1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	if (!hw->nvm.blank_nvm_mode)
138 		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
139 }
140 
141 /**
142  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
143  * @hw: pointer to the HW structure
144  *
145  * Polls the SRCTL Shadow RAM register done bit.
146  **/
147 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
148 {
149 	i40e_status ret_code = I40E_ERR_TIMEOUT;
150 	u32 srctl, wait_cnt;
151 
152 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
153 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
154 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
155 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
156 			ret_code = 0;
157 			break;
158 		}
159 		udelay(5);
160 	}
161 	if (ret_code == I40E_ERR_TIMEOUT)
162 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
163 	return ret_code;
164 }
165 
166 /**
167  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
168  * @hw: pointer to the HW structure
169  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
170  * @data: word read from the Shadow RAM
171  *
172  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
173  **/
174 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
175 					    u16 *data)
176 {
177 	i40e_status ret_code = I40E_ERR_TIMEOUT;
178 	u32 sr_reg;
179 
180 	if (offset >= hw->nvm.sr_size) {
181 		i40e_debug(hw, I40E_DEBUG_NVM,
182 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
183 			   offset, hw->nvm.sr_size);
184 		ret_code = I40E_ERR_PARAM;
185 		goto read_nvm_exit;
186 	}
187 
188 	/* Poll the done bit first */
189 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
190 	if (!ret_code) {
191 		/* Write the address and start reading */
192 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
193 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
194 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
195 
196 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
197 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
198 		if (!ret_code) {
199 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
200 			*data = (u16)((sr_reg &
201 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
202 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
203 		}
204 	}
205 	if (ret_code)
206 		i40e_debug(hw, I40E_DEBUG_NVM,
207 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
208 			   offset);
209 
210 read_nvm_exit:
211 	return ret_code;
212 }
213 
214 /**
215  * i40e_read_nvm_aq - Read Shadow RAM.
216  * @hw: pointer to the HW structure.
217  * @module_pointer: module pointer location in words from the NVM beginning
218  * @offset: offset in words from module start
219  * @words: number of words to write
220  * @data: buffer with words to write to the Shadow RAM
221  * @last_command: tells the AdminQ that this is the last command
222  *
223  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
224  **/
225 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
226 				    u32 offset, u16 words, void *data,
227 				    bool last_command)
228 {
229 	i40e_status ret_code = I40E_ERR_NVM;
230 	struct i40e_asq_cmd_details cmd_details;
231 
232 	memset(&cmd_details, 0, sizeof(cmd_details));
233 
234 	/* Here we are checking the SR limit only for the flat memory model.
235 	 * We cannot do it for the module-based model, as we did not acquire
236 	 * the NVM resource yet (we cannot get the module pointer value).
237 	 * Firmware will check the module-based model.
238 	 */
239 	if ((offset + words) > hw->nvm.sr_size)
240 		i40e_debug(hw, I40E_DEBUG_NVM,
241 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
242 			   (offset + words), hw->nvm.sr_size);
243 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
244 		/* We can write only up to 4KB (one sector), in one AQ write */
245 		i40e_debug(hw, I40E_DEBUG_NVM,
246 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
247 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
248 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
249 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
250 		/* A single write cannot spread over two sectors */
251 		i40e_debug(hw, I40E_DEBUG_NVM,
252 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
253 			   offset, words);
254 	else
255 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
256 					    2 * offset,  /*bytes*/
257 					    2 * words,   /*bytes*/
258 					    data, last_command, &cmd_details);
259 
260 	return ret_code;
261 }
262 
263 /**
264  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
265  * @hw: pointer to the HW structure
266  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
267  * @data: word read from the Shadow RAM
268  *
269  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
270  **/
271 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
272 					 u16 *data)
273 {
274 	i40e_status ret_code = I40E_ERR_TIMEOUT;
275 
276 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
277 	*data = le16_to_cpu(*(__le16 *)data);
278 
279 	return ret_code;
280 }
281 
282 /**
283  * i40e_read_nvm_word - Reads Shadow RAM
284  * @hw: pointer to the HW structure
285  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286  * @data: word read from the Shadow RAM
287  *
288  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
289  **/
290 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
291 			       u16 *data)
292 {
293 	enum i40e_status_code ret_code = 0;
294 
295 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
296 	if (!ret_code) {
297 		if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
298 			ret_code = i40e_read_nvm_word_aq(hw, offset, data);
299 		} else {
300 			ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
301 		}
302 		i40e_release_nvm(hw);
303 	}
304 	return ret_code;
305 }
306 
307 /**
308  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
309  * @hw: pointer to the HW structure
310  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
311  * @words: (in) number of words to read; (out) number of words actually read
312  * @data: words read from the Shadow RAM
313  *
314  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
315  * method. The buffer read is preceded by the NVM ownership take
316  * and followed by the release.
