1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	i40e_status ret_code = I40E_SUCCESS;
138 	u32 total_delay = 0;
139 
140 	if (hw->nvm.blank_nvm_mode)
141 		return;
142 
143 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
144 
145 	/* there are some rare cases when trying to release the resource
146 	 * results in an admin Q timeout, so handle them correctly
147 	 */
148 	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
149 	       (total_delay < hw->aq.asq_cmd_timeout)) {
150 		usleep_range(1000, 2000);
151 		ret_code = i40e_aq_release_resource(hw,
152 						    I40E_NVM_RESOURCE_ID,
153 						    0, NULL);
154 		total_delay++;
155 	}
156 }
157 
158 /**
159  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
160  * @hw: pointer to the HW structure
161  *
162  * Polls the SRCTL Shadow RAM register done bit.
163  **/
164 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
165 {
166 	i40e_status ret_code = I40E_ERR_TIMEOUT;
167 	u32 srctl, wait_cnt;
168 
169 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
170 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
171 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
172 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
173 			ret_code = 0;
174 			break;
175 		}
176 		udelay(5);
177 	}
178 	if (ret_code == I40E_ERR_TIMEOUT)
179 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
180 	return ret_code;
181 }
182 
183 /**
184  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
185  * @hw: pointer to the HW structure
186  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
187  * @data: word read from the Shadow RAM
188  *
189  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
190  **/
191 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
192 					    u16 *data)
193 {
194 	i40e_status ret_code = I40E_ERR_TIMEOUT;
195 	u32 sr_reg;
196 
197 	if (offset >= hw->nvm.sr_size) {
198 		i40e_debug(hw, I40E_DEBUG_NVM,
199 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
200 			   offset, hw->nvm.sr_size);
201 		ret_code = I40E_ERR_PARAM;
202 		goto read_nvm_exit;
203 	}
204 
205 	/* Poll the done bit first */
206 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
207 	if (!ret_code) {
208 		/* Write the address and start reading */
209 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
210 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
211 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
212 
213 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
214 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
215 		if (!ret_code) {
216 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
217 			*data = (u16)((sr_reg &
218 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
219 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
220 		}
221 	}
222 	if (ret_code)
223 		i40e_debug(hw, I40E_DEBUG_NVM,
224 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
225 			   offset);
226 
227 read_nvm_exit:
228 	return ret_code;
229 }
230 
231 /**
232  * i40e_read_nvm_aq - Read Shadow RAM.
233  * @hw: pointer to the HW structure.
234  * @module_pointer: module pointer location in words from the NVM beginning
235  * @offset: offset in words from module start
236  * @words: number of words to write
237  * @data: buffer with words to write to the Shadow RAM
238  * @last_command: tells the AdminQ that this is the last command
239  *
240  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
241  **/
242 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
243 				    u32 offset, u16 words, void *data,
244 				    bool last_command)
245 {
246 	i40e_status ret_code = I40E_ERR_NVM;
247 	struct i40e_asq_cmd_details cmd_details;
248 
249 	memset(&cmd_details, 0, sizeof(cmd_details));
250 	cmd_details.wb_desc = &hw->nvm_wb_desc;
251 
252 	/* Here we are checking the SR limit only for the flat memory model.
253 	 * We cannot do it for the module-based model, as we did not acquire
254 	 * the NVM resource yet (we cannot get the module pointer value).
255 	 * Firmware will check the module-based model.
256 	 */
257 	if ((offset + words) > hw->nvm.sr_size)
258 		i40e_debug(hw, I40E_DEBUG_NVM,
259 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
260 			   (offset + words), hw->nvm.sr_size);
261 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
262 		/* We can write only up to 4KB (one sector), in one AQ write */
263 		i40e_debug(hw, I40E_DEBUG_NVM,
264 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
265 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
266 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
267 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
268 		/* A single write cannot spread over two sectors */
269 		i40e_debug(hw, I40E_DEBUG_NVM,
270 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
271 			   offset, words);
272 	else
273 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
274 					    2 * offset,  /*bytes*/
275 					    2 * words,   /*bytes*/
276 					    data, last_command, &cmd_details);
277 
278 	return ret_code;
279 }
280 
281 /**
282  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
283  * @hw: pointer to the HW structure
284  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
285  * @data: word read from the Shadow RAM
286  *
287  * Reads one 16 bit word from the Shadow RAM using the AdminQ
288  **/
289 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
290 					 u16 *data)
291 {
292 	i40e_status ret_code = I40E_ERR_TIMEOUT;
293 
294 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
295 	*data = le16_to_cpu(*(__le16 *)data);
296 
297 	return ret_code;
298 }
299 
300 /**
301  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
302  * @hw: pointer to the HW structure
303  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
304  * @data: word read from the Shadow RAM
305  *
306  * Reads one 16 bit word from the Shadow RAM.
307  *
308  * Do not use this function except in cases where the nvm lock is already
309  * taken via i40e_acquire_nvm().
310  **/
311 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
312 					u16 offset, u16 *data)
313 {
314 	i40e_status ret_code = 0;
315 
316 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
317 		ret_code = i40e_read_nvm_word_aq(hw, offset, data);
318 	else
319 		ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
320 	return ret_code;
321 }
322 
323 /**
324  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
325  * @hw: pointer to the HW structure
326  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
327  * @data: word read from the Shadow RAM
328  *
329  * Reads one 16 bit word from the Shadow RAM.
