1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "i40e_prototype.h" 5 6 /** 7 * i40e_init_nvm_ops - Initialize NVM function pointers 8 * @hw: pointer to the HW structure 9 * 10 * Setup the function pointers and the NVM info structure. Should be called 11 * once per NVM initialization, e.g. inside the i40e_init_shared_code(). 12 * Please notice that the NVM term is used here (& in all methods covered 13 * in this file) as an equivalent of the FLASH part mapped into the SR. 14 * We are accessing FLASH always thru the Shadow RAM. 15 **/ 16 i40e_status i40e_init_nvm(struct i40e_hw *hw) 17 { 18 struct i40e_nvm_info *nvm = &hw->nvm; 19 i40e_status ret_code = 0; 20 u32 fla, gens; 21 u8 sr_size; 22 23 /* The SR size is stored regardless of the nvm programming mode 24 * as the blank mode may be used in the factory line. 25 */ 26 gens = rd32(hw, I40E_GLNVM_GENS); 27 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> 28 I40E_GLNVM_GENS_SR_SIZE_SHIFT); 29 /* Switching to words (sr_size contains power of 2KB) */ 30 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; 31 32 /* Check if we are in the normal or blank NVM programming mode */ 33 fla = rd32(hw, I40E_GLNVM_FLA); 34 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ 35 /* Max NVM timeout */ 36 nvm->timeout = I40E_MAX_NVM_TIMEOUT; 37 nvm->blank_nvm_mode = false; 38 } else { /* Blank programming mode */ 39 nvm->blank_nvm_mode = true; 40 ret_code = I40E_ERR_NVM_BLANK_MODE; 41 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); 42 } 43 44 return ret_code; 45 } 46 47 /** 48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership 49 * @hw: pointer to the HW structure 50 * @access: NVM access type (read or write) 51 * 52 * This function will request NVM ownership for reading 53 * via the proper Admin Command. 54 **/ 55 i40e_status i40e_acquire_nvm(struct i40e_hw *hw, 56 enum i40e_aq_resource_access_type access) 57 { 58 i40e_status ret_code = 0; 59 u64 gtime, timeout; 60 u64 time_left = 0; 61 62 if (hw->nvm.blank_nvm_mode) 63 goto i40e_i40e_acquire_nvm_exit; 64 65 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 66 0, &time_left, NULL); 67 /* Reading the Global Device Timer */ 68 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 69 70 /* Store the timeout */ 71 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; 72 73 if (ret_code) 74 i40e_debug(hw, I40E_DEBUG_NVM, 75 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", 76 access, time_left, ret_code, hw->aq.asq_last_status); 77 78 if (ret_code && time_left) { 79 /* Poll until the current NVM owner timeouts */ 80 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; 81 while ((gtime < timeout) && time_left) { 82 usleep_range(10000, 20000); 83 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 84 ret_code = i40e_aq_request_resource(hw, 85 I40E_NVM_RESOURCE_ID, 86 access, 0, &time_left, 87 NULL); 88 if (!ret_code) { 89 hw->nvm.hw_semaphore_timeout = 90 I40E_MS_TO_GTIME(time_left) + gtime; 91 break; 92 } 93 } 94 if (ret_code) { 95 hw->nvm.hw_semaphore_timeout = 0; 96 i40e_debug(hw, I40E_DEBUG_NVM, 97 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", 98 time_left, ret_code, hw->aq.asq_last_status); 99 } 100 } 101 102 i40e_i40e_acquire_nvm_exit: 103 return ret_code; 104 } 105 106 /** 107 * i40e_release_nvm - Generic request for releasing the NVM ownership 108 * @hw: pointer to the HW structure 109 * 110 * This function will release NVM resource via the proper Admin Command. 111 **/ 112 void i40e_release_nvm(struct i40e_hw *hw) 113 { 114 i40e_status ret_code = I40E_SUCCESS; 115 u32 total_delay = 0; 116 117 if (hw->nvm.blank_nvm_mode) 118 return; 119 120 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); 121 122 /* there are some rare cases when trying to release the resource 123 * results in an admin Q timeout, so handle them correctly 124 */ 125 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) && 126 (total_delay < hw->aq.asq_cmd_timeout)) { 127 usleep_range(1000, 2000); 128 ret_code = i40e_aq_release_resource(hw, 129 I40E_NVM_RESOURCE_ID, 130 0, NULL); 131 total_delay++; 132 } 133 } 134 135 /** 136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit 137 * @hw: pointer to the HW structure 138 * 139 * Polls the SRCTL Shadow RAM register done bit. 140 **/ 141 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) 142 { 143 i40e_status ret_code = I40E_ERR_TIMEOUT; 144 u32 srctl, wait_cnt; 145 146 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ 147 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { 148 srctl = rd32(hw, I40E_GLNVM_SRCTL); 149 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { 150 ret_code = 0; 151 break; 152 } 153 udelay(5); 154 } 155 if (ret_code == I40E_ERR_TIMEOUT) 156 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); 157 return ret_code; 158 } 159 160 /** 161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register 162 * @hw: pointer to the HW structure 163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 164 * @data: word read from the Shadow RAM 165 * 166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 167 **/ 168 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, 169 u16 *data) 170 { 171 i40e_status ret_code = I40E_ERR_TIMEOUT; 172 u32 sr_reg; 173 174 if (offset >= hw->nvm.sr_size) { 175 i40e_debug(hw, I40E_DEBUG_NVM, 176 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 177 offset, hw->nvm.sr_size); 178 ret_code = I40E_ERR_PARAM; 179 goto read_nvm_exit; 180 } 181 182 /* Poll the done bit first */ 183 ret_code = i40e_poll_sr_srctl_done_bit(hw); 184 if (!ret_code) { 185 /* Write the address and start reading */ 186 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | 187 BIT(I40E_GLNVM_SRCTL_START_SHIFT); 188 wr32(hw, I40E_GLNVM_SRCTL, sr_reg); 189 190 /* Poll I40E_GLNVM_SRCTL until the done bit is set */ 191 ret_code = i40e_poll_sr_srctl_done_bit(hw); 192 if (!ret_code) { 193 sr_reg = rd32(hw, I40E_GLNVM_SRDATA); 194 *data = (u16)((sr_reg & 195 I40E_GLNVM_SRDATA_RDDATA_MASK) 196 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); 197 } 198 } 199 if (ret_code) 200 i40e_debug(hw, I40E_DEBUG_NVM, 201 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", 202 offset); 203 204 read_nvm_exit: 205 return ret_code; 206 } 207 208 /** 209 * i40e_read_nvm_aq - Read Shadow RAM. 210 * @hw: pointer to the HW structure. 