317  **/
318 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
319 					      u16 *words, u16 *data)
320 {
321 	i40e_status ret_code = 0;
322 	u16 index, word;
323 
324 	/* Loop thru the selected region */
325 	for (word = 0; word < *words; word++) {
326 		index = offset + word;
327 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
328 		if (ret_code)
329 			break;
330 	}
331 
332 	/* Update the number of words read from the Shadow RAM */
333 	*words = word;
334 
335 	return ret_code;
336 }
337 
338 /**
339  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
340  * @hw: pointer to the HW structure
341  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
342  * @words: (in) number of words to read; (out) number of words actually read
343  * @data: words read from the Shadow RAM
344  *
345  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
346  * method. The buffer read is preceded by the NVM ownership take
347  * and followed by the release.
348  **/
349 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
350 					   u16 *words, u16 *data)
351 {
352 	i40e_status ret_code;
353 	u16 read_size = *words;
354 	bool last_cmd = false;
355 	u16 words_read = 0;
356 	u16 i = 0;
357 
358 	do {
359 		/* Calculate number of bytes we should read in this step.
360 		 * FVL AQ do not allow to read more than one page at a time or
361 		 * to cross page boundaries.
362 		 */
363 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
364 			read_size = min(*words,
365 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
366 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
367 		else
368 			read_size = min((*words - words_read),
369 					I40E_SR_SECTOR_SIZE_IN_WORDS);
370 
371 		/* Check if this is last command, if so set proper flag */
372 		if ((words_read + read_size) >= *words)
373 			last_cmd = true;
374 
375 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
376 					    data + words_read, last_cmd);
377 		if (ret_code)
378 			goto read_nvm_buffer_aq_exit;
379 
380 		/* Increment counter for words already read and move offset to
381 		 * new read location
382 		 */
383 		words_read += read_size;
384 		offset += read_size;
385 	} while (words_read < *words);
386 
387 	for (i = 0; i < *words; i++)
388 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
389 
390 read_nvm_buffer_aq_exit:
391 	*words = words_read;
392 	return ret_code;
393 }
394 
395 /**
396  * i40e_read_nvm_buffer - Reads Shadow RAM buffer
397  * @hw: pointer to the HW structure
398  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
399  * @words: (in) number of words to read; (out) number of words actually read
400  * @data: words read from the Shadow RAM
401  *
402  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
403  * method. The buffer read is preceded by the NVM ownership take
404  * and followed by the release.
405  **/
406 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
407 				 u16 *words, u16 *data)
408 {
409 	enum i40e_status_code ret_code = 0;
410 
411 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
412 		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
413 		if (!ret_code) {
414 			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
415 							   data);
416 			i40e_release_nvm(hw);
417 		}
418 	} else {
419 		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
420 	}
421 	return ret_code;
422 }
423 
424 /**
425  * i40e_write_nvm_aq - Writes Shadow RAM.
426  * @hw: pointer to the HW structure.
427  * @module_pointer: module pointer location in words from the NVM beginning
428  * @offset: offset in words from module start
429  * @words: number of words to write
430  * @data: buffer with words to write to the Shadow RAM
431  * @last_command: tells the AdminQ that this is the last command
432  *
433  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
434  **/
435 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
436 				     u32 offset, u16 words, void *data,
437 				     bool last_command)
438 {
439 	i40e_status ret_code = I40E_ERR_NVM;
440 	struct i40e_asq_cmd_details cmd_details;
441 
442 	memset(&cmd_details, 0, sizeof(cmd_details));
443 	cmd_details.wb_desc = &hw->nvm_wb_desc;
444 
445 	/* Here we are checking the SR limit only for the flat memory model.
446 	 * We cannot do it for the module-based model, as we did not acquire
447 	 * the NVM resource yet (we cannot get the module pointer value).
448 	 * Firmware will check the module-based model.
449 	 */
450 	if ((offset + words) > hw->nvm.sr_size)
451 		i40e_debug(hw, I40E_DEBUG_NVM,
452 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
453 			   (offset + words), hw->nvm.sr_size);
454 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
455 		/* We can write only up to 4KB (one sector), in one AQ write */
456 		i40e_debug(hw, I40E_DEBUG_NVM,
457 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
458 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
459 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
460 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
461 		/* A single write cannot spread over two sectors */
462 		i40e_debug(hw, I40E_DEBUG_NVM,
463 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
464 			   offset, words);
465 	else
466 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
467 					      2 * offset,  /*bytes*/
468 					      2 * words,   /*bytes*/
469 					      data, last_command, &cmd_details);
470 
471 	return ret_code;
472 }
473 
474 /**
475  * i40e_calc_nvm_checksum - Calculates and returns the checksum
476  * @hw: pointer to hardware structure
477  * @checksum: pointer to the checksum
478  *
479  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
480  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
481  * is customer specific and unknown. Therefore, this function skips all maximum
482  * possible size of VPD (1kB).
