1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	i40e_status ret_code = I40E_SUCCESS;
138 	u32 total_delay = 0;
139 
140 	if (hw->nvm.blank_nvm_mode)
141 		return;
142 
143 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
144 
145 	/* there are some rare cases when trying to release the resource
146 	 * results in an admin Q timeout, so handle them correctly
147 	 */
148 	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
149 	       (total_delay < hw->aq.asq_cmd_timeout)) {
150 		usleep_range(1000, 2000);
151 		ret_code = i40e_aq_release_resource(hw,
152 						    I40E_NVM_RESOURCE_ID,
153 						    0, NULL);
154 		total_delay++;
155 	}
156 }
157 
158 /**
159  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
160  * @hw: pointer to the HW structure
161  *
162  * Polls the SRCTL Shadow RAM register done bit.
163  **/
164 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
165 {
166 	i40e_status ret_code = I40E_ERR_TIMEOUT;
167 	u32 srctl, wait_cnt;
168 
169 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
170 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
171 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
172 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
173 			ret_code = 0;
174 			break;
175 		}
176 		udelay(5);
177 	}
178 	if (ret_code == I40E_ERR_TIMEOUT)
179 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
180 	return ret_code;
181 }
182 
183 /**
184  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
185  * @hw: pointer to the HW structure
186  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
187  * @data: word read from the Shadow RAM
188  *
189  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
190  **/
191 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
192 					    u16 *data)
193 {
194 	i40e_status ret_code = I40E_ERR_TIMEOUT;
195 	u32 sr_reg;
196 
197 	if (offset >= hw->nvm.sr_size) {
198 		i40e_debug(hw, I40E_DEBUG_NVM,
199 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
200 			   offset, hw->nvm.sr_size);
201 		ret_code = I40E_ERR_PARAM;
202 		goto read_nvm_exit;
203 	}
204 
205 	/* Poll the done bit first */
206 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
207 	if (!ret_code) {
208 		/* Write the address and start reading */
209 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
210 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
211 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
212 
213 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
214 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
215 		if (!ret_code) {
216 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
217 			*data = (u16)((sr_reg &
218 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
219 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
220 		}
221 	}
222 	if (ret_code)
223 		i40e_debug(hw, I40E_DEBUG_NVM,
224 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
225 			   offset);
226 
227 read_nvm_exit:
228 	return ret_code;
229 }
230 
231 /**
232  * i40e_read_nvm_aq - Read Shadow RAM.
233  * @hw: pointer to the HW structure.
234  * @module_pointer: module pointer location in words from the NVM beginning
235  * @offset: offset in words from module start
236  * @words: number of words to write
237  * @data: buffer with words to write to the Shadow RAM
238  * @last_command: tells the AdminQ that this is the last command
239  *
240  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
241  **/
242 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
243 				    u8 module_pointer, u32 offset,
244 				    u16 words, void *data,
245 				    bool last_command)
246 {
247 	i40e_status ret_code = I40E_ERR_NVM;
248 	struct i40e_asq_cmd_details cmd_details;
249 
250 	memset(&cmd_details, 0, sizeof(cmd_details));
251 	cmd_details.wb_desc = &hw->nvm_wb_desc;
252 
253 	/* Here we are checking the SR limit only for the flat memory model.
254 	 * We cannot do it for the module-based model, as we did not acquire
255 	 * the NVM resource yet (we cannot get the module pointer value).
256 	 * Firmware will check the module-based model.
257 	 */
258 	if ((offset + words) > hw->nvm.sr_size)
259 		i40e_debug(hw, I40E_DEBUG_NVM,
260 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
261 			   (offset + words), hw->nvm.sr_size);
262 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
263 		/* We can write only up to 4KB (one sector), in one AQ write */
264 		i40e_debug(hw, I40E_DEBUG_NVM,
265 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
266 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
267 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
268 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
269 		/* A single write cannot spread over two sectors */
270 		i40e_debug(hw, I40E_DEBUG_NVM,
271 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
272 			   offset, words);
273 	else
274 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
275 					    2 * offset,  /*bytes*/
276 					    2 * words,   /*bytes*/
277 					    data, last_command, &cmd_details);
278 
279 	return ret_code;
280 }
281 
282 /**
283  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
284  * @hw: pointer to the HW structure
285  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286  * @data: word read from the Shadow RAM
287  *
288  * Reads one 16 bit word from the Shadow RAM using the AdminQ
289  **/
290 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
291 					 u16 *data)
292 {
293 	i40e_status ret_code = I40E_ERR_TIMEOUT;
294 
295 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
296 	*data = le16_to_cpu(*(__le16 *)data);
297 
298 	return ret_code;
299 }
300 
301 /**
302  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
303  * @hw: pointer to the HW structure
304  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
305  * @data: word read from the Shadow RAM
306  *
307  * Reads one 16 bit word from the Shadow RAM.
308  *
309  * Do not use this function except in cases where the nvm lock is already
310  * taken via i40e_acquire_nvm().
311  **/
312 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
313 					u16 offset, u16 *data)
314 {
315 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
316 		return i40e_read_nvm_word_aq(hw, offset, data);
317 
318 	return i40e_read_nvm_word_srctl(hw, offset, data);
319 }
320 
321 /**
322  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
323  * @hw: pointer to the HW structure
324  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
325  * @data: word read from the Shadow RAM
326  *
327  * Reads one 16 bit word from the Shadow RAM.
