xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_nvm.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include "i40e_prototype.h"
28 
29 /**
30  * i40e_init_nvm_ops - Initialize NVM function pointers
31  * @hw: pointer to the HW structure
32  *
33  * Setup the function pointers and the NVM info structure. Should be called
34  * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35  * Please notice that the NVM term is used here (& in all methods covered
36  * in this file) as an equivalent of the FLASH part mapped into the SR.
37  * We are accessing FLASH always thru the Shadow RAM.
38  **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 	struct i40e_nvm_info *nvm = &hw->nvm;
42 	i40e_status ret_code = 0;
43 	u32 fla, gens;
44 	u8 sr_size;
45 
46 	/* The SR size is stored regardless of the nvm programming mode
47 	 * as the blank mode may be used in the factory line.
48 	 */
49 	gens = rd32(hw, I40E_GLNVM_GENS);
50 	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 	/* Switching to words (sr_size contains power of 2KB) */
53 	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54 
55 	/* Check if we are in the normal or blank NVM programming mode */
56 	fla = rd32(hw, I40E_GLNVM_FLA);
57 	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 		/* Max NVM timeout */
59 		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 		nvm->blank_nvm_mode = false;
61 	} else { /* Blank programming mode */
62 		nvm->blank_nvm_mode = true;
63 		ret_code = I40E_ERR_NVM_BLANK_MODE;
64 		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 	}
66 
67 	return ret_code;
68 }
69 
70 /**
71  * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72  * @hw: pointer to the HW structure
73  * @access: NVM access type (read or write)
74  *
75  * This function will request NVM ownership for reading
76  * via the proper Admin Command.
77  **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 				       enum i40e_aq_resource_access_type access)
80 {
81 	i40e_status ret_code = 0;
82 	u64 gtime, timeout;
83 	u64 time_left = 0;
84 
85 	if (hw->nvm.blank_nvm_mode)
86 		goto i40e_i40e_acquire_nvm_exit;
87 
88 	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 					    0, &time_left, NULL);
90 	/* Reading the Global Device Timer */
91 	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92 
93 	/* Store the timeout */
94 	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95 
96 	if (ret_code)
97 		i40e_debug(hw, I40E_DEBUG_NVM,
98 			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 			   access, time_left, ret_code, hw->aq.asq_last_status);
100 
101 	if (ret_code && time_left) {
102 		/* Poll until the current NVM owner timeouts */
103 		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 		while ((gtime < timeout) && time_left) {
105 			usleep_range(10000, 20000);
106 			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 			ret_code = i40e_aq_request_resource(hw,
108 							I40E_NVM_RESOURCE_ID,
109 							access, 0, &time_left,
110 							NULL);
111 			if (!ret_code) {
112 				hw->nvm.hw_semaphore_timeout =
113 					    I40E_MS_TO_GTIME(time_left) + gtime;
114 				break;
115 			}
116 		}
117 		if (ret_code) {
118 			hw->nvm.hw_semaphore_timeout = 0;
119 			i40e_debug(hw, I40E_DEBUG_NVM,
120 				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 				   time_left, ret_code, hw->aq.asq_last_status);
122 		}
123 	}
124 
125 i40e_i40e_acquire_nvm_exit:
126 	return ret_code;
127 }
128 
129 /**
130  * i40e_release_nvm - Generic request for releasing the NVM ownership
131  * @hw: pointer to the HW structure
132  *
133  * This function will release NVM resource via the proper Admin Command.
134  **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 	i40e_status ret_code = I40E_SUCCESS;
138 	u32 total_delay = 0;
139 
140 	if (hw->nvm.blank_nvm_mode)
141 		return;
142 
143 	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
144 
145 	/* there are some rare cases when trying to release the resource
146 	 * results in an admin Q timeout, so handle them correctly
147 	 */
148 	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
149 	       (total_delay < hw->aq.asq_cmd_timeout)) {
150 		usleep_range(1000, 2000);
151 		ret_code = i40e_aq_release_resource(hw,
152 						    I40E_NVM_RESOURCE_ID,
153 						    0, NULL);
154 		total_delay++;
155 	}
156 }
157 
158 /**
159  * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
160  * @hw: pointer to the HW structure
161  *
162  * Polls the SRCTL Shadow RAM register done bit.
163  **/
164 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
165 {
166 	i40e_status ret_code = I40E_ERR_TIMEOUT;
167 	u32 srctl, wait_cnt;
168 
169 	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
170 	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
171 		srctl = rd32(hw, I40E_GLNVM_SRCTL);
172 		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
173 			ret_code = 0;
174 			break;
175 		}
176 		udelay(5);
177 	}
178 	if (ret_code == I40E_ERR_TIMEOUT)
179 		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
180 	return ret_code;
181 }
182 
183 /**
184  * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
185  * @hw: pointer to the HW structure
186  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
187  * @data: word read from the Shadow RAM
188  *
189  * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
190  **/
191 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
192 					    u16 *data)
193 {
194 	i40e_status ret_code = I40E_ERR_TIMEOUT;
195 	u32 sr_reg;
196 
197 	if (offset >= hw->nvm.sr_size) {
198 		i40e_debug(hw, I40E_DEBUG_NVM,
199 			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
200 			   offset, hw->nvm.sr_size);
201 		ret_code = I40E_ERR_PARAM;
202 		goto read_nvm_exit;
203 	}
204 
205 	/* Poll the done bit first */
206 	ret_code = i40e_poll_sr_srctl_done_bit(hw);
207 	if (!ret_code) {
208 		/* Write the address and start reading */
209 		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
210 			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
211 		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
212 
213 		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
214 		ret_code = i40e_poll_sr_srctl_done_bit(hw);
215 		if (!ret_code) {
216 			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
217 			*data = (u16)((sr_reg &
218 				       I40E_GLNVM_SRDATA_RDDATA_MASK)
219 				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
220 		}
221 	}
222 	if (ret_code)
223 		i40e_debug(hw, I40E_DEBUG_NVM,
224 			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
225 			   offset);
226 
227 read_nvm_exit:
228 	return ret_code;
229 }
230 
231 /**
232  * i40e_read_nvm_aq - Read Shadow RAM.