483  **/
484 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
485 						    u16 *checksum)
486 {
487 	i40e_status ret_code;
488 	struct i40e_virt_mem vmem;
489 	u16 pcie_alt_module = 0;
490 	u16 checksum_local = 0;
491 	u16 vpd_module = 0;
492 	u16 *data;
493 	u16 i = 0;
494 
495 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
496 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
497 	if (ret_code)
498 		goto i40e_calc_nvm_checksum_exit;
499 	data = (u16 *)vmem.va;
500 
501 	/* read pointer to VPD area */
502 	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
503 	if (ret_code) {
504 		ret_code = I40E_ERR_NVM_CHECKSUM;
505 		goto i40e_calc_nvm_checksum_exit;
506 	}
507 
508 	/* read pointer to PCIe Alt Auto-load module */
509 	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
510 				      &pcie_alt_module);
511 	if (ret_code) {
512 		ret_code = I40E_ERR_NVM_CHECKSUM;
513 		goto i40e_calc_nvm_checksum_exit;
514 	}
515 
516 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
517 	 * except the VPD and PCIe ALT Auto-load modules
518 	 */
519 	for (i = 0; i < hw->nvm.sr_size; i++) {
520 		/* Read SR page */
521 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
522 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
523 
524 			ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
525 			if (ret_code) {
526 				ret_code = I40E_ERR_NVM_CHECKSUM;
527 				goto i40e_calc_nvm_checksum_exit;
528 			}
529 		}
530 
531 		/* Skip Checksum word */
532 		if (i == I40E_SR_SW_CHECKSUM_WORD)
533 			continue;
534 		/* Skip VPD module (convert byte size to word count) */
535 		if ((i >= (u32)vpd_module) &&
536 		    (i < ((u32)vpd_module +
537 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
538 			continue;
539 		}
540 		/* Skip PCIe ALT module (convert byte size to word count) */
541 		if ((i >= (u32)pcie_alt_module) &&
542 		    (i < ((u32)pcie_alt_module +
543 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
544 			continue;
545 		}
546 
547 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
548 	}
549 
550 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
551 
552 i40e_calc_nvm_checksum_exit:
553 	i40e_free_virt_mem(hw, &vmem);
554 	return ret_code;
555 }
556 
557 /**
558  * i40e_update_nvm_checksum - Updates the NVM checksum
559  * @hw: pointer to hardware structure
560  *
561  * NVM ownership must be acquired before calling this function and released
562  * on ARQ completion event reception by caller.
563  * This function will commit SR to NVM.
564  **/
565 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
566 {
567 	i40e_status ret_code;
568 	u16 checksum;
569 	__le16 le_sum;
570 
571 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
572 	if (!ret_code) {
573 		le_sum = cpu_to_le16(checksum);
574 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
575 					     1, &le_sum, true);
576 	}
577 
578 	return ret_code;
579 }
580 
581 /**
582  * i40e_validate_nvm_checksum - Validate EEPROM checksum
583  * @hw: pointer to hardware structure
584  * @checksum: calculated checksum
585  *
586  * Performs checksum calculation and validates the NVM SW checksum. If the
587  * caller does not need checksum, the value can be NULL.
588  **/
589 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
590 						 u16 *checksum)
591 {
592 	i40e_status ret_code = 0;
593 	u16 checksum_sr = 0;
594 	u16 checksum_local = 0;
595 
596 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
597 	if (ret_code)
598 		goto i40e_validate_nvm_checksum_exit;
599 
600 	/* Do not use i40e_read_nvm_word() because we do not want to take
601 	 * the synchronization semaphores twice here.
602 	 */
603 	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
604 
605 	/* Verify read checksum from EEPROM is the same as
606 	 * calculated checksum
607 	 */
608 	if (checksum_local != checksum_sr)
609 		ret_code = I40E_ERR_NVM_CHECKSUM;
610 
611 	/* If the user cares, return the calculated checksum */
612 	if (checksum)
613 		*checksum = checksum_local;
614 
615 i40e_validate_nvm_checksum_exit:
616 	return ret_code;
617 }
618 
619 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
620 					  struct i40e_nvm_access *cmd,
621 					  u8 *bytes, int *perrno);
622 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
623 					     struct i40e_nvm_access *cmd,
624 					     u8 *bytes, int *perrno);
625 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
626 					     struct i40e_nvm_access *cmd,
627 					     u8 *bytes, int *errno);
628 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
629 						struct i40e_nvm_access *cmd,
630 						int *perrno);
631 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
632 					 struct i40e_nvm_access *cmd,
633 					 int *perrno);
