1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include <net/udp_tunnel.h> 13 /* All i40e tracepoints are defined by the include below, which 14 * must be included exactly once across the whole kernel with 15 * CREATE_TRACE_POINTS defined 16 */ 17 #define CREATE_TRACE_POINTS 18 #include "i40e_trace.h" 19 20 const char i40e_driver_name[] = "i40e"; 21 static const char i40e_driver_string[] = 22 "Intel(R) Ethernet Connection XL710 Network Driver"; 23 24 #define DRV_KERN "-k" 25 26 #define DRV_VERSION_MAJOR 2 27 #define DRV_VERSION_MINOR 3 28 #define DRV_VERSION_BUILD 2 29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 30 __stringify(DRV_VERSION_MINOR) "." \ 31 __stringify(DRV_VERSION_BUILD) DRV_KERN 32 const char i40e_driver_version_str[] = DRV_VERSION; 33 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 34 35 /* a bit of forward declarations */ 36 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 37 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 38 static int i40e_add_vsi(struct i40e_vsi *vsi); 39 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 40 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 41 static int i40e_setup_misc_vector(struct i40e_pf *pf); 42 static void i40e_determine_queue_usage(struct i40e_pf *pf); 43 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 44 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 48 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 49 static int i40e_get_capabilities(struct i40e_pf *pf, 50 enum i40e_admin_queue_opc list_type); 51 52 53 /* i40e_pci_tbl - PCI Device ID Table 54 * 55 * Last entry must be all 0s 56 * 57 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 58 * Class, Class Mask, private data (not used) } 59 */ 60 static const struct pci_device_id i40e_pci_tbl[] = { 61 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 80 /* required last entry */ 81 {0, } 82 }; 83 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 84 85 #define I40E_MAX_VF_COUNT 128 86 static int debug = -1; 87 module_param(debug, uint, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 89 90 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 91 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 92 MODULE_LICENSE("GPL"); 93 MODULE_VERSION(DRV_VERSION); 94 95 static struct workqueue_struct *i40e_wq; 96 97 /** 98 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 99 * @hw: pointer to the HW structure 100 * @mem: ptr to mem struct to fill out 101 * @size: size of memory requested 102 * @alignment: what to align the allocation to 103 **/ 104 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 105 u64 size, u32 alignment) 106 { 107 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 108 109 mem->size = ALIGN(size, alignment); 110 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, 111 &mem->pa, GFP_KERNEL); 112 if (!mem->va) 113 return -ENOMEM; 114 115 return 0; 116 } 117 118 /** 119 * i40e_free_dma_mem_d - OS specific memory free for shared code 120 * @hw: pointer to the HW structure 121 * @mem: ptr to mem struct to free 122 **/ 123 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 124 { 125 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 126 127 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 128 mem->va = NULL; 129 mem->pa = 0; 130 mem->size = 0; 131 132 return 0; 133 } 134 135 /** 136 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 137 * @hw: pointer to the HW structure 138 * @mem: ptr to mem struct to fill out 139 * @size: size of memory requested 140 **/ 141 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 142 u32 size) 143 { 144 mem->size = size; 145 mem->va = kzalloc(size, GFP_KERNEL); 146 147 if (!mem->va) 148 return -ENOMEM; 149 150 return 0; 151 } 152 153 /** 154 * i40e_free_virt_mem_d - OS specific memory free for shared code 155 * @hw: pointer to the HW structure 156 * @mem: ptr to mem struct to free 157 **/ 158 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 159 { 160 /* it's ok to kfree a NULL pointer */ 161 kfree(mem->va); 162 mem->va = NULL; 163 mem->size = 0; 164 165 return 0; 166 } 167 168 /** 169 * i40e_get_lump - find a lump of free generic resource 170 * @pf: board private structure 171 * @pile: the pile of resource to search 172 * @needed: the number of items needed 173 * @id: an owner id to stick on the items assigned 174 * 175 * Returns the base item index of the lump, or negative for error 176 * 177 * The search_hint trick and lack of advanced fit-finding only work 178 * because we're highly likely to have all the same size lump requests. 179 * Linear search time and any fragmentation should be minimal. 180 **/ 181 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 182 u16 needed, u16 id) 183 { 184 int ret = -ENOMEM; 185 int i, j; 186 187 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 188 dev_info(&pf->pdev->dev, 189 "param err: pile=%s needed=%d id=0x%04x\n", 190 pile ? "<valid>" : "<null>", needed, id); 191 return -EINVAL; 192 } 193 194 /* start the linear search with an imperfect hint */ 195 i = pile->search_hint; 196 while (i < pile->num_entries) { 197 /* skip already allocated entries */ 198 if (pile->list[i] & I40E_PILE_VALID_BIT) { 199 i++; 200 continue; 201 } 202 203 /* do we have enough in this lump? */ 204 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 205 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 206 break; 207 } 208 209 if (j == needed) { 210 /* there was enough, so assign it to the requestor */ 211 for (j = 0; j < needed; j++) 212 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 213 ret = i; 214 pile->search_hint = i + j; 215 break; 216 } 217 218 /* not enough, so skip over it and continue looking */ 219 i += j; 220 } 221 222 return ret; 223 } 224 225 /** 226 * i40e_put_lump - return a lump of generic resource 227 * @pile: the pile of resource to search 228 * @index: the base item index 229 * @id: the owner id of the items assigned 230 * 231 * Returns the count of items in the lump 232 **/ 233 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 234 { 235 int valid_id = (id | I40E_PILE_VALID_BIT); 236 int count = 0; 237 int i; 238 239 if (!pile || index >= pile->num_entries) 240 return -EINVAL; 241 242 for (i = index; 243 i < pile->num_entries && pile->list[i] == valid_id; 244 i++) { 245 pile->list[i] = 0; 246 count++; 247 } 248 249 if (count && index < pile->search_hint) 250 pile->search_hint = index; 251 252 return count; 253 } 254 255 /** 256 * i40e_find_vsi_from_id - searches for the vsi with the given id 257 * @pf: the pf structure to search for the vsi 258 * @id: id of the vsi it is searching for 259 **/ 260 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 261 { 262 int i; 263 264 for (i = 0; i < pf->num_alloc_vsi; i++) 265 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 266 return pf->vsi[i]; 267 268 return NULL; 269 } 270 271 /** 272 * i40e_service_event_schedule - Schedule the service task to wake up 273 * @pf: board private structure 274 * 275 * If not already scheduled, this puts the task into the work queue 276 **/ 277 void i40e_service_event_schedule(struct i40e_pf *pf) 278 { 279 if (!test_bit(__I40E_DOWN, pf->state) && 280 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 281 queue_work(i40e_wq, &pf->service_task); 282 } 283 284 /** 285 * i40e_tx_timeout - Respond to a Tx Hang 286 * @netdev: network interface device structure 287 * 288 * If any port has noticed a Tx timeout, it is likely that the whole 289 * device is munged, not just the one netdev port, so go for the full 290 * reset. 291 **/ 292 static void i40e_tx_timeout(struct net_device *netdev) 293 { 294 struct i40e_netdev_priv *np = netdev_priv(netdev); 295 struct i40e_vsi *vsi = np->vsi; 296 struct i40e_pf *pf = vsi->back; 297 struct i40e_ring *tx_ring = NULL; 298 unsigned int i, hung_queue = 0; 299 u32 head, val; 300 301 pf->tx_timeout_count++; 302 303 /* find the stopped queue the same way the stack does */ 304 for (i = 0; i < netdev->num_tx_queues; i++) { 305 struct netdev_queue *q; 306 unsigned long trans_start; 307 308 q = netdev_get_tx_queue(netdev, i); 309 trans_start = q->trans_start; 310 if (netif_xmit_stopped(q) && 311 time_after(jiffies, 312 (trans_start + netdev->watchdog_timeo))) { 313 hung_queue = i; 314 break; 315 } 316 } 317 318 if (i == netdev->num_tx_queues) { 319 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 320 } else { 321 /* now that we have an index, find the tx_ring struct */ 322 for (i = 0; i < vsi->num_queue_pairs; i++) { 323 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 324 if (hung_queue == 325 vsi->tx_rings[i]->queue_index) { 326 tx_ring = vsi->tx_rings[i]; 327 break; 328 } 329 } 330 } 331 } 332 333 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 334 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 335 else if (time_before(jiffies, 336 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 337 return; /* don't do any new action before the next timeout */ 338 339 if (tx_ring) { 340 head = i40e_get_head(tx_ring); 341 /* Read interrupt register */ 342 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 343 val = rd32(&pf->hw, 344 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 345 tx_ring->vsi->base_vector - 1)); 346 else 347 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 348 349 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 350 vsi->seid, hung_queue, tx_ring->next_to_clean, 351 head, tx_ring->next_to_use, 352 readl(tx_ring->tail), val); 353 } 354 355 pf->tx_timeout_last_recovery = jiffies; 356 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 357 pf->tx_timeout_recovery_level, hung_queue); 358 359 switch (pf->tx_timeout_recovery_level) { 360 case 1: 361 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 362 break; 363 case 2: 364 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 365 break; 366 case 3: 367 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 368 break; 369 default: 370 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 371 break; 372 } 373 374 i40e_service_event_schedule(pf); 375 pf->tx_timeout_recovery_level++; 376 } 377 378 /** 379 * i40e_get_vsi_stats_struct - Get System Network Statistics 380 * @vsi: the VSI we care about 381 * 382 * Returns the address of the device statistics structure. 383 * The statistics are actually updated from the service task. 384 **/ 385 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 386 { 387 return &vsi->net_stats; 388 } 389 390 /** 391 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 392 * @ring: Tx ring to get statistics from 393 * @stats: statistics entry to be updated 394 **/ 395 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 396 struct rtnl_link_stats64 *stats) 397 { 398 u64 bytes, packets; 399 unsigned int start; 400 401 do { 402 start = u64_stats_fetch_begin_irq(&ring->syncp); 403 packets = ring->stats.packets; 404 bytes = ring->stats.bytes; 405 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 406 407 stats->tx_packets += packets; 408 stats->tx_bytes += bytes; 409 } 410 411 /** 412 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 413 * @netdev: network interface device structure 414 * @stats: data structure to store statistics 415 * 416 * Returns the address of the device statistics structure. 417 * The statistics are actually updated from the service task. 418 **/ 419 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 420 struct rtnl_link_stats64 *stats) 421 { 422 struct i40e_netdev_priv *np = netdev_priv(netdev); 423 struct i40e_ring *tx_ring, *rx_ring; 424 struct i40e_vsi *vsi = np->vsi; 425 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 426 int i; 427 428 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 429 return; 430 431 if (!vsi->tx_rings) 432 return; 433 434 rcu_read_lock(); 435 for (i = 0; i < vsi->num_queue_pairs; i++) { 436 u64 bytes, packets; 437 unsigned int start; 438 439 tx_ring = READ_ONCE(vsi->tx_rings[i]); 440 if (!tx_ring) 441 continue; 442 i40e_get_netdev_stats_struct_tx(tx_ring, stats); 443 444 rx_ring = &tx_ring[1]; 445 446 do { 447 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 448 packets = rx_ring->stats.packets; 449 bytes = rx_ring->stats.bytes; 450 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 451 452 stats->rx_packets += packets; 453 stats->rx_bytes += bytes; 454 455 if (i40e_enabled_xdp_vsi(vsi)) 456 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats); 457 } 458 rcu_read_unlock(); 459 460 /* following stats updated by i40e_watchdog_subtask() */ 461 stats->multicast = vsi_stats->multicast; 462 stats->tx_errors = vsi_stats->tx_errors; 463 stats->tx_dropped = vsi_stats->tx_dropped; 464 stats->rx_errors = vsi_stats->rx_errors; 465 stats->rx_dropped = vsi_stats->rx_dropped; 466 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 467 stats->rx_length_errors = vsi_stats->rx_length_errors; 468 } 469 470 /** 471 * i40e_vsi_reset_stats - Resets all stats of the given vsi 472 * @vsi: the VSI to have its stats reset 473 **/ 474 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 475 { 476 struct rtnl_link_stats64 *ns; 477 int i; 478 479 if (!vsi) 480 return; 481 482 ns = i40e_get_vsi_stats_struct(vsi); 483 memset(ns, 0, sizeof(*ns)); 484 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 485 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 486 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 487 if (vsi->rx_rings && vsi->rx_rings[0]) { 488 for (i = 0; i < vsi->num_queue_pairs; i++) { 489 memset(&vsi->rx_rings[i]->stats, 0, 490 sizeof(vsi->rx_rings[i]->stats)); 491 memset(&vsi->rx_rings[i]->rx_stats, 0, 492 sizeof(vsi->rx_rings[i]->rx_stats)); 493 memset(&vsi->tx_rings[i]->stats, 0, 494 sizeof(vsi->tx_rings[i]->stats)); 495 memset(&vsi->tx_rings[i]->tx_stats, 0, 496 sizeof(vsi->tx_rings[i]->tx_stats)); 497 } 498 } 499 vsi->stat_offsets_loaded = false; 500 } 501 502 /** 503 * i40e_pf_reset_stats - Reset all of the stats for the given PF 504 * @pf: the PF to be reset 505 **/ 506 void i40e_pf_reset_stats(struct i40e_pf *pf) 507 { 508 int i; 509 510 memset(&pf->stats, 0, sizeof(pf->stats)); 511 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 512 pf->stat_offsets_loaded = false; 513 514 for (i = 0; i < I40E_MAX_VEB; i++) { 515 if (pf->veb[i]) { 516 memset(&pf->veb[i]->stats, 0, 517 sizeof(pf->veb[i]->stats)); 518 memset(&pf->veb[i]->stats_offsets, 0, 519 sizeof(pf->veb[i]->stats_offsets)); 520 pf->veb[i]->stat_offsets_loaded = false; 521 } 522 } 523 pf->hw_csum_rx_error = 0; 524 } 525 526 /** 527 * i40e_stat_update48 - read and update a 48 bit stat from the chip 528 * @hw: ptr to the hardware info 529 * @hireg: the high 32 bit reg to read 530 * @loreg: the low 32 bit reg to read 531 * @offset_loaded: has the initial offset been loaded yet 532 * @offset: ptr to current offset value 533 * @stat: ptr to the stat 534 * 535 * Since the device stats are not reset at PFReset, they likely will not 536 * be zeroed when the driver starts. We'll save the first values read 537 * and use them as offsets to be subtracted from the raw values in order 538 * to report stats that count from zero. In the process, we also manage 539 * the potential roll-over. 540 **/ 541 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 542 bool offset_loaded, u64 *offset, u64 *stat) 543 { 544 u64 new_data; 545 546 if (hw->device_id == I40E_DEV_ID_QEMU) { 547 new_data = rd32(hw, loreg); 548 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 549 } else { 550 new_data = rd64(hw, loreg); 551 } 552 if (!offset_loaded) 553 *offset = new_data; 554 if (likely(new_data >= *offset)) 555 *stat = new_data - *offset; 556 else 557 *stat = (new_data + BIT_ULL(48)) - *offset; 558 *stat &= 0xFFFFFFFFFFFFULL; 559 } 560 561 /** 562 * i40e_stat_update32 - read and update a 32 bit stat from the chip 563 * @hw: ptr to the hardware info 564 * @reg: the hw reg to read 565 * @offset_loaded: has the initial offset been loaded yet 566 * @offset: ptr to current offset value 567 * @stat: ptr to the stat 568 **/ 569 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 570 bool offset_loaded, u64 *offset, u64 *stat) 571 { 572 u32 new_data; 573 574 new_data = rd32(hw, reg); 575 if (!offset_loaded) 576 *offset = new_data; 577 if (likely(new_data >= *offset)) 578 *stat = (u32)(new_data - *offset); 579 else 580 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 581 } 582 583 /** 584 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 585 * @hw: ptr to the hardware info 586 * @reg: the hw reg to read and clear 587 * @stat: ptr to the stat 588 **/ 589 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 590 { 591 u32 new_data = rd32(hw, reg); 592 593 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 594 *stat += new_data; 595 } 596 597 /** 598 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 599 * @vsi: the VSI to be updated 600 **/ 601 void i40e_update_eth_stats(struct i40e_vsi *vsi) 602 { 603 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 604 struct i40e_pf *pf = vsi->back; 605 struct i40e_hw *hw = &pf->hw; 606 struct i40e_eth_stats *oes; 607 struct i40e_eth_stats *es; /* device's eth stats */ 608 609 es = &vsi->eth_stats; 610 oes = &vsi->eth_stats_offsets; 611 612 /* Gather up the stats that the hw collects */ 613 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 614 vsi->stat_offsets_loaded, 615 &oes->tx_errors, &es->tx_errors); 616 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 617 vsi->stat_offsets_loaded, 618 &oes->rx_discards, &es->rx_discards); 619 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 620 vsi->stat_offsets_loaded, 621 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 622 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 623 vsi->stat_offsets_loaded, 624 &oes->tx_errors, &es->tx_errors); 625 626 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 627 I40E_GLV_GORCL(stat_idx), 628 vsi->stat_offsets_loaded, 629 &oes->rx_bytes, &es->rx_bytes); 630 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 631 I40E_GLV_UPRCL(stat_idx), 632 vsi->stat_offsets_loaded, 633 &oes->rx_unicast, &es->rx_unicast); 634 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 635 I40E_GLV_MPRCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_multicast, &es->rx_multicast); 638 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 639 I40E_GLV_BPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_broadcast, &es->rx_broadcast); 642 643 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 644 I40E_GLV_GOTCL(stat_idx), 645 vsi->stat_offsets_loaded, 646 &oes->tx_bytes, &es->tx_bytes); 647 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 648 I40E_GLV_UPTCL(stat_idx), 649 vsi->stat_offsets_loaded, 650 &oes->tx_unicast, &es->tx_unicast); 651 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 652 I40E_GLV_MPTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_multicast, &es->tx_multicast); 655 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 656 I40E_GLV_BPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_broadcast, &es->tx_broadcast); 659 vsi->stat_offsets_loaded = true; 660 } 661 662 /** 663 * i40e_update_veb_stats - Update Switch component statistics 664 * @veb: the VEB being updated 665 **/ 666 static void i40e_update_veb_stats(struct i40e_veb *veb) 667 { 668 struct i40e_pf *pf = veb->pf; 669 struct i40e_hw *hw = &pf->hw; 670 struct i40e_eth_stats *oes; 671 struct i40e_eth_stats *es; /* device's eth stats */ 672 struct i40e_veb_tc_stats *veb_oes; 673 struct i40e_veb_tc_stats *veb_es; 674 int i, idx = 0; 675 676 idx = veb->stats_idx; 677 es = &veb->stats; 678 oes = &veb->stats_offsets; 679 veb_es = &veb->tc_stats; 680 veb_oes = &veb->tc_stats_offsets; 681 682 /* Gather up the stats that the hw collects */ 683 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 684 veb->stat_offsets_loaded, 685 &oes->tx_discards, &es->tx_discards); 686 if (hw->revision_id > 0) 687 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 688 veb->stat_offsets_loaded, 689 &oes->rx_unknown_protocol, 690 &es->rx_unknown_protocol); 691 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 692 veb->stat_offsets_loaded, 693 &oes->rx_bytes, &es->rx_bytes); 694 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 695 veb->stat_offsets_loaded, 696 &oes->rx_unicast, &es->rx_unicast); 697 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 698 veb->stat_offsets_loaded, 699 &oes->rx_multicast, &es->rx_multicast); 700 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 701 veb->stat_offsets_loaded, 702 &oes->rx_broadcast, &es->rx_broadcast); 703 704 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 705 veb->stat_offsets_loaded, 706 &oes->tx_bytes, &es->tx_bytes); 707 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 708 veb->stat_offsets_loaded, 709 &oes->tx_unicast, &es->tx_unicast); 710 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 711 veb->stat_offsets_loaded, 712 &oes->tx_multicast, &es->tx_multicast); 713 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 714 veb->stat_offsets_loaded, 715 &oes->tx_broadcast, &es->tx_broadcast); 716 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 717 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 718 I40E_GLVEBTC_RPCL(i, idx), 719 veb->stat_offsets_loaded, 720 &veb_oes->tc_rx_packets[i], 721 &veb_es->tc_rx_packets[i]); 722 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 723 I40E_GLVEBTC_RBCL(i, idx), 724 veb->stat_offsets_loaded, 725 &veb_oes->tc_rx_bytes[i], 726 &veb_es->tc_rx_bytes[i]); 727 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 728 I40E_GLVEBTC_TPCL(i, idx), 729 veb->stat_offsets_loaded, 730 &veb_oes->tc_tx_packets[i], 731 &veb_es->tc_tx_packets[i]); 732 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 733 I40E_GLVEBTC_TBCL(i, idx), 734 veb->stat_offsets_loaded, 735 &veb_oes->tc_tx_bytes[i], 736 &veb_es->tc_tx_bytes[i]); 737 } 738 veb->stat_offsets_loaded = true; 739 } 740 741 /** 742 * i40e_update_vsi_stats - Update the vsi statistics counters. 743 * @vsi: the VSI to be updated 744 * 745 * There are a few instances where we store the same stat in a 746 * couple of different structs. This is partly because we have 747 * the netdev stats that need to be filled out, which is slightly 748 * different from the "eth_stats" defined by the chip and used in 749 * VF communications. We sort it out here. 750 **/ 751 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 752 { 753 struct i40e_pf *pf = vsi->back; 754 struct rtnl_link_stats64 *ons; 755 struct rtnl_link_stats64 *ns; /* netdev stats */ 756 struct i40e_eth_stats *oes; 757 struct i40e_eth_stats *es; /* device's eth stats */ 758 u32 tx_restart, tx_busy; 759 struct i40e_ring *p; 760 u32 rx_page, rx_buf; 761 u64 bytes, packets; 762 unsigned int start; 763 u64 tx_linearize; 764 u64 tx_force_wb; 765 u64 rx_p, rx_b; 766 u64 tx_p, tx_b; 767 u16 q; 768 769 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 770 test_bit(__I40E_CONFIG_BUSY, pf->state)) 771 return; 772 773 ns = i40e_get_vsi_stats_struct(vsi); 774 ons = &vsi->net_stats_offsets; 775 es = &vsi->eth_stats; 776 oes = &vsi->eth_stats_offsets; 777 778 /* Gather up the netdev and vsi stats that the driver collects 779 * on the fly during packet processing 780 */ 781 rx_b = rx_p = 0; 782 tx_b = tx_p = 0; 783 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 784 rx_page = 0; 785 rx_buf = 0; 786 rcu_read_lock(); 787 for (q = 0; q < vsi->num_queue_pairs; q++) { 788 /* locate Tx ring */ 789 p = READ_ONCE(vsi->tx_rings[q]); 790 791 do { 792 start = u64_stats_fetch_begin_irq(&p->syncp); 793 packets = p->stats.packets; 794 bytes = p->stats.bytes; 795 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 796 tx_b += bytes; 797 tx_p += packets; 798 tx_restart += p->tx_stats.restart_queue; 799 tx_busy += p->tx_stats.tx_busy; 800 tx_linearize += p->tx_stats.tx_linearize; 801 tx_force_wb += p->tx_stats.tx_force_wb; 802 803 /* Rx queue is part of the same block as Tx queue */ 804 p = &p[1]; 805 do { 806 start = u64_stats_fetch_begin_irq(&p->syncp); 807 packets = p->stats.packets; 808 bytes = p->stats.bytes; 809 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 810 rx_b += bytes; 811 rx_p += packets; 812 rx_buf += p->rx_stats.alloc_buff_failed; 813 rx_page += p->rx_stats.alloc_page_failed; 814 } 815 rcu_read_unlock(); 816 vsi->tx_restart = tx_restart; 817 vsi->tx_busy = tx_busy; 818 vsi->tx_linearize = tx_linearize; 819 vsi->tx_force_wb = tx_force_wb; 820 vsi->rx_page_failed = rx_page; 821 vsi->rx_buf_failed = rx_buf; 822 823 ns->rx_packets = rx_p; 824 ns->rx_bytes = rx_b; 825 ns->tx_packets = tx_p; 826 ns->tx_bytes = tx_b; 827 828 /* update netdev stats from eth stats */ 829 i40e_update_eth_stats(vsi); 830 ons->tx_errors = oes->tx_errors; 831 ns->tx_errors = es->tx_errors; 832 ons->multicast = oes->rx_multicast; 833 ns->multicast = es->rx_multicast; 834 ons->rx_dropped = oes->rx_discards; 835 ns->rx_dropped = es->rx_discards; 836 ons->tx_dropped = oes->tx_discards; 837 ns->tx_dropped = es->tx_discards; 838 839 /* pull in a couple PF stats if this is the main vsi */ 840 if (vsi == pf->vsi[pf->lan_vsi]) { 841 ns->rx_crc_errors = pf->stats.crc_errors; 842 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 843 ns->rx_length_errors = pf->stats.rx_length_errors; 844 } 845 } 846 847 /** 848 * i40e_update_pf_stats - Update the PF statistics counters. 849 * @pf: the PF to be updated 850 **/ 851 static void i40e_update_pf_stats(struct i40e_pf *pf) 852 { 853 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 854 struct i40e_hw_port_stats *nsd = &pf->stats; 855 struct i40e_hw *hw = &pf->hw; 856 u32 val; 857 int i; 858 859 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 860 I40E_GLPRT_GORCL(hw->port), 861 pf->stat_offsets_loaded, 862 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 863 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 864 I40E_GLPRT_GOTCL(hw->port), 865 pf->stat_offsets_loaded, 866 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 867 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 868 pf->stat_offsets_loaded, 869 &osd->eth.rx_discards, 870 &nsd->eth.rx_discards); 871 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 872 I40E_GLPRT_UPRCL(hw->port), 873 pf->stat_offsets_loaded, 874 &osd->eth.rx_unicast, 875 &nsd->eth.rx_unicast); 876 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 877 I40E_GLPRT_MPRCL(hw->port), 878 pf->stat_offsets_loaded, 879 &osd->eth.rx_multicast, 880 &nsd->eth.rx_multicast); 881 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 882 I40E_GLPRT_BPRCL(hw->port), 883 pf->stat_offsets_loaded, 884 &osd->eth.rx_broadcast, 885 &nsd->eth.rx_broadcast); 886 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 887 I40E_GLPRT_UPTCL(hw->port), 888 pf->stat_offsets_loaded, 889 &osd->eth.tx_unicast, 890 &nsd->eth.tx_unicast); 891 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 892 I40E_GLPRT_MPTCL(hw->port), 893 pf->stat_offsets_loaded, 894 &osd->eth.tx_multicast, 895 &nsd->eth.tx_multicast); 896 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 897 I40E_GLPRT_BPTCL(hw->port), 898 pf->stat_offsets_loaded, 899 &osd->eth.tx_broadcast, 900 &nsd->eth.tx_broadcast); 901 902 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 903 pf->stat_offsets_loaded, 904 &osd->tx_dropped_link_down, 905 &nsd->tx_dropped_link_down); 906 907 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 908 pf->stat_offsets_loaded, 909 &osd->crc_errors, &nsd->crc_errors); 910 911 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 912 pf->stat_offsets_loaded, 913 &osd->illegal_bytes, &nsd->illegal_bytes); 914 915 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->mac_local_faults, 918 &nsd->mac_local_faults); 919 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->mac_remote_faults, 922 &nsd->mac_remote_faults); 923 924 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 925 pf->stat_offsets_loaded, 926 &osd->rx_length_errors, 927 &nsd->rx_length_errors); 928 929 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 930 pf->stat_offsets_loaded, 931 &osd->link_xon_rx, &nsd->link_xon_rx); 932 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->link_xon_tx, &nsd->link_xon_tx); 935 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 936 pf->stat_offsets_loaded, 937 &osd->link_xoff_rx, &nsd->link_xoff_rx); 938 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->link_xoff_tx, &nsd->link_xoff_tx); 941 942 for (i = 0; i < 8; i++) { 943 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 944 pf->stat_offsets_loaded, 945 &osd->priority_xoff_rx[i], 946 &nsd->priority_xoff_rx[i]); 947 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 948 pf->stat_offsets_loaded, 949 &osd->priority_xon_rx[i], 950 &nsd->priority_xon_rx[i]); 951 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 952 pf->stat_offsets_loaded, 953 &osd->priority_xon_tx[i], 954 &nsd->priority_xon_tx[i]); 955 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 956 pf->stat_offsets_loaded, 957 &osd->priority_xoff_tx[i], 958 &nsd->priority_xoff_tx[i]); 959 i40e_stat_update32(hw, 960 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 961 pf->stat_offsets_loaded, 962 &osd->priority_xon_2_xoff[i], 963 &nsd->priority_xon_2_xoff[i]); 964 } 965 966 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 967 I40E_GLPRT_PRC64L(hw->port), 968 pf->stat_offsets_loaded, 969 &osd->rx_size_64, &nsd->rx_size_64); 970 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 971 I40E_GLPRT_PRC127L(hw->port), 972 pf->stat_offsets_loaded, 973 &osd->rx_size_127, &nsd->rx_size_127); 974 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 975 I40E_GLPRT_PRC255L(hw->port), 976 pf->stat_offsets_loaded, 977 &osd->rx_size_255, &nsd->rx_size_255); 978 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 979 I40E_GLPRT_PRC511L(hw->port), 980 pf->stat_offsets_loaded, 981 &osd->rx_size_511, &nsd->rx_size_511); 982 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 983 I40E_GLPRT_PRC1023L(hw->port), 984 pf->stat_offsets_loaded, 985 &osd->rx_size_1023, &nsd->rx_size_1023); 986 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 987 I40E_GLPRT_PRC1522L(hw->port), 988 pf->stat_offsets_loaded, 989 &osd->rx_size_1522, &nsd->rx_size_1522); 990 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 991 I40E_GLPRT_PRC9522L(hw->port), 992 pf->stat_offsets_loaded, 993 &osd->rx_size_big, &nsd->rx_size_big); 994 995 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 996 I40E_GLPRT_PTC64L(hw->port), 997 pf->stat_offsets_loaded, 998 &osd->tx_size_64, &nsd->tx_size_64); 999 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1000 I40E_GLPRT_PTC127L(hw->port), 1001 pf->stat_offsets_loaded, 1002 &osd->tx_size_127, &nsd->tx_size_127); 1003 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1004 I40E_GLPRT_PTC255L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->tx_size_255, &nsd->tx_size_255); 1007 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1008 I40E_GLPRT_PTC511L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->tx_size_511, &nsd->tx_size_511); 1011 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1012 I40E_GLPRT_PTC1023L(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->tx_size_1023, &nsd->tx_size_1023); 1015 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1016 I40E_GLPRT_PTC1522L(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->tx_size_1522, &nsd->tx_size_1522); 1019 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1020 I40E_GLPRT_PTC9522L(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->tx_size_big, &nsd->tx_size_big); 1023 1024 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->rx_undersize, &nsd->rx_undersize); 1027 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->rx_fragments, &nsd->rx_fragments); 1030 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1031 pf->stat_offsets_loaded, 1032 &osd->rx_oversize, &nsd->rx_oversize); 1033 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->rx_jabber, &nsd->rx_jabber); 1036 1037 /* FDIR stats */ 1038 i40e_stat_update_and_clear32(hw, 1039 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1040 &nsd->fd_atr_match); 1041 i40e_stat_update_and_clear32(hw, 1042 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1043 &nsd->fd_sb_match); 1044 i40e_stat_update_and_clear32(hw, 1045 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1046 &nsd->fd_atr_tunnel_match); 1047 1048 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1049 nsd->tx_lpi_status = 1050 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1051 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1052 nsd->rx_lpi_status = 1053 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1054 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1055 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1056 pf->stat_offsets_loaded, 1057 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1058 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1059 pf->stat_offsets_loaded, 1060 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1061 1062 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1063 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1064 nsd->fd_sb_status = true; 1065 else 1066 nsd->fd_sb_status = false; 1067 1068 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1069 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1070 nsd->fd_atr_status = true; 1071 else 1072 nsd->fd_atr_status = false; 1073 1074 pf->stat_offsets_loaded = true; 1075 } 1076 1077 /** 1078 * i40e_update_stats - Update the various statistics counters. 1079 * @vsi: the VSI to be updated 1080 * 1081 * Update the various stats for this VSI and its related entities. 1082 **/ 1083 void i40e_update_stats(struct i40e_vsi *vsi) 1084 { 1085 struct i40e_pf *pf = vsi->back; 1086 1087 if (vsi == pf->vsi[pf->lan_vsi]) 1088 i40e_update_pf_stats(pf); 1089 1090 i40e_update_vsi_stats(vsi); 1091 } 1092 1093 /** 1094 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1095 * @vsi: the VSI to be searched 1096 * @macaddr: the MAC address 1097 * @vlan: the vlan 1098 * 1099 * Returns ptr to the filter object or NULL 1100 **/ 1101 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1102 const u8 *macaddr, s16 vlan) 1103 { 1104 struct i40e_mac_filter *f; 1105 u64 key; 1106 1107 if (!vsi || !macaddr) 1108 return NULL; 1109 1110 key = i40e_addr_to_hkey(macaddr); 1111 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1112 if ((ether_addr_equal(macaddr, f->macaddr)) && 1113 (vlan == f->vlan)) 1114 return f; 1115 } 1116 return NULL; 1117 } 1118 1119 /** 1120 * i40e_find_mac - Find a mac addr in the macvlan filters list 1121 * @vsi: the VSI to be searched 1122 * @macaddr: the MAC address we are searching for 1123 * 1124 * Returns the first filter with the provided MAC address or NULL if 1125 * MAC address was not found 1126 **/ 1127 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1128 { 1129 struct i40e_mac_filter *f; 1130 u64 key; 1131 1132 if (!vsi || !macaddr) 1133 return NULL; 1134 1135 key = i40e_addr_to_hkey(macaddr); 1136 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1137 if ((ether_addr_equal(macaddr, f->macaddr))) 1138 return f; 1139 } 1140 return NULL; 1141 } 1142 1143 /** 1144 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1145 * @vsi: the VSI to be searched 1146 * 1147 * Returns true if VSI is in vlan mode or false otherwise 1148 **/ 1149 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1150 { 1151 /* If we have a PVID, always operate in VLAN mode */ 1152 if (vsi->info.pvid) 1153 return true; 1154 1155 /* We need to operate in VLAN mode whenever we have any filters with 1156 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1157 * time, incurring search cost repeatedly. However, we can notice two 1158 * things: 1159 * 1160 * 1) the only place where we can gain a VLAN filter is in 1161 * i40e_add_filter. 1162 * 1163 * 2) the only place where filters are actually removed is in 1164 * i40e_sync_filters_subtask. 1165 * 1166 * Thus, we can simply use a boolean value, has_vlan_filters which we 1167 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1168 * we have to perform the full search after deleting filters in 1169 * i40e_sync_filters_subtask, but we already have to search 1170 * filters here and can perform the check at the same time. This 1171 * results in avoiding embedding a loop for VLAN mode inside another 1172 * loop over all the filters, and should maintain correctness as noted 1173 * above. 1174 */ 1175 return vsi->has_vlan_filter; 1176 } 1177 1178 /** 1179 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1180 * @vsi: the VSI to configure 1181 * @tmp_add_list: list of filters ready to be added 1182 * @tmp_del_list: list of filters ready to be deleted 1183 * @vlan_filters: the number of active VLAN filters 1184 * 1185 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1186 * behave as expected. If we have any active VLAN filters remaining or about 1187 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1188 * so that they only match against untagged traffic. If we no longer have any 1189 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1190 * so that they match against both tagged and untagged traffic. In this way, 1191 * we ensure that we correctly receive the desired traffic. This ensures that 1192 * when we have an active VLAN we will receive only untagged traffic and 1193 * traffic matching active VLANs. If we have no active VLANs then we will 1194 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1195 * 1196 * Finally, in a similar fashion, this function also corrects filters when 1197 * there is an active PVID assigned to this VSI. 1198 * 1199 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1200 * 1201 * This function is only expected to be called from within 1202 * i40e_sync_vsi_filters. 1203 * 1204 * NOTE: This function expects to be called while under the 1205 * mac_filter_hash_lock 1206 */ 1207 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1208 struct hlist_head *tmp_add_list, 1209 struct hlist_head *tmp_del_list, 1210 int vlan_filters) 1211 { 1212 s16 pvid = le16_to_cpu(vsi->info.pvid); 1213 struct i40e_mac_filter *f, *add_head; 1214 struct i40e_new_mac_filter *new; 1215 struct hlist_node *h; 1216 int bkt, new_vlan; 1217 1218 /* To determine if a particular filter needs to be replaced we 1219 * have the three following conditions: 1220 * 1221 * a) if we have a PVID assigned, then all filters which are 1222 * not marked as VLAN=PVID must be replaced with filters that 1223 * are. 1224 * b) otherwise, if we have any active VLANS, all filters 1225 * which are marked as VLAN=-1 must be replaced with 1226 * filters marked as VLAN=0 1227 * c) finally, if we do not have any active VLANS, all filters 1228 * which are marked as VLAN=0 must be replaced with filters 1229 * marked as VLAN=-1 1230 */ 1231 1232 /* Update the filters about to be added in place */ 1233 hlist_for_each_entry(new, tmp_add_list, hlist) { 1234 if (pvid && new->f->vlan != pvid) 1235 new->f->vlan = pvid; 1236 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1237 new->f->vlan = 0; 1238 else if (!vlan_filters && new->f->vlan == 0) 1239 new->f->vlan = I40E_VLAN_ANY; 1240 } 1241 1242 /* Update the remaining active filters */ 1243 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1244 /* Combine the checks for whether a filter needs to be changed 1245 * and then determine the new VLAN inside the if block, in 1246 * order to avoid duplicating code for adding the new filter 1247 * then deleting the old filter. 1248 */ 1249 if ((pvid && f->vlan != pvid) || 1250 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1251 (!vlan_filters && f->vlan == 0)) { 1252 /* Determine the new vlan we will be adding */ 1253 if (pvid) 1254 new_vlan = pvid; 1255 else if (vlan_filters) 1256 new_vlan = 0; 1257 else 1258 new_vlan = I40E_VLAN_ANY; 1259 1260 /* Create the new filter */ 1261 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1262 if (!add_head) 1263 return -ENOMEM; 1264 1265 /* Create a temporary i40e_new_mac_filter */ 1266 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1267 if (!new) 1268 return -ENOMEM; 1269 1270 new->f = add_head; 1271 new->state = add_head->state; 1272 1273 /* Add the new filter to the tmp list */ 1274 hlist_add_head(&new->hlist, tmp_add_list); 1275 1276 /* Put the original filter into the delete list */ 1277 f->state = I40E_FILTER_REMOVE; 1278 hash_del(&f->hlist); 1279 hlist_add_head(&f->hlist, tmp_del_list); 1280 } 1281 } 1282 1283 vsi->has_vlan_filter = !!vlan_filters; 1284 1285 return 0; 1286 } 1287 1288 /** 1289 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1290 * @vsi: the PF Main VSI - inappropriate for any other VSI 1291 * @macaddr: the MAC address 1292 * 1293 * Remove whatever filter the firmware set up so the driver can manage 1294 * its own filtering intelligently. 1295 **/ 1296 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1297 { 1298 struct i40e_aqc_remove_macvlan_element_data element; 1299 struct i40e_pf *pf = vsi->back; 1300 1301 /* Only appropriate for the PF main VSI */ 1302 if (vsi->type != I40E_VSI_MAIN) 1303 return; 1304 1305 memset(&element, 0, sizeof(element)); 1306 ether_addr_copy(element.mac_addr, macaddr); 1307 element.vlan_tag = 0; 1308 /* Ignore error returns, some firmware does it this way... */ 1309 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1310 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1311 1312 memset(&element, 0, sizeof(element)); 1313 ether_addr_copy(element.mac_addr, macaddr); 1314 element.vlan_tag = 0; 1315 /* ...and some firmware does it this way. */ 1316 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1317 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1318 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1319 } 1320 1321 /** 1322 * i40e_add_filter - Add a mac/vlan filter to the VSI 1323 * @vsi: the VSI to be searched 1324 * @macaddr: the MAC address 1325 * @vlan: the vlan 1326 * 1327 * Returns ptr to the filter object or NULL when no memory available. 1328 * 1329 * NOTE: This function is expected to be called with mac_filter_hash_lock 1330 * being held. 1331 **/ 1332 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1333 const u8 *macaddr, s16 vlan) 1334 { 1335 struct i40e_mac_filter *f; 1336 u64 key; 1337 1338 if (!vsi || !macaddr) 1339 return NULL; 1340 1341 f = i40e_find_filter(vsi, macaddr, vlan); 1342 if (!f) { 1343 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1344 if (!f) 1345 return NULL; 1346 1347 /* Update the boolean indicating if we need to function in 1348 * VLAN mode. 1349 */ 1350 if (vlan >= 0) 1351 vsi->has_vlan_filter = true; 1352 1353 ether_addr_copy(f->macaddr, macaddr); 1354 f->vlan = vlan; 1355 f->state = I40E_FILTER_NEW; 1356 INIT_HLIST_NODE(&f->hlist); 1357 1358 key = i40e_addr_to_hkey(macaddr); 1359 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1360 1361 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1362 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1363 } 1364 1365 /* If we're asked to add a filter that has been marked for removal, it 1366 * is safe to simply restore it to active state. __i40e_del_filter 1367 * will have simply deleted any filters which were previously marked 1368 * NEW or FAILED, so if it is currently marked REMOVE it must have 1369 * previously been ACTIVE. Since we haven't yet run the sync filters 1370 * task, just restore this filter to the ACTIVE state so that the 1371 * sync task leaves it in place 1372 */ 1373 if (f->state == I40E_FILTER_REMOVE) 1374 f->state = I40E_FILTER_ACTIVE; 1375 1376 return f; 1377 } 1378 1379 /** 1380 * __i40e_del_filter - Remove a specific filter from the VSI 1381 * @vsi: VSI to remove from 1382 * @f: the filter to remove from the list 1383 * 1384 * This function should be called instead of i40e_del_filter only if you know 1385 * the exact filter you will remove already, such as via i40e_find_filter or 1386 * i40e_find_mac. 1387 * 1388 * NOTE: This function is expected to be called with mac_filter_hash_lock 1389 * being held. 1390 * ANOTHER NOTE: This function MUST be called from within the context of 1391 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1392 * instead of list_for_each_entry(). 