328  **/
329 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
330 			       u16 *data)
331 {
332 	i40e_status ret_code = 0;
333 
334 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
335 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
336 	if (ret_code)
337 		return ret_code;
338 
339 	ret_code = __i40e_read_nvm_word(hw, offset, data);
340 
341 	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
342 		i40e_release_nvm(hw);
343 
344 	return ret_code;
345 }
346 
347 /**
348  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
349  * @hw: pointer to the HW structure
350  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
351  * @words: (in) number of words to read; (out) number of words actually read
352  * @data: words read from the Shadow RAM
353  *
354  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
355  * method. The buffer read is preceded by the NVM ownership take
356  * and followed by the release.
357  **/
358 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
359 					      u16 *words, u16 *data)
360 {
361 	i40e_status ret_code = 0;
362 	u16 index, word;
363 
364 	/* Loop thru the selected region */
365 	for (word = 0; word < *words; word++) {
366 		index = offset + word;
367 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
368 		if (ret_code)
369 			break;
370 	}
371 
372 	/* Update the number of words read from the Shadow RAM */
373 	*words = word;
374 
375 	return ret_code;
376 }
377 
378 /**
379  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
380  * @hw: pointer to the HW structure
381  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
382  * @words: (in) number of words to read; (out) number of words actually read
383  * @data: words read from the Shadow RAM
384  *
385  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
386  * method. The buffer read is preceded by the NVM ownership take
387  * and followed by the release.
388  **/
389 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
390 					   u16 *words, u16 *data)
391 {
392 	i40e_status ret_code;
393 	u16 read_size;
394 	bool last_cmd = false;
395 	u16 words_read = 0;
396 	u16 i = 0;
397 
398 	do {
399 		/* Calculate number of bytes we should read in this step.
400 		 * FVL AQ do not allow to read more than one page at a time or
401 		 * to cross page boundaries.
402 		 */
403 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
404 			read_size = min(*words,
405 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
406 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
407 		else
408 			read_size = min((*words - words_read),
409 					I40E_SR_SECTOR_SIZE_IN_WORDS);
410 
411 		/* Check if this is last command, if so set proper flag */
412 		if ((words_read + read_size) >= *words)
413 			last_cmd = true;
414 
415 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
416 					    data + words_read, last_cmd);
417 		if (ret_code)
418 			goto read_nvm_buffer_aq_exit;
419 
420 		/* Increment counter for words already read and move offset to
421 		 * new read location
422 		 */
423 		words_read += read_size;
424 		offset += read_size;
425 	} while (words_read < *words);
426 
427 	for (i = 0; i < *words; i++)
428 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
429 
430 read_nvm_buffer_aq_exit:
431 	*words = words_read;
432 	return ret_code;
433 }
434 
435 /**
436  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
437  * @hw: pointer to the HW structure
438  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
439  * @words: (in) number of words to read; (out) number of words actually read
440  * @data: words read from the Shadow RAM
441  *
442  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
443  * method.
444  **/
445 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
446 					  u16 offset, u16 *words,
447 					  u16 *data)
448 {
449 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
450 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
451 
452 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
453 }
454 
455 /**
456  * i40e_write_nvm_aq - Writes Shadow RAM.
457  * @hw: pointer to the HW structure.
458  * @module_pointer: module pointer location in words from the NVM beginning
459  * @offset: offset in words from module start
460  * @words: number of words to write
461  * @data: buffer with words to write to the Shadow RAM
462  * @last_command: tells the AdminQ that this is the last command
463  *
464  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
465  **/
466 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
467 				     u32 offset, u16 words, void *data,
468 				     bool last_command)
469 {
470 	i40e_status ret_code = I40E_ERR_NVM;
471 	struct i40e_asq_cmd_details cmd_details;
472 
473 	memset(&cmd_details, 0, sizeof(cmd_details));
474 	cmd_details.wb_desc = &hw->nvm_wb_desc;
475 
476 	/* Here we are checking the SR limit only for the flat memory model.
477 	 * We cannot do it for the module-based model, as we did not acquire
478 	 * the NVM resource yet (we cannot get the module pointer value).
479 	 * Firmware will check the module-based model.
480 	 */
481 	if ((offset + words) > hw->nvm.sr_size)
482 		i40e_debug(hw, I40E_DEBUG_NVM,
483 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
484 			   (offset + words), hw->nvm.sr_size);
485 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
486 		/* We can write only up to 4KB (one sector), in one AQ write */
487 		i40e_debug(hw, I40E_DEBUG_NVM,
488 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
489 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
490 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
491 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
492 		/* A single write cannot spread over two sectors */
493 		i40e_debug(hw, I40E_DEBUG_NVM,
494 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
495 			   offset, words);
496 	else
497 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
498 					      2 * offset,  /*bytes*/
499 					      2 * words,   /*bytes*/
500 					      data, last_command, 0,
501 					      &cmd_details);
502 
503 	return ret_code;
504 }
505 
506 /**
507  * i40e_calc_nvm_checksum - Calculates and returns the checksum
508  * @hw: pointer to hardware structure
509  * @checksum: pointer to the checksum
510  *
511  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
512  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
513  * is customer specific and unknown. Therefore, this function skips all maximum
514  * possible size of VPD (1kB).