634 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
635 					 struct i40e_nvm_access *cmd,
636 					 u8 *bytes, int *perrno);
637 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
638 					struct i40e_nvm_access *cmd,
639 					u8 *bytes, int *perrno);
640 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
641 				       struct i40e_nvm_access *cmd,
642 				       u8 *bytes, int *perrno);
643 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
644 					     struct i40e_nvm_access *cmd,
645 					     u8 *bytes, int *perrno);
646 static inline u8 i40e_nvmupd_get_module(u32 val)
647 {
648 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
649 }
650 static inline u8 i40e_nvmupd_get_transaction(u32 val)
651 {
652 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
653 }
654 
655 static const char * const i40e_nvm_update_state_str[] = {
656 	"I40E_NVMUPD_INVALID",
657 	"I40E_NVMUPD_READ_CON",
658 	"I40E_NVMUPD_READ_SNT",
659 	"I40E_NVMUPD_READ_LCB",
660 	"I40E_NVMUPD_READ_SA",
661 	"I40E_NVMUPD_WRITE_ERA",
662 	"I40E_NVMUPD_WRITE_CON",
663 	"I40E_NVMUPD_WRITE_SNT",
664 	"I40E_NVMUPD_WRITE_LCB",
665 	"I40E_NVMUPD_WRITE_SA",
666 	"I40E_NVMUPD_CSUM_CON",
667 	"I40E_NVMUPD_CSUM_SA",
668 	"I40E_NVMUPD_CSUM_LCB",
669 	"I40E_NVMUPD_STATUS",
670 	"I40E_NVMUPD_EXEC_AQ",
671 	"I40E_NVMUPD_GET_AQ_RESULT",
672 };
673 
674 /**
675  * i40e_nvmupd_command - Process an NVM update command
676  * @hw: pointer to hardware structure
677  * @cmd: pointer to nvm update command
678  * @bytes: pointer to the data buffer
679  * @perrno: pointer to return error code
680  *
681  * Dispatches command depending on what update state is current
682  **/
683 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
684 				struct i40e_nvm_access *cmd,
685 				u8 *bytes, int *perrno)
686 {
687 	i40e_status status;
688 	enum i40e_nvmupd_cmd upd_cmd;
689 
690 	/* assume success */
691 	*perrno = 0;
692 
693 	/* early check for status command and debug msgs */
694 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
695 
696 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
697 		   i40e_nvm_update_state_str[upd_cmd],
698 		   hw->nvmupd_state,
699 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
700 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
701 
702 	if (upd_cmd == I40E_NVMUPD_INVALID) {
703 		*perrno = -EFAULT;
704 		i40e_debug(hw, I40E_DEBUG_NVM,
705 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
706 			   upd_cmd, *perrno);
707 	}
708 
709 	/* a status request returns immediately rather than
710 	 * going into the state machine
711 	 */
712 	if (upd_cmd == I40E_NVMUPD_STATUS) {
713 		if (!cmd->data_size) {
714 			*perrno = -EFAULT;
715 			return I40E_ERR_BUF_TOO_SHORT;
716 		}
717 
718 		bytes[0] = hw->nvmupd_state;
719 
720 		if (cmd->data_size >= 4) {
721 			bytes[1] = 0;
722 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
723 		}
724 
725 		/* Clear error status on read */
726 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
727 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
728 
729 		return 0;
730 	}
731 
732 	/* Clear status even it is not read and log */
733 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
734 		i40e_debug(hw, I40E_DEBUG_NVM,
735 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
736 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
737 	}
738 
739 	switch (hw->nvmupd_state) {
740 	case I40E_NVMUPD_STATE_INIT:
741 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
742 		break;
743 
744 	case I40E_NVMUPD_STATE_READING:
745 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
746 		break;
747 
748 	case I40E_NVMUPD_STATE_WRITING:
749 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
750 		break;
751 
752 	case I40E_NVMUPD_STATE_INIT_WAIT:
753 	case I40E_NVMUPD_STATE_WRITE_WAIT:
754 		/* if we need to stop waiting for an event, clear
755 		 * the wait info and return before doing anything else
756 		 */
757 		if (cmd->offset == 0xffff) {
758 			i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode);
759 			return 0;
760 		}
761 
762 		status = I40E_ERR_NOT_READY;
763 		*perrno = -EBUSY;
764 		break;
765 
766 	default:
767 		/* invalid state, should never happen */
768 		i40e_debug(hw, I40E_DEBUG_NVM,
769 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
770 		status = I40E_NOT_SUPPORTED;
771 		*perrno = -ESRCH;
772 		break;
773 	}
774 	return status;
775 }
776 
777 /**
778  * i40e_nvmupd_state_init - Handle NVM update state Init
779  * @hw: pointer to hardware structure
780  * @cmd: pointer to nvm update command buffer
781  * @bytes: pointer to the data buffer
782  * @perrno: pointer to return error code
783  *
784  * Process legitimate commands of the Init state and conditionally set next
785  * state. Reject all other commands.
