1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "i40e_prototype.h" 5 6 /** 7 * i40e_init_nvm - Initialize NVM function pointers 8 * @hw: pointer to the HW structure 9 * 10 * Setup the function pointers and the NVM info structure. Should be called 11 * once per NVM initialization, e.g. inside the i40e_init_shared_code(). 12 * Please notice that the NVM term is used here (& in all methods covered 13 * in this file) as an equivalent of the FLASH part mapped into the SR. 14 * We are accessing FLASH always thru the Shadow RAM. 15 **/ 16 i40e_status i40e_init_nvm(struct i40e_hw *hw) 17 { 18 struct i40e_nvm_info *nvm = &hw->nvm; 19 i40e_status ret_code = 0; 20 u32 fla, gens; 21 u8 sr_size; 22 23 /* The SR size is stored regardless of the nvm programming mode 24 * as the blank mode may be used in the factory line. 25 */ 26 gens = rd32(hw, I40E_GLNVM_GENS); 27 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> 28 I40E_GLNVM_GENS_SR_SIZE_SHIFT); 29 /* Switching to words (sr_size contains power of 2KB) */ 30 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; 31 32 /* Check if we are in the normal or blank NVM programming mode */ 33 fla = rd32(hw, I40E_GLNVM_FLA); 34 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ 35 /* Max NVM timeout */ 36 nvm->timeout = I40E_MAX_NVM_TIMEOUT; 37 nvm->blank_nvm_mode = false; 38 } else { /* Blank programming mode */ 39 nvm->blank_nvm_mode = true; 40 ret_code = I40E_ERR_NVM_BLANK_MODE; 41 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); 42 } 43 44 return ret_code; 45 } 46 47 /** 48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership 49 * @hw: pointer to the HW structure 50 * @access: NVM access type (read or write) 51 * 52 * This function will request NVM ownership for reading 53 * via the proper Admin Command. 54 **/ 55 i40e_status i40e_acquire_nvm(struct i40e_hw *hw, 56 enum i40e_aq_resource_access_type access) 57 { 58 i40e_status ret_code = 0; 59 u64 gtime, timeout; 60 u64 time_left = 0; 61 62 if (hw->nvm.blank_nvm_mode) 63 goto i40e_i40e_acquire_nvm_exit; 64 65 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 66 0, &time_left, NULL); 67 /* Reading the Global Device Timer */ 68 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 69 70 /* Store the timeout */ 71 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; 72 73 if (ret_code) 74 i40e_debug(hw, I40E_DEBUG_NVM, 75 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", 76 access, time_left, ret_code, hw->aq.asq_last_status); 77 78 if (ret_code && time_left) { 79 /* Poll until the current NVM owner timeouts */ 80 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; 81 while ((gtime < timeout) && time_left) { 82 usleep_range(10000, 20000); 83 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 84 ret_code = i40e_aq_request_resource(hw, 85 I40E_NVM_RESOURCE_ID, 86 access, 0, &time_left, 87 NULL); 88 if (!ret_code) { 89 hw->nvm.hw_semaphore_timeout = 90 I40E_MS_TO_GTIME(time_left) + gtime; 91 break; 92 } 93 } 94 if (ret_code) { 95 hw->nvm.hw_semaphore_timeout = 0; 96 i40e_debug(hw, I40E_DEBUG_NVM, 97 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", 98 time_left, ret_code, hw->aq.asq_last_status); 99 } 100 } 101 102 i40e_i40e_acquire_nvm_exit: 103 return ret_code; 104 } 105 106 /** 107 * i40e_release_nvm - Generic request for releasing the NVM ownership 108 * @hw: pointer to the HW structure 109 * 110 * This function will release NVM resource via the proper Admin Command. 111 **/ 112 void i40e_release_nvm(struct i40e_hw *hw) 113 { 114 i40e_status ret_code = I40E_SUCCESS; 115 u32 total_delay = 0; 116 117 if (hw->nvm.blank_nvm_mode) 118 return; 119 120 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); 121 122 /* there are some rare cases when trying to release the resource 123 * results in an admin Q timeout, so handle them correctly 124 */ 125 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) && 126 (total_delay < hw->aq.asq_cmd_timeout)) { 127 usleep_range(1000, 2000); 128 ret_code = i40e_aq_release_resource(hw, 129 I40E_NVM_RESOURCE_ID, 130 0, NULL); 131 total_delay++; 132 } 133 } 134 135 /** 136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit 137 * @hw: pointer to the HW structure 138 * 139 * Polls the SRCTL Shadow RAM register done bit. 140 **/ 141 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) 142 { 143 i40e_status ret_code = I40E_ERR_TIMEOUT; 144 u32 srctl, wait_cnt; 145 146 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ 147 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { 148 srctl = rd32(hw, I40E_GLNVM_SRCTL); 149 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { 150 ret_code = 0; 151 break; 152 } 153 udelay(5); 154 } 155 if (ret_code == I40E_ERR_TIMEOUT) 156 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); 157 return ret_code; 158 } 159 160 /** 161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register 162 * @hw: pointer to the HW structure 163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 164 * @data: word read from the Shadow RAM 165 * 166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 167 **/ 168 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, 169 u16 *data) 170 { 171 i40e_status ret_code = I40E_ERR_TIMEOUT; 172 u32 sr_reg; 173 174 if (offset >= hw->nvm.sr_size) { 175 i40e_debug(hw, I40E_DEBUG_NVM, 176 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 177 offset, hw->nvm.sr_size); 178 ret_code = I40E_ERR_PARAM; 179 goto read_nvm_exit; 180 } 181 182 /* Poll the done bit first */ 183 ret_code = i40e_poll_sr_srctl_done_bit(hw); 184 if (!ret_code) { 185 /* Write the address and start reading */ 186 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | 187 BIT(I40E_GLNVM_SRCTL_START_SHIFT); 188 wr32(hw, I40E_GLNVM_SRCTL, sr_reg); 189 190 /* Poll I40E_GLNVM_SRCTL until the done bit is set */ 191 ret_code = i40e_poll_sr_srctl_done_bit(hw); 192 if (!ret_code) { 193 sr_reg = rd32(hw, I40E_GLNVM_SRDATA); 194 *data = (u16)((sr_reg & 195 I40E_GLNVM_SRDATA_RDDATA_MASK) 196 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); 197 } 198 } 199 if (ret_code) 200 i40e_debug(hw, I40E_DEBUG_NVM, 201 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", 202 offset); 203 204 read_nvm_exit: 205 return ret_code; 206 } 207 208 /** 209 * i40e_read_nvm_aq - Read Shadow RAM. 210 * @hw: pointer to the HW structure. 