233  * @hw: pointer to the HW structure.
234  * @module_pointer: module pointer location in words from the NVM beginning
235  * @offset: offset in words from module start
236  * @words: number of words to write
237  * @data: buffer with words to write to the Shadow RAM
238  * @last_command: tells the AdminQ that this is the last command
239  *
240  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
241  **/
242 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
243 				    u32 offset, u16 words, void *data,
244 				    bool last_command)
245 {
246 	i40e_status ret_code = I40E_ERR_NVM;
247 	struct i40e_asq_cmd_details cmd_details;
248 
249 	memset(&cmd_details, 0, sizeof(cmd_details));
250 	cmd_details.wb_desc = &hw->nvm_wb_desc;
251 
252 	/* Here we are checking the SR limit only for the flat memory model.
253 	 * We cannot do it for the module-based model, as we did not acquire
254 	 * the NVM resource yet (we cannot get the module pointer value).
255 	 * Firmware will check the module-based model.
256 	 */
257 	if ((offset + words) > hw->nvm.sr_size)
258 		i40e_debug(hw, I40E_DEBUG_NVM,
259 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
260 			   (offset + words), hw->nvm.sr_size);
261 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
262 		/* We can write only up to 4KB (one sector), in one AQ write */
263 		i40e_debug(hw, I40E_DEBUG_NVM,
264 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
265 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
266 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
267 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
268 		/* A single write cannot spread over two sectors */
269 		i40e_debug(hw, I40E_DEBUG_NVM,
270 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
271 			   offset, words);
272 	else
273 		ret_code = i40e_aq_read_nvm(hw, module_pointer,
274 					    2 * offset,  /*bytes*/
275 					    2 * words,   /*bytes*/
276 					    data, last_command, &cmd_details);
277 
278 	return ret_code;
279 }
280 
281 /**
282  * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
283  * @hw: pointer to the HW structure
284  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
285  * @data: word read from the Shadow RAM
286  *
287  * Reads one 16 bit word from the Shadow RAM using the AdminQ
288  **/
289 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
290 					 u16 *data)
291 {
292 	i40e_status ret_code = I40E_ERR_TIMEOUT;
293 
294 	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
295 	*data = le16_to_cpu(*(__le16 *)data);
296 
297 	return ret_code;
298 }
299 
300 /**
301  * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
302  * @hw: pointer to the HW structure
303  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
304  * @data: word read from the Shadow RAM
305  *
306  * Reads one 16 bit word from the Shadow RAM.
307  *
308  * Do not use this function except in cases where the nvm lock is already
309  * taken via i40e_acquire_nvm().
310  **/
311 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
312 					u16 offset, u16 *data)
313 {
314 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
315 		return i40e_read_nvm_word_aq(hw, offset, data);
316 
317 	return i40e_read_nvm_word_srctl(hw, offset, data);
318 }
319 
320 /**
321  * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
322  * @hw: pointer to the HW structure
323  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
324  * @data: word read from the Shadow RAM
325  *
326  * Reads one 16 bit word from the Shadow RAM.
327  **/
328 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
329 			       u16 *data)
330 {
331 	i40e_status ret_code;
332 
333 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
334 	if (ret_code)
335 		return ret_code;
336 
337 	ret_code = __i40e_read_nvm_word(hw, offset, data);
338 
339 	i40e_release_nvm(hw);
340 
341 	return ret_code;
342 }
343 
344 /**
345  * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
346  * @hw: pointer to the HW structure
347  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
348  * @words: (in) number of words to read; (out) number of words actually read
349  * @data: words read from the Shadow RAM
350  *
351  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
352  * method. The buffer read is preceded by the NVM ownership take
353  * and followed by the release.
354  **/
355 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
356 					      u16 *words, u16 *data)
357 {
358 	i40e_status ret_code = 0;
359 	u16 index, word;
360 
361 	/* Loop thru the selected region */
362 	for (word = 0; word < *words; word++) {
363 		index = offset + word;
364 		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
365 		if (ret_code)
366 			break;
367 	}
368 
369 	/* Update the number of words read from the Shadow RAM */
370 	*words = word;
371 
372 	return ret_code;
373 }
374 
375 /**
376  * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
377  * @hw: pointer to the HW structure
378  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
379  * @words: (in) number of words to read; (out) number of words actually read
380  * @data: words read from the Shadow RAM
381  *
382  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
383  * method. The buffer read is preceded by the NVM ownership take
384  * and followed by the release.
385  **/
386 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
387 					   u16 *words, u16 *data)
388 {
389 	i40e_status ret_code;
390 	u16 read_size = *words;
391 	bool last_cmd = false;
392 	u16 words_read = 0;
393 	u16 i = 0;
394 
395 	do {
396 		/* Calculate number of bytes we should read in this step.
397 		 * FVL AQ do not allow to read more than one page at a time or
398 		 * to cross page boundaries.
399 		 */
400 		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
401 			read_size = min(*words,
402 					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
403 				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
404 		else
405 			read_size = min((*words - words_read),
406 					I40E_SR_SECTOR_SIZE_IN_WORDS);
407 
408 		/* Check if this is last command, if so set proper flag */
409 		if ((words_read + read_size) >= *words)
410 			last_cmd = true;
411 
412 		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
413 					    data + words_read, last_cmd);
414 		if (ret_code)
415 			goto read_nvm_buffer_aq_exit;
416 
417 		/* Increment counter for words already read and move offset to
418 		 * new read location
419 		 */
420 		words_read += read_size;
421 		offset += read_size;
422 	} while (words_read < *words);
423 
424 	for (i = 0; i < *words; i++)
425 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
426 
427 read_nvm_buffer_aq_exit:
428 	*words = words_read;
429 	return ret_code;
430 }
431 
432 /**
433  * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
434  * @hw: pointer to the HW structure
435  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
436  * @words: (in) number of words to read; (out) number of words actually read
437  * @data: words read from the Shadow RAM
438  *
439  * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
440  * method.