786  **/
787 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
788 					  struct i40e_nvm_access *cmd,
789 					  u8 *bytes, int *perrno)
790 {
791 	i40e_status status = 0;
792 	enum i40e_nvmupd_cmd upd_cmd;
793 
794 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
795 
796 	switch (upd_cmd) {
797 	case I40E_NVMUPD_READ_SA:
798 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
799 		if (status) {
800 			*perrno = i40e_aq_rc_to_posix(status,
801 						     hw->aq.asq_last_status);
802 		} else {
803 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
804 			i40e_release_nvm(hw);
805 		}
806 		break;
807 
808 	case I40E_NVMUPD_READ_SNT:
809 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
810 		if (status) {
811 			*perrno = i40e_aq_rc_to_posix(status,
812 						     hw->aq.asq_last_status);
813 		} else {
814 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
815 			if (status)
816 				i40e_release_nvm(hw);
817 			else
818 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
819 		}
820 		break;
821 
822 	case I40E_NVMUPD_WRITE_ERA:
823 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
824 		if (status) {
825 			*perrno = i40e_aq_rc_to_posix(status,
826 						     hw->aq.asq_last_status);
827 		} else {
828 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
829 			if (status) {
830 				i40e_release_nvm(hw);
831 			} else {
832 				hw->nvm_release_on_done = true;
833 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
834 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
835 			}
836 		}
837 		break;
838 
839 	case I40E_NVMUPD_WRITE_SA:
840 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
841 		if (status) {
842 			*perrno = i40e_aq_rc_to_posix(status,
843 						     hw->aq.asq_last_status);
844 		} else {
845 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
846 			if (status) {
847 				i40e_release_nvm(hw);
848 			} else {
849 				hw->nvm_release_on_done = true;
850 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
851 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
852 			}
853 		}
854 		break;
855 
856 	case I40E_NVMUPD_WRITE_SNT:
857 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
858 		if (status) {
859 			*perrno = i40e_aq_rc_to_posix(status,
860 						     hw->aq.asq_last_status);
861 		} else {
862 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
863 			if (status) {
864 				i40e_release_nvm(hw);
865 			} else {
866 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
867 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
868 			}
869 		}
870 		break;
871 
872 	case I40E_NVMUPD_CSUM_SA:
873 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
874 		if (status) {
875 			*perrno = i40e_aq_rc_to_posix(status,
876 						     hw->aq.asq_last_status);
877 		} else {
878 			status = i40e_update_nvm_checksum(hw);
879 			if (status) {
880 				*perrno = hw->aq.asq_last_status ?
881 				   i40e_aq_rc_to_posix(status,
882 						       hw->aq.asq_last_status) :
883 				   -EIO;
884 				i40e_release_nvm(hw);
885 			} else {
886 				hw->nvm_release_on_done = true;
887 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
888 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
889 			}
890 		}
891 		break;
892 
893 	case I40E_NVMUPD_EXEC_AQ:
894 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
895 		break;
896 
897 	case I40E_NVMUPD_GET_AQ_RESULT:
898 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
899 		break;
900 
901 	default:
902 		i40e_debug(hw, I40E_DEBUG_NVM,
903 			   "NVMUPD: bad cmd %s in init state\n",
904 			   i40e_nvm_update_state_str[upd_cmd]);
905 		status = I40E_ERR_NVM;
906 		*perrno = -ESRCH;
907 		break;
908 	}
909 	return status;
910 }
911 
912 /**
913  * i40e_nvmupd_state_reading - Handle NVM update state Reading
914  * @hw: pointer to hardware structure
915  * @cmd: pointer to nvm update command buffer
916  * @bytes: pointer to the data buffer
917  * @perrno: pointer to return error code
918  *
919  * NVM ownership is already held.  Process legitimate commands and set any
920  * change in state; reject all other commands.
921  **/
922 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
923 					     struct i40e_nvm_access *cmd,
924 					     u8 *bytes, int *perrno)
925 {
926 	i40e_status status = 0;
927 	enum i40e_nvmupd_cmd upd_cmd;
928 
929 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
930 
931 	switch (upd_cmd) {
932 	case I40E_NVMUPD_READ_SA:
933 	case I40E_NVMUPD_READ_CON:
934 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
935 		break;
936 
937 	case I40E_NVMUPD_READ_LCB:
938 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
939 		i40e_release_nvm(hw);
940 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
941 		break;
942 
943 	default:
944 		i40e_debug(hw, I40E_DEBUG_NVM,
945 			   "NVMUPD: bad cmd %s in reading state.\n",
946 			   i40e_nvm_update_state_str[upd_cmd]);
947 		status = I40E_NOT_SUPPORTED;
948 		*perrno = -ESRCH;
949 		break;
950 	}
951 	return status;
952 }
953 
954 /**
955  * i40e_nvmupd_state_writing - Handle NVM update state Writing
956  * @hw: pointer to hardware structure
957  * @cmd: pointer to nvm update command buffer
958  * @bytes: pointer to the data buffer
959  * @perrno: pointer to return error code
960  *
961  * NVM ownership is already held.  Process legitimate commands and set any
962  * change in state; reject all other commands
963  **/
964 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
965 					     struct i40e_nvm_access *cmd,
966 					     u8 *bytes, int *perrno)
967 {
968 	i40e_status status = 0;
969 	enum i40e_nvmupd_cmd upd_cmd;
970 	bool retry_attempt = false;
971 
972 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
973 
974 retry:
975 	switch (upd_cmd) {
976 	case I40E_NVMUPD_WRITE_CON:
977 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
978 		if (!status) {
979 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
980 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
981 		}
982 		break;
983 
984 	case I40E_NVMUPD_WRITE_LCB:
985 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
986 		if (status) {
987 			*perrno = hw->aq.asq_last_status ?
