xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_nvm.c (revision 372892ec1151c895c7dec362f3246f089690cfc7)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	if (!hw->nvm.blank_nvm_mode)
138 		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
139 }
140 
141 /**
142  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
143  * @hw: pointer to the HW structure
144  *
145  * Polls the SRCTL Shadow RAM register done bit.
146  **/
147 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
148 {
149 	i40e_status ret_code = I40E_ERR_TIMEOUT;
150 	u32 srctl, wait_cnt;
151 
152 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
153 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
154 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
155 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
156 			ret_code = 0;
157 			break;
158 		}
159 		udelay(5);
160 	}
161 	if (ret_code == I40E_ERR_TIMEOUT)
162 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
163 	return ret_code;
164 }
165 
166 /**
167  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
168  * @hw: pointer to the HW structure
169  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
170  * @data: word read from the Shadow RAM
171  *
172  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
173  **/
174 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
175 					    u16 *data)
176 {
177 	i40e_status ret_code = I40E_ERR_TIMEOUT;
178 	u32 sr_reg;
179 
180 	if (offset >= hw->nvm.sr_size) {
181 		i40e_debug(hw, I40E_DEBUG_NVM,
182 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
183 			   offset, hw->nvm.sr_size);
184 		ret_code = I40E_ERR_PARAM;
185 		goto read_nvm_exit;
186 	}
187 
188 	/* Poll the done bit first */
189 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
190 	if (!ret_code) {
191 		/* Write the address and start reading */
192 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
193 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
194 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
195 
196 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
197 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
198 		if (!ret_code) {
199 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
200 			*data = (u16)((sr_reg &
201 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
202 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
203 		}
204 	}
205 	if (ret_code)
206 		i40e_debug(hw, I40E_DEBUG_NVM,
207 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
208 			   offset);
209 
210 read_nvm_exit:
211 	return ret_code;
212 }
213 
214 /**
215  * i40e_read_nvm_aq - Read Shadow RAM.
216  * @hw: pointer to the HW structure.
217  * @module_pointer: module pointer location in words from the NVM beginning
218  * @offset: offset in words from module start
219  * @words: number of words to write
220  * @data: buffer with words to write to the Shadow RAM
221  * @last_command: tells the AdminQ that this is the last command
222  *
223  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
224  **/
225 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
226 				    u32 offset, u16 words, void *data,
227 				    bool last_command)
228 {
229 	i40e_status ret_code = I40E_ERR_NVM;
230 	struct i40e_asq_cmd_details cmd_details;
231 
232 	memset(&cmd_details, 0, sizeof(cmd_details));
233 
234 	/* Here we are checking the SR limit only for the flat memory model.
235 	 * We cannot do it for the module-based model, as we did not acquire
236 	 * the NVM resource yet (we cannot get the module pointer value).
237 	 * Firmware will check the module-based model.
238 	 */
239 	if ((offset + words) > hw->nvm.sr_size)
240 		i40e_debug(hw, I40E_DEBUG_NVM,
241 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
242 			   (offset + words), hw->nvm.sr_size);
243 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
244 		/* We can write only up to 4KB (one sector), in one AQ write */
245 		i40e_debug(hw, I40E_DEBUG_NVM,
246 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
247 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
248 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
249 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
250 		/* A single write cannot spread over two sectors */
251 		i40e_debug(hw, I40E_DEBUG_NVM,
252 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
253 			   offset, words);
254 	else
255 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
256 					    2 * offset,  /*bytes*/
257 					    2 * words,   /*bytes*/
258 					    data, last_command, &cmd_details);
259 
260 	return ret_code;
261 }
262 
263 /**
264  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
265  * @hw: pointer to the HW structure
266  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
267  * @data: word read from the Shadow RAM
268  *
269  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
270  **/
271 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
272 					 u16 *data)
273 {
274 	i40e_status ret_code = I40E_ERR_TIMEOUT;
275 
276 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
277 	*data = le16_to_cpu(*(__le16 *)data);
278 
279 	return ret_code;
280 }
281 
282 /**
283  * i40e_read_nvm_word - Reads Shadow RAM
284  * @hw: pointer to the HW structure
285  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
286  * @data: word read from the Shadow RAM
287  *
288  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
289  **/
290 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
291 			       u16 *data)
292 {
293 	if (hw->mac.type == I40E_MAC_X722)
294 		return i40e_read_nvm_word_aq(hw, offset, data);
295 	return i40e_read_nvm_word_srctl(hw, offset, data);
296 }
297 
298 /**
299  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
300  * @hw: pointer to the HW structure
301  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
302  * @words: (in) number of words to read; (out) number of words actually read
303  * @data: words read from the Shadow RAM
304  *
305  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
306  * method. The buffer read is preceded by the NVM ownership take
307  * and followed by the release.