441  **/
442 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
443 					  u16 offset, u16 *words,
444 					  u16 *data)
445 {
446 	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
447 		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
448 
449 	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
450 }
451 
452 /**
453  * i40e_write_nvm_aq - Writes Shadow RAM.
454  * @hw: pointer to the HW structure.
455  * @module_pointer: module pointer location in words from the NVM beginning
456  * @offset: offset in words from module start
457  * @words: number of words to write
458  * @data: buffer with words to write to the Shadow RAM
459  * @last_command: tells the AdminQ that this is the last command
460  *
461  * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
462  **/
463 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
464 				     u32 offset, u16 words, void *data,
465 				     bool last_command)
466 {
467 	i40e_status ret_code = I40E_ERR_NVM;
468 	struct i40e_asq_cmd_details cmd_details;
469 
470 	memset(&cmd_details, 0, sizeof(cmd_details));
471 	cmd_details.wb_desc = &hw->nvm_wb_desc;
472 
473 	/* Here we are checking the SR limit only for the flat memory model.
474 	 * We cannot do it for the module-based model, as we did not acquire
475 	 * the NVM resource yet (we cannot get the module pointer value).
476 	 * Firmware will check the module-based model.
477 	 */
478 	if ((offset + words) > hw->nvm.sr_size)
479 		i40e_debug(hw, I40E_DEBUG_NVM,
480 			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
481 			   (offset + words), hw->nvm.sr_size);
482 	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
483 		/* We can write only up to 4KB (one sector), in one AQ write */
484 		i40e_debug(hw, I40E_DEBUG_NVM,
485 			   "NVM write fail error: tried to write %d words, limit is %d.\n",
486 			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
487 	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
488 		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
489 		/* A single write cannot spread over two sectors */
490 		i40e_debug(hw, I40E_DEBUG_NVM,
491 			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
492 			   offset, words);
493 	else
494 		ret_code = i40e_aq_update_nvm(hw, module_pointer,
495 					      2 * offset,  /*bytes*/
496 					      2 * words,   /*bytes*/
497 					      data, last_command, &cmd_details);
498 
499 	return ret_code;
500 }
501 
502 /**
503  * i40e_calc_nvm_checksum - Calculates and returns the checksum
504  * @hw: pointer to hardware structure
505  * @checksum: pointer to the checksum
506  *
507  * This function calculates SW Checksum that covers the whole 64kB shadow RAM
508  * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
509  * is customer specific and unknown. Therefore, this function skips all maximum
510  * possible size of VPD (1kB).
511  **/
512 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
513 						    u16 *checksum)
514 {
515 	i40e_status ret_code;
516 	struct i40e_virt_mem vmem;
517 	u16 pcie_alt_module = 0;
518 	u16 checksum_local = 0;
519 	u16 vpd_module = 0;
520 	u16 *data;
521 	u16 i = 0;
522 
523 	ret_code = i40e_allocate_virt_mem(hw, &vmem,
524 				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
525 	if (ret_code)
526 		goto i40e_calc_nvm_checksum_exit;
527 	data = (u16 *)vmem.va;
528 
529 	/* read pointer to VPD area */
530 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
531 	if (ret_code) {
532 		ret_code = I40E_ERR_NVM_CHECKSUM;
533 		goto i40e_calc_nvm_checksum_exit;
534 	}
535 
536 	/* read pointer to PCIe Alt Auto-load module */
537 	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
538 					&pcie_alt_module);
539 	if (ret_code) {
540 		ret_code = I40E_ERR_NVM_CHECKSUM;
541 		goto i40e_calc_nvm_checksum_exit;
542 	}
543 
544 	/* Calculate SW checksum that covers the whole 64kB shadow RAM
545 	 * except the VPD and PCIe ALT Auto-load modules
546 	 */
547 	for (i = 0; i < hw->nvm.sr_size; i++) {
548 		/* Read SR page */
549 		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
550 			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
551 
552 			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
553 			if (ret_code) {
554 				ret_code = I40E_ERR_NVM_CHECKSUM;
555 				goto i40e_calc_nvm_checksum_exit;
556 			}
557 		}
558 
559 		/* Skip Checksum word */
560 		if (i == I40E_SR_SW_CHECKSUM_WORD)
561 			continue;
562 		/* Skip VPD module (convert byte size to word count) */
563 		if ((i >= (u32)vpd_module) &&
564 		    (i < ((u32)vpd_module +
565 		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
566 			continue;
567 		}
568 		/* Skip PCIe ALT module (convert byte size to word count) */
569 		if ((i >= (u32)pcie_alt_module) &&
570 		    (i < ((u32)pcie_alt_module +
571 		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
572 			continue;
573 		}
574 
575 		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
576 	}
577 
578 	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
579 
580 i40e_calc_nvm_checksum_exit:
581 	i40e_free_virt_mem(hw, &vmem);
582 	return ret_code;
583 }
584 
585 /**
586  * i40e_update_nvm_checksum - Updates the NVM checksum
587  * @hw: pointer to hardware structure
588  *
589  * NVM ownership must be acquired before calling this function and released
590  * on ARQ completion event reception by caller.
591  * This function will commit SR to NVM.
