1 /******************************************************************************* 2 * 3 * Intel Ethernet Controller XL710 Family Linux Driver 4 * Copyright(c) 2013 - 2014 Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 * 21 * Contact Information: 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 * 25 ******************************************************************************/ 26 27 #include "i40e_prototype.h" 28 29 /** 30 * i40e_init_nvm_ops - Initialize NVM function pointers 31 * @hw: pointer to the HW structure 32 * 33 * Setup the function pointers and the NVM info structure. Should be called 34 * once per NVM initialization, e.g. inside the i40e_init_shared_code(). 35 * Please notice that the NVM term is used here (& in all methods covered 36 * in this file) as an equivalent of the FLASH part mapped into the SR. 37 * We are accessing FLASH always thru the Shadow RAM. 38 **/ 39 i40e_status i40e_init_nvm(struct i40e_hw *hw) 40 { 41 struct i40e_nvm_info *nvm = &hw->nvm; 42 i40e_status ret_code = 0; 43 u32 fla, gens; 44 u8 sr_size; 45 46 /* The SR size is stored regardless of the nvm programming mode 47 * as the blank mode may be used in the factory line. 48 */ 49 gens = rd32(hw, I40E_GLNVM_GENS); 50 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> 51 I40E_GLNVM_GENS_SR_SIZE_SHIFT); 52 /* Switching to words (sr_size contains power of 2KB) */ 53 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; 54 55 /* Check if we are in the normal or blank NVM programming mode */ 56 fla = rd32(hw, I40E_GLNVM_FLA); 57 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ 58 /* Max NVM timeout */ 59 nvm->timeout = I40E_MAX_NVM_TIMEOUT; 60 nvm->blank_nvm_mode = false; 61 } else { /* Blank programming mode */ 62 nvm->blank_nvm_mode = true; 63 ret_code = I40E_ERR_NVM_BLANK_MODE; 64 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); 65 } 66 67 return ret_code; 68 } 69 70 /** 71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership 72 * @hw: pointer to the HW structure 73 * @access: NVM access type (read or write) 74 * 75 * This function will request NVM ownership for reading 76 * via the proper Admin Command. 77 **/ 78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw, 79 enum i40e_aq_resource_access_type access) 80 { 81 i40e_status ret_code = 0; 82 u64 gtime, timeout; 83 u64 time_left = 0; 84 85 if (hw->nvm.blank_nvm_mode) 86 goto i40e_i40e_acquire_nvm_exit; 87 88 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 89 0, &time_left, NULL); 90 /* Reading the Global Device Timer */ 91 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 92 93 /* Store the timeout */ 94 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; 95 96 if (ret_code) 97 i40e_debug(hw, I40E_DEBUG_NVM, 98 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", 99 access, time_left, ret_code, hw->aq.asq_last_status); 100 101 if (ret_code && time_left) { 102 /* Poll until the current NVM owner timeouts */ 103 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; 104 while ((gtime < timeout) && time_left) { 105 usleep_range(10000, 20000); 106 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 107 ret_code = i40e_aq_request_resource(hw, 108 I40E_NVM_RESOURCE_ID, 109 access, 0, &time_left, 110 NULL); 111 if (!ret_code) { 112 hw->nvm.hw_semaphore_timeout = 113 I40E_MS_TO_GTIME(time_left) + gtime; 114 break; 115 } 116 } 117 if (ret_code) { 118 hw->nvm.hw_semaphore_timeout = 0; 119 i40e_debug(hw, I40E_DEBUG_NVM, 120 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", 121 time_left, ret_code, hw->aq.asq_last_status); 122 } 123 } 124 125 i40e_i40e_acquire_nvm_exit: 126 return ret_code; 127 } 128 129 /** 130 * i40e_release_nvm - Generic request for releasing the NVM ownership 131 * @hw: pointer to the HW structure 132 * 133 * This function will release NVM resource via the proper Admin Command. 134 **/ 135 void i40e_release_nvm(struct i40e_hw *hw) 136 { 137 i40e_status ret_code = I40E_SUCCESS; 138 u32 total_delay = 0; 139 140 if (hw->nvm.blank_nvm_mode) 141 return; 142 143 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); 144 145 /* there are some rare cases when trying to release the resource 146 * results in an admin Q timeout, so handle them correctly 147 */ 148 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) && 149 (total_delay < hw->aq.asq_cmd_timeout)) { 150 usleep_range(1000, 2000); 151 ret_code = i40e_aq_release_resource(hw, 152 I40E_NVM_RESOURCE_ID, 153 0, NULL); 154 total_delay++; 155 } 156 } 157 158 /** 159 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit 160 * @hw: pointer to the HW structure 161 * 162 * Polls the SRCTL Shadow RAM register done bit. 163 **/ 164 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) 165 { 166 i40e_status ret_code = I40E_ERR_TIMEOUT; 167 u32 srctl, wait_cnt; 168 169 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ 170 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { 171 srctl = rd32(hw, I40E_GLNVM_SRCTL); 172 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { 173 ret_code = 0; 174 break; 175 } 176 udelay(5); 177 } 178 if (ret_code == I40E_ERR_TIMEOUT) 179 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); 180 return ret_code; 181 } 182 183 /** 184 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register 185 * @hw: pointer to the HW structure 186 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 187 * @data: word read from the Shadow RAM 188 * 189 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. 