515  **/
516 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
517 						    u16 *checksum)
518 {
519 	i40e_status ret_code;
520 	struct i40e_virt_mem vmem;
521 	u16 pcie_alt_module = 0;
522 	u16 checksum_local = 0;
523 	u16 vpd_module = 0;
524 	u16 *data;
525 	u16 i = 0;
526 
527 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
528 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
529 	if (ret_code)
530 		goto i40e_calc_nvm_checksum_exit;
531 	data = (u16 *)vmem.va;
532 
533 	/* read pointer to VPD area */
534 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
535 	if (ret_code) {
536 		ret_code = I40E_ERR_NVM_CHECKSUM;
537 		goto i40e_calc_nvm_checksum_exit;
538 	}
539 
540 	/* read pointer to PCIe Alt Auto-load module */
541 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
542 					&pcie_alt_module);
543 	if (ret_code) {
544 		ret_code = I40E_ERR_NVM_CHECKSUM;
545 		goto i40e_calc_nvm_checksum_exit;
546 	}
547 
548 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
549 	 * except the VPD and PCIe ALT Auto-load modules
550 	 */
551 	for (i = 0; i < hw->nvm.sr_size; i++) {
552 		/* Read SR page */
553 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
554 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
555 
556 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
557 			if (ret_code) {
558 				ret_code = I40E_ERR_NVM_CHECKSUM;
559 				goto i40e_calc_nvm_checksum_exit;
560 			}
561 		}
562 
563 		/* Skip Checksum word */
564 		if (i == I40E_SR_SW_CHECKSUM_WORD)
565 			continue;
566 		/* Skip VPD module (convert byte size to word count) */
567 		if ((i >= (u32)vpd_module) &&
568 		    (i < ((u32)vpd_module +
569 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
570 			continue;
571 		}
572 		/* Skip PCIe ALT module (convert byte size to word count) */
573 		if ((i >= (u32)pcie_alt_module) &&
574 		    (i < ((u32)pcie_alt_module +
575 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
576 			continue;
577 		}
578 
579 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
580 	}
581 
582 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
583 
584 i40e_calc_nvm_checksum_exit:
585 	i40e_free_virt_mem(hw, &vmem);
586 	return ret_code;
587 }
588 
589 /**
590  * i40e_update_nvm_checksum - Updates the NVM checksum
591  * @hw: pointer to hardware structure
592  *
593  * NVM ownership must be acquired before calling this function and released
594  * on ARQ completion event reception by caller.
595  * This function will commit SR to NVM.
596  **/
597 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
598 {
599 	i40e_status ret_code;
600 	u16 checksum;
601 	__le16 le_sum;
602 
603 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
604 	if (!ret_code) {
605 		le_sum = cpu_to_le16(checksum);
606 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
607 					     1, &le_sum, true);
608 	}
609 
610 	return ret_code;
611 }
612 
613 /**
614  * i40e_validate_nvm_checksum - Validate EEPROM checksum
615  * @hw: pointer to hardware structure
616  * @checksum: calculated checksum
617  *
618  * Performs checksum calculation and validates the NVM SW checksum. If the
619  * caller does not need checksum, the value can be NULL.
620  **/
621 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
622 						 u16 *checksum)
623 {
624 	i40e_status ret_code = 0;
625 	u16 checksum_sr = 0;
626 	u16 checksum_local = 0;
627 
628 	/* We must acquire the NVM lock in order to correctly synchronize the
629 	 * NVM accesses across multiple PFs. Without doing so it is possible
630 	 * for one of the PFs to read invalid data potentially indicating that
631 	 * the checksum is invalid.
632 	 */
633 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
634 	if (ret_code)
635 		return ret_code;
636 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
637 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
638 	i40e_release_nvm(hw);
639 	if (ret_code)
640 		return ret_code;
641 
642 	/* Verify read checksum from EEPROM is the same as
643 	 * calculated checksum
644 	 */
645 	if (checksum_local != checksum_sr)
646 		ret_code = I40E_ERR_NVM_CHECKSUM;
647 
648 	/* If the user cares, return the calculated checksum */
649 	if (checksum)
650 		*checksum = checksum_local;
651 
652 	return ret_code;
653 }
654 
655 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
656 					  struct i40e_nvm_access *cmd,
657 					  u8 *bytes, int *perrno);
658 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
659 					     struct i40e_nvm_access *cmd,
660 					     u8 *bytes, int *perrno);
661 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
662 					     struct i40e_nvm_access *cmd,
663 					     u8 *bytes, int *errno);
664 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
665 						struct i40e_nvm_access *cmd,
666 						int *perrno);
667 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
668 					 struct i40e_nvm_access *cmd,
669 					 int *perrno);
670 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
671 					 struct i40e_nvm_access *cmd,
672 					 u8 *bytes, int *perrno);
673 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
674 					struct i40e_nvm_access *cmd,
675 					u8 *bytes, int *perrno);
676 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