592  **/
593 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
594 {
595 	i40e_status ret_code;
596 	u16 checksum;
597 	__le16 le_sum;
598 
599 	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
600 	if (!ret_code) {
601 		le_sum = cpu_to_le16(checksum);
602 		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
603 					     1, &le_sum, true);
604 	}
605 
606 	return ret_code;
607 }
608 
609 /**
610  * i40e_validate_nvm_checksum - Validate EEPROM checksum
611  * @hw: pointer to hardware structure
612  * @checksum: calculated checksum
613  *
614  * Performs checksum calculation and validates the NVM SW checksum. If the
615  * caller does not need checksum, the value can be NULL.
616  **/
617 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
618 						 u16 *checksum)
619 {
620 	i40e_status ret_code = 0;
621 	u16 checksum_sr = 0;
622 	u16 checksum_local = 0;
623 
624 	/* We must acquire the NVM lock in order to correctly synchronize the
625 	 * NVM accesses across multiple PFs. Without doing so it is possible
626 	 * for one of the PFs to read invalid data potentially indicating that
627 	 * the checksum is invalid.
628 	 */
629 	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
630 	if (ret_code)
631 		return ret_code;
632 	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
633 	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
634 	i40e_release_nvm(hw);
635 	if (ret_code)
636 		return ret_code;
637 
638 	/* Verify read checksum from EEPROM is the same as
639 	 * calculated checksum
640 	 */
641 	if (checksum_local != checksum_sr)
642 		ret_code = I40E_ERR_NVM_CHECKSUM;
643 
644 	/* If the user cares, return the calculated checksum */
645 	if (checksum)
646 		*checksum = checksum_local;
647 
648 	return ret_code;
649 }
650 
651 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
652 					  struct i40e_nvm_access *cmd,
653 					  u8 *bytes, int *perrno);
654 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
655 					     struct i40e_nvm_access *cmd,
656 					     u8 *bytes, int *perrno);
657 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
658 					     struct i40e_nvm_access *cmd,
659 					     u8 *bytes, int *errno);
660 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
661 						struct i40e_nvm_access *cmd,
662 						int *perrno);
663 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
664 					 struct i40e_nvm_access *cmd,
665 					 int *perrno);
666 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
667 					 struct i40e_nvm_access *cmd,
668 					 u8 *bytes, int *perrno);
669 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
670 					struct i40e_nvm_access *cmd,
671 					u8 *bytes, int *perrno);
672 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
673 				       struct i40e_nvm_access *cmd,
674 				       u8 *bytes, int *perrno);
675 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
676 					     struct i40e_nvm_access *cmd,
677 					     u8 *bytes, int *perrno);
678 static inline u8 i40e_nvmupd_get_module(u32 val)
679 {
680 	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
681 }
682 static inline u8 i40e_nvmupd_get_transaction(u32 val)
683 {
684 	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
685 }
686 
687 static const char * const i40e_nvm_update_state_str[] = {
688 	"I40E_NVMUPD_INVALID",
689 	"I40E_NVMUPD_READ_CON",
690 	"I40E_NVMUPD_READ_SNT",
691 	"I40E_NVMUPD_READ_LCB",
692 	"I40E_NVMUPD_READ_SA",
693 	"I40E_NVMUPD_WRITE_ERA",
694 	"I40E_NVMUPD_WRITE_CON",
695 	"I40E_NVMUPD_WRITE_SNT",
696 	"I40E_NVMUPD_WRITE_LCB",
697 	"I40E_NVMUPD_WRITE_SA",
698 	"I40E_NVMUPD_CSUM_CON",
699 	"I40E_NVMUPD_CSUM_SA",
700 	"I40E_NVMUPD_CSUM_LCB",
701 	"I40E_NVMUPD_STATUS",
702 	"I40E_NVMUPD_EXEC_AQ",
703 	"I40E_NVMUPD_GET_AQ_RESULT",
704 };
705 
706 /**
707  * i40e_nvmupd_command - Process an NVM update command
708  * @hw: pointer to hardware structure
709  * @cmd: pointer to nvm update command
710  * @bytes: pointer to the data buffer
711  * @perrno: pointer to return error code
712  *
713  * Dispatches command depending on what update state is current
714  **/
715 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
716 				struct i40e_nvm_access *cmd,
717 				u8 *bytes, int *perrno)
718 {
719 	i40e_status status;
720 	enum i40e_nvmupd_cmd upd_cmd;
721 
722 	/* assume success */
723 	*perrno = 0;
724 
725 	/* early check for status command and debug msgs */
726 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
727 
728 	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
729 		   i40e_nvm_update_state_str[upd_cmd],
730 		   hw->nvmupd_state,
731 		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
732 		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
733 
734 	if (upd_cmd == I40E_NVMUPD_INVALID) {
735 		*perrno = -EFAULT;
736 		i40e_debug(hw, I40E_DEBUG_NVM,
737 			   "i40e_nvmupd_validate_command returns %d errno %d\n",
738 			   upd_cmd, *perrno);
739 	}
740 
741 	/* a status request returns immediately rather than
742 	 * going into the state machine
743 	 */
744 	if (upd_cmd == I40E_NVMUPD_STATUS) {
745 		if (!cmd->data_size) {
746 			*perrno = -EFAULT;
747 			return I40E_ERR_BUF_TOO_SHORT;
748 		}
749 
750 		bytes[0] = hw->nvmupd_state;
751 
752 		if (cmd->data_size >= 4) {
753 			bytes[1] = 0;
754 			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
755 		}
756 
757 		/* Clear error status on read */
758 		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
759 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
760 
761 		return 0;
762 	}
763 
764 	/* Clear status even it is not read and log */
765 	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
766 		i40e_debug(hw, I40E_DEBUG_NVM,
767 			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
768 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
769 	}
770 
771 	/* Acquire lock to prevent race condition where adminq_task
772 	 * can execute after i40e_nvmupd_nvm_read/write but before state
773 	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
774 	 *
775 	 * During NVMUpdate, it is observed that lock could be held for
776 	 * ~5ms for most commands. However lock is held for ~60ms for
777 	 * NVMUPD_CSUM_LCB command.