211 * @module_pointer: module pointer location in words from the NVM beginning 212 * @offset: offset in words from module start 213 * @words: number of words to write 214 * @data: buffer with words to write to the Shadow RAM 215 * @last_command: tells the AdminQ that this is the last command 216 * 217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 218 **/ 219 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, 220 u8 module_pointer, u32 offset, 221 u16 words, void *data, 222 bool last_command) 223 { 224 i40e_status ret_code = I40E_ERR_NVM; 225 struct i40e_asq_cmd_details cmd_details; 226 227 memset(&cmd_details, 0, sizeof(cmd_details)); 228 cmd_details.wb_desc = &hw->nvm_wb_desc; 229 230 /* Here we are checking the SR limit only for the flat memory model. 231 * We cannot do it for the module-based model, as we did not acquire 232 * the NVM resource yet (we cannot get the module pointer value). 233 * Firmware will check the module-based model. 234 */ 235 if ((offset + words) > hw->nvm.sr_size) 236 i40e_debug(hw, I40E_DEBUG_NVM, 237 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 238 (offset + words), hw->nvm.sr_size); 239 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 240 /* We can write only up to 4KB (one sector), in one AQ write */ 241 i40e_debug(hw, I40E_DEBUG_NVM, 242 "NVM write fail error: tried to write %d words, limit is %d.\n", 243 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 244 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 245 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 246 /* A single write cannot spread over two sectors */ 247 i40e_debug(hw, I40E_DEBUG_NVM, 248 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 249 offset, words); 250 else 251 ret_code = i40e_aq_read_nvm(hw, module_pointer, 252 2 * offset, /*bytes*/ 253 2 * words, /*bytes*/ 254 data, last_command, &cmd_details); 255 256 return ret_code; 257 } 258 259 /** 260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ 261 * @hw: pointer to the HW structure 262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 263 * @data: word read from the Shadow RAM 264 * 265 * Reads one 16 bit word from the Shadow RAM using the AdminQ 266 **/ 267 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, 268 u16 *data) 269 { 270 i40e_status ret_code = I40E_ERR_TIMEOUT; 271 272 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); 273 *data = le16_to_cpu(*(__le16 *)data); 274 275 return ret_code; 276 } 277 278 /** 279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking 280 * @hw: pointer to the HW structure 281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 282 * @data: word read from the Shadow RAM 283 * 284 * Reads one 16 bit word from the Shadow RAM. 285 * 286 * Do not use this function except in cases where the nvm lock is already 287 * taken via i40e_acquire_nvm(). 288 **/ 289 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw, 290 u16 offset, u16 *data) 291 { 292 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 293 return i40e_read_nvm_word_aq(hw, offset, data); 294 295 return i40e_read_nvm_word_srctl(hw, offset, data); 296 } 297 298 /** 299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary 300 * @hw: pointer to the HW structure 301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 302 * @data: word read from the Shadow RAM 303 * 304 * Reads one 16 bit word from the Shadow RAM. 305 **/ 306 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, 307 u16 *data) 308 { 309 i40e_status ret_code = 0; 310 311 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) 312 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 313 if (ret_code) 314 return ret_code; 315 316 ret_code = __i40e_read_nvm_word(hw, offset, data); 317 318 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) 319 i40e_release_nvm(hw); 320 321 return ret_code; 322 } 323 324 /** 325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location 326 * @hw: Pointer to the HW structure 327 * @module_ptr: Pointer to module in words with respect to NVM beginning 328 * @module_offset: Offset in words from module start 329 * @data_offset: Offset in words from reading data area start 330 * @words_data_size: Words to read from NVM 331 * @data_ptr: Pointer to memory location where resulting buffer will be stored 332 **/ 333 enum i40e_status_code i40e_read_nvm_module_data(struct i40e_hw *hw, 334 u8 module_ptr, 335 u16 module_offset, 336 u16 data_offset, 337 u16 words_data_size, 338 u16 *data_ptr) 339 { 340 i40e_status status; 341 u16 specific_ptr = 0; 342 u16 ptr_value = 0; 343 u32 offset = 0; 344 345 if (module_ptr != 0) { 346 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value); 347 if (status) { 348 i40e_debug(hw, I40E_DEBUG_ALL, 349 "Reading nvm word failed.Error code: %d.\n", 350 status); 351 return I40E_ERR_NVM; 352 } 353 } 354 #define I40E_NVM_INVALID_PTR_VAL 0x7FFF 355 #define I40E_NVM_INVALID_VAL 0xFFFF 356 357 /* Pointer not initialized */ 358 if (ptr_value == I40E_NVM_INVALID_PTR_VAL || 359 ptr_value == I40E_NVM_INVALID_VAL) { 360 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n"); 361 return I40E_ERR_BAD_PTR; 362 } 363 364 /* Check whether the module is in SR mapped area or outside */ 365 if (ptr_value & I40E_PTR_TYPE) { 366 /* Pointer points outside of the Shared RAM mapped area */ 367 i40e_debug(hw, I40E_DEBUG_ALL, 368 "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n"); 369 370 return I40E_ERR_PARAM; 371 } else { 372 /* Read from the Shadow RAM */ 373 374 status = i40e_read_nvm_word(hw, ptr_value + module_offset, 375 &specific_ptr); 376 if (status) { 377 i40e_debug(hw, I40E_DEBUG_ALL, 378 "Reading nvm word failed.Error code: %d.\n", 379 status); 380 return I40E_ERR_NVM; 381 } 382 383 offset = ptr_value + module_offset + specific_ptr + 384 data_offset; 385 386 status = i40e_read_nvm_buffer(hw, offset, &words_data_size, 387 data_ptr); 388 if (status) { 389 i40e_debug(hw, I40E_DEBUG_ALL, 390 "Reading nvm buffer failed.Error code: %d.\n", 391 status); 392 } 393 } 394 395 return status; 396 } 397 398 /** 399 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register 400 * @hw: pointer to the HW structure 401 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 402 * @words: (in) number of words to read; (out) number of words actually read 403 * @data: words read from the Shadow RAM 404 * 405 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 406 * method. The buffer read is preceded by the NVM ownership take 407 * and followed by the release. 