988 				   i40e_aq_rc_to_posix(status,
989 						       hw->aq.asq_last_status) :
990 				   -EIO;
991 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
992 		} else {
993 			hw->nvm_release_on_done = true;
994 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
995 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
996 		}
997 		break;
998 
999 	case I40E_NVMUPD_CSUM_CON:
1000 		status = i40e_update_nvm_checksum(hw);
1001 		if (status) {
1002 			*perrno = hw->aq.asq_last_status ?
1003 				   i40e_aq_rc_to_posix(status,
1004 						       hw->aq.asq_last_status) :
1005 				   -EIO;
1006 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1007 		} else {
1008 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1009 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1010 		}
1011 		break;
1012 
1013 	case I40E_NVMUPD_CSUM_LCB:
1014 		status = i40e_update_nvm_checksum(hw);
1015 		if (status) {
1016 			*perrno = hw->aq.asq_last_status ?
1017 				   i40e_aq_rc_to_posix(status,
1018 						       hw->aq.asq_last_status) :
1019 				   -EIO;
1020 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1021 		} else {
1022 			hw->nvm_release_on_done = true;
1023 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1024 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1025 		}
1026 		break;
1027 
1028 	default:
1029 		i40e_debug(hw, I40E_DEBUG_NVM,
1030 			   "NVMUPD: bad cmd %s in writing state.\n",
1031 			   i40e_nvm_update_state_str[upd_cmd]);
1032 		status = I40E_NOT_SUPPORTED;
1033 		*perrno = -ESRCH;
1034 		break;
1035 	}
1036 
1037 	/* In some circumstances, a multi-write transaction takes longer
1038 	 * than the default 3 minute timeout on the write semaphore.  If
1039 	 * the write failed with an EBUSY status, this is likely the problem,
1040 	 * so here we try to reacquire the semaphore then retry the write.
1041 	 * We only do one retry, then give up.
1042 	 */
1043 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1044 	    !retry_attempt) {
1045 		i40e_status old_status = status;
1046 		u32 old_asq_status = hw->aq.asq_last_status;
1047 		u32 gtime;
1048 
1049 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1050 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1051 			i40e_debug(hw, I40E_DEBUG_ALL,
1052 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1053 				   gtime, hw->nvm.hw_semaphore_timeout);
1054 			i40e_release_nvm(hw);
1055 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1056 			if (status) {
1057 				i40e_debug(hw, I40E_DEBUG_ALL,
1058 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1059 					   hw->aq.asq_last_status);
1060 				status = old_status;
1061 				hw->aq.asq_last_status = old_asq_status;
1062 			} else {
1063 				retry_attempt = true;
1064 				goto retry;
1065 			}
1066 		}
1067 	}
1068 
1069 	return status;
1070 }
1071 
1072 /**
1073  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1074  * @hw: pointer to the hardware structure
1075  * @opcode: the event that just happened
1076  **/
1077 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode)
1078 {
1079 	if (opcode == hw->nvm_wait_opcode) {
1080 		i40e_debug(hw, I40E_DEBUG_NVM,
1081 			   "NVMUPD: clearing wait on opcode 0x%04x\n", opcode);
1082 		if (hw->nvm_release_on_done) {
1083 			i40e_release_nvm(hw);
1084 			hw->nvm_release_on_done = false;
1085 		}
1086 		hw->nvm_wait_opcode = 0;
1087 
1088 		if (hw->aq.arq_last_status) {
1089 			hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1090 			return;
1091 		}
1092 
1093 		switch (hw->nvmupd_state) {
1094 		case I40E_NVMUPD_STATE_INIT_WAIT:
1095 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1096 			break;
1097 
1098 		case I40E_NVMUPD_STATE_WRITE_WAIT:
1099 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1100 			break;
1101 
1102 		default:
1103 			break;
1104 		}
1105 	}
1106 }
1107 
1108 /**
1109  * i40e_nvmupd_validate_command - Validate given command
1110  * @hw: pointer to hardware structure
1111  * @cmd: pointer to nvm update command buffer
1112  * @perrno: pointer to return error code
1113  *
1114  * Return one of the valid command types or I40E_NVMUPD_INVALID
1115  **/
1116 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1117 						 struct i40e_nvm_access *cmd,
1118 						 int *perrno)
1119 {
1120 	enum i40e_nvmupd_cmd upd_cmd;
1121 	u8 module, transaction;
1122 
1123 	/* anything that doesn't match a recognized case is an error */
1124 	upd_cmd = I40E_NVMUPD_INVALID;
1125 
1126 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1127 	module = i40e_nvmupd_get_module(cmd->config);
1128 
1129 	/* limits on data size */
1130 	if ((cmd->data_size < 1) ||
1131 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1132 		i40e_debug(hw, I40E_DEBUG_NVM,
1133 			   "i40e_nvmupd_validate_command data_size %d\n",
1134 			   cmd->data_size);
1135 		*perrno = -EFAULT;
1136 		return I40E_NVMUPD_INVALID;
1137 	}
1138 
1139 	switch (cmd->command) {
1140 	case I40E_NVM_READ:
1141 		switch (transaction) {
1142 		case I40E_NVM_CON:
1143 			upd_cmd = I40E_NVMUPD_READ_CON;
1144 			break;
1145 		case I40E_NVM_SNT:
1146 			upd_cmd = I40E_NVMUPD_READ_SNT;