308  **/
309 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
310 					      u16 *words, u16 *data)
311 {
312 	i40e_status ret_code = 0;
313 	u16 index, word;
314 
315 	/* Loop thru the selected region */
316 	for (word = 0; word < *words; word++) {
317 		index = offset + word;
318 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
319 		if (ret_code)
320 			break;
321 	}
322 
323 	/* Update the number of words read from the Shadow RAM */
324 	*words = word;
325 
326 	return ret_code;
327 }
328 
329 /**
330  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
331  * @hw: pointer to the HW structure
332  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
333  * @words: (in) number of words to read; (out) number of words actually read
334  * @data: words read from the Shadow RAM
335  *
336  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
337  * method. The buffer read is preceded by the NVM ownership take
338  * and followed by the release.
339  **/
340 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
341 					   u16 *words, u16 *data)
342 {
343 	i40e_status ret_code;
344 	u16 read_size = *words;
345 	bool last_cmd = false;
346 	u16 words_read = 0;
347 	u16 i = 0;
348 
349 	do {
350 		/* Calculate number of bytes we should read in this step.
351 		 * FVL AQ do not allow to read more than one page at a time or
352 		 * to cross page boundaries.
353 		 */
354 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
355 			read_size = min(*words,
356 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
357 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
358 		else
359 			read_size = min((*words - words_read),
360 					I40E_SR_SECTOR_SIZE_IN_WORDS);
361 
362 		/* Check if this is last command, if so set proper flag */
363 		if ((words_read + read_size) >= *words)
364 			last_cmd = true;
365 
366 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
367 					    data + words_read, last_cmd);
368 		if (ret_code)
369 			goto read_nvm_buffer_aq_exit;
370 
371 		/* Increment counter for words already read and move offset to
372 		 * new read location
373 		 */
374 		words_read += read_size;
375 		offset += read_size;
376 	} while (words_read < *words);
377 
378 	for (i = 0; i < *words; i++)
379 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
380 
381 read_nvm_buffer_aq_exit:
382 	*words = words_read;
383 	return ret_code;
384 }
385 
386 /**
387  * i40e_read_nvm_buffer - Reads Shadow RAM buffer
388  * @hw: pointer to the HW structure
389  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
390  * @words: (in) number of words to read; (out) number of words actually read
391  * @data: words read from the Shadow RAM
392  *
393  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
394  * method. The buffer read is preceded by the NVM ownership take
395  * and followed by the release.
396  **/
397 i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
398 				 u16 *words, u16 *data)
399 {
400 	if (hw->mac.type == I40E_MAC_X722)
401 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
402 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
403 }
404 
405 /**
406  * i40e_write_nvm_aq - Writes Shadow RAM.
407  * @hw: pointer to the HW structure.
408  * @module_pointer: module pointer location in words from the NVM beginning
409  * @offset: offset in words from module start
410  * @words: number of words to write
411  * @data: buffer with words to write to the Shadow RAM
412  * @last_command: tells the AdminQ that this is the last command
413  *
414  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
415  **/
416 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
417 				     u32 offset, u16 words, void *data,
418 				     bool last_command)
419 {
420 	i40e_status ret_code = I40E_ERR_NVM;
421 	struct i40e_asq_cmd_details cmd_details;
422 
423 	memset(&cmd_details, 0, sizeof(cmd_details));
424 	cmd_details.wb_desc = &hw->nvm_wb_desc;
425 
426 	/* Here we are checking the SR limit only for the flat memory model.
427 	 * We cannot do it for the module-based model, as we did not acquire
428 	 * the NVM resource yet (we cannot get the module pointer value).
429 	 * Firmware will check the module-based model.
430 	 */
431 	if ((offset + words) > hw->nvm.sr_size)
432 		i40e_debug(hw, I40E_DEBUG_NVM,
433 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
434 			   (offset + words), hw->nvm.sr_size);
435 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
436 		/* We can write only up to 4KB (one sector), in one AQ write */
437 		i40e_debug(hw, I40E_DEBUG_NVM,
438 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
439 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
440 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
441 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
442 		/* A single write cannot spread over two sectors */
443 		i40e_debug(hw, I40E_DEBUG_NVM,
444 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
445 			   offset, words);
446 	else
447 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
448 					      2 * offset,  /*bytes*/
449 					      2 * words,   /*bytes*/
450 					      data, last_command, &cmd_details);
451 
452 	return ret_code;
453 }
454 
455 /**
456  * i40e_calc_nvm_checksum - Calculates and returns the checksum
457  * @hw: pointer to hardware structure
458  * @checksum: pointer to the checksum
459  *
460  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
461  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
462  * is customer specific and unknown. Therefore, this function skips all maximum
463  * possible size of VPD (1kB).