408 **/ 409 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, 410 u16 *words, u16 *data) 411 { 412 i40e_status ret_code = 0; 413 u16 index, word; 414 415 /* Loop thru the selected region */ 416 for (word = 0; word < *words; word++) { 417 index = offset + word; 418 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); 419 if (ret_code) 420 break; 421 } 422 423 /* Update the number of words read from the Shadow RAM */ 424 *words = word; 425 426 return ret_code; 427 } 428 429 /** 430 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ 431 * @hw: pointer to the HW structure 432 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 433 * @words: (in) number of words to read; (out) number of words actually read 434 * @data: words read from the Shadow RAM 435 * 436 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() 437 * method. The buffer read is preceded by the NVM ownership take 438 * and followed by the release. 439 **/ 440 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, 441 u16 *words, u16 *data) 442 { 443 i40e_status ret_code; 444 u16 read_size; 445 bool last_cmd = false; 446 u16 words_read = 0; 447 u16 i = 0; 448 449 do { 450 /* Calculate number of bytes we should read in this step. 451 * FVL AQ do not allow to read more than one page at a time or 452 * to cross page boundaries. 453 */ 454 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) 455 read_size = min(*words, 456 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - 457 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); 458 else 459 read_size = min((*words - words_read), 460 I40E_SR_SECTOR_SIZE_IN_WORDS); 461 462 /* Check if this is last command, if so set proper flag */ 463 if ((words_read + read_size) >= *words) 464 last_cmd = true; 465 466 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, 467 data + words_read, last_cmd); 468 if (ret_code) 469 goto read_nvm_buffer_aq_exit; 470 471 /* Increment counter for words already read and move offset to 472 * new read location 473 */ 474 words_read += read_size; 475 offset += read_size; 476 } while (words_read < *words); 477 478 for (i = 0; i < *words; i++) 479 data[i] = le16_to_cpu(((__le16 *)data)[i]); 480 481 read_nvm_buffer_aq_exit: 482 *words = words_read; 483 return ret_code; 484 } 485 486 /** 487 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock 488 * @hw: pointer to the HW structure 489 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 490 * @words: (in) number of words to read; (out) number of words actually read 491 * @data: words read from the Shadow RAM 492 * 493 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 494 * method. 495 **/ 496 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw, 497 u16 offset, u16 *words, 498 u16 *data) 499 { 500 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 501 return i40e_read_nvm_buffer_aq(hw, offset, words, data); 502 503 return i40e_read_nvm_buffer_srctl(hw, offset, words, data); 504 } 505 506 /** 507 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary 508 * @hw: pointer to the HW structure 509 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 510 * @words: (in) number of words to read; (out) number of words actually read 511 * @data: words read from the Shadow RAM 512 * 513 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 514 * method. The buffer read is preceded by the NVM ownership take 515 * and followed by the release. 516 **/ 517 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, 518 u16 *words, u16 *data) 519 { 520 i40e_status ret_code = 0; 521 522 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) { 523 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 524 if (!ret_code) { 525 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, 526 data); 527 i40e_release_nvm(hw); 528 } 529 } else { 530 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); 531 } 532 533 return ret_code; 534 } 535 536 /** 537 * i40e_write_nvm_aq - Writes Shadow RAM. 538 * @hw: pointer to the HW structure. 539 * @module_pointer: module pointer location in words from the NVM beginning 540 * @offset: offset in words from module start 541 * @words: number of words to write 542 * @data: buffer with words to write to the Shadow RAM 543 * @last_command: tells the AdminQ that this is the last command 544 * 545 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 546 **/ 547 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 548 u32 offset, u16 words, void *data, 549 bool last_command) 550 { 551 i40e_status ret_code = I40E_ERR_NVM; 552 struct i40e_asq_cmd_details cmd_details; 553 554 memset(&cmd_details, 0, sizeof(cmd_details)); 555 cmd_details.wb_desc = &hw->nvm_wb_desc; 556 557 /* Here we are checking the SR limit only for the flat memory model. 558 * We cannot do it for the module-based model, as we did not acquire 559 * the NVM resource yet (we cannot get the module pointer value). 560 * Firmware will check the module-based model. 561 */ 562 if ((offset + words) > hw->nvm.sr_size) 563 i40e_debug(hw, I40E_DEBUG_NVM, 564 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 565 (offset + words), hw->nvm.sr_size); 566 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 567 /* We can write only up to 4KB (one sector), in one AQ write */ 568 i40e_debug(hw, I40E_DEBUG_NVM, 569 "NVM write fail error: tried to write %d words, limit is %d.\n", 570 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 571 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 572 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 573 /* A single write cannot spread over two sectors */ 574 i40e_debug(hw, I40E_DEBUG_NVM, 575 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 576 offset, words); 577 else 578 ret_code = i40e_aq_update_nvm(hw, module_pointer, 579 2 * offset, /*bytes*/ 580 2 * words, /*bytes*/ 581 data, last_command, 0, 582 &cmd_details); 583 584 return ret_code; 585 } 586 587 /** 588 * i40e_calc_nvm_checksum - Calculates and returns the checksum 589 * @hw: pointer to hardware structure 590 * @checksum: pointer to the checksum 591 * 592 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 593 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 594 * is customer specific and unknown. Therefore, this function skips all maximum 595 * possible size of VPD (1kB). 