1479 	/* check copylength range */
1480 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481 		int new_len = aq_total_len - cmd->offset;
1482 
1483 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484 			   __func__, cmd->data_size, new_len);
1485 		cmd->data_size = new_len;
1486 	}
1487 
1488 	remainder = cmd->data_size;
1489 	if (cmd->offset < aq_desc_len) {
1490 		u32 len = aq_desc_len - cmd->offset;
1491 
1492 		len = min(len, cmd->data_size);
1493 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494 			   __func__, cmd->offset, cmd->offset + len);
1495 
1496 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497 		memcpy(bytes, buff, len);
1498 
1499 		bytes += len;
1500 		remainder -= len;
1501 		buff = hw->nvm_buff.va;
1502 	} else {
1503 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504 	}
1505 
1506 	if (remainder > 0) {
1507 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508 
1509 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510 			   __func__, start_byte, start_byte + remainder);
1511 		memcpy(bytes, buff, remainder);
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /**
1518  * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519  * @hw: pointer to hardware structure
1520  * @cmd: pointer to nvm update command buffer
1521  * @bytes: pointer to the data buffer
1522  * @perrno: pointer to return error code
1523  *
1524  * cmd structure contains identifiers and data buffer
1525  **/
1526 static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527 				    struct i40e_nvm_access *cmd,
1528 				    u8 *bytes, int *perrno)
1529 {
1530 	u32 aq_total_len;
1531 	u32 aq_desc_len;
1532 
1533 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534 
1535 	aq_desc_len = sizeof(struct i40e_aq_desc);
1536 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537 
1538 	/* check copylength range */
1539 	if (cmd->data_size > aq_total_len) {
1540 		i40e_debug(hw, I40E_DEBUG_NVM,
1541 			   "%s: copy length %d too big, trimming to %d\n",
1542 			   __func__, cmd->data_size, aq_total_len);
1543 		cmd->data_size = aq_total_len;
1544 	}
1545 
1546 	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547 
1548 	return 0;
1549 }
1550 
1551 /**
1552  * i40e_nvmupd_nvm_read - Read NVM
1553  * @hw: pointer to hardware structure
1554  * @cmd: pointer to nvm update command buffer
1555  * @bytes: pointer to the data buffer
1556  * @perrno: pointer to return error code
1557  *
1558  * cmd structure contains identifiers and data buffer
1559  **/
1560 static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561 				struct i40e_nvm_access *cmd,
1562 				u8 *bytes, int *perrno)
1563 {
1564 	struct i40e_asq_cmd_details cmd_details;
1565 	u8 module, transaction;
1566 	int status;
1567 	bool last;
1568 
1569 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1570 	module = i40e_nvmupd_get_module(cmd->config);
1571 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572 
1573 	memset(&cmd_details, 0, sizeof(cmd_details));
1574 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575 
1576 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577 				  bytes, last, &cmd_details);
1578 	if (status) {
1579 		i40e_debug(hw, I40E_DEBUG_NVM,
1580 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1581 			   module, cmd->offset, cmd->data_size);
1582 		i40e_debug(hw, I40E_DEBUG_NVM,
1583 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1584 			   status, hw->aq.asq_last_status);
1585 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586 	}
1587 
1588 	return status;
1589 }
1590 
1591 /**
1592  * i40e_nvmupd_nvm_erase - Erase an NVM module
1593  * @hw: pointer to hardware structure
1594  * @cmd: pointer to nvm update command buffer
1595  * @perrno: pointer to return error code
1596  *
1597  * module, offset, data_size and data are in cmd structure
1598  **/
1599 static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600 				 struct i40e_nvm_access *cmd,
1601 				 int *perrno)
1602 {
1603 	struct i40e_asq_cmd_details cmd_details;
1604 	u8 module, transaction;
1605 	int status = 0;
1606 	bool last;
1607 
1608 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1609 	module = i40e_nvmupd_get_module(cmd->config);
1610 	last = (transaction & I40E_NVM_LCB);
1611 
1612 	memset(&cmd_details, 0, sizeof(cmd_details));
1613 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1614 
1615 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616 				   last, &cmd_details);
1617 	if (status) {
1618 		i40e_debug(hw, I40E_DEBUG_NVM,
1619 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1620 			   module, cmd->offset, cmd->data_size);
1621 		i40e_debug(hw, I40E_DEBUG_NVM,
1622 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623 			   status, hw->aq.asq_last_status);
1624 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625 	}
1626 
1627 	return status;
1628 }
1629 
1630 /**
1631  * i40e_nvmupd_nvm_write - Write NVM
1632  * @hw: pointer to hardware structure
1633  * @cmd: pointer to nvm update command buffer
1634  * @bytes: pointer to the data buffer
1635  * @perrno: pointer to return error code
1636  *
1637  * module, offset, data_size and data are in cmd structure
1638  **/
1639 static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640 				 struct i40e_nvm_access *cmd,
1641 				 u8 *bytes, int *perrno)
1642 {
1643 	struct i40e_asq_cmd_details cmd_details;
1644 	u8 module, transaction;
1645 	u8 preservation_flags;
1646 	int status = 0;
1647 	bool last;
1648 
1649 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1650 	module = i40e_nvmupd_get_module(cmd->config);
1651 	last = (transaction & I40E_NVM_LCB);
1652 	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653 
1654 	memset(&cmd_details, 0, sizeof(cmd_details));
1655 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1656 
1657 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658 				    (u16)cmd->data_size, bytes, last,
1659 				    preservation_flags, &cmd_details);
1660 	if (status) {
1661 		i40e_debug(hw, I40E_DEBUG_NVM,
1662 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663 			   module, cmd->offset, cmd->data_size);
1664 		i40e_debug(hw, I40E_DEBUG_NVM,
1665 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1666 			   status, hw->aq.asq_last_status);
1667 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668 	}
1669 
1670 	return status;
1671 }
1672