1393 **/ 1394 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1395 { 1396 if (!f) 1397 return; 1398 1399 /* If the filter was never added to firmware then we can just delete it 1400 * directly and we don't want to set the status to remove or else an 1401 * admin queue command will unnecessarily fire. 1402 */ 1403 if ((f->state == I40E_FILTER_FAILED) || 1404 (f->state == I40E_FILTER_NEW)) { 1405 hash_del(&f->hlist); 1406 kfree(f); 1407 } else { 1408 f->state = I40E_FILTER_REMOVE; 1409 } 1410 1411 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1412 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->state); 1413 } 1414 1415 /** 1416 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1417 * @vsi: the VSI to be searched 1418 * @macaddr: the MAC address 1419 * @vlan: the VLAN 1420 * 1421 * NOTE: This function is expected to be called with mac_filter_hash_lock 1422 * being held. 1423 * ANOTHER NOTE: This function MUST be called from within the context of 1424 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1425 * instead of list_for_each_entry(). 1426 **/ 1427 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1428 { 1429 struct i40e_mac_filter *f; 1430 1431 if (!vsi || !macaddr) 1432 return; 1433 1434 f = i40e_find_filter(vsi, macaddr, vlan); 1435 __i40e_del_filter(vsi, f); 1436 } 1437 1438 /** 1439 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1440 * @vsi: the VSI to be searched 1441 * @macaddr: the mac address to be filtered 1442 * 1443 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1444 * go through all the macvlan filters and add a macvlan filter for each 1445 * unique vlan that already exists. If a PVID has been assigned, instead only 1446 * add the macaddr to that VLAN. 1447 * 1448 * Returns last filter added on success, else NULL 1449 **/ 1450 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1451 const u8 *macaddr) 1452 { 1453 struct i40e_mac_filter *f, *add = NULL; 1454 struct hlist_node *h; 1455 int bkt; 1456 1457 if (vsi->info.pvid) 1458 return i40e_add_filter(vsi, macaddr, 1459 le16_to_cpu(vsi->info.pvid)); 1460 1461 if (!i40e_is_vsi_in_vlan(vsi)) 1462 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1463 1464 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1465 if (f->state == I40E_FILTER_REMOVE) 1466 continue; 1467 add = i40e_add_filter(vsi, macaddr, f->vlan); 1468 if (!add) 1469 return NULL; 1470 } 1471 1472 return add; 1473 } 1474 1475 /** 1476 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1477 * @vsi: the VSI to be searched 1478 * @macaddr: the mac address to be removed 1479 * 1480 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1481 * associated with. 1482 * 1483 * Returns 0 for success, or error 1484 **/ 1485 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1486 { 1487 struct i40e_mac_filter *f; 1488 struct hlist_node *h; 1489 bool found = false; 1490 int bkt; 1491 1492 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock), 1493 "Missing mac_filter_hash_lock\n"); 1494 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1495 if (ether_addr_equal(macaddr, f->macaddr)) { 1496 __i40e_del_filter(vsi, f); 1497 found = true; 1498 } 1499 } 1500 1501 if (found) 1502 return 0; 1503 else 1504 return -ENOENT; 1505 } 1506 1507 /** 1508 * i40e_set_mac - NDO callback to set mac address 1509 * @netdev: network interface device structure 1510 * @p: pointer to an address structure 1511 * 1512 * Returns 0 on success, negative on failure 1513 **/ 1514 static int i40e_set_mac(struct net_device *netdev, void *p) 1515 { 1516 struct i40e_netdev_priv *np = netdev_priv(netdev); 1517 struct i40e_vsi *vsi = np->vsi; 1518 struct i40e_pf *pf = vsi->back; 1519 struct i40e_hw *hw = &pf->hw; 1520 struct sockaddr *addr = p; 1521 1522 if (!is_valid_ether_addr(addr->sa_data)) 1523 return -EADDRNOTAVAIL; 1524 1525 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1526 netdev_info(netdev, "already using mac address %pM\n", 1527 addr->sa_data); 1528 return 0; 1529 } 1530 1531 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) || 1532 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state)) 1533 return -EADDRNOTAVAIL; 1534 1535 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1536 netdev_info(netdev, "returning to hw mac address %pM\n", 1537 hw->mac.addr); 1538 else 1539 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1540 1541 /* Copy the address first, so that we avoid a possible race with 1542 * .set_rx_mode(). If we copy after changing the address in the filter 1543 * list, we might open ourselves to a narrow race window where 1544 * .set_rx_mode could delete our dev_addr filter and prevent traffic 1545 * from passing. 1546 */ 1547 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1548 1549 spin_lock_bh(&vsi->mac_filter_hash_lock); 1550 i40e_del_mac_filter(vsi, netdev->dev_addr); 1551 i40e_add_mac_filter(vsi, addr->sa_data); 1552 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1553 if (vsi->type == I40E_VSI_MAIN) { 1554 i40e_status ret; 1555 1556 ret = i40e_aq_mac_address_write(&vsi->back->hw, 1557 I40E_AQC_WRITE_TYPE_LAA_WOL, 1558 addr->sa_data, NULL); 1559 if (ret) 1560 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1561 i40e_stat_str(hw, ret), 1562 i40e_aq_str(hw, hw->aq.asq_last_status)); 1563 } 1564 1565 /* schedule our worker thread which will take care of 1566 * applying the new filter changes 1567 */ 1568 i40e_service_event_schedule(vsi->back); 1569 return 0; 1570 } 1571 1572 /** 1573 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1574 * @vsi: vsi structure 1575 * @seed: RSS hash seed 1576 **/ 1577 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1578 u8 *lut, u16 lut_size) 1579 { 1580 struct i40e_pf *pf = vsi->back; 1581 struct i40e_hw *hw = &pf->hw; 1582 int ret = 0; 1583 1584 if (seed) { 1585 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1586 (struct i40e_aqc_get_set_rss_key_data *)seed; 1587 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1588 if (ret) { 1589 dev_info(&pf->pdev->dev, 1590 "Cannot set RSS key, err %s aq_err %s\n", 1591 i40e_stat_str(hw, ret), 1592 i40e_aq_str(hw, hw->aq.asq_last_status)); 1593 return ret; 1594 } 1595 } 1596 if (lut) { 1597 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1598 1599 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1600 if (ret) { 1601 dev_info(&pf->pdev->dev, 1602 "Cannot set RSS lut, err %s aq_err %s\n", 1603 i40e_stat_str(hw, ret), 1604 i40e_aq_str(hw, hw->aq.asq_last_status)); 1605 return ret; 1606 } 1607 } 1608 return ret; 1609 } 1610 1611 /** 1612 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1613 * @vsi: VSI structure 1614 **/ 1615 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1616 { 1617 struct i40e_pf *pf = vsi->back; 1618 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1619 u8 *lut; 1620 int ret; 1621 1622 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1623 return 0; 1624 if (!vsi->rss_size) 1625 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1626 vsi->num_queue_pairs); 1627 if (!vsi->rss_size) 1628 return -EINVAL; 1629 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1630 if (!lut) 1631 return -ENOMEM; 1632 1633 /* Use the user configured hash keys and lookup table if there is one, 1634 * otherwise use default 1635 */ 1636 if (vsi->rss_lut_user) 1637 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1638 else 1639 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1640 if (vsi->rss_hkey_user) 1641 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1642 else 1643 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1644 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1645 kfree(lut); 1646 return ret; 1647 } 1648 1649 /** 1650 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1651 * @vsi: the VSI being configured, 1652 * @ctxt: VSI context structure 1653 * @enabled_tc: number of traffic classes to enable 1654 * 1655 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1656 **/ 1657 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1658 struct i40e_vsi_context *ctxt, 1659 u8 enabled_tc) 1660 { 1661 u16 qcount = 0, max_qcount, qmap, sections = 0; 1662 int i, override_q, pow, num_qps, ret; 1663 u8 netdev_tc = 0, offset = 0; 1664 1665 if (vsi->type != I40E_VSI_MAIN) 1666 return -EINVAL; 1667 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1668 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1669 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1670 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1671 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1672 1673 /* find the next higher power-of-2 of num queue pairs */ 1674 pow = ilog2(num_qps); 1675 if (!is_power_of_2(num_qps)) 1676 pow++; 1677 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1678 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1679 1680 /* Setup queue offset/count for all TCs for given VSI */ 1681 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1682 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1683 /* See if the given TC is enabled for the given VSI */ 1684 if (vsi->tc_config.enabled_tc & BIT(i)) { 1685 offset = vsi->mqprio_qopt.qopt.offset[i]; 1686 qcount = vsi->mqprio_qopt.qopt.count[i]; 1687 if (qcount > max_qcount) 1688 max_qcount = qcount; 1689 vsi->tc_config.tc_info[i].qoffset = offset; 1690 vsi->tc_config.tc_info[i].qcount = qcount; 1691 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1692 } else { 1693 /* TC is not enabled so set the offset to 1694 * default queue and allocate one queue 1695 * for the given TC. 1696 */ 1697 vsi->tc_config.tc_info[i].qoffset = 0; 1698 vsi->tc_config.tc_info[i].qcount = 1; 1699 vsi->tc_config.tc_info[i].netdev_tc = 0; 1700 } 1701 } 1702 1703 /* Set actual Tx/Rx queue pairs */ 1704 vsi->num_queue_pairs = offset + qcount; 1705 1706 /* Setup queue TC[0].qmap for given VSI context */ 1707 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1708 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1709 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1710 ctxt->info.valid_sections |= cpu_to_le16(sections); 1711 1712 /* Reconfigure RSS for main VSI with max queue count */ 1713 vsi->rss_size = max_qcount; 1714 ret = i40e_vsi_config_rss(vsi); 1715 if (ret) { 1716 dev_info(&vsi->back->pdev->dev, 1717 "Failed to reconfig rss for num_queues (%u)\n", 1718 max_qcount); 1719 return ret; 1720 } 1721 vsi->reconfig_rss = true; 1722 dev_dbg(&vsi->back->pdev->dev, 1723 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1724 1725 /* Find queue count available for channel VSIs and starting offset 1726 * for channel VSIs 1727 */ 1728 override_q = vsi->mqprio_qopt.qopt.count[0]; 1729 if (override_q && override_q < vsi->num_queue_pairs) { 1730 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1731 vsi->next_base_queue = override_q; 1732 } 1733 return 0; 1734 } 1735 1736 /** 1737 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1738 * @vsi: the VSI being setup 1739 * @ctxt: VSI context structure 1740 * @enabled_tc: Enabled TCs bitmap 1741 * @is_add: True if called before Add VSI 1742 * 1743 * Setup VSI queue mapping for enabled traffic classes. 1744 **/ 1745 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1746 struct i40e_vsi_context *ctxt, 1747 u8 enabled_tc, 1748 bool is_add) 1749 { 1750 struct i40e_pf *pf = vsi->back; 1751 u16 sections = 0; 1752 u8 netdev_tc = 0; 1753 u16 numtc = 1; 1754 u16 qcount; 1755 u8 offset; 1756 u16 qmap; 1757 int i; 1758 u16 num_tc_qps = 0; 1759 1760 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1761 offset = 0; 1762 1763 /* Number of queues per enabled TC */ 1764 num_tc_qps = vsi->alloc_queue_pairs; 1765 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1766 /* Find numtc from enabled TC bitmap */ 1767 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1768 if (enabled_tc & BIT(i)) /* TC is enabled */ 1769 numtc++; 1770 } 1771 if (!numtc) { 1772 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1773 numtc = 1; 1774 } 1775 num_tc_qps = num_tc_qps / numtc; 1776 num_tc_qps = min_t(int, num_tc_qps, 1777 i40e_pf_get_max_q_per_tc(pf)); 1778 } 1779 1780 vsi->tc_config.numtc = numtc; 1781 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1782 1783 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1784 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1785 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1786 1787 /* Setup queue offset/count for all TCs for given VSI */ 1788 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1789 /* See if the given TC is enabled for the given VSI */ 1790 if (vsi->tc_config.enabled_tc & BIT(i)) { 1791 /* TC is enabled */ 1792 int pow, num_qps; 1793 1794 switch (vsi->type) { 1795 case I40E_VSI_MAIN: 1796 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1797 I40E_FLAG_FD_ATR_ENABLED)) || 1798 vsi->tc_config.enabled_tc != 1) { 1799 qcount = min_t(int, pf->alloc_rss_size, 1800 num_tc_qps); 1801 break; 1802 } 1803 /* fall through */ 1804 case I40E_VSI_FDIR: 1805 case I40E_VSI_SRIOV: 1806 case I40E_VSI_VMDQ2: 1807 default: 1808 qcount = num_tc_qps; 1809 WARN_ON(i != 0); 1810 break; 1811 } 1812 vsi->tc_config.tc_info[i].qoffset = offset; 1813 vsi->tc_config.tc_info[i].qcount = qcount; 1814 1815 /* find the next higher power-of-2 of num queue pairs */ 1816 num_qps = qcount; 1817 pow = 0; 1818 while (num_qps && (BIT_ULL(pow) < qcount)) { 1819 pow++; 1820 num_qps >>= 1; 1821 } 1822 1823 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1824 qmap = 1825 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1826 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1827 1828 offset += qcount; 1829 } else { 1830 /* TC is not enabled so set the offset to 1831 * default queue and allocate one queue 1832 * for the given TC. 1833 */ 1834 vsi->tc_config.tc_info[i].qoffset = 0; 1835 vsi->tc_config.tc_info[i].qcount = 1; 1836 vsi->tc_config.tc_info[i].netdev_tc = 0; 1837 1838 qmap = 0; 1839 } 1840 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1841 } 1842 1843 /* Set actual Tx/Rx queue pairs */ 1844 vsi->num_queue_pairs = offset; 1845 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1846 if (vsi->req_queue_pairs > 0) 1847 vsi->num_queue_pairs = vsi->req_queue_pairs; 1848 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1849 vsi->num_queue_pairs = pf->num_lan_msix; 1850 } 1851 1852 /* Scheduler section valid can only be set for ADD VSI */ 1853 if (is_add) { 1854 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1855 1856 ctxt->info.up_enable_bits = enabled_tc; 1857 } 1858 if (vsi->type == I40E_VSI_SRIOV) { 1859 ctxt->info.mapping_flags |= 1860 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1861 for (i = 0; i < vsi->num_queue_pairs; i++) 1862 ctxt->info.queue_mapping[i] = 1863 cpu_to_le16(vsi->base_queue + i); 1864 } else { 1865 ctxt->info.mapping_flags |= 1866 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1867 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1868 } 1869 ctxt->info.valid_sections |= cpu_to_le16(sections); 1870 } 1871 1872 /** 1873 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1874 * @netdev: the netdevice 1875 * @addr: address to add 1876 * 1877 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1878 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1879 */ 1880 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1881 { 1882 struct i40e_netdev_priv *np = netdev_priv(netdev); 1883 struct i40e_vsi *vsi = np->vsi; 1884 1885 if (i40e_add_mac_filter(vsi, addr)) 1886 return 0; 1887 else 1888 return -ENOMEM; 1889 } 1890 1891 /** 1892 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1893 * @netdev: the netdevice 1894 * @addr: address to add 1895 * 1896 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1897 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1898 */ 1899 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1900 { 1901 struct i40e_netdev_priv *np = netdev_priv(netdev); 1902 struct i40e_vsi *vsi = np->vsi; 1903 1904 /* Under some circumstances, we might receive a request to delete 1905 * our own device address from our uc list. Because we store the 1906 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1907 * such requests and not delete our device address from this list. 1908 */ 1909 if (ether_addr_equal(addr, netdev->dev_addr)) 1910 return 0; 1911 1912 i40e_del_mac_filter(vsi, addr); 1913 1914 return 0; 1915 } 1916 1917 /** 1918 * i40e_set_rx_mode - NDO callback to set the netdev filters 1919 * @netdev: network interface device structure 1920 **/ 1921 static void i40e_set_rx_mode(struct net_device *netdev) 1922 { 1923 struct i40e_netdev_priv *np = netdev_priv(netdev); 1924 struct i40e_vsi *vsi = np->vsi; 1925 1926 spin_lock_bh(&vsi->mac_filter_hash_lock); 1927 1928 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1929 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1930 1931 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1932 1933 /* check for other flag changes */ 1934 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1935 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1936 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1937 } 1938 } 1939 1940 /** 1941 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1942 * @vsi: Pointer to VSI struct 1943 * @from: Pointer to list which contains MAC filter entries - changes to 1944 * those entries needs to be undone. 1945 * 1946 * MAC filter entries from this list were slated for deletion. 1947 **/ 1948 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1949 struct hlist_head *from) 1950 { 1951 struct i40e_mac_filter *f; 1952 struct hlist_node *h; 1953 1954 hlist_for_each_entry_safe(f, h, from, hlist) { 1955 u64 key = i40e_addr_to_hkey(f->macaddr); 1956 1957 /* Move the element back into MAC filter list*/ 1958 hlist_del(&f->hlist); 1959 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1960 } 1961 } 1962 1963 /** 1964 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1965 * @vsi: Pointer to vsi struct 1966 * @from: Pointer to list which contains MAC filter entries - changes to 1967 * those entries needs to be undone. 1968 * 1969 * MAC filter entries from this list were slated for addition. 1970 **/ 1971 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1972 struct hlist_head *from) 1973 { 1974 struct i40e_new_mac_filter *new; 1975 struct hlist_node *h; 1976 1977 hlist_for_each_entry_safe(new, h, from, hlist) { 1978 /* We can simply free the wrapper structure */ 1979 hlist_del(&new->hlist); 1980 kfree(new); 1981 } 1982 } 1983 1984 /** 1985 * i40e_next_entry - Get the next non-broadcast filter from a list 1986 * @next: pointer to filter in list 1987 * 1988 * Returns the next non-broadcast filter in the list. Required so that we 1989 * ignore broadcast filters within the list, since these are not handled via 1990 * the normal firmware update path. 1991 */ 1992 static 1993 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 1994 { 1995 hlist_for_each_entry_continue(next, hlist) { 1996 if (!is_broadcast_ether_addr(next->f->macaddr)) 1997 return next; 1998 } 1999 2000 return NULL; 2001 } 2002 2003 /** 2004 * i40e_update_filter_state - Update filter state based on return data 2005 * from firmware 2006 * @count: Number of filters added 2007 * @add_list: return data from fw 2008 * @add_head: pointer to first filter in current batch 2009 * 2010 * MAC filter entries from list were slated to be added to device. Returns 2011 * number of successful filters. Note that 0 does NOT mean success! 2012 **/ 2013 static int 2014 i40e_update_filter_state(int count, 2015 struct i40e_aqc_add_macvlan_element_data *add_list, 2016 struct i40e_new_mac_filter *add_head) 2017 { 2018 int retval = 0; 2019 int i; 2020 2021 for (i = 0; i < count; i++) { 2022 /* Always check status of each filter. We don't need to check 2023 * the firmware return status because we pre-set the filter 2024 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2025 * request to the adminq. Thus, if it no longer matches then 2026 * we know the filter is active. 2027 */ 2028 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2029 add_head->state = I40E_FILTER_FAILED; 2030 } else { 2031 add_head->state = I40E_FILTER_ACTIVE; 2032 retval++; 2033 } 2034 2035 add_head = i40e_next_filter(add_head); 2036 if (!add_head) 2037 break; 2038 } 2039 2040 return retval; 2041 } 2042 2043 /** 2044 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2045 * @vsi: ptr to the VSI 2046 * @vsi_name: name to display in messages 2047 * @list: the list of filters to send to firmware 2048 * @num_del: the number of filters to delete 2049 * @retval: Set to -EIO on failure to delete 2050 * 2051 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2052 * *retval instead of a return value so that success does not force ret_val to 2053 * be set to 0. This ensures that a sequence of calls to this function 2054 * preserve the previous value of *retval on successful delete. 2055 */ 2056 static 2057 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2058 struct i40e_aqc_remove_macvlan_element_data *list, 2059 int num_del, int *retval) 2060 { 2061 struct i40e_hw *hw = &vsi->back->hw; 2062 i40e_status aq_ret; 2063 int aq_err; 2064 2065 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2066 aq_err = hw->aq.asq_last_status; 2067 2068 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2069 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2070 *retval = -EIO; 2071 dev_info(&vsi->back->pdev->dev, 2072 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2073 vsi_name, i40e_stat_str(hw, aq_ret), 2074 i40e_aq_str(hw, aq_err)); 2075 } 2076 } 2077 2078 /** 2079 * i40e_aqc_add_filters - Request firmware to add a set of filters 2080 * @vsi: ptr to the VSI 2081 * @vsi_name: name to display in messages 2082 * @list: the list of filters to send to firmware 2083 * @add_head: Position in the add hlist 2084 * @num_add: the number of filters to add 2085 * 2086 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2087 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2088 * space for more filters. 2089 */ 2090 static 2091 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2092 struct i40e_aqc_add_macvlan_element_data *list, 2093 struct i40e_new_mac_filter *add_head, 2094 int num_add) 2095 { 2096 struct i40e_hw *hw = &vsi->back->hw; 2097 int aq_err, fcnt; 2098 2099 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2100 aq_err = hw->aq.asq_last_status; 2101 fcnt = i40e_update_filter_state(num_add, list, add_head); 2102 2103 if (fcnt != num_add) { 2104 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2105 dev_warn(&vsi->back->pdev->dev, 2106 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2107 i40e_aq_str(hw, aq_err), 2108 vsi_name); 2109 } 2110 } 2111 2112 /** 2113 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2114 * @vsi: pointer to the VSI 2115 * @vsi_name: the VSI name 2116 * @f: filter data 2117 * 2118 * This function sets or clears the promiscuous broadcast flags for VLAN 2119 * filters in order to properly receive broadcast frames. Assumes that only 2120 * broadcast filters are passed. 2121 * 2122 * Returns status indicating success or failure; 2123 **/ 2124 static i40e_status 2125 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2126 struct i40e_mac_filter *f) 2127 { 2128 bool enable = f->state == I40E_FILTER_NEW; 2129 struct i40e_hw *hw = &vsi->back->hw; 2130 i40e_status aq_ret; 2131 2132 if (f->vlan == I40E_VLAN_ANY) { 2133 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2134 vsi->seid, 2135 enable, 2136 NULL); 2137 } else { 2138 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2139 vsi->seid, 2140 enable, 2141 f->vlan, 2142 NULL); 2143 } 2144 2145 if (aq_ret) { 2146 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2147 dev_warn(&vsi->back->pdev->dev, 2148 "Error %s, forcing overflow promiscuous on %s\n", 2149 i40e_aq_str(hw, hw->aq.asq_last_status), 2150 vsi_name); 2151 } 2152 2153 return aq_ret; 2154 } 2155 2156 /** 2157 * i40e_set_promiscuous - set promiscuous mode 2158 * @pf: board private structure 2159 * @promisc: promisc on or off 2160 * 2161 * There are different ways of setting promiscuous mode on a PF depending on 2162 * what state/environment we're in. This identifies and sets it appropriately. 2163 * Returns 0 on success. 2164 **/ 2165 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2166 { 2167 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2168 struct i40e_hw *hw = &pf->hw; 2169 i40e_status aq_ret; 2170 2171 if (vsi->type == I40E_VSI_MAIN && 2172 pf->lan_veb != I40E_NO_VEB && 2173 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2174 /* set defport ON for Main VSI instead of true promisc 2175 * this way we will get all unicast/multicast and VLAN 2176 * promisc behavior but will not get VF or VMDq traffic 2177 * replicated on the Main VSI. 2178 */ 2179 if (promisc) 2180 aq_ret = i40e_aq_set_default_vsi(hw, 2181 vsi->seid, 2182 NULL); 2183 else 2184 aq_ret = i40e_aq_clear_default_vsi(hw, 2185 vsi->seid, 2186 NULL); 2187 if (aq_ret) { 2188 dev_info(&pf->pdev->dev, 2189 "Set default VSI failed, err %s, aq_err %s\n", 2190 i40e_stat_str(hw, aq_ret), 2191 i40e_aq_str(hw, hw->aq.asq_last_status)); 2192 } 2193 } else { 2194 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2195 hw, 2196 vsi->seid, 2197 promisc, NULL, 2198 true); 2199 if (aq_ret) { 2200 dev_info(&pf->pdev->dev, 2201 "set unicast promisc failed, err %s, aq_err %s\n", 2202 i40e_stat_str(hw, aq_ret), 2203 i40e_aq_str(hw, hw->aq.asq_last_status)); 2204 } 2205 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2206 hw, 2207 vsi->seid, 2208 promisc, NULL); 2209 if (aq_ret) { 2210 dev_info(&pf->pdev->dev, 2211 "set multicast promisc failed, err %s, aq_err %s\n", 2212 i40e_stat_str(hw, aq_ret), 2213 i40e_aq_str(hw, hw->aq.asq_last_status)); 2214 } 2215 } 2216 2217 if (!aq_ret) 2218 pf->cur_promisc = promisc; 2219 2220 return aq_ret; 2221 } 2222 2223 /** 2224 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2225 * @vsi: ptr to the VSI 2226 * 2227 * Push any outstanding VSI filter changes through the AdminQ. 2228 * 2229 * Returns 0 or error value 2230 **/ 2231 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2232 { 2233 struct hlist_head tmp_add_list, tmp_del_list; 2234 struct i40e_mac_filter *f; 2235 struct i40e_new_mac_filter *new, *add_head = NULL; 2236 struct i40e_hw *hw = &vsi->back->hw; 2237 bool old_overflow, new_overflow; 2238 unsigned int failed_filters = 0; 2239 unsigned int vlan_filters = 0; 2240 char vsi_name[16] = "PF"; 2241 int filter_list_len = 0; 2242 i40e_status aq_ret = 0; 2243 u32 changed_flags = 0; 2244 struct hlist_node *h; 2245 struct i40e_pf *pf; 2246 int num_add = 0; 2247 int num_del = 0; 2248 int retval = 0; 2249 u16 cmd_flags; 2250 int list_size; 2251 int bkt; 2252 2253 /* empty array typed pointers, kcalloc later */ 2254 struct i40e_aqc_add_macvlan_element_data *add_list; 2255 struct i40e_aqc_remove_macvlan_element_data *del_list; 2256 2257 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2258 usleep_range(1000, 2000); 2259 pf = vsi->back; 2260 2261 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2262 2263 if (vsi->netdev) { 2264 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2265 vsi->current_netdev_flags = vsi->netdev->flags; 2266 } 2267 2268 INIT_HLIST_HEAD(&tmp_add_list); 2269 INIT_HLIST_HEAD(&tmp_del_list); 2270 2271 if (vsi->type == I40E_VSI_SRIOV) 2272 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2273 else if (vsi->type != I40E_VSI_MAIN) 2274 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2275 2276 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2277 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2278 2279 spin_lock_bh(&vsi->mac_filter_hash_lock); 2280 /* Create a list of filters to delete. */ 2281 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2282 if (f->state == I40E_FILTER_REMOVE) { 2283 /* Move the element into temporary del_list */ 2284 hash_del(&f->hlist); 2285 hlist_add_head(&f->hlist, &tmp_del_list); 2286 2287 /* Avoid counting removed filters */ 2288 continue; 2289 } 2290 if (f->state == I40E_FILTER_NEW) { 2291 /* Create a temporary i40e_new_mac_filter */ 2292 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2293 if (!new) 2294 goto err_no_memory_locked; 2295 2296 /* Store pointer to the real filter */ 2297 new->f = f; 2298 new->state = f->state; 2299 2300 /* Add it to the hash list */ 2301 hlist_add_head(&new->hlist, &tmp_add_list); 2302 } 2303 2304 /* Count the number of active (current and new) VLAN 2305 * filters we have now. Does not count filters which 2306 * are marked for deletion. 2307 */ 2308 if (f->vlan > 0) 2309 vlan_filters++; 2310 } 2311 2312 retval = i40e_correct_mac_vlan_filters(vsi, 2313 &tmp_add_list, 2314 &tmp_del_list, 2315 vlan_filters); 2316 if (retval) 2317 goto err_no_memory_locked; 2318 2319 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2320 } 2321 2322 /* Now process 'del_list' outside the lock */ 2323 if (!hlist_empty(&tmp_del_list)) { 2324 filter_list_len = hw->aq.asq_buf_size / 2325 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2326 list_size = filter_list_len * 2327 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2328 del_list = kzalloc(list_size, GFP_ATOMIC); 2329 if (!del_list) 2330 goto err_no_memory; 2331 2332 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2333 cmd_flags = 0; 2334 2335 /* handle broadcast filters by updating the broadcast 2336 * promiscuous flag and release filter list. 2337 */ 2338 if (is_broadcast_ether_addr(f->macaddr)) { 2339 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2340 2341 hlist_del(&f->hlist); 2342 kfree(f); 2343 continue; 2344 } 2345 2346 /* add to delete list */ 2347 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2348 if (f->vlan == I40E_VLAN_ANY) { 2349 del_list[num_del].vlan_tag = 0; 2350 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2351 } else { 2352 del_list[num_del].vlan_tag = 2353 cpu_to_le16((u16)(f->vlan)); 2354 } 2355 2356 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2357 del_list[num_del].flags = cmd_flags; 2358 num_del++; 2359 2360 /* flush a full buffer */ 2361 if (num_del == filter_list_len) { 2362 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2363 num_del, &retval); 2364 memset(del_list, 0, list_size); 2365 num_del = 0; 2366 } 2367 /* Release memory for MAC filter entries which were 2368 * synced up with HW. 2369 */ 2370 hlist_del(&f->hlist); 2371 kfree(f); 2372 } 2373 2374 if (num_del) { 2375 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2376 num_del, &retval); 2377 } 2378 2379 kfree(del_list); 2380 del_list = NULL; 2381 } 2382 2383 if (!hlist_empty(&tmp_add_list)) { 2384 /* Do all the adds now. */ 2385 filter_list_len = hw->aq.asq_buf_size / 2386 sizeof(struct i40e_aqc_add_macvlan_element_data); 2387 list_size = filter_list_len * 2388 sizeof(struct i40e_aqc_add_macvlan_element_data); 2389 add_list = kzalloc(list_size, GFP_ATOMIC); 2390 if (!add_list) 2391 goto err_no_memory; 2392 2393 num_add = 0; 2394 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2395 /* handle broadcast filters by updating the broadcast 2396 * promiscuous flag instead of adding a MAC filter. 2397 */ 2398 if (is_broadcast_ether_addr(new->f->macaddr)) { 2399 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2400 new->f)) 2401 new->state = I40E_FILTER_FAILED; 2402 else 2403 new->state = I40E_FILTER_ACTIVE; 2404 continue; 2405 } 2406 2407 /* add to add array */ 2408 if (num_add == 0) 2409 add_head = new; 2410 cmd_flags = 0; 2411 ether_addr_copy(add_list[num_add].mac_addr, 2412 new->f->macaddr); 2413 if (new->f->vlan == I40E_VLAN_ANY) { 2414 add_list[num_add].vlan_tag = 0; 2415 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2416 } else { 2417 add_list[num_add].vlan_tag = 2418 cpu_to_le16((u16)(new->f->vlan)); 2419 } 2420 add_list[num_add].queue_number = 0; 2421 /* set invalid match method for later detection */ 2422 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2423 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2424 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2425 num_add++; 2426 2427 /* flush a full buffer */ 2428 if (num_add == filter_list_len) { 2429 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2430 add_head, num_add); 2431 memset(add_list, 0, list_size); 2432 num_add = 0; 2433 } 2434 } 2435 if (num_add) { 2436 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2437 num_add); 2438 } 2439 /* Now move all of the filters from the temp add list back to 2440 * the VSI's list. 2441 */ 2442 spin_lock_bh(&vsi->mac_filter_hash_lock); 2443 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2444 /* Only update the state if we're still NEW */ 2445 if (new->f->state == I40E_FILTER_NEW) 2446 new->f->state = new->state; 2447 hlist_del(&new->hlist); 2448 kfree(new); 2449 } 2450 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2451 kfree(add_list); 2452 add_list = NULL; 2453 } 2454 2455 /* Determine the number of active and failed filters. */ 2456 spin_lock_bh(&vsi->mac_filter_hash_lock); 2457 vsi->active_filters = 0; 2458 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2459 if (f->state == I40E_FILTER_ACTIVE) 2460 vsi->active_filters++; 2461 else if (f->state == I40E_FILTER_FAILED) 2462 failed_filters++; 2463 } 2464 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2465 2466 /* Check if we are able to exit overflow promiscuous mode. We can 2467 * safely exit if we didn't just enter, we no longer have any failed 2468 * filters, and we have reduced filters below the threshold value. 2469 */ 2470 if (old_overflow && !failed_filters && 2471 vsi->active_filters < vsi->promisc_threshold) { 2472 dev_info(&pf->pdev->dev, 2473 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2474 vsi_name); 2475 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2476 vsi->promisc_threshold = 0; 2477 } 2478 2479 /* if the VF is not trusted do not do promisc */ 2480 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2481 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2482 goto out; 2483 } 2484 2485 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2486 2487 /* If we are entering overflow promiscuous, we need to calculate a new 2488 * threshold for when we are safe to exit 2489 */ 2490 if (!old_overflow && new_overflow) 2491 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2492 2493 /* check for changes in promiscuous modes */ 2494 if (changed_flags & IFF_ALLMULTI) { 2495 bool cur_multipromisc; 2496 2497 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2498 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2499 vsi->seid, 2500 cur_multipromisc, 2501 NULL); 2502 if (aq_ret) { 2503 retval = i40e_aq_rc_to_posix(aq_ret, 2504 hw->aq.asq_last_status); 2505 dev_info(&pf->pdev->dev, 2506 "set multi promisc failed on %s, err %s aq_err %s\n", 2507 vsi_name, 2508 i40e_stat_str(hw, aq_ret), 2509 i40e_aq_str(hw, hw->aq.asq_last_status)); 2510 } 2511 } 2512 2513 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2514 bool cur_promisc; 2515 2516 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2517 new_overflow); 2518 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2519 if (aq_ret) { 2520 retval = i40e_aq_rc_to_posix(aq_ret, 2521 hw->aq.asq_last_status); 2522 dev_info(&pf->pdev->dev, 2523 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2524 cur_promisc ? "on" : "off", 2525 vsi_name, 2526 i40e_stat_str(hw, aq_ret), 2527 i40e_aq_str(hw, hw->aq.asq_last_status)); 2528 } 2529 } 2530 out: 2531 /* if something went wrong then set the changed flag so we try again */ 2532 if (retval) 2533 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2534 2535 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2536 return retval; 2537 2538 err_no_memory: 2539 /* Restore elements on the temporary add and delete lists */ 2540 spin_lock_bh(&vsi->mac_filter_hash_lock); 2541 err_no_memory_locked: 2542 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2543 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2544 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2545 2546 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2547 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2548 return -ENOMEM; 2549 } 2550 2551 /** 2552 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2553 * @pf: board private structure 2554 **/ 2555 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2556 { 2557 int v; 2558 2559 if (!pf) 2560 return; 2561 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2562 return; 2563 2564 for (v = 0; v < pf->num_alloc_vsi; v++) { 2565 if (pf->vsi[v] && 2566 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2567 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2568 2569 if (ret) { 2570 /* come back and try again later */ 2571 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2572 pf->state); 2573 break; 2574 } 2575 } 2576 } 2577 } 2578 2579 /** 2580 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2581 * @vsi: the vsi 2582 **/ 2583 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2584 { 2585 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2586 return I40E_RXBUFFER_2048; 2587 else 2588 return I40E_RXBUFFER_3072; 2589 } 2590 2591 /** 2592 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2593 * @netdev: network interface device structure 2594 * @new_mtu: new value for maximum frame size 2595 * 2596 * Returns 0 on success, negative on failure 2597 **/ 2598 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2599 { 2600 struct i40e_netdev_priv *np = netdev_priv(netdev); 2601 struct i40e_vsi *vsi = np->vsi; 2602 struct i40e_pf *pf = vsi->back; 2603 2604 if (i40e_enabled_xdp_vsi(vsi)) { 2605 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2606 2607 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2608 return -EINVAL; 2609 } 2610 2611 netdev_info(netdev, "changing MTU from %d to %d\n", 2612 netdev->mtu, new_mtu); 2613 netdev->mtu = new_mtu; 2614 if (netif_running(netdev)) 2615 i40e_vsi_reinit_locked(vsi); 2616 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2617 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2618 return 0; 2619 } 2620 2621 /** 2622 * i40e_ioctl - Access the hwtstamp interface 2623 * @netdev: network interface device structure 2624 * @ifr: interface request data 2625 * @cmd: ioctl command 2626 **/ 2627 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2628 { 2629 struct i40e_netdev_priv *np = netdev_priv(netdev); 2630 struct i40e_pf *pf = np->vsi->back; 2631 2632 switch (cmd) { 2633 case SIOCGHWTSTAMP: 2634 return i40e_ptp_get_ts_config(pf, ifr); 2635 case SIOCSHWTSTAMP: 2636 return i40e_ptp_set_ts_config(pf, ifr); 2637 default: 2638 return -EOPNOTSUPP; 2639 } 2640 } 2641 2642 /** 2643 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2644 * @vsi: the vsi being adjusted 2645 **/ 2646 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2647 { 2648 struct i40e_vsi_context ctxt; 2649 i40e_status ret; 2650 2651 if ((vsi->info.valid_sections & 2652 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2653 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2654 return; /* already enabled */ 2655 2656 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2657 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2658 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2659 2660 ctxt.seid = vsi->seid; 2661 ctxt.info = vsi->info; 2662 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2663 if (ret) { 2664 dev_info(&vsi->back->pdev->dev, 2665 "update vlan stripping failed, err %s aq_err %s\n", 2666 i40e_stat_str(&vsi->back->hw, ret), 2667 i40e_aq_str(&vsi->back->hw, 2668 vsi->back->hw.aq.asq_last_status)); 2669 } 2670 } 2671 2672 /** 2673 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2674 * @vsi: the vsi being adjusted 2675 **/ 2676 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2677 { 2678 struct i40e_vsi_context ctxt; 2679 i40e_status ret; 2680 2681 if ((vsi->info.valid_sections & 2682 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2683 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2684 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2685 return; /* already disabled */ 2686 2687 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2688 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2689 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2690 2691 ctxt.seid = vsi->seid; 2692 ctxt.info = vsi->info; 2693 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2694 if (ret) { 2695 dev_info(&vsi->back->pdev->dev, 2696 "update vlan stripping failed, err %s aq_err %s\n", 2697 i40e_stat_str(&vsi->back->hw, ret), 2698 i40e_aq_str(&vsi->back->hw, 2699 vsi->back->hw.aq.asq_last_status)); 2700 } 2701 } 2702 2703 /** 2704 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2705 * @vsi: the vsi being configured 2706 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2707 * 2708 * This is a helper function for adding a new MAC/VLAN filter with the 2709 * specified VLAN for each existing MAC address already in the hash table. 2710 * This function does *not* perform any accounting to update filters based on 2711 * VLAN mode. 2712 * 2713 * NOTE: this function expects to be called while under the 2714 * mac_filter_hash_lock 2715 **/ 2716 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2717 { 2718 struct i40e_mac_filter *f, *add_f; 2719 struct hlist_node *h; 2720 int bkt; 2721 2722 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2723 if (f->state == I40E_FILTER_REMOVE) 2724 continue; 2725 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2726 if (!add_f) { 2727 dev_info(&vsi->back->pdev->dev, 2728 "Could not add vlan filter %d for %pM\n", 2729 vid, f->macaddr); 2730 return -ENOMEM; 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2739 * @vsi: the VSI being configured 2740 * @vid: VLAN id to be added 2741 **/ 2742 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2743 { 2744 int err; 2745 2746 if (vsi->info.pvid) 2747 return -EINVAL; 2748 2749 /* The network stack will attempt to add VID=0, with the intention to 2750 * receive priority tagged packets with a VLAN of 0. Our HW receives 2751 * these packets by default when configured to receive untagged 2752 * packets, so we don't need to add a filter for this case. 2753 * Additionally, HW interprets adding a VID=0 filter as meaning to 2754 * receive *only* tagged traffic and stops receiving untagged traffic. 