330  **/
331 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
332 			       u16 *data)
333 {
334 	i40e_status ret_code = 0;
335 
336 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
337 	if (ret_code)
338 		return ret_code;
339 
340 	ret_code = __i40e_read_nvm_word(hw, offset, data);
341 
342 	i40e_release_nvm(hw);
343 
344 	return ret_code;
345 }
346 
347 /**
348  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
349  * @hw: pointer to the HW structure
350  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
351  * @words: (in) number of words to read; (out) number of words actually read
352  * @data: words read from the Shadow RAM
353  *
354  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
355  * method. The buffer read is preceded by the NVM ownership take
356  * and followed by the release.
357  **/
358 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
359 					      u16 *words, u16 *data)
360 {
361 	i40e_status ret_code = 0;
362 	u16 index, word;
363 
364 	/* Loop thru the selected region */
365 	for (word = 0; word < *words; word++) {
366 		index = offset + word;
367 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
368 		if (ret_code)
369 			break;
370 	}
371 
372 	/* Update the number of words read from the Shadow RAM */
373 	*words = word;
374 
375 	return ret_code;
376 }
377 
378 /**
379  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
380  * @hw: pointer to the HW structure
381  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
382  * @words: (in) number of words to read; (out) number of words actually read
383  * @data: words read from the Shadow RAM
384  *
385  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
386  * method. The buffer read is preceded by the NVM ownership take
387  * and followed by the release.
388  **/
389 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
390 					   u16 *words, u16 *data)
391 {
392 	i40e_status ret_code;
393 	u16 read_size = *words;
394 	bool last_cmd = false;
395 	u16 words_read = 0;
396 	u16 i = 0;
397 
398 	do {
399 		/* Calculate number of bytes we should read in this step.
400 		 * FVL AQ do not allow to read more than one page at a time or
401 		 * to cross page boundaries.
402 		 */
403 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
404 			read_size = min(*words,
405 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
406 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
407 		else
408 			read_size = min((*words - words_read),
409 					I40E_SR_SECTOR_SIZE_IN_WORDS);
410 
411 		/* Check if this is last command, if so set proper flag */
412 		if ((words_read + read_size) >= *words)
413 			last_cmd = true;
414 
415 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
416 					    data + words_read, last_cmd);
417 		if (ret_code)
418 			goto read_nvm_buffer_aq_exit;
419 
420 		/* Increment counter for words already read and move offset to
421 		 * new read location
422 		 */
423 		words_read += read_size;
424 		offset += read_size;
425 	} while (words_read < *words);
426 
427 	for (i = 0; i < *words; i++)
428 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
429 
430 read_nvm_buffer_aq_exit:
431 	*words = words_read;
432 	return ret_code;
433 }
434 
435 /**
436  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
437  * @hw: pointer to the HW structure
438  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
439  * @words: (in) number of words to read; (out) number of words actually read
440  * @data: words read from the Shadow RAM
441  *
442  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
443  * method.
444  **/
445 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
446 					  u16 offset, u16 *words,
447 					  u16 *data)
448 {
449 	i40e_status ret_code = 0;
450 
451 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
452 		ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, data);
453 	else
454 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
455 	return ret_code;
456 }
457 
458 /**
459  * i40e_write_nvm_aq - Writes Shadow RAM.
460  * @hw: pointer to the HW structure.
461  * @module_pointer: module pointer location in words from the NVM beginning
462  * @offset: offset in words from module start
463  * @words: number of words to write
464  * @data: buffer with words to write to the Shadow RAM
465  * @last_command: tells the AdminQ that this is the last command
466  *
467  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
468  **/
469 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
470 				     u32 offset, u16 words, void *data,
471 				     bool last_command)
472 {
473 	i40e_status ret_code = I40E_ERR_NVM;
474 	struct i40e_asq_cmd_details cmd_details;
475 
476 	memset(&cmd_details, 0, sizeof(cmd_details));
477 	cmd_details.wb_desc = &hw->nvm_wb_desc;
478 
479 	/* Here we are checking the SR limit only for the flat memory model.
480 	 * We cannot do it for the module-based model, as we did not acquire
481 	 * the NVM resource yet (we cannot get the module pointer value).
482 	 * Firmware will check the module-based model.
483 	 */
484 	if ((offset + words) > hw->nvm.sr_size)
485 		i40e_debug(hw, I40E_DEBUG_NVM,
486 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
487 			   (offset + words), hw->nvm.sr_size);
488 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
489 		/* We can write only up to 4KB (one sector), in one AQ write */
490 		i40e_debug(hw, I40E_DEBUG_NVM,
491 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
492 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
493 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
494 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
495 		/* A single write cannot spread over two sectors */
496 		i40e_debug(hw, I40E_DEBUG_NVM,
497 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
498 			   offset, words);
499 	else
500 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
501 					      2 * offset,  /*bytes*/
502 					      2 * words,   /*bytes*/
503 					      data, last_command, &cmd_details);
504 
505 	return ret_code;
506 }
507 
508 /**
509  * i40e_calc_nvm_checksum - Calculates and returns the checksum
510  * @hw: pointer to hardware structure
511  * @checksum: pointer to the checksum
512  *
513  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
514  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
515  * is customer specific and unknown. Therefore, this function skips all maximum
516  * possible size of VPD (1kB).
