1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2014 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include "i40e_prototype.h" 28 29 /** 30 * i40e_init_nvm_ops - Initialize NVM function pointers 31 * @hw: pointer to the HW structure 32 * 33 * Setup the function pointers and the NVM info structure. Should be called 34 * once per NVM initialization, e.g. inside the i40e_init_shared_code(). 35 * Please notice that the NVM term is used here (& in all methods covered 36 * in this file) as an equivalent of the FLASH part mapped into the SR. 37 * We are accessing FLASH always thru the Shadow RAM. 38 **/ 39 i40e_status i40e_init_nvm(struct i40e_hw *hw) 40 { 41 struct i40e_nvm_info *nvm = &hw->nvm; 42 i40e_status ret_code = 0; 43 u32 fla, gens; 44 u8 sr_size; 45 46 /* The SR size is stored regardless of the nvm programming mode 47 * as the blank mode may be used in the factory line. 48 */ 49 gens = rd32(hw, I40E_GLNVM_GENS); 50 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> 51 I40E_GLNVM_GENS_SR_SIZE_SHIFT); 52 /* Switching to words (sr_size contains power of 2KB) */ 53 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; 54 55 /* Check if we are in the normal or blank NVM programming mode */ 56 fla = rd32(hw, I40E_GLNVM_FLA); 57 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ 58 /* Max NVM timeout */ 59 nvm->timeout = I40E_MAX_NVM_TIMEOUT; 60 nvm->blank_nvm_mode = false; 61 } else { /* Blank programming mode */ 62 nvm->blank_nvm_mode = true; 63 ret_code = I40E_ERR_NVM_BLANK_MODE; 64 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); 65 } 66 67 return ret_code; 68 } 69 70 /** 71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership 72 * @hw: pointer to the HW structure 73 * @access: NVM access type (read or write) 74 * 75 * This function will request NVM ownership for reading 76 * via the proper Admin Command. 77 **/ 78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw, 79 enum i40e_aq_resource_access_type access) 80 { 81 i40e_status ret_code = 0; 82 u64 gtime, timeout; 83 u64 time_left = 0; 84 85 if (hw->nvm.blank_nvm_mode) 86 goto i40e_i40e_acquire_nvm_exit; 87 88 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 89 0, &time_left, NULL); 90 /* Reading the Global Device Timer */ 91 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 92 93 /* Store the timeout */ 94 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; 95 96 if (ret_code) 97 i40e_debug(hw, I40E_DEBUG_NVM, 98 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", 99 access, time_left, ret_code, hw->aq.asq_last_status); 100 101 if (ret_code && time_left) { 102 /* Poll until the current NVM owner timeouts */ 103 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; 104 while ((gtime < timeout) && time_left) { 105 usleep_range(10000, 20000); 106 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 107 ret_code = i40e_aq_request_resource(hw, 108 I40E_NVM_RESOURCE_ID, 109 access, 0, &time_left, 110 NULL); 111 if (!ret_code) { 112 hw->nvm.hw_semaphore_timeout = 113 I40E_MS_TO_GTIME(time_left) + gtime; 114 break; 115 } 116 } 117 if (ret_code) { 118 hw->nvm.hw_semaphore_timeout = 0; 119 i40e_debug(hw, I40E_DEBUG_NVM, 120 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", 121 time_left, ret_code, hw->aq.asq_last_status); 122 } 123 } 124 125 i40e_i40e_acquire_nvm_exit: 126 return ret_code; 127 } 128 129 /** 130 * i40e_release_nvm - Generic request for releasing the NVM ownership 131 * @hw: pointer to the HW structure 132 * 133 * This function will release NVM resource via the proper Admin Command. 134 **/ 135 void i40e_release_nvm(struct i40e_hw *hw) 136 { 137 if (!hw->nvm.blank_nvm_mode) 138 i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); 139 } 140 141 /** 142 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit 143 * @hw: pointer to the HW structure 144 * 145 * Polls the SRCTL Shadow RAM register done bit. 146 **/ 147 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) 148 { 149 i40e_status ret_code = I40E_ERR_TIMEOUT; 150 u32 srctl, wait_cnt; 151 152 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ 153 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { 154 srctl = rd32(hw, I40E_GLNVM_SRCTL); 155 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { 156 ret_code = 0; 157 break; 158 } 159 udelay(5); 160 } 161 if (ret_code == I40E_ERR_TIMEOUT) 162 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); 163 return ret_code; 164 } 165 166 /** 167 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register 168 * @hw: pointer to the HW structure 169 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 170 * @data: word read from the Shadow RAM 171 * 172 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 173 **/ 174 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, 175 u16 *data) 176 { 177 i40e_status ret_code = I40E_ERR_TIMEOUT; 178 u32 sr_reg; 179 180 if (offset >= hw->nvm.sr_size) { 181 i40e_debug(hw, I40E_DEBUG_NVM, 182 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 183 offset, hw->nvm.sr_size); 184 ret_code = I40E_ERR_PARAM; 185 goto read_nvm_exit; 186 } 187 188 /* Poll the done bit first */ 189 ret_code = i40e_poll_sr_srctl_done_bit(hw); 190 if (!ret_code) { 191 /* Write the address and start reading */ 192 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | 193 BIT(I40E_GLNVM_SRCTL_START_SHIFT); 194 wr32(hw, I40E_GLNVM_SRCTL, sr_reg); 195 196 /* Poll I40E_GLNVM_SRCTL until the done bit is set */ 197 ret_code = i40e_poll_sr_srctl_done_bit(hw); 198 if (!ret_code) { 199 sr_reg = rd32(hw, I40E_GLNVM_SRDATA); 200 *data = (u16)((sr_reg & 201 I40E_GLNVM_SRDATA_RDDATA_MASK) 202 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); 203 } 204 } 205 if (ret_code) 206 i40e_debug(hw, I40E_DEBUG_NVM, 207 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", 208 offset); 209 210 read_nvm_exit: 211 return ret_code; 212 } 213 214 /** 215 * i40e_read_nvm_aq - Read Shadow RAM. 216 * @hw: pointer to the HW structure. 