464  **/
465 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
466 						    u16 *checksum)
467 {
468 	i40e_status ret_code = 0;
469 	struct i40e_virt_mem vmem;
470 	u16 pcie_alt_module = 0;
471 	u16 checksum_local = 0;
472 	u16 vpd_module = 0;
473 	u16 *data;
474 	u16 i = 0;
475 
476 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
477 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
478 	if (ret_code)
479 		goto i40e_calc_nvm_checksum_exit;
480 	data = (u16 *)vmem.va;
481 
482 	/* read pointer to VPD area */
483 	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
484 	if (ret_code) {
485 		ret_code = I40E_ERR_NVM_CHECKSUM;
486 		goto i40e_calc_nvm_checksum_exit;
487 	}
488 
489 	/* read pointer to PCIe Alt Auto-load module */
490 	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
491 				      &pcie_alt_module);
492 	if (ret_code) {
493 		ret_code = I40E_ERR_NVM_CHECKSUM;
494 		goto i40e_calc_nvm_checksum_exit;
495 	}
496 
497 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
498 	 * except the VPD and PCIe ALT Auto-load modules
499 	 */
500 	for (i = 0; i < hw->nvm.sr_size; i++) {
501 		/* Read SR page */
502 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
503 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
504 
505 			ret_code = i40e_read_nvm_buffer(hw, i, &words, data);
506 			if (ret_code) {
507 				ret_code = I40E_ERR_NVM_CHECKSUM;
508 				goto i40e_calc_nvm_checksum_exit;
509 			}
510 		}
511 
512 		/* Skip Checksum word */
513 		if (i == I40E_SR_SW_CHECKSUM_WORD)
514 			continue;
515 		/* Skip VPD module (convert byte size to word count) */
516 		if ((i >= (u32)vpd_module) &&
517 		    (i < ((u32)vpd_module +
518 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
519 			continue;
520 		}
521 		/* Skip PCIe ALT module (convert byte size to word count) */
522 		if ((i >= (u32)pcie_alt_module) &&
523 		    (i < ((u32)pcie_alt_module +
524 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
525 			continue;
526 		}
527 
528 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
529 	}
530 
531 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
532 
533 i40e_calc_nvm_checksum_exit:
534 	i40e_free_virt_mem(hw, &vmem);
535 	return ret_code;
536 }
537 
538 /**
539  * i40e_update_nvm_checksum - Updates the NVM checksum
540  * @hw: pointer to hardware structure
541  *
542  * NVM ownership must be acquired before calling this function and released
543  * on ARQ completion event reception by caller.
544  * This function will commit SR to NVM.
545  **/
546 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
547 {
548 	i40e_status ret_code = 0;
549 	u16 checksum;
550 
551 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
552 	if (!ret_code)
553 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
554 					     1, &checksum, true);
555 
556 	return ret_code;
557 }
558 
559 /**
560  * i40e_validate_nvm_checksum - Validate EEPROM checksum
561  * @hw: pointer to hardware structure
562  * @checksum: calculated checksum
563  *
564  * Performs checksum calculation and validates the NVM SW checksum. If the
565  * caller does not need checksum, the value can be NULL.
566  **/
567 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
568 						 u16 *checksum)
569 {
570 	i40e_status ret_code = 0;
571 	u16 checksum_sr = 0;
572 	u16 checksum_local = 0;
573 
574 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
575 	if (ret_code)
576 		goto i40e_validate_nvm_checksum_exit;
577 
578 	/* Do not use i40e_read_nvm_word() because we do not want to take
579 	 * the synchronization semaphores twice here.