517  **/
518 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
519 						    u16 *checksum)
520 {
521 	i40e_status ret_code;
522 	struct i40e_virt_mem vmem;
523 	u16 pcie_alt_module = 0;
524 	u16 checksum_local = 0;
525 	u16 vpd_module = 0;
526 	u16 *data;
527 	u16 i = 0;
528 
529 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
530 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
531 	if (ret_code)
532 		goto i40e_calc_nvm_checksum_exit;
533 	data = (u16 *)vmem.va;
534 
535 	/* read pointer to VPD area */
536 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
537 	if (ret_code) {
538 		ret_code = I40E_ERR_NVM_CHECKSUM;
539 		goto i40e_calc_nvm_checksum_exit;
540 	}
541 
542 	/* read pointer to PCIe Alt Auto-load module */
543 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
544 					&pcie_alt_module);
545 	if (ret_code) {
546 		ret_code = I40E_ERR_NVM_CHECKSUM;
547 		goto i40e_calc_nvm_checksum_exit;
548 	}
549 
550 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
551 	 * except the VPD and PCIe ALT Auto-load modules
552 	 */
553 	for (i = 0; i < hw->nvm.sr_size; i++) {
554 		/* Read SR page */
555 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
556 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
557 
558 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
559 			if (ret_code) {
560 				ret_code = I40E_ERR_NVM_CHECKSUM;
561 				goto i40e_calc_nvm_checksum_exit;
562 			}
563 		}
564 
565 		/* Skip Checksum word */
566 		if (i == I40E_SR_SW_CHECKSUM_WORD)
567 			continue;
568 		/* Skip VPD module (convert byte size to word count) */
569 		if ((i >= (u32)vpd_module) &&
570 		    (i < ((u32)vpd_module +
571 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
572 			continue;
573 		}
574 		/* Skip PCIe ALT module (convert byte size to word count) */
575 		if ((i >= (u32)pcie_alt_module) &&
576 		    (i < ((u32)pcie_alt_module +
577 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
578 			continue;
579 		}
580 
581 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
582 	}
583 
584 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
585 
586 i40e_calc_nvm_checksum_exit:
587 	i40e_free_virt_mem(hw, &vmem);
588 	return ret_code;
589 }
590 
591 /**
592  * i40e_update_nvm_checksum - Updates the NVM checksum
593  * @hw: pointer to hardware structure
594  *
595  * NVM ownership must be acquired before calling this function and released
596  * on ARQ completion event reception by caller.
597  * This function will commit SR to NVM.
598  **/
599 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
600 {
601 	i40e_status ret_code;
602 	u16 checksum;
603 	__le16 le_sum;
604 
605 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
606 	if (!ret_code) {
607 		le_sum = cpu_to_le16(checksum);
608 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
609 					     1, &le_sum, true);
610 	}
611 
612 	return ret_code;
613 }
614 
615 /**
616  * i40e_validate_nvm_checksum - Validate EEPROM checksum
617  * @hw: pointer to hardware structure
618  * @checksum: calculated checksum
619  *
620  * Performs checksum calculation and validates the NVM SW checksum. If the
621  * caller does not need checksum, the value can be NULL.
622  **/
623 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
624 						 u16 *checksum)
625 {
626 	i40e_status ret_code = 0;
627 	u16 checksum_sr = 0;
628 	u16 checksum_local = 0;
629 
630 	/* We must acquire the NVM lock in order to correctly synchronize the
631 	 * NVM accesses across multiple PFs. Without doing so it is possible
632 	 * for one of the PFs to read invalid data potentially indicating that
633 	 * the checksum is invalid.