211 * @module_pointer: module pointer location in words from the NVM beginning 212 * @offset: offset in words from module start 213 * @words: number of words to write 214 * @data: buffer with words to write to the Shadow RAM 215 * @last_command: tells the AdminQ that this is the last command 216 * 217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 218 **/ 219 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, 220 u8 module_pointer, u32 offset, 221 u16 words, void *data, 222 bool last_command) 223 { 224 i40e_status ret_code = I40E_ERR_NVM; 225 struct i40e_asq_cmd_details cmd_details; 226 227 memset(&cmd_details, 0, sizeof(cmd_details)); 228 cmd_details.wb_desc = &hw->nvm_wb_desc; 229 230 /* Here we are checking the SR limit only for the flat memory model. 231 * We cannot do it for the module-based model, as we did not acquire 232 * the NVM resource yet (we cannot get the module pointer value). 233 * Firmware will check the module-based model. 234 */ 235 if ((offset + words) > hw->nvm.sr_size) 236 i40e_debug(hw, I40E_DEBUG_NVM, 237 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 238 (offset + words), hw->nvm.sr_size); 239 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 240 /* We can write only up to 4KB (one sector), in one AQ write */ 241 i40e_debug(hw, I40E_DEBUG_NVM, 242 "NVM write fail error: tried to write %d words, limit is %d.\n", 243 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 244 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 245 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 246 /* A single write cannot spread over two sectors */ 247 i40e_debug(hw, I40E_DEBUG_NVM, 248 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 249 offset, words); 250 else 251 ret_code = i40e_aq_read_nvm(hw, module_pointer, 252 2 * offset, /*bytes*/ 253 2 * words, /*bytes*/ 254 data, last_command, &cmd_details); 255 256 return ret_code; 257 } 258 259 /** 260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ 261 * @hw: pointer to the HW structure 262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 263 * @data: word read from the Shadow RAM 264 * 265 * Reads one 16 bit word from the Shadow RAM using the AdminQ 266 **/ 267 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, 268 u16 *data) 269 { 270 i40e_status ret_code = I40E_ERR_TIMEOUT; 271 272 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); 273 *data = le16_to_cpu(*(__le16 *)data); 274 275 return ret_code; 276 } 277 278 /** 279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking 280 * @hw: pointer to the HW structure 281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 282 * @data: word read from the Shadow RAM 283 * 284 * Reads one 16 bit word from the Shadow RAM. 285 * 286 * Do not use this function except in cases where the nvm lock is already 287 * taken via i40e_acquire_nvm(). 288 **/ 289 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw, 290 u16 offset, u16 *data) 291 { 292 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 293 return i40e_read_nvm_word_aq(hw, offset, data); 294 295 return i40e_read_nvm_word_srctl(hw, offset, data); 296 } 297 298 /** 299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary 300 * @hw: pointer to the HW structure 301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 302 * @data: word read from the Shadow RAM 303 * 304 * Reads one 16 bit word from the Shadow RAM. 305 **/ 306 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, 307 u16 *data) 308 { 309 i40e_status ret_code = 0; 310 311 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) 312 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 313 if (ret_code) 314 return ret_code; 315 316 ret_code = __i40e_read_nvm_word(hw, offset, data); 317 318 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) 319 i40e_release_nvm(hw); 320 321 return ret_code; 322 } 323 324 /** 325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location 326 * @hw: Pointer to the HW structure 327 * @module_ptr: Pointer to module in words with respect to NVM beginning 328 * @module_offset: Offset in words from module start 329 * @data_offset: Offset in words from reading data area start 330 * @words_data_size: Words to read from NVM 331 * @data_ptr: Pointer to memory location where resulting buffer will be stored 332 **/ 333 enum i40e_status_code i40e_read_nvm_module_data(struct i40e_hw *hw, 334 u8 module_ptr, 335 u16 module_offset, 336 u16 data_offset, 337 u16 words_data_size, 338 u16 *data_ptr) 339 { 340 i40e_status status; 341 u16 specific_ptr = 0; 342 u16 ptr_value = 0; 343 u32 offset = 0; 344 345 if (module_ptr != 0) { 346 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value); 347 if (status) { 348 i40e_debug(hw, I40E_DEBUG_ALL, 349 "Reading nvm word failed.Error code: %d.\n", 350 status); 351 return I40E_ERR_NVM; 352 } 353 } 354 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF 355 #define I40E_NVM_INVALID_VAL 0xFFFF 356 357 /* Pointer not initialized */ 358 if (ptr_value == I40E_NVM_INVALID_PTR_VAL || 359 ptr_value == I40E_NVM_INVALID_VAL) { 360 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n"); 361 return I40E_ERR_BAD_PTR; 362 } 363 364 /* Check whether the module is in SR mapped area or outside */ 365 if (ptr_value & I40E_PTR_TYPE) { 366 /* Pointer points outside of the Shared RAM mapped area */ 367 i40e_debug(hw, I40E_DEBUG_ALL, 368 "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n"); 369 370 return I40E_ERR_PARAM; 371 } else { 372 /* Read from the Shadow RAM */ 373 374 status = i40e_read_nvm_word(hw, ptr_value + module_offset, 375 &specific_ptr); 376 if (status) { 377 i40e_debug(hw, I40E_DEBUG_ALL, 378 "Reading nvm word failed.Error code: %d.\n", 379 status); 380 return I40E_ERR_NVM; 381 } 382 383 offset = ptr_value + module_offset + specific_ptr + 384 data_offset; 385 386 status = i40e_read_nvm_buffer(hw, offset, &words_data_size, 387 data_ptr); 388 if (status) { 389 i40e_debug(hw, I40E_DEBUG_ALL, 390 "Reading nvm buffer failed.Error code: %d.\n", 391 status); 392 } 393 } 394 395 return status; 396 } 397 398 /** 399 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register 400 * @hw: pointer to the HW structure 401 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 402 * @words: (in) number of words to read; (out) number of words actually read 403 * @data: words read from the Shadow RAM 404 * 405 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 406 * method. The buffer read is preceded by the NVM ownership take 407 * and followed by the release. 