580 	 */
581 	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
582 
583 	/* Verify read checksum from EEPROM is the same as
584 	 * calculated checksum
585 	 */
586 	if (checksum_local != checksum_sr)
587 		ret_code = I40E_ERR_NVM_CHECKSUM;
588 
589 	/* If the user cares, return the calculated checksum */
590 	if (checksum)
591 		*checksum = checksum_local;
592 
593 i40e_validate_nvm_checksum_exit:
594 	return ret_code;
595 }
596 
597 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
598 					  struct i40e_nvm_access *cmd,
599 					  u8 *bytes, int *perrno);
600 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
601 					     struct i40e_nvm_access *cmd,
602 					     u8 *bytes, int *perrno);
603 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
604 					     struct i40e_nvm_access *cmd,
605 					     u8 *bytes, int *errno);
606 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
607 						struct i40e_nvm_access *cmd,
608 						int *perrno);
609 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
610 					 struct i40e_nvm_access *cmd,
611 					 int *perrno);
612 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
613 					 struct i40e_nvm_access *cmd,
614 					 u8 *bytes, int *perrno);
615 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
616 					struct i40e_nvm_access *cmd,
617 					u8 *bytes, int *perrno);
618 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
619 				       struct i40e_nvm_access *cmd,
620 				       u8 *bytes, int *perrno);
621 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
622 					     struct i40e_nvm_access *cmd,
623 					     u8 *bytes, int *perrno);
624 static inline u8 i40e_nvmupd_get_module(u32 val)
625 {
626 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
627 }
628 static inline u8 i40e_nvmupd_get_transaction(u32 val)
629 {
630 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
631 }
632 
633 static char *i40e_nvm_update_state_str[] = {
634 	"I40E_NVMUPD_INVALID",
635 	"I40E_NVMUPD_READ_CON",
636 	"I40E_NVMUPD_READ_SNT",
637 	"I40E_NVMUPD_READ_LCB",
638 	"I40E_NVMUPD_READ_SA",
639 	"I40E_NVMUPD_WRITE_ERA",
640 	"I40E_NVMUPD_WRITE_CON",
641 	"I40E_NVMUPD_WRITE_SNT",
642 	"I40E_NVMUPD_WRITE_LCB",
643 	"I40E_NVMUPD_WRITE_SA",
644 	"I40E_NVMUPD_CSUM_CON",
645 	"I40E_NVMUPD_CSUM_SA",
646 	"I40E_NVMUPD_CSUM_LCB",
647 	"I40E_NVMUPD_STATUS",
648 	"I40E_NVMUPD_EXEC_AQ",
649 	"I40E_NVMUPD_GET_AQ_RESULT",
650 };
651 
652 /**
653  * i40e_nvmupd_command - Process an NVM update command
654  * @hw: pointer to hardware structure
655  * @cmd: pointer to nvm update command
656  * @bytes: pointer to the data buffer
657  * @perrno: pointer to return error code
658  *
659  * Dispatches command depending on what update state is current
660  **/
661 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
662 				struct i40e_nvm_access *cmd,
663 				u8 *bytes, int *perrno)
664 {
665 	i40e_status status;
666 	enum i40e_nvmupd_cmd upd_cmd;
667 
668 	/* assume success */
669 	*perrno = 0;
670 
671 	/* early check for status command and debug msgs */
672 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
673 
674 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d\n",
675 		   i40e_nvm_update_state_str[upd_cmd],
676 		   hw->nvmupd_state,
677 		   hw->aq.nvm_release_on_done);
678 
679 	if (upd_cmd == I40E_NVMUPD_INVALID) {
680 		*perrno = -EFAULT;
681 		i40e_debug(hw, I40E_DEBUG_NVM,
682 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
683 			   upd_cmd, *perrno);
684 	}
685 
686 	/* a status request returns immediately rather than
687 	 * going into the state machine
688 	 */
689 	if (upd_cmd == I40E_NVMUPD_STATUS) {
690 		bytes[0] = hw->nvmupd_state;
691 		return 0;
692 	}
693 
694 	switch (hw->nvmupd_state) {
695 	case I40E_NVMUPD_STATE_INIT:
696 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
697 		break;
698 
699 	case I40E_NVMUPD_STATE_READING:
700 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
701 		break;
702 
703 	case I40E_NVMUPD_STATE_WRITING:
704 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
705 		break;
706 
707 	case I40E_NVMUPD_STATE_INIT_WAIT:
708 	case I40E_NVMUPD_STATE_WRITE_WAIT:
709 		status = I40E_ERR_NOT_READY;
710 		*perrno = -EBUSY;
711 		break;
712 
713 	default:
714 		/* invalid state, should never happen */
715 		i40e_debug(hw, I40E_DEBUG_NVM,
716 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
717 		status = I40E_NOT_SUPPORTED;
718 		*perrno = -ESRCH;
719 		break;
720 	}
721 	return status;
722 }
723 
724 /**
725  * i40e_nvmupd_state_init - Handle NVM update state Init
726  * @hw: pointer to hardware structure
727  * @cmd: pointer to nvm update command buffer
728  * @bytes: pointer to the data buffer
729  * @perrno: pointer to return error code
730  *
731  * Process legitimate commands of the Init state and conditionally set next
732  * state. Reject all other commands.