634 	 */
635 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
636 	if (ret_code)
637 		return ret_code;
638 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
639 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
640 	i40e_release_nvm(hw);
641 	if (ret_code)
642 		return ret_code;
643 
644 	/* Verify read checksum from EEPROM is the same as
645 	 * calculated checksum
646 	 */
647 	if (checksum_local != checksum_sr)
648 		ret_code = I40E_ERR_NVM_CHECKSUM;
649 
650 	/* If the user cares, return the calculated checksum */
651 	if (checksum)
652 		*checksum = checksum_local;
653 
654 	return ret_code;
655 }
656 
657 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
658 					  struct i40e_nvm_access *cmd,
659 					  u8 *bytes, int *perrno);
660 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
661 					     struct i40e_nvm_access *cmd,
662 					     u8 *bytes, int *perrno);
663 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
664 					     struct i40e_nvm_access *cmd,
665 					     u8 *bytes, int *errno);
666 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
667 						struct i40e_nvm_access *cmd,
668 						int *perrno);
669 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
670 					 struct i40e_nvm_access *cmd,
671 					 int *perrno);
672 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
673 					 struct i40e_nvm_access *cmd,
674 					 u8 *bytes, int *perrno);
675 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
676 					struct i40e_nvm_access *cmd,
677 					u8 *bytes, int *perrno);
678 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
679 				       struct i40e_nvm_access *cmd,
680 				       u8 *bytes, int *perrno);
681 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
682 					     struct i40e_nvm_access *cmd,
683 					     u8 *bytes, int *perrno);
684 static inline u8 i40e_nvmupd_get_module(u32 val)
685 {
686 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
687 }
688 static inline u8 i40e_nvmupd_get_transaction(u32 val)
689 {
690 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
691 }
692 
693 static const char * const i40e_nvm_update_state_str[] = {
694 	"I40E_NVMUPD_INVALID",
695 	"I40E_NVMUPD_READ_CON",
696 	"I40E_NVMUPD_READ_SNT",
697 	"I40E_NVMUPD_READ_LCB",
698 	"I40E_NVMUPD_READ_SA",
699 	"I40E_NVMUPD_WRITE_ERA",
700 	"I40E_NVMUPD_WRITE_CON",
701 	"I40E_NVMUPD_WRITE_SNT",
702 	"I40E_NVMUPD_WRITE_LCB",
703 	"I40E_NVMUPD_WRITE_SA",
704 	"I40E_NVMUPD_CSUM_CON",
705 	"I40E_NVMUPD_CSUM_SA",
706 	"I40E_NVMUPD_CSUM_LCB",
707 	"I40E_NVMUPD_STATUS",
708 	"I40E_NVMUPD_EXEC_AQ",
709 	"I40E_NVMUPD_GET_AQ_RESULT",
710 };
711 
712 /**
713  * i40e_nvmupd_command - Process an NVM update command
714  * @hw: pointer to hardware structure
715  * @cmd: pointer to nvm update command
716  * @bytes: pointer to the data buffer
717  * @perrno: pointer to return error code
718  *
719  * Dispatches command depending on what update state is current
720  **/
721 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
722 				struct i40e_nvm_access *cmd,
723 				u8 *bytes, int *perrno)
724 {
725 	i40e_status status;
726 	enum i40e_nvmupd_cmd upd_cmd;
727 
728 	/* assume success */
729 	*perrno = 0;
730 
731 	/* early check for status command and debug msgs */
732 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
733 
734 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
735 		   i40e_nvm_update_state_str[upd_cmd],
736 		   hw->nvmupd_state,
737 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
738 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
739 
740 	if (upd_cmd == I40E_NVMUPD_INVALID) {
741 		*perrno = -EFAULT;
742 		i40e_debug(hw, I40E_DEBUG_NVM,
743 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
744 			   upd_cmd, *perrno);
745 	}
746 
747 	/* a status request returns immediately rather than
748 	 * going into the state machine
749 	 */
750 	if (upd_cmd == I40E_NVMUPD_STATUS) {
751 		if (!cmd->data_size) {
752 			*perrno = -EFAULT;
753 			return I40E_ERR_BUF_TOO_SHORT;
754 		}
755 
756 		bytes[0] = hw->nvmupd_state;
757 
758 		if (cmd->data_size >= 4) {
759 			bytes[1] = 0;
760 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
761 		}
762 
763 		/* Clear error status on read */
764 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
765 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
766 
767 		return 0;
768 	}
769 
770 	/* Clear status even it is not read and log */
771 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
772 		i40e_debug(hw, I40E_DEBUG_NVM,
773 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
774 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
775 	}
776 
777 	/* Acquire lock to prevent race condition where adminq_task
778 	 * can execute after i40e_nvmupd_nvm_read/write but before state
779 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
780 	 *
781 	 * During NVMUpdate, it is observed that lock could be held for
782 	 * ~5ms for most commands. However lock is held for ~60ms for
783 	 * NVMUPD_CSUM_LCB command.
784 	 */
785 	mutex_lock(&hw->aq.arq_mutex);
786 	switch (hw->nvmupd_state) {
787 	case I40E_NVMUPD_STATE_INIT:
788 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
789 		break;
790 
791 	case I40E_NVMUPD_STATE_READING:
792 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
793 		break;
794 
795 	case I40E_NVMUPD_STATE_WRITING:
796 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
797 		break;
798 
799 	case I40E_NVMUPD_STATE_INIT_WAIT:
800 	case I40E_NVMUPD_STATE_WRITE_WAIT:
801 		/* if we need to stop waiting for an event, clear
802 		 * the wait info and return before doing anything else
803 		 */
804 		if (cmd->offset == 0xffff) {
805 			i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode);
806 			status = 0;
807 			goto exit;
808 		}
809 
810 		status = I40E_ERR_NOT_READY;
811 		*perrno = -EBUSY;
812 		break;
813 
814 	default:
815 		/* invalid state, should never happen */
816 		i40e_debug(hw, I40E_DEBUG_NVM,
817 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
818 		status = I40E_NOT_SUPPORTED;
819 		*perrno = -ESRCH;
820 		break;
821 	}
822 exit:
823 	mutex_unlock(&hw->aq.arq_mutex);
824 	return status;
825 }
826 
827 /**
828  * i40e_nvmupd_state_init - Handle NVM update state Init
829  * @hw: pointer to hardware structure
830  * @cmd: pointer to nvm update command buffer
831  * @bytes: pointer to the data buffer
832  * @perrno: pointer to return error code
833  *
834  * Process legitimate commands of the Init state and conditionally set next
835  * state. Reject all other commands.