596 **/ 597 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, 598 u16 *checksum) 599 { 600 i40e_status ret_code; 601 struct i40e_virt_mem vmem; 602 u16 pcie_alt_module = 0; 603 u16 checksum_local = 0; 604 u16 vpd_module = 0; 605 u16 *data; 606 u16 i = 0; 607 608 ret_code = i40e_allocate_virt_mem(hw, &vmem, 609 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); 610 if (ret_code) 611 goto i40e_calc_nvm_checksum_exit; 612 data = (u16 *)vmem.va; 613 614 /* read pointer to VPD area */ 615 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); 616 if (ret_code) { 617 ret_code = I40E_ERR_NVM_CHECKSUM; 618 goto i40e_calc_nvm_checksum_exit; 619 } 620 621 /* read pointer to PCIe Alt Auto-load module */ 622 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, 623 &pcie_alt_module); 624 if (ret_code) { 625 ret_code = I40E_ERR_NVM_CHECKSUM; 626 goto i40e_calc_nvm_checksum_exit; 627 } 628 629 /* Calculate SW checksum that covers the whole 64kB shadow RAM 630 * except the VPD and PCIe ALT Auto-load modules 631 */ 632 for (i = 0; i < hw->nvm.sr_size; i++) { 633 /* Read SR page */ 634 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { 635 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; 636 637 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data); 638 if (ret_code) { 639 ret_code = I40E_ERR_NVM_CHECKSUM; 640 goto i40e_calc_nvm_checksum_exit; 641 } 642 } 643 644 /* Skip Checksum word */ 645 if (i == I40E_SR_SW_CHECKSUM_WORD) 646 continue; 647 /* Skip VPD module (convert byte size to word count) */ 648 if ((i >= (u32)vpd_module) && 649 (i < ((u32)vpd_module + 650 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { 651 continue; 652 } 653 /* Skip PCIe ALT module (convert byte size to word count) */ 654 if ((i >= (u32)pcie_alt_module) && 655 (i < ((u32)pcie_alt_module + 656 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { 657 continue; 658 } 659 660 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; 661 } 662 663 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; 664 665 i40e_calc_nvm_checksum_exit: 666 i40e_free_virt_mem(hw, &vmem); 667 return ret_code; 668 } 669 670 /** 671 * i40e_update_nvm_checksum - Updates the NVM checksum 672 * @hw: pointer to hardware structure 673 * 674 * NVM ownership must be acquired before calling this function and released 675 * on ARQ completion event reception by caller. 676 * This function will commit SR to NVM. 677 **/ 678 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw) 679 { 680 i40e_status ret_code; 681 u16 checksum; 682 __le16 le_sum; 683 684 ret_code = i40e_calc_nvm_checksum(hw, &checksum); 685 if (!ret_code) { 686 le_sum = cpu_to_le16(checksum); 687 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 688 1, &le_sum, true); 689 } 690 691 return ret_code; 692 } 693 694 /** 695 * i40e_validate_nvm_checksum - Validate EEPROM checksum 696 * @hw: pointer to hardware structure 697 * @checksum: calculated checksum 698 * 699 * Performs checksum calculation and validates the NVM SW checksum. If the 700 * caller does not need checksum, the value can be NULL. 701 **/ 702 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, 703 u16 *checksum) 704 { 705 i40e_status ret_code = 0; 706 u16 checksum_sr = 0; 707 u16 checksum_local = 0; 708 709 /* We must acquire the NVM lock in order to correctly synchronize the 710 * NVM accesses across multiple PFs. Without doing so it is possible 711 * for one of the PFs to read invalid data potentially indicating that 712 * the checksum is invalid. 713 */ 714 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 715 if (ret_code) 716 return ret_code; 717 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); 718 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); 719 i40e_release_nvm(hw); 720 if (ret_code) 721 return ret_code; 722 723 /* Verify read checksum from EEPROM is the same as 724 * calculated checksum 725 */ 726 if (checksum_local != checksum_sr) 727 ret_code = I40E_ERR_NVM_CHECKSUM; 728 729 /* If the user cares, return the calculated checksum */ 730 if (checksum) 731 *checksum = checksum_local; 732 733 return ret_code; 734 } 735 736 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 737 struct i40e_nvm_access *cmd, 738 u8 *bytes, int *perrno); 739 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 740 struct i40e_nvm_access *cmd, 741 u8 *bytes, int *perrno); 742 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 743 struct i40e_nvm_access *cmd, 744 u8 *bytes, int *errno); 745 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 746 struct i40e_nvm_access *cmd, 747 int *perrno); 748 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 749 struct i40e_nvm_access *cmd, 750 int *perrno); 751 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 752 struct i40e_nvm_access *cmd, 753 u8 *bytes, int *perrno); 754 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 755 struct i40e_nvm_access *cmd, 756 u8 *bytes, int *perrno); 757 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 758 struct i40e_nvm_access *cmd, 759 u8 *bytes, int *perrno); 760 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 761 struct i40e_nvm_access *cmd, 762 u8 *bytes, int *perrno); 763 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 764 struct i40e_nvm_access *cmd, 765 u8 *bytes, int *perrno); 766 static inline u8 i40e_nvmupd_get_module(u32 val) 767 { 768 return (u8)(val & I40E_NVM_MOD_PNT_MASK); 769 } 770 static inline u8 i40e_nvmupd_get_transaction(u32 val) 771 { 772 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT); 773 } 774 775 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val) 776 { 777 return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >> 778 I40E_NVM_PRESERVATION_FLAGS_SHIFT); 779 } 780 781 static const char * const i40e_nvm_update_state_str[] = { 782 "I40E_NVMUPD_INVALID", 783 "I40E_NVMUPD_READ_CON", 784 "I40E_NVMUPD_READ_SNT", 785 "I40E_NVMUPD_READ_LCB", 786 "I40E_NVMUPD_READ_SA", 787 "I40E_NVMUPD_WRITE_ERA", 788 "I40E_NVMUPD_WRITE_CON", 789 "I40E_NVMUPD_WRITE_SNT", 790 "I40E_NVMUPD_WRITE_LCB", 791 "I40E_NVMUPD_WRITE_SA", 792 "I40E_NVMUPD_CSUM_CON", 793 "I40E_NVMUPD_CSUM_SA", 794 "I40E_NVMUPD_CSUM_LCB", 795 "I40E_NVMUPD_STATUS", 796 "I40E_NVMUPD_EXEC_AQ", 797 "I40E_NVMUPD_GET_AQ_RESULT", 798 "I40E_NVMUPD_GET_AQ_EVENT", 799 }; 800 801 /** 802 * i40e_nvmupd_command - Process an NVM update command 803 * @hw: pointer to hardware structure 804 * @cmd: pointer to nvm update command 805 * @bytes: pointer to the data buffer 806 * @perrno: pointer to return error code 