190 **/ 191 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, 192 u16 *data) 193 { 194 i40e_status ret_code = I40E_ERR_TIMEOUT; 195 u32 sr_reg; 196 197 if (offset >= hw->nvm.sr_size) { 198 i40e_debug(hw, I40E_DEBUG_NVM, 199 "NVM read error: offset %d beyond Shadow RAM limit %d\n", 200 offset, hw->nvm.sr_size); 201 ret_code = I40E_ERR_PARAM; 202 goto read_nvm_exit; 203 } 204 205 /* Poll the done bit first */ 206 ret_code = i40e_poll_sr_srctl_done_bit(hw); 207 if (!ret_code) { 208 /* Write the address and start reading */ 209 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | 210 BIT(I40E_GLNVM_SRCTL_START_SHIFT); 211 wr32(hw, I40E_GLNVM_SRCTL, sr_reg); 212 213 /* Poll I40E_GLNVM_SRCTL until the done bit is set */ 214 ret_code = i40e_poll_sr_srctl_done_bit(hw); 215 if (!ret_code) { 216 sr_reg = rd32(hw, I40E_GLNVM_SRDATA); 217 *data = (u16)((sr_reg & 218 I40E_GLNVM_SRDATA_RDDATA_MASK) 219 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); 220 } 221 } 222 if (ret_code) 223 i40e_debug(hw, I40E_DEBUG_NVM, 224 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", 225 offset); 226 227 read_nvm_exit: 228 return ret_code; 229 } 230 231 /** 232 * i40e_read_nvm_aq - Read Shadow RAM. 233 * @hw: pointer to the HW structure. 234 * @module_pointer: module pointer location in words from the NVM beginning 235 * @offset: offset in words from module start 236 * @words: number of words to write 237 * @data: buffer with words to write to the Shadow RAM 238 * @last_command: tells the AdminQ that this is the last command 239 * 240 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 241 **/ 242 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 243 u32 offset, u16 words, void *data, 244 bool last_command) 245 { 246 i40e_status ret_code = I40E_ERR_NVM; 247 struct i40e_asq_cmd_details cmd_details; 248 249 memset(&cmd_details, 0, sizeof(cmd_details)); 250 cmd_details.wb_desc = &hw->nvm_wb_desc; 251 252 /* Here we are checking the SR limit only for the flat memory model. 253 * We cannot do it for the module-based model, as we did not acquire 254 * the NVM resource yet (we cannot get the module pointer value). 255 * Firmware will check the module-based model. 256 */ 257 if ((offset + words) > hw->nvm.sr_size) 258 i40e_debug(hw, I40E_DEBUG_NVM, 259 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 260 (offset + words), hw->nvm.sr_size); 261 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 262 /* We can write only up to 4KB (one sector), in one AQ write */ 263 i40e_debug(hw, I40E_DEBUG_NVM, 264 "NVM write fail error: tried to write %d words, limit is %d.\n", 265 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 266 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 267 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 268 /* A single write cannot spread over two sectors */ 269 i40e_debug(hw, I40E_DEBUG_NVM, 270 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 271 offset, words); 272 else 273 ret_code = i40e_aq_read_nvm(hw, module_pointer, 274 2 * offset, /*bytes*/ 275 2 * words, /*bytes*/ 276 data, last_command, &cmd_details); 277 278 return ret_code; 279 } 280 281 /** 282 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ 283 * @hw: pointer to the HW structure 284 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 285 * @data: word read from the Shadow RAM 286 * 287 * Reads one 16 bit word from the Shadow RAM using the AdminQ 288 **/ 289 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, 290 u16 *data) 291 { 292 i40e_status ret_code = I40E_ERR_TIMEOUT; 293 294 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); 295 *data = le16_to_cpu(*(__le16 *)data); 296 297 return ret_code; 298 } 299 300 /** 301 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking 302 * @hw: pointer to the HW structure 303 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 304 * @data: word read from the Shadow RAM 305 * 306 * Reads one 16 bit word from the Shadow RAM. 307 * 308 * Do not use this function except in cases where the nvm lock is already 309 * taken via i40e_acquire_nvm(). 310 **/ 311 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw, 312 u16 offset, u16 *data) 313 { 314 i40e_status ret_code = 0; 315 316 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 317 ret_code = i40e_read_nvm_word_aq(hw, offset, data); 318 else 319 ret_code = i40e_read_nvm_word_srctl(hw, offset, data); 320 return ret_code; 321 } 322 323 /** 324 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary 325 * @hw: pointer to the HW structure 326 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 327 * @data: word read from the Shadow RAM 328 * 329 * Reads one 16 bit word from the Shadow RAM. 330 **/ 331 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, 332 u16 *data) 333 { 334 i40e_status ret_code = 0; 335 336 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 337 if (ret_code) 338 return ret_code; 339 340 ret_code = __i40e_read_nvm_word(hw, offset, data); 341 342 i40e_release_nvm(hw); 343 344 return ret_code; 345 } 346 347 /** 348 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register 349 * @hw: pointer to the HW structure 350 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 351 * @words: (in) number of words to read; (out) number of words actually read 352 * @data: words read from the Shadow RAM 353 * 354 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 355 * method. The buffer read is preceded by the NVM ownership take 356 * and followed by the release. 357 **/ 358 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, 359 u16 *words, u16 *data) 360 { 361 i40e_status ret_code = 0; 362 u16 index, word; 363 364 /* Loop thru the selected region */ 365 for (word = 0; word < *words; word++) { 366 index = offset + word; 367 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); 368 if (ret_code) 369 break; 370 } 371 372 /* Update the number of words read from the Shadow RAM */ 373 *words = word; 374 375 return ret_code; 376 } 377 378 /** 379 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ 380 * @hw: pointer to the HW structure 381 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 382 * @words: (in) number of words to read; (out) number of words actually read 383 * @data: words read from the Shadow RAM 384 * 385 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() 386 * method. The buffer read is preceded by the NVM ownership take 387 * and followed by the release. 