778 	 */
779 	mutex_lock(&hw->aq.arq_mutex);
780 	switch (hw->nvmupd_state) {
781 	case I40E_NVMUPD_STATE_INIT:
782 		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
783 		break;
784 
785 	case I40E_NVMUPD_STATE_READING:
786 		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
787 		break;
788 
789 	case I40E_NVMUPD_STATE_WRITING:
790 		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
791 		break;
792 
793 	case I40E_NVMUPD_STATE_INIT_WAIT:
794 	case I40E_NVMUPD_STATE_WRITE_WAIT:
795 		/* if we need to stop waiting for an event, clear
796 		 * the wait info and return before doing anything else
797 		 */
798 		if (cmd->offset == 0xffff) {
799 			i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode);
800 			status = 0;
801 			goto exit;
802 		}
803 
804 		status = I40E_ERR_NOT_READY;
805 		*perrno = -EBUSY;
806 		break;
807 
808 	default:
809 		/* invalid state, should never happen */
810 		i40e_debug(hw, I40E_DEBUG_NVM,
811 			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
812 		status = I40E_NOT_SUPPORTED;
813 		*perrno = -ESRCH;
814 		break;
815 	}
816 exit:
817 	mutex_unlock(&hw->aq.arq_mutex);
818 	return status;
819 }
820 
821 /**
822  * i40e_nvmupd_state_init - Handle NVM update state Init
823  * @hw: pointer to hardware structure
824  * @cmd: pointer to nvm update command buffer
825  * @bytes: pointer to the data buffer
826  * @perrno: pointer to return error code
827  *
828  * Process legitimate commands of the Init state and conditionally set next
829  * state. Reject all other commands.
830  **/
831 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
832 					  struct i40e_nvm_access *cmd,
833 					  u8 *bytes, int *perrno)
834 {
835 	i40e_status status = 0;
836 	enum i40e_nvmupd_cmd upd_cmd;
837 
838 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
839 
840 	switch (upd_cmd) {
841 	case I40E_NVMUPD_READ_SA:
842 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
843 		if (status) {
844 			*perrno = i40e_aq_rc_to_posix(status,
845 						     hw->aq.asq_last_status);
846 		} else {
847 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
848 			i40e_release_nvm(hw);
849 		}
850 		break;
851 
852 	case I40E_NVMUPD_READ_SNT:
853 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
854 		if (status) {
855 			*perrno = i40e_aq_rc_to_posix(status,
856 						     hw->aq.asq_last_status);
857 		} else {
858 			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
859 			if (status)
860 				i40e_release_nvm(hw);
861 			else
862 				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
863 		}
864 		break;
865 
866 	case I40E_NVMUPD_WRITE_ERA:
867 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
868 		if (status) {
869 			*perrno = i40e_aq_rc_to_posix(status,
870 						     hw->aq.asq_last_status);
871 		} else {
872 			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
873 			if (status) {
874 				i40e_release_nvm(hw);
875 			} else {
876 				hw->nvm_release_on_done = true;
877 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
878 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
879 			}
880 		}
881 		break;
882 
883 	case I40E_NVMUPD_WRITE_SA:
884 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
885 		if (status) {
886 			*perrno = i40e_aq_rc_to_posix(status,
887 						     hw->aq.asq_last_status);
888 		} else {
889 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
890 			if (status) {
891 				i40e_release_nvm(hw);
892 			} else {
893 				hw->nvm_release_on_done = true;
894 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
895 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
896 			}
897 		}
898 		break;
899 
900 	case I40E_NVMUPD_WRITE_SNT:
901 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
902 		if (status) {
903 			*perrno = i40e_aq_rc_to_posix(status,
904 						     hw->aq.asq_last_status);
905 		} else {
906 			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
907 			if (status) {
908 				i40e_release_nvm(hw);
909 			} else {
910 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
911 				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
912 			}
913 		}
914 		break;
915 
916 	case I40E_NVMUPD_CSUM_SA:
917 		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
918 		if (status) {
919 			*perrno = i40e_aq_rc_to_posix(status,
920 						     hw->aq.asq_last_status);
921 		} else {
922 			status = i40e_update_nvm_checksum(hw);
923 			if (status) {
924 				*perrno = hw->aq.asq_last_status ?
925 				   i40e_aq_rc_to_posix(status,
926 						       hw->aq.asq_last_status) :
927 				   -EIO;
928 				i40e_release_nvm(hw);
929 			} else {
930 				hw->nvm_release_on_done = true;
931 				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
932 				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
933 			}
934 		}
935 		break;
936 
937 	case I40E_NVMUPD_EXEC_AQ:
938 		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
939 		break;
940 
941 	case I40E_NVMUPD_GET_AQ_RESULT:
942 		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
943 		break;
944 
945 	default:
946 		i40e_debug(hw, I40E_DEBUG_NVM,
947 			   "NVMUPD: bad cmd %s in init state\n",
948 			   i40e_nvm_update_state_str[upd_cmd]);
949 		status = I40E_ERR_NVM;
950 		*perrno = -ESRCH;
951 		break;
952 	}
953 	return status;
954 }
955 
956 /**
957  * i40e_nvmupd_state_reading - Handle NVM update state Reading
958  * @hw: pointer to hardware structure
959  * @cmd: pointer to nvm update command buffer
960  * @bytes: pointer to the data buffer
961  * @perrno: pointer to return error code
962  *
963  * NVM ownership is already held.  Process legitimate commands and set any
964  * change in state; reject all other commands.