217 * @module_pointer: module pointer location in words from the NVM beginning 218 * @offset: offset in words from module start 219 * @words: number of words to write 220 * @data: buffer with words to write to the Shadow RAM 221 * @last_command: tells the AdminQ that this is the last command 222 * 223 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 224 **/ 225 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 226 u32 offset, u16 words, void *data, 227 bool last_command) 228 { 229 i40e_status ret_code = I40E_ERR_NVM; 230 struct i40e_asq_cmd_details cmd_details; 231 232 memset(&cmd_details, 0, sizeof(cmd_details)); 233 234 /* Here we are checking the SR limit only for the flat memory model. 235 * We cannot do it for the module-based model, as we did not acquire 236 * the NVM resource yet (we cannot get the module pointer value). 237 * Firmware will check the module-based model. 238 */ 239 if ((offset + words) > hw->nvm.sr_size) 240 i40e_debug(hw, I40E_DEBUG_NVM, 241 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 242 (offset + words), hw->nvm.sr_size); 243 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 244 /* We can write only up to 4KB (one sector), in one AQ write */ 245 i40e_debug(hw, I40E_DEBUG_NVM, 246 "NVM write fail error: tried to write %d words, limit is %d.\n", 247 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 248 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 249 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 250 /* A single write cannot spread over two sectors */ 251 i40e_debug(hw, I40E_DEBUG_NVM, 252 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 253 offset, words); 254 else 255 ret_code = i40e_aq_read_nvm(hw, module_pointer, 256 2 * offset, /*bytes*/ 257 2 * words, /*bytes*/ 258 data, last_command, &cmd_details); 259 260 return ret_code; 261 } 262 263 /** 264 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ 265 * @hw: pointer to the HW structure 266 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 267 * @data: word read from the Shadow RAM 268 * 269 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 270 **/ 271 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, 272 u16 *data) 273 { 274 i40e_status ret_code = I40E_ERR_TIMEOUT; 275 276 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); 277 *data = le16_to_cpu(*(__le16 *)data); 278 279 return ret_code; 280 } 281 282 /** 283 * i40e_read_nvm_word - Reads Shadow RAM 284 * @hw: pointer to the HW structure 285 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 286 * @data: word read from the Shadow RAM 287 * 288 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 289 **/ 290 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, 291 u16 *data) 292 { 293 enum i40e_status_code ret_code = 0; 294 295 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) { 296 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 297 if (!ret_code) { 298 ret_code = i40e_read_nvm_word_aq(hw, offset, data); 299 i40e_release_nvm(hw); 300 } 301 } else { 302 ret_code = i40e_read_nvm_word_srctl(hw, offset, data); 303 } 304 return ret_code; 305 } 306 307 /** 308 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register 309 * @hw: pointer to the HW structure 310 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 311 * @words: (in) number of words to read; (out) number of words actually read 312 * @data: words read from the Shadow RAM 313 * 314 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 315 * method. The buffer read is preceded by the NVM ownership take 316 * and followed by the release. 317 **/ 318 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, 319 u16 *words, u16 *data) 320 { 321 i40e_status ret_code = 0; 322 u16 index, word; 323 324 /* Loop thru the selected region */ 325 for (word = 0; word < *words; word++) { 326 index = offset + word; 327 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); 328 if (ret_code) 329 break; 330 } 331 332 /* Update the number of words read from the Shadow RAM */ 333 *words = word; 334 335 return ret_code; 336 } 337 338 /** 339 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ 340 * @hw: pointer to the HW structure 341 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 342 * @words: (in) number of words to read; (out) number of words actually read 343 * @data: words read from the Shadow RAM 344 * 345 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() 346 * method. The buffer read is preceded by the NVM ownership take 347 * and followed by the release. 