733  **/
734 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
735 					  struct i40e_nvm_access *cmd,
736 					  u8 *bytes, int *perrno)
737 {
738 	i40e_status status = 0;
739 	enum i40e_nvmupd_cmd upd_cmd;
740 
741 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
742 
743 	switch (upd_cmd) {
744 	case I40E_NVMUPD_READ_SA:
745 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
746 		if (status) {
747 			*perrno = i40e_aq_rc_to_posix(status,
748 						     hw->aq.asq_last_status);
749 		} else {
750 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
751 			i40e_release_nvm(hw);
752 		}
753 		break;
754 
755 	case I40E_NVMUPD_READ_SNT:
756 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
757 		if (status) {
758 			*perrno = i40e_aq_rc_to_posix(status,
759 						     hw->aq.asq_last_status);
760 		} else {
761 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
762 			if (status)
763 				i40e_release_nvm(hw);
764 			else
765 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
766 		}
767 		break;
768 
769 	case I40E_NVMUPD_WRITE_ERA:
770 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
771 		if (status) {
772 			*perrno = i40e_aq_rc_to_posix(status,
773 						     hw->aq.asq_last_status);
774 		} else {
775 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
776 			if (status) {
777 				i40e_release_nvm(hw);
778 			} else {
779 				hw->aq.nvm_release_on_done = true;
780 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
781 			}
782 		}
783 		break;
784 
785 	case I40E_NVMUPD_WRITE_SA:
786 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
787 		if (status) {
788 			*perrno = i40e_aq_rc_to_posix(status,
789 						     hw->aq.asq_last_status);
790 		} else {
791 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
792 			if (status) {
793 				i40e_release_nvm(hw);
794 			} else {
795 				hw->aq.nvm_release_on_done = true;
796 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
797 			}
798 		}
799 		break;
800 
801 	case I40E_NVMUPD_WRITE_SNT:
802 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
803 		if (status) {
804 			*perrno = i40e_aq_rc_to_posix(status,
805 						     hw->aq.asq_last_status);
806 		} else {
807 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
808 			if (status)
809 				i40e_release_nvm(hw);
810 			else
811 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
812 		}
813 		break;
814 
815 	case I40E_NVMUPD_CSUM_SA:
816 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
817 		if (status) {
818 			*perrno = i40e_aq_rc_to_posix(status,
819 						     hw->aq.asq_last_status);
820 		} else {
821 			status = i40e_update_nvm_checksum(hw);
822 			if (status) {
823 				*perrno = hw->aq.asq_last_status ?
824 				   i40e_aq_rc_to_posix(status,
825 						       hw->aq.asq_last_status) :
826 				   -EIO;
827 				i40e_release_nvm(hw);
828 			} else {
829 				hw->aq.nvm_release_on_done = true;
830 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
831 			}
832 		}
833 		break;
834 
835 	case I40E_NVMUPD_EXEC_AQ:
836 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
837 		break;
838 
839 	case I40E_NVMUPD_GET_AQ_RESULT:
840 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
841 		break;
842 
843 	default:
844 		i40e_debug(hw, I40E_DEBUG_NVM,
845 			   "NVMUPD: bad cmd %s in init state\n",
846 			   i40e_nvm_update_state_str[upd_cmd]);
847 		status = I40E_ERR_NVM;
848 		*perrno = -ESRCH;
849 		break;
850 	}
851 	return status;
852 }
853 
854 /**
855  * i40e_nvmupd_state_reading - Handle NVM update state Reading
856  * @hw: pointer to hardware structure
857  * @cmd: pointer to nvm update command buffer
858  * @bytes: pointer to the data buffer
859  * @perrno: pointer to return error code
860  *
861  * NVM ownership is already held.  Process legitimate commands and set any
862  * change in state; reject all other commands.
863  **/
864 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
865 					     struct i40e_nvm_access *cmd,
866 					     u8 *bytes, int *perrno)
867 {
868 	i40e_status status = 0;
869 	enum i40e_nvmupd_cmd upd_cmd;
870 
871 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
872 
873 	switch (upd_cmd) {
874 	case I40E_NVMUPD_READ_SA:
875 	case I40E_NVMUPD_READ_CON:
876 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
877 		break;
878 
879 	case I40E_NVMUPD_READ_LCB:
880 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
881 		i40e_release_nvm(hw);
882 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
883 		break;
884 
885 	default:
886 		i40e_debug(hw, I40E_DEBUG_NVM,
887 			   "NVMUPD: bad cmd %s in reading state.\n",
888 			   i40e_nvm_update_state_str[upd_cmd]);
889 		status = I40E_NOT_SUPPORTED;
890 		*perrno = -ESRCH;
891 		break;
892 	}
893 	return status;
894 }
895 
896 /**
897  * i40e_nvmupd_state_writing - Handle NVM update state Writing
898  * @hw: pointer to hardware structure
899  * @cmd: pointer to nvm update command buffer
900  * @bytes: pointer to the data buffer
901  * @perrno: pointer to return error code
902  *
903  * NVM ownership is already held.  Process legitimate commands and set any
904  * change in state; reject all other commands
905  **/
906 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
907 					     struct i40e_nvm_access *cmd,
908 					     u8 *bytes, int *perrno)
909 {
910 	i40e_status status = 0;
911 	enum i40e_nvmupd_cmd upd_cmd;
912 	bool retry_attempt = false;
913 
914 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
915 
916 retry:
917 	switch (upd_cmd) {
918 	case I40E_NVMUPD_WRITE_CON:
919 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
920 		if (!status)
921 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
922 		break;
923 
924 	case I40E_NVMUPD_WRITE_LCB:
925 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
926 		if (status) {
927 			*perrno = hw->aq.asq_last_status ?