388 **/ 389 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, 390 u16 *words, u16 *data) 391 { 392 i40e_status ret_code; 393 u16 read_size = *words; 394 bool last_cmd = false; 395 u16 words_read = 0; 396 u16 i = 0; 397 398 do { 399 /* Calculate number of bytes we should read in this step. 400 * FVL AQ do not allow to read more than one page at a time or 401 * to cross page boundaries. 402 */ 403 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) 404 read_size = min(*words, 405 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - 406 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); 407 else 408 read_size = min((*words - words_read), 409 I40E_SR_SECTOR_SIZE_IN_WORDS); 410 411 /* Check if this is last command, if so set proper flag */ 412 if ((words_read + read_size) >= *words) 413 last_cmd = true; 414 415 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, 416 data + words_read, last_cmd); 417 if (ret_code) 418 goto read_nvm_buffer_aq_exit; 419 420 /* Increment counter for words already read and move offset to 421 * new read location 422 */ 423 words_read += read_size; 424 offset += read_size; 425 } while (words_read < *words); 426 427 for (i = 0; i < *words; i++) 428 data[i] = le16_to_cpu(((__le16 *)data)[i]); 429 430 read_nvm_buffer_aq_exit: 431 *words = words_read; 432 return ret_code; 433 } 434 435 /** 436 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock 437 * @hw: pointer to the HW structure 438 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). 439 * @words: (in) number of words to read; (out) number of words actually read 440 * @data: words read from the Shadow RAM 441 * 442 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() 443 * method. 444 **/ 445 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw, 446 u16 offset, u16 *words, 447 u16 *data) 448 { 449 i40e_status ret_code = 0; 450 451 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) 452 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, data); 453 else 454 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); 455 return ret_code; 456 } 457 458 /** 459 * i40e_write_nvm_aq - Writes Shadow RAM. 460 * @hw: pointer to the HW structure. 461 * @module_pointer: module pointer location in words from the NVM beginning 462 * @offset: offset in words from module start 463 * @words: number of words to write 464 * @data: buffer with words to write to the Shadow RAM 465 * @last_command: tells the AdminQ that this is the last command 466 * 467 * Writes a 16 bit words buffer to the Shadow RAM using the admin command. 468 **/ 469 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, 470 u32 offset, u16 words, void *data, 471 bool last_command) 472 { 473 i40e_status ret_code = I40E_ERR_NVM; 474 struct i40e_asq_cmd_details cmd_details; 475 476 memset(&cmd_details, 0, sizeof(cmd_details)); 477 cmd_details.wb_desc = &hw->nvm_wb_desc; 478 479 /* Here we are checking the SR limit only for the flat memory model. 480 * We cannot do it for the module-based model, as we did not acquire 481 * the NVM resource yet (we cannot get the module pointer value). 482 * Firmware will check the module-based model. 483 */ 484 if ((offset + words) > hw->nvm.sr_size) 485 i40e_debug(hw, I40E_DEBUG_NVM, 486 "NVM write error: offset %d beyond Shadow RAM limit %d\n", 487 (offset + words), hw->nvm.sr_size); 488 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) 489 /* We can write only up to 4KB (one sector), in one AQ write */ 490 i40e_debug(hw, I40E_DEBUG_NVM, 491 "NVM write fail error: tried to write %d words, limit is %d.\n", 492 words, I40E_SR_SECTOR_SIZE_IN_WORDS); 493 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) 494 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) 495 /* A single write cannot spread over two sectors */ 496 i40e_debug(hw, I40E_DEBUG_NVM, 497 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", 498 offset, words); 499 else 500 ret_code = i40e_aq_update_nvm(hw, module_pointer, 501 2 * offset, /*bytes*/ 502 2 * words, /*bytes*/ 503 data, last_command, &cmd_details); 504 505 return ret_code; 506 } 507 508 /** 509 * i40e_calc_nvm_checksum - Calculates and returns the checksum 510 * @hw: pointer to hardware structure 511 * @checksum: pointer to the checksum 512 * 513 * This function calculates SW Checksum that covers the whole 64kB shadow RAM 514 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD 515 * is customer specific and unknown. Therefore, this function skips all maximum 516 * possible size of VPD (1kB). 517 **/ 518 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, 519 u16 *checksum) 520 { 521 i40e_status ret_code; 522 struct i40e_virt_mem vmem; 523 u16 pcie_alt_module = 0; 524 u16 checksum_local = 0; 525 u16 vpd_module = 0; 526 u16 *data; 527 u16 i = 0; 528 529 ret_code = i40e_allocate_virt_mem(hw, &vmem, 530 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); 531 if (ret_code) 532 goto i40e_calc_nvm_checksum_exit; 533 data = (u16 *)vmem.va; 534 535 /* read pointer to VPD area */ 536 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); 537 if (ret_code) { 538 ret_code = I40E_ERR_NVM_CHECKSUM; 539 goto i40e_calc_nvm_checksum_exit; 540 } 541 542 /* read pointer to PCIe Alt Auto-load module */ 543 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, 544 &pcie_alt_module); 545 if (ret_code) { 546 ret_code = I40E_ERR_NVM_CHECKSUM; 547 goto i40e_calc_nvm_checksum_exit; 548 } 549 550 /* Calculate SW checksum that covers the whole 