677 				       struct i40e_nvm_access *cmd,
678 				       u8 *bytes, int *perrno);
679 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
680 					     struct i40e_nvm_access *cmd,
681 					     u8 *bytes, int *perrno);
682 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
683 					    struct i40e_nvm_access *cmd,
684 					    u8 *bytes, int *perrno);
685 static inline u8 i40e_nvmupd_get_module(u32 val)
686 {
687 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
688 }
689 static inline u8 i40e_nvmupd_get_transaction(u32 val)
690 {
691 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
692 }
693 
694 static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
695 {
696 	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
697 		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
698 }
699 
700 static const char * const i40e_nvm_update_state_str[] = {
701 	"I40E_NVMUPD_INVALID",
702 	"I40E_NVMUPD_READ_CON",
703 	"I40E_NVMUPD_READ_SNT",
704 	"I40E_NVMUPD_READ_LCB",
705 	"I40E_NVMUPD_READ_SA",
706 	"I40E_NVMUPD_WRITE_ERA",
707 	"I40E_NVMUPD_WRITE_CON",
708 	"I40E_NVMUPD_WRITE_SNT",
709 	"I40E_NVMUPD_WRITE_LCB",
710 	"I40E_NVMUPD_WRITE_SA",
711 	"I40E_NVMUPD_CSUM_CON",
712 	"I40E_NVMUPD_CSUM_SA",
713 	"I40E_NVMUPD_CSUM_LCB",
714 	"I40E_NVMUPD_STATUS",
715 	"I40E_NVMUPD_EXEC_AQ",
716 	"I40E_NVMUPD_GET_AQ_RESULT",
717 	"I40E_NVMUPD_GET_AQ_EVENT",
718 };
719 
720 /**
721  * i40e_nvmupd_command - Process an NVM update command
722  * @hw: pointer to hardware structure
723  * @cmd: pointer to nvm update command
724  * @bytes: pointer to the data buffer
725  * @perrno: pointer to return error code
726  *
727  * Dispatches command depending on what update state is current
728  **/
729 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
730 				struct i40e_nvm_access *cmd,
731 				u8 *bytes, int *perrno)
732 {
733 	i40e_status status;
734 	enum i40e_nvmupd_cmd upd_cmd;
735 
736 	/* assume success */
737 	*perrno = 0;
738 
739 	/* early check for status command and debug msgs */
740 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
741 
742 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
743 		   i40e_nvm_update_state_str[upd_cmd],
744 		   hw->nvmupd_state,
745 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
746 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
747 
748 	if (upd_cmd == I40E_NVMUPD_INVALID) {
749 		*perrno = -EFAULT;
750 		i40e_debug(hw, I40E_DEBUG_NVM,
751 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
752 			   upd_cmd, *perrno);
753 	}
754 
755 	/* a status request returns immediately rather than
756 	 * going into the state machine
757 	 */
758 	if (upd_cmd == I40E_NVMUPD_STATUS) {
759 		if (!cmd->data_size) {
760 			*perrno = -EFAULT;
761 			return I40E_ERR_BUF_TOO_SHORT;
762 		}
763 
764 		bytes[0] = hw->nvmupd_state;
765 
766 		if (cmd->data_size >= 4) {
767 			bytes[1] = 0;
768 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
769 		}
770 
771 		/* Clear error status on read */
772 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
773 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
774 
775 		return 0;
776 	}
777 
778 	/* Clear status even it is not read and log */
779 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
780 		i40e_debug(hw, I40E_DEBUG_NVM,
781 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
782 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
783 	}
784 
785 	/* Acquire lock to prevent race condition where adminq_task
786 	 * can execute after i40e_nvmupd_nvm_read/write but before state
787 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
788 	 *
789 	 * During NVMUpdate, it is observed that lock could be held for
790 	 * ~5ms for most commands. However lock is held for ~60ms for
791 	 * NVMUPD_CSUM_LCB command.
792 	 */
793 	mutex_lock(&hw->aq.arq_mutex);
794 	switch (hw->nvmupd_state) {
795 	case I40E_NVMUPD_STATE_INIT:
796 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
797 		break;
798 
799 	case I40E_NVMUPD_STATE_READING:
800 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
801 		break;
802 
803 	case I40E_NVMUPD_STATE_WRITING:
804 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
805 		break;
806 
807 	case I40E_NVMUPD_STATE_INIT_WAIT:
808 	case I40E_NVMUPD_STATE_WRITE_WAIT:
809 		/* if we need to stop waiting for an event, clear
810 		 * the wait info and return before doing anything else
811 		 */
812 		if (cmd->offset == 0xffff) {
813 			i40e_nvmupd_clear_wait_state(hw);
814 			status = 0;
815 			break;
816 		}
817 
818 		status = I40E_ERR_NOT_READY;
819 		*perrno = -EBUSY;
820 		break;
821 
822 	default:
823 		/* invalid state, should never happen */
824 		i40e_debug(hw, I40E_DEBUG_NVM,
825 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
826 		status = I40E_NOT_SUPPORTED;
827 		*perrno = -ESRCH;
828 		break;
829 	}
830 
831 	mutex_unlock(&hw->aq.arq_mutex);
832 	return status;
833 }
834 
835 /**
836  * i40e_nvmupd_state_init - Handle NVM update state Init
837  * @hw: pointer to hardware structure
838  * @cmd: pointer to nvm update command buffer
839  * @bytes: pointer to the data buffer
840  * @perrno: pointer to return error code
841  *
842  * Process legitimate commands of the Init state and conditionally set next
843  * state. Reject all other commands.