928 				   i40e_aq_rc_to_posix(status,
929 						       hw->aq.asq_last_status) :
930 				   -EIO;
931 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
932 		} else {
933 			hw->aq.nvm_release_on_done = true;
934 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
935 		}
936 		break;
937 
938 	case I40E_NVMUPD_CSUM_CON:
939 		status = i40e_update_nvm_checksum(hw);
940 		if (status) {
941 			*perrno = hw->aq.asq_last_status ?
942 				   i40e_aq_rc_to_posix(status,
943 						       hw->aq.asq_last_status) :
944 				   -EIO;
945 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
946 		} else {
947 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
948 		}
949 		break;
950 
951 	case I40E_NVMUPD_CSUM_LCB:
952 		status = i40e_update_nvm_checksum(hw);
953 		if (status) {
954 			*perrno = hw->aq.asq_last_status ?
955 				   i40e_aq_rc_to_posix(status,
956 						       hw->aq.asq_last_status) :
957 				   -EIO;
958 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
959 		} else {
960 			hw->aq.nvm_release_on_done = true;
961 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
962 		}
963 		break;
964 
965 	default:
966 		i40e_debug(hw, I40E_DEBUG_NVM,
967 			   "NVMUPD: bad cmd %s in writing state.\n",
968 			   i40e_nvm_update_state_str[upd_cmd]);
969 		status = I40E_NOT_SUPPORTED;
970 		*perrno = -ESRCH;
971 		break;
972 	}
973 
974 	/* In some circumstances, a multi-write transaction takes longer
975 	 * than the default 3 minute timeout on the write semaphore.  If
976 	 * the write failed with an EBUSY status, this is likely the problem,
977 	 * so here we try to reacquire the semaphore then retry the write.
978 	 * We only do one retry, then give up.
979 	 */
980 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
981 	    !retry_attempt) {
982 		i40e_status old_status = status;
983 		u32 old_asq_status = hw->aq.asq_last_status;
984 		u32 gtime;
985 
986 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
987 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
988 			i40e_debug(hw, I40E_DEBUG_ALL,
989 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
990 				   gtime, hw->nvm.hw_semaphore_timeout);
991 			i40e_release_nvm(hw);
992 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
993 			if (status) {
994 				i40e_debug(hw, I40E_DEBUG_ALL,
995 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
996 					   hw->aq.asq_last_status);
997 				status = old_status;
998 				hw->aq.asq_last_status = old_asq_status;
999 			} else {
1000 				retry_attempt = true;
1001 				goto retry;
1002 			}
1003 		}
1004 	}
1005 
1006 	return status;
1007 }
1008 
1009 /**
1010  * i40e_nvmupd_validate_command - Validate given command
1011  * @hw: pointer to hardware structure
1012  * @cmd: pointer to nvm update command buffer
1013  * @perrno: pointer to return error code
1014  *
1015  * Return one of the valid command types or I40E_NVMUPD_INVALID
1016  **/
1017 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1018 						 struct i40e_nvm_access *cmd,
1019 						 int *perrno)
1020 {
1021 	enum i40e_nvmupd_cmd upd_cmd;
1022 	u8 module, transaction;
1023 
1024 	/* anything that doesn't match a recognized case is an error */
1025 	upd_cmd = I40E_NVMUPD_INVALID;
1026 
1027 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1028 	module = i40e_nvmupd_get_module(cmd->config);
1029 
1030 	/* limits on data size */
1031 	if ((cmd->data_size < 1) ||
1032 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1033 		i40e_debug(hw, I40E_DEBUG_NVM,
1034 			   "i40e_nvmupd_validate_command data_size %d\n",
1035 			   cmd->data_size);
1036 		*perrno = -EFAULT;
1037 		return I40E_NVMUPD_INVALID;
1038 	}
1039 
1040 	switch (cmd->command) {
1041 	case I40E_NVM_READ:
1042 		switch (transaction) {
1043 		case I40E_NVM_CON:
1044 			upd_cmd = I40E_NVMUPD_READ_CON;
1045 			break;
1046 		case I40E_NVM_SNT:
1047 			upd_cmd = I40E_NVMUPD_READ_SNT;
1048 			break;
1049 		case I40E_NVM_LCB:
1050 			upd_cmd = I40E_NVMUPD_READ_LCB;
1051 			break;
1052 		case I40E_NVM_SA:
1053 			upd_cmd = I40E_NVMUPD_READ_SA;
1054 			break;
1055 		case I40E_NVM_EXEC:
1056 			if (module == 0xf)
1057 				upd_cmd = I40E_NVMUPD_STATUS;
1058 			else if (module == 0)
1059 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1060 			break;
1061 		}
1062 		break;
1063 
1064 	case I40E_NVM_WRITE:
1065 		switch (transaction) {
1066 		case I40E_NVM_CON:
1067 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1068 			break;
1069 		case I40E_NVM_SNT:
1070 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1071 			break;
1072 		case I40E_NVM_LCB:
1073 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1074 			break;