2755 * Thus, we do not want to actually add a filter for VID=0 2756 */ 2757 if (!vid) 2758 return 0; 2759 2760 /* Locked once because all functions invoked below iterates list*/ 2761 spin_lock_bh(&vsi->mac_filter_hash_lock); 2762 err = i40e_add_vlan_all_mac(vsi, vid); 2763 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2764 if (err) 2765 return err; 2766 2767 /* schedule our worker thread which will take care of 2768 * applying the new filter changes 2769 */ 2770 i40e_service_event_schedule(vsi->back); 2771 return 0; 2772 } 2773 2774 /** 2775 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2776 * @vsi: the vsi being configured 2777 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2778 * 2779 * This function should be used to remove all VLAN filters which match the 2780 * given VID. It does not schedule the service event and does not take the 2781 * mac_filter_hash_lock so it may be combined with other operations under 2782 * a single invocation of the mac_filter_hash_lock. 2783 * 2784 * NOTE: this function expects to be called while under the 2785 * mac_filter_hash_lock 2786 */ 2787 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2788 { 2789 struct i40e_mac_filter *f; 2790 struct hlist_node *h; 2791 int bkt; 2792 2793 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2794 if (f->vlan == vid) 2795 __i40e_del_filter(vsi, f); 2796 } 2797 } 2798 2799 /** 2800 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2801 * @vsi: the VSI being configured 2802 * @vid: VLAN id to be removed 2803 **/ 2804 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2805 { 2806 if (!vid || vsi->info.pvid) 2807 return; 2808 2809 spin_lock_bh(&vsi->mac_filter_hash_lock); 2810 i40e_rm_vlan_all_mac(vsi, vid); 2811 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2812 2813 /* schedule our worker thread which will take care of 2814 * applying the new filter changes 2815 */ 2816 i40e_service_event_schedule(vsi->back); 2817 } 2818 2819 /** 2820 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2821 * @netdev: network interface to be adjusted 2822 * @proto: unused protocol value 2823 * @vid: vlan id to be added 2824 * 2825 * net_device_ops implementation for adding vlan ids 2826 **/ 2827 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2828 __always_unused __be16 proto, u16 vid) 2829 { 2830 struct i40e_netdev_priv *np = netdev_priv(netdev); 2831 struct i40e_vsi *vsi = np->vsi; 2832 int ret = 0; 2833 2834 if (vid >= VLAN_N_VID) 2835 return -EINVAL; 2836 2837 ret = i40e_vsi_add_vlan(vsi, vid); 2838 if (!ret) 2839 set_bit(vid, vsi->active_vlans); 2840 2841 return ret; 2842 } 2843 2844 /** 2845 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2846 * @netdev: network interface to be adjusted 2847 * @proto: unused protocol value 2848 * @vid: vlan id to be added 2849 **/ 2850 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2851 __always_unused __be16 proto, u16 vid) 2852 { 2853 struct i40e_netdev_priv *np = netdev_priv(netdev); 2854 struct i40e_vsi *vsi = np->vsi; 2855 2856 if (vid >= VLAN_N_VID) 2857 return; 2858 set_bit(vid, vsi->active_vlans); 2859 } 2860 2861 /** 2862 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2863 * @netdev: network interface to be adjusted 2864 * @proto: unused protocol value 2865 * @vid: vlan id to be removed 2866 * 2867 * net_device_ops implementation for removing vlan ids 2868 **/ 2869 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2870 __always_unused __be16 proto, u16 vid) 2871 { 2872 struct i40e_netdev_priv *np = netdev_priv(netdev); 2873 struct i40e_vsi *vsi = np->vsi; 2874 2875 /* return code is ignored as there is nothing a user 2876 * can do about failure to remove and a log message was 2877 * already printed from the other function 2878 */ 2879 i40e_vsi_kill_vlan(vsi, vid); 2880 2881 clear_bit(vid, vsi->active_vlans); 2882 2883 return 0; 2884 } 2885 2886 /** 2887 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2888 * @vsi: the vsi being brought back up 2889 **/ 2890 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2891 { 2892 u16 vid; 2893 2894 if (!vsi->netdev) 2895 return; 2896 2897 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2898 i40e_vlan_stripping_enable(vsi); 2899 else 2900 i40e_vlan_stripping_disable(vsi); 2901 2902 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2903 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2904 vid); 2905 } 2906 2907 /** 2908 * i40e_vsi_add_pvid - Add pvid for the VSI 2909 * @vsi: the vsi being adjusted 2910 * @vid: the vlan id to set as a PVID 2911 **/ 2912 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2913 { 2914 struct i40e_vsi_context ctxt; 2915 i40e_status ret; 2916 2917 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2918 vsi->info.pvid = cpu_to_le16(vid); 2919 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2920 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2921 I40E_AQ_VSI_PVLAN_EMOD_STR; 2922 2923 ctxt.seid = vsi->seid; 2924 ctxt.info = vsi->info; 2925 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2926 if (ret) { 2927 dev_info(&vsi->back->pdev->dev, 2928 "add pvid failed, err %s aq_err %s\n", 2929 i40e_stat_str(&vsi->back->hw, ret), 2930 i40e_aq_str(&vsi->back->hw, 2931 vsi->back->hw.aq.asq_last_status)); 2932 return -ENOENT; 2933 } 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2940 * @vsi: the vsi being adjusted 2941 * 2942 * Just use the vlan_rx_register() service to put it back to normal 2943 **/ 2944 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2945 { 2946 i40e_vlan_stripping_disable(vsi); 2947 2948 vsi->info.pvid = 0; 2949 } 2950 2951 /** 2952 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2953 * @vsi: ptr to the VSI 2954 * 2955 * If this function returns with an error, then it's possible one or 2956 * more of the rings is populated (while the rest are not). It is the 2957 * callers duty to clean those orphaned rings. 2958 * 2959 * Return 0 on success, negative on failure 2960 **/ 2961 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2962 { 2963 int i, err = 0; 2964 2965 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2966 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2967 2968 if (!i40e_enabled_xdp_vsi(vsi)) 2969 return err; 2970 2971 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2972 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2973 2974 return err; 2975 } 2976 2977 /** 2978 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 2979 * @vsi: ptr to the VSI 2980 * 2981 * Free VSI's transmit software resources 2982 **/ 2983 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 2984 { 2985 int i; 2986 2987 if (vsi->tx_rings) { 2988 for (i = 0; i < vsi->num_queue_pairs; i++) 2989 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2990 i40e_free_tx_resources(vsi->tx_rings[i]); 2991 } 2992 2993 if (vsi->xdp_rings) { 2994 for (i = 0; i < vsi->num_queue_pairs; i++) 2995 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2996 i40e_free_tx_resources(vsi->xdp_rings[i]); 2997 } 2998 } 2999 3000 /** 3001 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3002 * @vsi: ptr to the VSI 3003 * 3004 * If this function returns with an error, then it's possible one or 3005 * more of the rings is populated (while the rest are not). It is the 3006 * callers duty to clean those orphaned rings. 3007 * 3008 * Return 0 on success, negative on failure 3009 **/ 3010 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3011 { 3012 int i, err = 0; 3013 3014 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3015 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3016 return err; 3017 } 3018 3019 /** 3020 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3021 * @vsi: ptr to the VSI 3022 * 3023 * Free all receive software resources 3024 **/ 3025 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3026 { 3027 int i; 3028 3029 if (!vsi->rx_rings) 3030 return; 3031 3032 for (i = 0; i < vsi->num_queue_pairs; i++) 3033 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3034 i40e_free_rx_resources(vsi->rx_rings[i]); 3035 } 3036 3037 /** 3038 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3039 * @ring: The Tx ring to configure 3040 * 3041 * This enables/disables XPS for a given Tx descriptor ring 3042 * based on the TCs enabled for the VSI that ring belongs to. 3043 **/ 3044 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3045 { 3046 int cpu; 3047 3048 if (!ring->q_vector || !ring->netdev || ring->ch) 3049 return; 3050 3051 /* We only initialize XPS once, so as not to overwrite user settings */ 3052 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3053 return; 3054 3055 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3056 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3057 ring->queue_index); 3058 } 3059 3060 /** 3061 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3062 * @ring: The Tx ring to configure 3063 * 3064 * Configure the Tx descriptor ring in the HMC context. 3065 **/ 3066 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3067 { 3068 struct i40e_vsi *vsi = ring->vsi; 3069 u16 pf_q = vsi->base_queue + ring->queue_index; 3070 struct i40e_hw *hw = &vsi->back->hw; 3071 struct i40e_hmc_obj_txq tx_ctx; 3072 i40e_status err = 0; 3073 u32 qtx_ctl = 0; 3074 3075 /* some ATR related tx ring init */ 3076 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3077 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3078 ring->atr_count = 0; 3079 } else { 3080 ring->atr_sample_rate = 0; 3081 } 3082 3083 /* configure XPS */ 3084 i40e_config_xps_tx_ring(ring); 3085 3086 /* clear the context structure first */ 3087 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3088 3089 tx_ctx.new_context = 1; 3090 tx_ctx.base = (ring->dma / 128); 3091 tx_ctx.qlen = ring->count; 3092 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3093 I40E_FLAG_FD_ATR_ENABLED)); 3094 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3095 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3096 if (vsi->type != I40E_VSI_FDIR) 3097 tx_ctx.head_wb_ena = 1; 3098 tx_ctx.head_wb_addr = ring->dma + 3099 (ring->count * sizeof(struct i40e_tx_desc)); 3100 3101 /* As part of VSI creation/update, FW allocates certain 3102 * Tx arbitration queue sets for each TC enabled for 3103 * the VSI. The FW returns the handles to these queue 3104 * sets as part of the response buffer to Add VSI, 3105 * Update VSI, etc. AQ commands. It is expected that 3106 * these queue set handles be associated with the Tx 3107 * queues by the driver as part of the TX queue context 3108 * initialization. This has to be done regardless of 3109 * DCB as by default everything is mapped to TC0. 3110 */ 3111 3112 if (ring->ch) 3113 tx_ctx.rdylist = 3114 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3115 3116 else 3117 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3118 3119 tx_ctx.rdylist_act = 0; 3120 3121 /* clear the context in the HMC */ 3122 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3123 if (err) { 3124 dev_info(&vsi->back->pdev->dev, 3125 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3126 ring->queue_index, pf_q, err); 3127 return -ENOMEM; 3128 } 3129 3130 /* set the context in the HMC */ 3131 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3132 if (err) { 3133 dev_info(&vsi->back->pdev->dev, 3134 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3135 ring->queue_index, pf_q, err); 3136 return -ENOMEM; 3137 } 3138 3139 /* Now associate this queue with this PCI function */ 3140 if (ring->ch) { 3141 if (ring->ch->type == I40E_VSI_VMDQ2) 3142 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3143 else 3144 return -EINVAL; 3145 3146 qtx_ctl |= (ring->ch->vsi_number << 3147 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3148 I40E_QTX_CTL_VFVM_INDX_MASK; 3149 } else { 3150 if (vsi->type == I40E_VSI_VMDQ2) { 3151 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3152 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3153 I40E_QTX_CTL_VFVM_INDX_MASK; 3154 } else { 3155 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3156 } 3157 } 3158 3159 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3160 I40E_QTX_CTL_PF_INDX_MASK); 3161 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3162 i40e_flush(hw); 3163 3164 /* cache tail off for easier writes later */ 3165 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3166 3167 return 0; 3168 } 3169 3170 /** 3171 * i40e_configure_rx_ring - Configure a receive ring context 3172 * @ring: The Rx ring to configure 3173 * 3174 * Configure the Rx descriptor ring in the HMC context. 3175 **/ 3176 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3177 { 3178 struct i40e_vsi *vsi = ring->vsi; 3179 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3180 u16 pf_q = vsi->base_queue + ring->queue_index; 3181 struct i40e_hw *hw = &vsi->back->hw; 3182 struct i40e_hmc_obj_rxq rx_ctx; 3183 i40e_status err = 0; 3184 3185 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3186 3187 /* clear the context structure first */ 3188 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3189 3190 ring->rx_buf_len = vsi->rx_buf_len; 3191 3192 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3193 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3194 3195 rx_ctx.base = (ring->dma / 128); 3196 rx_ctx.qlen = ring->count; 3197 3198 /* use 32 byte descriptors */ 3199 rx_ctx.dsize = 1; 3200 3201 /* descriptor type is always zero 3202 * rx_ctx.dtype = 0; 3203 */ 3204 rx_ctx.hsplit_0 = 0; 3205 3206 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3207 if (hw->revision_id == 0) 3208 rx_ctx.lrxqthresh = 0; 3209 else 3210 rx_ctx.lrxqthresh = 1; 3211 rx_ctx.crcstrip = 1; 3212 rx_ctx.l2tsel = 1; 3213 /* this controls whether VLAN is stripped from inner headers */ 3214 rx_ctx.showiv = 0; 3215 /* set the prefena field to 1 because the manual says to */ 3216 rx_ctx.prefena = 1; 3217 3218 /* clear the context in the HMC */ 3219 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3220 if (err) { 3221 dev_info(&vsi->back->pdev->dev, 3222 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3223 ring->queue_index, pf_q, err); 3224 return -ENOMEM; 3225 } 3226 3227 /* set the context in the HMC */ 3228 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3229 if (err) { 3230 dev_info(&vsi->back->pdev->dev, 3231 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3232 ring->queue_index, pf_q, err); 3233 return -ENOMEM; 3234 } 3235 3236 /* configure Rx buffer alignment */ 3237 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3238 clear_ring_build_skb_enabled(ring); 3239 else 3240 set_ring_build_skb_enabled(ring); 3241 3242 /* cache tail for quicker writes, and clear the reg before use */ 3243 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3244 writel(0, ring->tail); 3245 3246 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3247 3248 return 0; 3249 } 3250 3251 /** 3252 * i40e_vsi_configure_tx - Configure the VSI for Tx 3253 * @vsi: VSI structure describing this set of rings and resources 3254 * 3255 * Configure the Tx VSI for operation. 3256 **/ 3257 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3258 { 3259 int err = 0; 3260 u16 i; 3261 3262 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3263 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3264 3265 if (!i40e_enabled_xdp_vsi(vsi)) 3266 return err; 3267 3268 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3269 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3270 3271 return err; 3272 } 3273 3274 /** 3275 * i40e_vsi_configure_rx - Configure the VSI for Rx 3276 * @vsi: the VSI being configured 3277 * 3278 * Configure the Rx VSI for operation. 3279 **/ 3280 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3281 { 3282 int err = 0; 3283 u16 i; 3284 3285 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3286 vsi->max_frame = I40E_MAX_RXBUFFER; 3287 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3288 #if (PAGE_SIZE < 8192) 3289 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3290 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3291 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3292 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3293 #endif 3294 } else { 3295 vsi->max_frame = I40E_MAX_RXBUFFER; 3296 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3297 I40E_RXBUFFER_2048; 3298 } 3299 3300 /* set up individual rings */ 3301 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3302 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3303 3304 return err; 3305 } 3306 3307 /** 3308 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3309 * @vsi: ptr to the VSI 3310 **/ 3311 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3312 { 3313 struct i40e_ring *tx_ring, *rx_ring; 3314 u16 qoffset, qcount; 3315 int i, n; 3316 3317 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3318 /* Reset the TC information */ 3319 for (i = 0; i < vsi->num_queue_pairs; i++) { 3320 rx_ring = vsi->rx_rings[i]; 3321 tx_ring = vsi->tx_rings[i]; 3322 rx_ring->dcb_tc = 0; 3323 tx_ring->dcb_tc = 0; 3324 } 3325 return; 3326 } 3327 3328 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3329 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3330 continue; 3331 3332 qoffset = vsi->tc_config.tc_info[n].qoffset; 3333 qcount = vsi->tc_config.tc_info[n].qcount; 3334 for (i = qoffset; i < (qoffset + qcount); i++) { 3335 rx_ring = vsi->rx_rings[i]; 3336 tx_ring = vsi->tx_rings[i]; 3337 rx_ring->dcb_tc = n; 3338 tx_ring->dcb_tc = n; 3339 } 3340 } 3341 } 3342 3343 /** 3344 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3345 * @vsi: ptr to the VSI 3346 **/ 3347 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3348 { 3349 if (vsi->netdev) 3350 i40e_set_rx_mode(vsi->netdev); 3351 } 3352 3353 /** 3354 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3355 * @vsi: Pointer to the targeted VSI 3356 * 3357 * This function replays the hlist on the hw where all the SB Flow Director 3358 * filters were saved. 3359 **/ 3360 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3361 { 3362 struct i40e_fdir_filter *filter; 3363 struct i40e_pf *pf = vsi->back; 3364 struct hlist_node *node; 3365 3366 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3367 return; 3368 3369 /* Reset FDir counters as we're replaying all existing filters */ 3370 pf->fd_tcp4_filter_cnt = 0; 3371 pf->fd_udp4_filter_cnt = 0; 3372 pf->fd_sctp4_filter_cnt = 0; 3373 pf->fd_ip4_filter_cnt = 0; 3374 3375 hlist_for_each_entry_safe(filter, node, 3376 &pf->fdir_filter_list, fdir_node) { 3377 i40e_add_del_fdir(vsi, filter, true); 3378 } 3379 } 3380 3381 /** 3382 * i40e_vsi_configure - Set up the VSI for action 3383 * @vsi: the VSI being configured 3384 **/ 3385 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3386 { 3387 int err; 3388 3389 i40e_set_vsi_rx_mode(vsi); 3390 i40e_restore_vlan(vsi); 3391 i40e_vsi_config_dcb_rings(vsi); 3392 err = i40e_vsi_configure_tx(vsi); 3393 if (!err) 3394 err = i40e_vsi_configure_rx(vsi); 3395 3396 return err; 3397 } 3398 3399 /** 3400 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3401 * @vsi: the VSI being configured 3402 **/ 3403 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3404 { 3405 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3406 struct i40e_pf *pf = vsi->back; 3407 struct i40e_hw *hw = &pf->hw; 3408 u16 vector; 3409 int i, q; 3410 u32 qp; 3411 3412 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3413 * and PFINT_LNKLSTn registers, e.g.: 3414 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3415 */ 3416 qp = vsi->base_queue; 3417 vector = vsi->base_vector; 3418 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3419 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3420 3421 q_vector->rx.next_update = jiffies + 1; 3422 q_vector->rx.target_itr = 3423 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3424 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3425 q_vector->rx.target_itr); 3426 q_vector->rx.current_itr = q_vector->rx.target_itr; 3427 3428 q_vector->tx.next_update = jiffies + 1; 3429 q_vector->tx.target_itr = 3430 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3431 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3432 q_vector->tx.target_itr); 3433 q_vector->tx.current_itr = q_vector->tx.target_itr; 3434 3435 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3436 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3437 3438 /* Linked list for the queuepairs assigned to this vector */ 3439 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3440 for (q = 0; q < q_vector->num_ringpairs; q++) { 3441 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3442 u32 val; 3443 3444 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3445 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3446 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3447 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3448 (I40E_QUEUE_TYPE_TX << 3449 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3450 3451 wr32(hw, I40E_QINT_RQCTL(qp), val); 3452 3453 if (has_xdp) { 3454 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3455 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3456 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3457 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3458 (I40E_QUEUE_TYPE_TX << 3459 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3460 3461 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3462 } 3463 3464 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3465 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3466 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3467 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3468 (I40E_QUEUE_TYPE_RX << 3469 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3470 3471 /* Terminate the linked list */ 3472 if (q == (q_vector->num_ringpairs - 1)) 3473 val |= (I40E_QUEUE_END_OF_LIST << 3474 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3475 3476 wr32(hw, I40E_QINT_TQCTL(qp), val); 3477 qp++; 3478 } 3479 } 3480 3481 i40e_flush(hw); 3482 } 3483 3484 /** 3485 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3486 * @pf: pointer to private device data structure 3487 **/ 3488 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3489 { 3490 struct i40e_hw *hw = &pf->hw; 3491 u32 val; 3492 3493 /* clear things first */ 3494 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3495 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3496 3497 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3498 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3499 I40E_PFINT_ICR0_ENA_GRST_MASK | 3500 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3501 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3502 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3503 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3504 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3505 3506 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3507 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3508 3509 if (pf->flags & I40E_FLAG_PTP) 3510 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3511 3512 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3513 3514 /* SW_ITR_IDX = 0, but don't change INTENA */ 3515 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3516 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3517 3518 /* OTHER_ITR_IDX = 0 */ 3519 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3520 } 3521 3522 /** 3523 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3524 * @vsi: the VSI being configured 3525 **/ 3526 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3527 { 3528 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3529 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3530 struct i40e_pf *pf = vsi->back; 3531 struct i40e_hw *hw = &pf->hw; 3532 u32 val; 3533 3534 /* set the ITR configuration */ 3535 q_vector->rx.next_update = jiffies + 1; 3536 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3537 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3538 q_vector->rx.current_itr = q_vector->rx.target_itr; 3539 q_vector->tx.next_update = jiffies + 1; 3540 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3541 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3542 q_vector->tx.current_itr = q_vector->tx.target_itr; 3543 3544 i40e_enable_misc_int_causes(pf); 3545 3546 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3547 wr32(hw, I40E_PFINT_LNKLST0, 0); 3548 3549 /* Associate the queue pair to the vector and enable the queue int */ 3550 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3551 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3552 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3553 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3554 3555 wr32(hw, I40E_QINT_RQCTL(0), val); 3556 3557 if (i40e_enabled_xdp_vsi(vsi)) { 3558 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3559 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3560 (I40E_QUEUE_TYPE_TX 3561 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3562 3563 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3564 } 3565 3566 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3567 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3568 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3569 3570 wr32(hw, I40E_QINT_TQCTL(0), val); 3571 i40e_flush(hw); 3572 } 3573 3574 /** 3575 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3576 * @pf: board private structure 3577 **/ 3578 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3579 { 3580 struct i40e_hw *hw = &pf->hw; 3581 3582 wr32(hw, I40E_PFINT_DYN_CTL0, 3583 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3584 i40e_flush(hw); 3585 } 3586 3587 /** 3588 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3589 * @pf: board private structure 3590 **/ 3591 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3592 { 3593 struct i40e_hw *hw = &pf->hw; 3594 u32 val; 3595 3596 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3597 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3598 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3599 3600 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3601 i40e_flush(hw); 3602 } 3603 3604 /** 3605 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3606 * @irq: interrupt number 3607 * @data: pointer to a q_vector 3608 **/ 3609 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3610 { 3611 struct i40e_q_vector *q_vector = data; 3612 3613 if (!q_vector->tx.ring && !q_vector->rx.ring) 3614 return IRQ_HANDLED; 3615 3616 napi_schedule_irqoff(&q_vector->napi); 3617 3618 return IRQ_HANDLED; 3619 } 3620 3621 /** 3622 * i40e_irq_affinity_notify - Callback for affinity changes 3623 * @notify: context as to what irq was changed 3624 * @mask: the new affinity mask 3625 * 3626 * This is a callback function used by the irq_set_affinity_notifier function 3627 * so that we may register to receive changes to the irq affinity masks. 3628 **/ 3629 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3630 const cpumask_t *mask) 3631 { 3632 struct i40e_q_vector *q_vector = 3633 container_of(notify, struct i40e_q_vector, affinity_notify); 3634 3635 cpumask_copy(&q_vector->affinity_mask, mask); 3636 } 3637 3638 /** 3639 * i40e_irq_affinity_release - Callback for affinity notifier release 3640 * @ref: internal core kernel usage 3641 * 3642 * This is a callback function used by the irq_set_affinity_notifier function 3643 * to inform the current notification subscriber that they will no longer 3644 * receive notifications. 3645 **/ 3646 static void i40e_irq_affinity_release(struct kref *ref) {} 3647 3648 /** 3649 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3650 * @vsi: the VSI being configured 3651 * @basename: name for the vector 3652 * 3653 * Allocates MSI-X vectors and requests interrupts from the kernel. 3654 **/ 3655 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3656 { 3657 int q_vectors = vsi->num_q_vectors; 3658 struct i40e_pf *pf = vsi->back; 3659 int base = vsi->base_vector; 3660 int rx_int_idx = 0; 3661 int tx_int_idx = 0; 3662 int vector, err; 3663 int irq_num; 3664 int cpu; 3665 3666 for (vector = 0; vector < q_vectors; vector++) { 3667 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3668 3669 irq_num = pf->msix_entries[base + vector].vector; 3670 3671 if (q_vector->tx.ring && q_vector->rx.ring) { 3672 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3673 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3674 tx_int_idx++; 3675 } else if (q_vector->rx.ring) { 3676 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3677 "%s-%s-%d", basename, "rx", rx_int_idx++); 3678 } else if (q_vector->tx.ring) { 3679 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3680 "%s-%s-%d", basename, "tx", tx_int_idx++); 3681 } else { 3682 /* skip this unused q_vector */ 3683 continue; 3684 } 3685 err = request_irq(irq_num, 3686 vsi->irq_handler, 3687 0, 3688 q_vector->name, 3689 q_vector); 3690 if (err) { 3691 dev_info(&pf->pdev->dev, 3692 "MSIX request_irq failed, error: %d\n", err); 3693 goto free_queue_irqs; 3694 } 3695 3696 /* register for affinity change notifications */ 3697 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3698 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3699 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3700 /* Spread affinity hints out across online CPUs. 3701 * 3702 * get_cpu_mask returns a static constant mask with 3703 * a permanent lifetime so it's ok to pass to 3704 * irq_set_affinity_hint without making a copy. 3705 */ 3706 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3707 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3708 } 3709 3710 vsi->irqs_ready = true; 3711 return 0; 3712 3713 free_queue_irqs: 3714 while (vector) { 3715 vector--; 3716 irq_num = pf->msix_entries[base + vector].vector; 3717 irq_set_affinity_notifier(irq_num, NULL); 3718 irq_set_affinity_hint(irq_num, NULL); 3719 free_irq(irq_num, &vsi->q_vectors[vector]); 3720 } 3721 return err; 3722 } 3723 3724 /** 3725 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3726 * @vsi: the VSI being un-configured 3727 **/ 3728 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3729 { 3730 struct i40e_pf *pf = vsi->back; 3731 struct i40e_hw *hw = &pf->hw; 3732 int base = vsi->base_vector; 3733 int i; 3734 3735 /* disable interrupt causation from each queue */ 3736 for (i = 0; i < vsi->num_queue_pairs; i++) { 3737 u32 val; 3738 3739 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3740 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3741 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3742 3743 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3744 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3745 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3746 3747 if (!i40e_enabled_xdp_vsi(vsi)) 3748 continue; 3749 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3750 } 3751 3752 /* disable each interrupt */ 3753 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3754 for (i = vsi->base_vector; 3755 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3756 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3757 3758 i40e_flush(hw); 3759 for (i = 0; i < vsi->num_q_vectors; i++) 3760 synchronize_irq(pf->msix_entries[i + base].vector); 3761 } else { 3762 /* Legacy and MSI mode - this stops all interrupt handling */ 3763 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3764 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3765 i40e_flush(hw); 3766 synchronize_irq(pf->pdev->irq); 3767 } 3768 } 3769 3770 /** 3771 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3772 * @vsi: the VSI being configured 3773 **/ 3774 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3775 { 3776 struct i40e_pf *pf = vsi->back; 3777 int i; 3778 3779 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3780 for (i = 0; i < vsi->num_q_vectors; i++) 3781 i40e_irq_dynamic_enable(vsi, i); 3782 } else { 3783 i40e_irq_dynamic_enable_icr0(pf); 3784 } 3785 3786 i40e_flush(&pf->hw); 3787 return 0; 3788 } 3789 3790 /** 3791 * i40e_free_misc_vector - Free the vector that handles non-queue events 3792 * @pf: board private structure 3793 **/ 3794 static void i40e_free_misc_vector(struct i40e_pf *pf) 3795 { 3796 /* Disable ICR 0 */ 3797 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3798 i40e_flush(&pf->hw); 3799 3800 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3801 synchronize_irq(pf->msix_entries[0].vector); 3802 free_irq(pf->msix_entries[0].vector, pf); 3803 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3804 } 3805 } 3806 3807 /** 3808 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3809 * @irq: interrupt number 3810 * @data: pointer to a q_vector 3811 * 3812 * This is the handler used for all MSI/Legacy interrupts, and deals 3813 * with both queue and non-queue interrupts. This is also used in 3814 * MSIX mode to handle the non-queue interrupts. 3815 **/ 3816 static irqreturn_t i40e_intr(int irq, void *data) 3817 { 3818 struct i40e_pf *pf = (struct i40e_pf *)data; 3819 struct i40e_hw *hw = &pf->hw; 3820 irqreturn_t ret = IRQ_NONE; 3821 u32 icr0, icr0_remaining; 3822 u32 val, ena_mask; 3823 3824 icr0 = rd32(hw, I40E_PFINT_ICR0); 3825 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3826 3827 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3828 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3829 goto enable_intr; 3830 3831 /* if interrupt but no bits showing, must be SWINT */ 3832 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3833 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3834 pf->sw_int_count++; 3835 3836 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3837 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3838 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3839 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3840 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3841 } 3842 3843 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3844 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3845 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3846 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3847 3848 /* We do not have a way to disarm Queue causes while leaving 3849 * interrupt enabled for all other causes, ideally 3850 * interrupt should be disabled while we are in NAPI but 3851 * this is not a performance path and napi_schedule() 3852 * can deal with rescheduling. 3853 */ 3854 if (!test_bit(__I40E_DOWN, pf->state)) 3855 napi_schedule_irqoff(&q_vector->napi); 3856 } 3857 3858 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3859 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3860 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3861 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3862 } 3863 3864 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3865 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3866 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3867 } 3868 3869 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3870 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3871 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3872 } 3873 3874 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3875 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3876 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3877 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3878 val = rd32(hw, I40E_GLGEN_RSTAT); 3879 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3880 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3881 if (val == I40E_RESET_CORER) { 3882 pf->corer_count++; 3883 } else if (val == I40E_RESET_GLOBR) { 3884 pf->globr_count++; 3885 } else if (val == I40E_RESET_EMPR) { 3886 pf->empr_count++; 3887 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3888 } 3889 } 3890 3891 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3892 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3893 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3894 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3895 rd32(hw, I40E_PFHMC_ERRORINFO), 3896 rd32(hw, I40E_PFHMC_ERRORDATA)); 3897 } 3898 3899 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3900 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3901 3902 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3903 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3904 i40e_ptp_tx_hwtstamp(pf); 3905 } 3906 } 3907 3908 /* If a critical error is pending we have no choice but to reset the 3909 * device. 3910 * Report and mask out any remaining unexpected interrupts. 3911 */ 3912 icr0_remaining = icr0 & ena_mask; 3913 if (icr0_remaining) { 3914 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3915 icr0_remaining); 3916 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3917 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3918 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3919 dev_info(&pf->pdev->dev, "device will be reset\n"); 3920 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3921 i40e_service_event_schedule(pf); 3922 } 3923 ena_mask &= ~icr0_remaining; 3924 } 3925 ret = IRQ_HANDLED; 3926 3927 enable_intr: 3928 /* re-enable interrupt causes */ 3929 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3930 if (!test_bit(__I40E_DOWN, pf->state)) { 3931 i40e_service_event_schedule(pf); 3932 i40e_irq_dynamic_enable_icr0(pf); 3933 } 3934 3935 return ret; 3936 } 3937 3938 /** 3939 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3940 * @tx_ring: tx ring to clean 3941 * @budget: how many cleans we're allowed 3942 * 3943 * Returns true if there's any budget left (e.g. the clean is finished) 3944 **/ 3945 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3946 { 3947 struct i40e_vsi *vsi = tx_ring->vsi; 3948 u16 i = tx_ring->next_to_clean; 3949 struct i40e_tx_buffer *tx_buf; 3950 struct i40e_tx_desc *tx_desc; 3951 3952 tx_buf = &tx_ring->tx_bi[i]; 3953 tx_desc = I40E_TX_DESC(tx_ring, i); 3954 i -= tx_ring->count; 3955 3956 do { 3957 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 3958 3959 /* if next_to_watch is not set then there is no work pending */ 3960 if (!eop_desc) 3961 break; 3962 3963 /* prevent any other reads prior to eop_desc */ 3964 smp_rmb(); 3965 3966 /* if the descriptor isn't done, no work yet to do */ 3967 if (!(eop_desc->cmd_type_offset_bsz & 3968 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 3969 break; 3970 3971 /* clear next_to_watch to prevent false hangs */ 3972 tx_buf->next_to_watch = NULL; 3973 3974 tx_desc->buffer_addr = 0; 3975 tx_desc->cmd_type_offset_bsz = 0; 3976 /* move past filter desc */ 3977 tx_buf++; 3978 tx_desc++; 3979 i++; 3980 if (unlikely(!i)) { 3981 i -= tx_ring->count; 3982 tx_buf = tx_ring->tx_bi; 3983 tx_desc = I40E_TX_DESC(tx_ring, 0); 3984 } 3985 /* unmap skb header data */ 3986 dma_unmap_single(tx_ring->dev, 3987 dma_unmap_addr(tx_buf, dma), 3988 dma_unmap_len(tx_buf, len), 3989 DMA_TO_DEVICE); 3990 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 3991 kfree(tx_buf->raw_buf); 3992 3993 tx_buf->raw_buf = NULL; 3994 tx_buf->tx_flags = 0; 3995 tx_buf->next_to_watch = NULL; 3996 dma_unmap_len_set(tx_buf, len, 0); 3997 tx_desc->buffer_addr = 0; 3998 tx_desc->cmd_type_offset_bsz = 0; 3999 4000 /* move us past the eop_desc for start of next FD desc */ 4001 tx_buf++; 4002 tx_desc++; 4003 i++; 4004 if (unlikely(!i)) { 4005 i -= tx_ring->count; 4006 tx_buf = tx_ring->tx_bi; 4007 tx_desc = I40E_TX_DESC(tx_ring, 0); 4008 } 4009 4010 /* update budget accounting */ 4011 budget--; 4012 } while (likely(budget)); 4013 4014 i += tx_ring->count; 4015 tx_ring->next_to_clean = i; 4016 4017 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4018 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4019 4020 return budget > 0; 4021 } 4022 4023 /** 4024 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4025 * @irq: interrupt number 4026 * @data: pointer to a q_vector 4027 **/ 4028 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4029 { 4030 struct i40e_q_vector *q_vector = data; 4031 struct i40e_vsi *vsi; 4032 4033 if (!q_vector->tx.ring) 4034 return IRQ_HANDLED; 4035 4036 vsi = q_vector->tx.ring->vsi; 4037 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4038 4039 return IRQ_HANDLED; 4040 } 4041 4042 /** 4043 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4044 * @vsi: the VSI being configured 4045 * @v_idx: vector index 4046 * @qp_idx: queue pair index 4047 **/ 4048 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4049 { 4050 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4051 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4052 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4053 4054 tx_ring->q_vector = q_vector; 4055 tx_ring->next = q_vector->tx.ring; 4056 q_vector->tx.ring = tx_ring; 4057 q_vector->tx.count++; 4058 4059 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4060 if (i40e_enabled_xdp_vsi(vsi)) { 4061 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4062 4063 xdp_ring->q_vector = q_vector; 4064 xdp_ring->next = q_vector->tx.ring; 4065 q_vector->tx.ring = xdp_ring; 4066 q_vector->tx.count++; 4067 } 4068 4069 rx_ring->q_vector = q_vector; 4070 rx_ring->next = q_vector->rx.ring; 4071 q_vector->rx.ring = rx_ring; 4072 q_vector->rx.count++; 4073 } 4074 4075 /** 4076 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4077 * @vsi: the VSI being configured 4078 * 4079 * This function maps descriptor rings to the queue-specific vectors 4080 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4081 * one vector per queue pair, but on a constrained vector budget, we 4082 * group the queue pairs as "efficiently" as possible. 4083 **/ 4084 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4085 { 4086 int qp_remaining = vsi->num_queue_pairs; 4087 int q_vectors = vsi->num_q_vectors; 4088 int num_ringpairs; 4089 int v_start = 0; 4090 int qp_idx = 0; 4091 4092 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4093 * group them so there are multiple queues per vector. 4094 * It is also important to go through all the vectors available to be 4095 * sure that if we don't use all the vectors, that the remaining vectors 4096 * are cleared. This is especially important when decreasing the 4097 * number of queues in use. 4098 */ 4099 for (; v_start < q_vectors; v_start++) { 4100 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4101 4102 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4103 4104 q_vector->num_ringpairs = num_ringpairs; 4105 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4106 4107 q_vector->rx.count = 0; 4108 q_vector->tx.count = 0; 4109 q_vector->rx.ring = NULL; 4110 q_vector->tx.ring = NULL; 4111 4112 while (num_ringpairs--) { 4113 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4114 qp_idx++; 4115 qp_remaining--; 4116 } 4117 } 4118 } 4119 4120 /** 4121 * i40e_vsi_request_irq - Request IRQ from the OS 4122 * @vsi: the VSI being configured 4123 * @basename: name for the vector 4124 **/ 4125 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4126 { 4127 struct i40e_pf *pf = vsi->back; 4128 int err; 4129 4130 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4131 err = i40e_vsi_request_irq_msix(vsi, basename); 4132 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4133 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4134 pf->int_name, pf); 4135 else 4136 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4137 pf->int_name, pf); 4138 4139 if (err) 4140 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4141 4142 return err; 4143 } 4144 4145 #ifdef CONFIG_NET_POLL_CONTROLLER 4146 /** 4147 * i40e_netpoll - A Polling 'interrupt' handler 4148 * @netdev: network interface device structure 4149 * 4150 * This is used by netconsole to send skbs without having to re-enable 4151 * interrupts. It's not called while the normal interrupt routine is executing. 4152 **/ 4153 static void i40e_netpoll(struct net_device *netdev) 4154 { 4155 struct i40e_netdev_priv *np = netdev_priv(netdev); 4156 struct i40e_vsi *vsi = np->vsi; 4157 struct i40e_pf *pf = vsi->back; 4158 int i; 4159 4160 /* if interface is down do nothing */ 4161 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4162 return; 4163 4164 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4165 for (i = 0; i < vsi->num_q_vectors; i++) 4166 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4167 } else { 4168 i40e_intr(pf->pdev->irq, netdev); 4169 } 4170 } 4171 #endif 4172 4173 #define I40E_QTX_ENA_WAIT_COUNT 50 4174 4175 /** 4176 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4177 * @pf: the PF being configured 4178 * @pf_q: the PF queue 4179 * @enable: enable or disable state of the queue 4180 * 4181 * This routine will wait for the given Tx queue of the PF to reach the 4182 * enabled or disabled state. 4183 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4184 * multiple retries; else will return 0 in case of success. 4185 **/ 4186 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4187 { 4188 int i; 4189 u32 tx_reg; 4190 4191 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4192 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4193 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4194 break; 4195 4196 usleep_range(10, 20); 4197 } 4198 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4199 return -ETIMEDOUT; 4200 4201 return 0; 4202 } 4203 4204 /** 4205 * i40e_control_tx_q - Start or stop a particular Tx queue 4206 * @pf: the PF structure 4207 * @pf_q: the PF queue to configure 4208 * @enable: start or stop the queue 4209 * 4210 * This function enables or disables a single queue. Note that any delay 4211 * required after the operation is expected to be handled by the caller of 4212 * this function. 4213 **/ 4214 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4215 { 4216 struct i40e_hw *hw = &pf->hw; 4217 u32 tx_reg; 4218 int i; 4219 4220 /* warn the TX unit of coming changes */ 4221 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4222 if (!enable) 4223 usleep_range(10, 20); 4224 4225 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4226 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4227 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4228 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4229 break; 4230 usleep_range(1000, 2000); 4231 } 4232 4233 /* Skip if the queue is already in the requested state */ 4234 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4235 return; 4236 4237 /* turn on/off the queue */ 4238 if (enable) { 4239 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4240 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4241 } else { 4242 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4243 } 4244 4245 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4246 } 4247 4248 /** 4249 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4250 * @seid: VSI SEID 4251 * @pf: the PF structure 4252 * @pf_q: the PF queue to configure 4253 * @is_xdp: true if the queue is used for XDP 4254 * @enable: start or stop the queue 4255 **/ 4256 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4257 bool is_xdp, bool enable) 4258 { 4259 int ret; 4260 4261 i40e_control_tx_q(pf, pf_q, enable); 4262 4263 /* wait for the change to finish */ 4264 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4265 if (ret) { 4266 dev_info(&pf->pdev->dev, 4267 "VSI seid %d %sTx ring %d %sable timeout\n", 4268 seid, (is_xdp ? "XDP " : ""), pf_q, 4269 (enable ? "en" : "dis")); 4270 } 4271 4272 return ret; 4273 } 4274 4275 /** 4276 * i40e_vsi_control_tx - Start or stop a VSI's rings 4277 * @vsi: the VSI being configured 4278 * @enable: start or stop the rings 4279 **/ 4280 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4281 { 4282 struct i40e_pf *pf = vsi->back; 4283 int i, pf_q, ret = 0; 4284 4285 pf_q = vsi->base_queue; 4286 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4287 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4288 pf_q, 4289 false /*is xdp*/, enable); 4290 if (ret) 4291 break; 4292 4293 if (!i40e_enabled_xdp_vsi(vsi)) 4294 continue; 4295 4296 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4297 pf_q + vsi->alloc_queue_pairs, 4298 true /*is xdp*/, enable); 4299 if (ret) 4300 break; 4301 } 4302 return ret; 4303 } 4304 4305 /** 4306 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4307 * @pf: the PF being configured 4308 * @pf_q: the PF queue 4309 * @enable: enable or disable state of the queue 4310 * 4311 * This routine will wait for the given Rx queue of the PF to reach the 4312 * enabled or disabled state. 