836  **/
837 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
838 					  struct i40e_nvm_access *cmd,
839 					  u8 *bytes, int *perrno)
840 {
841 	i40e_status status = 0;
842 	enum i40e_nvmupd_cmd upd_cmd;
843 
844 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
845 
846 	switch (upd_cmd) {
847 	case I40E_NVMUPD_READ_SA:
848 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
849 		if (status) {
850 			*perrno = i40e_aq_rc_to_posix(status,
851 						     hw->aq.asq_last_status);
852 		} else {
853 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
854 			i40e_release_nvm(hw);
855 		}
856 		break;
857 
858 	case I40E_NVMUPD_READ_SNT:
859 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
860 		if (status) {
861 			*perrno = i40e_aq_rc_to_posix(status,
862 						     hw->aq.asq_last_status);
863 		} else {
864 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
865 			if (status)
866 				i40e_release_nvm(hw);
867 			else
868 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
869 		}
870 		break;
871 
872 	case I40E_NVMUPD_WRITE_ERA:
873 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
874 		if (status) {
875 			*perrno = i40e_aq_rc_to_posix(status,
876 						     hw->aq.asq_last_status);
877 		} else {
878 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
879 			if (status) {
880 				i40e_release_nvm(hw);
881 			} else {
882 				hw->nvm_release_on_done = true;
883 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
884 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
885 			}
886 		}
887 		break;
888 
889 	case I40E_NVMUPD_WRITE_SA:
890 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
891 		if (status) {
892 			*perrno = i40e_aq_rc_to_posix(status,
893 						     hw->aq.asq_last_status);
894 		} else {
895 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
896 			if (status) {
897 				i40e_release_nvm(hw);
898 			} else {
899 				hw->nvm_release_on_done = true;
900 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
901 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
902 			}
903 		}
904 		break;
905 
906 	case I40E_NVMUPD_WRITE_SNT:
907 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
908 		if (status) {
909 			*perrno = i40e_aq_rc_to_posix(status,
910 						     hw->aq.asq_last_status);
911 		} else {
912 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
913 			if (status) {
914 				i40e_release_nvm(hw);
915 			} else {
916 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
917 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
918 			}
919 		}
920 		break;
921 
922 	case I40E_NVMUPD_CSUM_SA:
923 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
924 		if (status) {
925 			*perrno = i40e_aq_rc_to_posix(status,
926 						     hw->aq.asq_last_status);
927 		} else {
928 			status = i40e_update_nvm_checksum(hw);
929 			if (status) {
930 				*perrno = hw->aq.asq_last_status ?
931 				   i40e_aq_rc_to_posix(status,
932 						       hw->aq.asq_last_status) :
933 				   -EIO;
934 				i40e_release_nvm(hw);
935 			} else {
936 				hw->nvm_release_on_done = true;
937 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
938 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
939 			}
940 		}
941 		break;
942 
943 	case I40E_NVMUPD_EXEC_AQ:
944 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
945 		break;
946 
947 	case I40E_NVMUPD_GET_AQ_RESULT:
948 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
949 		break;
950 
951 	default:
952 		i40e_debug(hw, I40E_DEBUG_NVM,
953 			   "NVMUPD: bad cmd %s in init state\n",
954 			   i40e_nvm_update_state_str[upd_cmd]);
955 		status = I40E_ERR_NVM;
956 		*perrno = -ESRCH;
957 		break;
958 	}
959 	return status;
960 }
961 
962 /**
963  * i40e_nvmupd_state_reading - Handle NVM update state Reading
964  * @hw: pointer to hardware structure
965  * @cmd: pointer to nvm update command buffer
966  * @bytes: pointer to the data buffer
967  * @perrno: pointer to return error code
968  *
969  * NVM ownership is already held.  Process legitimate commands and set any
970  * change in state; reject all other commands.
971  **/
972 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
973 					     struct i40e_nvm_access *cmd,
974 					     u8 *bytes, int *perrno)
975 {
976 	i40e_status status = 0;
977 	enum i40e_nvmupd_cmd upd_cmd;
978 
979 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
980 
981 	switch (upd_cmd) {
982 	case I40E_NVMUPD_READ_SA:
983 	case I40E_NVMUPD_READ_CON:
984 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
985 		break;
986 
987 	case I40E_NVMUPD_READ_LCB:
988 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
989 		i40e_release_nvm(hw);
990 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
991 		break;
992 
993 	default:
994 		i40e_debug(hw, I40E_DEBUG_NVM,
995 			   "NVMUPD: bad cmd %s in reading state.\n",
996 			   i40e_nvm_update_state_str[upd_cmd]);
997 		status = I40E_NOT_SUPPORTED;
998 		*perrno = -ESRCH;
999 		break;
1000 	}
1001 	return status;
1002 }
1003 
1004 /**
1005  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1006  * @hw: pointer to hardware structure
1007  * @cmd: pointer to nvm update command buffer
1008  * @bytes: pointer to the data buffer
1009  * @perrno: pointer to return error code
1010  *
1011  * NVM ownership is already held.  Process legitimate commands and set any
1012  * change in state; reject all other commands
1013  **/
1014 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1015 					     struct i40e_nvm_access *cmd,
1016 					     u8 *bytes, int *perrno)
1017 {
1018 	i40e_status status = 0;
1019 	enum i40e_nvmupd_cmd upd_cmd;
1020 	bool retry_attempt = false;
1021 
1022 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1023 
1024 retry:
1025 	switch (upd_cmd) {
1026 	case I40E_NVMUPD_WRITE_CON:
1027 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1028 		if (!status) {
1029 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1030 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1031 		}
1032 		break;
1033 
1034 	case I40E_NVMUPD_WRITE_LCB:
1035 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1036 		if (status) {
1037 			*perrno = hw->aq.asq_last_status ?