965  **/
966 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
967 					     struct i40e_nvm_access *cmd,
968 					     u8 *bytes, int *perrno)
969 {
970 	i40e_status status = 0;
971 	enum i40e_nvmupd_cmd upd_cmd;
972 
973 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
974 
975 	switch (upd_cmd) {
976 	case I40E_NVMUPD_READ_SA:
977 	case I40E_NVMUPD_READ_CON:
978 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
979 		break;
980 
981 	case I40E_NVMUPD_READ_LCB:
982 		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
983 		i40e_release_nvm(hw);
984 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
985 		break;
986 
987 	default:
988 		i40e_debug(hw, I40E_DEBUG_NVM,
989 			   "NVMUPD: bad cmd %s in reading state.\n",
990 			   i40e_nvm_update_state_str[upd_cmd]);
991 		status = I40E_NOT_SUPPORTED;
992 		*perrno = -ESRCH;
993 		break;
994 	}
995 	return status;
996 }
997 
998 /**
999  * i40e_nvmupd_state_writing - Handle NVM update state Writing
1000  * @hw: pointer to hardware structure
1001  * @cmd: pointer to nvm update command buffer
1002  * @bytes: pointer to the data buffer
1003  * @perrno: pointer to return error code
1004  *
1005  * NVM ownership is already held.  Process legitimate commands and set any
1006  * change in state; reject all other commands
1007  **/
1008 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1009 					     struct i40e_nvm_access *cmd,
1010 					     u8 *bytes, int *perrno)
1011 {
1012 	i40e_status status = 0;
1013 	enum i40e_nvmupd_cmd upd_cmd;
1014 	bool retry_attempt = false;
1015 
1016 	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1017 
1018 retry:
1019 	switch (upd_cmd) {
1020 	case I40E_NVMUPD_WRITE_CON:
1021 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1022 		if (!status) {
1023 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1024 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1025 		}
1026 		break;
1027 
1028 	case I40E_NVMUPD_WRITE_LCB:
1029 		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1030 		if (status) {
1031 			*perrno = hw->aq.asq_last_status ?
1032 				   i40e_aq_rc_to_posix(status,
1033 						       hw->aq.asq_last_status) :
1034 				   -EIO;
1035 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1036 		} else {
1037 			hw->nvm_release_on_done = true;
1038 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1039 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1040 		}
1041 		break;
1042 
1043 	case I40E_NVMUPD_CSUM_CON:
1044 		/* Assumes the caller has acquired the nvm */
1045 		status = i40e_update_nvm_checksum(hw);
1046 		if (status) {
1047 			*perrno = hw->aq.asq_last_status ?
1048 				   i40e_aq_rc_to_posix(status,
1049 						       hw->aq.asq_last_status) :
1050 				   -EIO;
1051 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1052 		} else {
1053 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1054 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1055 		}
1056 		break;
1057 
1058 	case I40E_NVMUPD_CSUM_LCB:
1059 		/* Assumes the caller has acquired the nvm */
1060 		status = i40e_update_nvm_checksum(hw);
1061 		if (status) {
1062 			*perrno = hw->aq.asq_last_status ?
1063 				   i40e_aq_rc_to_posix(status,
1064 						       hw->aq.asq_last_status) :
1065 				   -EIO;
1066 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1067 		} else {
1068 			hw->nvm_release_on_done = true;
1069 			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1070 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1071 		}
1072 		break;
1073 
1074 	default:
1075 		i40e_debug(hw, I40E_DEBUG_NVM,
1076 			   "NVMUPD: bad cmd %s in writing state.\n",
1077 			   i40e_nvm_update_state_str[upd_cmd]);
1078 		status = I40E_NOT_SUPPORTED;
1079 		*perrno = -ESRCH;
1080 		break;
1081 	}
1082 
1083 	/* In some circumstances, a multi-write transaction takes longer
1084 	 * than the default 3 minute timeout on the write semaphore.  If
1085 	 * the write failed with an EBUSY status, this is likely the problem,
1086 	 * so here we try to reacquire the semaphore then retry the write.
1087 	 * We only do one retry, then give up.
1088 	 */
1089 	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1090 	    !retry_attempt) {
1091 		i40e_status old_status = status;
1092 		u32 old_asq_status = hw->aq.asq_last_status;
1093 		u32 gtime;
1094 
1095 		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1096 		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1097 			i40e_debug(hw, I40E_DEBUG_ALL,
1098 				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1099 				   gtime, hw->nvm.hw_semaphore_timeout);
1100 			i40e_release_nvm(hw);
1101 			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1102 			if (status) {
1103 				i40e_debug(hw, I40E_DEBUG_ALL,
1104 					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1105 					   hw->aq.asq_last_status);
1106 				status = old_status;
1107 				hw->aq.asq_last_status = old_asq_status;
1108 			} else {
1109 				retry_attempt = true;
1110 				goto retry;
1111 			}
1112 		}
1113 	}
1114 
1115 	return status;
1116 }
1117 
1118 /**
1119  * i40e_nvmupd_check_wait_event - handle NVM update operation events
1120  * @hw: pointer to the hardware structure
1121  * @opcode: the event that just happened
1122  **/
1123 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode)
1124 {
1125 	if (opcode == hw->nvm_wait_opcode) {
1126 		i40e_debug(hw, I40E_DEBUG_NVM,
1127 			   "NVMUPD: clearing wait on opcode 0x%04x\n", opcode);
1128 		if (hw->nvm_release_on_done) {
1129 			i40e_release_nvm(hw);
1130 			hw->nvm_release_on_done = false;
1131 		}
1132 		hw->nvm_wait_opcode = 0;
1133 
1134 		if (hw->aq.arq_last_status) {
1135 			hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1136 			return;
1137 		}
1138 
1139 		switch (hw->nvmupd_state) {
1140 		case I40E_NVMUPD_STATE_INIT_WAIT:
1141 			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1142 			break;