807 * 808 * Dispatches command depending on what update state is current 809 **/ 810 i40e_status i40e_nvmupd_command(struct i40e_hw *hw, 811 struct i40e_nvm_access *cmd, 812 u8 *bytes, int *perrno) 813 { 814 i40e_status status; 815 enum i40e_nvmupd_cmd upd_cmd; 816 817 /* assume success */ 818 *perrno = 0; 819 820 /* early check for status command and debug msgs */ 821 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 822 823 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n", 824 i40e_nvm_update_state_str[upd_cmd], 825 hw->nvmupd_state, 826 hw->nvm_release_on_done, hw->nvm_wait_opcode, 827 cmd->command, cmd->config, cmd->offset, cmd->data_size); 828 829 if (upd_cmd == I40E_NVMUPD_INVALID) { 830 *perrno = -EFAULT; 831 i40e_debug(hw, I40E_DEBUG_NVM, 832 "i40e_nvmupd_validate_command returns %d errno %d\n", 833 upd_cmd, *perrno); 834 } 835 836 /* a status request returns immediately rather than 837 * going into the state machine 838 */ 839 if (upd_cmd == I40E_NVMUPD_STATUS) { 840 if (!cmd->data_size) { 841 *perrno = -EFAULT; 842 return I40E_ERR_BUF_TOO_SHORT; 843 } 844 845 bytes[0] = hw->nvmupd_state; 846 847 if (cmd->data_size >= 4) { 848 bytes[1] = 0; 849 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode; 850 } 851 852 /* Clear error status on read */ 853 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) 854 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 855 856 return 0; 857 } 858 859 /* Clear status even it is not read and log */ 860 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) { 861 i40e_debug(hw, I40E_DEBUG_NVM, 862 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n"); 863 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 864 } 865 866 /* Acquire lock to prevent race condition where adminq_task 867 * can execute after i40e_nvmupd_nvm_read/write but before state 868 * variables (nvm_wait_opcode, nvm_release_on_done) are updated. 869 * 870 * During NVMUpdate, it is observed that lock could be held for 871 * ~5ms for most commands. However lock is held for ~60ms for 872 * NVMUPD_CSUM_LCB command. 873 */ 874 mutex_lock(&hw->aq.arq_mutex); 875 switch (hw->nvmupd_state) { 876 case I40E_NVMUPD_STATE_INIT: 877 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); 878 break; 879 880 case I40E_NVMUPD_STATE_READING: 881 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); 882 break; 883 884 case I40E_NVMUPD_STATE_WRITING: 885 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); 886 break; 887 888 case I40E_NVMUPD_STATE_INIT_WAIT: 889 case I40E_NVMUPD_STATE_WRITE_WAIT: 890 /* if we need to stop waiting for an event, clear 891 * the wait info and return before doing anything else 892 */ 893 if (cmd->offset == 0xffff) { 894 i40e_nvmupd_clear_wait_state(hw); 895 status = 0; 896 break; 897 } 898 899 status = I40E_ERR_NOT_READY; 900 *perrno = -EBUSY; 901 break; 902 903 default: 904 /* invalid state, should never happen */ 905 i40e_debug(hw, I40E_DEBUG_NVM, 906 "NVMUPD: no such state %d\n", hw->nvmupd_state); 907 status = I40E_NOT_SUPPORTED; 908 *perrno = -ESRCH; 909 break; 910 } 911 912 mutex_unlock(&hw->aq.arq_mutex); 913 return status; 914 } 915 916 /** 917 * i40e_nvmupd_state_init - Handle NVM update state Init 918 * @hw: pointer to hardware structure 919 * @cmd: pointer to nvm update command buffer 920 * @bytes: pointer to the data buffer 921 * @perrno: pointer to return error code 922 * 923 * Process legitimate commands of the Init state and conditionally set next 924 * state. Reject all other commands. 925 **/ 926 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 927 struct i40e_nvm_access *cmd, 928 u8 *bytes, int *perrno) 929 { 930 i40e_status status = 0; 931 enum i40e_nvmupd_cmd upd_cmd; 932 933 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 934 935 switch (upd_cmd) { 936 case I40E_NVMUPD_READ_SA: 937 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 938 if (status) { 939 *perrno = i40e_aq_rc_to_posix(status, 940 hw->aq.asq_last_status); 941 } else { 942 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 943 i40e_release_nvm(hw); 944 } 945 break; 946 947 case I40E_NVMUPD_READ_SNT: 948 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 949 if (status) { 950 *perrno = i40e_aq_rc_to_posix(status, 951 hw->aq.asq_last_status); 952 } else { 953 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 954 if (status) 955 i40e_release_nvm(hw); 956 else 957 hw->nvmupd_state = I40E_NVMUPD_STATE_READING; 958 } 959 break; 960 961 case I40E_NVMUPD_WRITE_ERA: 962 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 963 if (status) { 964 *perrno = i40e_aq_rc_to_posix(status, 965 hw->aq.asq_last_status); 966 } else { 967 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); 968 if (status) { 969 i40e_release_nvm(hw); 970 } else { 971 hw->nvm_release_on_done = true; 972 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase; 973 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 974 } 975 } 976 break; 977 978 case I40E_NVMUPD_WRITE_SA: 979 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 980 if (status) { 981 *perrno = i40e_aq_rc_to_posix(status, 982 hw->aq.asq_last_status); 983 } else { 984 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 985 if (status) { 986 i40e_release_nvm(hw); 987 } else { 988 hw->nvm_release_on_done = true; 989 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 991 } 992 } 993 break; 994 995 case I40E_NVMUPD_WRITE_SNT: 996 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 997 if (status) { 998 *perrno = i40e_aq_rc_to_posix(status, 999 hw->aq.asq_last_status); 1000 } else { 1001 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1002 if (status) { 1003 i40e_release_nvm(hw); 1004 } else { 1005 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1006 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1007 } 1008 } 1009 break; 1010 1011 case I40E_NVMUPD_CSUM_SA: 1012 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1013 if (status) { 1014 *perrno = i40e_aq_rc_to_posix(status, 1015 hw->aq.asq_last_status); 1016 } else { 1017 status = i40e_update_nvm_checksum(hw); 1018 if (status) { 1019 *perrno = hw->aq.asq_last_status ? 