4313 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4314 * multiple retries; else will return 0 in case of success. 4315 **/ 4316 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4317 { 4318 int i; 4319 u32 rx_reg; 4320 4321 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4322 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4323 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4324 break; 4325 4326 usleep_range(10, 20); 4327 } 4328 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4329 return -ETIMEDOUT; 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * i40e_control_rx_q - Start or stop a particular Rx queue 4336 * @pf: the PF structure 4337 * @pf_q: the PF queue to configure 4338 * @enable: start or stop the queue 4339 * 4340 * This function enables or disables a single queue. Note that 4341 * any delay required after the operation is expected to be 4342 * handled by the caller of this function. 4343 **/ 4344 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4345 { 4346 struct i40e_hw *hw = &pf->hw; 4347 u32 rx_reg; 4348 int i; 4349 4350 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4351 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4352 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4353 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4354 break; 4355 usleep_range(1000, 2000); 4356 } 4357 4358 /* Skip if the queue is already in the requested state */ 4359 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4360 return; 4361 4362 /* turn on/off the queue */ 4363 if (enable) 4364 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4365 else 4366 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4367 4368 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4369 } 4370 4371 /** 4372 * i40e_control_wait_rx_q 4373 * @pf: the PF structure 4374 * @pf_q: queue being configured 4375 * @enable: start or stop the rings 4376 * 4377 * This function enables or disables a single queue along with waiting 4378 * for the change to finish. The caller of this function should handle 4379 * the delays needed in the case of disabling queues. 4380 **/ 4381 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4382 { 4383 int ret = 0; 4384 4385 i40e_control_rx_q(pf, pf_q, enable); 4386 4387 /* wait for the change to finish */ 4388 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4389 if (ret) 4390 return ret; 4391 4392 return ret; 4393 } 4394 4395 /** 4396 * i40e_vsi_control_rx - Start or stop a VSI's rings 4397 * @vsi: the VSI being configured 4398 * @enable: start or stop the rings 4399 **/ 4400 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4401 { 4402 struct i40e_pf *pf = vsi->back; 4403 int i, pf_q, ret = 0; 4404 4405 pf_q = vsi->base_queue; 4406 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4407 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4408 if (ret) { 4409 dev_info(&pf->pdev->dev, 4410 "VSI seid %d Rx ring %d %sable timeout\n", 4411 vsi->seid, pf_q, (enable ? "en" : "dis")); 4412 break; 4413 } 4414 } 4415 4416 /* Due to HW errata, on Rx disable only, the register can indicate done 4417 * before it really is. Needs 50ms to be sure 4418 */ 4419 if (!enable) 4420 mdelay(50); 4421 4422 return ret; 4423 } 4424 4425 /** 4426 * i40e_vsi_start_rings - Start a VSI's rings 4427 * @vsi: the VSI being configured 4428 **/ 4429 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4430 { 4431 int ret = 0; 4432 4433 /* do rx first for enable and last for disable */ 4434 ret = i40e_vsi_control_rx(vsi, true); 4435 if (ret) 4436 return ret; 4437 ret = i40e_vsi_control_tx(vsi, true); 4438 4439 return ret; 4440 } 4441 4442 /** 4443 * i40e_vsi_stop_rings - Stop a VSI's rings 4444 * @vsi: the VSI being configured 4445 **/ 4446 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4447 { 4448 /* When port TX is suspended, don't wait */ 4449 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4450 return i40e_vsi_stop_rings_no_wait(vsi); 4451 4452 /* do rx first for enable and last for disable 4453 * Ignore return value, we need to shutdown whatever we can 4454 */ 4455 i40e_vsi_control_tx(vsi, false); 4456 i40e_vsi_control_rx(vsi, false); 4457 } 4458 4459 /** 4460 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4461 * @vsi: the VSI being shutdown 4462 * 4463 * This function stops all the rings for a VSI but does not delay to verify 4464 * that rings have been disabled. It is expected that the caller is shutting 4465 * down multiple VSIs at once and will delay together for all the VSIs after 4466 * initiating the shutdown. This is particularly useful for shutting down lots 4467 * of VFs together. Otherwise, a large delay can be incurred while configuring 4468 * each VSI in serial. 4469 **/ 4470 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4471 { 4472 struct i40e_pf *pf = vsi->back; 4473 int i, pf_q; 4474 4475 pf_q = vsi->base_queue; 4476 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4477 i40e_control_tx_q(pf, pf_q, false); 4478 i40e_control_rx_q(pf, pf_q, false); 4479 } 4480 } 4481 4482 /** 4483 * i40e_vsi_free_irq - Free the irq association with the OS 4484 * @vsi: the VSI being configured 4485 **/ 4486 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4487 { 4488 struct i40e_pf *pf = vsi->back; 4489 struct i40e_hw *hw = &pf->hw; 4490 int base = vsi->base_vector; 4491 u32 val, qp; 4492 int i; 4493 4494 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4495 if (!vsi->q_vectors) 4496 return; 4497 4498 if (!vsi->irqs_ready) 4499 return; 4500 4501 vsi->irqs_ready = false; 4502 for (i = 0; i < vsi->num_q_vectors; i++) { 4503 int irq_num; 4504 u16 vector; 4505 4506 vector = i + base; 4507 irq_num = pf->msix_entries[vector].vector; 4508 4509 /* free only the irqs that were actually requested */ 4510 if (!vsi->q_vectors[i] || 4511 !vsi->q_vectors[i]->num_ringpairs) 4512 continue; 4513 4514 /* clear the affinity notifier in the IRQ descriptor */ 4515 irq_set_affinity_notifier(irq_num, NULL); 4516 /* remove our suggested affinity mask for this IRQ */ 4517 irq_set_affinity_hint(irq_num, NULL); 4518 synchronize_irq(irq_num); 4519 free_irq(irq_num, vsi->q_vectors[i]); 4520 4521 /* Tear down the interrupt queue link list 4522 * 4523 * We know that they come in pairs and always 4524 * the Rx first, then the Tx. To clear the 4525 * link list, stick the EOL value into the 4526 * next_q field of the registers. 4527 */ 4528 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4529 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4530 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4531 val |= I40E_QUEUE_END_OF_LIST 4532 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4533 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4534 4535 while (qp != I40E_QUEUE_END_OF_LIST) { 4536 u32 next; 4537 4538 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4539 4540 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4541 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4542 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4543 I40E_QINT_RQCTL_INTEVENT_MASK); 4544 4545 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4546 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4547 4548 wr32(hw, I40E_QINT_RQCTL(qp), val); 4549 4550 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4551 4552 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4553 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4554 4555 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4556 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4557 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4558 I40E_QINT_TQCTL_INTEVENT_MASK); 4559 4560 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4561 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4562 4563 wr32(hw, I40E_QINT_TQCTL(qp), val); 4564 qp = next; 4565 } 4566 } 4567 } else { 4568 free_irq(pf->pdev->irq, pf); 4569 4570 val = rd32(hw, I40E_PFINT_LNKLST0); 4571 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4572 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4573 val |= I40E_QUEUE_END_OF_LIST 4574 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4575 wr32(hw, I40E_PFINT_LNKLST0, val); 4576 4577 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4578 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4579 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4580 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4581 I40E_QINT_RQCTL_INTEVENT_MASK); 4582 4583 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4584 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4585 4586 wr32(hw, I40E_QINT_RQCTL(qp), val); 4587 4588 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4589 4590 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4591 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4592 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4593 I40E_QINT_TQCTL_INTEVENT_MASK); 4594 4595 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4596 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4597 4598 wr32(hw, I40E_QINT_TQCTL(qp), val); 4599 } 4600 } 4601 4602 /** 4603 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4604 * @vsi: the VSI being configured 4605 * @v_idx: Index of vector to be freed 4606 * 4607 * This function frees the memory allocated to the q_vector. In addition if 4608 * NAPI is enabled it will delete any references to the NAPI struct prior 4609 * to freeing the q_vector. 4610 **/ 4611 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4612 { 4613 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4614 struct i40e_ring *ring; 4615 4616 if (!q_vector) 4617 return; 4618 4619 /* disassociate q_vector from rings */ 4620 i40e_for_each_ring(ring, q_vector->tx) 4621 ring->q_vector = NULL; 4622 4623 i40e_for_each_ring(ring, q_vector->rx) 4624 ring->q_vector = NULL; 4625 4626 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4627 if (vsi->netdev) 4628 netif_napi_del(&q_vector->napi); 4629 4630 vsi->q_vectors[v_idx] = NULL; 4631 4632 kfree_rcu(q_vector, rcu); 4633 } 4634 4635 /** 4636 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4637 * @vsi: the VSI being un-configured 4638 * 4639 * This frees the memory allocated to the q_vectors and 4640 * deletes references to the NAPI struct. 4641 **/ 4642 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4643 { 4644 int v_idx; 4645 4646 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4647 i40e_free_q_vector(vsi, v_idx); 4648 } 4649 4650 /** 4651 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4652 * @pf: board private structure 4653 **/ 4654 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4655 { 4656 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4657 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4658 pci_disable_msix(pf->pdev); 4659 kfree(pf->msix_entries); 4660 pf->msix_entries = NULL; 4661 kfree(pf->irq_pile); 4662 pf->irq_pile = NULL; 4663 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4664 pci_disable_msi(pf->pdev); 4665 } 4666 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4667 } 4668 4669 /** 4670 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4671 * @pf: board private structure 4672 * 4673 * We go through and clear interrupt specific resources and reset the structure 4674 * to pre-load conditions 4675 **/ 4676 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4677 { 4678 int i; 4679 4680 i40e_free_misc_vector(pf); 4681 4682 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4683 I40E_IWARP_IRQ_PILE_ID); 4684 4685 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4686 for (i = 0; i < pf->num_alloc_vsi; i++) 4687 if (pf->vsi[i]) 4688 i40e_vsi_free_q_vectors(pf->vsi[i]); 4689 i40e_reset_interrupt_capability(pf); 4690 } 4691 4692 /** 4693 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4694 * @vsi: the VSI being configured 4695 **/ 4696 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4697 { 4698 int q_idx; 4699 4700 if (!vsi->netdev) 4701 return; 4702 4703 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4704 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4705 4706 if (q_vector->rx.ring || q_vector->tx.ring) 4707 napi_enable(&q_vector->napi); 4708 } 4709 } 4710 4711 /** 4712 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4713 * @vsi: the VSI being configured 4714 **/ 4715 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4716 { 4717 int q_idx; 4718 4719 if (!vsi->netdev) 4720 return; 4721 4722 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4723 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4724 4725 if (q_vector->rx.ring || q_vector->tx.ring) 4726 napi_disable(&q_vector->napi); 4727 } 4728 } 4729 4730 /** 4731 * i40e_vsi_close - Shut down a VSI 4732 * @vsi: the vsi to be quelled 4733 **/ 4734 static void i40e_vsi_close(struct i40e_vsi *vsi) 4735 { 4736 struct i40e_pf *pf = vsi->back; 4737 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4738 i40e_down(vsi); 4739 i40e_vsi_free_irq(vsi); 4740 i40e_vsi_free_tx_resources(vsi); 4741 i40e_vsi_free_rx_resources(vsi); 4742 vsi->current_netdev_flags = 0; 4743 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4744 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4745 set_bit(__I40E_CLIENT_RESET, pf->state); 4746 } 4747 4748 /** 4749 * i40e_quiesce_vsi - Pause a given VSI 4750 * @vsi: the VSI being paused 4751 **/ 4752 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4753 { 4754 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4755 return; 4756 4757 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4758 if (vsi->netdev && netif_running(vsi->netdev)) 4759 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4760 else 4761 i40e_vsi_close(vsi); 4762 } 4763 4764 /** 4765 * i40e_unquiesce_vsi - Resume a given VSI 4766 * @vsi: the VSI being resumed 4767 **/ 4768 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4769 { 4770 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4771 return; 4772 4773 if (vsi->netdev && netif_running(vsi->netdev)) 4774 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4775 else 4776 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4777 } 4778 4779 /** 4780 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4781 * @pf: the PF 4782 **/ 4783 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4784 { 4785 int v; 4786 4787 for (v = 0; v < pf->num_alloc_vsi; v++) { 4788 if (pf->vsi[v]) 4789 i40e_quiesce_vsi(pf->vsi[v]); 4790 } 4791 } 4792 4793 /** 4794 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4795 * @pf: the PF 4796 **/ 4797 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4798 { 4799 int v; 4800 4801 for (v = 0; v < pf->num_alloc_vsi; v++) { 4802 if (pf->vsi[v]) 4803 i40e_unquiesce_vsi(pf->vsi[v]); 4804 } 4805 } 4806 4807 /** 4808 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4809 * @vsi: the VSI being configured 4810 * 4811 * Wait until all queues on a given VSI have been disabled. 4812 **/ 4813 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4814 { 4815 struct i40e_pf *pf = vsi->back; 4816 int i, pf_q, ret; 4817 4818 pf_q = vsi->base_queue; 4819 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4820 /* Check and wait for the Tx queue */ 4821 ret = i40e_pf_txq_wait(pf, pf_q, false); 4822 if (ret) { 4823 dev_info(&pf->pdev->dev, 4824 "VSI seid %d Tx ring %d disable timeout\n", 4825 vsi->seid, pf_q); 4826 return ret; 4827 } 4828 4829 if (!i40e_enabled_xdp_vsi(vsi)) 4830 goto wait_rx; 4831 4832 /* Check and wait for the XDP Tx queue */ 4833 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4834 false); 4835 if (ret) { 4836 dev_info(&pf->pdev->dev, 4837 "VSI seid %d XDP Tx ring %d disable timeout\n", 4838 vsi->seid, pf_q); 4839 return ret; 4840 } 4841 wait_rx: 4842 /* Check and wait for the Rx queue */ 4843 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4844 if (ret) { 4845 dev_info(&pf->pdev->dev, 4846 "VSI seid %d Rx ring %d disable timeout\n", 4847 vsi->seid, pf_q); 4848 return ret; 4849 } 4850 } 4851 4852 return 0; 4853 } 4854 4855 #ifdef CONFIG_I40E_DCB 4856 /** 4857 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4858 * @pf: the PF 4859 * 4860 * This function waits for the queues to be in disabled state for all the 4861 * VSIs that are managed by this PF. 4862 **/ 4863 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4864 { 4865 int v, ret = 0; 4866 4867 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4868 if (pf->vsi[v]) { 4869 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4870 if (ret) 4871 break; 4872 } 4873 } 4874 4875 return ret; 4876 } 4877 4878 #endif 4879 4880 /** 4881 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4882 * @pf: pointer to PF 4883 * 4884 * Get TC map for ISCSI PF type that will include iSCSI TC 4885 * and LAN TC. 4886 **/ 4887 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4888 { 4889 struct i40e_dcb_app_priority_table app; 4890 struct i40e_hw *hw = &pf->hw; 4891 u8 enabled_tc = 1; /* TC0 is always enabled */ 4892 u8 tc, i; 4893 /* Get the iSCSI APP TLV */ 4894 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4895 4896 for (i = 0; i < dcbcfg->numapps; i++) { 4897 app = dcbcfg->app[i]; 4898 if (app.selector == I40E_APP_SEL_TCPIP && 4899 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4900 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4901 enabled_tc |= BIT(tc); 4902 break; 4903 } 4904 } 4905 4906 return enabled_tc; 4907 } 4908 4909 /** 4910 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4911 * @dcbcfg: the corresponding DCBx configuration structure 4912 * 4913 * Return the number of TCs from given DCBx configuration 4914 **/ 4915 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4916 { 4917 int i, tc_unused = 0; 4918 u8 num_tc = 0; 4919 u8 ret = 0; 4920 4921 /* Scan the ETS Config Priority Table to find 4922 * traffic class enabled for a given priority 4923 * and create a bitmask of enabled TCs 4924 */ 4925 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 4926 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 4927 4928 /* Now scan the bitmask to check for 4929 * contiguous TCs starting with TC0 4930 */ 4931 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 4932 if (num_tc & BIT(i)) { 4933 if (!tc_unused) { 4934 ret++; 4935 } else { 4936 pr_err("Non-contiguous TC - Disabling DCB\n"); 4937 return 1; 4938 } 4939 } else { 4940 tc_unused = 1; 4941 } 4942 } 4943 4944 /* There is always at least TC0 */ 4945 if (!ret) 4946 ret = 1; 4947 4948 return ret; 4949 } 4950 4951 /** 4952 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 4953 * @dcbcfg: the corresponding DCBx configuration structure 4954 * 4955 * Query the current DCB configuration and return the number of 4956 * traffic classes enabled from the given DCBX config 4957 **/ 4958 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 4959 { 4960 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 4961 u8 enabled_tc = 1; 4962 u8 i; 4963 4964 for (i = 0; i < num_tc; i++) 4965 enabled_tc |= BIT(i); 4966 4967 return enabled_tc; 4968 } 4969 4970 /** 4971 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 4972 * @pf: PF being queried 4973 * 4974 * Query the current MQPRIO configuration and return the number of 4975 * traffic classes enabled. 4976 **/ 4977 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 4978 { 4979 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4980 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 4981 u8 enabled_tc = 1, i; 4982 4983 for (i = 1; i < num_tc; i++) 4984 enabled_tc |= BIT(i); 4985 return enabled_tc; 4986 } 4987 4988 /** 4989 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 4990 * @pf: PF being queried 4991 * 4992 * Return number of traffic classes enabled for the given PF 4993 **/ 4994 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 4995 { 4996 struct i40e_hw *hw = &pf->hw; 4997 u8 i, enabled_tc = 1; 4998 u8 num_tc = 0; 4999 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5000 5001 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5002 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5003 5004 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5005 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5006 return 1; 5007 5008 /* SFP mode will be enabled for all TCs on port */ 5009 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5010 return i40e_dcb_get_num_tc(dcbcfg); 5011 5012 /* MFP mode return count of enabled TCs for this PF */ 5013 if (pf->hw.func_caps.iscsi) 5014 enabled_tc = i40e_get_iscsi_tc_map(pf); 5015 else 5016 return 1; /* Only TC0 */ 5017 5018 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5019 if (enabled_tc & BIT(i)) 5020 num_tc++; 5021 } 5022 return num_tc; 5023 } 5024 5025 /** 5026 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5027 * @pf: PF being queried 5028 * 5029 * Return a bitmap for enabled traffic classes for this PF. 5030 **/ 5031 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5032 { 5033 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5034 return i40e_mqprio_get_enabled_tc(pf); 5035 5036 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5037 * default TC 5038 */ 5039 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5040 return I40E_DEFAULT_TRAFFIC_CLASS; 5041 5042 /* SFP mode we want PF to be enabled for all TCs */ 5043 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5044 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5045 5046 /* MFP enabled and iSCSI PF type */ 5047 if (pf->hw.func_caps.iscsi) 5048 return i40e_get_iscsi_tc_map(pf); 5049 else 5050 return I40E_DEFAULT_TRAFFIC_CLASS; 5051 } 5052 5053 /** 5054 * i40e_vsi_get_bw_info - Query VSI BW Information 5055 * @vsi: the VSI being queried 5056 * 5057 * Returns 0 on success, negative value on failure 5058 **/ 5059 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5060 { 5061 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5062 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5063 struct i40e_pf *pf = vsi->back; 5064 struct i40e_hw *hw = &pf->hw; 5065 i40e_status ret; 5066 u32 tc_bw_max; 5067 int i; 5068 5069 /* Get the VSI level BW configuration */ 5070 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5071 if (ret) { 5072 dev_info(&pf->pdev->dev, 5073 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5074 i40e_stat_str(&pf->hw, ret), 5075 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5076 return -EINVAL; 5077 } 5078 5079 /* Get the VSI level BW configuration per TC */ 5080 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5081 NULL); 5082 if (ret) { 5083 dev_info(&pf->pdev->dev, 5084 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5085 i40e_stat_str(&pf->hw, ret), 5086 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5087 return -EINVAL; 5088 } 5089 5090 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5091 dev_info(&pf->pdev->dev, 5092 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5093 bw_config.tc_valid_bits, 5094 bw_ets_config.tc_valid_bits); 5095 /* Still continuing */ 5096 } 5097 5098 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5099 vsi->bw_max_quanta = bw_config.max_bw; 5100 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5101 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5102 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5103 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5104 vsi->bw_ets_limit_credits[i] = 5105 le16_to_cpu(bw_ets_config.credits[i]); 5106 /* 3 bits out of 4 for each TC */ 5107 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5108 } 5109 5110 return 0; 5111 } 5112 5113 /** 5114 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5115 * @vsi: the VSI being configured 5116 * @enabled_tc: TC bitmap 5117 * @bw_share: BW shared credits per TC 5118 * 5119 * Returns 0 on success, negative value on failure 5120 **/ 5121 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5122 u8 *bw_share) 5123 { 5124 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5125 i40e_status ret; 5126 int i; 5127 5128 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) 5129 return 0; 5130 if (!vsi->mqprio_qopt.qopt.hw) { 5131 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5132 if (ret) 5133 dev_info(&vsi->back->pdev->dev, 5134 "Failed to reset tx rate for vsi->seid %u\n", 5135 vsi->seid); 5136 return ret; 5137 } 5138 bw_data.tc_valid_bits = enabled_tc; 5139 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5140 bw_data.tc_bw_credits[i] = bw_share[i]; 5141 5142 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data, 5143 NULL); 5144 if (ret) { 5145 dev_info(&vsi->back->pdev->dev, 5146 "AQ command Config VSI BW allocation per TC failed = %d\n", 5147 vsi->back->hw.aq.asq_last_status); 5148 return -EINVAL; 5149 } 5150 5151 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5152 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5153 5154 return 0; 5155 } 5156 5157 /** 5158 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5159 * @vsi: the VSI being configured 5160 * @enabled_tc: TC map to be enabled 5161 * 5162 **/ 5163 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5164 { 5165 struct net_device *netdev = vsi->netdev; 5166 struct i40e_pf *pf = vsi->back; 5167 struct i40e_hw *hw = &pf->hw; 5168 u8 netdev_tc = 0; 5169 int i; 5170 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5171 5172 if (!netdev) 5173 return; 5174 5175 if (!enabled_tc) { 5176 netdev_reset_tc(netdev); 5177 return; 5178 } 5179 5180 /* Set up actual enabled TCs on the VSI */ 5181 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5182 return; 5183 5184 /* set per TC queues for the VSI */ 5185 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5186 /* Only set TC queues for enabled tcs 5187 * 5188 * e.g. For a VSI that has TC0 and TC3 enabled the 5189 * enabled_tc bitmap would be 0x00001001; the driver 5190 * will set the numtc for netdev as 2 that will be 5191 * referenced by the netdev layer as TC 0 and 1. 5192 */ 5193 if (vsi->tc_config.enabled_tc & BIT(i)) 5194 netdev_set_tc_queue(netdev, 5195 vsi->tc_config.tc_info[i].netdev_tc, 5196 vsi->tc_config.tc_info[i].qcount, 5197 vsi->tc_config.tc_info[i].qoffset); 5198 } 5199 5200 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5201 return; 5202 5203 /* Assign UP2TC map for the VSI */ 5204 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5205 /* Get the actual TC# for the UP */ 5206 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5207 /* Get the mapped netdev TC# for the UP */ 5208 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5209 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5210 } 5211 } 5212 5213 /** 5214 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5215 * @vsi: the VSI being configured 5216 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5217 **/ 5218 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5219 struct i40e_vsi_context *ctxt) 5220 { 5221 /* copy just the sections touched not the entire info 5222 * since not all sections are valid as returned by 5223 * update vsi params 5224 */ 5225 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5226 memcpy(&vsi->info.queue_mapping, 5227 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5228 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5229 sizeof(vsi->info.tc_mapping)); 5230 } 5231 5232 /** 5233 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5234 * @vsi: VSI to be configured 5235 * @enabled_tc: TC bitmap 5236 * 5237 * This configures a particular VSI for TCs that are mapped to the 5238 * given TC bitmap. It uses default bandwidth share for TCs across 5239 * VSIs to configure TC for a particular VSI. 5240 * 5241 * NOTE: 5242 * It is expected that the VSI queues have been quisced before calling 5243 * this function. 5244 **/ 5245 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5246 { 5247 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5248 struct i40e_pf *pf = vsi->back; 5249 struct i40e_hw *hw = &pf->hw; 5250 struct i40e_vsi_context ctxt; 5251 int ret = 0; 5252 int i; 5253 5254 /* Check if enabled_tc is same as existing or new TCs */ 5255 if (vsi->tc_config.enabled_tc == enabled_tc && 5256 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5257 return ret; 5258 5259 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5260 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5261 if (enabled_tc & BIT(i)) 5262 bw_share[i] = 1; 5263 } 5264 5265 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5266 if (ret) { 5267 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5268 5269 dev_info(&pf->pdev->dev, 5270 "Failed configuring TC map %d for VSI %d\n", 5271 enabled_tc, vsi->seid); 5272 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5273 &bw_config, NULL); 5274 if (ret) { 5275 dev_info(&pf->pdev->dev, 5276 "Failed querying vsi bw info, err %s aq_err %s\n", 5277 i40e_stat_str(hw, ret), 5278 i40e_aq_str(hw, hw->aq.asq_last_status)); 5279 goto out; 5280 } 5281 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5282 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5283 5284 if (!valid_tc) 5285 valid_tc = bw_config.tc_valid_bits; 5286 /* Always enable TC0, no matter what */ 5287 valid_tc |= 1; 5288 dev_info(&pf->pdev->dev, 5289 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5290 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5291 enabled_tc = valid_tc; 5292 } 5293 5294 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5295 if (ret) { 5296 dev_err(&pf->pdev->dev, 5297 "Unable to configure TC map %d for VSI %d\n", 5298 enabled_tc, vsi->seid); 5299 goto out; 5300 } 5301 } 5302 5303 /* Update Queue Pairs Mapping for currently enabled UPs */ 5304 ctxt.seid = vsi->seid; 5305 ctxt.pf_num = vsi->back->hw.pf_id; 5306 ctxt.vf_num = 0; 5307 ctxt.uplink_seid = vsi->uplink_seid; 5308 ctxt.info = vsi->info; 5309 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5310 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5311 if (ret) 5312 goto out; 5313 } else { 5314 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5315 } 5316 5317 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5318 * queues changed. 5319 */ 5320 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5321 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5322 vsi->num_queue_pairs); 5323 ret = i40e_vsi_config_rss(vsi); 5324 if (ret) { 5325 dev_info(&vsi->back->pdev->dev, 5326 "Failed to reconfig rss for num_queues\n"); 5327 return ret; 5328 } 5329 vsi->reconfig_rss = false; 5330 } 5331 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5332 ctxt.info.valid_sections |= 5333 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5334 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5335 } 5336 5337 /* Update the VSI after updating the VSI queue-mapping 5338 * information 5339 */ 5340 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5341 if (ret) { 5342 dev_info(&pf->pdev->dev, 5343 "Update vsi tc config failed, err %s aq_err %s\n", 5344 i40e_stat_str(hw, ret), 5345 i40e_aq_str(hw, hw->aq.asq_last_status)); 5346 goto out; 5347 } 5348 /* update the local VSI info with updated queue map */ 5349 i40e_vsi_update_queue_map(vsi, &ctxt); 5350 vsi->info.valid_sections = 0; 5351 5352 /* Update current VSI BW information */ 5353 ret = i40e_vsi_get_bw_info(vsi); 5354 if (ret) { 5355 dev_info(&pf->pdev->dev, 5356 "Failed updating vsi bw info, err %s aq_err %s\n", 5357 i40e_stat_str(hw, ret), 5358 i40e_aq_str(hw, hw->aq.asq_last_status)); 5359 goto out; 5360 } 5361 5362 /* Update the netdev TC setup */ 5363 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5364 out: 5365 return ret; 5366 } 5367 5368 /** 5369 * i40e_get_link_speed - Returns link speed for the interface 5370 * @vsi: VSI to be configured 5371 * 5372 **/ 5373 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5374 { 5375 struct i40e_pf *pf = vsi->back; 5376 5377 switch (pf->hw.phy.link_info.link_speed) { 5378 case I40E_LINK_SPEED_40GB: 5379 return 40000; 5380 case I40E_LINK_SPEED_25GB: 5381 return 25000; 5382 case I40E_LINK_SPEED_20GB: 5383 return 20000; 5384 case I40E_LINK_SPEED_10GB: 5385 return 10000; 5386 case I40E_LINK_SPEED_1GB: 5387 return 1000; 5388 default: 5389 return -EINVAL; 5390 } 5391 } 5392 5393 /** 5394 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5395 * @vsi: VSI to be configured 5396 * @seid: seid of the channel/VSI 5397 * @max_tx_rate: max TX rate to be configured as BW limit 5398 * 5399 * Helper function to set BW limit for a given VSI 5400 **/ 5401 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5402 { 5403 struct i40e_pf *pf = vsi->back; 5404 u64 credits = 0; 5405 int speed = 0; 5406 int ret = 0; 5407 5408 speed = i40e_get_link_speed(vsi); 5409 if (max_tx_rate > speed) { 5410 dev_err(&pf->pdev->dev, 5411 "Invalid max tx rate %llu specified for VSI seid %d.", 5412 max_tx_rate, seid); 5413 return -EINVAL; 5414 } 5415 if (max_tx_rate && max_tx_rate < 50) { 5416 dev_warn(&pf->pdev->dev, 5417 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5418 max_tx_rate = 50; 5419 } 5420 5421 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5422 credits = max_tx_rate; 5423 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5424 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5425 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5426 if (ret) 5427 dev_err(&pf->pdev->dev, 5428 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5429 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5430 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5431 return ret; 5432 } 5433 5434 /** 5435 * i40e_remove_queue_channels - Remove queue channels for the TCs 5436 * @vsi: VSI to be configured 5437 * 5438 * Remove queue channels for the TCs 5439 **/ 5440 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5441 { 5442 enum i40e_admin_queue_err last_aq_status; 5443 struct i40e_cloud_filter *cfilter; 5444 struct i40e_channel *ch, *ch_tmp; 5445 struct i40e_pf *pf = vsi->back; 5446 struct hlist_node *node; 5447 int ret, i; 5448 5449 /* Reset rss size that was stored when reconfiguring rss for 5450 * channel VSIs with non-power-of-2 queue count. 5451 */ 5452 vsi->current_rss_size = 0; 5453 5454 /* perform cleanup for channels if they exist */ 5455 if (list_empty(&vsi->ch_list)) 5456 return; 5457 5458 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5459 struct i40e_vsi *p_vsi; 5460 5461 list_del(&ch->list); 5462 p_vsi = ch->parent_vsi; 5463 if (!p_vsi || !ch->initialized) { 5464 kfree(ch); 5465 continue; 5466 } 5467 /* Reset queue contexts */ 5468 for (i = 0; i < ch->num_queue_pairs; i++) { 5469 struct i40e_ring *tx_ring, *rx_ring; 5470 u16 pf_q; 5471 5472 pf_q = ch->base_queue + i; 5473 tx_ring = vsi->tx_rings[pf_q]; 5474 tx_ring->ch = NULL; 5475 5476 rx_ring = vsi->rx_rings[pf_q]; 5477 rx_ring->ch = NULL; 5478 } 5479 5480 /* Reset BW configured for this VSI via mqprio */ 5481 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5482 if (ret) 5483 dev_info(&vsi->back->pdev->dev, 5484 "Failed to reset tx rate for ch->seid %u\n", 5485 ch->seid); 5486 5487 /* delete cloud filters associated with this channel */ 5488 hlist_for_each_entry_safe(cfilter, node, 5489 &pf->cloud_filter_list, cloud_node) { 5490 if (cfilter->seid != ch->seid) 5491 continue; 5492 5493 hash_del(&cfilter->cloud_node); 5494 if (cfilter->dst_port) 5495 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5496 cfilter, 5497 false); 5498 else 5499 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5500 false); 5501 last_aq_status = pf->hw.aq.asq_last_status; 5502 if (ret) 5503 dev_info(&pf->pdev->dev, 5504 "Failed to delete cloud filter, err %s aq_err %s\n", 5505 i40e_stat_str(&pf->hw, ret), 5506 i40e_aq_str(&pf->hw, last_aq_status)); 5507 kfree(cfilter); 5508 } 5509 5510 /* delete VSI from FW */ 5511 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5512 NULL); 5513 if (ret) 5514 dev_err(&vsi->back->pdev->dev, 5515 "unable to remove channel (%d) for parent VSI(%d)\n", 5516 ch->seid, p_vsi->seid); 5517 kfree(ch); 5518 } 5519 INIT_LIST_HEAD(&vsi->ch_list); 5520 } 5521 5522 /** 5523 * i40e_is_any_channel - channel exist or not 5524 * @vsi: ptr to VSI to which channels are associated with 5525 * 5526 * Returns true or false if channel(s) exist for associated VSI or not 5527 **/ 5528 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5529 { 5530 struct i40e_channel *ch, *ch_tmp; 5531 5532 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5533 if (ch->initialized) 5534 return true; 5535 } 5536 5537 return false; 5538 } 5539 5540 /** 5541 * i40e_get_max_queues_for_channel 5542 * @vsi: ptr to VSI to which channels are associated with 5543 * 5544 * Helper function which returns max value among the queue counts set on the 5545 * channels/TCs created. 5546 **/ 5547 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5548 { 5549 struct i40e_channel *ch, *ch_tmp; 5550 int max = 0; 5551 5552 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5553 if (!ch->initialized) 5554 continue; 5555 if (ch->num_queue_pairs > max) 5556 max = ch->num_queue_pairs; 5557 } 5558 5559 return max; 5560 } 5561 5562 /** 5563 * i40e_validate_num_queues - validate num_queues w.r.t channel 5564 * @pf: ptr to PF device 5565 * @num_queues: number of queues 5566 * @vsi: the parent VSI 5567 * @reconfig_rss: indicates should the RSS be reconfigured or not 5568 * 5569 * This function validates number of queues in the context of new channel 5570 * which is being established and determines if RSS should be reconfigured 5571 * or not for parent VSI. 5572 **/ 5573 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5574 struct i40e_vsi *vsi, bool *reconfig_rss) 5575 { 5576 int max_ch_queues; 5577 5578 if (!reconfig_rss) 5579 return -EINVAL; 5580 5581 *reconfig_rss = false; 5582 if (vsi->current_rss_size) { 5583 if (num_queues > vsi->current_rss_size) { 5584 dev_dbg(&pf->pdev->dev, 5585 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5586 num_queues, vsi->current_rss_size); 5587 return -EINVAL; 5588 } else if ((num_queues < vsi->current_rss_size) && 5589 (!is_power_of_2(num_queues))) { 5590 dev_dbg(&pf->pdev->dev, 5591 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5592 num_queues, vsi->current_rss_size); 5593 return -EINVAL; 5594 } 5595 } 5596 5597 if (!is_power_of_2(num_queues)) { 5598 /* Find the max num_queues configured for channel if channel 5599 * exist. 5600 * if channel exist, then enforce 'num_queues' to be more than 5601 * max ever queues configured for channel. 5602 */ 5603 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5604 if (num_queues < max_ch_queues) { 5605 dev_dbg(&pf->pdev->dev, 5606 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5607 num_queues, max_ch_queues); 5608 return -EINVAL; 5609 } 5610 *reconfig_rss = true; 5611 } 5612 5613 return 0; 5614 } 5615 5616 /** 5617 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5618 * @vsi: the VSI being setup 5619 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5620 * 5621 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5622 **/ 5623 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5624 { 5625 struct i40e_pf *pf = vsi->back; 5626 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5627 struct i40e_hw *hw = &pf->hw; 5628 int local_rss_size; 5629 u8 *lut; 5630 int ret; 5631 5632 if (!vsi->rss_size) 5633 return -EINVAL; 5634 5635 if (rss_size > vsi->rss_size) 5636 return -EINVAL; 5637 5638 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5639 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5640 if (!lut) 5641 return -ENOMEM; 5642 5643 /* Ignoring user configured lut if there is one */ 5644 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5645 5646 /* Use user configured hash key if there is one, otherwise 5647 * use default. 