348 **/ 349 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, 350 u16 *words, u16 *data) 351 { 352 i40e_status ret_code; 353 u16 read_size = *words; 354 bool last_cmd = false; 355 u16 words_read = 0; 356 u16 i = 0; 357 358 do { 359 /* Calculate number of bytes we should read in this step. 360 * FVL AQ do not allow to read more than one page at a time or 361 * to cross page boundaries. 362 */ 363 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) 364 read_size = min(*words, 365 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - 366 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); 367 else 368 read_size = min((*words - words_read), 369 I40E_SR_SECTOR_SIZE_IN_WORDS); 370 371 /* Check if this is last command, if so set proper flag */ 372 if ((words_read + read_size) >= *words) 373 last_cmd = true; 374 375 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, 376 data + words_read, last_cmd); 377 if (ret_code) 378 goto read_nvm_buffer_aq_exit; 379 380 /* Increment counter for words already read and move offset to 381 * new read location 382 */ 383 words_read += read_size; 384 offset += read_size; 385 } while (words_read < *words); 386 387 for (i = 0; i < *words; i++) 388 data[i] = le16_to_cpu(((__le16 *)data)[i]); 389 390 read_nvm_buffer_aq_exit: 391 *words = words_read; 392 return ret_code; 393 } 394 395 /** 396 * i40e_read_nvm_buffer - Reads Shadow RAM buffer 397 * @hw: pointer to the HW structure 398 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 399 * @words: (in) number of words to read; (out) number of words actually read 400 * @data: words read from the Shadow RAM 401 * 402 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 403 * method. The buffer read is preceded by the NVM ownership take 404 * and followed by the release. 405 **/ 406 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, 407 u16 *words, u16 *data) 408 { 409 enum i40e_status_code ret_code = 0; 410 411 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) { 412 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 413 if (!ret_code) { 414 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, 415 data); 416 i40e_release_nvm(hw); 417 } 418 } else { 419 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); 420 } 421 return ret_code; 422 } 423 424 /** 425 * i40e_write_nvm_aq - Writes Shadow RAM. 426 * @hw: pointer to the HW structure. 427 * @module_pointer: module pointer location in words from the NVM beginning 428 * @offset: offset in words from module start 429 * @words: number of words to write 430 * @data: buffer with words to write to the Shadow RAM 431 * @last_command: tells the AdminQ that this is the last command 432 * 433 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 434 **/ 435 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 436 u32 offset, u16 words, void *data, 437 bool last_command) 438 { 439 i40e_status ret_code = I40E_ERR_NVM; 440 struct i40e_asq_cmd_details cmd_details; 441 442 memset(&cmd_details, 0, sizeof(cmd_details)); 443 cmd_details.wb_desc = &hw->nvm_wb_desc; 444 445 /* Here we are checking the SR limit only for the flat memory model. 446 * We cannot do it for the module-based model, as we did not acquire 447 * the NVM resource yet (we cannot get the module pointer value). 448 * Firmware will check the module-based model. 449 */ 450 if ((offset + words) > hw->nvm.sr_size) 451 i40e_debug(hw, I40E_DEBUG_NVM, 452 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 453 (offset + words), hw->nvm.sr_size); 454 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 455 /* We can write only up to 4KB (one sector), in one AQ write */ 456 i40e_debug(hw, I40E_DEBUG_NVM, 457 "NVM write fail error: tried to write %d words, limit is %d.\n", 458 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 459 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 460 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 461 /* A single write cannot spread over two sectors */ 462 i40e_debug(hw, I40E_DEBUG_NVM, 463 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 464 offset, words); 465 else 466 ret_code = i40e_aq_update_nvm(hw, module_pointer, 467 2 * offset, /*bytes*/ 468 2 * words, /*bytes*/ 469 data, last_command, &cmd_details); 470 471 return ret_code; 472 } 473 474 /** 475 * i40e_calc_nvm_checksum - Calculates and returns the checksum 476 * @hw: pointer to hardware structure 477 * @checksum: pointer to the checksum 478 * 479 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 480 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 481 * is customer specific and unknown. Therefore, this function skips all maximum 482 * possible size of VPD (1kB). 