1038 				   i40e_aq_rc_to_posix(status,
1039 						       hw->aq.asq_last_status) :
1040 				   -EIO;
1041 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1042 		} else {
1043 			hw->nvm_release_on_done = true;
1044 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1045 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1046 		}
1047 		break;
1048 
1049 	case I40E_NVMUPD_CSUM_CON:
1050 		/* Assumes the caller has acquired the nvm */
1051 		status = i40e_update_nvm_checksum(hw);
1052 		if (status) {
1053 			*perrno = hw->aq.asq_last_status ?
1054 				   i40e_aq_rc_to_posix(status,
1055 						       hw->aq.asq_last_status) :
1056 				   -EIO;
1057 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1058 		} else {
1059 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1060 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1061 		}
1062 		break;
1063 
1064 	case I40E_NVMUPD_CSUM_LCB:
1065 		/* Assumes the caller has acquired the nvm */
1066 		status = i40e_update_nvm_checksum(hw);
1067 		if (status) {
1068 			*perrno = hw->aq.asq_last_status ?
1069 				   i40e_aq_rc_to_posix(status,
1070 						       hw->aq.asq_last_status) :
1071 				   -EIO;
1072 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1073 		} else {
1074 			hw->nvm_release_on_done = true;
1075 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1076 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1077 		}
1078 		break;
1079 
1080 	default:
1081 		i40e_debug(hw, I40E_DEBUG_NVM,
1082 			   "NVMUPD: bad cmd %s in writing state.\n",
1083 			   i40e_nvm_update_state_str[upd_cmd]);
1084 		status = I40E_NOT_SUPPORTED;
1085 		*perrno = -ESRCH;
1086 		break;
1087 	}
1088 
1089 	/* In some circumstances, a multi-write transaction takes longer
1090 	 * than the default 3 minute timeout on the write semaphore.  If
1091 	 * the write failed with an EBUSY status, this is likely the problem,
1092 	 * so here we try to reacquire the semaphore then retry the write.
1093 	 * We only do one retry, then give up.
1094 	 */
1095 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1096 	    !retry_attempt) {
1097 		i40e_status old_status = status;
1098 		u32 old_asq_status = hw->aq.asq_last_status;
1099 		u32 gtime;
1100 
1101 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1102 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1103 			i40e_debug(hw, I40E_DEBUG_ALL,
1104 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1105 				   gtime, hw->nvm.hw_semaphore_timeout);
1106 			i40e_release_nvm(hw);
1107 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1108 			if (status) {
1109 				i40e_debug(hw, I40E_DEBUG_ALL,
1110 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1111 					   hw->aq.asq_last_status);
1112 				status = old_status;
1113 				hw->aq.asq_last_status = old_asq_status;
1114 			} else {
1115 				retry_attempt = true;
1116 				goto retry;
1117 			}
1118 		}
1119 	}
1120 
1121 	return status;
1122 }
1123 
1124 /**
1125  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1126  * @hw: pointer to the hardware structure
1127  * @opcode: the event that just happened
1128  **/
1129 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode)
1130 {
1131 	if (opcode == hw->nvm_wait_opcode) {
1132 		i40e_debug(hw, I40E_DEBUG_NVM,
1133 			   "NVMUPD: clearing wait on opcode 0x%04x\n", opcode);
1134 		if (hw->nvm_release_on_done) {
1135 			i40e_release_nvm(hw);
1136 			hw->nvm_release_on_done = false;
1137 		}
1138 		hw->nvm_wait_opcode = 0;
1139 
1140 		if (hw->aq.arq_last_status) {
1141 			hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1142 			return;
1143 		}
1144 
1145 		switch (hw->nvmupd_state) {
1146 		case I40E_NVMUPD_STATE_INIT_WAIT:
1147 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1148 			break;
1149 
1150 		case I40E_NVMUPD_STATE_WRITE_WAIT:
1151 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1152 			break;
1153 
1154 		default:
1155 			break;
1156 		}
1157 	}
1158 }
1159 
1160 /**
1161  * i40e_nvmupd_validate_command - Validate given command
1162  * @hw: pointer to hardware structure
1163  * @cmd: pointer to nvm update command buffer
1164  * @perrno: pointer to return error code
1165  *
1166  * Return one of the valid command types or I40E_NVMUPD_INVALID
1167  **/
1168 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1169 						 struct i40e_nvm_access *cmd,
1170 						 int *perrno)
1171 {
1172 	enum i40e_nvmupd_cmd upd_cmd;
1173 	u8 module, transaction;
1174 
1175 	/* anything that doesn't match a recognized case is an error */
1176 	upd_cmd = I40E_NVMUPD_INVALID;
1177 
1178 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1179 	module = i40e_nvmupd_get_module(cmd->config);
1180 
1181 	/* limits on data size */
1182 	if ((cmd->data_size < 1) ||
1183 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1184 		i40e_debug(hw, I40E_DEBUG_NVM,
1185 			   "i40e_nvmupd_validate_command data_size %d\n",
1186 			   cmd->data_size);
1187 		*perrno = -EFAULT;
1188 		return I40E_NVMUPD_INVALID;
1189 	}
1190 
1191 	switch (cmd->command) {
1192 	case I40E_NVM_READ:
1193 		switch (transaction) {
1194 		case I40E_NVM_CON:
1195 			upd_cmd = I40E_NVMUPD_READ_CON;