64kB shadow RAM 551 * except the VPD and PCIe ALT Auto-load modules 552 */ 553 for (i = 0; i < hw->nvm.sr_size; i++) { 554 /* Read SR page */ 555 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { 556 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; 557 558 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data); 559 if (ret_code) { 560 ret_code = I40E_ERR_NVM_CHECKSUM; 561 goto i40e_calc_nvm_checksum_exit; 562 } 563 } 564 565 /* Skip Checksum word */ 566 if (i == I40E_SR_SW_CHECKSUM_WORD) 567 continue; 568 /* Skip VPD module (convert byte size to word count) */ 569 if ((i >= (u32)vpd_module) && 570 (i < ((u32)vpd_module + 571 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { 572 continue; 573 } 574 /* Skip PCIe ALT module (convert byte size to word count) */ 575 if ((i >= (u32)pcie_alt_module) && 576 (i < ((u32)pcie_alt_module + 577 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { 578 continue; 579 } 580 581 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; 582 } 583 584 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; 585 586 i40e_calc_nvm_checksum_exit: 587 i40e_free_virt_mem(hw, &vmem); 588 return ret_code; 589 } 590 591 /** 592 * i40e_update_nvm_checksum - Updates the NVM checksum 593 * @hw: pointer to hardware structure 594 * 595 * NVM ownership must be acquired before calling this function and released 596 * on ARQ completion event reception by caller. 597 * This function will commit SR to NVM. 598 **/ 599 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw) 600 { 601 i40e_status ret_code; 602 u16 checksum; 603 __le16 le_sum; 604 605 ret_code = i40e_calc_nvm_checksum(hw, &checksum); 606 if (!ret_code) { 607 le_sum = cpu_to_le16(checksum); 608 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 609 1, &le_sum, true); 610 } 611 612 return ret_code; 613 } 614 615 /** 616 * i40e_validate_nvm_checksum - Validate EEPROM checksum 617 * @hw: pointer to hardware structure 618 * @checksum: calculated checksum 619 * 620 * Performs checksum calculation and validates the NVM SW checksum. If the 621 * caller does not need checksum, the value can be NULL. 622 **/ 623 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, 624 u16 *checksum) 625 { 626 i40e_status ret_code = 0; 627 u16 checksum_sr = 0; 628 u16 checksum_local = 0; 629 630 /* We must acquire the NVM lock in order to correctly synchronize the 631 * NVM accesses across multiple PFs. Without doing so it is possible 632 * for one of the PFs to read invalid data potentially indicating that 633 * the checksum is invalid. 634 */ 635 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 636 if (ret_code) 637 return ret_code; 638 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); 639 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); 640 i40e_release_nvm(hw); 641 if (ret_code) 642 return ret_code; 643 644 /* Verify read checksum from EEPROM is the same as 645 * calculated checksum 646 */ 647 if (checksum_local != checksum_sr) 648 ret_code = I40E_ERR_NVM_CHECKSUM; 649 650 /* If the user cares, return the calculated checksum */ 651 if (checksum) 652 *checksum = checksum_local; 653 654 return ret_code; 655 } 656 657 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 658 struct i40e_nvm_access *cmd, 659 u8 *bytes, int *perrno); 660 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 661 struct i40e_nvm_access *cmd, 662 u8 *bytes, int *perrno); 663 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 664 struct i40e_nvm_access *cmd, 665 u8 *bytes, int *errno); 666 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 667 struct i40e_nvm_access *cmd, 668 int *perrno); 669 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 670 struct i40e_nvm_access *cmd, 671 int *perrno); 672 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 673 struct i40e_nvm_access *cmd, 674 u8 *bytes, int *perrno); 675 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 676 struct i40e_nvm_access *cmd, 677 u8 *bytes, int *perrno); 678 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 679 struct i40e_nvm_access *cmd, 680 u8 *bytes, int *perrno); 681 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 682 struct i40e_nvm_access *cmd, 683 u8 *bytes, int *perrno); 684 static inline u8 i40e_nvmupd_get_module(u32 val) 685 { 686 return (u8)(val & I40E_NVM_MOD_PNT_MASK); 687 } 688 static inline u8 i40e_nvmupd_get_transaction(u32 val) 689 { 690 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT); 691 } 692 693 static const char * const i40e_nvm_update_state_str[] = { 694 "I40E_NVMUPD_INVALID", 695 "I40E_NVMUPD_READ_CON", 696 "I40E_NVMUPD_READ_SNT", 697 "I40E_NVMUPD_READ_LCB", 698 "I40E_NVMUPD_READ_SA", 699 "I40E_NVMUPD_WRITE_ERA", 700 "I40E_NVMUPD_WRITE_CON", 701 "I40E_NVMUPD_WRITE_SNT", 702 "I40E_NVMUPD_WRITE_LCB", 703 "I40E_NVMUPD_WRITE_SA", 704 "I40E_NVMUPD_CSUM_CON", 705 "I40E_NVMUPD_CSUM_SA", 706 "I40E_NVMUPD_CSUM_LCB", 707 "I40E_NVMUPD_STATUS", 708 "I40E_NVMUPD_EXEC_AQ", 709 "I40E_NVMUPD_GET_AQ_RESULT", 710 }; 711 712 /** 713 * i40e_nvmupd_command - Process an NVM update command 714 * @hw: pointer to hardware structure 715 * @cmd: pointer to nvm update command 716 * @bytes: pointer to the data buffer 717 * @perrno: pointer to return error code 718 * 719 * Dispatches command depending on what update state is current 720 **/ 721 i40e_status i40e_nvmupd_command(struct i40e_hw *hw, 722 struct i40e_nvm_access *cmd, 723 u8 *bytes, int *perrno) 724 { 725 i40e_status status; 726 enum i40e_nvmupd_cmd upd_cmd; 727 728 /* assume success */ 729 *perrno = 0; 730 731 /* early check for status command and debug msgs */ 732 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 733 734 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n", 735 i40e_nvm_update_state_str[upd_cmd], 736 hw->nvmupd_state, 737 