483 **/ 484 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, 485 u16 *checksum) 486 { 487 i40e_status ret_code; 488 struct i40e_virt_mem vmem; 489 u16 pcie_alt_module = 0; 490 u16 checksum_local = 0; 491 u16 vpd_module = 0; 492 u16 *data; 493 u16 i = 0; 494 495 ret_code = i40e_allocate_virt_mem(hw, &vmem, 496 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); 497 if (ret_code) 498 goto i40e_calc_nvm_checksum_exit; 499 data = (u16 *)vmem.va; 500 501 /* read pointer to VPD area */ 502 ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); 503 if (ret_code) { 504 ret_code = I40E_ERR_NVM_CHECKSUM; 505 goto i40e_calc_nvm_checksum_exit; 506 } 507 508 /* read pointer to PCIe Alt Auto-load module */ 509 ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, 510 &pcie_alt_module); 511 if (ret_code) { 512 ret_code = I40E_ERR_NVM_CHECKSUM; 513 goto i40e_calc_nvm_checksum_exit; 514 } 515 516 /* Calculate SW checksum that covers the whole 64kB shadow RAM 517 * except the VPD and PCIe ALT Auto-load modules 518 */ 519 for (i = 0; i < hw->nvm.sr_size; i++) { 520 /* Read SR page */ 521 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { 522 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; 523 524 ret_code = i40e_read_nvm_buffer(hw, i, &words, data); 525 if (ret_code) { 526 ret_code = I40E_ERR_NVM_CHECKSUM; 527 goto i40e_calc_nvm_checksum_exit; 528 } 529 } 530 531 /* Skip Checksum word */ 532 if (i == I40E_SR_SW_CHECKSUM_WORD) 533 continue; 534 /* Skip VPD module (convert byte size to word count) */ 535 if ((i >= (u32)vpd_module) && 536 (i < ((u32)vpd_module + 537 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { 538 continue; 539 } 540 /* Skip PCIe ALT module (convert byte size to word count) */ 541 if ((i >= (u32)pcie_alt_module) && 542 (i < ((u32)pcie_alt_module + 543 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { 544 continue; 545 } 546 547 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; 548 } 549 550 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; 551 552 i40e_calc_nvm_checksum_exit: 553 i40e_free_virt_mem(hw, &vmem); 554 return ret_code; 555 } 556 557 /** 558 * i40e_update_nvm_checksum - Updates the NVM checksum 559 * @hw: pointer to hardware structure 560 * 561 * NVM ownership must be acquired before calling this function and released 562 * on ARQ completion event reception by caller. 563 * This function will commit SR to NVM. 564 **/ 565 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw) 566 { 567 i40e_status ret_code; 568 u16 checksum; 569 __le16 le_sum; 570 571 ret_code = i40e_calc_nvm_checksum(hw, &checksum); 572 if (!ret_code) { 573 le_sum = cpu_to_le16(checksum); 574 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 575 1, &le_sum, true); 576 } 577 578 return ret_code; 579 } 580 581 /** 582 * i40e_validate_nvm_checksum - Validate EEPROM checksum 583 * @hw: pointer to hardware structure 584 * @checksum: calculated checksum 585 * 586 * Performs checksum calculation and validates the NVM SW checksum. If the 587 * caller does not need checksum, the value can be NULL. 588 **/ 589 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, 590 u16 *checksum) 591 { 592 i40e_status ret_code = 0; 593 u16 checksum_sr = 0; 594 u16 checksum_local = 0; 595 596 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); 597 if (ret_code) 598 goto i40e_validate_nvm_checksum_exit; 599 600 /* Do not use i40e_read_nvm_word() because we do not want to take 601 * the synchronization semaphores twice here. 602 */ 603 i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); 604 605 /* Verify read checksum from EEPROM is the same as 606 * calculated checksum 607 */ 608 if (checksum_local != checksum_sr) 609 ret_code = I40E_ERR_NVM_CHECKSUM; 610 611 /* If the user cares, return the calculated checksum */ 612 if (checksum) 613 *checksum = checksum_local; 614 615 i40e_validate_nvm_checksum_exit: 616 return ret_code; 617 } 618 619 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 620 struct i40e_nvm_access *cmd, 621 u8 *bytes, int *perrno); 622 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 623 struct i40e_nvm_access *cmd, 624 u8 *bytes, int *perrno); 625 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 626 struct i40e_nvm_access *cmd, 627 u8 *bytes, int *errno); 628 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 629 struct i40e_nvm_access *cmd, 630 int *perrno); 631 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 632 struct i40e_nvm_access *cmd, 633 int *perrno); 634 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 635 struct i40e_nvm_access *cmd, 636 u8 *bytes, int *perrno); 637 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 638 struct i40e_nvm_access *cmd, 639 u8 *bytes, int *perrno); 640 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 641 struct i40e_nvm_access *cmd, 642 u8 *bytes, int *perrno); 643 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 644 struct i40e_nvm_access *cmd, 645 u8 *bytes, int *perrno); 646 static inline u8 i40e_nvmupd_get_module(u32 val) 647 { 648 return (u8)(val & I40E_NVM_MOD_PNT_MASK); 649 } 650 static inline u8 i40e_nvmupd_get_transaction(u32 val) 651 { 652 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT); 653 } 654 655 static const char * const i40e_nvm_update_state_str[] = { 656 "I40E_NVMUPD_INVALID", 657 "I40E_NVMUPD_READ_CON", 658 "I40E_NVMUPD_READ_SNT", 659 "I40E_NVMUPD_READ_LCB", 660 "I40E_NVMUPD_READ_SA", 661 "I40E_NVMUPD_WRITE_ERA", 662 "I40E_NVMUPD_WRITE_CON", 663 "I40E_NVMUPD_WRITE_SNT", 664 "I40E_NVMUPD_WRITE_LCB", 665 "I40E_NVMUPD_WRITE_SA", 666 "I40E_NVMUPD_CSUM_CON", 667 "I40E_NVMUPD_CSUM_SA", 668 "I40E_NVMUPD_CSUM_LCB", 