1020 i40e_aq_rc_to_posix(status, 1021 hw->aq.asq_last_status) : 1022 -EIO; 1023 i40e_release_nvm(hw); 1024 } else { 1025 hw->nvm_release_on_done = true; 1026 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1027 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1028 } 1029 } 1030 break; 1031 1032 case I40E_NVMUPD_EXEC_AQ: 1033 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); 1034 break; 1035 1036 case I40E_NVMUPD_GET_AQ_RESULT: 1037 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); 1038 break; 1039 1040 case I40E_NVMUPD_GET_AQ_EVENT: 1041 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno); 1042 break; 1043 1044 default: 1045 i40e_debug(hw, I40E_DEBUG_NVM, 1046 "NVMUPD: bad cmd %s in init state\n", 1047 i40e_nvm_update_state_str[upd_cmd]); 1048 status = I40E_ERR_NVM; 1049 *perrno = -ESRCH; 1050 break; 1051 } 1052 return status; 1053 } 1054 1055 /** 1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading 1057 * @hw: pointer to hardware structure 1058 * @cmd: pointer to nvm update command buffer 1059 * @bytes: pointer to the data buffer 1060 * @perrno: pointer to return error code 1061 * 1062 * NVM ownership is already held. Process legitimate commands and set any 1063 * change in state; reject all other commands. 1064 **/ 1065 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 1066 struct i40e_nvm_access *cmd, 1067 u8 *bytes, int *perrno) 1068 { 1069 i40e_status status = 0; 1070 enum i40e_nvmupd_cmd upd_cmd; 1071 1072 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1073 1074 switch (upd_cmd) { 1075 case I40E_NVMUPD_READ_SA: 1076 case I40E_NVMUPD_READ_CON: 1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1078 break; 1079 1080 case I40E_NVMUPD_READ_LCB: 1081 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 1082 i40e_release_nvm(hw); 1083 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1084 break; 1085 1086 default: 1087 i40e_debug(hw, I40E_DEBUG_NVM, 1088 "NVMUPD: bad cmd %s in reading state.\n", 1089 i40e_nvm_update_state_str[upd_cmd]); 1090 status = I40E_NOT_SUPPORTED; 1091 *perrno = -ESRCH; 1092 break; 1093 } 1094 return status; 1095 } 1096 1097 /** 1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing 1099 * @hw: pointer to hardware structure 1100 * @cmd: pointer to nvm update command buffer 1101 * @bytes: pointer to the data buffer 1102 * @perrno: pointer to return error code 1103 * 1104 * NVM ownership is already held. Process legitimate commands and set any 1105 * change in state; reject all other commands 1106 **/ 1107 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 1108 struct i40e_nvm_access *cmd, 1109 u8 *bytes, int *perrno) 1110 { 1111 i40e_status status = 0; 1112 enum i40e_nvmupd_cmd upd_cmd; 1113 bool retry_attempt = false; 1114 1115 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1116 1117 retry: 1118 switch (upd_cmd) { 1119 case I40E_NVMUPD_WRITE_CON: 1120 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1121 if (!status) { 1122 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1123 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1124 } 1125 break; 1126 1127 case I40E_NVMUPD_WRITE_LCB: 1128 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1129 if (status) { 1130 *perrno = hw->aq.asq_last_status ? 1131 i40e_aq_rc_to_posix(status, 1132 hw->aq.asq_last_status) : 1133 -EIO; 1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1135 } else { 1136 hw->nvm_release_on_done = true; 1137 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1138 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1139 } 1140 break; 1141 1142 case I40E_NVMUPD_CSUM_CON: 1143 /* Assumes the caller has acquired the nvm */ 1144 status = i40e_update_nvm_checksum(hw); 1145 if (status) { 1146 *perrno = hw->aq.asq_last_status ? 1147 i40e_aq_rc_to_posix(status, 1148 hw->aq.asq_last_status) : 1149 -EIO; 1150 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1151 } else { 1152 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1153 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1154 } 1155 break; 1156 1157 case I40E_NVMUPD_CSUM_LCB: 1158 /* Assumes the caller has acquired the nvm */ 1159 status = i40e_update_nvm_checksum(hw); 1160 if (status) { 1161 *perrno = hw->aq.asq_last_status ? 1162 i40e_aq_rc_to_posix(status, 1163 hw->aq.asq_last_status) : 1164 -EIO; 1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1166 } else { 1167 hw->nvm_release_on_done = true; 1168 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1169 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1170 } 1171 break; 1172 1173 default: 1174 i40e_debug(hw, I40E_DEBUG_NVM, 1175 "NVMUPD: bad cmd %s in writing state.\n", 1176 i40e_nvm_update_state_str[upd_cmd]); 1177 status = I40E_NOT_SUPPORTED; 1178 *perrno = -ESRCH; 1179 break; 1180 } 1181 1182 /* In some circumstances, a multi-write transaction takes longer 1183 * than the default 3 minute timeout on the write semaphore. If 1184 * the write failed with an EBUSY status, this is likely the problem, 1185 * so here we try to reacquire the semaphore then retry the write. 1186 * We only do one retry, then give up. 1187 */ 1188 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && 1189 !retry_attempt) { 1190 i40e_status old_status = status; 1191 u32 old_asq_status = hw->aq.asq_last_status; 1192 u32 gtime; 1193 1194 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 1195 if (gtime >= hw->nvm.hw_semaphore_timeout) { 1196 i40e_debug(hw, I40E_DEBUG_ALL, 1197 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", 1198 gtime, hw->nvm.hw_semaphore_timeout); 1199 i40e_release_nvm(hw); 1200 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1201 if (status) { 1202 i40e_debug(hw, I40E_DEBUG_ALL, 1203 "NVMUPD: write semaphore reacquire failed aq_err = %d\n", 1204 hw->aq.asq_last_status); 1205 status = old_status; 1206 hw->aq.asq_last_status = old_asq_status; 1207 } else { 1208 retry_attempt = true; 1209 goto retry; 1210 } 1211 } 1212 } 1213 1214 return status; 1215 } 1216 1217 /** 1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw 1219 * @hw: pointer to the hardware structure 1220 **/ 1221 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw) 1222 { 1223 i40e_debug(hw, I40E_DEBUG_NVM, 1224 "NVMUPD: clearing wait on opcode 0x%04x\n", 1225 hw->nvm_wait_opcode); 1226 1227 if (hw->nvm_release_on_done) { 1228 i40e_release_nvm(hw); 1229 hw->nvm_release_on_done = false; 1230 } 1231 hw->nvm_wait_opcode = 0; 1232 1233 if (hw->aq.arq_last_status) { 1234 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR; 1235 return; 1236 } 1237 1238 switch (hw->nvmupd_state) { 1239 case I40E_NVMUPD_STATE_INIT_WAIT: 1240 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1241 