408 **/ 409 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, 410 u16 *words, u16 *data) 411 { 412 i40e_status ret_code = 0; 413 u16 index, word; 414 415 /* Loop thru the selected region */ 416 for (word = 0; word < *words; word++) { 417 index = offset + word; 418 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); 419 if (ret_code) 420 break; 421 } 422 423 /* Update the number of words read from the Shadow RAM */ 424 *words = word; 425 426 return ret_code; 427 } 428 429 /** 430 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ 431 * @hw: pointer to the HW structure 432 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 433 * @words: (in) number of words to read; (out) number of words actually read 434 * @data: words read from the Shadow RAM 435 * 436 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() 437 * method. The buffer read is preceded by the NVM ownership take 438 * and followed by the release. 439 **/ 440 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, 441 u16 *words, u16 *data) 442 { 443 i40e_status ret_code; 444 u16 read_size; 445 bool last_cmd = false; 446 u16 words_read = 0; 447 u16 i = 0; 448 449 do { 450 /* Calculate number of bytes we should read in this step. 451 * FVL AQ do not allow to read more than one page at a time or 452 * to cross page boundaries. 453 */ 454 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) 455 read_size = min(*words, 456 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - 457 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); 458 else 459 read_size = min((*words - words_read), 460 I40E_SR_SECTOR_SIZE_IN_WORDS); 461 462 /* Check if this is last command, if so set proper flag */ 463 if ((words_read + read_size) >= *words) 464 last_cmd = true; 465 466 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, 467 data + words_read, last_cmd); 468 if (ret_code) 469 goto read_nvm_buffer_aq_exit; 470 471 /* Increment counter for words already read and move offset to 472 * new read location 473 */ 474 words_read += read_size; 475 offset += read_size; 476 } while (words_read < *words); 477 478 for (i = 0; i < *words; i++) 479 data[i] = le16_to_cpu(((__le16 *)data)[i]); 480 481 read_nvm_buffer_aq_exit: 482 *words = words_read; 483 return ret_code; 484 } 485 486 /** 487 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock 488 * @hw: pointer to the HW structure 489 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 490 * @words: (in) number of words to read; (out) number of words actually read 491 * @data: words read from the Shadow RAM 492 * 493 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 494 * method. 495 **/ 496 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw, 497 u16 offset, u16 *words, 498 u16 *data) 499 { 500 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 501 return i40e_read_nvm_buffer_aq(hw, offset, words, data); 502 503 return i40e_read_nvm_buffer_srctl(hw, offset, words, data); 504 } 505 506 /** 507 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary 508 * @hw: pointer to the HW structure 509 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 510 * @words: (in) number of words to read; (out) number of words actually read 511 * @data: words read from the Shadow RAM 512 * 513 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 514 * method. The buffer read is preceded by the NVM ownership take 515 * and followed by the release. 516 **/ 517 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, 518 u16 *words, u16 *data) 519 { 520 i40e_status ret_code = 0; 521 522 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) { 523 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 524 if (!ret_code) { 525 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, 526 data); 527 i40e_release_nvm(hw); 528 } 529 } else { 530 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); 531 } 532 533 return ret_code; 534 } 535 536 /** 537 * i40e_write_nvm_aq - Writes Shadow RAM. 538 * @hw: pointer to the HW structure. 539 * @module_pointer: module pointer location in words from the NVM beginning 540 * @offset: offset in words from module start 541 * @words: number of words to write 542 * @data: buffer with words to write to the Shadow RAM 543 * @last_command: tells the AdminQ that this is the last command 544 * 545 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 546 **/ 547 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 548 u32 offset, u16 words, void *data, 549 bool last_command) 550 { 551 i40e_status ret_code = I40E_ERR_NVM; 552 struct i40e_asq_cmd_details cmd_details; 553 554 memset(&cmd_details, 0, sizeof(cmd_details)); 555 cmd_details.wb_desc = &hw->nvm_wb_desc; 556 557 /* Here we are checking the SR limit only for the flat memory model. 558 * We cannot do it for the module-based model, as we did not acquire 559 * the NVM resource yet (we cannot get the module pointer value). 560 * Firmware will check the module-based model. 561 */ 562 if ((offset + words) > hw->nvm.sr_size) 563 i40e_debug(hw, I40E_DEBUG_NVM, 564 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 565 (offset + words), hw->nvm.sr_size); 566 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 567 /* We can write only up to 4KB (one sector), in one AQ write */ 568 i40e_debug(hw, I40E_DEBUG_NVM, 569 "NVM write fail error: tried to write %d words, limit is %d.\n", 570 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 571 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 572 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 573 /* A single write cannot spread over two sectors */ 574 i40e_debug(hw, I40E_DEBUG_NVM, 575 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 576 offset, words); 577 else 578 ret_code = i40e_aq_update_nvm(hw, module_pointer, 579 2 * offset, /*bytes*/ 580 2 * words, /*bytes*/ 581 data, last_command, 0, 582 &cmd_details); 583 584 return ret_code; 585 } 586 587 /** 588 * i40e_calc_nvm_checksum - Calculates and returns the checksum 589 * @hw: pointer to hardware structure 590 * @checksum: pointer to the checksum 591 * 592 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 593 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 594 * is customer specific and unknown. Therefore, this function skips all maximum 595 * possible size of VPD (1kB). 