hw->nvm_release_on_done, hw->nvm_wait_opcode, 738 cmd->command, cmd->config, cmd->offset, cmd->data_size); 739 740 if (upd_cmd == I40E_NVMUPD_INVALID) { 741 *perrno = -EFAULT; 742 i40e_debug(hw, I40E_DEBUG_NVM, 743 "i40e_nvmupd_validate_command returns %d errno %d\n", 744 upd_cmd, *perrno); 745 } 746 747 /* a status request returns immediately rather than 748 * going into the state machine 749 */ 750 if (upd_cmd == I40E_NVMUPD_STATUS) { 751 if (!cmd->data_size) { 752 *perrno = -EFAULT; 753 return I40E_ERR_BUF_TOO_SHORT; 754 } 755 756 bytes[0] = hw->nvmupd_state; 757 758 if (cmd->data_size >= 4) { 759 bytes[1] = 0; 760 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode; 761 } 762 763 /* Clear error status on read */ 764 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) 765 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 766 767 return 0; 768 } 769 770 /* Clear status even it is not read and log */ 771 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) { 772 i40e_debug(hw, I40E_DEBUG_NVM, 773 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n"); 774 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 775 } 776 777 /* Acquire lock to prevent race condition where adminq_task 778 * can execute after i40e_nvmupd_nvm_read/write but before state 779 * variables (nvm_wait_opcode, nvm_release_on_done) are updated. 780 * 781 * During NVMUpdate, it is observed that lock could be held for 782 * ~5ms for most commands. However lock is held for ~60ms for 783 * NVMUPD_CSUM_LCB command. 784 */ 785 mutex_lock(&hw->aq.arq_mutex); 786 switch (hw->nvmupd_state) { 787 case I40E_NVMUPD_STATE_INIT: 788 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); 789 break; 790 791 case I40E_NVMUPD_STATE_READING: 792 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); 793 break; 794 795 case I40E_NVMUPD_STATE_WRITING: 796 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); 797 break; 798 799 case I40E_NVMUPD_STATE_INIT_WAIT: 800 case I40E_NVMUPD_STATE_WRITE_WAIT: 801 /* if we need to stop waiting for an event, clear 802 * the wait info and return before doing anything else 803 */ 804 if (cmd->offset == 0xffff) { 805 i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode); 806 status = 0; 807 goto exit; 808 } 809 810 status = I40E_ERR_NOT_READY; 811 *perrno = -EBUSY; 812 break; 813 814 default: 815 /* invalid state, should never happen */ 816 i40e_debug(hw, I40E_DEBUG_NVM, 817 "NVMUPD: no such state %d\n", hw->nvmupd_state); 818 status = I40E_NOT_SUPPORTED; 819 *perrno = -ESRCH; 820 break; 821 } 822 exit: 823 mutex_unlock(&hw->aq.arq_mutex); 824 return status; 825 } 826 827 /** 828 * i40e_nvmupd_state_init - Handle NVM update state Init 829 * @hw: pointer to hardware structure 830 * @cmd: pointer to nvm update command buffer 831 * @bytes: pointer to the data buffer 832 * @perrno: pointer to return error code 833 * 834 * Process legitimate commands of the Init state and conditionally set next 835 * state. Reject all other commands. 836 **/ 837 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, 838 struct i40e_nvm_access *cmd, 839 u8 *bytes, int *perrno) 840 { 841 i40e_status status = 0; 842 enum i40e_nvmupd_cmd upd_cmd; 843 844 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 845 846 switch (upd_cmd) { 847 case I40E_NVMUPD_READ_SA: 848 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 849 if (status) { 850 *perrno = i40e_aq_rc_to_posix(status, 851 hw->aq.asq_last_status); 852 } else { 853 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 854 i40e_release_nvm(hw); 855 } 856 break; 857 858 case I40E_NVMUPD_READ_SNT: 859 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); 860 if (status) { 861 *perrno = i40e_aq_rc_to_posix(status, 862 hw->aq.asq_last_status); 863 } else { 864 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 865 if (status) 866 i40e_release_nvm(hw); 867 else 868 hw->nvmupd_state = I40E_NVMUPD_STATE_READING; 869 } 870 break; 871 872 case I40E_NVMUPD_WRITE_ERA: 873 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 874 if (status) { 875 *perrno = i40e_aq_rc_to_posix(status, 876 hw->aq.asq_last_status); 877 } else { 878 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); 879 if (status) { 880 i40e_release_nvm(hw); 881 } else { 882 hw->nvm_release_on_done = true; 883 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase; 884 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 885 } 886 } 887 break; 888 889 case I40E_NVMUPD_WRITE_SA: 890 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 891 if (status) { 892 *perrno = i40e_aq_rc_to_posix(status, 893 hw->aq.asq_last_status); 894 } else { 895 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 896 if (status) { 897 i40e_release_nvm(hw); 898 } else { 899 hw->nvm_release_on_done = true; 900 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 901 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 902 } 903 } 904 break; 905 906 case I40E_NVMUPD_WRITE_SNT: 907 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 908 if (status) { 909 *perrno = i40e_aq_rc_to_posix(status, 910 hw->aq.asq_last_status); 911 } else { 912 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 913 if (status) { 914 i40e_release_nvm(hw); 915 } else { 916 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 917 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 918 } 919 } 920 break; 921 922 case I40E_NVMUPD_CSUM_SA: 923 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 924 if (status) { 925 *perrno = i40e_aq_rc_to_posix(status, 926 hw->aq.asq_last_status); 927 } else { 928 status = i40e_update_nvm_checksum(hw); 929 if (status) { 930 *perrno = hw->aq.asq_last_status ? 