1196 			break;
1197 		case I40E_NVM_SNT:
1198 			upd_cmd = I40E_NVMUPD_READ_SNT;
1199 			break;
1200 		case I40E_NVM_LCB:
1201 			upd_cmd = I40E_NVMUPD_READ_LCB;
1202 			break;
1203 		case I40E_NVM_SA:
1204 			upd_cmd = I40E_NVMUPD_READ_SA;
1205 			break;
1206 		case I40E_NVM_EXEC:
1207 			if (module == 0xf)
1208 				upd_cmd = I40E_NVMUPD_STATUS;
1209 			else if (module == 0)
1210 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1211 			break;
1212 		}
1213 		break;
1214 
1215 	case I40E_NVM_WRITE:
1216 		switch (transaction) {
1217 		case I40E_NVM_CON:
1218 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1219 			break;
1220 		case I40E_NVM_SNT:
1221 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1222 			break;
1223 		case I40E_NVM_LCB:
1224 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1225 			break;
1226 		case I40E_NVM_SA:
1227 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1228 			break;
1229 		case I40E_NVM_ERA:
1230 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1231 			break;
1232 		case I40E_NVM_CSUM:
1233 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1234 			break;
1235 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1236 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1237 			break;
1238 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1239 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1240 			break;
1241 		case I40E_NVM_EXEC:
1242 			if (module == 0)
1243 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1244 			break;
1245 		}
1246 		break;
1247 	}
1248 
1249 	return upd_cmd;
1250 }
1251 
1252 /**
1253  * i40e_nvmupd_exec_aq - Run an AQ command
1254  * @hw: pointer to hardware structure
1255  * @cmd: pointer to nvm update command buffer
1256  * @bytes: pointer to the data buffer
1257  * @perrno: pointer to return error code
1258  *
1259  * cmd structure contains identifiers and data buffer
1260  **/
1261 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1262 				       struct i40e_nvm_access *cmd,
1263 				       u8 *bytes, int *perrno)
1264 {
1265 	struct i40e_asq_cmd_details cmd_details;
1266 	i40e_status status;
1267 	struct i40e_aq_desc *aq_desc;
1268 	u32 buff_size = 0;
1269 	u8 *buff = NULL;
1270 	u32 aq_desc_len;
1271 	u32 aq_data_len;
1272 
1273 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1274 	memset(&cmd_details, 0, sizeof(cmd_details));
1275 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1276 
1277 	aq_desc_len = sizeof(struct i40e_aq_desc);
1278 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1279 
1280 	/* get the aq descriptor */
1281 	if (cmd->data_size < aq_desc_len) {
1282 		i40e_debug(hw, I40E_DEBUG_NVM,
1283 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1284 			   cmd->data_size, aq_desc_len);
1285 		*perrno = -EINVAL;
1286 		return I40E_ERR_PARAM;
1287 	}
1288 	aq_desc = (struct i40e_aq_desc *)bytes;
1289 
1290 	/* if data buffer needed, make sure it's ready */
1291 	aq_data_len = cmd->data_size - aq_desc_len;
1292 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1293 	if (buff_size) {
1294 		if (!hw->nvm_buff.va) {
1295 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1296 							hw->aq.asq_buf_size);
1297 			if (status)
1298 				i40e_debug(hw, I40E_DEBUG_NVM,
1299 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1300 					   status);
1301 		}
1302 
1303 		if (hw->nvm_buff.va) {
1304 			buff = hw->nvm_buff.va;
1305 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1306 		}
1307 	}
1308 
1309 	/* and away we go! */
1310 	status = i40e_asq_send_command(hw, aq_desc, buff,
1311 				       buff_size, &cmd_details);
1312 	if (status) {
1313 		i40e_debug(hw, I40E_DEBUG_NVM,
1314 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1315 			   i40e_stat_str(hw, status),
1316 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1317 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1318 	}
1319 
1320 	/* should we wait for a followup event? */
1321 	if (cmd->offset) {
1322 		hw->nvm_wait_opcode = cmd->offset;
1323 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1324 	}
1325 
1326 	return status;
1327 }
1328 
1329 /**
1330  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1331  * @hw: pointer to hardware structure
1332  * @cmd: pointer to nvm update command buffer
1333  * @bytes: pointer to the data buffer
1334  * @perrno: pointer to return error code
1335  *
1336  * cmd structure contains identifiers and data buffer
1337  **/
1338 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1339 					     struct i40e_nvm_access *cmd,
1340 					     u8 *bytes, int *perrno)
1341 {
1342 	u32 aq_total_len;
1343 	u32 aq_desc_len;
1344 	int remainder;
1345 	u8 *buff;
1346 
1347 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1348 
1349 	aq_desc_len = sizeof(struct i40e_aq_desc);
1350 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1351 
1352 	/* check offset range */
1353 	if (cmd->offset > aq_total_len) {
1354 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1355 			   __func__, cmd->offset, aq_total_len);
1356 		*perrno = -EINVAL;
1357 		return I40E_ERR_PARAM;
1358 	}
1359 
1360 	/* check copylength range */