1075 		case I40E_NVM_SA:
1076 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1077 			break;
1078 		case I40E_NVM_ERA:
1079 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1080 			break;
1081 		case I40E_NVM_CSUM:
1082 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1083 			break;
1084 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1085 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1086 			break;
1087 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1088 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1089 			break;
1090 		case I40E_NVM_EXEC:
1091 			if (module == 0)
1092 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1093 			break;
1094 		}
1095 		break;
1096 	}
1097 
1098 	return upd_cmd;
1099 }
1100 
1101 /**
1102  * i40e_nvmupd_exec_aq - Run an AQ command
1103  * @hw: pointer to hardware structure
1104  * @cmd: pointer to nvm update command buffer
1105  * @bytes: pointer to the data buffer
1106  * @perrno: pointer to return error code
1107  *
1108  * cmd structure contains identifiers and data buffer
1109  **/
1110 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1111 				       struct i40e_nvm_access *cmd,
1112 				       u8 *bytes, int *perrno)
1113 {
1114 	struct i40e_asq_cmd_details cmd_details;
1115 	i40e_status status;
1116 	struct i40e_aq_desc *aq_desc;
1117 	u32 buff_size = 0;
1118 	u8 *buff = NULL;
1119 	u32 aq_desc_len;
1120 	u32 aq_data_len;
1121 
1122 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1123 	memset(&cmd_details, 0, sizeof(cmd_details));
1124 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1125 
1126 	aq_desc_len = sizeof(struct i40e_aq_desc);
1127 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1128 
1129 	/* get the aq descriptor */
1130 	if (cmd->data_size < aq_desc_len) {
1131 		i40e_debug(hw, I40E_DEBUG_NVM,
1132 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1133 			   cmd->data_size, aq_desc_len);
1134 		*perrno = -EINVAL;
1135 		return I40E_ERR_PARAM;
1136 	}
1137 	aq_desc = (struct i40e_aq_desc *)bytes;
1138 
1139 	/* if data buffer needed, make sure it's ready */
1140 	aq_data_len = cmd->data_size - aq_desc_len;
1141 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1142 	if (buff_size) {
1143 		if (!hw->nvm_buff.va) {
1144 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1145 							hw->aq.asq_buf_size);
1146 			if (status)
1147 				i40e_debug(hw, I40E_DEBUG_NVM,
1148 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1149 					   status);
1150 		}
1151 
1152 		if (hw->nvm_buff.va) {
1153 			buff = hw->nvm_buff.va;
1154 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1155 		}
1156 	}
1157 
1158 	/* and away we go! */
1159 	status = i40e_asq_send_command(hw, aq_desc, buff,
1160 				       buff_size, &cmd_details);
1161 	if (status) {
1162 		i40e_debug(hw, I40E_DEBUG_NVM,
1163 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1164 			   i40e_stat_str(hw, status),
1165 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1166 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1167 	}
1168 
1169 	return status;
1170 }
1171 
1172 /**
1173  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1174  * @hw: pointer to hardware structure
1175  * @cmd: pointer to nvm update command buffer
1176  * @bytes: pointer to the data buffer
1177  * @perrno: pointer to return error code
1178  *
1179  * cmd structure contains identifiers and data buffer
1180  **/
1181 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1182 					     struct i40e_nvm_access *cmd,
1183 					     u8 *bytes, int *perrno)
1184 {
1185 	u32 aq_total_len;
1186 	u32 aq_desc_len;
1187 	int remainder;
1188 	u8 *buff;
1189 
1190 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1191 
1192 	aq_desc_len = sizeof(struct i40e_aq_desc);
1193 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1194 
1195 	/* check offset range */
1196 	if (cmd->offset > aq_total_len) {
1197 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1198 			   __func__, cmd->offset, aq_total_len);
1199 		*perrno = -EINVAL;
1200 		return I40E_ERR_PARAM;
1201 	}
1202 
1203 	/* check copylength range */
1204 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1205 		int new_len = aq_total_len - cmd->offset;
1206 
1207 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1208 			   __func__, cmd->data_size, new_len);
1209 		cmd->data_size = new_len;
1210 	}
1211 
1212 	remainder = cmd->data_size;
1213 	if (cmd->offset < aq_desc_len) {
1214 		u32 len = aq_desc_len - cmd->offset;
1215 
1216 		len = min(len, cmd->data_size);
1217 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1218 			   __func__, cmd->offset, cmd->offset + len);