596 **/ 597 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, 598 u16 *checksum) 599 { 600 i40e_status ret_code; 601 struct i40e_virt_mem vmem; 602 u16 pcie_alt_module = 0; 603 u16 checksum_local = 0; 604 u16 vpd_module = 0; 605 u16 *data; 606 u16 i = 0; 607 608 ret_code = i40e_allocate_virt_mem(hw, &vmem, 609 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); 610 if (ret_code) 611 goto i40e_calc_nvm_checksum_exit; 612 data = (u16 *)vmem.va; 613 614 /* read pointer to VPD area */ 615 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); 616 if (ret_code) { 617 ret_code = I40E_ERR_NVM_CHECKSUM; 618 goto i40e_calc_nvm_checksum_exit; 619 } 620 621 /* read pointer to PCIe Alt Auto-load module */ 622 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, 623 &pcie_alt_module); 624 if (ret_code) { 625 ret_code = I40E_ERR_NVM_CHECKSUM; 626 goto i40e_calc_nvm_checksum_exit; 627 } 628 629 /* Calculate SW checksum that covers the whole 64kB shadow RAM 630 * except the VPD and PCIe ALT Auto-load modules 631 */ 632 for (i = 0; i < hw->nvm.sr_size; i++) { 633 /* Read SR page */ 634 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { 635 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; 636 637 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data); 638 if (ret_code) { 639 ret_code = I40E_ERR_NVM_CHECKSUM; 640 goto i40e_calc_nvm_checksum_exit; 641 } 642 } 643 644 /* Skip Checksum word */ 645 if (i == I40E_SR_SW_CHECKSUM_WORD) 646 continue; 647 /* Skip VPD module (convert byte size to word count) */ 648 if ((i >= (u32)vpd_module) && 649 (i < ((u32)vpd_module + 650 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { 651 continue; 652 } 653 /* Skip PCIe ALT module (convert byte size to word count) */ 654 if ((i >= (u32)pcie_alt_module) && 655 (i < ((u32)pcie_alt_module + 656 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { 657 continue; 658 } 659 660 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; 661 } 662 663 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; 664 665 i40e_calc_nvm_checksum_exit: 666 i40e_free_virt_mem(hw, &vmem); 667 return ret_code; 668 } 669 670 /** 671 * i40e_update_nvm_checksum - Updates the NVM checksum 672 * @hw: pointer to hardware structure 673 * 674 * NVM ownership must be acquired before calling this function and released 675 * on ARQ completion event reception by caller. 676 * This function will commit SR to NVM. 677 **/ 678 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw) 679 { 680 i40e_status ret_code; 681 u16 checksum; 682 __le16 le_sum; 683 684 ret_code = i40e_calc_nvm_checksum(hw, &checksum); 685 le_sum = cpu_to_le16(checksum); 686 if (!ret_code) 687 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 688 1, &le_sum, true); 689 690 return ret_code; 691 } 692 693 /** 694 * i40e_validate_nvm_checksum - Validate EEPROM checksum 695 * @hw: pointer to hardware structure 696 * @checksum: calculated checksum 697 * 698 * Performs checksum calculation and validates the NVM SW checksum. If the 699 * caller does not need checksum, the value can be NULL. 700 **/ 701 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, 702 u16 *checksum) 703 { 704 i40e_status ret_code = 0; 705 u16 checksum_sr = 0; 706 u16 checksum_local = 0; 707 708 /* We must acquire the NVM lock in order to correctly synchronize the 709 * NVM accesses across multiple PFs. Without doing so it is possible 710 * for one of the PFs to read invalid data potentially indicating that 711 * the checksum is invalid. 712 */ 713 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 714 if (ret_code) 715 return ret_code; 716 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); 717 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); 718 i40e_release_nvm(hw); 719 if (ret_code) 720 return ret_code; 721 722 /* Verify read checksum from EEPROM is the same as 723 * calculated checksum 724 */ 725 if (checksum_local != checksum_sr) 726 ret_code = I40E_ERR_NVM_CHECKSUM; 727 728 /* If the user cares, return the calculated checksum */ 729 if (checksum) 730 *checksum = checksum_local; 731 732 return ret_code; 733 } 734 735 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 736 struct i40e_nvm_access *cmd, 737 u8 *bytes, int *perrno); 738 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 739 struct i40e_nvm_access *cmd, 740 u8 *bytes, int *perrno); 741 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 742 struct i40e_nvm_access *cmd, 743 u8 *bytes, int *errno); 744 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 745 struct i40e_nvm_access *cmd, 746 int *perrno); 747 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 748 struct i40e_nvm_access *cmd, 749 int *perrno); 750 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 751 struct i40e_nvm_access *cmd, 752 u8 *bytes, int *perrno); 753 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 754 struct i40e_nvm_access *cmd, 755 u8 *bytes, int *perrno); 756 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 757 struct i40e_nvm_access *cmd, 758 u8 *bytes, int *perrno); 759 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 760 struct i40e_nvm_access *cmd, 761 u8 *bytes, int *perrno); 762 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 763 struct i40e_nvm_access *cmd, 764 u8 *bytes, int *perrno); 765 static inline u8 i40e_nvmupd_get_module(u32 val) 766 { 767 return (u8)(val & I40E_NVM_MOD_PNT_MASK); 768 } 769 static inline u8 i40e_nvmupd_get_transaction(u32 val) 770 { 771 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT); 772 } 773 774 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val) 775 { 776 return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >> 777 I40E_NVM_PRESERVATION_FLAGS_SHIFT); 778 } 779 780 static const char * const i40e_nvm_update_state_str[] = { 781 "I40E_NVMUPD_INVALID", 782 "I40E_NVMUPD_READ_CON", 783 "I40E_NVMUPD_READ_SNT", 784 "I40E_NVMUPD_READ_LCB", 785 "I40E_NVMUPD_READ_SA", 786 "I40E_NVMUPD_WRITE_ERA", 787 "I40E_NVMUPD_WRITE_CON", 788 "I40E_NVMUPD_WRITE_SNT", 789 "I40E_NVMUPD_WRITE_LCB", 790 "I40E_NVMUPD_WRITE_SA", 791 "I40E_NVMUPD_CSUM_CON", 792 "I40E_NVMUPD_CSUM_SA", 793 "I40E_NVMUPD_CSUM_LCB", 794 "I40E_NVMUPD_STATUS", 795 "I40E_NVMUPD_EXEC_AQ", 796 "I40E_NVMUPD_GET_AQ_RESULT", 797 "I40E_NVMUPD_GET_AQ_EVENT", 798 }; 799 800 /** 801 * i40e_nvmupd_command - Process an NVM update command 802 * @hw: pointer to hardware structure 803 * @cmd: pointer to nvm update command 804 * @bytes: pointer to the data buffer 805 * @perrno: pointer to return error code 806 * 807 * Dispatches command depending on