5648 */ 5649 if (vsi->rss_hkey_user) 5650 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5651 else 5652 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5653 5654 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5655 if (ret) { 5656 dev_info(&pf->pdev->dev, 5657 "Cannot set RSS lut, err %s aq_err %s\n", 5658 i40e_stat_str(hw, ret), 5659 i40e_aq_str(hw, hw->aq.asq_last_status)); 5660 kfree(lut); 5661 return ret; 5662 } 5663 kfree(lut); 5664 5665 /* Do the update w.r.t. storing rss_size */ 5666 if (!vsi->orig_rss_size) 5667 vsi->orig_rss_size = vsi->rss_size; 5668 vsi->current_rss_size = local_rss_size; 5669 5670 return ret; 5671 } 5672 5673 /** 5674 * i40e_channel_setup_queue_map - Setup a channel queue map 5675 * @pf: ptr to PF device 5676 * @vsi: the VSI being setup 5677 * @ctxt: VSI context structure 5678 * @ch: ptr to channel structure 5679 * 5680 * Setup queue map for a specific channel 5681 **/ 5682 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5683 struct i40e_vsi_context *ctxt, 5684 struct i40e_channel *ch) 5685 { 5686 u16 qcount, qmap, sections = 0; 5687 u8 offset = 0; 5688 int pow; 5689 5690 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5691 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5692 5693 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5694 ch->num_queue_pairs = qcount; 5695 5696 /* find the next higher power-of-2 of num queue pairs */ 5697 pow = ilog2(qcount); 5698 if (!is_power_of_2(qcount)) 5699 pow++; 5700 5701 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5702 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5703 5704 /* Setup queue TC[0].qmap for given VSI context */ 5705 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5706 5707 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5708 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5709 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5710 ctxt->info.valid_sections |= cpu_to_le16(sections); 5711 } 5712 5713 /** 5714 * i40e_add_channel - add a channel by adding VSI 5715 * @pf: ptr to PF device 5716 * @uplink_seid: underlying HW switching element (VEB) ID 5717 * @ch: ptr to channel structure 5718 * 5719 * Add a channel (VSI) using add_vsi and queue_map 5720 **/ 5721 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5722 struct i40e_channel *ch) 5723 { 5724 struct i40e_hw *hw = &pf->hw; 5725 struct i40e_vsi_context ctxt; 5726 u8 enabled_tc = 0x1; /* TC0 enabled */ 5727 int ret; 5728 5729 if (ch->type != I40E_VSI_VMDQ2) { 5730 dev_info(&pf->pdev->dev, 5731 "add new vsi failed, ch->type %d\n", ch->type); 5732 return -EINVAL; 5733 } 5734 5735 memset(&ctxt, 0, sizeof(ctxt)); 5736 ctxt.pf_num = hw->pf_id; 5737 ctxt.vf_num = 0; 5738 ctxt.uplink_seid = uplink_seid; 5739 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5740 if (ch->type == I40E_VSI_VMDQ2) 5741 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5742 5743 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5744 ctxt.info.valid_sections |= 5745 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5746 ctxt.info.switch_id = 5747 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5748 } 5749 5750 /* Set queue map for a given VSI context */ 5751 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5752 5753 /* Now time to create VSI */ 5754 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5755 if (ret) { 5756 dev_info(&pf->pdev->dev, 5757 "add new vsi failed, err %s aq_err %s\n", 5758 i40e_stat_str(&pf->hw, ret), 5759 i40e_aq_str(&pf->hw, 5760 pf->hw.aq.asq_last_status)); 5761 return -ENOENT; 5762 } 5763 5764 /* Success, update channel */ 5765 ch->enabled_tc = enabled_tc; 5766 ch->seid = ctxt.seid; 5767 ch->vsi_number = ctxt.vsi_number; 5768 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5769 5770 /* copy just the sections touched not the entire info 5771 * since not all sections are valid as returned by 5772 * update vsi params 5773 */ 5774 ch->info.mapping_flags = ctxt.info.mapping_flags; 5775 memcpy(&ch->info.queue_mapping, 5776 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5777 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5778 sizeof(ctxt.info.tc_mapping)); 5779 5780 return 0; 5781 } 5782 5783 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5784 u8 *bw_share) 5785 { 5786 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5787 i40e_status ret; 5788 int i; 5789 5790 bw_data.tc_valid_bits = ch->enabled_tc; 5791 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5792 bw_data.tc_bw_credits[i] = bw_share[i]; 5793 5794 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5795 &bw_data, NULL); 5796 if (ret) { 5797 dev_info(&vsi->back->pdev->dev, 5798 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5799 vsi->back->hw.aq.asq_last_status, ch->seid); 5800 return -EINVAL; 5801 } 5802 5803 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5804 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5805 5806 return 0; 5807 } 5808 5809 /** 5810 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5811 * @pf: ptr to PF device 5812 * @vsi: the VSI being setup 5813 * @ch: ptr to channel structure 5814 * 5815 * Configure TX rings associated with channel (VSI) since queues are being 5816 * from parent VSI. 5817 **/ 5818 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5819 struct i40e_vsi *vsi, 5820 struct i40e_channel *ch) 5821 { 5822 i40e_status ret; 5823 int i; 5824 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5825 5826 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5827 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5828 if (ch->enabled_tc & BIT(i)) 5829 bw_share[i] = 1; 5830 } 5831 5832 /* configure BW for new VSI */ 5833 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5834 if (ret) { 5835 dev_info(&vsi->back->pdev->dev, 5836 "Failed configuring TC map %d for channel (seid %u)\n", 5837 ch->enabled_tc, ch->seid); 5838 return ret; 5839 } 5840 5841 for (i = 0; i < ch->num_queue_pairs; i++) { 5842 struct i40e_ring *tx_ring, *rx_ring; 5843 u16 pf_q; 5844 5845 pf_q = ch->base_queue + i; 5846 5847 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5848 * context 5849 */ 5850 tx_ring = vsi->tx_rings[pf_q]; 5851 tx_ring->ch = ch; 5852 5853 /* Get the RX ring ptr */ 5854 rx_ring = vsi->rx_rings[pf_q]; 5855 rx_ring->ch = ch; 5856 } 5857 5858 return 0; 5859 } 5860 5861 /** 5862 * i40e_setup_hw_channel - setup new channel 5863 * @pf: ptr to PF device 5864 * @vsi: the VSI being setup 5865 * @ch: ptr to channel structure 5866 * @uplink_seid: underlying HW switching element (VEB) ID 5867 * @type: type of channel to be created (VMDq2/VF) 5868 * 5869 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5870 * and configures TX rings accordingly 5871 **/ 5872 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5873 struct i40e_vsi *vsi, 5874 struct i40e_channel *ch, 5875 u16 uplink_seid, u8 type) 5876 { 5877 int ret; 5878 5879 ch->initialized = false; 5880 ch->base_queue = vsi->next_base_queue; 5881 ch->type = type; 5882 5883 /* Proceed with creation of channel (VMDq2) VSI */ 5884 ret = i40e_add_channel(pf, uplink_seid, ch); 5885 if (ret) { 5886 dev_info(&pf->pdev->dev, 5887 "failed to add_channel using uplink_seid %u\n", 5888 uplink_seid); 5889 return ret; 5890 } 5891 5892 /* Mark the successful creation of channel */ 5893 ch->initialized = true; 5894 5895 /* Reconfigure TX queues using QTX_CTL register */ 5896 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5897 if (ret) { 5898 dev_info(&pf->pdev->dev, 5899 "failed to configure TX rings for channel %u\n", 5900 ch->seid); 5901 return ret; 5902 } 5903 5904 /* update 'next_base_queue' */ 5905 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5906 dev_dbg(&pf->pdev->dev, 5907 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5908 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5909 ch->num_queue_pairs, 5910 vsi->next_base_queue); 5911 return ret; 5912 } 5913 5914 /** 5915 * i40e_setup_channel - setup new channel using uplink element 5916 * @pf: ptr to PF device 5917 * @type: type of channel to be created (VMDq2/VF) 5918 * @uplink_seid: underlying HW switching element (VEB) ID 5919 * @ch: ptr to channel structure 5920 * 5921 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5922 * and uplink switching element (uplink_seid) 5923 **/ 5924 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5925 struct i40e_channel *ch) 5926 { 5927 u8 vsi_type; 5928 u16 seid; 5929 int ret; 5930 5931 if (vsi->type == I40E_VSI_MAIN) { 5932 vsi_type = I40E_VSI_VMDQ2; 5933 } else { 5934 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5935 vsi->type); 5936 return false; 5937 } 5938 5939 /* underlying switching element */ 5940 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5941 5942 /* create channel (VSI), configure TX rings */ 5943 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5944 if (ret) { 5945 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 5946 return false; 5947 } 5948 5949 return ch->initialized ? true : false; 5950 } 5951 5952 /** 5953 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 5954 * @vsi: ptr to VSI which has PF backing 5955 * 5956 * Sets up switch mode correctly if it needs to be changed and perform 5957 * what are allowed modes. 5958 **/ 5959 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 5960 { 5961 u8 mode; 5962 struct i40e_pf *pf = vsi->back; 5963 struct i40e_hw *hw = &pf->hw; 5964 int ret; 5965 5966 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 5967 if (ret) 5968 return -EINVAL; 5969 5970 if (hw->dev_caps.switch_mode) { 5971 /* if switch mode is set, support mode2 (non-tunneled for 5972 * cloud filter) for now 5973 */ 5974 u32 switch_mode = hw->dev_caps.switch_mode & 5975 I40E_SWITCH_MODE_MASK; 5976 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 5977 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 5978 return 0; 5979 dev_err(&pf->pdev->dev, 5980 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 5981 hw->dev_caps.switch_mode); 5982 return -EINVAL; 5983 } 5984 } 5985 5986 /* Set Bit 7 to be valid */ 5987 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 5988 5989 /* Set L4type for TCP support */ 5990 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 5991 5992 /* Set cloud filter mode */ 5993 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 5994 5995 /* Prep mode field for set_switch_config */ 5996 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 5997 pf->last_sw_conf_valid_flags, 5998 mode, NULL); 5999 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6000 dev_err(&pf->pdev->dev, 6001 "couldn't set switch config bits, err %s aq_err %s\n", 6002 i40e_stat_str(hw, ret), 6003 i40e_aq_str(hw, 6004 hw->aq.asq_last_status)); 6005 6006 return ret; 6007 } 6008 6009 /** 6010 * i40e_create_queue_channel - function to create channel 6011 * @vsi: VSI to be configured 6012 * @ch: ptr to channel (it contains channel specific params) 6013 * 6014 * This function creates channel (VSI) using num_queues specified by user, 6015 * reconfigs RSS if needed. 6016 **/ 6017 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6018 struct i40e_channel *ch) 6019 { 6020 struct i40e_pf *pf = vsi->back; 6021 bool reconfig_rss; 6022 int err; 6023 6024 if (!ch) 6025 return -EINVAL; 6026 6027 if (!ch->num_queue_pairs) { 6028 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6029 ch->num_queue_pairs); 6030 return -EINVAL; 6031 } 6032 6033 /* validate user requested num_queues for channel */ 6034 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6035 &reconfig_rss); 6036 if (err) { 6037 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6038 ch->num_queue_pairs); 6039 return -EINVAL; 6040 } 6041 6042 /* By default we are in VEPA mode, if this is the first VF/VMDq 6043 * VSI to be added switch to VEB mode. 6044 */ 6045 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6046 (!i40e_is_any_channel(vsi))) { 6047 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6048 dev_dbg(&pf->pdev->dev, 6049 "Failed to create channel. Override queues (%u) not power of 2\n", 6050 vsi->tc_config.tc_info[0].qcount); 6051 return -EINVAL; 6052 } 6053 6054 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6055 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6056 6057 if (vsi->type == I40E_VSI_MAIN) { 6058 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6059 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6060 true); 6061 else 6062 i40e_do_reset_safe(pf, 6063 I40E_PF_RESET_FLAG); 6064 } 6065 } 6066 /* now onwards for main VSI, number of queues will be value 6067 * of TC0's queue count 6068 */ 6069 } 6070 6071 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6072 * it should be more than num_queues 6073 */ 6074 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6075 dev_dbg(&pf->pdev->dev, 6076 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6077 vsi->cnt_q_avail, ch->num_queue_pairs); 6078 return -EINVAL; 6079 } 6080 6081 /* reconfig_rss only if vsi type is MAIN_VSI */ 6082 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6083 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6084 if (err) { 6085 dev_info(&pf->pdev->dev, 6086 "Error: unable to reconfig rss for num_queues (%u)\n", 6087 ch->num_queue_pairs); 6088 return -EINVAL; 6089 } 6090 } 6091 6092 if (!i40e_setup_channel(pf, vsi, ch)) { 6093 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6094 return -EINVAL; 6095 } 6096 6097 dev_info(&pf->pdev->dev, 6098 "Setup channel (id:%u) utilizing num_queues %d\n", 6099 ch->seid, ch->num_queue_pairs); 6100 6101 /* configure VSI for BW limit */ 6102 if (ch->max_tx_rate) { 6103 u64 credits = ch->max_tx_rate; 6104 6105 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6106 return -EINVAL; 6107 6108 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6109 dev_dbg(&pf->pdev->dev, 6110 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6111 ch->max_tx_rate, 6112 credits, 6113 ch->seid); 6114 } 6115 6116 /* in case of VF, this will be main SRIOV VSI */ 6117 ch->parent_vsi = vsi; 6118 6119 /* and update main_vsi's count for queue_available to use */ 6120 vsi->cnt_q_avail -= ch->num_queue_pairs; 6121 6122 return 0; 6123 } 6124 6125 /** 6126 * i40e_configure_queue_channels - Add queue channel for the given TCs 6127 * @vsi: VSI to be configured 6128 * 6129 * Configures queue channel mapping to the given TCs 6130 **/ 6131 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6132 { 6133 struct i40e_channel *ch; 6134 u64 max_rate = 0; 6135 int ret = 0, i; 6136 6137 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6138 vsi->tc_seid_map[0] = vsi->seid; 6139 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6140 if (vsi->tc_config.enabled_tc & BIT(i)) { 6141 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6142 if (!ch) { 6143 ret = -ENOMEM; 6144 goto err_free; 6145 } 6146 6147 INIT_LIST_HEAD(&ch->list); 6148 ch->num_queue_pairs = 6149 vsi->tc_config.tc_info[i].qcount; 6150 ch->base_queue = 6151 vsi->tc_config.tc_info[i].qoffset; 6152 6153 /* Bandwidth limit through tc interface is in bytes/s, 6154 * change to Mbit/s 6155 */ 6156 max_rate = vsi->mqprio_qopt.max_rate[i]; 6157 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6158 ch->max_tx_rate = max_rate; 6159 6160 list_add_tail(&ch->list, &vsi->ch_list); 6161 6162 ret = i40e_create_queue_channel(vsi, ch); 6163 if (ret) { 6164 dev_err(&vsi->back->pdev->dev, 6165 "Failed creating queue channel with TC%d: queues %d\n", 6166 i, ch->num_queue_pairs); 6167 goto err_free; 6168 } 6169 vsi->tc_seid_map[i] = ch->seid; 6170 } 6171 } 6172 return ret; 6173 6174 err_free: 6175 i40e_remove_queue_channels(vsi); 6176 return ret; 6177 } 6178 6179 /** 6180 * i40e_veb_config_tc - Configure TCs for given VEB 6181 * @veb: given VEB 6182 * @enabled_tc: TC bitmap 6183 * 6184 * Configures given TC bitmap for VEB (switching) element 6185 **/ 6186 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6187 { 6188 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6189 struct i40e_pf *pf = veb->pf; 6190 int ret = 0; 6191 int i; 6192 6193 /* No TCs or already enabled TCs just return */ 6194 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6195 return ret; 6196 6197 bw_data.tc_valid_bits = enabled_tc; 6198 /* bw_data.absolute_credits is not set (relative) */ 6199 6200 /* Enable ETS TCs with equal BW Share for now */ 6201 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6202 if (enabled_tc & BIT(i)) 6203 bw_data.tc_bw_share_credits[i] = 1; 6204 } 6205 6206 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6207 &bw_data, NULL); 6208 if (ret) { 6209 dev_info(&pf->pdev->dev, 6210 "VEB bw config failed, err %s aq_err %s\n", 6211 i40e_stat_str(&pf->hw, ret), 6212 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6213 goto out; 6214 } 6215 6216 /* Update the BW information */ 6217 ret = i40e_veb_get_bw_info(veb); 6218 if (ret) { 6219 dev_info(&pf->pdev->dev, 6220 "Failed getting veb bw config, err %s aq_err %s\n", 6221 i40e_stat_str(&pf->hw, ret), 6222 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6223 } 6224 6225 out: 6226 return ret; 6227 } 6228 6229 #ifdef CONFIG_I40E_DCB 6230 /** 6231 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6232 * @pf: PF struct 6233 * 6234 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6235 * the caller would've quiesce all the VSIs before calling 6236 * this function 6237 **/ 6238 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6239 { 6240 u8 tc_map = 0; 6241 int ret; 6242 u8 v; 6243 6244 /* Enable the TCs available on PF to all VEBs */ 6245 tc_map = i40e_pf_get_tc_map(pf); 6246 for (v = 0; v < I40E_MAX_VEB; v++) { 6247 if (!pf->veb[v]) 6248 continue; 6249 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6250 if (ret) { 6251 dev_info(&pf->pdev->dev, 6252 "Failed configuring TC for VEB seid=%d\n", 6253 pf->veb[v]->seid); 6254 /* Will try to configure as many components */ 6255 } 6256 } 6257 6258 /* Update each VSI */ 6259 for (v = 0; v < pf->num_alloc_vsi; v++) { 6260 if (!pf->vsi[v]) 6261 continue; 6262 6263 /* - Enable all TCs for the LAN VSI 6264 * - For all others keep them at TC0 for now 6265 */ 6266 if (v == pf->lan_vsi) 6267 tc_map = i40e_pf_get_tc_map(pf); 6268 else 6269 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6270 6271 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6272 if (ret) { 6273 dev_info(&pf->pdev->dev, 6274 "Failed configuring TC for VSI seid=%d\n", 6275 pf->vsi[v]->seid); 6276 /* Will try to configure as many components */ 6277 } else { 6278 /* Re-configure VSI vectors based on updated TC map */ 6279 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6280 if (pf->vsi[v]->netdev) 6281 i40e_dcbnl_set_all(pf->vsi[v]); 6282 } 6283 } 6284 } 6285 6286 /** 6287 * i40e_resume_port_tx - Resume port Tx 6288 * @pf: PF struct 6289 * 6290 * Resume a port's Tx and issue a PF reset in case of failure to 6291 * resume. 6292 **/ 6293 static int i40e_resume_port_tx(struct i40e_pf *pf) 6294 { 6295 struct i40e_hw *hw = &pf->hw; 6296 int ret; 6297 6298 ret = i40e_aq_resume_port_tx(hw, NULL); 6299 if (ret) { 6300 dev_info(&pf->pdev->dev, 6301 "Resume Port Tx failed, err %s aq_err %s\n", 6302 i40e_stat_str(&pf->hw, ret), 6303 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6304 /* Schedule PF reset to recover */ 6305 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6306 i40e_service_event_schedule(pf); 6307 } 6308 6309 return ret; 6310 } 6311 6312 /** 6313 * i40e_init_pf_dcb - Initialize DCB configuration 6314 * @pf: PF being configured 6315 * 6316 * Query the current DCB configuration and cache it 6317 * in the hardware structure 6318 **/ 6319 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6320 { 6321 struct i40e_hw *hw = &pf->hw; 6322 int err = 0; 6323 6324 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6325 * Also do not enable DCBx if FW LLDP agent is disabled 6326 */ 6327 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6328 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6329 goto out; 6330 6331 /* Get the initial DCB configuration */ 6332 err = i40e_init_dcb(hw); 6333 if (!err) { 6334 /* Device/Function is not DCBX capable */ 6335 if ((!hw->func_caps.dcb) || 6336 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6337 dev_info(&pf->pdev->dev, 6338 "DCBX offload is not supported or is disabled for this PF.\n"); 6339 } else { 6340 /* When status is not DISABLED then DCBX in FW */ 6341 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6342 DCB_CAP_DCBX_VER_IEEE; 6343 6344 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6345 /* Enable DCB tagging only when more than one TC 6346 * or explicitly disable if only one TC 6347 */ 6348 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6349 pf->flags |= I40E_FLAG_DCB_ENABLED; 6350 else 6351 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6352 dev_dbg(&pf->pdev->dev, 6353 "DCBX offload is supported for this PF.\n"); 6354 } 6355 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6356 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6357 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6358 } else { 6359 dev_info(&pf->pdev->dev, 6360 "Query for DCB configuration failed, err %s aq_err %s\n", 6361 i40e_stat_str(&pf->hw, err), 6362 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6363 } 6364 6365 out: 6366 return err; 6367 } 6368 #endif /* CONFIG_I40E_DCB */ 6369 #define SPEED_SIZE 14 6370 #define FC_SIZE 8 6371 /** 6372 * i40e_print_link_message - print link up or down 6373 * @vsi: the VSI for which link needs a message 6374 * @isup: true of link is up, false otherwise 6375 */ 6376 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6377 { 6378 enum i40e_aq_link_speed new_speed; 6379 struct i40e_pf *pf = vsi->back; 6380 char *speed = "Unknown"; 6381 char *fc = "Unknown"; 6382 char *fec = ""; 6383 char *req_fec = ""; 6384 char *an = ""; 6385 6386 new_speed = pf->hw.phy.link_info.link_speed; 6387 6388 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6389 return; 6390 vsi->current_isup = isup; 6391 vsi->current_speed = new_speed; 6392 if (!isup) { 6393 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6394 return; 6395 } 6396 6397 /* Warn user if link speed on NPAR enabled partition is not at 6398 * least 10GB 6399 */ 6400 if (pf->hw.func_caps.npar_enable && 6401 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6402 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6403 netdev_warn(vsi->netdev, 6404 "The partition detected link speed that is less than 10Gbps\n"); 6405 6406 switch (pf->hw.phy.link_info.link_speed) { 6407 case I40E_LINK_SPEED_40GB: 6408 speed = "40 G"; 6409 break; 6410 case I40E_LINK_SPEED_20GB: 6411 speed = "20 G"; 6412 break; 6413 case I40E_LINK_SPEED_25GB: 6414 speed = "25 G"; 6415 break; 6416 case I40E_LINK_SPEED_10GB: 6417 speed = "10 G"; 6418 break; 6419 case I40E_LINK_SPEED_1GB: 6420 speed = "1000 M"; 6421 break; 6422 case I40E_LINK_SPEED_100MB: 6423 speed = "100 M"; 6424 break; 6425 default: 6426 break; 6427 } 6428 6429 switch (pf->hw.fc.current_mode) { 6430 case I40E_FC_FULL: 6431 fc = "RX/TX"; 6432 break; 6433 case I40E_FC_TX_PAUSE: 6434 fc = "TX"; 6435 break; 6436 case I40E_FC_RX_PAUSE: 6437 fc = "RX"; 6438 break; 6439 default: 6440 fc = "None"; 6441 break; 6442 } 6443 6444 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6445 req_fec = ", Requested FEC: None"; 6446 fec = ", FEC: None"; 6447 an = ", Autoneg: False"; 6448 6449 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6450 an = ", Autoneg: True"; 6451 6452 if (pf->hw.phy.link_info.fec_info & 6453 I40E_AQ_CONFIG_FEC_KR_ENA) 6454 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6455 else if (pf->hw.phy.link_info.fec_info & 6456 I40E_AQ_CONFIG_FEC_RS_ENA) 6457 fec = ", FEC: CL108 RS-FEC"; 6458 6459 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6460 * both RS and FC are requested 6461 */ 6462 if (vsi->back->hw.phy.link_info.req_fec_info & 6463 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6464 if (vsi->back->hw.phy.link_info.req_fec_info & 6465 I40E_AQ_REQUEST_FEC_RS) 6466 req_fec = ", Requested FEC: CL108 RS-FEC"; 6467 else 6468 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6469 } 6470 } 6471 6472 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6473 speed, req_fec, fec, an, fc); 6474 } 6475 6476 /** 6477 * i40e_up_complete - Finish the last steps of bringing up a connection 6478 * @vsi: the VSI being configured 6479 **/ 6480 static int i40e_up_complete(struct i40e_vsi *vsi) 6481 { 6482 struct i40e_pf *pf = vsi->back; 6483 int err; 6484 6485 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6486 i40e_vsi_configure_msix(vsi); 6487 else 6488 i40e_configure_msi_and_legacy(vsi); 6489 6490 /* start rings */ 6491 err = i40e_vsi_start_rings(vsi); 6492 if (err) 6493 return err; 6494 6495 clear_bit(__I40E_VSI_DOWN, vsi->state); 6496 i40e_napi_enable_all(vsi); 6497 i40e_vsi_enable_irq(vsi); 6498 6499 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6500 (vsi->netdev)) { 6501 i40e_print_link_message(vsi, true); 6502 netif_tx_start_all_queues(vsi->netdev); 6503 netif_carrier_on(vsi->netdev); 6504 } 6505 6506 /* replay FDIR SB filters */ 6507 if (vsi->type == I40E_VSI_FDIR) { 6508 /* reset fd counters */ 6509 pf->fd_add_err = 0; 6510 pf->fd_atr_cnt = 0; 6511 i40e_fdir_filter_restore(vsi); 6512 } 6513 6514 /* On the next run of the service_task, notify any clients of the new 6515 * opened netdev 6516 */ 6517 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6518 i40e_service_event_schedule(pf); 6519 6520 return 0; 6521 } 6522 6523 /** 6524 * i40e_vsi_reinit_locked - Reset the VSI 6525 * @vsi: the VSI being configured 6526 * 6527 * Rebuild the ring structs after some configuration 6528 * has changed, e.g. MTU size. 6529 **/ 6530 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6531 { 6532 struct i40e_pf *pf = vsi->back; 6533 6534 WARN_ON(in_interrupt()); 6535 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6536 usleep_range(1000, 2000); 6537 i40e_down(vsi); 6538 6539 i40e_up(vsi); 6540 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6541 } 6542 6543 /** 6544 * i40e_up - Bring the connection back up after being down 6545 * @vsi: the VSI being configured 6546 **/ 6547 int i40e_up(struct i40e_vsi *vsi) 6548 { 6549 int err; 6550 6551 err = i40e_vsi_configure(vsi); 6552 if (!err) 6553 err = i40e_up_complete(vsi); 6554 6555 return err; 6556 } 6557 6558 /** 6559 * i40e_force_link_state - Force the link status 6560 * @pf: board private structure 6561 * @is_up: whether the link state should be forced up or down 6562 **/ 6563 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6564 { 6565 struct i40e_aq_get_phy_abilities_resp abilities; 6566 struct i40e_aq_set_phy_config config = {0}; 6567 struct i40e_hw *hw = &pf->hw; 6568 i40e_status err; 6569 u64 mask; 6570 6571 /* Get the current phy config */ 6572 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6573 NULL); 6574 if (err) { 6575 dev_err(&pf->pdev->dev, 6576 "failed to get phy cap., ret = %s last_status = %s\n", 6577 i40e_stat_str(hw, err), 6578 i40e_aq_str(hw, hw->aq.asq_last_status)); 6579 return err; 6580 } 6581 6582 /* If link needs to go up, but was not forced to go down, 6583 * no need for a flap 6584 */ 6585 if (is_up && abilities.phy_type != 0) 6586 return I40E_SUCCESS; 6587 6588 /* To force link we need to set bits for all supported PHY types, 6589 * but there are now more than 32, so we need to split the bitmap 6590 * across two fields. 6591 */ 6592 mask = I40E_PHY_TYPES_BITMASK; 6593 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6594 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6595 /* Copy the old settings, except of phy_type */ 6596 config.abilities = abilities.abilities; 6597 config.link_speed = abilities.link_speed; 6598 config.eee_capability = abilities.eee_capability; 6599 config.eeer = abilities.eeer_val; 6600 config.low_power_ctrl = abilities.d3_lpan; 6601 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6602 I40E_AQ_PHY_FEC_CONFIG_MASK; 6603 err = i40e_aq_set_phy_config(hw, &config, NULL); 6604 6605 if (err) { 6606 dev_err(&pf->pdev->dev, 6607 "set phy config ret = %s last_status = %s\n", 6608 i40e_stat_str(&pf->hw, err), 6609 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6610 return err; 6611 } 6612 6613 /* Update the link info */ 6614 err = i40e_update_link_info(hw); 6615 if (err) { 6616 /* Wait a little bit (on 40G cards it sometimes takes a really 6617 * long time for link to come back from the atomic reset) 6618 * and try once more 6619 */ 6620 msleep(1000); 6621 i40e_update_link_info(hw); 6622 } 6623 6624 i40e_aq_set_link_restart_an(hw, true, NULL); 6625 6626 return I40E_SUCCESS; 6627 } 6628 6629 /** 6630 * i40e_down - Shutdown the connection processing 6631 * @vsi: the VSI being stopped 6632 **/ 6633 void i40e_down(struct i40e_vsi *vsi) 6634 { 6635 int i; 6636 6637 /* It is assumed that the caller of this function 6638 * sets the vsi->state __I40E_VSI_DOWN bit. 6639 */ 6640 if (vsi->netdev) { 6641 netif_carrier_off(vsi->netdev); 6642 netif_tx_disable(vsi->netdev); 6643 } 6644 i40e_vsi_disable_irq(vsi); 6645 i40e_vsi_stop_rings(vsi); 6646 if (vsi->type == I40E_VSI_MAIN && 6647 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6648 i40e_force_link_state(vsi->back, false); 6649 i40e_napi_disable_all(vsi); 6650 6651 for (i = 0; i < vsi->num_queue_pairs; i++) { 6652 i40e_clean_tx_ring(vsi->tx_rings[i]); 6653 if (i40e_enabled_xdp_vsi(vsi)) 6654 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6655 i40e_clean_rx_ring(vsi->rx_rings[i]); 6656 } 6657 6658 } 6659 6660 /** 6661 * i40e_validate_mqprio_qopt- validate queue mapping info 6662 * @vsi: the VSI being configured 6663 * @mqprio_qopt: queue parametrs 6664 **/ 6665 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6666 struct tc_mqprio_qopt_offload *mqprio_qopt) 6667 { 6668 u64 sum_max_rate = 0; 6669 u64 max_rate = 0; 6670 int i; 6671 6672 if (mqprio_qopt->qopt.offset[0] != 0 || 6673 mqprio_qopt->qopt.num_tc < 1 || 6674 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6675 return -EINVAL; 6676 for (i = 0; ; i++) { 6677 if (!mqprio_qopt->qopt.count[i]) 6678 return -EINVAL; 6679 if (mqprio_qopt->min_rate[i]) { 6680 dev_err(&vsi->back->pdev->dev, 6681 "Invalid min tx rate (greater than 0) specified\n"); 6682 return -EINVAL; 6683 } 6684 max_rate = mqprio_qopt->max_rate[i]; 6685 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6686 sum_max_rate += max_rate; 6687 6688 if (i >= mqprio_qopt->qopt.num_tc - 1) 6689 break; 6690 if (mqprio_qopt->qopt.offset[i + 1] != 6691 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6692 return -EINVAL; 6693 } 6694 if (vsi->num_queue_pairs < 6695 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6696 return -EINVAL; 6697 } 6698 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6699 dev_err(&vsi->back->pdev->dev, 6700 "Invalid max tx rate specified\n"); 6701 return -EINVAL; 6702 } 6703 return 0; 6704 } 6705 6706 /** 6707 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6708 * @vsi: the VSI being configured 6709 **/ 6710 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6711 { 6712 u16 qcount; 6713 int i; 6714 6715 /* Only TC0 is enabled */ 6716 vsi->tc_config.numtc = 1; 6717 vsi->tc_config.enabled_tc = 1; 6718 qcount = min_t(int, vsi->alloc_queue_pairs, 6719 i40e_pf_get_max_q_per_tc(vsi->back)); 6720 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6721 /* For the TC that is not enabled set the offset to to default 6722 * queue and allocate one queue for the given TC. 6723 */ 6724 vsi->tc_config.tc_info[i].qoffset = 0; 6725 if (i == 0) 6726 vsi->tc_config.tc_info[i].qcount = qcount; 6727 else 6728 vsi->tc_config.tc_info[i].qcount = 1; 6729 vsi->tc_config.tc_info[i].netdev_tc = 0; 6730 } 6731 } 6732 6733 /** 6734 * i40e_setup_tc - configure multiple traffic classes 6735 * @netdev: net device to configure 6736 * @type_data: tc offload data 6737 **/ 6738 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6739 { 6740 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6741 struct i40e_netdev_priv *np = netdev_priv(netdev); 6742 struct i40e_vsi *vsi = np->vsi; 6743 struct i40e_pf *pf = vsi->back; 6744 u8 enabled_tc = 0, num_tc, hw; 6745 bool need_reset = false; 6746 int ret = -EINVAL; 6747 u16 mode; 6748 int i; 6749 6750 num_tc = mqprio_qopt->qopt.num_tc; 6751 hw = mqprio_qopt->qopt.hw; 6752 mode = mqprio_qopt->mode; 6753 if (!hw) { 6754 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6755 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6756 goto config_tc; 6757 } 6758 6759 /* Check if MFP enabled */ 6760 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6761 netdev_info(netdev, 6762 "Configuring TC not supported in MFP mode\n"); 6763 return ret; 6764 } 6765 switch (mode) { 6766 case TC_MQPRIO_MODE_DCB: 6767 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6768 6769 /* Check if DCB enabled to continue */ 6770 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6771 netdev_info(netdev, 6772 "DCB is not enabled for adapter\n"); 6773 return ret; 6774 } 6775 6776 /* Check whether tc count is within enabled limit */ 6777 if (num_tc > i40e_pf_get_num_tc(pf)) { 6778 netdev_info(netdev, 6779 "TC count greater than enabled on link for adapter\n"); 6780 return ret; 6781 } 6782 break; 6783 case TC_MQPRIO_MODE_CHANNEL: 6784 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6785 netdev_info(netdev, 6786 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6787 return ret; 6788 } 6789 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6790 return ret; 6791 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6792 if (ret) 6793 return ret; 6794 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6795 sizeof(*mqprio_qopt)); 6796 pf->flags |= I40E_FLAG_TC_MQPRIO; 6797 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6798 break; 6799 default: 6800 return -EINVAL; 6801 } 6802 6803 config_tc: 6804 /* Generate TC map for number of tc requested */ 6805 for (i = 0; i < num_tc; i++) 6806 enabled_tc |= BIT(i); 6807 6808 /* Requesting same TC configuration as already enabled */ 6809 if (enabled_tc == vsi->tc_config.enabled_tc && 6810 mode != TC_MQPRIO_MODE_CHANNEL) 6811 return 0; 6812 6813 /* Quiesce VSI queues */ 6814 i40e_quiesce_vsi(vsi); 6815 6816 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6817 i40e_remove_queue_channels(vsi); 6818 6819 /* Configure VSI for enabled TCs */ 6820 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6821 if (ret) { 6822 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6823 vsi->seid); 6824 need_reset = true; 6825 goto exit; 6826 } 6827 6828 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6829 if (vsi->mqprio_qopt.max_rate[0]) { 6830 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6831 6832 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6833 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6834 if (!ret) { 6835 u64 credits = max_tx_rate; 6836 6837 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6838 dev_dbg(&vsi->back->pdev->dev, 6839 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6840 max_tx_rate, 6841 credits, 6842 vsi->seid); 6843 } else { 6844 need_reset = true; 6845 goto exit; 6846 } 6847 } 6848 ret = i40e_configure_queue_channels(vsi); 6849 if (ret) { 6850 netdev_info(netdev, 6851 "Failed configuring queue channels\n"); 6852 need_reset = true; 6853 goto exit; 6854 } 6855 } 6856 6857 exit: 6858 /* Reset the configuration data to defaults, only TC0 is enabled */ 6859 if (need_reset) { 6860 i40e_vsi_set_default_tc_config(vsi); 6861 need_reset = false; 6862 } 6863 6864 /* Unquiesce VSI */ 6865 i40e_unquiesce_vsi(vsi); 6866 return ret; 6867 } 6868 6869 /** 6870 * i40e_set_cld_element - sets cloud filter element data 6871 * @filter: cloud filter rule 6872 * @cld: ptr to cloud filter element data 6873 * 6874 * This is helper function to copy data into cloud filter element 6875 **/ 6876 static inline void 6877 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6878 struct i40e_aqc_cloud_filters_element_data *cld) 6879 { 6880 int i, j; 6881 u32 ipa; 6882 6883 memset(cld, 0, sizeof(*cld)); 6884 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6885 ether_addr_copy(cld->inner_mac, filter->src_mac); 6886 6887 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6888 return; 6889 6890 if (filter->n_proto == ETH_P_IPV6) { 6891 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6892 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6893 i++, j += 2) { 6894 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6895 ipa = cpu_to_le32(ipa); 6896 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6897 } 6898 } else { 6899 ipa = be32_to_cpu(filter->dst_ipv4); 6900 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6901 } 6902 6903 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6904 6905 /* tenant_id is not supported by FW now, once the support is enabled 6906 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6907 */ 6908 if (filter->tenant_id) 6909 return; 6910 } 6911 6912 /** 6913 * i40e_add_del_cloud_filter - Add/del cloud filter 6914 * @vsi: pointer to VSI 6915 * @filter: cloud filter rule 6916 * @add: if true, add, if false, delete 6917 * 6918 * Add or delete a cloud filter for a specific flow spec. 6919 * Returns 0 if the filter were successfully added. 6920 **/ 6921 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 6922 struct i40e_cloud_filter *filter, bool add) 6923 { 6924 struct i40e_aqc_cloud_filters_element_data cld_filter; 6925 struct i40e_pf *pf = vsi->back; 6926 int ret; 6927 static const u16 flag_table[128] = { 6928 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 6929 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 6930 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 6931 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 6932 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 6933 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 6934 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 6935 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 6936 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 6937 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 6938 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 6939 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 6940 [I40E_CLOUD_FILTER_FLAGS_IIP] = 6941 I40E_AQC_ADD_CLOUD_FILTER_IIP, 6942 }; 6943 6944 if (filter->flags >= ARRAY_SIZE(flag_table)) 6945 return I40E_ERR_CONFIG; 6946 6947 /* copy element needed to add cloud filter from filter */ 6948 i40e_set_cld_element(filter, &cld_filter); 6949 6950 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 6951 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 6952 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 6953 6954 if (filter->n_proto == ETH_P_IPV6) 6955 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6956 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 6957 else 6958 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6959 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 6960 6961 if (add) 6962 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 6963 &cld_filter, 1); 6964 else 6965 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 6966 &cld_filter, 1); 6967 if (ret) 6968 dev_dbg(&pf->pdev->dev, 6969 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 6970 add ? "add" : "delete", filter->dst_port, ret, 6971 pf->hw.aq.asq_last_status); 6972 else 6973 dev_info(&pf->pdev->dev, 6974 "%s cloud filter for VSI: %d\n", 6975 add ? "Added" : "Deleted", filter->seid); 6976 return ret; 6977 } 6978 6979 /** 6980 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 6981 * @vsi: pointer to VSI 6982 * @filter: cloud filter rule 6983 * @add: if true, add, if false, delete 6984 * 6985 * Add or delete a cloud filter for a specific flow spec using big buffer. 6986 * Returns 0 if the filter were successfully added. 6987 **/ 6988 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 6989 struct i40e_cloud_filter *filter, 6990 bool add) 6991 { 6992 struct i40e_aqc_cloud_filters_element_bb cld_filter; 6993 struct i40e_pf *pf = vsi->back; 6994 int ret; 6995 6996 /* Both (src/dst) valid mac_addr are not supported */ 6997 if ((is_valid_ether_addr(filter->dst_mac) && 6998 is_valid_ether_addr(filter->src_mac)) || 6999 (is_multicast_ether_addr(filter->dst_mac) && 7000 is_multicast_ether_addr(filter->src_mac))) 7001 return -EOPNOTSUPP; 7002 7003 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7004 * ports are not supported via big buffer now. 7005 */ 7006 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7007 return -EOPNOTSUPP; 7008 7009 /* adding filter using src_port/src_ip is not supported at this stage */ 7010 if (filter->src_port || filter->src_ipv4 || 7011 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7012 return -EOPNOTSUPP; 7013 7014 /* copy element needed to add cloud filter from filter */ 7015 i40e_set_cld_element(filter, &cld_filter.element); 7016 7017 if (is_valid_ether_addr(filter->dst_mac) || 7018 is_valid_ether_addr(filter->src_mac) || 7019 is_multicast_ether_addr(filter->dst_mac) || 7020 is_multicast_ether_addr(filter->src_mac)) { 7021 /* MAC + IP : unsupported mode */ 7022 if (filter->dst_ipv4) 7023 return -EOPNOTSUPP; 7024 7025 /* since we validated that L4 port must be valid before 7026 * we get here, start with respective "flags" value 7027 * and update if vlan is present or not 7028 */ 7029 cld_filter.element.flags = 7030 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7031 7032 if (filter->vlan_id) { 7033 cld_filter.element.flags = 7034 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7035 } 7036 7037 } else if (filter->dst_ipv4 || 7038 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7039 cld_filter.element.flags = 7040 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7041 if (filter->n_proto == ETH_P_IPV6) 7042 cld_filter.element.flags |= 7043 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7044 else 7045 cld_filter.element.flags |= 7046 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7047 } else { 7048 dev_err(&pf->pdev->dev, 7049 "either mac or ip has to be valid for cloud filter\n"); 7050 return -EINVAL; 7051 } 7052 7053 /* Now copy L4 port in Byte 6..7 in general fields */ 7054 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7055 be16_to_cpu(filter->dst_port); 7056 7057 if (add) { 7058 /* Validate current device switch mode, change if necessary */ 7059 ret = i40e_validate_and_set_switch_mode(vsi); 7060 if (ret) { 7061 dev_err(&pf->pdev->dev, 7062 "failed to set switch mode, ret %d\n", 7063 ret); 7064 return ret; 7065 } 7066 7067 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7068 &cld_filter, 1); 7069 } else { 7070 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7071 &cld_filter, 1); 7072 } 7073 7074 if (ret) 7075 dev_dbg(&pf->pdev->dev, 7076 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7077 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7078 else 7079 dev_info(&pf->pdev->dev, 7080 "%s cloud filter for VSI: %d, L4 port: %d\n", 7081 add ? "add" : "delete", filter->seid, 7082 ntohs(filter->dst_port)); 7083 return ret; 7084 } 7085 7086 /** 7087 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7088 * @vsi: Pointer to VSI 7089 * @cls_flower: Pointer to struct tc_cls_flower_offload 7090 * @filter: Pointer to cloud filter structure 7091 * 7092 **/ 7093 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7094 struct tc_cls_flower_offload *f, 7095 struct i40e_cloud_filter *filter) 7096 { 7097 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7098 struct i40e_pf *pf = vsi->back; 7099 u8 field_flags = 0; 7100 7101 if (f->dissector->used_keys & 7102 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7103 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7104 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7105 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7106 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7107 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7108 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7109 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7110 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7111 f->dissector->used_keys); 7112 return -EOPNOTSUPP; 7113 } 7114 7115 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7116 struct flow_dissector_key_keyid *key = 7117 skb_flow_dissector_target(f->dissector, 7118 FLOW_DISSECTOR_KEY_ENC_KEYID, 7119 f->key); 7120 7121 struct flow_dissector_key_keyid *mask = 7122 skb_flow_dissector_target(f->dissector, 7123 FLOW_DISSECTOR_KEY_ENC_KEYID, 7124 f->mask); 7125 7126 if (mask->keyid != 0) 7127 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7128 7129 filter->tenant_id = be32_to_cpu(key->keyid); 7130 } 7131 7132 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7133 struct flow_dissector_key_basic *key = 7134 skb_flow_dissector_target(f->dissector, 7135 FLOW_DISSECTOR_KEY_BASIC, 7136 f->key); 7137 7138 struct flow_dissector_key_basic *mask = 7139 skb_flow_dissector_target(f->dissector, 7140 FLOW_DISSECTOR_KEY_BASIC, 7141 f->mask); 7142 7143 n_proto_key = ntohs(key->n_proto); 7144 n_proto_mask = ntohs(mask->n_proto); 7145 7146 if (n_proto_key == ETH_P_ALL) { 7147 n_proto_key = 0; 7148 n_proto_mask = 0; 7149 } 7150 filter->n_proto = n_proto_key & n_proto_mask; 7151 filter->ip_proto = key->ip_proto; 7152 } 7153 7154 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7155 struct flow_dissector_key_eth_addrs *key = 7156 skb_flow_dissector_target(f->dissector, 7157 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7158 f->key); 7159 7160 struct flow_dissector_key_eth_addrs *mask = 7161 skb_flow_dissector_target(f->dissector, 7162 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7163 f->mask); 7164 7165 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7166 if (!is_zero_ether_addr(mask->dst)) { 7167 if (is_broadcast_ether_addr(mask->dst)) { 7168 field_flags |= I40E_CLOUD_FIELD_OMAC; 7169 } else { 7170 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7171 mask->dst); 7172 return I40E_ERR_CONFIG; 7173 } 7174 } 7175 7176 if (!is_zero_ether_addr(mask->src)) { 7177 if (is_broadcast_ether_addr(mask->src)) { 7178 field_flags |= I40E_CLOUD_FIELD_IMAC; 7179 } else { 7180 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7181 mask->src); 7182 return I40E_ERR_CONFIG; 7183 } 7184 } 7185 ether_addr_copy(filter->dst_mac, key->dst); 7186 ether_addr_copy(filter->src_mac, key->src); 7187 } 7188 7189 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7190 struct flow_dissector_key_vlan *key = 7191 skb_flow_dissector_target(f->dissector, 7192 FLOW_DISSECTOR_KEY_VLAN, 7193 f->key); 7194 struct flow_dissector_key_vlan *mask = 7195 skb_flow_dissector_target(f->dissector, 7196 FLOW_DISSECTOR_KEY_VLAN, 7197 f->mask); 7198 7199 if (mask->vlan_id) { 7200 if (mask->vlan_id == VLAN_VID_MASK) { 7201 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7202 7203 } else { 7204 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7205 mask->vlan_id); 7206 return I40E_ERR_CONFIG; 7207 } 7208 } 7209 7210 filter->vlan_id = cpu_to_be16(key->vlan_id); 7211 } 7212 7213 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7214 struct flow_dissector_key_control *key = 7215 skb_flow_dissector_target(f->dissector, 7216 FLOW_DISSECTOR_KEY_CONTROL, 7217 f->key); 7218 7219 addr_type = key->addr_type; 7220 } 7221 7222 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7223 struct flow_dissector_key_ipv4_addrs *key = 7224 skb_flow_dissector_target(f->dissector, 7225 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7226 f->key); 7227 struct flow_dissector_key_ipv4_addrs *mask = 7228 skb_flow_dissector_target(f->dissector, 7229 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7230 f->mask); 7231 7232 if (mask->dst) { 7233 if (mask->dst == cpu_to_be32(0xffffffff)) { 7234 field_flags |= I40E_CLOUD_FIELD_IIP; 7235 } else { 7236 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7237 &mask->dst); 7238 return I40E_ERR_CONFIG; 7239 } 7240 } 7241 7242 if (mask->src) { 7243 if (mask->src == cpu_to_be32(0xffffffff)) { 7244 field_flags |= I40E_CLOUD_FIELD_IIP; 7245 } else { 7246 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7247 &mask->src); 7248 return I40E_ERR_CONFIG; 7249 } 7250 } 7251 7252 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7253 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7254 