844  **/
845 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
846 					  struct i40e_nvm_access *cmd,
847 					  u8 *bytes, int *perrno)
848 {
849 	i40e_status status = 0;
850 	enum i40e_nvmupd_cmd upd_cmd;
851 
852 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
853 
854 	switch (upd_cmd) {
855 	case I40E_NVMUPD_READ_SA:
856 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
857 		if (status) {
858 			*perrno = i40e_aq_rc_to_posix(status,
859 						     hw->aq.asq_last_status);
860 		} else {
861 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
862 			i40e_release_nvm(hw);
863 		}
864 		break;
865 
866 	case I40E_NVMUPD_READ_SNT:
867 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
868 		if (status) {
869 			*perrno = i40e_aq_rc_to_posix(status,
870 						     hw->aq.asq_last_status);
871 		} else {
872 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
873 			if (status)
874 				i40e_release_nvm(hw);
875 			else
876 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
877 		}
878 		break;
879 
880 	case I40E_NVMUPD_WRITE_ERA:
881 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
882 		if (status) {
883 			*perrno = i40e_aq_rc_to_posix(status,
884 						     hw->aq.asq_last_status);
885 		} else {
886 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
887 			if (status) {
888 				i40e_release_nvm(hw);
889 			} else {
890 				hw->nvm_release_on_done = true;
891 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
892 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
893 			}
894 		}
895 		break;
896 
897 	case I40E_NVMUPD_WRITE_SA:
898 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
899 		if (status) {
900 			*perrno = i40e_aq_rc_to_posix(status,
901 						     hw->aq.asq_last_status);
902 		} else {
903 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
904 			if (status) {
905 				i40e_release_nvm(hw);
906 			} else {
907 				hw->nvm_release_on_done = true;
908 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
909 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
910 			}
911 		}
912 		break;
913 
914 	case I40E_NVMUPD_WRITE_SNT:
915 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
916 		if (status) {
917 			*perrno = i40e_aq_rc_to_posix(status,
918 						     hw->aq.asq_last_status);
919 		} else {
920 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
921 			if (status) {
922 				i40e_release_nvm(hw);
923 			} else {
924 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
925 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
926 			}
927 		}
928 		break;
929 
930 	case I40E_NVMUPD_CSUM_SA:
931 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
932 		if (status) {
933 			*perrno = i40e_aq_rc_to_posix(status,
934 						     hw->aq.asq_last_status);
935 		} else {
936 			status = i40e_update_nvm_checksum(hw);
937 			if (status) {
938 				*perrno = hw->aq.asq_last_status ?
939 				   i40e_aq_rc_to_posix(status,
940 						       hw->aq.asq_last_status) :
941 				   -EIO;
942 				i40e_release_nvm(hw);
943 			} else {
944 				hw->nvm_release_on_done = true;
945 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
946 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
947 			}
948 		}
949 		break;
950 
951 	case I40E_NVMUPD_EXEC_AQ:
952 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
953 		break;
954 
955 	case I40E_NVMUPD_GET_AQ_RESULT:
956 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
957 		break;
958 
959 	case I40E_NVMUPD_GET_AQ_EVENT:
960 		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
961 		break;
962 
963 	default:
964 		i40e_debug(hw, I40E_DEBUG_NVM,
965 			   "NVMUPD: bad cmd %s in init state\n",
966 			   i40e_nvm_update_state_str[upd_cmd]);
967 		status = I40E_ERR_NVM;
968 		*perrno = -ESRCH;
969 		break;
970 	}
971 	return status;
972 }
973 
974 /**
975  * i40e_nvmupd_state_reading - Handle NVM update state Reading
976  * @hw: pointer to hardware structure
977  * @cmd: pointer to nvm update command buffer
978  * @bytes: pointer to the data buffer
979  * @perrno: pointer to return error code
980  *
981  * NVM ownership is already held.  Process legitimate commands and set any
982  * change in state; reject all other commands.
983  **/
984 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
985 					     struct i40e_nvm_access *cmd,
986 					     u8 *bytes, int *perrno)
987 {
988 	i40e_status status = 0;
989 	enum i40e_nvmupd_cmd upd_cmd;
990 
991 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
992 
993 	switch (upd_cmd) {
994 	case I40E_NVMUPD_READ_SA:
995 	case I40E_NVMUPD_READ_CON:
996 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
997 		break;
998 
999 	case I40E_NVMUPD_READ_LCB:
1000 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1001 		i40e_release_nvm(hw);
1002 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1003 		break;
1004 
1005 	default:
1006 		i40e_debug(hw, I40E_DEBUG_NVM,
1007 			   "NVMUPD: bad cmd %s in reading state.\n",
1008 			   i40e_nvm_update_state_str[upd_cmd]);
1009 		status = I40E_NOT_SUPPORTED;
1010 		*perrno = -ESRCH;
1011 		break;
1012 	}
1013 	return status;
1014 }
1015 
1016 /**
1017  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1018  * @hw: pointer to hardware structure
1019  * @cmd: pointer to nvm update command buffer
1020  * @bytes: pointer to the data buffer
1021  * @perrno: pointer to return error code
1022  *
1023  * NVM ownership is already held.  Process legitimate commands and set any
1024  * change in state; reject all other commands
1025  **/
1026 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1027 					     struct i40e_nvm_access *cmd,
1028 					     u8 *bytes, int *perrno)
1029 {
1030 	i40e_status status = 0;
1031 	enum i40e_nvmupd_cmd upd_cmd;
1032 	bool retry_attempt = false;
1033 
1034 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1035 
1036 retry:
1037 	switch (upd_cmd) {
1038 	case I40E_NVMUPD_WRITE_CON:
1039 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1040 		if (!status) {
1041 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1042 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1043 		}
1044 		break;
1045 
1046 	case I40E_NVMUPD_WRITE_LCB:
1047 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1048 		if (status) {
1049 			*perrno = hw->aq.asq_last_status ?
1050 				   i40e_aq_rc_to_posix(status,
1051 						       hw->aq.asq_last_status) :
1052 				   -EIO;
1053 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1054 		} else {
1055 			hw->nvm_release_on_done = true;
1056 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1057 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1058 		}
1059 		break;
1060 
1061 	case I40E_NVMUPD_CSUM_CON:
1062 		/* Assumes the caller has acquired the nvm */
1063 		status = i40e_update_nvm_checksum(hw);
1064 		if (status) {
1065 			*perrno = hw->aq.asq_last_status ?