what update state is current 808 **/ 809 i40e_status i40e_nvmupd_command(struct i40e_hw *hw, 810 struct i40e_nvm_access *cmd, 811 u8 *bytes, int *perrno) 812 { 813 i40e_status status; 814 enum i40e_nvmupd_cmd upd_cmd; 815 816 /* assume success */ 817 *perrno = 0; 818 819 /* early check for status command and debug msgs */ 820 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 821 822 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n", 823 i40e_nvm_update_state_str[upd_cmd], 824 hw->nvmupd_state, 825 hw->nvm_release_on_done, hw->nvm_wait_opcode, 826 cmd->command, cmd->config, cmd->offset, cmd->data_size); 827 828 if (upd_cmd == I40E_NVMUPD_INVALID) { 829 *perrno = -EFAULT; 830 i40e_debug(hw, I40E_DEBUG_NVM, 831 "i40e_nvmupd_validate_command returns %d errno %d\n", 832 upd_cmd, *perrno); 833 } 834 835 /* a status request returns immediately rather than 836 * going into the state machine 837 */ 838 if (upd_cmd == I40E_NVMUPD_STATUS) { 839 if (!cmd->data_size) { 840 *perrno = -EFAULT; 841 return I40E_ERR_BUF_TOO_SHORT; 842 } 843 844 bytes[0] = hw->nvmupd_state; 845 846 if (cmd->data_size >= 4) { 847 bytes[1] = 0; 848 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode; 849 } 850 851 /* Clear error status on read */ 852 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) 853 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 854 855 return 0; 856 } 857 858 /* Clear status even it is not read and log */ 859 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) { 860 i40e_debug(hw, I40E_DEBUG_NVM, 861 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n"); 862 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 863 } 864 865 /* Acquire lock to prevent race condition where adminq_task 866 * can execute after i40e_nvmupd_nvm_read/write but before state 867 * variables (nvm_wait_opcode, nvm_release_on_done) are updated. 868 * 869 * During NVMUpdate, it is observed that lock could be held for 870 * ~5ms for most commands. However lock is held for ~60ms for 871 * NVMUPD_CSUM_LCB command. 872 */ 873 mutex_lock(&hw->aq.arq_mutex); 874 switch (hw->nvmupd_state) { 875 case I40E_NVMUPD_STATE_INIT: 876 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); 877 break; 878 879 case I40E_NVMUPD_STATE_READING: 880 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); 881 break; 882 883 case I40E_NVMUPD_STATE_WRITING: 884 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); 885 break; 886 887 case I40E_NVMUPD_STATE_INIT_WAIT: 888 case I40E_NVMUPD_STATE_WRITE_WAIT: 889 /* if we need to stop waiting for an event, clear 890 * the wait info and return before doing anything else 891 */ 892 if (cmd->offset == 0xffff) { 893 i40e_nvmupd_clear_wait_state(hw); 894 status = 0; 895 break; 896 } 897 898 status = I40E_ERR_NOT_READY; 899 *perrno = -EBUSY; 900 break; 901 902 default: 903 /* invalid state, should never happen */ 904 i40e_debug(hw, I40E_DEBUG_NVM, 905 "NVMUPD: no such state %d\n", hw->nvmupd_state); 906 status = I40E_NOT_SUPPORTED; 907 *perrno = -ESRCH; 908 break; 909 } 910 911 mutex_unlock(&hw->aq.arq_mutex); 912 return status; 913 } 914 915 /** 916 * i40e_nvmupd_state_init - Handle NVM update state Init 917 * @hw: pointer to hardware structure 918 * @cmd: pointer to nvm update command buffer 919 * @bytes: pointer to the data buffer 920 * @perrno: pointer to return error code 921 * 922 * Process legitimate commands of the Init state and conditionally set next 923 * state. Reject all other commands. 924 **/ 925 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 926 struct i40e_nvm_access *cmd, 927 u8 *bytes, int *perrno) 928 { 929 i40e_status status = 0; 930 enum i40e_nvmupd_cmd upd_cmd; 931 932 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 933 934 switch (upd_cmd) { 935 case I40E_NVMUPD_READ_SA: 936 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 937 if (status) { 938 *perrno = i40e_aq_rc_to_posix(status, 939 hw->aq.asq_last_status); 940 } else { 941 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 942 i40e_release_nvm(hw); 943 } 944 break; 945 946 case I40E_NVMUPD_READ_SNT: 947 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 948 if (status) { 949 *perrno = i40e_aq_rc_to_posix(status, 950 hw->aq.asq_last_status); 951 } else { 952 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 953 if (status) 954 i40e_release_nvm(hw); 955 else 956 hw->nvmupd_state = I40E_NVMUPD_STATE_READING; 957 } 958 break; 959 960 case I40E_NVMUPD_WRITE_ERA: 961 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 962 if (status) { 963 *perrno = i40e_aq_rc_to_posix(status, 964 hw->aq.asq_last_status); 965 } else { 966 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); 967 if (status) { 968 i40e_release_nvm(hw); 969 } else { 970 hw->nvm_release_on_done = true; 971 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase; 972 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 973 } 974 } 975 break; 976 977 case I40E_NVMUPD_WRITE_SA: 978 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 979 if (status) { 980 *perrno = i40e_aq_rc_to_posix(status, 981 hw->aq.asq_last_status); 982 } else { 983 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 984 if (status) { 985 i40e_release_nvm(hw); 986 } else { 987 hw->nvm_release_on_done = true; 988 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 989 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 990 } 991 } 992 break; 993 994 case I40E_NVMUPD_WRITE_SNT: 995 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 996 if (status) { 997 *perrno = i40e_aq_rc_to_posix(status, 998 hw->aq.asq_last_status); 999 } else { 1000 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1001 if (status) { 1002 i40e_release_nvm(hw); 1003 } else { 1004 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1005 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1006 } 1007 } 1008 break; 1009 1010 case I40E_NVMUPD_CSUM_SA: 1011 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1012 if (status) { 1013 *perrno = i40e_aq_rc_to_posix(status, 1014 hw->aq.asq_last_status); 1015 } else { 1016 status = i40e_update_nvm_checksum(hw); 1017 if (status) { 1018 *perrno = hw->aq.asq_last_status ? 