break; 1242 1243 case I40E_NVMUPD_STATE_WRITE_WAIT: 1244 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING; 1245 break; 1246 1247 default: 1248 break; 1249 } 1250 } 1251 1252 /** 1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events 1254 * @hw: pointer to the hardware structure 1255 * @opcode: the event that just happened 1256 * @desc: AdminQ descriptor 1257 **/ 1258 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode, 1259 struct i40e_aq_desc *desc) 1260 { 1261 u32 aq_desc_len = sizeof(struct i40e_aq_desc); 1262 1263 if (opcode == hw->nvm_wait_opcode) { 1264 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len); 1265 i40e_nvmupd_clear_wait_state(hw); 1266 } 1267 } 1268 1269 /** 1270 * i40e_nvmupd_validate_command - Validate given command 1271 * @hw: pointer to hardware structure 1272 * @cmd: pointer to nvm update command buffer 1273 * @perrno: pointer to return error code 1274 * 1275 * Return one of the valid command types or I40E_NVMUPD_INVALID 1276 **/ 1277 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 1278 struct i40e_nvm_access *cmd, 1279 int *perrno) 1280 { 1281 enum i40e_nvmupd_cmd upd_cmd; 1282 u8 module, transaction; 1283 1284 /* anything that doesn't match a recognized case is an error */ 1285 upd_cmd = I40E_NVMUPD_INVALID; 1286 1287 transaction = i40e_nvmupd_get_transaction(cmd->config); 1288 module = i40e_nvmupd_get_module(cmd->config); 1289 1290 /* limits on data size */ 1291 if ((cmd->data_size < 1) || 1292 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { 1293 i40e_debug(hw, I40E_DEBUG_NVM, 1294 "i40e_nvmupd_validate_command data_size %d\n", 1295 cmd->data_size); 1296 *perrno = -EFAULT; 1297 return I40E_NVMUPD_INVALID; 1298 } 1299 1300 switch (cmd->command) { 1301 case I40E_NVM_READ: 1302 switch (transaction) { 1303 case I40E_NVM_CON: 1304 upd_cmd = I40E_NVMUPD_READ_CON; 1305 break; 1306 case I40E_NVM_SNT: 1307 upd_cmd = I40E_NVMUPD_READ_SNT; 1308 break; 1309 case I40E_NVM_LCB: 1310 upd_cmd = I40E_NVMUPD_READ_LCB; 1311 break; 1312 case I40E_NVM_SA: 1313 upd_cmd = I40E_NVMUPD_READ_SA; 1314 break; 1315 case I40E_NVM_EXEC: 1316 if (module == 0xf) 1317 upd_cmd = I40E_NVMUPD_STATUS; 1318 else if (module == 0) 1319 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; 1320 break; 1321 case I40E_NVM_AQE: 1322 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT; 1323 break; 1324 } 1325 break; 1326 1327 case I40E_NVM_WRITE: 1328 switch (transaction) { 1329 case I40E_NVM_CON: 1330 upd_cmd = I40E_NVMUPD_WRITE_CON; 1331 break; 1332 case I40E_NVM_SNT: 1333 upd_cmd = I40E_NVMUPD_WRITE_SNT; 1334 break; 1335 case I40E_NVM_LCB: 1336 upd_cmd = I40E_NVMUPD_WRITE_LCB; 1337 break; 1338 case I40E_NVM_SA: 1339 upd_cmd = I40E_NVMUPD_WRITE_SA; 1340 break; 1341 case I40E_NVM_ERA: 1342 upd_cmd = I40E_NVMUPD_WRITE_ERA; 1343 break; 1344 case I40E_NVM_CSUM: 1345 upd_cmd = I40E_NVMUPD_CSUM_CON; 1346 break; 1347 case (I40E_NVM_CSUM|I40E_NVM_SA): 1348 upd_cmd = I40E_NVMUPD_CSUM_SA; 1349 break; 1350 case (I40E_NVM_CSUM|I40E_NVM_LCB): 1351 upd_cmd = I40E_NVMUPD_CSUM_LCB; 1352 break; 1353 case I40E_NVM_EXEC: 1354 if (module == 0) 1355 upd_cmd = I40E_NVMUPD_EXEC_AQ; 1356 break; 1357 } 1358 break; 1359 } 1360 1361 return upd_cmd; 1362 } 1363 1364 /** 1365 * i40e_nvmupd_exec_aq - Run an AQ command 1366 * @hw: pointer to hardware structure 1367 * @cmd: pointer to nvm update command buffer 1368 * @bytes: pointer to the data buffer 1369 * @perrno: pointer to return error code 1370 * 1371 * cmd structure contains identifiers and data buffer 1372 **/ 1373 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 1374 struct i40e_nvm_access *cmd, 1375 u8 *bytes, int *perrno) 1376 { 1377 struct i40e_asq_cmd_details cmd_details; 1378 i40e_status status; 1379 struct i40e_aq_desc *aq_desc; 1380 u32 buff_size = 0; 1381 u8 *buff = NULL; 1382 u32 aq_desc_len; 1383 u32 aq_data_len; 1384 1385 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1386 if (cmd->offset == 0xffff) 1387 return 0; 1388 1389 memset(&cmd_details, 0, sizeof(cmd_details)); 1390 cmd_details.wb_desc = &hw->nvm_wb_desc; 1391 1392 aq_desc_len = sizeof(struct i40e_aq_desc); 1393 memset(&hw->nvm_wb_desc, 0, aq_desc_len); 1394 1395 /* get the aq descriptor */ 1396 if (cmd->data_size < aq_desc_len) { 1397 i40e_debug(hw, I40E_DEBUG_NVM, 1398 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", 1399 cmd->data_size, aq_desc_len); 1400 *perrno = -EINVAL; 1401 return I40E_ERR_PARAM; 1402 } 1403 aq_desc = (struct i40e_aq_desc *)bytes; 1404 1405 /* if data buffer needed, make sure it's ready */ 1406 aq_data_len = cmd->data_size - aq_desc_len; 1407 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); 1408 if (buff_size) { 1409 if (!hw->nvm_buff.va) { 1410 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, 1411 hw->aq.asq_buf_size); 1412 if (status) 1413 i40e_debug(hw, I40E_DEBUG_NVM, 1414 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", 1415 status); 1416 } 1417 1418 if (hw->nvm_buff.va) { 1419 buff = hw->nvm_buff.va; 1420 memcpy(buff, &bytes[aq_desc_len], aq_data_len); 1421 } 1422 } 1423 1424 if (cmd->offset) 1425 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len); 1426 1427 /* and away we go! */ 1428 status = i40e_asq_send_command(hw, aq_desc, buff, 1429 buff_size, &cmd_details); 1430 if (status) { 1431 i40e_debug(hw, I40E_DEBUG_NVM, 1432 "i40e_nvmupd_exec_aq err %s aq_err %s\n", 1433 i40e_stat_str(hw, status), 1434 i40e_aq_str(hw, hw->aq.asq_last_status)); 1435 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1436 return status; 1437 } 1438 1439 /* should we wait for a followup event? */ 1440 if (cmd->offset) { 1441 hw->nvm_wait_opcode = cmd->offset; 1442 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1443 } 1444 1445 return status; 1446 } 1447 1448 /** 1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq 1450 * @hw: pointer to hardware structure 1451 * @cmd: pointer to nvm update command buffer 1452 * @bytes: pointer to the data buffer 1453 * @perrno: pointer to return error code 1454 * 1455 * cmd structure contains identifiers and data buffer 1456 **/ 1457 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 1458 struct i40e_nvm_access *cmd, 1459 u8 *bytes, int *perrno) 1460 { 1461 u32 aq_total_len; 1462 u32 aq_desc_len; 1463 int remainder; 1464 u8 *buff; 1465 1466 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1467 1468 aq_desc_len = sizeof(struct i40e_aq_desc); 1469 