931 i40e_aq_rc_to_posix(status, 932 hw->aq.asq_last_status) : 933 -EIO; 934 i40e_release_nvm(hw); 935 } else { 936 hw->nvm_release_on_done = true; 937 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 938 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 939 } 940 } 941 break; 942 943 case I40E_NVMUPD_EXEC_AQ: 944 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); 945 break; 946 947 case I40E_NVMUPD_GET_AQ_RESULT: 948 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); 949 break; 950 951 default: 952 i40e_debug(hw, I40E_DEBUG_NVM, 953 "NVMUPD: bad cmd %s in init state\n", 954 i40e_nvm_update_state_str[upd_cmd]); 955 status = I40E_ERR_NVM; 956 *perrno = -ESRCH; 957 break; 958 } 959 return status; 960 } 961 962 /** 963 * i40e_nvmupd_state_reading - Handle NVM update state Reading 964 * @hw: pointer to hardware structure 965 * @cmd: pointer to nvm update command buffer 966 * @bytes: pointer to the data buffer 967 * @perrno: pointer to return error code 968 * 969 * NVM ownership is already held. Process legitimate commands and set any 970 * change in state; reject all other commands. 971 **/ 972 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, 973 struct i40e_nvm_access *cmd, 974 u8 *bytes, int *perrno) 975 { 976 i40e_status status = 0; 977 enum i40e_nvmupd_cmd upd_cmd; 978 979 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 980 981 switch (upd_cmd) { 982 case I40E_NVMUPD_READ_SA: 983 case I40E_NVMUPD_READ_CON: 984 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 985 break; 986 987 case I40E_NVMUPD_READ_LCB: 988 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); 989 i40e_release_nvm(hw); 990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 991 break; 992 993 default: 994 i40e_debug(hw, I40E_DEBUG_NVM, 995 "NVMUPD: bad cmd %s in reading state.\n", 996 i40e_nvm_update_state_str[upd_cmd]); 997 status = I40E_NOT_SUPPORTED; 998 *perrno = -ESRCH; 999 break; 1000 } 1001 return status; 1002 } 1003 1004 /** 1005 * i40e_nvmupd_state_writing - Handle NVM update state Writing 1006 * @hw: pointer to hardware structure 1007 * @cmd: pointer to nvm update command buffer 1008 * @bytes: pointer to the data buffer 1009 * @perrno: pointer to return error code 1010 * 1011 * NVM ownership is already held. Process legitimate commands and set any 1012 * change in state; reject all other commands 1013 **/ 1014 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, 1015 struct i40e_nvm_access *cmd, 1016 u8 *bytes, int *perrno) 1017 { 1018 i40e_status status = 0; 1019 enum i40e_nvmupd_cmd upd_cmd; 1020 bool retry_attempt = false; 1021 1022 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); 1023 1024 retry: 1025 switch (upd_cmd) { 1026 case I40E_NVMUPD_WRITE_CON: 1027 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1028 if (!status) { 1029 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1030 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1031 } 1032 break; 1033 1034 case I40E_NVMUPD_WRITE_LCB: 1035 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); 1036 if (status) { 1037 *perrno = hw->aq.asq_last_status ? 1038 i40e_aq_rc_to_posix(status, 1039 hw->aq.asq_last_status) : 1040 -EIO; 1041 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1042 } else { 1043 hw->nvm_release_on_done = true; 1044 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1045 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1046 } 1047 break; 1048 1049 case I40E_NVMUPD_CSUM_CON: 1050 /* Assumes the caller has acquired the nvm */ 1051 status = i40e_update_nvm_checksum(hw); 1052 if (status) { 1053 *perrno = hw->aq.asq_last_status ? 1054 i40e_aq_rc_to_posix(status, 1055 hw->aq.asq_last_status) : 1056 -EIO; 1057 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1058 } else { 1059 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1060 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; 1061 } 1062 break; 1063 1064 case I40E_NVMUPD_CSUM_LCB: 1065 /* Assumes the caller has acquired the nvm */ 1066 status = i40e_update_nvm_checksum(hw); 1067 if (status) { 1068 *perrno = hw->aq.asq_last_status ? 1069 i40e_aq_rc_to_posix(status, 1070 hw->aq.asq_last_status) : 1071 -EIO; 1072 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1073 } else { 1074 hw->nvm_release_on_done = true; 1075 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; 1076 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1077 } 1078 break; 1079 1080 default: 1081 i40e_debug(hw, I40E_DEBUG_NVM, 1082 "NVMUPD: bad cmd %s in writing state.\n", 1083 i40e_nvm_update_state_str[upd_cmd]); 1084 status = I40E_NOT_SUPPORTED; 1085 *perrno = -ESRCH; 1086 break; 1087 } 1088 1089 /* In some circumstances, a multi-write transaction takes longer 1090 * than the default 3 minute timeout on the write semaphore. If 1091 * the write failed with an EBUSY status, this is likely the problem, 1092 * so here we try to reacquire the semaphore then retry the write. 1093 * We only do one retry, then give up. 1094 */ 1095 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && 1096 !retry_attempt) { 1097 i40e_status old_status = status; 1098 u32 old_asq_status = hw->aq.asq_last_status; 1099 u32 gtime; 1100 1101 gtime = rd32(hw, I40E_GLVFGEN_TIMER); 1102 if (gtime >= hw->nvm.hw_semaphore_timeout) { 1103 i40e_debug(hw, I40E_DEBUG_ALL, 1104 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", 1105 gtime, hw->nvm.hw_semaphore_timeout); 1106 i40e_release_nvm(hw); 1107 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); 1108 if (status) { 1109 i40e_debug(hw, I40E_DEBUG_ALL, 1110 "NVMUPD: write semaphore reacquire failed aq_err = %d\n", 1111 hw->aq.asq_last_status); 1112 status = old_status; 1113 hw->aq.asq_last_status = old_asq_status; 1114 } else { 1115 retry_attempt = true; 1116 goto retry; 1117 } 1118 } 1119 } 1120 1121 return status; 1122 } 1123 1124 /** 1125 * i40e_nvmupd_check_wait_event - handle NVM update operation events 1126 * @hw: pointer