669 "I40E_NVMUPD_STATUS", 670 "I40E_NVMUPD_EXEC_AQ", 671 "I40E_NVMUPD_GET_AQ_RESULT", 672 }; 673 674 /** 675 * i40e_nvmupd_command - Process an NVM update command 676 * @hw: pointer to hardware structure 677 * @cmd: pointer to nvm update command 678 * @bytes: pointer to the data buffer 679 * @perrno: pointer to return error code 680 * 681 * Dispatches command depending on what update state is current 682 **/ 683 i40e_status i40e_nvmupd_command(struct i40e_hw *hw, 684 struct i40e_nvm_access *cmd, 685 u8 *bytes, int *perrno) 686 { 687 i40e_status status; 688 enum i40e_nvmupd_cmd upd_cmd; 689 690 /* assume success */ 691 *perrno = 0; 692 693 /* early check for status command and debug msgs */ 694 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 695 696 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d\n", 697 i40e_nvm_update_state_str[upd_cmd], 698 hw->nvmupd_state, 699 hw->aq.nvm_release_on_done); 700 701 if (upd_cmd == I40E_NVMUPD_INVALID) { 702 *perrno = -EFAULT; 703 i40e_debug(hw, I40E_DEBUG_NVM, 704 "i40e_nvmupd_validate_command returns %d errno %d\n", 705 upd_cmd, *perrno); 706 } 707 708 /* a status request returns immediately rather than 709 * going into the state machine 710 */ 711 if (upd_cmd == I40E_NVMUPD_STATUS) { 712 bytes[0] = hw->nvmupd_state; 713 return 0; 714 } 715 716 switch (hw->nvmupd_state) { 717 case I40E_NVMUPD_STATE_INIT: 718 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); 719 break; 720 721 case I40E_NVMUPD_STATE_READING: 722 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); 723 break; 724 725 case I40E_NVMUPD_STATE_WRITING: 726 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); 727 break; 728 729 case I40E_NVMUPD_STATE_INIT_WAIT: 730 case I40E_NVMUPD_STATE_WRITE_WAIT: 731 status = I40E_ERR_NOT_READY; 732 *perrno = -EBUSY; 733 break; 734 735 default: 736 /* invalid state, should never happen */ 737 i40e_debug(hw, I40E_DEBUG_NVM, 738 "NVMUPD: no such state %d\n", hw->nvmupd_state); 739 status = I40E_NOT_SUPPORTED; 740 *perrno = -ESRCH; 741 break; 742 } 743 return status; 744 } 745 746 /** 747 * i40e_nvmupd_state_init - Handle NVM update state Init 748 * @hw: pointer to hardware structure 749 * @cmd: pointer to nvm update command buffer 750 * @bytes: pointer to the data buffer 751 * @perrno: pointer to return error code 752 * 753 * Process legitimate commands of the Init state and conditionally set next 754 * state. Reject all other commands. 755 **/ 756 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 757 struct i40e_nvm_access *cmd, 758 u8 *bytes, int *perrno) 759 { 760 i40e_status status = 0; 761 enum i40e_nvmupd_cmd upd_cmd; 762 763 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 764 765 switch (upd_cmd) { 766 case I40E_NVMUPD_READ_SA: 767 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 768 if (status) { 769 *perrno = i40e_aq_rc_to_posix(status, 770 hw->aq.asq_last_status); 771 } else { 772 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 773 i40e_release_nvm(hw); 774 } 775 break; 776 777 case I40E_NVMUPD_READ_SNT: 778 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 779 if (status) { 780 *perrno = i40e_aq_rc_to_posix(status, 781 hw->aq.asq_last_status); 782 } else { 783 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 784 if (status) 785 i40e_release_nvm(hw); 786 else 787 hw->nvmupd_state = I40E_NVMUPD_STATE_READING; 788 } 789 break; 790 791 case I40E_NVMUPD_WRITE_ERA: 792 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 793 if (status) { 794 *perrno = i40e_aq_rc_to_posix(status, 795 hw->aq.asq_last_status); 796 } else { 797 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); 798 if (status) { 799 i40e_release_nvm(hw); 800 } else { 801 hw->aq.nvm_release_on_done = true; 802 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 803 } 804 } 805 break; 806 807 case I40E_NVMUPD_WRITE_SA: 808 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 809 if (status) { 810 *perrno = i40e_aq_rc_to_posix(status, 811 hw->aq.asq_last_status); 812 } else { 813 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 814 if (status) { 815 i40e_release_nvm(hw); 816 } else { 817 hw->aq.nvm_release_on_done = true; 818 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 819 } 820 } 821 break; 822 823 case I40E_NVMUPD_WRITE_SNT: 824 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 825 if (status) { 826 *perrno = i40e_aq_rc_to_posix(status, 827 hw->aq.asq_last_status); 828 } else { 829 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 830 if (status) 831 i40e_release_nvm(hw); 832 else 833 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 834 } 835 break; 836 837 case I40E_NVMUPD_CSUM_SA: 838 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 839 if (status) { 840 *perrno = i40e_aq_rc_to_posix(status, 841 hw->aq.asq_last_status); 842 } else { 843 status = i40e_update_nvm_checksum(hw); 844 if (status) { 845 *perrno = hw->aq.asq_last_status ? 