1143 
1144 		case I40E_NVMUPD_STATE_WRITE_WAIT:
1145 			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1146 			break;
1147 
1148 		default:
1149 			break;
1150 		}
1151 	}
1152 }
1153 
1154 /**
1155  * i40e_nvmupd_validate_command - Validate given command
1156  * @hw: pointer to hardware structure
1157  * @cmd: pointer to nvm update command buffer
1158  * @perrno: pointer to return error code
1159  *
1160  * Return one of the valid command types or I40E_NVMUPD_INVALID
1161  **/
1162 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1163 						 struct i40e_nvm_access *cmd,
1164 						 int *perrno)
1165 {
1166 	enum i40e_nvmupd_cmd upd_cmd;
1167 	u8 module, transaction;
1168 
1169 	/* anything that doesn't match a recognized case is an error */
1170 	upd_cmd = I40E_NVMUPD_INVALID;
1171 
1172 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1173 	module = i40e_nvmupd_get_module(cmd->config);
1174 
1175 	/* limits on data size */
1176 	if ((cmd->data_size < 1) ||
1177 	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1178 		i40e_debug(hw, I40E_DEBUG_NVM,
1179 			   "i40e_nvmupd_validate_command data_size %d\n",
1180 			   cmd->data_size);
1181 		*perrno = -EFAULT;
1182 		return I40E_NVMUPD_INVALID;
1183 	}
1184 
1185 	switch (cmd->command) {
1186 	case I40E_NVM_READ:
1187 		switch (transaction) {
1188 		case I40E_NVM_CON:
1189 			upd_cmd = I40E_NVMUPD_READ_CON;
1190 			break;
1191 		case I40E_NVM_SNT:
1192 			upd_cmd = I40E_NVMUPD_READ_SNT;
1193 			break;
1194 		case I40E_NVM_LCB:
1195 			upd_cmd = I40E_NVMUPD_READ_LCB;
1196 			break;
1197 		case I40E_NVM_SA:
1198 			upd_cmd = I40E_NVMUPD_READ_SA;
1199 			break;
1200 		case I40E_NVM_EXEC:
1201 			if (module == 0xf)
1202 				upd_cmd = I40E_NVMUPD_STATUS;
1203 			else if (module == 0)
1204 				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1205 			break;
1206 		}
1207 		break;
1208 
1209 	case I40E_NVM_WRITE:
1210 		switch (transaction) {
1211 		case I40E_NVM_CON:
1212 			upd_cmd = I40E_NVMUPD_WRITE_CON;
1213 			break;
1214 		case I40E_NVM_SNT:
1215 			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1216 			break;
1217 		case I40E_NVM_LCB:
1218 			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1219 			break;
1220 		case I40E_NVM_SA:
1221 			upd_cmd = I40E_NVMUPD_WRITE_SA;
1222 			break;
1223 		case I40E_NVM_ERA:
1224 			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1225 			break;
1226 		case I40E_NVM_CSUM:
1227 			upd_cmd = I40E_NVMUPD_CSUM_CON;
1228 			break;
1229 		case (I40E_NVM_CSUM|I40E_NVM_SA):
1230 			upd_cmd = I40E_NVMUPD_CSUM_SA;
1231 			break;
1232 		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1233 			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1234 			break;
1235 		case I40E_NVM_EXEC:
1236 			if (module == 0)
1237 				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1238 			break;
1239 		}
1240 		break;
1241 	}
1242 
1243 	return upd_cmd;
1244 }
1245 
1246 /**
1247  * i40e_nvmupd_exec_aq - Run an AQ command
1248  * @hw: pointer to hardware structure
1249  * @cmd: pointer to nvm update command buffer
1250  * @bytes: pointer to the data buffer
1251  * @perrno: pointer to return error code
1252  *
1253  * cmd structure contains identifiers and data buffer
1254  **/
1255 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1256 				       struct i40e_nvm_access *cmd,
1257 				       u8 *bytes, int *perrno)
1258 {
1259 	struct i40e_asq_cmd_details cmd_details;
1260 	i40e_status status;
1261 	struct i40e_aq_desc *aq_desc;
1262 	u32 buff_size = 0;
1263 	u8 *buff = NULL;
1264 	u32 aq_desc_len;
1265 	u32 aq_data_len;
1266 
1267 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1268 	memset(&cmd_details, 0, sizeof(cmd_details));
1269 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1270 
1271 	aq_desc_len = sizeof(struct i40e_aq_desc);
1272 	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1273 
1274 	/* get the aq descriptor */
1275 	if (cmd->data_size < aq_desc_len) {
1276 		i40e_debug(hw, I40E_DEBUG_NVM,
1277 			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1278 			   cmd->data_size, aq_desc_len);
1279 		*perrno = -EINVAL;
1280 		return I40E_ERR_PARAM;
1281 	}
1282 	aq_desc = (struct i40e_aq_desc *)bytes;
1283 
1284 	/* if data buffer needed, make sure it's ready */
1285 	aq_data_len = cmd->data_size - aq_desc_len;
1286 	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1287 	if (buff_size) {
1288 		if (!hw->nvm_buff.va) {
1289 			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1290 							hw->aq.asq_buf_size);
1291 			if (status)
1292 				i40e_debug(hw, I40E_DEBUG_NVM,
1293 					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1294 					   status);
1295 		}
1296 
1297 		if (hw->nvm_buff.va) {
1298 			buff = hw->nvm_buff.va;
1299 			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1300 		}
1301 	}
1302 
1303 	/* and away we go! */
1304 	status = i40e_asq_send_command(hw, aq_desc, buff,
1305 				       buff_size, &cmd_details);
1306 	if (status) {
1307 		i40e_debug(hw, I40E_DEBUG_NVM,
1308 			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1309 			   i40e_stat_str(hw, status),
1310 			   i40e_aq_str(hw, hw->aq.asq_last_status));
1311 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1312 	}
1313 
1314 	/* should we wait for a followup event? */
1315 	if (cmd->offset) {
1316 		hw->nvm_wait_opcode = cmd->offset;
1317 		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1318 	}
1319 
1320 	return status;
1321 }
1322 
1323 /**
1324  * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1325  * @hw: pointer to hardware structure
1326  * @cmd: pointer to nvm update command buffer
1327  * @bytes: pointer to the data buffer
1328  * @perrno: pointer to return error code
1329  *
1330  * cmd structure contains identifiers and data buffer
1331  **/