return I40E_ERR_CONFIG; 7255 } 7256 filter->dst_ipv4 = key->dst; 7257 filter->src_ipv4 = key->src; 7258 } 7259 7260 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7261 struct flow_dissector_key_ipv6_addrs *key = 7262 skb_flow_dissector_target(f->dissector, 7263 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7264 f->key); 7265 struct flow_dissector_key_ipv6_addrs *mask = 7266 skb_flow_dissector_target(f->dissector, 7267 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7268 f->mask); 7269 7270 /* src and dest IPV6 address should not be LOOPBACK 7271 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7272 */ 7273 if (ipv6_addr_loopback(&key->dst) || 7274 ipv6_addr_loopback(&key->src)) { 7275 dev_err(&pf->pdev->dev, 7276 "Bad ipv6, addr is LOOPBACK\n"); 7277 return I40E_ERR_CONFIG; 7278 } 7279 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7280 field_flags |= I40E_CLOUD_FIELD_IIP; 7281 7282 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7283 sizeof(filter->src_ipv6)); 7284 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7285 sizeof(filter->dst_ipv6)); 7286 } 7287 7288 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7289 struct flow_dissector_key_ports *key = 7290 skb_flow_dissector_target(f->dissector, 7291 FLOW_DISSECTOR_KEY_PORTS, 7292 f->key); 7293 struct flow_dissector_key_ports *mask = 7294 skb_flow_dissector_target(f->dissector, 7295 FLOW_DISSECTOR_KEY_PORTS, 7296 f->mask); 7297 7298 if (mask->src) { 7299 if (mask->src == cpu_to_be16(0xffff)) { 7300 field_flags |= I40E_CLOUD_FIELD_IIP; 7301 } else { 7302 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7303 be16_to_cpu(mask->src)); 7304 return I40E_ERR_CONFIG; 7305 } 7306 } 7307 7308 if (mask->dst) { 7309 if (mask->dst == cpu_to_be16(0xffff)) { 7310 field_flags |= I40E_CLOUD_FIELD_IIP; 7311 } else { 7312 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7313 be16_to_cpu(mask->dst)); 7314 return I40E_ERR_CONFIG; 7315 } 7316 } 7317 7318 filter->dst_port = key->dst; 7319 filter->src_port = key->src; 7320 7321 switch (filter->ip_proto) { 7322 case IPPROTO_TCP: 7323 case IPPROTO_UDP: 7324 break; 7325 default: 7326 dev_err(&pf->pdev->dev, 7327 "Only UDP and TCP transport are supported\n"); 7328 return -EINVAL; 7329 } 7330 } 7331 filter->flags = field_flags; 7332 return 0; 7333 } 7334 7335 /** 7336 * i40e_handle_tclass: Forward to a traffic class on the device 7337 * @vsi: Pointer to VSI 7338 * @tc: traffic class index on the device 7339 * @filter: Pointer to cloud filter structure 7340 * 7341 **/ 7342 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7343 struct i40e_cloud_filter *filter) 7344 { 7345 struct i40e_channel *ch, *ch_tmp; 7346 7347 /* direct to a traffic class on the same device */ 7348 if (tc == 0) { 7349 filter->seid = vsi->seid; 7350 return 0; 7351 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7352 if (!filter->dst_port) { 7353 dev_err(&vsi->back->pdev->dev, 7354 "Specify destination port to direct to traffic class that is not default\n"); 7355 return -EINVAL; 7356 } 7357 if (list_empty(&vsi->ch_list)) 7358 return -EINVAL; 7359 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7360 list) { 7361 if (ch->seid == vsi->tc_seid_map[tc]) 7362 filter->seid = ch->seid; 7363 } 7364 return 0; 7365 } 7366 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7367 return -EINVAL; 7368 } 7369 7370 /** 7371 * i40e_configure_clsflower - Configure tc flower filters 7372 * @vsi: Pointer to VSI 7373 * @cls_flower: Pointer to struct tc_cls_flower_offload 7374 * 7375 **/ 7376 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7377 struct tc_cls_flower_offload *cls_flower) 7378 { 7379 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7380 struct i40e_cloud_filter *filter = NULL; 7381 struct i40e_pf *pf = vsi->back; 7382 int err = 0; 7383 7384 if (tc < 0) { 7385 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7386 return -EOPNOTSUPP; 7387 } 7388 7389 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7390 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7391 return -EBUSY; 7392 7393 if (pf->fdir_pf_active_filters || 7394 (!hlist_empty(&pf->fdir_filter_list))) { 7395 dev_err(&vsi->back->pdev->dev, 7396 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7397 return -EINVAL; 7398 } 7399 7400 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7401 dev_err(&vsi->back->pdev->dev, 7402 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7403 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7404 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7405 } 7406 7407 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7408 if (!filter) 7409 return -ENOMEM; 7410 7411 filter->cookie = cls_flower->cookie; 7412 7413 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7414 if (err < 0) 7415 goto err; 7416 7417 err = i40e_handle_tclass(vsi, tc, filter); 7418 if (err < 0) 7419 goto err; 7420 7421 /* Add cloud filter */ 7422 if (filter->dst_port) 7423 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7424 else 7425 err = i40e_add_del_cloud_filter(vsi, filter, true); 7426 7427 if (err) { 7428 dev_err(&pf->pdev->dev, 7429 "Failed to add cloud filter, err %s\n", 7430 i40e_stat_str(&pf->hw, err)); 7431 goto err; 7432 } 7433 7434 /* add filter to the ordered list */ 7435 INIT_HLIST_NODE(&filter->cloud_node); 7436 7437 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7438 7439 pf->num_cloud_filters++; 7440 7441 return err; 7442 err: 7443 kfree(filter); 7444 return err; 7445 } 7446 7447 /** 7448 * i40e_find_cloud_filter - Find the could filter in the list 7449 * @vsi: Pointer to VSI 7450 * @cookie: filter specific cookie 7451 * 7452 **/ 7453 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7454 unsigned long *cookie) 7455 { 7456 struct i40e_cloud_filter *filter = NULL; 7457 struct hlist_node *node2; 7458 7459 hlist_for_each_entry_safe(filter, node2, 7460 &vsi->back->cloud_filter_list, cloud_node) 7461 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7462 return filter; 7463 return NULL; 7464 } 7465 7466 /** 7467 * i40e_delete_clsflower - Remove tc flower filters 7468 * @vsi: Pointer to VSI 7469 * @cls_flower: Pointer to struct tc_cls_flower_offload 7470 * 7471 **/ 7472 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7473 struct tc_cls_flower_offload *cls_flower) 7474 { 7475 struct i40e_cloud_filter *filter = NULL; 7476 struct i40e_pf *pf = vsi->back; 7477 int err = 0; 7478 7479 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7480 7481 if (!filter) 7482 return -EINVAL; 7483 7484 hash_del(&filter->cloud_node); 7485 7486 if (filter->dst_port) 7487 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7488 else 7489 err = i40e_add_del_cloud_filter(vsi, filter, false); 7490 7491 kfree(filter); 7492 if (err) { 7493 dev_err(&pf->pdev->dev, 7494 "Failed to delete cloud filter, err %s\n", 7495 i40e_stat_str(&pf->hw, err)); 7496 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7497 } 7498 7499 pf->num_cloud_filters--; 7500 if (!pf->num_cloud_filters) 7501 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7502 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7503 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7504 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7505 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7506 } 7507 return 0; 7508 } 7509 7510 /** 7511 * i40e_setup_tc_cls_flower - flower classifier offloads 7512 * @netdev: net device to configure 7513 * @type_data: offload data 7514 **/ 7515 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7516 struct tc_cls_flower_offload *cls_flower) 7517 { 7518 struct i40e_vsi *vsi = np->vsi; 7519 7520 switch (cls_flower->command) { 7521 case TC_CLSFLOWER_REPLACE: 7522 return i40e_configure_clsflower(vsi, cls_flower); 7523 case TC_CLSFLOWER_DESTROY: 7524 return i40e_delete_clsflower(vsi, cls_flower); 7525 case TC_CLSFLOWER_STATS: 7526 return -EOPNOTSUPP; 7527 default: 7528 return -EOPNOTSUPP; 7529 } 7530 } 7531 7532 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7533 void *cb_priv) 7534 { 7535 struct i40e_netdev_priv *np = cb_priv; 7536 7537 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7538 return -EOPNOTSUPP; 7539 7540 switch (type) { 7541 case TC_SETUP_CLSFLOWER: 7542 return i40e_setup_tc_cls_flower(np, type_data); 7543 7544 default: 7545 return -EOPNOTSUPP; 7546 } 7547 } 7548 7549 static int i40e_setup_tc_block(struct net_device *dev, 7550 struct tc_block_offload *f) 7551 { 7552 struct i40e_netdev_priv *np = netdev_priv(dev); 7553 7554 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7555 return -EOPNOTSUPP; 7556 7557 switch (f->command) { 7558 case TC_BLOCK_BIND: 7559 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7560 np, np, f->extack); 7561 case TC_BLOCK_UNBIND: 7562 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7563 return 0; 7564 default: 7565 return -EOPNOTSUPP; 7566 } 7567 } 7568 7569 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7570 void *type_data) 7571 { 7572 switch (type) { 7573 case TC_SETUP_QDISC_MQPRIO: 7574 return i40e_setup_tc(netdev, type_data); 7575 case TC_SETUP_BLOCK: 7576 return i40e_setup_tc_block(netdev, type_data); 7577 default: 7578 return -EOPNOTSUPP; 7579 } 7580 } 7581 7582 /** 7583 * i40e_open - Called when a network interface is made active 7584 * @netdev: network interface device structure 7585 * 7586 * The open entry point is called when a network interface is made 7587 * active by the system (IFF_UP). At this point all resources needed 7588 * for transmit and receive operations are allocated, the interrupt 7589 * handler is registered with the OS, the netdev watchdog subtask is 7590 * enabled, and the stack is notified that the interface is ready. 7591 * 7592 * Returns 0 on success, negative value on failure 7593 **/ 7594 int i40e_open(struct net_device *netdev) 7595 { 7596 struct i40e_netdev_priv *np = netdev_priv(netdev); 7597 struct i40e_vsi *vsi = np->vsi; 7598 struct i40e_pf *pf = vsi->back; 7599 int err; 7600 7601 /* disallow open during test or if eeprom is broken */ 7602 if (test_bit(__I40E_TESTING, pf->state) || 7603 test_bit(__I40E_BAD_EEPROM, pf->state)) 7604 return -EBUSY; 7605 7606 netif_carrier_off(netdev); 7607 7608 if (i40e_force_link_state(pf, true)) 7609 return -EAGAIN; 7610 7611 err = i40e_vsi_open(vsi); 7612 if (err) 7613 return err; 7614 7615 /* configure global TSO hardware offload settings */ 7616 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7617 TCP_FLAG_FIN) >> 16); 7618 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7619 TCP_FLAG_FIN | 7620 TCP_FLAG_CWR) >> 16); 7621 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7622 7623 udp_tunnel_get_rx_info(netdev); 7624 7625 return 0; 7626 } 7627 7628 /** 7629 * i40e_vsi_open - 7630 * @vsi: the VSI to open 7631 * 7632 * Finish initialization of the VSI. 7633 * 7634 * Returns 0 on success, negative value on failure 7635 * 7636 * Note: expects to be called while under rtnl_lock() 7637 **/ 7638 int i40e_vsi_open(struct i40e_vsi *vsi) 7639 { 7640 struct i40e_pf *pf = vsi->back; 7641 char int_name[I40E_INT_NAME_STR_LEN]; 7642 int err; 7643 7644 /* allocate descriptors */ 7645 err = i40e_vsi_setup_tx_resources(vsi); 7646 if (err) 7647 goto err_setup_tx; 7648 err = i40e_vsi_setup_rx_resources(vsi); 7649 if (err) 7650 goto err_setup_rx; 7651 7652 err = i40e_vsi_configure(vsi); 7653 if (err) 7654 goto err_setup_rx; 7655 7656 if (vsi->netdev) { 7657 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7658 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7659 err = i40e_vsi_request_irq(vsi, int_name); 7660 if (err) 7661 goto err_setup_rx; 7662 7663 /* Notify the stack of the actual queue counts. */ 7664 err = netif_set_real_num_tx_queues(vsi->netdev, 7665 vsi->num_queue_pairs); 7666 if (err) 7667 goto err_set_queues; 7668 7669 err = netif_set_real_num_rx_queues(vsi->netdev, 7670 vsi->num_queue_pairs); 7671 if (err) 7672 goto err_set_queues; 7673 7674 } else if (vsi->type == I40E_VSI_FDIR) { 7675 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7676 dev_driver_string(&pf->pdev->dev), 7677 dev_name(&pf->pdev->dev)); 7678 err = i40e_vsi_request_irq(vsi, int_name); 7679 7680 } else { 7681 err = -EINVAL; 7682 goto err_setup_rx; 7683 } 7684 7685 err = i40e_up_complete(vsi); 7686 if (err) 7687 goto err_up_complete; 7688 7689 return 0; 7690 7691 err_up_complete: 7692 i40e_down(vsi); 7693 err_set_queues: 7694 i40e_vsi_free_irq(vsi); 7695 err_setup_rx: 7696 i40e_vsi_free_rx_resources(vsi); 7697 err_setup_tx: 7698 i40e_vsi_free_tx_resources(vsi); 7699 if (vsi == pf->vsi[pf->lan_vsi]) 7700 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7701 7702 return err; 7703 } 7704 7705 /** 7706 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7707 * @pf: Pointer to PF 7708 * 7709 * This function destroys the hlist where all the Flow Director 7710 * filters were saved. 7711 **/ 7712 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7713 { 7714 struct i40e_fdir_filter *filter; 7715 struct i40e_flex_pit *pit_entry, *tmp; 7716 struct hlist_node *node2; 7717 7718 hlist_for_each_entry_safe(filter, node2, 7719 &pf->fdir_filter_list, fdir_node) { 7720 hlist_del(&filter->fdir_node); 7721 kfree(filter); 7722 } 7723 7724 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7725 list_del(&pit_entry->list); 7726 kfree(pit_entry); 7727 } 7728 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7729 7730 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7731 list_del(&pit_entry->list); 7732 kfree(pit_entry); 7733 } 7734 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7735 7736 pf->fdir_pf_active_filters = 0; 7737 pf->fd_tcp4_filter_cnt = 0; 7738 pf->fd_udp4_filter_cnt = 0; 7739 pf->fd_sctp4_filter_cnt = 0; 7740 pf->fd_ip4_filter_cnt = 0; 7741 7742 /* Reprogram the default input set for TCP/IPv4 */ 7743 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7744 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7745 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7746 7747 /* Reprogram the default input set for UDP/IPv4 */ 7748 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7749 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7750 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7751 7752 /* Reprogram the default input set for SCTP/IPv4 */ 7753 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7754 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7755 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7756 7757 /* Reprogram the default input set for Other/IPv4 */ 7758 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7759 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7760 7761 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7762 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7763 } 7764 7765 /** 7766 * i40e_cloud_filter_exit - Cleans up the cloud filters 7767 * @pf: Pointer to PF 7768 * 7769 * This function destroys the hlist where all the cloud filters 7770 * were saved. 7771 **/ 7772 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7773 { 7774 struct i40e_cloud_filter *cfilter; 7775 struct hlist_node *node; 7776 7777 hlist_for_each_entry_safe(cfilter, node, 7778 &pf->cloud_filter_list, cloud_node) { 7779 hlist_del(&cfilter->cloud_node); 7780 kfree(cfilter); 7781 } 7782 pf->num_cloud_filters = 0; 7783 7784 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7785 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7786 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7787 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7788 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7789 } 7790 } 7791 7792 /** 7793 * i40e_close - Disables a network interface 7794 * @netdev: network interface device structure 7795 * 7796 * The close entry point is called when an interface is de-activated 7797 * by the OS. The hardware is still under the driver's control, but 7798 * this netdev interface is disabled. 7799 * 7800 * Returns 0, this is not allowed to fail 7801 **/ 7802 int i40e_close(struct net_device *netdev) 7803 { 7804 struct i40e_netdev_priv *np = netdev_priv(netdev); 7805 struct i40e_vsi *vsi = np->vsi; 7806 7807 i40e_vsi_close(vsi); 7808 7809 return 0; 7810 } 7811 7812 /** 7813 * i40e_do_reset - Start a PF or Core Reset sequence 7814 * @pf: board private structure 7815 * @reset_flags: which reset is requested 7816 * @lock_acquired: indicates whether or not the lock has been acquired 7817 * before this function was called. 7818 * 7819 * The essential difference in resets is that the PF Reset 7820 * doesn't clear the packet buffers, doesn't reset the PE 7821 * firmware, and doesn't bother the other PFs on the chip. 7822 **/ 7823 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7824 { 7825 u32 val; 7826 7827 WARN_ON(in_interrupt()); 7828 7829 7830 /* do the biggest reset indicated */ 7831 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7832 7833 /* Request a Global Reset 7834 * 7835 * This will start the chip's countdown to the actual full 7836 * chip reset event, and a warning interrupt to be sent 7837 * to all PFs, including the requestor. Our handler 7838 * for the warning interrupt will deal with the shutdown 7839 * and recovery of the switch setup. 7840 */ 7841 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7842 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7843 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7844 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7845 7846 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7847 7848 /* Request a Core Reset 7849 * 7850 * Same as Global Reset, except does *not* include the MAC/PHY 7851 */ 7852 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7853 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7854 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7855 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7856 i40e_flush(&pf->hw); 7857 7858 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7859 7860 /* Request a PF Reset 7861 * 7862 * Resets only the PF-specific registers 7863 * 7864 * This goes directly to the tear-down and rebuild of 7865 * the switch, since we need to do all the recovery as 7866 * for the Core Reset. 7867 */ 7868 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7869 i40e_handle_reset_warning(pf, lock_acquired); 7870 7871 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7872 int v; 7873 7874 /* Find the VSI(s) that requested a re-init */ 7875 dev_info(&pf->pdev->dev, 7876 "VSI reinit requested\n"); 7877 for (v = 0; v < pf->num_alloc_vsi; v++) { 7878 struct i40e_vsi *vsi = pf->vsi[v]; 7879 7880 if (vsi != NULL && 7881 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7882 vsi->state)) 7883 i40e_vsi_reinit_locked(pf->vsi[v]); 7884 } 7885 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7886 int v; 7887 7888 /* Find the VSI(s) that needs to be brought down */ 7889 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7890 for (v = 0; v < pf->num_alloc_vsi; v++) { 7891 struct i40e_vsi *vsi = pf->vsi[v]; 7892 7893 if (vsi != NULL && 7894 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7895 vsi->state)) { 7896 set_bit(__I40E_VSI_DOWN, vsi->state); 7897 i40e_down(vsi); 7898 } 7899 } 7900 } else { 7901 dev_info(&pf->pdev->dev, 7902 "bad reset request 0x%08x\n", reset_flags); 7903 } 7904 } 7905 7906 #ifdef CONFIG_I40E_DCB 7907 /** 7908 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7909 * @pf: board private structure 7910 * @old_cfg: current DCB config 7911 * @new_cfg: new DCB config 7912 **/ 7913 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7914 struct i40e_dcbx_config *old_cfg, 7915 struct i40e_dcbx_config *new_cfg) 7916 { 7917 bool need_reconfig = false; 7918 7919 /* Check if ETS configuration has changed */ 7920 if (memcmp(&new_cfg->etscfg, 7921 &old_cfg->etscfg, 7922 sizeof(new_cfg->etscfg))) { 7923 /* If Priority Table has changed reconfig is needed */ 7924 if (memcmp(&new_cfg->etscfg.prioritytable, 7925 &old_cfg->etscfg.prioritytable, 7926 sizeof(new_cfg->etscfg.prioritytable))) { 7927 need_reconfig = true; 7928 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 7929 } 7930 7931 if (memcmp(&new_cfg->etscfg.tcbwtable, 7932 &old_cfg->etscfg.tcbwtable, 7933 sizeof(new_cfg->etscfg.tcbwtable))) 7934 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 7935 7936 if (memcmp(&new_cfg->etscfg.tsatable, 7937 &old_cfg->etscfg.tsatable, 7938 sizeof(new_cfg->etscfg.tsatable))) 7939 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 7940 } 7941 7942 /* Check if PFC configuration has changed */ 7943 if (memcmp(&new_cfg->pfc, 7944 &old_cfg->pfc, 7945 sizeof(new_cfg->pfc))) { 7946 need_reconfig = true; 7947 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 7948 } 7949 7950 /* Check if APP Table has changed */ 7951 if (memcmp(&new_cfg->app, 7952 &old_cfg->app, 7953 sizeof(new_cfg->app))) { 7954 need_reconfig = true; 7955 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 7956 } 7957 7958 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 7959 return need_reconfig; 7960 } 7961 7962 /** 7963 * i40e_handle_lldp_event - Handle LLDP Change MIB event 7964 * @pf: board private structure 7965 * @e: event info posted on ARQ 7966 **/ 7967 static int i40e_handle_lldp_event(struct i40e_pf *pf, 7968 struct i40e_arq_event_info *e) 7969 { 7970 struct i40e_aqc_lldp_get_mib *mib = 7971 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 7972 struct i40e_hw *hw = &pf->hw; 7973 struct i40e_dcbx_config tmp_dcbx_cfg; 7974 bool need_reconfig = false; 7975 int ret = 0; 7976 u8 type; 7977 7978 /* Not DCB capable or capability disabled */ 7979 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 7980 return ret; 7981 7982 /* Ignore if event is not for Nearest Bridge */ 7983 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 7984 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 7985 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 7986 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 7987 return ret; 7988 7989 /* Check MIB Type and return if event for Remote MIB update */ 7990 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 7991 dev_dbg(&pf->pdev->dev, 7992 "LLDP event mib type %s\n", type ? "remote" : "local"); 7993 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 7994 /* Update the remote cached instance and return */ 7995 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 7996 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 7997 &hw->remote_dcbx_config); 7998 goto exit; 7999 } 8000 8001 /* Store the old configuration */ 8002 tmp_dcbx_cfg = hw->local_dcbx_config; 8003 8004 /* Reset the old DCBx configuration data */ 8005 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8006 /* Get updated DCBX data from firmware */ 8007 ret = i40e_get_dcb_config(&pf->hw); 8008 if (ret) { 8009 dev_info(&pf->pdev->dev, 8010 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8011 i40e_stat_str(&pf->hw, ret), 8012 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8013 goto exit; 8014 } 8015 8016 /* No change detected in DCBX configs */ 8017 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8018 sizeof(tmp_dcbx_cfg))) { 8019 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8020 goto exit; 8021 } 8022 8023 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8024 &hw->local_dcbx_config); 8025 8026 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8027 8028 if (!need_reconfig) 8029 goto exit; 8030 8031 /* Enable DCB tagging only when more than one TC */ 8032 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8033 pf->flags |= I40E_FLAG_DCB_ENABLED; 8034 else 8035 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8036 8037 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8038 /* Reconfiguration needed quiesce all VSIs */ 8039 i40e_pf_quiesce_all_vsi(pf); 8040 8041 /* Changes in configuration update VEB/VSI */ 8042 i40e_dcb_reconfigure(pf); 8043 8044 ret = i40e_resume_port_tx(pf); 8045 8046 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8047 /* In case of error no point in resuming VSIs */ 8048 if (ret) 8049 goto exit; 8050 8051 /* Wait for the PF's queues to be disabled */ 8052 ret = i40e_pf_wait_queues_disabled(pf); 8053 if (ret) { 8054 /* Schedule PF reset to recover */ 8055 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8056 i40e_service_event_schedule(pf); 8057 } else { 8058 i40e_pf_unquiesce_all_vsi(pf); 8059 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8060 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8061 } 8062 8063 exit: 8064 return ret; 8065 } 8066 #endif /* CONFIG_I40E_DCB */ 8067 8068 /** 8069 * i40e_do_reset_safe - Protected reset path for userland calls. 8070 * @pf: board private structure 8071 * @reset_flags: which reset is requested 8072 * 8073 **/ 8074 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8075 { 8076 rtnl_lock(); 8077 i40e_do_reset(pf, reset_flags, true); 8078 rtnl_unlock(); 8079 } 8080 8081 /** 8082 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8083 * @pf: board private structure 8084 * @e: event info posted on ARQ 8085 * 8086 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8087 * and VF queues 8088 **/ 8089 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8090 struct i40e_arq_event_info *e) 8091 { 8092 struct i40e_aqc_lan_overflow *data = 8093 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8094 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8095 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8096 struct i40e_hw *hw = &pf->hw; 8097 struct i40e_vf *vf; 8098 u16 vf_id; 8099 8100 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8101 queue, qtx_ctl); 8102 8103 /* Queue belongs to VF, find the VF and issue VF reset */ 8104 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8105 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8106 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8107 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8108 vf_id -= hw->func_caps.vf_base_id; 8109 vf = &pf->vf[vf_id]; 8110 i40e_vc_notify_vf_reset(vf); 8111 /* Allow VF to process pending reset notification */ 8112 msleep(20); 8113 i40e_reset_vf(vf, false); 8114 } 8115 } 8116 8117 /** 8118 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8119 * @pf: board private structure 8120 **/ 8121 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8122 { 8123 u32 val, fcnt_prog; 8124 8125 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8126 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8127 return fcnt_prog; 8128 } 8129 8130 /** 8131 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8132 * @pf: board private structure 8133 **/ 8134 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8135 { 8136 u32 val, fcnt_prog; 8137 8138 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8139 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8140 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8141 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8142 return fcnt_prog; 8143 } 8144 8145 /** 8146 * i40e_get_global_fd_count - Get total FD filters programmed on device 8147 * @pf: board private structure 8148 **/ 8149 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8150 { 8151 u32 val, fcnt_prog; 8152 8153 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8154 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8155 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8156 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8157 return fcnt_prog; 8158 } 8159 8160 /** 8161 * i40e_reenable_fdir_sb - Restore FDir SB capability 8162 * @pf: board private structure 8163 **/ 8164 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8165 { 8166 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8167 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8168 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8169 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8170 } 8171 8172 /** 8173 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8174 * @pf: board private structure 8175 **/ 8176 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8177 { 8178 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8179 /* ATR uses the same filtering logic as SB rules. It only 8180 * functions properly if the input set mask is at the default 8181 * settings. It is safe to restore the default input set 8182 * because there are no active TCPv4 filter rules. 8183 */ 8184 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8185 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8186 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8187 8188 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8189 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8190 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8191 } 8192 } 8193 8194 /** 8195 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8196 * @pf: board private structure 8197 * @filter: FDir filter to remove 8198 */ 8199 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8200 struct i40e_fdir_filter *filter) 8201 { 8202 /* Update counters */ 8203 pf->fdir_pf_active_filters--; 8204 pf->fd_inv = 0; 8205 8206 switch (filter->flow_type) { 8207 case TCP_V4_FLOW: 8208 pf->fd_tcp4_filter_cnt--; 8209 break; 8210 case UDP_V4_FLOW: 8211 pf->fd_udp4_filter_cnt--; 8212 break; 8213 case SCTP_V4_FLOW: 8214 pf->fd_sctp4_filter_cnt--; 8215 break; 8216 case IP_USER_FLOW: 8217 switch (filter->ip4_proto) { 8218 case IPPROTO_TCP: 8219 pf->fd_tcp4_filter_cnt--; 8220 break; 8221 case IPPROTO_UDP: 8222 pf->fd_udp4_filter_cnt--; 8223 break; 8224 case IPPROTO_SCTP: 8225 pf->fd_sctp4_filter_cnt--; 8226 break; 8227 case IPPROTO_IP: 8228 pf->fd_ip4_filter_cnt--; 8229 break; 8230 } 8231 break; 8232 } 8233 8234 /* Remove the filter from the list and free memory */ 8235 hlist_del(&filter->fdir_node); 8236 kfree(filter); 8237 } 8238 8239 /** 8240 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8241 * @pf: board private structure 8242 **/ 8243 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8244 { 8245 struct i40e_fdir_filter *filter; 8246 u32 fcnt_prog, fcnt_avail; 8247 struct hlist_node *node; 8248 8249 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8250 return; 8251 8252 /* Check if we have enough room to re-enable FDir SB capability. */ 8253 fcnt_prog = i40e_get_global_fd_count(pf); 8254 fcnt_avail = pf->fdir_pf_filter_count; 8255 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8256 (pf->fd_add_err == 0) || 8257 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8258 i40e_reenable_fdir_sb(pf); 8259 8260 /* We should wait for even more space before re-enabling ATR. 8261 * Additionally, we cannot enable ATR as long as we still have TCP SB 8262 * rules active. 8263 */ 8264 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8265 (pf->fd_tcp4_filter_cnt == 0)) 8266 i40e_reenable_fdir_atr(pf); 8267 8268 /* if hw had a problem adding a filter, delete it */ 8269 if (pf->fd_inv > 0) { 8270 hlist_for_each_entry_safe(filter, node, 8271 &pf->fdir_filter_list, fdir_node) 8272 if (filter->fd_id == pf->fd_inv) 8273 i40e_delete_invalid_filter(pf, filter); 8274 } 8275 } 8276 8277 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8278 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8279 /** 8280 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8281 * @pf: board private structure 8282 **/ 8283 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8284 { 8285 unsigned long min_flush_time; 8286 int flush_wait_retry = 50; 8287 bool disable_atr = false; 8288 int fd_room; 8289 int reg; 8290 8291 if (!time_after(jiffies, pf->fd_flush_timestamp + 8292 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8293 return; 8294 8295 /* If the flush is happening too quick and we have mostly SB rules we 8296 * should not re-enable ATR for some time. 8297 */ 8298 min_flush_time = pf->fd_flush_timestamp + 8299 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8300 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8301 8302 if (!(time_after(jiffies, min_flush_time)) && 8303 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8304 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8305 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8306 disable_atr = true; 8307 } 8308 8309 pf->fd_flush_timestamp = jiffies; 8310 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8311 /* flush all filters */ 8312 wr32(&pf->hw, I40E_PFQF_CTL_1, 8313 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8314 i40e_flush(&pf->hw); 8315 pf->fd_flush_cnt++; 8316 pf->fd_add_err = 0; 8317 do { 8318 /* Check FD flush status every 5-6msec */ 8319 usleep_range(5000, 6000); 8320 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8321 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8322 break; 8323 } while (flush_wait_retry--); 8324 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8325 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8326 } else { 8327 /* replay sideband filters */ 8328 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8329 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8330 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8331 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8332 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8333 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8334 } 8335 } 8336 8337 /** 8338 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8339 * @pf: board private structure 8340 **/ 8341 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8342 { 8343 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8344 } 8345 8346 /* We can see up to 256 filter programming desc in transit if the filters are 8347 * being applied really fast; before we see the first 8348 * filter miss error on Rx queue 0. Accumulating enough error messages before 8349 * reacting will make sure we don't cause flush too often. 8350 */ 8351 #define I40E_MAX_FD_PROGRAM_ERROR 256 8352 8353 /** 8354 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8355 * @pf: board private structure 8356 **/ 8357 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8358 { 8359 8360 /* if interface is down do nothing */ 8361 if (test_bit(__I40E_DOWN, pf->state)) 8362 return; 8363 8364 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8365 i40e_fdir_flush_and_replay(pf); 8366 8367 i40e_fdir_check_and_reenable(pf); 8368 8369 } 8370 8371 /** 8372 * i40e_vsi_link_event - notify VSI of a link event 8373 * @vsi: vsi to be notified 8374 * @link_up: link up or down 8375 **/ 8376 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8377 { 8378 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8379 return; 8380 8381 switch (vsi->type) { 8382 case I40E_VSI_MAIN: 8383 if (!vsi->netdev || !vsi->netdev_registered) 8384 break; 8385 8386 if (link_up) { 8387 netif_carrier_on(vsi->netdev); 8388 netif_tx_wake_all_queues(vsi->netdev); 8389 } else { 8390 netif_carrier_off(vsi->netdev); 8391 netif_tx_stop_all_queues(vsi->netdev); 8392 } 8393 break; 8394 8395 case I40E_VSI_SRIOV: 8396 case I40E_VSI_VMDQ2: 8397 case I40E_VSI_CTRL: 8398 case I40E_VSI_IWARP: 8399 case I40E_VSI_MIRROR: 8400 default: 8401 /* there is no notification for other VSIs */ 8402 break; 8403 } 8404 } 8405 8406 /** 8407 * i40e_veb_link_event - notify elements on the veb of a link event 8408 * @veb: veb to be notified 8409 * @link_up: link up or down 8410 **/ 8411 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8412 { 8413 struct i40e_pf *pf; 8414 int i; 8415 8416 if (!veb || !veb->pf) 8417 return; 8418 pf = veb->pf; 8419 8420 /* depth first... */ 8421 for (i = 0; i < I40E_MAX_VEB; i++) 8422 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8423 i40e_veb_link_event(pf->veb[i], link_up); 8424 8425 /* ... now the local VSIs */ 8426 for (i = 0; i < pf->num_alloc_vsi; i++) 8427 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8428 i40e_vsi_link_event(pf->vsi[i], link_up); 8429 } 8430 8431 /** 8432 * i40e_link_event - Update netif_carrier status 8433 * @pf: board private structure 8434 **/ 8435 static void i40e_link_event(struct i40e_pf *pf) 8436 { 8437 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8438 u8 new_link_speed, old_link_speed; 8439 i40e_status status; 8440 bool new_link, old_link; 8441 8442 /* save off old link status information */ 8443 pf->hw.phy.link_info_old = pf->hw.phy.link_info; 8444 8445 /* set this to force the get_link_status call to refresh state */ 8446 pf->hw.phy.get_link_info = true; 8447 8448 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8449 8450 status = i40e_get_link_status(&pf->hw, &new_link); 8451 8452 /* On success, disable temp link polling */ 8453 if (status == I40E_SUCCESS) { 8454 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8455 } else { 8456 /* Enable link polling temporarily until i40e_get_link_status 8457 * returns I40E_SUCCESS 8458 */ 8459 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8460 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8461 status); 8462 return; 8463 } 8464 8465 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8466 new_link_speed = pf->hw.phy.link_info.link_speed; 8467 8468 if (new_link == old_link && 8469 new_link_speed == old_link_speed && 8470 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8471 new_link == netif_carrier_ok(vsi->netdev))) 8472 return; 8473 8474 i40e_print_link_message(vsi, new_link); 8475 8476 /* Notify the base of the switch tree connected to 8477 * the link. Floating VEBs are not notified. 8478 */ 8479 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8480 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8481 else 8482 i40e_vsi_link_event(vsi, new_link); 8483 8484 if (pf->vf) 8485 i40e_vc_notify_link_state(pf); 8486 8487 if (pf->flags & I40E_FLAG_PTP) 8488 i40e_ptp_set_increment(pf); 8489 } 8490 8491 /** 8492 * i40e_watchdog_subtask - periodic checks not using event driven response 8493 * @pf: board private structure 8494 **/ 8495 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8496 { 8497 int i; 8498 8499 /* if interface is down do nothing */ 8500 if (test_bit(__I40E_DOWN, pf->state) || 8501 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8502 return; 8503 8504 /* make sure we don't do these things too often */ 8505 if (time_before(jiffies, (pf->service_timer_previous + 8506 pf->service_timer_period))) 8507 return; 8508 pf->service_timer_previous = jiffies; 8509 8510 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8511 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8512 i40e_link_event(pf); 8513 8514 /* Update the stats for active netdevs so the network stack 8515 * can look at updated numbers whenever it cares to 8516 */ 8517 for (i = 0; i < pf->num_alloc_vsi; i++) 8518 if (pf->vsi[i] && pf->vsi[i]->netdev) 8519 i40e_update_stats(pf->vsi[i]); 8520 8521 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8522 /* Update the stats for the active switching components */ 8523 for (i = 0; i < I40E_MAX_VEB; i++) 8524 if (pf->veb[i]) 8525 i40e_update_veb_stats(pf->veb[i]); 8526 } 8527 8528 i40e_ptp_rx_hang(pf); 8529 i40e_ptp_tx_hang(pf); 8530 } 8531 8532 /** 8533 * i40e_reset_subtask - Set up for resetting the device and driver 8534 * @pf: board private structure 8535 **/ 8536 static void i40e_reset_subtask(struct i40e_pf *pf) 8537 { 8538 u32 reset_flags = 0; 8539 8540 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8541 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8542 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8543 } 8544 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8545 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8546 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8547 } 8548 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8549 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8550 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8551 } 8552 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8553 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8554 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8555 } 8556 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8557 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8558 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8559 } 8560 8561 /* If there's a recovery already waiting, it takes 8562 * precedence before starting a new reset sequence. 8563 */ 8564 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8565 i40e_prep_for_reset(pf, false); 8566 i40e_reset(pf); 8567 i40e_rebuild(pf, false, false); 8568 } 8569 8570 /* If we're already down or resetting, just bail */ 8571 if (reset_flags && 8572 !test_bit(__I40E_DOWN, pf->state) && 8573 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8574 i40e_do_reset(pf, reset_flags, false); 8575 } 8576 } 8577 8578 /** 8579 * i40e_handle_link_event - Handle link event 8580 * @pf: board private structure 8581 * @e: event info posted on ARQ 8582 **/ 8583 static void i40e_handle_link_event(struct i40e_pf *pf, 8584 struct i40e_arq_event_info *e) 8585 { 8586 struct i40e_aqc_get_link_status *status = 8587 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8588 8589 /* Do a new status request to re-enable LSE reporting 8590 * and load new status information into the hw struct 8591 * This completely ignores any state information 8592 * in the ARQ event info, instead choosing to always 8593 * issue the AQ update link status command. 8594 */ 8595 i40e_link_event(pf); 8596 8597 /* Check if module meets thermal requirements */ 8598 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8599 dev_err(&pf->pdev->dev, 8600 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8601 dev_err(&pf->pdev->dev, 8602 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8603 } else { 8604 /* check for unqualified module, if link is down, suppress 8605 * the message if link was forced to be down. 8606 */ 8607 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8608 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8609 (!