1066 				   i40e_aq_rc_to_posix(status,
1067 						       hw->aq.asq_last_status) :
1068 				   -EIO;
1069 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1070 		} else {
1071 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1072 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1073 		}
1074 		break;
1075 
1076 	case I40E_NVMUPD_CSUM_LCB:
1077 		/* Assumes the caller has acquired the nvm */
1078 		status = i40e_update_nvm_checksum(hw);
1079 		if (status) {
1080 			*perrno = hw->aq.asq_last_status ?
1081 				   i40e_aq_rc_to_posix(status,
1082 						       hw->aq.asq_last_status) :
1083 				   -EIO;
1084 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1085 		} else {
1086 			hw->nvm_release_on_done = true;
1087 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1088 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1089 		}
1090 		break;
1091 
1092 	default:
1093 		i40e_debug(hw, I40E_DEBUG_NVM,
1094 			   "NVMUPD: bad cmd %s in writing state.\n",
1095 			   i40e_nvm_update_state_str[upd_cmd]);
1096 		status = I40E_NOT_SUPPORTED;
1097 		*perrno = -ESRCH;
1098 		break;
1099 	}
1100 
1101 	/* In some circumstances, a multi-write transaction takes longer
1102 	 * than the default 3 minute timeout on the write semaphore.  If
1103 	 * the write failed with an EBUSY status, this is likely the problem,
1104 	 * so here we try to reacquire the semaphore then retry the write.
1105 	 * We only do one retry, then give up.
1106 	 */
1107 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1108 	    !retry_attempt) {
1109 		i40e_status old_status = status;
1110 		u32 old_asq_status = hw->aq.asq_last_status;
1111 		u32 gtime;
1112 
1113 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1114 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1115 			i40e_debug(hw, I40E_DEBUG_ALL,
1116 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1117 				   gtime, hw->nvm.hw_semaphore_timeout);
1118 			i40e_release_nvm(hw);
1119 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1120 			if (status) {
1121 				i40e_debug(hw, I40E_DEBUG_ALL,
1122 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1123 					   hw->aq.asq_last_status);
1124 				status = old_status;
1125 				hw->aq.asq_last_status = old_asq_status;
1126 			} else {
1127 				retry_attempt = true;
1128 				goto retry;
1129 			}
1130 		}
1131 	}
1132 
1133 	return status;
1134 }
1135 
1136 /**
1137  * i40e_nvmupd_clear_wait_state - clear wait state on hw
1138  * @hw: pointer to the hardware structure
1139  **/
1140 void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1141 {
1142 	i40e_debug(hw, I40E_DEBUG_NVM,
1143 		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1144 		   hw->nvm_wait_opcode);
1145 
1146 	if (hw->nvm_release_on_done) {
1147 		i40e_release_nvm(hw);
1148 		hw->nvm_release_on_done = false;
1149 	}
1150 	hw->nvm_wait_opcode = 0;
1151 
1152 	if (hw->aq.arq_last_status) {
1153 		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1154 		return;
1155 	}
1156 
1157 	switch (hw->nvmupd_state) {
1158 	case I40E_NVMUPD_STATE_INIT_WAIT:
1159 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1160 		break;
1161 
1162 	case I40E_NVMUPD_STATE_WRITE_WAIT:
1163 		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1164 		break;
1165 
1166 	default:
1167 		break;
1168 	}
1169 }
1170 
1171 /**
1172  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1173  * @hw: pointer to the hardware structure
1174  * @opcode: the event that just happened
1175  **/
1176 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1177 				  struct i40e_aq_desc *desc)
1178 {
1179 	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1180 
1181 	if (opcode == hw->nvm_wait_opcode) {
1182 		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1183 		i40e_nvmupd_clear_wait_state(hw);
1184 	}
1185 }
1186 
1187 /**
1188  * i40e_nvmupd_validate_command - Validate given command
1189  * @hw: pointer to hardware structure
1190  * @cmd: pointer to nvm update command buffer
1191  * @perrno: pointer to return error code
1192  *
1193  * Return one of the valid command types or I40E_NVMUPD_INVALID
1194  **/
1195 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1196 						 struct i40e_nvm_access *cmd,
1197 						 int *perrno)
1198 {
1199 	enum i40e_nvmupd_cmd upd_cmd;
1200 	u8 module, transaction;
1201 
1202 	/* anything that doesn't match a recognized case is an error */
1203 	upd_cmd = I40E_NVMUPD_INVALID;
1204 
1205 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1206 	module = i40e_nvmupd_get_module(cmd->config);
1207 
1208 	/* limits on data size */
1209 	if ((cmd->data_size < 1) ||
1210 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1211 		i40e_debug(hw, I40E_DEBUG_NVM,
1212 			   "i40e_nvmupd_validate_command data_size %d\n",
1213 			   cmd->data_size);
1214 		*perrno = -EFAULT;
1215 		return I40E_NVMUPD_INVALID;
1216 	}
1217 
1218 	switch (cmd->command) {
1219 	case I40E_NVM_READ:
1220 		switch (transaction) {
1221 		case I40E_NVM_CON:
1222 			upd_cmd = I40E_NVMUPD_READ_CON;
1223 			break;
1224 		case I40E_NVM_SNT:
1225 			upd_cmd = I40E_NVMUPD_READ_SNT;
1226 			break;
1227 		case I40E_NVM_LCB:
1228 			upd_cmd = I40E_NVMUPD_READ_LCB;
1229 			break;
1230 		case I40E_NVM_SA:
1231 			upd_cmd = I40E_NVMUPD_READ_SA;
1232 			break;
1233 		case I40E_NVM_EXEC:
1234 			if (module == 0xf)
1235 				upd_cmd = I40E_NVMUPD_STATUS;
1236 			else if (module == 0)
1237 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1238 			break;
1239 		case I40E_NVM_AQE:
1240 			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1241 			break;