1332 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1333 					     struct i40e_nvm_access *cmd,
1334 					     u8 *bytes, int *perrno)
1335 {
1336 	u32 aq_total_len;
1337 	u32 aq_desc_len;
1338 	int remainder;
1339 	u8 *buff;
1340 
1341 	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1342 
1343 	aq_desc_len = sizeof(struct i40e_aq_desc);
1344 	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1345 
1346 	/* check offset range */
1347 	if (cmd->offset > aq_total_len) {
1348 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1349 			   __func__, cmd->offset, aq_total_len);
1350 		*perrno = -EINVAL;
1351 		return I40E_ERR_PARAM;
1352 	}
1353 
1354 	/* check copylength range */
1355 	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1356 		int new_len = aq_total_len - cmd->offset;
1357 
1358 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1359 			   __func__, cmd->data_size, new_len);
1360 		cmd->data_size = new_len;
1361 	}
1362 
1363 	remainder = cmd->data_size;
1364 	if (cmd->offset < aq_desc_len) {
1365 		u32 len = aq_desc_len - cmd->offset;
1366 
1367 		len = min(len, cmd->data_size);
1368 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1369 			   __func__, cmd->offset, cmd->offset + len);
1370 
1371 		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1372 		memcpy(bytes, buff, len);
1373 
1374 		bytes += len;
1375 		remainder -= len;
1376 		buff = hw->nvm_buff.va;
1377 	} else {
1378 		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1379 	}
1380 
1381 	if (remainder > 0) {
1382 		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1383 
1384 		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1385 			   __func__, start_byte, start_byte + remainder);
1386 		memcpy(bytes, buff, remainder);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 /**
1393  * i40e_nvmupd_nvm_read - Read NVM
1394  * @hw: pointer to hardware structure
1395  * @cmd: pointer to nvm update command buffer
1396  * @bytes: pointer to the data buffer
1397  * @perrno: pointer to return error code
1398  *
1399  * cmd structure contains identifiers and data buffer
1400  **/
1401 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1402 					struct i40e_nvm_access *cmd,
1403 					u8 *bytes, int *perrno)
1404 {
1405 	struct i40e_asq_cmd_details cmd_details;
1406 	i40e_status status;
1407 	u8 module, transaction;
1408 	bool last;
1409 
1410 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1411 	module = i40e_nvmupd_get_module(cmd->config);
1412 	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1413 
1414 	memset(&cmd_details, 0, sizeof(cmd_details));
1415 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1416 
1417 	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1418 				  bytes, last, &cmd_details);
1419 	if (status) {
1420 		i40e_debug(hw, I40E_DEBUG_NVM,
1421 			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1422 			   module, cmd->offset, cmd->data_size);
1423 		i40e_debug(hw, I40E_DEBUG_NVM,
1424 			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1425 			   status, hw->aq.asq_last_status);
1426 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1427 	}
1428 
1429 	return status;
1430 }
1431 
1432 /**
1433  * i40e_nvmupd_nvm_erase - Erase an NVM module
1434  * @hw: pointer to hardware structure
1435  * @cmd: pointer to nvm update command buffer
1436  * @perrno: pointer to return error code
1437  *
1438  * module, offset, data_size and data are in cmd structure
1439  **/
1440 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1441 					 struct i40e_nvm_access *cmd,
1442 					 int *perrno)
1443 {
1444 	i40e_status status = 0;
1445 	struct i40e_asq_cmd_details cmd_details;
1446 	u8 module, transaction;
1447 	bool last;
1448 
1449 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1450 	module = i40e_nvmupd_get_module(cmd->config);
1451 	last = (transaction & I40E_NVM_LCB);
1452 
1453 	memset(&cmd_details, 0, sizeof(cmd_details));
1454 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1455 
1456 	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1457 				   last, &cmd_details);
1458 	if (status) {
1459 		i40e_debug(hw, I40E_DEBUG_NVM,
1460 			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1461 			   module, cmd->offset, cmd->data_size);
1462 		i40e_debug(hw, I40E_DEBUG_NVM,
1463 			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1464 			   status, hw->aq.asq_last_status);
1465 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1466 	}
1467 
1468 	return status;
1469 }
1470 
1471 /**
1472  * i40e_nvmupd_nvm_write - Write NVM
1473  * @hw: pointer to hardware structure
1474  * @cmd: pointer to nvm update command buffer
1475  * @bytes: pointer to the data buffer
1476  * @perrno: pointer to return error code
1477  *
1478  * module, offset, data_size and data are in cmd structure
1479  **/
1480 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1481 					 struct i40e_nvm_access *cmd,
1482 					 u8 *bytes, int *perrno)
1483 {
1484 	i40e_status status = 0;
1485 	struct i40e_asq_cmd_details cmd_details;
1486 	u8 module, transaction;
1487 	bool last;
1488 
1489 	transaction = i40e_nvmupd_get_transaction(cmd->config);
1490 	module = i40e_nvmupd_get_module(cmd->config);
1491 	last = (transaction & I40E_NVM_LCB);
1492 
1493 	memset(&cmd_details, 0, sizeof(cmd_details));
1494 	cmd_details.wb_desc = &hw->nvm_wb_desc;
1495 
1496 	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1497 				    (u16)cmd->data_size, bytes, last,
1498 				    &cmd_details);
1499 	if (status) {
1500 		i40e_debug(hw, I40E_DEBUG_NVM,
1501 			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1502 			   module, cmd->offset, cmd->data_size);
1503 		i40e_debug(hw, I40E_DEBUG_NVM,
1504 			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1505 			   status, hw->aq.asq_last_status);
1506 		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1507 	}
1508 
1509 	return status;
1510 }
1511