1361 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1362 		int new_len = aq_total_len - cmd->offset;
1363 
1364 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1365 			   __func__, cmd->data_size, new_len);
1366 		cmd->data_size = new_len;
1367 	}
1368 
1369 	remainder = cmd->data_size;
1370 	if (cmd->offset < aq_desc_len) {
1371 		u32 len = aq_desc_len - cmd->offset;
1372 
1373 		len = min(len, cmd->data_size);
1374 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1375 			   __func__, cmd->offset, cmd->offset + len);
1376 
1377 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1378 		memcpy(bytes, buff, len);
1379 
1380 		bytes += len;
1381 		remainder -= len;
1382 		buff = hw->nvm_buff.va;
1383 	} else {
1384 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1385 	}
1386 
1387 	if (remainder > 0) {
1388 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1389 
1390 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1391 			   __func__, start_byte, start_byte + remainder);
1392 		memcpy(bytes, buff, remainder);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * i40e_nvmupd_nvm_read - Read NVM
1400  * @hw: pointer to hardware structure
1401  * @cmd: pointer to nvm update command buffer
1402  * @bytes: pointer to the data buffer
1403  * @perrno: pointer to return error code
1404  *
1405  * cmd structure contains identifiers and data buffer
1406  **/
1407 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1408 					struct i40e_nvm_access *cmd,
1409 					u8 *bytes, int *perrno)
1410 {
1411 	struct i40e_asq_cmd_details cmd_details;
1412 	i40e_status status;
1413 	u8 module, transaction;
1414 	bool last;
1415 
1416 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1417 	module = i40e_nvmupd_get_module(cmd->config);
1418 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1419 
1420 	memset(&cmd_details, 0, sizeof(cmd_details));
1421 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1422 
1423 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1424 				  bytes, last, &cmd_details);
1425 	if (status) {
1426 		i40e_debug(hw, I40E_DEBUG_NVM,
1427 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1428 			   module, cmd->offset, cmd->data_size);
1429 		i40e_debug(hw, I40E_DEBUG_NVM,
1430 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1431 			   status, hw->aq.asq_last_status);
1432 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1433 	}
1434 
1435 	return status;
1436 }
1437 
1438 /**
1439  * i40e_nvmupd_nvm_erase - Erase an NVM module
1440  * @hw: pointer to hardware structure
1441  * @cmd: pointer to nvm update command buffer
1442  * @perrno: pointer to return error code
1443  *
1444  * module, offset, data_size and data are in cmd structure
1445  **/
1446 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1447 					 struct i40e_nvm_access *cmd,
1448 					 int *perrno)
1449 {
1450 	i40e_status status = 0;
1451 	struct i40e_asq_cmd_details cmd_details;
1452 	u8 module, transaction;
1453 	bool last;
1454 
1455 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1456 	module = i40e_nvmupd_get_module(cmd->config);
1457 	last = (transaction & I40E_NVM_LCB);
1458 
1459 	memset(&cmd_details, 0, sizeof(cmd_details));
1460 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1461 
1462 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1463 				   last, &cmd_details);
1464 	if (status) {
1465 		i40e_debug(hw, I40E_DEBUG_NVM,
1466 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1467 			   module, cmd->offset, cmd->data_size);
1468 		i40e_debug(hw, I40E_DEBUG_NVM,
1469 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1470 			   status, hw->aq.asq_last_status);
1471 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1472 	}
1473 
1474 	return status;
1475 }
1476 
1477 /**
1478  * i40e_nvmupd_nvm_write - Write NVM
1479  * @hw: pointer to hardware structure
1480  * @cmd: pointer to nvm update command buffer
1481  * @bytes: pointer to the data buffer
1482  * @perrno: pointer to return error code
1483  *
1484  * module, offset, data_size and data are in cmd structure
1485  **/
1486 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1487 					 struct i40e_nvm_access *cmd,
1488 					 u8 *bytes, int *perrno)
1489 {
1490 	i40e_status status = 0;
1491 	struct i40e_asq_cmd_details cmd_details;
1492 	u8 module, transaction;
1493 	bool last;
1494 
1495 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1496 	module = i40e_nvmupd_get_module(cmd->config);
1497 	last = (transaction & I40E_NVM_LCB);
1498 
1499 	memset(&cmd_details, 0, sizeof(cmd_details));
1500 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1501 
1502 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1503 				    (u16)cmd->data_size, bytes, last,
1504 				    &cmd_details);
1505 	if (status) {
1506 		i40e_debug(hw, I40E_DEBUG_NVM,
1507 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1508 			   module, cmd->offset, cmd->data_size);
1509 		i40e_debug(hw, I40E_DEBUG_NVM,
1510 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1511 			   status, hw->aq.asq_last_status);
1512 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1513 	}
1514 
1515 	return status;
1516 }
1517