1147 			break;
1148 		case I40E_NVM_LCB:
1149 			upd_cmd = I40E_NVMUPD_READ_LCB;
1150 			break;
1151 		case I40E_NVM_SA:
1152 			upd_cmd = I40E_NVMUPD_READ_SA;
1153 			break;
1154 		case I40E_NVM_EXEC:
1155 			if (module == 0xf)
1156 				upd_cmd = I40E_NVMUPD_STATUS;
1157 			else if (module == 0)
1158 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1159 			break;
1160 		}
1161 		break;
1162 
1163 	case I40E_NVM_WRITE:
1164 		switch (transaction) {
1165 		case I40E_NVM_CON:
1166 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1167 			break;
1168 		case I40E_NVM_SNT:
1169 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1170 			break;
1171 		case I40E_NVM_LCB:
1172 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1173 			break;
1174 		case I40E_NVM_SA:
1175 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1176 			break;
1177 		case I40E_NVM_ERA:
1178 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1179 			break;
1180 		case I40E_NVM_CSUM:
1181 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1182 			break;
1183 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1184 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1185 			break;
1186 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1187 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1188 			break;
1189 		case I40E_NVM_EXEC:
1190 			if (module == 0)
1191 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1192 			break;
1193 		}
1194 		break;
1195 	}
1196 
1197 	return upd_cmd;
1198 }
1199 
1200 /**
1201  * i40e_nvmupd_exec_aq - Run an AQ command
1202  * @hw: pointer to hardware structure
1203  * @cmd: pointer to nvm update command buffer
1204  * @bytes: pointer to the data buffer
1205  * @perrno: pointer to return error code
1206  *
1207  * cmd structure contains identifiers and data buffer
1208  **/
1209 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1210 				       struct i40e_nvm_access *cmd,
1211 				       u8 *bytes, int *perrno)
1212 {
1213 	struct i40e_asq_cmd_details cmd_details;
1214 	i40e_status status;
1215 	struct i40e_aq_desc *aq_desc;
1216 	u32 buff_size = 0;
1217 	u8 *buff = NULL;
1218 	u32 aq_desc_len;
1219 	u32 aq_data_len;
1220 
1221 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1222 	memset(&cmd_details, 0, sizeof(cmd_details));
1223 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1224 
1225 	aq_desc_len = sizeof(struct i40e_aq_desc);
1226 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1227 
1228 	/* get the aq descriptor */
1229 	if (cmd->data_size < aq_desc_len) {
1230 		i40e_debug(hw, I40E_DEBUG_NVM,
1231 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1232 			   cmd->data_size, aq_desc_len);
1233 		*perrno = -EINVAL;
1234 		return I40E_ERR_PARAM;
1235 	}
1236 	aq_desc = (struct i40e_aq_desc *)bytes;
1237 
1238 	/* if data buffer needed, make sure it's ready */
1239 	aq_data_len = cmd->data_size - aq_desc_len;
1240 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1241 	if (buff_size) {
1242 		if (!hw->nvm_buff.va) {
1243 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1244 							hw->aq.asq_buf_size);
1245 			if (status)
1246 				i40e_debug(hw, I40E_DEBUG_NVM,
1247 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1248 					   status);
1249 		}
1250 
1251 		if (hw->nvm_buff.va) {
1252 			buff = hw->nvm_buff.va;
1253 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1254 		}
1255 	}
1256 
1257 	/* and away we go! */
1258 	status = i40e_asq_send_command(hw, aq_desc, buff,
1259 				       buff_size, &cmd_details);
1260 	if (status) {
1261 		i40e_debug(hw, I40E_DEBUG_NVM,
1262 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1263 			   i40e_stat_str(hw, status),
1264 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1265 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1266 	}
1267 
1268 	/* should we wait for a followup event? */
1269 	if (cmd->offset) {
1270 		hw->nvm_wait_opcode = cmd->offset;
1271 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1272 	}
1273 
1274 	return status;
1275 }
1276 
1277 /**
1278  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1279  * @hw: pointer to hardware structure
1280  * @cmd: pointer to nvm update command buffer
1281  * @bytes: pointer to the data buffer
1282  * @perrno: pointer to return error code
1283  *
1284  * cmd structure contains identifiers and data buffer
1285  **/
1286 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1287 					     struct i40e_nvm_access *cmd,
1288 					     u8 *bytes, int *perrno)
1289 {
1290 	u32 aq_total_len;
1291 	u32 aq_desc_len;
1292 	int remainder;
1293 	u8 *buff;
1294 
1295 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1296 
1297 	aq_desc_len = sizeof(struct i40e_aq_desc);
1298 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1299 
1300 	/* check offset range */
1301 	if (cmd->offset > aq_total_len) {
1302 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1303 			   __func__, cmd->offset, aq_total_len);
1304 		*perrno = -EINVAL;
1305 		return I40E_ERR_PARAM;
1306 	}
1307 
1308 	/* check copylength range */
1309 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1310 		int new_len = aq_total_len - cmd->offset;