846 i40e_aq_rc_to_posix(status, 847 hw->aq.asq_last_status) : 848 -EIO; 849 i40e_release_nvm(hw); 850 } else { 851 hw->aq.nvm_release_on_done = true; 852 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 853 } 854 } 855 break; 856 857 case I40E_NVMUPD_EXEC_AQ: 858 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); 859 break; 860 861 case I40E_NVMUPD_GET_AQ_RESULT: 862 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); 863 break; 864 865 default: 866 i40e_debug(hw, I40E_DEBUG_NVM, 867 "NVMUPD: bad cmd %s in init state\n", 868 i40e_nvm_update_state_str[upd_cmd]); 869 status = I40E_ERR_NVM; 870 *perrno = -ESRCH; 871 break; 872 } 873 return status; 874 } 875 876 /** 877 * i40e_nvmupd_state_reading - Handle NVM update state Reading 878 * @hw: pointer to hardware structure 879 * @cmd: pointer to nvm update command buffer 880 * @bytes: pointer to the data buffer 881 * @perrno: pointer to return error code 882 * 883 * NVM ownership is already held. Process legitimate commands and set any 884 * change in state; reject all other commands. 885 **/ 886 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 887 struct i40e_nvm_access *cmd, 888 u8 *bytes, int *perrno) 889 { 890 i40e_status status = 0; 891 enum i40e_nvmupd_cmd upd_cmd; 892 893 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 894 895 switch (upd_cmd) { 896 case I40E_NVMUPD_READ_SA: 897 case I40E_NVMUPD_READ_CON: 898 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 899 break; 900 901 case I40E_NVMUPD_READ_LCB: 902 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 903 i40e_release_nvm(hw); 904 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 905 break; 906 907 default: 908 i40e_debug(hw, I40E_DEBUG_NVM, 909 "NVMUPD: bad cmd %s in reading state.\n", 910 i40e_nvm_update_state_str[upd_cmd]); 911 status = I40E_NOT_SUPPORTED; 912 *perrno = -ESRCH; 913 break; 914 } 915 return status; 916 } 917 918 /** 919 * i40e_nvmupd_state_writing - Handle NVM update state Writing 920 * @hw: pointer to hardware structure 921 * @cmd: pointer to nvm update command buffer 922 * @bytes: pointer to the data buffer 923 * @perrno: pointer to return error code 924 * 925 * NVM ownership is already held. Process legitimate commands and set any 926 * change in state; reject all other commands 927 **/ 928 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 929 struct i40e_nvm_access *cmd, 930 u8 *bytes, int *perrno) 931 { 932 i40e_status status = 0; 933 enum i40e_nvmupd_cmd upd_cmd; 934 bool retry_attempt = false; 935 936 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 937 938 retry: 939 switch (upd_cmd) { 940 case I40E_NVMUPD_WRITE_CON: 941 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 942 if (!status) 943 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 944 break; 945 946 case I40E_NVMUPD_WRITE_LCB: 947 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 948 if (status) { 949 *perrno = hw->aq.asq_last_status ? 950 i40e_aq_rc_to_posix(status, 951 hw->aq.asq_last_status) : 952 -EIO; 953 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 954 } else { 955 hw->aq.nvm_release_on_done = true; 956 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 957 } 958 break; 959 960 case I40E_NVMUPD_CSUM_CON: 961 status = i40e_update_nvm_checksum(hw); 962 if (status) { 963 *perrno = hw->aq.asq_last_status ? 964 i40e_aq_rc_to_posix(status, 965 hw->aq.asq_last_status) : 966 -EIO; 967 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 968 } else { 969 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 970 } 971 break; 972 973 case I40E_NVMUPD_CSUM_LCB: 974 status = i40e_update_nvm_checksum(hw); 975 if (status) { 976 *perrno = hw->aq.asq_last_status ? 977 i40e_aq_rc_to_posix(status, 978 hw->aq.asq_last_status) : 979 -EIO; 980 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 981 } else { 982 hw->aq.nvm_release_on_done = true; 983 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 984 } 985 break; 986 987 default: 988 i40e_debug(hw, I40E_DEBUG_NVM, 989 "NVMUPD: bad cmd %s in writing state.\n", 990 i40e_nvm_update_state_str[upd_cmd]); 991 status = I40E_NOT_SUPPORTED; 992 *perrno = -ESRCH; 993 break; 994 } 995 996 /* In some circumstances, a multi-write transaction takes longer 997 * than the default 3 minute timeout on the write semaphore. If 998 * the write failed with an EBUSY status, this is likely the problem, 999 * so here we try to reacquire the semaphore then retry the write. 1000 * We only do one retry, then give up. 1001 */ 1002 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && 1003 !retry_attempt) { 1004 i40e_status old_status = status; 1005 u32 old_asq_status = hw->aq.asq_last_status; 1006 u32 gtime; 1007 1008 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 1009 if (gtime >= hw->nvm.hw_semaphore_timeout) { 1010 i40e_debug(hw, I40E_DEBUG_ALL, 1011 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", 1012 gtime, hw->nvm.hw_semaphore_timeout); 1013 i40e_release_nvm(hw); 1014 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1015 if (status) { 1016 i40e_debug(hw, I40E_DEBUG_ALL, 1017 "NVMUPD: write semaphore reacquire failed aq_err = %d\n", 1018 hw->aq.asq_last_status); 1019 status = old_status; 1020 hw->aq.asq_last_status = old_asq_status; 1021 } else { 1022 retry_attempt = true; 1023 goto retry; 1024 } 1025 } 1026 } 1027 1028 return status; 1029 } 1030 1031 /** 1032 * i40e_nvmupd_validate_command - Validate given command 1033 * @hw: pointer to hardware structure 1034 * @cmd: pointer to nvm update command buffer 1035 * @perrno: pointer to return error code 1036 * 1037 * Return one of the valid command types or I40E_NVMUPD_INVALID 1038 **/ 1039 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 1040 struct i40e_nvm_access *cmd, 1041 int *perrno) 1042 { 1043 enum i40e_nvmupd_cmd upd_cmd; 1044 u8 module, transaction; 1045 1046 /* anything that doesn't match a recognized case is an error */ 1047 upd_cmd = I40E_NVMUPD_INVALID; 1048 1049 transaction = i40e_nvmupd_get_transaction(cmd->config); 1050 module = i40e_nvmupd_get_module(cmd->config); 1051 1052 /* limits on data size */ 1053 if ((cmd->data_size < 1) || 1054 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { 1055 i40e_debug(hw, I40E_DEBUG_NVM, 1056 "i40e_nvmupd_validate_command data_size %d\n", 1057 cmd->data_size); 1058 *perrno = -EFAULT; 1059 return I40E_NVMUPD_INVALID; 1060 } 1061 1062 switch (cmd->command) { 1063 case I40E_NVM_READ: 1064 switch (transaction) { 1065 case I40E_NVM_CON: 1066 upd_cmd = I40E_NVMUPD_READ_CON; 1067 break; 1068 case I40E_NVM_SNT: 1069 upd_cmd = I40E_NVMUPD_READ_SNT; 1070 break; 1071 case I40E_NVM_LCB: 1072 upd_cmd = I40E_NVMUPD_READ_LCB; 1073 break; 1074 case I40E_NVM_SA: 1075 upd_cmd = I40E_NVMUPD_READ_SA; 1076 break; 1077 case I40E_NVM_EXEC: 1078 if (module == 0xf) 1079 upd_cmd = I40E_NVMUPD_STATUS; 1080 else if (module == 0) 1081 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; 1082 break; 1083 } 1084 break; 1085 1086 case I40E_NVM_WRITE: 1087 switch (transaction) { 1088 case I40E_NVM_CON: 1089 upd_cmd = I40E_NVMUPD_WRITE_CON; 1090 break; 1091 case I40E_NVM_SNT: 1092 upd_cmd = I40E_NVMUPD_WRITE_SNT; 1093 break; 1094 case I40E_NVM_LCB: 1095 upd_cmd = I40E_NVMUPD_WRITE_LCB; 1096 break; 1097 case I40E_NVM_SA: 1098 upd_cmd = I40E_NVMUPD_WRITE_SA; 1099 break; 1100 case I40E_NVM_ERA: 1101 upd_cmd = I40E_NVMUPD_WRITE_ERA; 1102 break; 1103 case I40E_NVM_CSUM: 1104 upd_cmd = I40E_NVMUPD_CSUM_CON; 1105 break; 1106 case (I40E_NVM_CSUM|I40E_NVM_SA): 1107 upd_cmd = I40E_NVMUPD_CSUM_SA; 1108 break; 1109 case (I40E_NVM_CSUM|I40E_NVM_LCB): 1110 upd_cmd = I40E_NVMUPD_CSUM_LCB; 1111 break; 1112 case I40E_NVM_EXEC: 1113 if (module == 0) 1114 upd_cmd = I40E_NVMUPD_EXEC_AQ; 1115 break; 1116 } 1117 break; 1118 } 1119 1120 return upd_cmd; 1121 } 1122 1123 /** 1124 * i40e_nvmupd_exec_aq - Run an AQ command 1125 * @hw: pointer to hardware structure 1126 * @cmd: pointer to nvm update command buffer 1127 * @bytes: pointer to the data buffer 1128 * @perrno: pointer to return error code 1129 * 1130 * cmd structure contains identifiers and data buffer 1131 **/ 1132 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 1133 struct i40e_nvm_access *cmd, 1134 u8 *bytes, int *perrno) 1135 { 1136 struct i40e_asq_cmd_details cmd_details; 1137 i40e_status status; 1138 struct i40e_aq_desc *aq_desc; 1139 u32 buff_size = 0; 1140 u8 *buff = NULL; 1141 u32 aq_desc_len; 1142 u32 aq_data_len; 1143 1144 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1145 memset(&cmd_details, 0, sizeof(cmd_details)); 1146 cmd_details.wb_desc = &hw->nvm_wb_desc; 1147 1148 aq_desc_len = sizeof(struct i40e_aq_desc); 1149 memset(&hw->nvm_wb_desc, 0, aq_desc_len); 1150 1151 /* get the aq descriptor */ 1152 if (cmd->data_size < aq_desc_len) { 1153 i40e_debug(hw, I40E_DEBUG_NVM, 1154 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", 1155 cmd->data_size, aq_desc_len); 1156 *perrno = -EINVAL; 1157 return I40E_ERR_PARAM; 1158 } 1159 aq_desc = (struct i40e_aq_desc *)bytes; 1160 1161 /* if data buffer needed, make sure it's ready */ 1162 aq_data_len = cmd->data_size - aq_desc_len; 1163 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); 1164 if (buff_size) { 1165 if (!hw->nvm_buff.va) { 1166 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, 1167 hw->aq.asq_buf_size); 1168 if (status) 1169 i40e_debug(hw, I40E_DEBUG_NVM, 1170 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", 1171 status); 1172 } 1173 1174 if (hw->nvm_buff.va) { 1175 buff = hw->nvm_buff.va; 1176 memcpy(buff, &bytes[aq_desc_len], aq_data_len); 1177 } 1178 } 1179 1180 /* and away we go! */ 1181 status = i40e_asq_send_command(hw, aq_desc, buff, 1182 buff_size, &cmd_details); 1183 if (status) { 1184 i40e_debug(hw, I40E_DEBUG_NVM, 1185 "i40e_nvmupd_exec_aq err %s aq_err %s\n", 1186 i40e_stat_str(hw, status), 1187 i40e_aq_str(hw, hw->aq.asq_last_status)); 1188 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1189 } 1190 1191 return status; 1192 } 1193 1194 /** 1195 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq 1196 * @hw: pointer to hardware structure 1197 * @cmd: pointer to nvm update command buffer 1198 * @bytes: pointer to the data buffer 1199 * @perrno: pointer to return error code 1200 * 1201 * cmd structure contains identifiers and data buffer 1202 **/ 1203 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 1204 struct i40e_nvm_access *cmd, 1205 u8 *bytes, int *perrno) 1206 { 1207 u32 aq_total_len; 1208 u32 aq_desc_len; 1209 int remainder; 1210 u8 *buff; 1211 1212 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1213 1214 aq_desc_len = sizeof(struct i40e_aq_desc); 1215 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); 1216 