1242 		}
1243 		break;
1244 
1245 	case I40E_NVM_WRITE:
1246 		switch (transaction) {
1247 		case I40E_NVM_CON:
1248 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1249 			break;
1250 		case I40E_NVM_SNT:
1251 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1252 			break;
1253 		case I40E_NVM_LCB:
1254 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1255 			break;
1256 		case I40E_NVM_SA:
1257 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1258 			break;
1259 		case I40E_NVM_ERA:
1260 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1261 			break;
1262 		case I40E_NVM_CSUM:
1263 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1264 			break;
1265 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1266 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1267 			break;
1268 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1269 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1270 			break;
1271 		case I40E_NVM_EXEC:
1272 			if (module == 0)
1273 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1274 			break;
1275 		}
1276 		break;
1277 	}
1278 
1279 	return upd_cmd;
1280 }
1281 
1282 /**
1283  * i40e_nvmupd_exec_aq - Run an AQ command
1284  * @hw: pointer to hardware structure
1285  * @cmd: pointer to nvm update command buffer
1286  * @bytes: pointer to the data buffer
1287  * @perrno: pointer to return error code
1288  *
1289  * cmd structure contains identifiers and data buffer
1290  **/
1291 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1292 				       struct i40e_nvm_access *cmd,
1293 				       u8 *bytes, int *perrno)
1294 {
1295 	struct i40e_asq_cmd_details cmd_details;
1296 	i40e_status status;
1297 	struct i40e_aq_desc *aq_desc;
1298 	u32 buff_size = 0;
1299 	u8 *buff = NULL;
1300 	u32 aq_desc_len;
1301 	u32 aq_data_len;
1302 
1303 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1304 	if (cmd->offset == 0xffff)
1305 		return 0;
1306 
1307 	memset(&cmd_details, 0, sizeof(cmd_details));
1308 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1309 
1310 	aq_desc_len = sizeof(struct i40e_aq_desc);
1311 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1312 
1313 	/* get the aq descriptor */
1314 	if (cmd->data_size < aq_desc_len) {
1315 		i40e_debug(hw, I40E_DEBUG_NVM,
1316 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1317 			   cmd->data_size, aq_desc_len);
1318 		*perrno = -EINVAL;
1319 		return I40E_ERR_PARAM;
1320 	}
1321 	aq_desc = (struct i40e_aq_desc *)bytes;
1322 
1323 	/* if data buffer needed, make sure it's ready */
1324 	aq_data_len = cmd->data_size - aq_desc_len;
1325 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1326 	if (buff_size) {
1327 		if (!hw->nvm_buff.va) {
1328 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1329 							hw->aq.asq_buf_size);
1330 			if (status)
1331 				i40e_debug(hw, I40E_DEBUG_NVM,
1332 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1333 					   status);
1334 		}
1335 
1336 		if (hw->nvm_buff.va) {
1337 			buff = hw->nvm_buff.va;
1338 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1339 		}
1340 	}
1341 
1342 	if (cmd->offset)
1343 		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1344 
1345 	/* and away we go! */
1346 	status = i40e_asq_send_command(hw, aq_desc, buff,
1347 				       buff_size, &cmd_details);
1348 	if (status) {
1349 		i40e_debug(hw, I40E_DEBUG_NVM,
1350 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1351 			   i40e_stat_str(hw, status),
1352 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1353 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1354 		return status;
1355 	}
1356 
1357 	/* should we wait for a followup event? */
1358 	if (cmd->offset) {
1359 		hw->nvm_wait_opcode = cmd->offset;
1360 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1361 	}
1362 
1363 	return status;
1364 }
1365 
1366 /**
1367  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1368  * @hw: pointer to hardware structure
1369  * @cmd: pointer to nvm update command buffer
1370  * @bytes: pointer to the data buffer
1371  * @perrno: pointer to return error code
1372  *
1373  * cmd structure contains identifiers and data buffer
1374  **/
1375 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1376 					     struct i40e_nvm_access *cmd,
1377 					     u8 *bytes, int *perrno)
1378 {
1379 	u32 aq_total_len;
1380 	u32 aq_desc_len;
1381 	int remainder;
1382 	u8 *buff;
1383 
1384 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1385 
1386 	aq_desc_len = sizeof(struct i40e_aq_desc);
1387 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1388 
1389 	/* check offset range */
1390 	if (cmd->offset > aq_total_len) {
1391 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1392 			   __func__, cmd->offset, aq_total_len);
1393 		*perrno = -EINVAL;
1394 		return I40E_ERR_PARAM;
1395 	}
1396 
1397 	/* check copylength range */
1398 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1399 		int new_len = aq_total_len - cmd->offset;
1400 
1401 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1402 			   __func__, cmd->data_size, new_len);
1403 		cmd->data_size = new_len;
1404 	}
1405 
1406 	remainder = cmd->data_size;
1407 	if (cmd->offset < aq_desc_len) {
1408 		u32 len = aq_desc_len - cmd->offset;
1409 
1410 		len = min(len, cmd->data_size);
1411 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1412 			   __func__, cmd->offset, cmd->offset + len);
1413 
1414 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1415 		memcpy(bytes, buff, len);
1416 
1417 		bytes += len;
1418 		remainder -= len;
1419 		buff = hw->nvm_buff.va;
1420 	} else {