1019 i40e_aq_rc_to_posix(status, 1020 hw->aq.asq_last_status) : 1021 -EIO; 1022 i40e_release_nvm(hw); 1023 } else { 1024 hw->nvm_release_on_done = true; 1025 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1026 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1027 } 1028 } 1029 break; 1030 1031 case I40E_NVMUPD_EXEC_AQ: 1032 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); 1033 break; 1034 1035 case I40E_NVMUPD_GET_AQ_RESULT: 1036 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); 1037 break; 1038 1039 case I40E_NVMUPD_GET_AQ_EVENT: 1040 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno); 1041 break; 1042 1043 default: 1044 i40e_debug(hw, I40E_DEBUG_NVM, 1045 "NVMUPD: bad cmd %s in init state\n", 1046 i40e_nvm_update_state_str[upd_cmd]); 1047 status = I40E_ERR_NVM; 1048 *perrno = -ESRCH; 1049 break; 1050 } 1051 return status; 1052 } 1053 1054 /** 1055 * i40e_nvmupd_state_reading - Handle NVM update state Reading 1056 * @hw: pointer to hardware structure 1057 * @cmd: pointer to nvm update command buffer 1058 * @bytes: pointer to the data buffer 1059 * @perrno: pointer to return error code 1060 * 1061 * NVM ownership is already held. Process legitimate commands and set any 1062 * change in state; reject all other commands. 1063 **/ 1064 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 1065 struct i40e_nvm_access *cmd, 1066 u8 *bytes, int *perrno) 1067 { 1068 i40e_status status = 0; 1069 enum i40e_nvmupd_cmd upd_cmd; 1070 1071 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1072 1073 switch (upd_cmd) { 1074 case I40E_NVMUPD_READ_SA: 1075 case I40E_NVMUPD_READ_CON: 1076 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1077 break; 1078 1079 case I40E_NVMUPD_READ_LCB: 1080 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1081 i40e_release_nvm(hw); 1082 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1083 break; 1084 1085 default: 1086 i40e_debug(hw, I40E_DEBUG_NVM, 1087 "NVMUPD: bad cmd %s in reading state.\n", 1088 i40e_nvm_update_state_str[upd_cmd]); 1089 status = I40E_NOT_SUPPORTED; 1090 *perrno = -ESRCH; 1091 break; 1092 } 1093 return status; 1094 } 1095 1096 /** 1097 * i40e_nvmupd_state_writing - Handle NVM update state Writing 1098 * @hw: pointer to hardware structure 1099 * @cmd: pointer to nvm update command buffer 1100 * @bytes: pointer to the data buffer 1101 * @perrno: pointer to return error code 1102 * 1103 * NVM ownership is already held. Process legitimate commands and set any 1104 * change in state; reject all other commands 1105 **/ 1106 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 1107 struct i40e_nvm_access *cmd, 1108 u8 *bytes, int *perrno) 1109 { 1110 i40e_status status = 0; 1111 enum i40e_nvmupd_cmd upd_cmd; 1112 bool retry_attempt = false; 1113 1114 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1115 1116 retry: 1117 switch (upd_cmd) { 1118 case I40E_NVMUPD_WRITE_CON: 1119 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1120 if (!status) { 1121 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1122 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1123 } 1124 break; 1125 1126 case I40E_NVMUPD_WRITE_LCB: 1127 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1128 if (status) { 1129 *perrno = hw->aq.asq_last_status ? 1130 i40e_aq_rc_to_posix(status, 1131 hw->aq.asq_last_status) : 1132 -EIO; 1133 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1134 } else { 1135 hw->nvm_release_on_done = true; 1136 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1137 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1138 } 1139 break; 1140 1141 case I40E_NVMUPD_CSUM_CON: 1142 /* Assumes the caller has acquired the nvm */ 1143 status = i40e_update_nvm_checksum(hw); 1144 if (status) { 1145 *perrno = hw->aq.asq_last_status ? 1146 i40e_aq_rc_to_posix(status, 1147 hw->aq.asq_last_status) : 1148 -EIO; 1149 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1150 } else { 1151 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1152 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1153 } 1154 break; 1155 1156 case I40E_NVMUPD_CSUM_LCB: 1157 /* Assumes the caller has acquired the nvm */ 1158 status = i40e_update_nvm_checksum(hw); 1159 if (status) { 1160 *perrno = hw->aq.asq_last_status ? 1161 i40e_aq_rc_to_posix(status, 1162 hw->aq.asq_last_status) : 1163 -EIO; 1164 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1165 } else { 1166 hw->nvm_release_on_done = true; 1167 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1168 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1169 } 1170 break; 1171 1172 default: 1173 i40e_debug(hw, I40E_DEBUG_NVM, 1174 "NVMUPD: bad cmd %s in writing state.\n", 1175 i40e_nvm_update_state_str[upd_cmd]); 1176 status = I40E_NOT_SUPPORTED; 1177 *perrno = -ESRCH; 1178 break; 1179 } 1180 1181 /* In some circumstances, a multi-write transaction takes longer 1182 * than the default 3 minute timeout on the write semaphore. If 1183 * the write failed with an EBUSY status, this is likely the problem, 1184 * so here we try to reacquire the semaphore then retry the write. 1185 * We only do one retry, then give up. 1186 */ 1187 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && 1188 !retry_attempt) { 1189 i40e_status old_status = status; 1190 u32 old_asq_status = hw->aq.asq_last_status; 1191 u32 gtime; 1192 1193 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 1194 if (gtime >= hw->nvm.hw_semaphore_timeout) { 1195 i40e_debug(hw, I40E_DEBUG_ALL, 1196 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", 1197 gtime, hw->nvm.hw_semaphore_timeout); 1198 i40e_release_nvm(hw); 1199 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1200 if (status) { 1201 i40e_debug(hw, I40E_DEBUG_ALL, 1202 "NVMUPD: write semaphore reacquire failed aq_err = %d\n", 1203 hw->aq.asq_last_status); 1204 status = old_status; 1205 hw->aq.asq_last_status = old_asq_status; 1206 } else { 1207 retry_attempt = true; 1208 goto retry; 1209 } 1210 } 1211 } 1212 1213 return status; 1214 } 1215 1216 /** 1217 * i40e_nvmupd_clear_wait_state - clear wait state on hw 1218 * @hw: pointer to the hardware structure 1219 **/ 1220 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw) 1221 { 1222 i40e_debug(hw, I40E_DEBUG_NVM, 1223 "NVMUPD: clearing wait on opcode 0x%04x\n", 1224 hw->nvm_wait_opcode); 1225 1226 if (hw->nvm_release_on_done) { 1227 i40e_release_nvm(hw); 1228 hw->nvm_release_on_done = false; 1229 } 1230 hw->nvm_wait_opcode = 0; 1231 1232 if (hw->aq.arq_last_status) { 1233 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR; 1234 return; 1235 } 1236 1237 switch (hw->nvmupd_state) { 1238 case I40E_NVMUPD_STATE_INIT_WAIT: 1239 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1240 