1219 
1220 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1221 		memcpy(bytes, buff, len);
1222 
1223 		bytes += len;
1224 		remainder -= len;
1225 		buff = hw->nvm_buff.va;
1226 	} else {
1227 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1228 	}
1229 
1230 	if (remainder > 0) {
1231 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1232 
1233 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1234 			   __func__, start_byte, start_byte + remainder);
1235 		memcpy(bytes, buff, remainder);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * i40e_nvmupd_nvm_read - Read NVM
1243  * @hw: pointer to hardware structure
1244  * @cmd: pointer to nvm update command buffer
1245  * @bytes: pointer to the data buffer
1246  * @perrno: pointer to return error code
1247  *
1248  * cmd structure contains identifiers and data buffer
1249  **/
1250 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1251 					struct i40e_nvm_access *cmd,
1252 					u8 *bytes, int *perrno)
1253 {
1254 	struct i40e_asq_cmd_details cmd_details;
1255 	i40e_status status;
1256 	u8 module, transaction;
1257 	bool last;
1258 
1259 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1260 	module = i40e_nvmupd_get_module(cmd->config);
1261 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1262 
1263 	memset(&cmd_details, 0, sizeof(cmd_details));
1264 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1265 
1266 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1267 				  bytes, last, &cmd_details);
1268 	if (status) {
1269 		i40e_debug(hw, I40E_DEBUG_NVM,
1270 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1271 			   module, cmd->offset, cmd->data_size);
1272 		i40e_debug(hw, I40E_DEBUG_NVM,
1273 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1274 			   status, hw->aq.asq_last_status);
1275 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1276 	}
1277 
1278 	return status;
1279 }
1280 
1281 /**
1282  * i40e_nvmupd_nvm_erase - Erase an NVM module
1283  * @hw: pointer to hardware structure
1284  * @cmd: pointer to nvm update command buffer
1285  * @perrno: pointer to return error code
1286  *
1287  * module, offset, data_size and data are in cmd structure
1288  **/
1289 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1290 					 struct i40e_nvm_access *cmd,
1291 					 int *perrno)
1292 {
1293 	i40e_status status = 0;
1294 	struct i40e_asq_cmd_details cmd_details;
1295 	u8 module, transaction;
1296 	bool last;
1297 
1298 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1299 	module = i40e_nvmupd_get_module(cmd->config);
1300 	last = (transaction & I40E_NVM_LCB);
1301 
1302 	memset(&cmd_details, 0, sizeof(cmd_details));
1303 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1304 
1305 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1306 				   last, &cmd_details);
1307 	if (status) {
1308 		i40e_debug(hw, I40E_DEBUG_NVM,
1309 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1310 			   module, cmd->offset, cmd->data_size);
1311 		i40e_debug(hw, I40E_DEBUG_NVM,
1312 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1313 			   status, hw->aq.asq_last_status);
1314 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1315 	}
1316 
1317 	return status;
1318 }
1319 
1320 /**
1321  * i40e_nvmupd_nvm_write - Write NVM
1322  * @hw: pointer to hardware structure
1323  * @cmd: pointer to nvm update command buffer
1324  * @bytes: pointer to the data buffer
1325  * @perrno: pointer to return error code
1326  *
1327  * module, offset, data_size and data are in cmd structure
1328  **/
1329 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1330 					 struct i40e_nvm_access *cmd,
1331 					 u8 *bytes, int *perrno)
1332 {
1333 	i40e_status status = 0;
1334 	struct i40e_asq_cmd_details cmd_details;
1335 	u8 module, transaction;
1336 	bool last;
1337 
1338 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1339 	module = i40e_nvmupd_get_module(cmd->config);
1340 	last = (transaction & I40E_NVM_LCB);
1341 
1342 	memset(&cmd_details, 0, sizeof(cmd_details));
1343 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1344 
1345 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1346 				    (u16)cmd->data_size, bytes, last,
1347 				    &cmd_details);
1348 	if (status) {
1349 		i40e_debug(hw, I40E_DEBUG_NVM,
1350 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1351 			   module, cmd->offset, cmd->data_size);
1352 		i40e_debug(hw, I40E_DEBUG_NVM,
1353 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1354 			   status, hw->aq.asq_last_status);
1355 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1356 	}
1357 
1358 	return status;
1359 }
1360