1311 
1312 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1313 			   __func__, cmd->data_size, new_len);
1314 		cmd->data_size = new_len;
1315 	}
1316 
1317 	remainder = cmd->data_size;
1318 	if (cmd->offset < aq_desc_len) {
1319 		u32 len = aq_desc_len - cmd->offset;
1320 
1321 		len = min(len, cmd->data_size);
1322 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1323 			   __func__, cmd->offset, cmd->offset + len);
1324 
1325 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1326 		memcpy(bytes, buff, len);
1327 
1328 		bytes += len;
1329 		remainder -= len;
1330 		buff = hw->nvm_buff.va;
1331 	} else {
1332 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1333 	}
1334 
1335 	if (remainder > 0) {
1336 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1337 
1338 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1339 			   __func__, start_byte, start_byte + remainder);
1340 		memcpy(bytes, buff, remainder);
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 /**
1347  * i40e_nvmupd_nvm_read - Read NVM
1348  * @hw: pointer to hardware structure
1349  * @cmd: pointer to nvm update command buffer
1350  * @bytes: pointer to the data buffer
1351  * @perrno: pointer to return error code
1352  *
1353  * cmd structure contains identifiers and data buffer
1354  **/
1355 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1356 					struct i40e_nvm_access *cmd,
1357 					u8 *bytes, int *perrno)
1358 {
1359 	struct i40e_asq_cmd_details cmd_details;
1360 	i40e_status status;
1361 	u8 module, transaction;
1362 	bool last;
1363 
1364 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1365 	module = i40e_nvmupd_get_module(cmd->config);
1366 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1367 
1368 	memset(&cmd_details, 0, sizeof(cmd_details));
1369 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1370 
1371 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1372 				  bytes, last, &cmd_details);
1373 	if (status) {
1374 		i40e_debug(hw, I40E_DEBUG_NVM,
1375 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1376 			   module, cmd->offset, cmd->data_size);
1377 		i40e_debug(hw, I40E_DEBUG_NVM,
1378 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1379 			   status, hw->aq.asq_last_status);
1380 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1381 	}
1382 
1383 	return status;
1384 }
1385 
1386 /**
1387  * i40e_nvmupd_nvm_erase - Erase an NVM module
1388  * @hw: pointer to hardware structure
1389  * @cmd: pointer to nvm update command buffer
1390  * @perrno: pointer to return error code
1391  *
1392  * module, offset, data_size and data are in cmd structure
1393  **/
1394 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1395 					 struct i40e_nvm_access *cmd,
1396 					 int *perrno)
1397 {
1398 	i40e_status status = 0;
1399 	struct i40e_asq_cmd_details cmd_details;
1400 	u8 module, transaction;
1401 	bool last;
1402 
1403 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1404 	module = i40e_nvmupd_get_module(cmd->config);
1405 	last = (transaction & I40E_NVM_LCB);
1406 
1407 	memset(&cmd_details, 0, sizeof(cmd_details));
1408 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1409 
1410 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1411 				   last, &cmd_details);
1412 	if (status) {
1413 		i40e_debug(hw, I40E_DEBUG_NVM,
1414 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1415 			   module, cmd->offset, cmd->data_size);
1416 		i40e_debug(hw, I40E_DEBUG_NVM,
1417 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1418 			   status, hw->aq.asq_last_status);
1419 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1420 	}
1421 
1422 	return status;
1423 }
1424 
1425 /**
1426  * i40e_nvmupd_nvm_write - Write NVM
1427  * @hw: pointer to hardware structure
1428  * @cmd: pointer to nvm update command buffer
1429  * @bytes: pointer to the data buffer
1430  * @perrno: pointer to return error code
1431  *
1432  * module, offset, data_size and data are in cmd structure
1433  **/
1434 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1435 					 struct i40e_nvm_access *cmd,
1436 					 u8 *bytes, int *perrno)
1437 {
1438 	i40e_status status = 0;
1439 	struct i40e_asq_cmd_details cmd_details;
1440 	u8 module, transaction;
1441 	bool last;
1442 
1443 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1444 	module = i40e_nvmupd_get_module(cmd->config);
1445 	last = (transaction & I40E_NVM_LCB);
1446 
1447 	memset(&cmd_details, 0, sizeof(cmd_details));
1448 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1449 
1450 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1451 				    (u16)cmd->data_size, bytes, last,
1452 				    &cmd_details);
1453 	if (status) {
1454 		i40e_debug(hw, I40E_DEBUG_NVM,
1455 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1456 			   module, cmd->offset, cmd->data_size);
1457 		i40e_debug(hw, I40E_DEBUG_NVM,
1458 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1459 			   status, hw->aq.asq_last_status);
1460 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1461 	}
1462 
1463 	return status;
1464 }
1465