break; 1241 1242 case I40E_NVMUPD_STATE_WRITE_WAIT: 1243 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING; 1244 break; 1245 1246 default: 1247 break; 1248 } 1249 } 1250 1251 /** 1252 * i40e_nvmupd_check_wait_event - handle NVM update operation events 1253 * @hw: pointer to the hardware structure 1254 * @opcode: the event that just happened 1255 * @desc: AdminQ descriptor 1256 **/ 1257 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode, 1258 struct i40e_aq_desc *desc) 1259 { 1260 u32 aq_desc_len = sizeof(struct i40e_aq_desc); 1261 1262 if (opcode == hw->nvm_wait_opcode) { 1263 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len); 1264 i40e_nvmupd_clear_wait_state(hw); 1265 } 1266 } 1267 1268 /** 1269 * i40e_nvmupd_validate_command - Validate given command 1270 * @hw: pointer to hardware structure 1271 * @cmd: pointer to nvm update command buffer 1272 * @perrno: pointer to return error code 1273 * 1274 * Return one of the valid command types or I40E_NVMUPD_INVALID 1275 **/ 1276 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 1277 struct i40e_nvm_access *cmd, 1278 int *perrno) 1279 { 1280 enum i40e_nvmupd_cmd upd_cmd; 1281 u8 module, transaction; 1282 1283 /* anything that doesn't match a recognized case is an error */ 1284 upd_cmd = I40E_NVMUPD_INVALID; 1285 1286 transaction = i40e_nvmupd_get_transaction(cmd->config); 1287 module = i40e_nvmupd_get_module(cmd->config); 1288 1289 /* limits on data size */ 1290 if ((cmd->data_size < 1) || 1291 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { 1292 i40e_debug(hw, I40E_DEBUG_NVM, 1293 "i40e_nvmupd_validate_command data_size %d\n", 1294 cmd->data_size); 1295 *perrno = -EFAULT; 1296 return I40E_NVMUPD_INVALID; 1297 } 1298 1299 switch (cmd->command) { 1300 case I40E_NVM_READ: 1301 switch (transaction) { 1302 case I40E_NVM_CON: 1303 upd_cmd = I40E_NVMUPD_READ_CON; 1304 break; 1305 case I40E_NVM_SNT: 1306 upd_cmd = I40E_NVMUPD_READ_SNT; 1307 break; 1308 case I40E_NVM_LCB: 1309 upd_cmd = I40E_NVMUPD_READ_LCB; 1310 break; 1311 case I40E_NVM_SA: 1312 upd_cmd = I40E_NVMUPD_READ_SA; 1313 break; 1314 case I40E_NVM_EXEC: 1315 if (module == 0xf) 1316 upd_cmd = I40E_NVMUPD_STATUS; 1317 else if (module == 0) 1318 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; 1319 break; 1320 case I40E_NVM_AQE: 1321 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT; 1322 break; 1323 } 1324 break; 1325 1326 case I40E_NVM_WRITE: 1327 switch (transaction) { 1328 case I40E_NVM_CON: 1329 upd_cmd = I40E_NVMUPD_WRITE_CON; 1330 break; 1331 case I40E_NVM_SNT: 1332 upd_cmd = I40E_NVMUPD_WRITE_SNT; 1333 break; 1334 case I40E_NVM_LCB: 1335 upd_cmd = I40E_NVMUPD_WRITE_LCB; 1336 break; 1337 case I40E_NVM_SA: 1338 upd_cmd = I40E_NVMUPD_WRITE_SA; 1339 break; 1340 case I40E_NVM_ERA: 1341 upd_cmd = I40E_NVMUPD_WRITE_ERA; 1342 break; 1343 case I40E_NVM_CSUM: 1344 upd_cmd = I40E_NVMUPD_CSUM_CON; 1345 break; 1346 case (I40E_NVM_CSUM|I40E_NVM_SA): 1347 upd_cmd = I40E_NVMUPD_CSUM_SA; 1348 break; 1349 case (I40E_NVM_CSUM|I40E_NVM_LCB): 1350 upd_cmd = I40E_NVMUPD_CSUM_LCB; 1351 break; 1352 case I40E_NVM_EXEC: 1353 if (module == 0) 1354 upd_cmd = I40E_NVMUPD_EXEC_AQ; 1355 break; 1356 } 1357 break; 1358 } 1359 1360 return upd_cmd; 1361 } 1362 1363 /** 1364 * i40e_nvmupd_exec_aq - Run an AQ command 1365 * @hw: pointer to hardware structure 1366 * @cmd: pointer to nvm update command buffer 1367 * @bytes: pointer to the data buffer 1368 * @perrno: pointer to return error code 1369 * 1370 * cmd structure contains identifiers and data buffer 1371 **/ 1372 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 1373 struct i40e_nvm_access *cmd, 1374 u8 *bytes, int *perrno) 1375 { 1376 struct i40e_asq_cmd_details cmd_details; 1377 i40e_status status; 1378 struct i40e_aq_desc *aq_desc; 1379 u32 buff_size = 0; 1380 u8 *buff = NULL; 1381 u32 aq_desc_len; 1382 u32 aq_data_len; 1383 1384 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1385 if (cmd->offset == 0xffff) 1386 return 0; 1387 1388 memset(&cmd_details, 0, sizeof(cmd_details)); 1389 cmd_details.wb_desc = &hw->nvm_wb_desc; 1390 1391 aq_desc_len = sizeof(struct i40e_aq_desc); 1392 memset(&hw->nvm_wb_desc, 0, aq_desc_len); 1393 1394 /* get the aq descriptor */ 1395 if (cmd->data_size < aq_desc_len) { 1396 i40e_debug(hw, I40E_DEBUG_NVM, 1397 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", 1398 cmd->data_size, aq_desc_len); 1399 *perrno = -EINVAL; 1400 return I40E_ERR_PARAM; 1401 } 1402 aq_desc = (struct i40e_aq_desc *)bytes; 1403 1404 /* if data buffer needed, make sure it's ready */ 1405 aq_data_len = cmd->data_size - aq_desc_len; 1406 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); 1407 if (buff_size) { 1408 if (!hw->nvm_buff.va) { 1409 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, 1410 hw->aq.asq_buf_size); 1411 if (status) 1412 i40e_debug(hw, I40E_DEBUG_NVM, 1413 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", 1414 status); 1415 } 1416 1417 if (hw->nvm_buff.va) { 1418 buff = hw->nvm_buff.va; 1419 memcpy(buff, &bytes[aq_desc_len], aq_data_len); 1420 } 1421 } 1422 1423 if (cmd->offset) 1424 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len); 1425 1426 /* and away we go! */ 1427 status = i40e_asq_send_command(hw, aq_desc, buff, 1428 buff_size, &cmd_details); 1429 if (status) { 1430 i40e_debug(hw, I40E_DEBUG_NVM, 1431 "i40e_nvmupd_exec_aq err %s aq_err %s\n", 1432 i40e_stat_str(hw, status), 1433 i40e_aq_str(hw, hw->aq.asq_last_status)); 1434 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1435 return status; 1436 } 1437 1438 /* should we wait for a followup event? */ 1439 if (cmd->offset) { 1440 hw->nvm_wait_opcode = cmd->offset; 1441 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1442 } 1443 1444 return status; 1445 } 1446 1447 /** 1448 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq 1449 * @hw: pointer to hardware structure 1450 * @cmd: pointer to nvm update command buffer 1451 * @bytes: pointer to the data buffer 1452 * @perrno: pointer to return error code 1453 * 1454 * cmd structure contains identifiers and data buffer 1455 **/ 1456 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 1457 struct i40e_nvm_access *cmd, 1458 u8 *bytes, int *perrno) 1459 { 1460 u32 aq_total_len; 1461 u32 aq_desc_len; 1462 int remainder; 1463 u8 *buff; 1464 1465 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1466 1467 aq_desc_len = sizeof(struct