to the hardware structure 1127 * @opcode: the event that just happened 1128 **/ 1129 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode) 1130 { 1131 if (opcode == hw->nvm_wait_opcode) { 1132 i40e_debug(hw, I40E_DEBUG_NVM, 1133 "NVMUPD: clearing wait on opcode 0x%04x\n", opcode); 1134 if (hw->nvm_release_on_done) { 1135 i40e_release_nvm(hw); 1136 hw->nvm_release_on_done = false; 1137 } 1138 hw->nvm_wait_opcode = 0; 1139 1140 if (hw->aq.arq_last_status) { 1141 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR; 1142 return; 1143 } 1144 1145 switch (hw->nvmupd_state) { 1146 case I40E_NVMUPD_STATE_INIT_WAIT: 1147 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; 1148 break; 1149 1150 case I40E_NVMUPD_STATE_WRITE_WAIT: 1151 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING; 1152 break; 1153 1154 default: 1155 break; 1156 } 1157 } 1158 } 1159 1160 /** 1161 * i40e_nvmupd_validate_command - Validate given command 1162 * @hw: pointer to hardware structure 1163 * @cmd: pointer to nvm update command buffer 1164 * @perrno: pointer to return error code 1165 * 1166 * Return one of the valid command types or I40E_NVMUPD_INVALID 1167 **/ 1168 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, 1169 struct i40e_nvm_access *cmd, 1170 int *perrno) 1171 { 1172 enum i40e_nvmupd_cmd upd_cmd; 1173 u8 module, transaction; 1174 1175 /* anything that doesn't match a recognized case is an error */ 1176 upd_cmd = I40E_NVMUPD_INVALID; 1177 1178 transaction = i40e_nvmupd_get_transaction(cmd->config); 1179 module = i40e_nvmupd_get_module(cmd->config); 1180 1181 /* limits on data size */ 1182 if ((cmd->data_size < 1) || 1183 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { 1184 i40e_debug(hw, I40E_DEBUG_NVM, 1185 "i40e_nvmupd_validate_command data_size %d\n", 1186 cmd->data_size); 1187 *perrno = -EFAULT; 1188 return I40E_NVMUPD_INVALID; 1189 } 1190 1191 switch (cmd->command) { 1192 case I40E_NVM_READ: 1193 switch (transaction) { 1194 case I40E_NVM_CON: 1195 upd_cmd = I40E_NVMUPD_READ_CON; 1196 break; 1197 case I40E_NVM_SNT: 1198 upd_cmd = I40E_NVMUPD_READ_SNT; 1199 break; 1200 case I40E_NVM_LCB: 1201 upd_cmd = I40E_NVMUPD_READ_LCB; 1202 break; 1203 case I40E_NVM_SA: 1204 upd_cmd = I40E_NVMUPD_READ_SA; 1205 break; 1206 case I40E_NVM_EXEC: 1207 if (module == 0xf) 1208 upd_cmd = I40E_NVMUPD_STATUS; 1209 else if (module == 0) 1210 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; 1211 break; 1212 } 1213 break; 1214 1215 case I40E_NVM_WRITE: 1216 switch (transaction) { 1217 case I40E_NVM_CON: 1218 upd_cmd = I40E_NVMUPD_WRITE_CON; 1219 break; 1220 case I40E_NVM_SNT: 1221 upd_cmd = I40E_NVMUPD_WRITE_SNT; 1222 break; 1223 case I40E_NVM_LCB: 1224 upd_cmd = I40E_NVMUPD_WRITE_LCB; 1225 break; 1226 case I40E_NVM_SA: 1227 upd_cmd = I40E_NVMUPD_WRITE_SA; 1228 break; 1229 case I40E_NVM_ERA: 1230 upd_cmd = I40E_NVMUPD_WRITE_ERA; 1231 break; 1232 case I40E_NVM_CSUM: 1233 upd_cmd = I40E_NVMUPD_CSUM_CON; 1234 break; 1235 case (I40E_NVM_CSUM|I40E_NVM_SA): 1236 upd_cmd = I40E_NVMUPD_CSUM_SA; 1237 break; 1238 case (I40E_NVM_CSUM|I40E_NVM_LCB): 1239 upd_cmd = I40E_NVMUPD_CSUM_LCB; 1240 break; 1241 case I40E_NVM_EXEC: 1242 if (module == 0) 1243 upd_cmd = I40E_NVMUPD_EXEC_AQ; 1244 break; 1245 } 1246 break; 1247 } 1248 1249 return upd_cmd; 1250 } 1251 1252 /** 1253 * i40e_nvmupd_exec_aq - Run an AQ command 1254 * @hw: pointer to hardware structure 1255 * @cmd: pointer to nvm update command buffer 1256 * @bytes: pointer to the data buffer 1257 * @perrno: pointer to return error code 1258 * 1259 * cmd structure contains identifiers and data buffer 1260 **/ 1261 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, 1262 struct i40e_nvm_access *cmd, 1263 u8 *bytes, int *perrno) 1264 { 1265 struct i40e_asq_cmd_details cmd_details; 1266 i40e_status status; 1267 struct i40e_aq_desc *aq_desc; 1268 u32 buff_size = 0; 1269 u8 *buff = NULL; 1270 u32 aq_desc_len; 1271 u32 aq_data_len; 1272 1273 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1274 memset(&cmd_details, 0, sizeof(cmd_details)); 1275 cmd_details.wb_desc = &hw->nvm_wb_desc; 1276 1277 aq_desc_len = sizeof(struct i40e_aq_desc); 1278 memset(&hw->nvm_wb_desc, 0, aq_desc_len); 1279 1280 /* get the aq descriptor */ 1281 if (cmd->data_size < aq_desc_len) { 1282 i40e_debug(hw, I40E_DEBUG_NVM, 1283 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", 1284 cmd->data_size, aq_desc_len); 1285 *perrno = -EINVAL; 1286 return I40E_ERR_PARAM; 1287 } 1288 aq_desc = (struct i40e_aq_desc *)bytes; 1289 1290 /* if data buffer needed, make sure it's ready */ 1291 aq_data_len = cmd->data_size - aq_desc_len; 1292 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); 1293 if (buff_size) { 1294 if (!hw->nvm_buff.va) { 1295 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, 1296 hw->aq.asq_buf_size); 1297 if (status) 1298 i40e_debug(hw, I40E_DEBUG_NVM, 1299 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", 1300 status); 1301 } 1302 1303 if (hw->nvm_buff.va) { 1304 buff = hw->nvm_buff.va; 1305 memcpy(buff, &bytes[aq_desc_len], aq_data_len); 1306 } 1307 } 1308 1309 /* and away we go! */ 1310 status = i40e_asq_send_command(hw, aq_desc, buff, 1311 buff_size, &cmd_details); 1312 if (status) { 1313 i40e_debug(hw, I40E_DEBUG_NVM, 1314 "i40e_nvmupd_exec_aq err %s aq_err %s\n", 1315 i40e_stat_str(hw, status), 1316 i40e_aq_str(hw, hw->aq.asq_last_status)); 1317 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1318 } 1319 1320 /* should we wait for a followup event? */ 1321 if (cmd->offset) { 1322 hw->nvm_wait_opcode = cmd->offset; 1323 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; 1324 } 1325 1326 return status; 1327 } 1328 1329 /** 1330 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq 1331 * @hw: pointer to hardware structure 1332 * @cmd: pointer