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); 1470 1471 /* check offset range */ 1472 if (cmd->offset > aq_total_len) { 1473 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", 1474 __func__, cmd->offset, aq_total_len); 1475 *perrno = -EINVAL; 1476 return I40E_ERR_PARAM; 1477 } 1478 1479 /* check copylength range */ 1480 if (cmd->data_size > (aq_total_len - cmd->offset)) { 1481 int new_len = aq_total_len - cmd->offset; 1482 1483 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", 1484 __func__, cmd->data_size, new_len); 1485 cmd->data_size = new_len; 1486 } 1487 1488 remainder = cmd->data_size; 1489 if (cmd->offset < aq_desc_len) { 1490 u32 len = aq_desc_len - cmd->offset; 1491 1492 len = min(len, cmd->data_size); 1493 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", 1494 __func__, cmd->offset, cmd->offset + len); 1495 1496 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; 1497 memcpy(bytes, buff, len); 1498 1499 bytes += len; 1500 remainder -= len; 1501 buff = hw->nvm_buff.va; 1502 } else { 1503 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); 1504 } 1505 1506 if (remainder > 0) { 1507 int start_byte = buff - (u8 *)hw->nvm_buff.va; 1508 1509 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", 1510 __func__, start_byte, start_byte + remainder); 1511 memcpy(bytes, buff, remainder); 1512 } 1513 1514 return 0; 1515 } 1516 1517 /** 1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq 1519 * @hw: pointer to hardware structure 1520 * @cmd: pointer to nvm update command buffer 1521 * @bytes: pointer to the data buffer 1522 * @perrno: pointer to return error code 1523 * 1524 * cmd structure contains identifiers and data buffer 1525 **/ 1526 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, 1527 struct i40e_nvm_access *cmd, 1528 u8 *bytes, int *perrno) 1529 { 1530 u32 aq_total_len; 1531 u32 aq_desc_len; 1532 1533 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1534 1535 aq_desc_len = sizeof(struct i40e_aq_desc); 1536 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen); 1537 1538 /* check copylength range */ 1539 if (cmd->data_size > aq_total_len) { 1540 i40e_debug(hw, I40E_DEBUG_NVM, 1541 "%s: copy length %d too big, trimming to %d\n", 1542 __func__, cmd->data_size, aq_total_len); 1543 cmd->data_size = aq_total_len; 1544 } 1545 1546 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size); 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * i40e_nvmupd_nvm_read - Read NVM 1553 * @hw: pointer to hardware structure 1554 * @cmd: pointer to nvm update command buffer 1555 * @bytes: pointer to the data buffer 1556 * @perrno: pointer to return error code 1557 * 1558 * cmd structure contains identifiers and data buffer 1559 **/ 1560 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 1561 struct i40e_nvm_access *cmd, 1562 u8 *bytes, int *perrno) 1563 { 1564 struct i40e_asq_cmd_details cmd_details; 1565 i40e_status status; 1566 u8 module, transaction; 1567 bool last; 1568 1569 transaction = i40e_nvmupd_get_transaction(cmd->config); 1570 module = i40e_nvmupd_get_module(cmd->config); 1571 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); 1572 1573 memset(&cmd_details, 0, sizeof(cmd_details)); 1574 cmd_details.wb_desc = &hw->nvm_wb_desc; 1575 1576 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1577 bytes, last, &cmd_details); 1578 if (status) { 1579 i40e_debug(hw, I40E_DEBUG_NVM, 1580 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", 1581 module, cmd->offset, cmd->data_size); 1582 i40e_debug(hw, I40E_DEBUG_NVM, 1583 "i40e_nvmupd_nvm_read status %d aq %d\n", 1584 status, hw->aq.asq_last_status); 1585 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1586 } 1587 1588 return status; 1589 } 1590 1591 /** 1592 * i40e_nvmupd_nvm_erase - Erase an NVM module 1593 * @hw: pointer to hardware structure 1594 * @cmd: pointer to nvm update command buffer 1595 * @perrno: pointer to return error code 1596 * 1597 * module, offset, data_size and data are in cmd structure 1598 **/ 1599 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 1600 struct i40e_nvm_access *cmd, 1601 int *perrno) 1602 { 1603 i40e_status status = 0; 1604 struct i40e_asq_cmd_details cmd_details; 1605 u8 module, transaction; 1606 bool last; 1607 1608 transaction = i40e_nvmupd_get_transaction(cmd->config); 1609 module = i40e_nvmupd_get_module(cmd->config); 1610 last = (transaction & I40E_NVM_LCB); 1611 1612 memset(&cmd_details, 0, sizeof(cmd_details)); 1613 cmd_details.wb_desc = &hw->nvm_wb_desc; 1614 1615 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1616 last, &cmd_details); 1617 if (status) { 1618 i40e_debug(hw, I40E_DEBUG_NVM, 1619 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", 1620 module, cmd->offset, cmd->data_size); 1621 i40e_debug(hw, I40E_DEBUG_NVM, 1622 "i40e_nvmupd_nvm_erase status %d aq %d\n", 1623 status, hw->aq.asq_last_status); 1624 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1625 } 1626 1627 return status; 1628 } 1629 1630 /** 1631 * i40e_nvmupd_nvm_write - Write NVM 1632 * @hw: pointer to hardware structure 1633 * @cmd: pointer to nvm update command buffer 1634 * @bytes: pointer to the data buffer 1635 * @perrno: pointer to return error code 1636 * 1637 * module, offset, data_size and data are in cmd structure 1638 **/ 1639 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 1640 struct i40e_nvm_access *cmd, 1641 u8 *bytes, int *perrno) 1642 { 1643 i40e_status status = 0; 1644 struct i40e_asq_cmd_details cmd_details; 1645 u8 module, transaction; 1646 u8 preservation_flags; 1647 bool last; 1648 1649 transaction = i40e_nvmupd_get_transaction(cmd->config); 1650 module = i40e_nvmupd_get_module(cmd->config); 1651 last = (transaction & I40E_NVM_LCB); 1652 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config); 1653 1654 memset(&cmd_details, 0, sizeof(cmd_details)); 1655 cmd_details.wb_desc = &hw->nvm_wb_desc; 1656 1657 status = i40e_aq_update_nvm(hw, module, cmd->offset, 1658 (u16)cmd->data_size, bytes, last, 1659 preservation_flags, &cmd_details); 1660 if (status) { 1661 i40e_debug(hw, I40E_DEBUG_NVM, 1662 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", 1663 module, cmd->offset, cmd->data_size); 1664 i40e_debug(hw, I40E_DEBUG_NVM, 1665 "i40e_nvmupd_nvm_write status %d aq %d\n", 1666 status, hw->aq.asq_last_status); 1667 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1668 } 1669 1670 return status; 1671 } 1672