i40e_aq_desc); 1468 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); 1469 1470 /* check offset range */ 1471 if (cmd->offset > aq_total_len) { 1472 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", 1473 __func__, cmd->offset, aq_total_len); 1474 *perrno = -EINVAL; 1475 return I40E_ERR_PARAM; 1476 } 1477 1478 /* check copylength range */ 1479 if (cmd->data_size > (aq_total_len - cmd->offset)) { 1480 int new_len = aq_total_len - cmd->offset; 1481 1482 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", 1483 __func__, cmd->data_size, new_len); 1484 cmd->data_size = new_len; 1485 } 1486 1487 remainder = cmd->data_size; 1488 if (cmd->offset < aq_desc_len) { 1489 u32 len = aq_desc_len - cmd->offset; 1490 1491 len = min(len, cmd->data_size); 1492 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", 1493 __func__, cmd->offset, cmd->offset + len); 1494 1495 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; 1496 memcpy(bytes, buff, len); 1497 1498 bytes += len; 1499 remainder -= len; 1500 buff = hw->nvm_buff.va; 1501 } else { 1502 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); 1503 } 1504 1505 if (remainder > 0) { 1506 int start_byte = buff - (u8 *)hw->nvm_buff.va; 1507 1508 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", 1509 __func__, start_byte, start_byte + remainder); 1510 memcpy(bytes, buff, remainder); 1511 } 1512 1513 return 0; 1514 } 1515 1516 /** 1517 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq 1518 * @hw: pointer to hardware structure 1519 * @cmd: pointer to nvm update command buffer 1520 * @bytes: pointer to the data buffer 1521 * @perrno: pointer to return error code 1522 * 1523 * cmd structure contains identifiers and data buffer 1524 **/ 1525 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 1526 struct i40e_nvm_access *cmd, 1527 u8 *bytes, int *perrno) 1528 { 1529 u32 aq_total_len; 1530 u32 aq_desc_len; 1531 1532 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1533 1534 aq_desc_len = sizeof(struct i40e_aq_desc); 1535 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen); 1536 1537 /* check copylength range */ 1538 if (cmd->data_size > aq_total_len) { 1539 i40e_debug(hw, I40E_DEBUG_NVM, 1540 "%s: copy length %d too big, trimming to %d\n", 1541 __func__, cmd->data_size, aq_total_len); 1542 cmd->data_size = aq_total_len; 1543 } 1544 1545 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size); 1546 1547 return 0; 1548 } 1549 1550 /** 1551 * i40e_nvmupd_nvm_read - Read NVM 1552 * @hw: pointer to hardware structure 1553 * @cmd: pointer to nvm update command buffer 1554 * @bytes: pointer to the data buffer 1555 * @perrno: pointer to return error code 1556 * 1557 * cmd structure contains identifiers and data buffer 1558 **/ 1559 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 1560 struct i40e_nvm_access *cmd, 1561 u8 *bytes, int *perrno) 1562 { 1563 struct i40e_asq_cmd_details cmd_details; 1564 i40e_status status; 1565 u8 module, transaction; 1566 bool last; 1567 1568 transaction = i40e_nvmupd_get_transaction(cmd->config); 1569 module = i40e_nvmupd_get_module(cmd->config); 1570 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); 1571 1572 memset(&cmd_details, 0, sizeof(cmd_details)); 1573 cmd_details.wb_desc = &hw->nvm_wb_desc; 1574 1575 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1576 bytes, last, &cmd_details); 1577 if (status) { 1578 i40e_debug(hw, I40E_DEBUG_NVM, 1579 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", 1580 module, cmd->offset, cmd->data_size); 1581 i40e_debug(hw, I40E_DEBUG_NVM, 1582 "i40e_nvmupd_nvm_read status %d aq %d\n", 1583 status, hw->aq.asq_last_status); 1584 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1585 } 1586 1587 return status; 1588 } 1589 1590 /** 1591 * i40e_nvmupd_nvm_erase - Erase an NVM module 1592 * @hw: pointer to hardware structure 1593 * @cmd: pointer to nvm update command buffer 1594 * @perrno: pointer to return error code 1595 * 1596 * module, offset, data_size and data are in cmd structure 1597 **/ 1598 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 1599 struct i40e_nvm_access *cmd, 1600 int *perrno) 1601 { 1602 i40e_status status = 0; 1603 struct i40e_asq_cmd_details cmd_details; 1604 u8 module, transaction; 1605 bool last; 1606 1607 transaction = i40e_nvmupd_get_transaction(cmd->config); 1608 module = i40e_nvmupd_get_module(cmd->config); 1609 last = (transaction & I40E_NVM_LCB); 1610 1611 memset(&cmd_details, 0, sizeof(cmd_details)); 1612 cmd_details.wb_desc = &hw->nvm_wb_desc; 1613 1614 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1615 last, &cmd_details); 1616 if (status) { 1617 i40e_debug(hw, I40E_DEBUG_NVM, 1618 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", 1619 module, cmd->offset, cmd->data_size); 1620 i40e_debug(hw, I40E_DEBUG_NVM, 1621 "i40e_nvmupd_nvm_erase status %d aq %d\n", 1622 status, hw->aq.asq_last_status); 1623 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1624 } 1625 1626 return status; 1627 } 1628 1629 /** 1630 * i40e_nvmupd_nvm_write - Write NVM 1631 * @hw: pointer to hardware structure 1632 * @cmd: pointer to nvm update command buffer 1633 * @bytes: pointer to the data buffer 1634 * @perrno: pointer to return error code 1635 * 1636 * module, offset, data_size and data are in cmd structure 1637 **/ 1638 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 1639 struct i40e_nvm_access *cmd, 1640 u8 *bytes, int *perrno) 1641 { 1642 i40e_status status = 0; 1643 struct i40e_asq_cmd_details cmd_details; 1644 u8 module, transaction; 1645 u8 preservation_flags; 1646 bool last; 1647 1648 transaction = i40e_nvmupd_get_transaction(cmd->config); 1649 module = i40e_nvmupd_get_module(cmd->config); 1650 last = (transaction & I40E_NVM_LCB); 1651 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config); 1652 1653 memset(&cmd_details, 0, sizeof(cmd_details)); 1654 cmd_details.wb_desc = &hw->nvm_wb_desc; 1655 1656 status = i40e_aq_update_nvm(hw, module, cmd->offset, 1657 (u16)cmd->data_size, bytes, last, 1658 preservation_flags, &cmd_details); 1659 if (status) { 1660 i40e_debug(hw, I40E_DEBUG_NVM, 1661 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", 1662 module, cmd->offset, cmd->data_size); 1663 i40e_debug(hw, I40E_DEBUG_NVM, 1664 "i40e_nvmupd_nvm_write status %d aq %d\n", 1665 status, hw->aq.asq_last_status); 1666 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1667 } 1668 1669 return status; 1670 } 1671