to nvm update command buffer 1333 * @bytes: pointer to the data buffer 1334 * @perrno: pointer to return error code 1335 * 1336 * cmd structure contains identifiers and data buffer 1337 **/ 1338 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, 1339 struct i40e_nvm_access *cmd, 1340 u8 *bytes, int *perrno) 1341 { 1342 u32 aq_total_len; 1343 u32 aq_desc_len; 1344 int remainder; 1345 u8 *buff; 1346 1347 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); 1348 1349 aq_desc_len = sizeof(struct i40e_aq_desc); 1350 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); 1351 1352 /* check offset range */ 1353 if (cmd->offset > aq_total_len) { 1354 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", 1355 __func__, cmd->offset, aq_total_len); 1356 *perrno = -EINVAL; 1357 return I40E_ERR_PARAM; 1358 } 1359 1360 /* check copylength range */ 1361 if (cmd->data_size > (aq_total_len - cmd->offset)) { 1362 int new_len = aq_total_len - cmd->offset; 1363 1364 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", 1365 __func__, cmd->data_size, new_len); 1366 cmd->data_size = new_len; 1367 } 1368 1369 remainder = cmd->data_size; 1370 if (cmd->offset < aq_desc_len) { 1371 u32 len = aq_desc_len - cmd->offset; 1372 1373 len = min(len, cmd->data_size); 1374 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", 1375 __func__, cmd->offset, cmd->offset + len); 1376 1377 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; 1378 memcpy(bytes, buff, len); 1379 1380 bytes += len; 1381 remainder -= len; 1382 buff = hw->nvm_buff.va; 1383 } else { 1384 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); 1385 } 1386 1387 if (remainder > 0) { 1388 int start_byte = buff - (u8 *)hw->nvm_buff.va; 1389 1390 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", 1391 __func__, start_byte, start_byte + remainder); 1392 memcpy(bytes, buff, remainder); 1393 } 1394 1395 return 0; 1396 } 1397 1398 /** 1399 * i40e_nvmupd_nvm_read - Read NVM 1400 * @hw: pointer to hardware structure 1401 * @cmd: pointer to nvm update command buffer 1402 * @bytes: pointer to the data buffer 1403 * @perrno: pointer to return error code 1404 * 1405 * cmd structure contains identifiers and data buffer 1406 **/ 1407 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, 1408 struct i40e_nvm_access *cmd, 1409 u8 *bytes, int *perrno) 1410 { 1411 struct i40e_asq_cmd_details cmd_details; 1412 i40e_status status; 1413 u8 module, transaction; 1414 bool last; 1415 1416 transaction = i40e_nvmupd_get_transaction(cmd->config); 1417 module = i40e_nvmupd_get_module(cmd->config); 1418 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); 1419 1420 memset(&cmd_details, 0, sizeof(cmd_details)); 1421 cmd_details.wb_desc = &hw->nvm_wb_desc; 1422 1423 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1424 bytes, last, &cmd_details); 1425 if (status) { 1426 i40e_debug(hw, I40E_DEBUG_NVM, 1427 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", 1428 module, cmd->offset, cmd->data_size); 1429 i40e_debug(hw, I40E_DEBUG_NVM, 1430 "i40e_nvmupd_nvm_read status %d aq %d\n", 1431 status, hw->aq.asq_last_status); 1432 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1433 } 1434 1435 return status; 1436 } 1437 1438 /** 1439 * i40e_nvmupd_nvm_erase - Erase an NVM module 1440 * @hw: pointer to hardware structure 1441 * @cmd: pointer to nvm update command buffer 1442 * @perrno: pointer to return error code 1443 * 1444 * module, offset, data_size and data are in cmd structure 1445 **/ 1446 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, 1447 struct i40e_nvm_access *cmd, 1448 int *perrno) 1449 { 1450 i40e_status status = 0; 1451 struct i40e_asq_cmd_details cmd_details; 1452 u8 module, transaction; 1453 bool last; 1454 1455 transaction = i40e_nvmupd_get_transaction(cmd->config); 1456 module = i40e_nvmupd_get_module(cmd->config); 1457 last = (transaction & I40E_NVM_LCB); 1458 1459 memset(&cmd_details, 0, sizeof(cmd_details)); 1460 cmd_details.wb_desc = &hw->nvm_wb_desc; 1461 1462 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, 1463 last, &cmd_details); 1464 if (status) { 1465 i40e_debug(hw, I40E_DEBUG_NVM, 1466 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", 1467 module, cmd->offset, cmd->data_size); 1468 i40e_debug(hw, I40E_DEBUG_NVM, 1469 "i40e_nvmupd_nvm_erase status %d aq %d\n", 1470 status, hw->aq.asq_last_status); 1471 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1472 } 1473 1474 return status; 1475 } 1476 1477 /** 1478 * i40e_nvmupd_nvm_write - Write NVM 1479 * @hw: pointer to hardware structure 1480 * @cmd: pointer to nvm update command buffer 1481 * @bytes: pointer to the data buffer 1482 * @perrno: pointer to return error code 1483 * 1484 * module, offset, data_size and data are in cmd structure 1485 **/ 1486 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, 1487 struct i40e_nvm_access *cmd, 1488 u8 *bytes, int *perrno) 1489 { 1490 i40e_status status = 0; 1491 struct i40e_asq_cmd_details cmd_details; 1492 u8 module, transaction; 1493 bool last; 1494 1495 transaction = i40e_nvmupd_get_transaction(cmd->config); 1496 module = i40e_nvmupd_get_module(cmd->config); 1497 last = (transaction & I40E_NVM_LCB); 1498 1499 memset(&cmd_details, 0, sizeof(cmd_details)); 1500 cmd_details.wb_desc = &hw->nvm_wb_desc; 1501 1502 status = i40e_aq_update_nvm(hw, module, cmd->offset, 1503 (u16)cmd->data_size, bytes, last, 1504 &cmd_details); 1505 if (status) { 1506 i40e_debug(hw, I40E_DEBUG_NVM, 1507 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", 1508 module, cmd->offset, cmd->data_size); 1509 i40e_debug(hw, I40E_DEBUG_NVM, 1510 "i40e_nvmupd_nvm_write status %d aq %d\n", 1511 status, hw->aq.asq_last_status); 1512 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); 1513 } 1514 1515 return status; 1516 } 1517