1421 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1422 	}
1423 
1424 	if (remainder > 0) {
1425 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1426 
1427 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1428 			   __func__, start_byte, start_byte + remainder);
1429 		memcpy(bytes, buff, remainder);
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1437  * @hw: pointer to hardware structure
1438  * @cmd: pointer to nvm update command buffer
1439  * @bytes: pointer to the data buffer
1440  * @perrno: pointer to return error code
1441  *
1442  * cmd structure contains identifiers and data buffer
1443  **/
1444 static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1445 					    struct i40e_nvm_access *cmd,
1446 					    u8 *bytes, int *perrno)
1447 {
1448 	u32 aq_total_len;
1449 	u32 aq_desc_len;
1450 
1451 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1452 
1453 	aq_desc_len = sizeof(struct i40e_aq_desc);
1454 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1455 
1456 	/* check copylength range */
1457 	if (cmd->data_size > aq_total_len) {
1458 		i40e_debug(hw, I40E_DEBUG_NVM,
1459 			   "%s: copy length %d too big, trimming to %d\n",
1460 			   __func__, cmd->data_size, aq_total_len);
1461 		cmd->data_size = aq_total_len;
1462 	}
1463 
1464 	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1465 
1466 	return 0;
1467 }
1468 
1469 /**
1470  * i40e_nvmupd_nvm_read - Read NVM
1471  * @hw: pointer to hardware structure
1472  * @cmd: pointer to nvm update command buffer
1473  * @bytes: pointer to the data buffer
1474  * @perrno: pointer to return error code
1475  *
1476  * cmd structure contains identifiers and data buffer
1477  **/
1478 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1479 					struct i40e_nvm_access *cmd,
1480 					u8 *bytes, int *perrno)
1481 {
1482 	struct i40e_asq_cmd_details cmd_details;
1483 	i40e_status status;
1484 	u8 module, transaction;
1485 	bool last;
1486 
1487 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1488 	module = i40e_nvmupd_get_module(cmd->config);
1489 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1490 
1491 	memset(&cmd_details, 0, sizeof(cmd_details));
1492 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1493 
1494 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1495 				  bytes, last, &cmd_details);
1496 	if (status) {
1497 		i40e_debug(hw, I40E_DEBUG_NVM,
1498 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1499 			   module, cmd->offset, cmd->data_size);
1500 		i40e_debug(hw, I40E_DEBUG_NVM,
1501 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1502 			   status, hw->aq.asq_last_status);
1503 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1504 	}
1505 
1506 	return status;
1507 }
1508 
1509 /**
1510  * i40e_nvmupd_nvm_erase - Erase an NVM module
1511  * @hw: pointer to hardware structure
1512  * @cmd: pointer to nvm update command buffer
1513  * @perrno: pointer to return error code
1514  *
1515  * module, offset, data_size and data are in cmd structure
1516  **/
1517 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1518 					 struct i40e_nvm_access *cmd,
1519 					 int *perrno)
1520 {
1521 	i40e_status status = 0;
1522 	struct i40e_asq_cmd_details cmd_details;
1523 	u8 module, transaction;
1524 	bool last;
1525 
1526 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1527 	module = i40e_nvmupd_get_module(cmd->config);
1528 	last = (transaction & I40E_NVM_LCB);
1529 
1530 	memset(&cmd_details, 0, sizeof(cmd_details));
1531 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1532 
1533 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1534 				   last, &cmd_details);
1535 	if (status) {
1536 		i40e_debug(hw, I40E_DEBUG_NVM,
1537 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1538 			   module, cmd->offset, cmd->data_size);
1539 		i40e_debug(hw, I40E_DEBUG_NVM,
1540 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1541 			   status, hw->aq.asq_last_status);
1542 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1543 	}
1544 
1545 	return status;
1546 }
1547 
1548 /**
1549  * i40e_nvmupd_nvm_write - Write NVM
1550  * @hw: pointer to hardware structure
1551  * @cmd: pointer to nvm update command buffer
1552  * @bytes: pointer to the data buffer
1553  * @perrno: pointer to return error code
1554  *
1555  * module, offset, data_size and data are in cmd structure
1556  **/
1557 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1558 					 struct i40e_nvm_access *cmd,
1559 					 u8 *bytes, int *perrno)
1560 {
1561 	i40e_status status = 0;
1562 	struct i40e_asq_cmd_details cmd_details;
1563 	u8 module, transaction;
1564 	u8 preservation_flags;
1565 	bool last;
1566 
1567 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1568 	module = i40e_nvmupd_get_module(cmd->config);
1569 	last = (transaction & I40E_NVM_LCB);
1570 	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1571 
1572 	memset(&cmd_details, 0, sizeof(cmd_details));
1573 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1574 
1575 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1576 				    (u16)cmd->data_size, bytes, last,
1577 				    preservation_flags, &cmd_details);
1578 	if (status) {
1579 		i40e_debug(hw, I40E_DEBUG_NVM,
1580 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1581 			   module, cmd->offset, cmd->data_size);
1582 		i40e_debug(hw, I40E_DEBUG_NVM,
1583 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1584 			   status, hw->aq.asq_last_status);
1585 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586 	}
1587 
1588 	return status;
1589 }
1590