(status->link_info & I40E_AQ_LINK_UP)) && 8610 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8611 dev_err(&pf->pdev->dev, 8612 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8613 dev_err(&pf->pdev->dev, 8614 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8615 } 8616 } 8617 } 8618 8619 /** 8620 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8621 * @pf: board private structure 8622 **/ 8623 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8624 { 8625 struct i40e_arq_event_info event; 8626 struct i40e_hw *hw = &pf->hw; 8627 u16 pending, i = 0; 8628 i40e_status ret; 8629 u16 opcode; 8630 u32 oldval; 8631 u32 val; 8632 8633 /* Do not run clean AQ when PF reset fails */ 8634 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8635 return; 8636 8637 /* check for error indications */ 8638 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8639 oldval = val; 8640 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8641 if (hw->debug_mask & I40E_DEBUG_AQ) 8642 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8643 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8644 } 8645 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8646 if (hw->debug_mask & I40E_DEBUG_AQ) 8647 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8648 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8649 pf->arq_overflows++; 8650 } 8651 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8652 if (hw->debug_mask & I40E_DEBUG_AQ) 8653 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8654 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8655 } 8656 if (oldval != val) 8657 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8658 8659 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8660 oldval = val; 8661 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8662 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8663 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8664 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8665 } 8666 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8667 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8668 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8669 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8670 } 8671 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8672 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8673 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8674 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8675 } 8676 if (oldval != val) 8677 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8678 8679 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8680 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8681 if (!event.msg_buf) 8682 return; 8683 8684 do { 8685 ret = i40e_clean_arq_element(hw, &event, &pending); 8686 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8687 break; 8688 else if (ret) { 8689 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8690 break; 8691 } 8692 8693 opcode = le16_to_cpu(event.desc.opcode); 8694 switch (opcode) { 8695 8696 case i40e_aqc_opc_get_link_status: 8697 i40e_handle_link_event(pf, &event); 8698 break; 8699 case i40e_aqc_opc_send_msg_to_pf: 8700 ret = i40e_vc_process_vf_msg(pf, 8701 le16_to_cpu(event.desc.retval), 8702 le32_to_cpu(event.desc.cookie_high), 8703 le32_to_cpu(event.desc.cookie_low), 8704 event.msg_buf, 8705 event.msg_len); 8706 break; 8707 case i40e_aqc_opc_lldp_update_mib: 8708 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8709 #ifdef CONFIG_I40E_DCB 8710 rtnl_lock(); 8711 ret = i40e_handle_lldp_event(pf, &event); 8712 rtnl_unlock(); 8713 #endif /* CONFIG_I40E_DCB */ 8714 break; 8715 case i40e_aqc_opc_event_lan_overflow: 8716 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8717 i40e_handle_lan_overflow_event(pf, &event); 8718 break; 8719 case i40e_aqc_opc_send_msg_to_peer: 8720 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8721 break; 8722 case i40e_aqc_opc_nvm_erase: 8723 case i40e_aqc_opc_nvm_update: 8724 case i40e_aqc_opc_oem_post_update: 8725 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8726 "ARQ NVM operation 0x%04x completed\n", 8727 opcode); 8728 break; 8729 default: 8730 dev_info(&pf->pdev->dev, 8731 "ARQ: Unknown event 0x%04x ignored\n", 8732 opcode); 8733 break; 8734 } 8735 } while (i++ < pf->adminq_work_limit); 8736 8737 if (i < pf->adminq_work_limit) 8738 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8739 8740 /* re-enable Admin queue interrupt cause */ 8741 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8742 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8743 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8744 i40e_flush(hw); 8745 8746 kfree(event.msg_buf); 8747 } 8748 8749 /** 8750 * i40e_verify_eeprom - make sure eeprom is good to use 8751 * @pf: board private structure 8752 **/ 8753 static void i40e_verify_eeprom(struct i40e_pf *pf) 8754 { 8755 int err; 8756 8757 err = i40e_diag_eeprom_test(&pf->hw); 8758 if (err) { 8759 /* retry in case of garbage read */ 8760 err = i40e_diag_eeprom_test(&pf->hw); 8761 if (err) { 8762 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8763 err); 8764 set_bit(__I40E_BAD_EEPROM, pf->state); 8765 } 8766 } 8767 8768 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8769 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8770 clear_bit(__I40E_BAD_EEPROM, pf->state); 8771 } 8772 } 8773 8774 /** 8775 * i40e_enable_pf_switch_lb 8776 * @pf: pointer to the PF structure 8777 * 8778 * enable switch loop back or die - no point in a return value 8779 **/ 8780 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8781 { 8782 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8783 struct i40e_vsi_context ctxt; 8784 int ret; 8785 8786 ctxt.seid = pf->main_vsi_seid; 8787 ctxt.pf_num = pf->hw.pf_id; 8788 ctxt.vf_num = 0; 8789 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8790 if (ret) { 8791 dev_info(&pf->pdev->dev, 8792 "couldn't get PF vsi config, err %s aq_err %s\n", 8793 i40e_stat_str(&pf->hw, ret), 8794 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8795 return; 8796 } 8797 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8798 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8799 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8800 8801 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8802 if (ret) { 8803 dev_info(&pf->pdev->dev, 8804 "update vsi switch failed, err %s aq_err %s\n", 8805 i40e_stat_str(&pf->hw, ret), 8806 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8807 } 8808 } 8809 8810 /** 8811 * i40e_disable_pf_switch_lb 8812 * @pf: pointer to the PF structure 8813 * 8814 * disable switch loop back or die - no point in a return value 8815 **/ 8816 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8817 { 8818 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8819 struct i40e_vsi_context ctxt; 8820 int ret; 8821 8822 ctxt.seid = pf->main_vsi_seid; 8823 ctxt.pf_num = pf->hw.pf_id; 8824 ctxt.vf_num = 0; 8825 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8826 if (ret) { 8827 dev_info(&pf->pdev->dev, 8828 "couldn't get PF vsi config, err %s aq_err %s\n", 8829 i40e_stat_str(&pf->hw, ret), 8830 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8831 return; 8832 } 8833 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8834 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8835 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8836 8837 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8838 if (ret) { 8839 dev_info(&pf->pdev->dev, 8840 "update vsi switch failed, err %s aq_err %s\n", 8841 i40e_stat_str(&pf->hw, ret), 8842 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8843 } 8844 } 8845 8846 /** 8847 * i40e_config_bridge_mode - Configure the HW bridge mode 8848 * @veb: pointer to the bridge instance 8849 * 8850 * Configure the loop back mode for the LAN VSI that is downlink to the 8851 * specified HW bridge instance. It is expected this function is called 8852 * when a new HW bridge is instantiated. 8853 **/ 8854 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8855 { 8856 struct i40e_pf *pf = veb->pf; 8857 8858 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8859 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8860 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8861 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8862 i40e_disable_pf_switch_lb(pf); 8863 else 8864 i40e_enable_pf_switch_lb(pf); 8865 } 8866 8867 /** 8868 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8869 * @veb: pointer to the VEB instance 8870 * 8871 * This is a recursive function that first builds the attached VSIs then 8872 * recurses in to build the next layer of VEB. We track the connections 8873 * through our own index numbers because the seid's from the HW could 8874 * change across the reset. 8875 **/ 8876 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8877 { 8878 struct i40e_vsi *ctl_vsi = NULL; 8879 struct i40e_pf *pf = veb->pf; 8880 int v, veb_idx; 8881 int ret; 8882 8883 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8884 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8885 if (pf->vsi[v] && 8886 pf->vsi[v]->veb_idx == veb->idx && 8887 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8888 ctl_vsi = pf->vsi[v]; 8889 break; 8890 } 8891 } 8892 if (!ctl_vsi) { 8893 dev_info(&pf->pdev->dev, 8894 "missing owner VSI for veb_idx %d\n", veb->idx); 8895 ret = -ENOENT; 8896 goto end_reconstitute; 8897 } 8898 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8899 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8900 ret = i40e_add_vsi(ctl_vsi); 8901 if (ret) { 8902 dev_info(&pf->pdev->dev, 8903 "rebuild of veb_idx %d owner VSI failed: %d\n", 8904 veb->idx, ret); 8905 goto end_reconstitute; 8906 } 8907 i40e_vsi_reset_stats(ctl_vsi); 8908 8909 /* create the VEB in the switch and move the VSI onto the VEB */ 8910 ret = i40e_add_veb(veb, ctl_vsi); 8911 if (ret) 8912 goto end_reconstitute; 8913 8914 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8915 veb->bridge_mode = BRIDGE_MODE_VEB; 8916 else 8917 veb->bridge_mode = BRIDGE_MODE_VEPA; 8918 i40e_config_bridge_mode(veb); 8919 8920 /* create the remaining VSIs attached to this VEB */ 8921 for (v = 0; v < pf->num_alloc_vsi; v++) { 8922 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 8923 continue; 8924 8925 if (pf->vsi[v]->veb_idx == veb->idx) { 8926 struct i40e_vsi *vsi = pf->vsi[v]; 8927 8928 vsi->uplink_seid = veb->seid; 8929 ret = i40e_add_vsi(vsi); 8930 if (ret) { 8931 dev_info(&pf->pdev->dev, 8932 "rebuild of vsi_idx %d failed: %d\n", 8933 v, ret); 8934 goto end_reconstitute; 8935 } 8936 i40e_vsi_reset_stats(vsi); 8937 } 8938 } 8939 8940 /* create any VEBs attached to this VEB - RECURSION */ 8941 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 8942 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 8943 pf->veb[veb_idx]->uplink_seid = veb->seid; 8944 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 8945 if (ret) 8946 break; 8947 } 8948 } 8949 8950 end_reconstitute: 8951 return ret; 8952 } 8953 8954 /** 8955 * i40e_get_capabilities - get info about the HW 8956 * @pf: the PF struct 8957 **/ 8958 static int i40e_get_capabilities(struct i40e_pf *pf, 8959 enum i40e_admin_queue_opc list_type) 8960 { 8961 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 8962 u16 data_size; 8963 int buf_len; 8964 int err; 8965 8966 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 8967 do { 8968 cap_buf = kzalloc(buf_len, GFP_KERNEL); 8969 if (!cap_buf) 8970 return -ENOMEM; 8971 8972 /* this loads the data into the hw struct for us */ 8973 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 8974 &data_size, list_type, 8975 NULL); 8976 /* data loaded, buffer no longer needed */ 8977 kfree(cap_buf); 8978 8979 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 8980 /* retry with a larger buffer */ 8981 buf_len = data_size; 8982 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 8983 dev_info(&pf->pdev->dev, 8984 "capability discovery failed, err %s aq_err %s\n", 8985 i40e_stat_str(&pf->hw, err), 8986 i40e_aq_str(&pf->hw, 8987 pf->hw.aq.asq_last_status)); 8988 return -ENODEV; 8989 } 8990 } while (err); 8991 8992 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 8993 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8994 dev_info(&pf->pdev->dev, 8995 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 8996 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 8997 pf->hw.func_caps.num_msix_vectors, 8998 pf->hw.func_caps.num_msix_vectors_vf, 8999 pf->hw.func_caps.fd_filters_guaranteed, 9000 pf->hw.func_caps.fd_filters_best_effort, 9001 pf->hw.func_caps.num_tx_qp, 9002 pf->hw.func_caps.num_vsis); 9003 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9004 dev_info(&pf->pdev->dev, 9005 "switch_mode=0x%04x, function_valid=0x%08x\n", 9006 pf->hw.dev_caps.switch_mode, 9007 pf->hw.dev_caps.valid_functions); 9008 dev_info(&pf->pdev->dev, 9009 "SR-IOV=%d, num_vfs for all function=%u\n", 9010 pf->hw.dev_caps.sr_iov_1_1, 9011 pf->hw.dev_caps.num_vfs); 9012 dev_info(&pf->pdev->dev, 9013 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9014 pf->hw.dev_caps.num_vsis, 9015 pf->hw.dev_caps.num_rx_qp, 9016 pf->hw.dev_caps.num_tx_qp); 9017 } 9018 } 9019 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9020 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9021 + pf->hw.func_caps.num_vfs) 9022 if (pf->hw.revision_id == 0 && 9023 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9024 dev_info(&pf->pdev->dev, 9025 "got num_vsis %d, setting num_vsis to %d\n", 9026 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9027 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9028 } 9029 } 9030 return 0; 9031 } 9032 9033 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9034 9035 /** 9036 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9037 * @pf: board private structure 9038 **/ 9039 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9040 { 9041 struct i40e_vsi *vsi; 9042 9043 /* quick workaround for an NVM issue that leaves a critical register 9044 * uninitialized 9045 */ 9046 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9047 static const u32 hkey[] = { 9048 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9049 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9050 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9051 0x95b3a76d}; 9052 int i; 9053 9054 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9055 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9056 } 9057 9058 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9059 return; 9060 9061 /* find existing VSI and see if it needs configuring */ 9062 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9063 9064 /* create a new VSI if none exists */ 9065 if (!vsi) { 9066 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9067 pf->vsi[pf->lan_vsi]->seid, 0); 9068 if (!vsi) { 9069 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9070 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9071 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9072 return; 9073 } 9074 } 9075 9076 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9077 } 9078 9079 /** 9080 * i40e_fdir_teardown - release the Flow Director resources 9081 * @pf: board private structure 9082 **/ 9083 static void i40e_fdir_teardown(struct i40e_pf *pf) 9084 { 9085 struct i40e_vsi *vsi; 9086 9087 i40e_fdir_filter_exit(pf); 9088 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9089 if (vsi) 9090 i40e_vsi_release(vsi); 9091 } 9092 9093 /** 9094 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9095 * @vsi: PF main vsi 9096 * @seid: seid of main or channel VSIs 9097 * 9098 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9099 * existed before reset 9100 **/ 9101 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9102 { 9103 struct i40e_cloud_filter *cfilter; 9104 struct i40e_pf *pf = vsi->back; 9105 struct hlist_node *node; 9106 i40e_status ret; 9107 9108 /* Add cloud filters back if they exist */ 9109 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9110 cloud_node) { 9111 if (cfilter->seid != seid) 9112 continue; 9113 9114 if (cfilter->dst_port) 9115 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9116 true); 9117 else 9118 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9119 9120 if (ret) { 9121 dev_dbg(&pf->pdev->dev, 9122 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9123 i40e_stat_str(&pf->hw, ret), 9124 i40e_aq_str(&pf->hw, 9125 pf->hw.aq.asq_last_status)); 9126 return ret; 9127 } 9128 } 9129 return 0; 9130 } 9131 9132 /** 9133 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9134 * @vsi: PF main vsi 9135 * 9136 * Rebuilds channel VSIs if they existed before reset 9137 **/ 9138 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9139 { 9140 struct i40e_channel *ch, *ch_tmp; 9141 i40e_status ret; 9142 9143 if (list_empty(&vsi->ch_list)) 9144 return 0; 9145 9146 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9147 if (!ch->initialized) 9148 break; 9149 /* Proceed with creation of channel (VMDq2) VSI */ 9150 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9151 if (ret) { 9152 dev_info(&vsi->back->pdev->dev, 9153 "failed to rebuild channels using uplink_seid %u\n", 9154 vsi->uplink_seid); 9155 return ret; 9156 } 9157 /* Reconfigure TX queues using QTX_CTL register */ 9158 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9159 if (ret) { 9160 dev_info(&vsi->back->pdev->dev, 9161 "failed to configure TX rings for channel %u\n", 9162 ch->seid); 9163 return ret; 9164 } 9165 /* update 'next_base_queue' */ 9166 vsi->next_base_queue = vsi->next_base_queue + 9167 ch->num_queue_pairs; 9168 if (ch->max_tx_rate) { 9169 u64 credits = ch->max_tx_rate; 9170 9171 if (i40e_set_bw_limit(vsi, ch->seid, 9172 ch->max_tx_rate)) 9173 return -EINVAL; 9174 9175 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9176 dev_dbg(&vsi->back->pdev->dev, 9177 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9178 ch->max_tx_rate, 9179 credits, 9180 ch->seid); 9181 } 9182 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9183 if (ret) { 9184 dev_dbg(&vsi->back->pdev->dev, 9185 "Failed to rebuild cloud filters for channel VSI %u\n", 9186 ch->seid); 9187 return ret; 9188 } 9189 } 9190 return 0; 9191 } 9192 9193 /** 9194 * i40e_prep_for_reset - prep for the core to reset 9195 * @pf: board private structure 9196 * @lock_acquired: indicates whether or not the lock has been acquired 9197 * before this function was called. 9198 * 9199 * Close up the VFs and other things in prep for PF Reset. 9200 **/ 9201 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9202 { 9203 struct i40e_hw *hw = &pf->hw; 9204 i40e_status ret = 0; 9205 u32 v; 9206 9207 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9208 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9209 return; 9210 if (i40e_check_asq_alive(&pf->hw)) 9211 i40e_vc_notify_reset(pf); 9212 9213 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9214 9215 /* quiesce the VSIs and their queues that are not already DOWN */ 9216 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9217 if (!lock_acquired) 9218 rtnl_lock(); 9219 i40e_pf_quiesce_all_vsi(pf); 9220 if (!lock_acquired) 9221 rtnl_unlock(); 9222 9223 for (v = 0; v < pf->num_alloc_vsi; v++) { 9224 if (pf->vsi[v]) 9225 pf->vsi[v]->seid = 0; 9226 } 9227 9228 i40e_shutdown_adminq(&pf->hw); 9229 9230 /* call shutdown HMC */ 9231 if (hw->hmc.hmc_obj) { 9232 ret = i40e_shutdown_lan_hmc(hw); 9233 if (ret) 9234 dev_warn(&pf->pdev->dev, 9235 "shutdown_lan_hmc failed: %d\n", ret); 9236 } 9237 } 9238 9239 /** 9240 * i40e_send_version - update firmware with driver version 9241 * @pf: PF struct 9242 */ 9243 static void i40e_send_version(struct i40e_pf *pf) 9244 { 9245 struct i40e_driver_version dv; 9246 9247 dv.major_version = DRV_VERSION_MAJOR; 9248 dv.minor_version = DRV_VERSION_MINOR; 9249 dv.build_version = DRV_VERSION_BUILD; 9250 dv.subbuild_version = 0; 9251 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9252 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9253 } 9254 9255 /** 9256 * i40e_get_oem_version - get OEM specific version information 9257 * @hw: pointer to the hardware structure 9258 **/ 9259 static void i40e_get_oem_version(struct i40e_hw *hw) 9260 { 9261 u16 block_offset = 0xffff; 9262 u16 block_length = 0; 9263 u16 capabilities = 0; 9264 u16 gen_snap = 0; 9265 u16 release = 0; 9266 9267 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9268 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9269 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9270 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9271 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9272 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9273 #define I40E_NVM_OEM_LENGTH 3 9274 9275 /* Check if pointer to OEM version block is valid. */ 9276 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9277 if (block_offset == 0xffff) 9278 return; 9279 9280 /* Check if OEM version block has correct length. */ 9281 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9282 &block_length); 9283 if (block_length < I40E_NVM_OEM_LENGTH) 9284 return; 9285 9286 /* Check if OEM version format is as expected. */ 9287 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9288 &capabilities); 9289 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9290 return; 9291 9292 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9293 &gen_snap); 9294 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9295 &release); 9296 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9297 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9298 } 9299 9300 /** 9301 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9302 * @pf: board private structure 9303 **/ 9304 static int i40e_reset(struct i40e_pf *pf) 9305 { 9306 struct i40e_hw *hw = &pf->hw; 9307 i40e_status ret; 9308 9309 ret = i40e_pf_reset(hw); 9310 if (ret) { 9311 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9312 set_bit(__I40E_RESET_FAILED, pf->state); 9313 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9314 } else { 9315 pf->pfr_count++; 9316 } 9317 return ret; 9318 } 9319 9320 /** 9321 * i40e_rebuild - rebuild using a saved config 9322 * @pf: board private structure 9323 * @reinit: if the Main VSI needs to re-initialized. 9324 * @lock_acquired: indicates whether or not the lock has been acquired 9325 * before this function was called. 9326 **/ 9327 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9328 { 9329 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9330 struct i40e_hw *hw = &pf->hw; 9331 u8 set_fc_aq_fail = 0; 9332 i40e_status ret; 9333 u32 val; 9334 int v; 9335 9336 if (test_bit(__I40E_DOWN, pf->state)) 9337 goto clear_recovery; 9338 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9339 9340 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9341 ret = i40e_init_adminq(&pf->hw); 9342 if (ret) { 9343 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9344 i40e_stat_str(&pf->hw, ret), 9345 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9346 goto clear_recovery; 9347 } 9348 i40e_get_oem_version(&pf->hw); 9349 9350 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9351 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9352 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9353 /* The following delay is necessary for 4.33 firmware and older 9354 * to recover after EMP reset. 200 ms should suffice but we 9355 * put here 300 ms to be sure that FW is ready to operate 9356 * after reset. 9357 */ 9358 mdelay(300); 9359 } 9360 9361 /* re-verify the eeprom if we just had an EMP reset */ 9362 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9363 i40e_verify_eeprom(pf); 9364 9365 i40e_clear_pxe_mode(hw); 9366 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9367 if (ret) 9368 goto end_core_reset; 9369 9370 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9371 hw->func_caps.num_rx_qp, 0, 0); 9372 if (ret) { 9373 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9374 goto end_core_reset; 9375 } 9376 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9377 if (ret) { 9378 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9379 goto end_core_reset; 9380 } 9381 9382 /* Enable FW to write a default DCB config on link-up */ 9383 i40e_aq_set_dcb_parameters(hw, true, NULL); 9384 9385 #ifdef CONFIG_I40E_DCB 9386 ret = i40e_init_pf_dcb(pf); 9387 if (ret) { 9388 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9389 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9390 /* Continue without DCB enabled */ 9391 } 9392 #endif /* CONFIG_I40E_DCB */ 9393 /* do basic switch setup */ 9394 if (!lock_acquired) 9395 rtnl_lock(); 9396 ret = i40e_setup_pf_switch(pf, reinit); 9397 if (ret) 9398 goto end_unlock; 9399 9400 /* The driver only wants link up/down and module qualification 9401 * reports from firmware. Note the negative logic. 9402 */ 9403 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9404 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9405 I40E_AQ_EVENT_MEDIA_NA | 9406 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9407 if (ret) 9408 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9409 i40e_stat_str(&pf->hw, ret), 9410 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9411 9412 /* make sure our flow control settings are restored */ 9413 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9414 if (ret) 9415 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9416 i40e_stat_str(&pf->hw, ret), 9417 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9418 9419 /* Rebuild the VSIs and VEBs that existed before reset. 9420 * They are still in our local switch element arrays, so only 9421 * need to rebuild the switch model in the HW. 9422 * 9423 * If there were VEBs but the reconstitution failed, we'll try 9424 * try to recover minimal use by getting the basic PF VSI working. 9425 */ 9426 if (vsi->uplink_seid != pf->mac_seid) { 9427 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9428 /* find the one VEB connected to the MAC, and find orphans */ 9429 for (v = 0; v < I40E_MAX_VEB; v++) { 9430 if (!pf->veb[v]) 9431 continue; 9432 9433 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9434 pf->veb[v]->uplink_seid == 0) { 9435 ret = i40e_reconstitute_veb(pf->veb[v]); 9436 9437 if (!ret) 9438 continue; 9439 9440 /* If Main VEB failed, we're in deep doodoo, 9441 * so give up rebuilding the switch and set up 9442 * for minimal rebuild of PF VSI. 9443 * If orphan failed, we'll report the error 9444 * but try to keep going. 9445 */ 9446 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9447 dev_info(&pf->pdev->dev, 9448 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9449 ret); 9450 vsi->uplink_seid = pf->mac_seid; 9451 break; 9452 } else if (pf->veb[v]->uplink_seid == 0) { 9453 dev_info(&pf->pdev->dev, 9454 "rebuild of orphan VEB failed: %d\n", 9455 ret); 9456 } 9457 } 9458 } 9459 } 9460 9461 if (vsi->uplink_seid == pf->mac_seid) { 9462 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9463 /* no VEB, so rebuild only the Main VSI */ 9464 ret = i40e_add_vsi(vsi); 9465 if (ret) { 9466 dev_info(&pf->pdev->dev, 9467 "rebuild of Main VSI failed: %d\n", ret); 9468 goto end_unlock; 9469 } 9470 } 9471 9472 if (vsi->mqprio_qopt.max_rate[0]) { 9473 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9474 u64 credits = 0; 9475 9476 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9477 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9478 if (ret) 9479 goto end_unlock; 9480 9481 credits = max_tx_rate; 9482 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9483 dev_dbg(&vsi->back->pdev->dev, 9484 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9485 max_tx_rate, 9486 credits, 9487 vsi->seid); 9488 } 9489 9490 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9491 if (ret) 9492 goto end_unlock; 9493 9494 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9495 * for this main VSI if they exist 9496 */ 9497 ret = i40e_rebuild_channels(vsi); 9498 if (ret) 9499 goto end_unlock; 9500 9501 /* Reconfigure hardware for allowing smaller MSS in the case 9502 * of TSO, so that we avoid the MDD being fired and causing 9503 * a reset in the case of small MSS+TSO. 9504 */ 9505 #define I40E_REG_MSS 0x000E64DC 9506 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9507 #define I40E_64BYTE_MSS 0x400000 9508 val = rd32(hw, I40E_REG_MSS); 9509 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9510 val &= ~I40E_REG_MSS_MIN_MASK; 9511 val |= I40E_64BYTE_MSS; 9512 wr32(hw, I40E_REG_MSS, val); 9513 } 9514 9515 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9516 msleep(75); 9517 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9518 if (ret) 9519 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9520 i40e_stat_str(&pf->hw, ret), 9521 i40e_aq_str(&pf->hw, 9522 pf->hw.aq.asq_last_status)); 9523 } 9524 /* reinit the misc interrupt */ 9525 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9526 ret = i40e_setup_misc_vector(pf); 9527 9528 /* Add a filter to drop all Flow control frames from any VSI from being 9529 * transmitted. By doing so we stop a malicious VF from sending out 9530 * PAUSE or PFC frames and potentially controlling traffic for other 9531 * PF/VF VSIs. 9532 * The FW can still send Flow control frames if enabled. 9533 */ 9534 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9535 pf->main_vsi_seid); 9536 9537 /* restart the VSIs that were rebuilt and running before the reset */ 9538 i40e_pf_unquiesce_all_vsi(pf); 9539 9540 /* Release the RTNL lock before we start resetting VFs */ 9541 if (!lock_acquired) 9542 rtnl_unlock(); 9543 9544 /* Restore promiscuous settings */ 9545 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9546 if (ret) 9547 dev_warn(&pf->pdev->dev, 9548 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9549 pf->cur_promisc ? "on" : "off", 9550 i40e_stat_str(&pf->hw, ret), 9551 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9552 9553 i40e_reset_all_vfs(pf, true); 9554 9555 /* tell the firmware that we're starting */ 9556 i40e_send_version(pf); 9557 9558 /* We've already released the lock, so don't do it again */ 9559 goto end_core_reset; 9560 9561 end_unlock: 9562 if (!lock_acquired) 9563 rtnl_unlock(); 9564 end_core_reset: 9565 clear_bit(__I40E_RESET_FAILED, pf->state); 9566 clear_recovery: 9567 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9568 } 9569 9570 /** 9571 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9572 * @pf: board private structure 9573 * @reinit: if the Main VSI needs to re-initialized. 9574 * @lock_acquired: indicates whether or not the lock has been acquired 9575 * before this function was called. 9576 **/ 9577 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9578 bool lock_acquired) 9579 { 9580 int ret; 9581 /* Now we wait for GRST to settle out. 9582 * We don't have to delete the VEBs or VSIs from the hw switch 9583 * because the reset will make them disappear. 9584 */ 9585 ret = i40e_reset(pf); 9586 if (!ret) 9587 i40e_rebuild(pf, reinit, lock_acquired); 9588 } 9589 9590 /** 9591 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9592 * @pf: board private structure 9593 * 9594 * Close up the VFs and other things in prep for a Core Reset, 9595 * then get ready to rebuild the world. 9596 * @lock_acquired: indicates whether or not the lock has been acquired 9597 * before this function was called. 9598 **/ 9599 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9600 { 9601 i40e_prep_for_reset(pf, lock_acquired); 9602 i40e_reset_and_rebuild(pf, false, lock_acquired); 9603 } 9604 9605 /** 9606 * i40e_handle_mdd_event 9607 * @pf: pointer to the PF structure 9608 * 9609 * Called from the MDD irq handler to identify possibly malicious vfs 9610 **/ 9611 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9612 { 9613 struct i40e_hw *hw = &pf->hw; 9614 bool mdd_detected = false; 9615 bool pf_mdd_detected = false; 9616 struct i40e_vf *vf; 9617 u32 reg; 9618 int i; 9619 9620 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9621 return; 9622 9623 /* find what triggered the MDD event */ 9624 reg = rd32(hw, I40E_GL_MDET_TX); 9625 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9626 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9627 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9628 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9629 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9630 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9631 I40E_GL_MDET_TX_EVENT_SHIFT; 9632 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9633 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9634 pf->hw.func_caps.base_queue; 9635 if (netif_msg_tx_err(pf)) 9636 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9637 event, queue, pf_num, vf_num); 9638 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9639 mdd_detected = true; 9640 } 9641 reg = rd32(hw, I40E_GL_MDET_RX); 9642 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9643 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9644 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9645 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9646 I40E_GL_MDET_RX_EVENT_SHIFT; 9647 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9648 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9649 pf->hw.func_caps.base_queue; 9650 if (netif_msg_rx_err(pf)) 9651 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9652 event, queue, func); 9653 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9654 mdd_detected = true; 9655 } 9656 9657 if (mdd_detected) { 9658 reg = rd32(hw, I40E_PF_MDET_TX); 9659 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9660 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9661 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9662 pf_mdd_detected = true; 9663 } 9664 reg = rd32(hw, I40E_PF_MDET_RX); 9665 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9666 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9667 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9668 pf_mdd_detected = true; 9669 } 9670 /* Queue belongs to the PF, initiate a reset */ 9671 if (pf_mdd_detected) { 9672 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9673 i40e_service_event_schedule(pf); 9674 } 9675 } 9676 9677 /* see if one of the VFs needs its hand slapped */ 9678 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9679 vf = &(pf->vf[i]); 9680 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9681 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9682 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9683 vf->num_mdd_events++; 9684 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9685 i); 9686 } 9687 9688 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9689 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9690 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9691 vf->num_mdd_events++; 9692 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9693 i); 9694 } 9695 9696 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9697 dev_info(&pf->pdev->dev, 9698 "Too many MDD events on VF %d, disabled\n", i); 9699 dev_info(&pf->pdev->dev, 9700 "Use PF Control I/F to re-enable the VF\n"); 9701 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9702 } 9703 } 9704 9705 /* re-enable mdd interrupt cause */ 9706 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9707 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9708 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9709 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9710 i40e_flush(hw); 9711 } 9712 9713 static const char *i40e_tunnel_name(u8 type) 9714 { 9715 switch (type) { 9716 case UDP_TUNNEL_TYPE_VXLAN: 9717 return "vxlan"; 9718 case UDP_TUNNEL_TYPE_GENEVE: 9719 return "geneve"; 9720 default: 9721 return "unknown"; 9722 } 9723 } 9724 9725 /** 9726 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9727 * @pf: board private structure 9728 **/ 9729 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9730 { 9731 int i; 9732 9733 /* loop through and set pending bit for all active UDP filters */ 9734 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9735 if (pf->udp_ports[i].port) 9736 pf->pending_udp_bitmap |= BIT_ULL(i); 9737 } 9738 9739 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9740 } 9741 9742 /** 9743 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9744 * @pf: board private structure 9745 **/ 9746 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9747 { 9748 struct i40e_hw *hw = &pf->hw; 9749 u8 filter_index, type; 9750 u16 port; 9751 int i; 9752 9753 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9754 return; 9755 9756 /* acquire RTNL to maintain state of flags and port requests */ 9757 rtnl_lock(); 9758 9759 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9760 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9761 struct i40e_udp_port_config *udp_port; 9762 i40e_status ret = 0; 9763 9764 udp_port = &pf->udp_ports[i]; 9765 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9766 9767 port = READ_ONCE(udp_port->port); 9768 type = READ_ONCE(udp_port->type); 9769 filter_index = READ_ONCE(udp_port->filter_index); 9770 9771 /* release RTNL while we wait on AQ command */ 9772 rtnl_unlock(); 9773 9774 if (port) 9775 ret = i40e_aq_add_udp_tunnel(hw, port, 9776 type, 9777 &filter_index, 9778 NULL); 9779 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9780 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9781 NULL); 9782 9783 /* reacquire RTNL so we can update filter_index */ 9784 rtnl_lock(); 9785 9786 if (ret) { 9787 dev_info(&pf->pdev->dev, 9788 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9789 i40e_tunnel_name(type), 9790 port ? "add" : "delete", 9791 port, 9792 filter_index, 9793 i40e_stat_str(&pf->hw, ret), 9794 i40e_aq_str(&pf->hw, 9795 pf->hw.aq.asq_last_status)); 9796 if (port) { 9797 /* failed to add, just reset port, 9798 * drop pending bit for any deletion 9799 */ 9800 udp_port->port = 0; 9801 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9802 } 9803 } else if (port) { 9804 /* record filter index on success */ 9805 udp_port->filter_index = filter_index; 9806 } 9807 } 9808 } 9809 9810 rtnl_unlock(); 9811 } 9812 9813 /** 9814 * i40e_service_task - Run the driver's async subtasks 9815 * @work: pointer to work_struct containing our data 9816 **/ 9817 static void i40e_service_task(struct work_struct *work) 9818 { 9819 struct i40e_pf *pf = container_of(work, 9820 struct i40e_pf, 9821 service_task); 9822 unsigned long start_time = jiffies; 9823 9824 /* don't bother with service tasks if a reset is in progress */ 9825 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9826 return; 9827 9828 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9829 return; 9830 9831 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9832 i40e_sync_filters_subtask(pf); 9833 i40e_reset_subtask(pf); 9834 i40e_handle_mdd_event(pf); 9835 i40e_vc_process_vflr_event(pf); 9836 i40e_watchdog_subtask(pf); 9837 i40e_fdir_reinit_subtask(pf); 9838 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9839 /* Client subtask will reopen next time through. */ 9840 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9841 } else { 9842 i40e_client_subtask(pf); 9843 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9844 pf->state)) 9845 i40e_notify_client_of_l2_param_changes( 9846 pf->vsi[pf->lan_vsi]); 9847 } 9848 i40e_sync_filters_subtask(pf); 9849 i40e_sync_udp_filters_subtask(pf); 9850 i40e_clean_adminq_subtask(pf); 9851 9852 /* flush memory to make sure state is correct before next watchdog */ 9853 smp_mb__before_atomic(); 9854 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9855 9856 /* If the tasks have taken longer than one timer cycle or there 9857 * is more work to be done, reschedule the service task now 9858 * rather than wait for the timer to tick again. 9859 */ 9860 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9861 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9862 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9863 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9864 i40e_service_event_schedule(pf); 9865 } 9866 9867 /** 9868 * i40e_service_timer - timer callback 9869 * @data: pointer to PF struct 9870 **/ 9871 static void i40e_service_timer(struct timer_list *t) 9872 { 9873 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9874 9875 mod_timer(&pf->service_timer, 9876 round_jiffies(jiffies + pf->service_timer_period)); 9877 i40e_service_event_schedule(pf); 9878 } 9879 9880 /** 9881 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9882 * @vsi: the VSI being configured 9883 **/ 9884 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9885 { 9886 struct i40e_pf *pf = vsi->back; 9887 9888 switch (vsi->type) { 9889 case I40E_VSI_MAIN: 9890 vsi->alloc_queue_pairs = pf->num_lan_qps; 9891 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9892 I40E_REQ_DESCRIPTOR_MULTIPLE); 9893 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9894 vsi->num_q_vectors = pf->num_lan_msix; 9895 else 9896 vsi->num_q_vectors = 1; 9897 9898 break; 9899 9900 case I40E_VSI_FDIR: 9901 vsi->alloc_queue_pairs = 1; 9902 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9903 I40E_REQ_DESCRIPTOR_MULTIPLE); 9904 vsi->num_q_vectors = pf->num_fdsb_msix; 9905 break; 9906 9907 case I40E_VSI_VMDQ2: 9908 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9909 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9910 I40E_REQ_DESCRIPTOR_MULTIPLE); 9911 vsi->num_q_vectors = pf->num_vmdq_msix; 9912 break; 9913 9914 case I40E_VSI_SRIOV: 9915 vsi->alloc_queue_pairs = pf->num_vf_qps; 9916 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9917 I40E_REQ_DESCRIPTOR_MULTIPLE); 9918 break; 9919 9920 default: 9921 WARN_ON(1); 9922 return -ENODATA; 9923 } 9924 9925 return 0; 9926 } 9927 9928 /** 9929 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 9930 * @vsi: VSI pointer 9931 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 9932 * 9933 * On error: returns error code (negative) 9934 * On success: returns 0 9935 **/ 9936 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 9937 { 9938 struct i40e_ring **next_rings; 9939 int size; 9940 int ret = 0; 9941 9942 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 9943 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 9944 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 9945 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 9946 if (!vsi->tx_rings) 9947 return -ENOMEM; 9948 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 9949 if (i40e_enabled_xdp_vsi(vsi)) { 9950 vsi->xdp_rings = next_rings; 9951 next_rings += vsi->alloc_queue_pairs; 9952 } 9953 vsi->rx_rings = next_rings; 9954 9955 if (alloc_qvectors) { 9956 /* allocate memory for q_vector pointers */ 9957 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 9958 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 9959 if (!vsi->q_vectors) { 9960 ret = -ENOMEM; 9961 goto err_vectors; 9962 } 9963 } 9964 return ret; 9965 9966 err_vectors: 9967 kfree(vsi->tx_rings); 9968 return ret; 9969 } 9970 9971 /** 9972 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 9973 * @pf: board private structure 9974 * @type: type of VSI 9975 * 9976 * On error: returns error code (negative) 9977 * On success: returns vsi index in PF (positive) 9978 **/ 9979 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 9980 { 9981 int ret = -ENODEV; 9982 struct i40e_vsi *vsi; 9983 int vsi_idx; 9984 int i; 9985 9986 /* Need to protect the allocation of the VSIs at the PF level */ 9987 mutex_lock(&pf->switch_mutex); 9988 9989 /* VSI list may be fragmented if VSI creation/destruction has 9990 * been happening. We can afford to do a quick scan to look 9991 * for any free VSIs in the list. 9992 * 9993 * find next empty vsi slot, looping back around if necessary 9994 */ 9995 i = pf->next_vsi; 9996 while (i < pf->num_alloc_vsi && pf->vsi[i]) 9997 i++; 9998 if (i >= pf->num_alloc_vsi) { 9999 i = 0; 10000 while (i < pf->next_vsi && pf->vsi[i]) 10001 i++; 10002 } 10003 10004 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10005 vsi_idx = i; /* Found one! */ 10006 } else { 10007 ret = -ENODEV; 10008 goto unlock_pf; /* out of VSI slots! */ 10009 } 10010 pf->next_vsi = ++i; 10011 10012 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10013 if (!vsi) { 10014 ret = -ENOMEM; 10015 goto unlock_pf; 10016 } 10017 vsi->type = type; 10018 vsi->back = pf; 10019 set_bit(__I40E_VSI_DOWN, vsi->state); 10020 vsi->flags = 0; 10021 vsi->idx = vsi_idx; 10022 vsi->int_rate_limit = 0; 10023 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10024 pf->rss_table_size : 64; 10025 vsi->netdev_registered = false; 10026 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10027 hash_init(vsi->mac_filter_hash); 10028 vsi->irqs_ready = false; 10029 10030 ret = i40e_set_num_rings_in_vsi(vsi); 10031 if (ret) 10032 goto err_rings; 10033 10034 ret = i40e_vsi_alloc_arrays(vsi, true); 10035 if (ret) 10036 goto err_rings; 10037 10038 /* Setup default MSIX irq handler for VSI */ 10039 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10040 10041 /* Initialize VSI lock */ 10042 spin_lock_init(&vsi->mac_filter_hash_lock); 10043 pf->vsi[vsi_idx] = vsi; 10044 ret = vsi_idx; 10045 goto unlock_pf; 10046 10047 err_rings: 10048 pf->next_vsi = i - 1; 10049 kfree(vsi); 10050 unlock_pf: 10051 mutex_unlock(&pf->switch_mutex); 10052 return ret; 10053 } 10054 10055 /** 10056 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10057 * @vsi: VSI pointer 10058 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10059 * 10060 * On error: returns error code (negative) 10061 * On success: returns 0 10062 **/ 10063 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10064 { 10065 /* free the ring and vector containers */ 10066 if (free_qvectors) { 10067 kfree(vsi->q_vectors); 10068 vsi->q_vectors = NULL; 10069 } 10070 kfree(vsi->tx_rings); 10071 vsi->tx_rings = NULL; 10072 vsi->rx_rings = NULL; 10073 vsi->xdp_rings = NULL; 10074 } 10075 10076 /** 10077 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10078 * and lookup table 10079 * @vsi: Pointer to VSI structure 10080 */ 10081 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10082 { 10083 if (!vsi) 10084 return; 10085 10086 kfree(vsi->rss_hkey_user); 10087 vsi->rss_hkey_user = NULL; 10088 10089 kfree(vsi->rss_lut_user); 10090 vsi->rss_lut_user = NULL; 10091 } 10092 10093 /** 10094 * i40e_vsi_clear - Deallocate the VSI provided 10095 * @vsi: the VSI being un-configured 10096 **/ 10097 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10098 { 10099 struct i40e_pf *pf; 10100 10101 if (!vsi) 10102 return 0; 10103 10104 if (!vsi->back) 10105 goto free_vsi; 10106 pf = vsi->back; 10107 10108 mutex_lock(&pf->switch_mutex); 10109 if (!pf->vsi[vsi->idx]) { 10110 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10111 vsi->idx, vsi->idx, vsi->type); 10112 goto unlock_vsi; 10113 } 10114 10115 if (pf->vsi[vsi->idx] != vsi) { 10116 dev_err(&pf->pdev->dev, 10117 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10118 pf->vsi[vsi->idx]->idx, 10119 pf->vsi[vsi->idx]->type, 10120 vsi->idx, vsi->type); 10121 goto unlock_vsi; 10122 } 10123 10124 /* updates the PF for this cleared vsi */ 10125 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10126 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10127 10128 i40e_vsi_free_arrays(vsi, true); 10129 i40e_clear_rss_config_user(vsi); 10130 10131 pf->vsi[vsi->idx] = NULL; 10132 if (vsi->idx < pf->next_vsi) 10133 pf->next_vsi = vsi->idx; 10134 10135 unlock_vsi: 10136 mutex_unlock(&pf->switch_mutex); 10137 free_vsi: 10138 kfree(vsi); 10139 10140 return 0; 10141 } 10142 10143 /** 10144 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10145 * @vsi: the VSI being cleaned 10146 **/ 10147 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10148 { 10149 int i; 10150 10151 if (vsi->tx_rings && vsi->tx_rings[0]) { 10152 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10153 kfree_rcu(vsi->tx_rings[i], rcu); 10154 vsi->tx_rings[i] = NULL; 10155 vsi->rx_rings[i] = NULL; 10156 if (vsi->xdp_rings) 10157 vsi->xdp_rings[i] = NULL; 10158 } 10159 } 10160 } 10161 10162 /** 10163 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10164 * @vsi: the VSI being configured 10165 **/ 10166 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10167 { 10168 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10169 struct i40e_pf *pf = vsi->back; 10170 struct i40e_ring *ring; 10171 10172 /* Set basic values in the rings to be used later during open() */ 10173 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10174 /* allocate space for both Tx and Rx in one shot */ 10175 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10176 if (!ring) 10177 goto err_out; 10178 10179 ring->queue_index = i; 10180 ring->reg_idx = vsi->base_queue + i; 10181 ring->ring_active = false; 10182 ring->vsi = vsi; 10183 ring->netdev = vsi->netdev; 10184 ring->dev = &pf->pdev->dev; 10185 ring->count = vsi->num_desc; 10186 ring->size = 0; 10187 ring->dcb_tc = 0; 10188 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10189 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10190 ring->itr_setting = pf->tx_itr_default; 10191 vsi->tx_rings[i] = ring++; 10192 10193 if (!i40e_enabled_xdp_vsi(vsi)) 10194 goto setup_rx; 10195 10196 ring->queue_index = vsi->alloc_queue_pairs + i; 10197 ring->reg_idx = vsi->base_queue + ring->queue_index; 10198 ring->ring_active = false; 10199 ring->vsi = vsi; 10200 ring->netdev = NULL; 10201 ring->dev = &pf->pdev->dev; 10202 ring->count = vsi->num_desc; 10203 ring->size = 0; 10204 ring->dcb_tc = 0; 10205 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10206 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10207 set_ring_xdp(ring); 10208 ring->itr_setting = pf->tx_itr_default; 10209 vsi->xdp_rings[i] = ring++; 10210 10211 setup_rx: 10212 ring->queue_index = i; 10213 ring->reg_idx = vsi->base_queue + i; 10214 ring->ring_active = false; 10215 ring->vsi = vsi; 10216 ring->netdev = vsi->netdev; 10217 ring->dev = &pf->pdev->dev; 10218 ring->count = vsi->num_desc; 10219 ring->size = 0; 10220 ring->dcb_tc = 0; 10221 ring->itr_setting = pf->rx_itr_default; 10222 vsi->rx_rings[i] = ring; 10223 } 10224 10225 return 0; 10226 10227 err_out: 10228 i40e_vsi_clear_rings(vsi); 10229 return -ENOMEM; 10230 } 10231 10232 /** 10233 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10234 * @pf: board private structure 10235 * @vectors: the number of MSI-X vectors to request 10236 * 10237 * Returns the number of vectors reserved, or error 10238 **/ 10239 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10240 { 10241 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10242 I40E_MIN_MSIX, vectors); 10243 if (vectors < 0) { 10244 dev_info(&pf->pdev->dev, 10245 "MSI-X vector reservation failed: %d\n", vectors); 10246 vectors = 0; 10247 } 10248 10249 return vectors; 10250 } 10251 10252 /** 10253 * i40e_init_msix - Setup the MSIX capability 10254 * @pf: board private structure 10255 * 10256 * Work with the OS to set up the MSIX vectors needed. 