1217 /* check offset range */ 1218 if (cmd->offset > aq_total_len) { 1219 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", 1220 __func__, cmd->offset, aq_total_len); 1221 *perrno = -EINVAL; 1222 return I40E_ERR_PARAM; 1223 } 1224 1225 /* check copylength range */ 1226 if (cmd->data_size > (aq_total_len - cmd->offset)) { 1227 int new_len = aq_total_len - cmd->offset; 1228 1229 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", 1230 __func__, cmd->data_size, new_len); 1231 cmd->data_size = new_len; 1232 } 1233 1234 remainder = cmd->data_size; 1235 if (cmd->offset < aq_desc_len) { 1236 u32 len = aq_desc_len - cmd->offset; 1237 1238 len = min(len, cmd->data_size); 1239 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", 1240 __func__, cmd->offset, cmd->offset + len); 1241 1242 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; 1243 memcpy(bytes, buff, len); 1244 1245 bytes += len; 1246 remainder -= len; 1247 buff = hw->nvm_buff.va; 1248 } else { 1249 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); 1250 } 1251 1252 if (remainder > 0) { 1253 int start_byte = buff - (u8 *)hw->nvm_buff.va; 1254 1255 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", 1256 __func__, start_byte, start_byte + remainder); 1257 memcpy(bytes, buff, remainder); 1258 } 1259 1260 return 0; 1261 } 1262 1263 /** 1264 * i40e_nvmupd_nvm_read - Read NVM 1265 * @hw: pointer to hardware structure 1266 * @cmd: pointer to nvm update command buffer 1267 * @bytes: pointer to the data buffer 1268 * @perrno: pointer to return error code 1269 * 1270 * cmd structure contains identifiers and data buffer 1271 **/ 1272 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 1273 struct i40e_nvm_access *cmd, 1274 u8 *bytes, int *perrno) 1275 { 1276 struct i40e_asq_cmd_details cmd_details; 1277 i40e_status status; 1278 u8 module, transaction; 1279 bool last; 1280 1281 transaction = i40e_nvmupd_get_transaction(cmd->config); 1282 module = i40e_nvmupd_get_module(cmd->config); 1283 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); 1284 1285 memset(&cmd_details, 0, sizeof(cmd_details)); 1286 cmd_details.wb_desc = &hw->nvm_wb_desc; 1287 1288 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1289 bytes, last, &cmd_details); 1290 if (status) { 1291 i40e_debug(hw, I40E_DEBUG_NVM, 1292 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", 1293 module, cmd->offset, cmd->data_size); 1294 i40e_debug(hw, I40E_DEBUG_NVM, 1295 "i40e_nvmupd_nvm_read status %d aq %d\n", 1296 status, hw->aq.asq_last_status); 1297 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1298 } 1299 1300 return status; 1301 } 1302 1303 /** 1304 * i40e_nvmupd_nvm_erase - Erase an NVM module 1305 * @hw: pointer to hardware structure 1306 * @cmd: pointer to nvm update command buffer 1307 * @perrno: pointer to return error code 1308 * 1309 * module, offset, data_size and data are in cmd structure 1310 **/ 1311 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 1312 struct i40e_nvm_access *cmd, 1313 int *perrno) 1314 { 1315 i40e_status status = 0; 1316 struct i40e_asq_cmd_details cmd_details; 1317 u8 module, transaction; 1318 bool last; 1319 1320 transaction = i40e_nvmupd_get_transaction(cmd->config); 1321 module = i40e_nvmupd_get_module(cmd->config); 1322 last = (transaction & I40E_NVM_LCB); 1323 1324 memset(&cmd_details, 0, sizeof(cmd_details)); 1325 cmd_details.wb_desc = &hw->nvm_wb_desc; 1326 1327 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1328 last, &cmd_details); 1329 if (status) { 1330 i40e_debug(hw, I40E_DEBUG_NVM, 1331 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", 1332 module, cmd->offset, cmd->data_size); 1333 i40e_debug(hw, I40E_DEBUG_NVM, 1334 "i40e_nvmupd_nvm_erase status %d aq %d\n", 1335 status, hw->aq.asq_last_status); 1336 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1337 } 1338 1339 return status; 1340 } 1341 1342 /** 1343 * i40e_nvmupd_nvm_write - Write NVM 1344 * @hw: pointer to hardware structure 1345 * @cmd: pointer to nvm update command buffer 1346 * @bytes: pointer to the data buffer 1347 * @perrno: pointer to return error code 1348 * 1349 * module, offset, data_size and data are in cmd structure 1350 **/ 1351 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 1352 struct i40e_nvm_access *cmd, 1353 u8 *bytes, int *perrno) 1354 { 1355 i40e_status status = 0; 1356 struct i40e_asq_cmd_details cmd_details; 1357 u8 module, transaction; 1358 bool last; 1359 1360 transaction = i40e_nvmupd_get_transaction(cmd->config); 1361 module = i40e_nvmupd_get_module(cmd->config); 1362 last = (transaction & I40E_NVM_LCB); 1363 1364 memset(&cmd_details, 0, sizeof(cmd_details)); 1365 cmd_details.wb_desc = &hw->nvm_wb_desc; 1366 1367 status = i40e_aq_update_nvm(hw, module, cmd->offset, 1368 (u16)cmd->data_size, bytes, last, 1369 &cmd_details); 1370 if (status) { 1371 i40e_debug(hw, I40E_DEBUG_NVM, 1372 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", 1373 module, cmd->offset, cmd->data_size); 1374 i40e_debug(hw, I40E_DEBUG_NVM, 1375 "i40e_nvmupd_nvm_write status %d aq %d\n", 1376 status, hw->aq.asq_last_status); 1377 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1378 } 1379 1380 return status; 1381 } 1382