10257 * 10258 * Returns the number of vectors reserved or negative on failure 10259 **/ 10260 static int i40e_init_msix(struct i40e_pf *pf) 10261 { 10262 struct i40e_hw *hw = &pf->hw; 10263 int cpus, extra_vectors; 10264 int vectors_left; 10265 int v_budget, i; 10266 int v_actual; 10267 int iwarp_requested = 0; 10268 10269 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10270 return -ENODEV; 10271 10272 /* The number of vectors we'll request will be comprised of: 10273 * - Add 1 for "other" cause for Admin Queue events, etc. 10274 * - The number of LAN queue pairs 10275 * - Queues being used for RSS. 10276 * We don't need as many as max_rss_size vectors. 10277 * use rss_size instead in the calculation since that 10278 * is governed by number of cpus in the system. 10279 * - assumes symmetric Tx/Rx pairing 10280 * - The number of VMDq pairs 10281 * - The CPU count within the NUMA node if iWARP is enabled 10282 * Once we count this up, try the request. 10283 * 10284 * If we can't get what we want, we'll simplify to nearly nothing 10285 * and try again. If that still fails, we punt. 10286 */ 10287 vectors_left = hw->func_caps.num_msix_vectors; 10288 v_budget = 0; 10289 10290 /* reserve one vector for miscellaneous handler */ 10291 if (vectors_left) { 10292 v_budget++; 10293 vectors_left--; 10294 } 10295 10296 /* reserve some vectors for the main PF traffic queues. Initially we 10297 * only reserve at most 50% of the available vectors, in the case that 10298 * the number of online CPUs is large. This ensures that we can enable 10299 * extra features as well. Once we've enabled the other features, we 10300 * will use any remaining vectors to reach as close as we can to the 10301 * number of online CPUs. 10302 */ 10303 cpus = num_online_cpus(); 10304 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10305 vectors_left -= pf->num_lan_msix; 10306 10307 /* reserve one vector for sideband flow director */ 10308 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10309 if (vectors_left) { 10310 pf->num_fdsb_msix = 1; 10311 v_budget++; 10312 vectors_left--; 10313 } else { 10314 pf->num_fdsb_msix = 0; 10315 } 10316 } 10317 10318 /* can we reserve enough for iWARP? */ 10319 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10320 iwarp_requested = pf->num_iwarp_msix; 10321 10322 if (!vectors_left) 10323 pf->num_iwarp_msix = 0; 10324 else if (vectors_left < pf->num_iwarp_msix) 10325 pf->num_iwarp_msix = 1; 10326 v_budget += pf->num_iwarp_msix; 10327 vectors_left -= pf->num_iwarp_msix; 10328 } 10329 10330 /* any vectors left over go for VMDq support */ 10331 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10332 if (!vectors_left) { 10333 pf->num_vmdq_msix = 0; 10334 pf->num_vmdq_qps = 0; 10335 } else { 10336 int vmdq_vecs_wanted = 10337 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10338 int vmdq_vecs = 10339 min_t(int, vectors_left, vmdq_vecs_wanted); 10340 10341 /* if we're short on vectors for what's desired, we limit 10342 * the queues per vmdq. If this is still more than are 10343 * available, the user will need to change the number of 10344 * queues/vectors used by the PF later with the ethtool 10345 * channels command 10346 */ 10347 if (vectors_left < vmdq_vecs_wanted) { 10348 pf->num_vmdq_qps = 1; 10349 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10350 vmdq_vecs = min_t(int, 10351 vectors_left, 10352 vmdq_vecs_wanted); 10353 } 10354 pf->num_vmdq_msix = pf->num_vmdq_qps; 10355 10356 v_budget += vmdq_vecs; 10357 vectors_left -= vmdq_vecs; 10358 } 10359 } 10360 10361 /* On systems with a large number of SMP cores, we previously limited 10362 * the number of vectors for num_lan_msix to be at most 50% of the 10363 * available vectors, to allow for other features. Now, we add back 10364 * the remaining vectors. However, we ensure that the total 10365 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10366 * calculate the number of vectors we can add without going over the 10367 * cap of CPUs. For systems with a small number of CPUs this will be 10368 * zero. 10369 */ 10370 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10371 pf->num_lan_msix += extra_vectors; 10372 vectors_left -= extra_vectors; 10373 10374 WARN(vectors_left < 0, 10375 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10376 10377 v_budget += pf->num_lan_msix; 10378 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10379 GFP_KERNEL); 10380 if (!pf->msix_entries) 10381 return -ENOMEM; 10382 10383 for (i = 0; i < v_budget; i++) 10384 pf->msix_entries[i].entry = i; 10385 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10386 10387 if (v_actual < I40E_MIN_MSIX) { 10388 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10389 kfree(pf->msix_entries); 10390 pf->msix_entries = NULL; 10391 pci_disable_msix(pf->pdev); 10392 return -ENODEV; 10393 10394 } else if (v_actual == I40E_MIN_MSIX) { 10395 /* Adjust for minimal MSIX use */ 10396 pf->num_vmdq_vsis = 0; 10397 pf->num_vmdq_qps = 0; 10398 pf->num_lan_qps = 1; 10399 pf->num_lan_msix = 1; 10400 10401 } else if (v_actual != v_budget) { 10402 /* If we have limited resources, we will start with no vectors 10403 * for the special features and then allocate vectors to some 10404 * of these features based on the policy and at the end disable 10405 * the features that did not get any vectors. 10406 */ 10407 int vec; 10408 10409 dev_info(&pf->pdev->dev, 10410 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10411 v_actual, v_budget); 10412 /* reserve the misc vector */ 10413 vec = v_actual - 1; 10414 10415 /* Scale vector usage down */ 10416 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10417 pf->num_vmdq_vsis = 1; 10418 pf->num_vmdq_qps = 1; 10419 10420 /* partition out the remaining vectors */ 10421 switch (vec) { 10422 case 2: 10423 pf->num_lan_msix = 1; 10424 break; 10425 case 3: 10426 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10427 pf->num_lan_msix = 1; 10428 pf->num_iwarp_msix = 1; 10429 } else { 10430 pf->num_lan_msix = 2; 10431 } 10432 break; 10433 default: 10434 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10435 pf->num_iwarp_msix = min_t(int, (vec / 3), 10436 iwarp_requested); 10437 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10438 I40E_DEFAULT_NUM_VMDQ_VSI); 10439 } else { 10440 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10441 I40E_DEFAULT_NUM_VMDQ_VSI); 10442 } 10443 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10444 pf->num_fdsb_msix = 1; 10445 vec--; 10446 } 10447 pf->num_lan_msix = min_t(int, 10448 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10449 pf->num_lan_msix); 10450 pf->num_lan_qps = pf->num_lan_msix; 10451 break; 10452 } 10453 } 10454 10455 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10456 (pf->num_fdsb_msix == 0)) { 10457 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10458 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10459 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10460 } 10461 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10462 (pf->num_vmdq_msix == 0)) { 10463 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10464 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10465 } 10466 10467 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10468 (pf->num_iwarp_msix == 0)) { 10469 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10470 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10471 } 10472 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10473 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10474 pf->num_lan_msix, 10475 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10476 pf->num_fdsb_msix, 10477 pf->num_iwarp_msix); 10478 10479 return v_actual; 10480 } 10481 10482 /** 10483 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10484 * @vsi: the VSI being configured 10485 * @v_idx: index of the vector in the vsi struct 10486 * @cpu: cpu to be used on affinity_mask 10487 * 10488 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10489 **/ 10490 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10491 { 10492 struct i40e_q_vector *q_vector; 10493 10494 /* allocate q_vector */ 10495 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10496 if (!q_vector) 10497 return -ENOMEM; 10498 10499 q_vector->vsi = vsi; 10500 q_vector->v_idx = v_idx; 10501 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10502 10503 if (vsi->netdev) 10504 netif_napi_add(vsi->netdev, &q_vector->napi, 10505 i40e_napi_poll, NAPI_POLL_WEIGHT); 10506 10507 /* tie q_vector and vsi together */ 10508 vsi->q_vectors[v_idx] = q_vector; 10509 10510 return 0; 10511 } 10512 10513 /** 10514 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10515 * @vsi: the VSI being configured 10516 * 10517 * We allocate one q_vector per queue interrupt. If allocation fails we 10518 * return -ENOMEM. 10519 **/ 10520 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10521 { 10522 struct i40e_pf *pf = vsi->back; 10523 int err, v_idx, num_q_vectors, current_cpu; 10524 10525 /* if not MSIX, give the one vector only to the LAN VSI */ 10526 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10527 num_q_vectors = vsi->num_q_vectors; 10528 else if (vsi == pf->vsi[pf->lan_vsi]) 10529 num_q_vectors = 1; 10530 else 10531 return -EINVAL; 10532 10533 current_cpu = cpumask_first(cpu_online_mask); 10534 10535 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10536 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10537 if (err) 10538 goto err_out; 10539 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10540 if (unlikely(current_cpu >= nr_cpu_ids)) 10541 current_cpu = cpumask_first(cpu_online_mask); 10542 } 10543 10544 return 0; 10545 10546 err_out: 10547 while (v_idx--) 10548 i40e_free_q_vector(vsi, v_idx); 10549 10550 return err; 10551 } 10552 10553 /** 10554 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10555 * @pf: board private structure to initialize 10556 **/ 10557 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10558 { 10559 int vectors = 0; 10560 ssize_t size; 10561 10562 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10563 vectors = i40e_init_msix(pf); 10564 if (vectors < 0) { 10565 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10566 I40E_FLAG_IWARP_ENABLED | 10567 I40E_FLAG_RSS_ENABLED | 10568 I40E_FLAG_DCB_CAPABLE | 10569 I40E_FLAG_DCB_ENABLED | 10570 I40E_FLAG_SRIOV_ENABLED | 10571 I40E_FLAG_FD_SB_ENABLED | 10572 I40E_FLAG_FD_ATR_ENABLED | 10573 I40E_FLAG_VMDQ_ENABLED); 10574 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10575 10576 /* rework the queue expectations without MSIX */ 10577 i40e_determine_queue_usage(pf); 10578 } 10579 } 10580 10581 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10582 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10583 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10584 vectors = pci_enable_msi(pf->pdev); 10585 if (vectors < 0) { 10586 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10587 vectors); 10588 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10589 } 10590 vectors = 1; /* one MSI or Legacy vector */ 10591 } 10592 10593 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10594 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10595 10596 /* set up vector assignment tracking */ 10597 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10598 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10599 if (!pf->irq_pile) 10600 return -ENOMEM; 10601 10602 pf->irq_pile->num_entries = vectors; 10603 pf->irq_pile->search_hint = 0; 10604 10605 /* track first vector for misc interrupts, ignore return */ 10606 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10607 10608 return 0; 10609 } 10610 10611 /** 10612 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10613 * @pf: private board data structure 10614 * 10615 * Restore the interrupt scheme that was cleared when we suspended the 10616 * device. This should be called during resume to re-allocate the q_vectors 10617 * and reacquire IRQs. 10618 */ 10619 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10620 { 10621 int err, i; 10622 10623 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10624 * scheme. We need to re-enabled them here in order to attempt to 10625 * re-acquire the MSI or MSI-X vectors 10626 */ 10627 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10628 10629 err = i40e_init_interrupt_scheme(pf); 10630 if (err) 10631 return err; 10632 10633 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10634 * rings together again. 10635 */ 10636 for (i = 0; i < pf->num_alloc_vsi; i++) { 10637 if (pf->vsi[i]) { 10638 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10639 if (err) 10640 goto err_unwind; 10641 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10642 } 10643 } 10644 10645 err = i40e_setup_misc_vector(pf); 10646 if (err) 10647 goto err_unwind; 10648 10649 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10650 i40e_client_update_msix_info(pf); 10651 10652 return 0; 10653 10654 err_unwind: 10655 while (i--) { 10656 if (pf->vsi[i]) 10657 i40e_vsi_free_q_vectors(pf->vsi[i]); 10658 } 10659 10660 return err; 10661 } 10662 10663 /** 10664 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10665 * @pf: board private structure 10666 * 10667 * This sets up the handler for MSIX 0, which is used to manage the 10668 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10669 * when in MSI or Legacy interrupt mode. 10670 **/ 10671 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10672 { 10673 struct i40e_hw *hw = &pf->hw; 10674 int err = 0; 10675 10676 /* Only request the IRQ once, the first time through. */ 10677 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10678 err = request_irq(pf->msix_entries[0].vector, 10679 i40e_intr, 0, pf->int_name, pf); 10680 if (err) { 10681 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10682 dev_info(&pf->pdev->dev, 10683 "request_irq for %s failed: %d\n", 10684 pf->int_name, err); 10685 return -EFAULT; 10686 } 10687 } 10688 10689 i40e_enable_misc_int_causes(pf); 10690 10691 /* associate no queues to the misc vector */ 10692 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10693 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10694 10695 i40e_flush(hw); 10696 10697 i40e_irq_dynamic_enable_icr0(pf); 10698 10699 return err; 10700 } 10701 10702 /** 10703 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10704 * @vsi: Pointer to vsi structure 10705 * @seed: Buffter to store the hash keys 10706 * @lut: Buffer to store the lookup table entries 10707 * @lut_size: Size of buffer to store the lookup table entries 10708 * 10709 * Return 0 on success, negative on failure 10710 */ 10711 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10712 u8 *lut, u16 lut_size) 10713 { 10714 struct i40e_pf *pf = vsi->back; 10715 struct i40e_hw *hw = &pf->hw; 10716 int ret = 0; 10717 10718 if (seed) { 10719 ret = i40e_aq_get_rss_key(hw, vsi->id, 10720 (struct i40e_aqc_get_set_rss_key_data *)seed); 10721 if (ret) { 10722 dev_info(&pf->pdev->dev, 10723 "Cannot get RSS key, err %s aq_err %s\n", 10724 i40e_stat_str(&pf->hw, ret), 10725 i40e_aq_str(&pf->hw, 10726 pf->hw.aq.asq_last_status)); 10727 return ret; 10728 } 10729 } 10730 10731 if (lut) { 10732 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10733 10734 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10735 if (ret) { 10736 dev_info(&pf->pdev->dev, 10737 "Cannot get RSS lut, err %s aq_err %s\n", 10738 i40e_stat_str(&pf->hw, ret), 10739 i40e_aq_str(&pf->hw, 10740 pf->hw.aq.asq_last_status)); 10741 return ret; 10742 } 10743 } 10744 10745 return ret; 10746 } 10747 10748 /** 10749 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10750 * @vsi: Pointer to vsi structure 10751 * @seed: RSS hash seed 10752 * @lut: Lookup table 10753 * @lut_size: Lookup table size 10754 * 10755 * Returns 0 on success, negative on failure 10756 **/ 10757 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10758 const u8 *lut, u16 lut_size) 10759 { 10760 struct i40e_pf *pf = vsi->back; 10761 struct i40e_hw *hw = &pf->hw; 10762 u16 vf_id = vsi->vf_id; 10763 u8 i; 10764 10765 /* Fill out hash function seed */ 10766 if (seed) { 10767 u32 *seed_dw = (u32 *)seed; 10768 10769 if (vsi->type == I40E_VSI_MAIN) { 10770 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10771 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10772 } else if (vsi->type == I40E_VSI_SRIOV) { 10773 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10774 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10775 } else { 10776 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10777 } 10778 } 10779 10780 if (lut) { 10781 u32 *lut_dw = (u32 *)lut; 10782 10783 if (vsi->type == I40E_VSI_MAIN) { 10784 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10785 return -EINVAL; 10786 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10787 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10788 } else if (vsi->type == I40E_VSI_SRIOV) { 10789 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10790 return -EINVAL; 10791 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10792 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10793 } else { 10794 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10795 } 10796 } 10797 i40e_flush(hw); 10798 10799 return 0; 10800 } 10801 10802 /** 10803 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10804 * @vsi: Pointer to VSI structure 10805 * @seed: Buffer to store the keys 10806 * @lut: Buffer to store the lookup table entries 10807 * @lut_size: Size of buffer to store the lookup table entries 10808 * 10809 * Returns 0 on success, negative on failure 10810 */ 10811 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10812 u8 *lut, u16 lut_size) 10813 { 10814 struct i40e_pf *pf = vsi->back; 10815 struct i40e_hw *hw = &pf->hw; 10816 u16 i; 10817 10818 if (seed) { 10819 u32 *seed_dw = (u32 *)seed; 10820 10821 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10822 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10823 } 10824 if (lut) { 10825 u32 *lut_dw = (u32 *)lut; 10826 10827 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10828 return -EINVAL; 10829 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10830 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10831 } 10832 10833 return 0; 10834 } 10835 10836 /** 10837 * i40e_config_rss - Configure RSS keys and lut 10838 * @vsi: Pointer to VSI structure 10839 * @seed: RSS hash seed 10840 * @lut: Lookup table 10841 * @lut_size: Lookup table size 10842 * 10843 * Returns 0 on success, negative on failure 10844 */ 10845 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10846 { 10847 struct i40e_pf *pf = vsi->back; 10848 10849 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10850 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10851 else 10852 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10853 } 10854 10855 /** 10856 * i40e_get_rss - Get RSS keys and lut 10857 * @vsi: Pointer to VSI structure 10858 * @seed: Buffer to store the keys 10859 * @lut: Buffer to store the lookup table entries 10860 * @lut_size: Size of buffer to store the lookup table entries 10861 * 10862 * Returns 0 on success, negative on failure 10863 */ 10864 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10865 { 10866 struct i40e_pf *pf = vsi->back; 10867 10868 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10869 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10870 else 10871 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10872 } 10873 10874 /** 10875 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10876 * @pf: Pointer to board private structure 10877 * @lut: Lookup table 10878 * @rss_table_size: Lookup table size 10879 * @rss_size: Range of queue number for hashing 10880 */ 10881 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10882 u16 rss_table_size, u16 rss_size) 10883 { 10884 u16 i; 10885 10886 for (i = 0; i < rss_table_size; i++) 10887 lut[i] = i % rss_size; 10888 } 10889 10890 /** 10891 * i40e_pf_config_rss - Prepare for RSS if used 10892 * @pf: board private structure 10893 **/ 10894 static int i40e_pf_config_rss(struct i40e_pf *pf) 10895 { 10896 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10897 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10898 u8 *lut; 10899 struct i40e_hw *hw = &pf->hw; 10900 u32 reg_val; 10901 u64 hena; 10902 int ret; 10903 10904 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10905 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10906 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10907 hena |= i40e_pf_get_default_rss_hena(pf); 10908 10909 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10910 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10911 10912 /* Determine the RSS table size based on the hardware capabilities */ 10913 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10914 reg_val = (pf->rss_table_size == 512) ? 10915 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10916 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10917 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10918 10919 /* Determine the RSS size of the VSI */ 10920 if (!vsi->rss_size) { 10921 u16 qcount; 10922 /* If the firmware does something weird during VSI init, we 10923 * could end up with zero TCs. Check for that to avoid 10924 * divide-by-zero. It probably won't pass traffic, but it also 10925 * won't panic. 10926 */ 10927 qcount = vsi->num_queue_pairs / 10928 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 10929 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10930 } 10931 if (!vsi->rss_size) 10932 return -EINVAL; 10933 10934 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 10935 if (!lut) 10936 return -ENOMEM; 10937 10938 /* Use user configured lut if there is one, otherwise use default */ 10939 if (vsi->rss_lut_user) 10940 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 10941 else 10942 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 10943 10944 /* Use user configured hash key if there is one, otherwise 10945 * use default. 10946 */ 10947 if (vsi->rss_hkey_user) 10948 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 10949 else 10950 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 10951 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 10952 kfree(lut); 10953 10954 return ret; 10955 } 10956 10957 /** 10958 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 10959 * @pf: board private structure 10960 * @queue_count: the requested queue count for rss. 10961 * 10962 * returns 0 if rss is not enabled, if enabled returns the final rss queue 10963 * count which may be different from the requested queue count. 10964 * Note: expects to be called while under rtnl_lock() 10965 **/ 10966 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 10967 { 10968 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10969 int new_rss_size; 10970 10971 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 10972 return 0; 10973 10974 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 10975 10976 if (queue_count != vsi->num_queue_pairs) { 10977 u16 qcount; 10978 10979 vsi->req_queue_pairs = queue_count; 10980 i40e_prep_for_reset(pf, true); 10981 10982 pf->alloc_rss_size = new_rss_size; 10983 10984 i40e_reset_and_rebuild(pf, true, true); 10985 10986 /* Discard the user configured hash keys and lut, if less 10987 * queues are enabled. 10988 */ 10989 if (queue_count < vsi->rss_size) { 10990 i40e_clear_rss_config_user(vsi); 10991 dev_dbg(&pf->pdev->dev, 10992 "discard user configured hash keys and lut\n"); 10993 } 10994 10995 /* Reset vsi->rss_size, as number of enabled queues changed */ 10996 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 10997 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10998 10999 i40e_pf_config_rss(pf); 11000 } 11001 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11002 vsi->req_queue_pairs, pf->rss_size_max); 11003 return pf->alloc_rss_size; 11004 } 11005 11006 /** 11007 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11008 * @pf: board private structure 11009 **/ 11010 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11011 { 11012 i40e_status status; 11013 bool min_valid, max_valid; 11014 u32 max_bw, min_bw; 11015 11016 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11017 &min_valid, &max_valid); 11018 11019 if (!status) { 11020 if (min_valid) 11021 pf->min_bw = min_bw; 11022 if (max_valid) 11023 pf->max_bw = max_bw; 11024 } 11025 11026 return status; 11027 } 11028 11029 /** 11030 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11031 * @pf: board private structure 11032 **/ 11033 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11034 { 11035 struct i40e_aqc_configure_partition_bw_data bw_data; 11036 i40e_status status; 11037 11038 /* Set the valid bit for this PF */ 11039 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11040 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11041 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11042 11043 /* Set the new bandwidths */ 11044 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11045 11046 return status; 11047 } 11048 11049 /** 11050 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11051 * @pf: board private structure 11052 **/ 11053 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11054 { 11055 /* Commit temporary BW setting to permanent NVM image */ 11056 enum i40e_admin_queue_err last_aq_status; 11057 i40e_status ret; 11058 u16 nvm_word; 11059 11060 if (pf->hw.partition_id != 1) { 11061 dev_info(&pf->pdev->dev, 11062 "Commit BW only works on partition 1! This is partition %d", 11063 pf->hw.partition_id); 11064 ret = I40E_NOT_SUPPORTED; 11065 goto bw_commit_out; 11066 } 11067 11068 /* Acquire NVM for read access */ 11069 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11070 last_aq_status = pf->hw.aq.asq_last_status; 11071 if (ret) { 11072 dev_info(&pf->pdev->dev, 11073 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11074 i40e_stat_str(&pf->hw, ret), 11075 i40e_aq_str(&pf->hw, last_aq_status)); 11076 goto bw_commit_out; 11077 } 11078 11079 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11080 ret = i40e_aq_read_nvm(&pf->hw, 11081 I40E_SR_NVM_CONTROL_WORD, 11082 0x10, sizeof(nvm_word), &nvm_word, 11083 false, NULL); 11084 /* Save off last admin queue command status before releasing 11085 * the NVM 11086 */ 11087 last_aq_status = pf->hw.aq.asq_last_status; 11088 i40e_release_nvm(&pf->hw); 11089 if (ret) { 11090 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11091 i40e_stat_str(&pf->hw, ret), 11092 i40e_aq_str(&pf->hw, last_aq_status)); 11093 goto bw_commit_out; 11094 } 11095 11096 /* Wait a bit for NVM release to complete */ 11097 msleep(50); 11098 11099 /* Acquire NVM for write access */ 11100 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11101 last_aq_status = pf->hw.aq.asq_last_status; 11102 if (ret) { 11103 dev_info(&pf->pdev->dev, 11104 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11105 i40e_stat_str(&pf->hw, ret), 11106 i40e_aq_str(&pf->hw, last_aq_status)); 11107 goto bw_commit_out; 11108 } 11109 /* Write it back out unchanged to initiate update NVM, 11110 * which will force a write of the shadow (alt) RAM to 11111 * the NVM - thus storing the bandwidth values permanently. 11112 */ 11113 ret = i40e_aq_update_nvm(&pf->hw, 11114 I40E_SR_NVM_CONTROL_WORD, 11115 0x10, sizeof(nvm_word), 11116 &nvm_word, true, 0, NULL); 11117 /* Save off last admin queue command status before releasing 11118 * the NVM 11119 */ 11120 last_aq_status = pf->hw.aq.asq_last_status; 11121 i40e_release_nvm(&pf->hw); 11122 if (ret) 11123 dev_info(&pf->pdev->dev, 11124 "BW settings NOT SAVED, err %s aq_err %s\n", 11125 i40e_stat_str(&pf->hw, ret), 11126 i40e_aq_str(&pf->hw, last_aq_status)); 11127 bw_commit_out: 11128 11129 return ret; 11130 } 11131 11132 /** 11133 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11134 * @pf: board private structure to initialize 11135 * 11136 * i40e_sw_init initializes the Adapter private data structure. 11137 * Fields are initialized based on PCI device information and 11138 * OS network device settings (MTU size). 11139 **/ 11140 static int i40e_sw_init(struct i40e_pf *pf) 11141 { 11142 int err = 0; 11143 int size; 11144 11145 /* Set default capability flags */ 11146 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11147 I40E_FLAG_MSI_ENABLED | 11148 I40E_FLAG_MSIX_ENABLED; 11149 11150 /* Set default ITR */ 11151 pf->rx_itr_default = I40E_ITR_RX_DEF; 11152 pf->tx_itr_default = I40E_ITR_TX_DEF; 11153 11154 /* Depending on PF configurations, it is possible that the RSS 11155 * maximum might end up larger than the available queues 11156 */ 11157 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11158 pf->alloc_rss_size = 1; 11159 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11160 pf->rss_size_max = min_t(int, pf->rss_size_max, 11161 pf->hw.func_caps.num_tx_qp); 11162 if (pf->hw.func_caps.rss) { 11163 pf->flags |= I40E_FLAG_RSS_ENABLED; 11164 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11165 num_online_cpus()); 11166 } 11167 11168 /* MFP mode enabled */ 11169 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11170 pf->flags |= I40E_FLAG_MFP_ENABLED; 11171 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11172 if (i40e_get_partition_bw_setting(pf)) { 11173 dev_warn(&pf->pdev->dev, 11174 "Could not get partition bw settings\n"); 11175 } else { 11176 dev_info(&pf->pdev->dev, 11177 "Partition BW Min = %8.8x, Max = %8.8x\n", 11178 pf->min_bw, pf->max_bw); 11179 11180 /* nudge the Tx scheduler */ 11181 i40e_set_partition_bw_setting(pf); 11182 } 11183 } 11184 11185 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11186 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11187 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11188 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11189 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11190 pf->hw.num_partitions > 1) 11191 dev_info(&pf->pdev->dev, 11192 "Flow Director Sideband mode Disabled in MFP mode\n"); 11193 else 11194 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11195 pf->fdir_pf_filter_count = 11196 pf->hw.func_caps.fd_filters_guaranteed; 11197 pf->hw.fdir_shared_filter_count = 11198 pf->hw.func_caps.fd_filters_best_effort; 11199 } 11200 11201 if (pf->hw.mac.type == I40E_MAC_X722) { 11202 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11203 I40E_HW_128_QP_RSS_CAPABLE | 11204 I40E_HW_ATR_EVICT_CAPABLE | 11205 I40E_HW_WB_ON_ITR_CAPABLE | 11206 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11207 I40E_HW_NO_PCI_LINK_CHECK | 11208 I40E_HW_USE_SET_LLDP_MIB | 11209 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11210 I40E_HW_PTP_L4_CAPABLE | 11211 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11212 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11213 11214 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11215 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11216 I40E_FDEVICT_PCTYPE_DEFAULT) { 11217 dev_warn(&pf->pdev->dev, 11218 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11219 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11220 } 11221 } else if ((pf->hw.aq.api_maj_ver > 1) || 11222 ((pf->hw.aq.api_maj_ver == 1) && 11223 (pf->hw.aq.api_min_ver > 4))) { 11224 /* Supported in FW API version higher than 1.4 */ 11225 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11226 } 11227 11228 /* Enable HW ATR eviction if possible */ 11229 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11230 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11231 11232 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11233 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11234 (pf->hw.aq.fw_maj_ver < 4))) { 11235 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11236 /* No DCB support for FW < v4.33 */ 11237 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11238 } 11239 11240 /* Disable FW LLDP if FW < v4.3 */ 11241 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11242 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11243 (pf->hw.aq.fw_maj_ver < 4))) 11244 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11245 11246 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11247 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11248 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11249 (pf->hw.aq.fw_maj_ver >= 5))) 11250 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11251 11252 /* Enable PTP L4 if FW > v6.0 */ 11253 if (pf->hw.mac.type == I40E_MAC_XL710 && 11254 pf->hw.aq.fw_maj_ver >= 6) 11255 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11256 11257 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11258 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11259 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11260 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11261 } 11262 11263 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11264 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11265 /* IWARP needs one extra vector for CQP just like MISC.*/ 11266 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11267 } 11268 /* Stopping the FW LLDP engine is only supported on the 11269 * XL710 with a FW ver >= 1.7. Also, stopping FW LLDP 11270 * engine is not supported if NPAR is functioning on this 11271 * part 11272 */ 11273 if (pf->hw.mac.type == I40E_MAC_XL710 && 11274 !pf->hw.func_caps.npar_enable && 11275 (pf->hw.aq.api_maj_ver > 1 || 11276 (pf->hw.aq.api_maj_ver == 1 && pf->hw.aq.api_min_ver > 6))) 11277 pf->hw_features |= I40E_HW_STOPPABLE_FW_LLDP; 11278 11279 #ifdef CONFIG_PCI_IOV 11280 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11281 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11282 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11283 pf->num_req_vfs = min_t(int, 11284 pf->hw.func_caps.num_vfs, 11285 I40E_MAX_VF_COUNT); 11286 } 11287 #endif /* CONFIG_PCI_IOV */ 11288 pf->eeprom_version = 0xDEAD; 11289 pf->lan_veb = I40E_NO_VEB; 11290 pf->lan_vsi = I40E_NO_VSI; 11291 11292 /* By default FW has this off for performance reasons */ 11293 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11294 11295 /* set up queue assignment tracking */ 11296 size = sizeof(struct i40e_lump_tracking) 11297 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11298 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11299 if (!pf->qp_pile) { 11300 err = -ENOMEM; 11301 goto sw_init_done; 11302 } 11303 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11304 pf->qp_pile->search_hint = 0; 11305 11306 pf->tx_timeout_recovery_level = 1; 11307 11308 mutex_init(&pf->switch_mutex); 11309 11310 sw_init_done: 11311 return err; 11312 } 11313 11314 /** 11315 * i40e_set_ntuple - set the ntuple feature flag and take action 11316 * @pf: board private structure to initialize 11317 * @features: the feature set that the stack is suggesting 11318 * 11319 * returns a bool to indicate if reset needs to happen 11320 **/ 11321 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11322 { 11323 bool need_reset = false; 11324 11325 /* Check if Flow Director n-tuple support was enabled or disabled. If 11326 * the state changed, we need to reset. 11327 */ 11328 if (features & NETIF_F_NTUPLE) { 11329 /* Enable filters and mark for reset */ 11330 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11331 need_reset = true; 11332 /* enable FD_SB only if there is MSI-X vector and no cloud 11333 * filters exist 11334 */ 11335 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11336 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11337 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11338 } 11339 } else { 11340 /* turn off filters, mark for reset and clear SW filter list */ 11341 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11342 need_reset = true; 11343 i40e_fdir_filter_exit(pf); 11344 } 11345 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11346 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11347 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11348 11349 /* reset fd counters */ 11350 pf->fd_add_err = 0; 11351 pf->fd_atr_cnt = 0; 11352 /* if ATR was auto disabled it can be re-enabled. */ 11353 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11354 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11355 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11356 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11357 } 11358 return need_reset; 11359 } 11360 11361 /** 11362 * i40e_clear_rss_lut - clear the rx hash lookup table 11363 * @vsi: the VSI being configured 11364 **/ 11365 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11366 { 11367 struct i40e_pf *pf = vsi->back; 11368 struct i40e_hw *hw = &pf->hw; 11369 u16 vf_id = vsi->vf_id; 11370 u8 i; 11371 11372 if (vsi->type == I40E_VSI_MAIN) { 11373 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11374 wr32(hw, I40E_PFQF_HLUT(i), 0); 11375 } else if (vsi->type == I40E_VSI_SRIOV) { 11376 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11377 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11378 } else { 11379 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11380 } 11381 } 11382 11383 /** 11384 * i40e_set_features - set the netdev feature flags 11385 * @netdev: ptr to the netdev being adjusted 11386 * @features: the feature set that the stack is suggesting 11387 * Note: expects to be called while under rtnl_lock() 11388 **/ 11389 static int i40e_set_features(struct net_device *netdev, 11390 netdev_features_t features) 11391 { 11392 struct i40e_netdev_priv *np = netdev_priv(netdev); 11393 struct i40e_vsi *vsi = np->vsi; 11394 struct i40e_pf *pf = vsi->back; 11395 bool need_reset; 11396 11397 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11398 i40e_pf_config_rss(pf); 11399 else if (!(features & NETIF_F_RXHASH) && 11400 netdev->features & NETIF_F_RXHASH) 11401 i40e_clear_rss_lut(vsi); 11402 11403 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11404 i40e_vlan_stripping_enable(vsi); 11405 else 11406 i40e_vlan_stripping_disable(vsi); 11407 11408 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11409 dev_err(&pf->pdev->dev, 11410 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11411 return -EINVAL; 11412 } 11413 11414 need_reset = i40e_set_ntuple(pf, features); 11415 11416 if (need_reset) 11417 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11418 11419 return 0; 11420 } 11421 11422 /** 11423 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11424 * @pf: board private structure 11425 * @port: The UDP port to look up 11426 * 11427 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11428 **/ 11429 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11430 { 11431 u8 i; 11432 11433 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11434 /* Do not report ports with pending deletions as 11435 * being available. 11436 */ 11437 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11438 continue; 11439 if (pf->udp_ports[i].port == port) 11440 return i; 11441 } 11442 11443 return i; 11444 } 11445 11446 /** 11447 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11448 * @netdev: This physical port's netdev 11449 * @ti: Tunnel endpoint information 11450 **/ 11451 static void i40e_udp_tunnel_add(struct net_device *netdev, 11452 struct udp_tunnel_info *ti) 11453 { 11454 struct i40e_netdev_priv *np = netdev_priv(netdev); 11455 struct i40e_vsi *vsi = np->vsi; 11456 struct i40e_pf *pf = vsi->back; 11457 u16 port = ntohs(ti->port); 11458 u8 next_idx; 11459 u8 idx; 11460 11461 idx = i40e_get_udp_port_idx(pf, port); 11462 11463 /* Check if port already exists */ 11464 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11465 netdev_info(netdev, "port %d already offloaded\n", port); 11466 return; 11467 } 11468 11469 /* Now check if there is space to add the new port */ 11470 next_idx = i40e_get_udp_port_idx(pf, 0); 11471 11472 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11473 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11474 port); 11475 return; 11476 } 11477 11478 switch (ti->type) { 11479 case UDP_TUNNEL_TYPE_VXLAN: 11480 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11481 break; 11482 case UDP_TUNNEL_TYPE_GENEVE: 11483 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11484 return; 11485 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11486 break; 11487 default: 11488 return; 11489 } 11490 11491 /* New port: add it and mark its index in the bitmap */ 11492 pf->udp_ports[next_idx].port = port; 11493 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11494 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11495 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11496 } 11497 11498 /** 11499 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11500 * @netdev: This physical port's netdev 11501 * @ti: Tunnel endpoint information 11502 **/ 11503 static void i40e_udp_tunnel_del(struct net_device *netdev, 11504 struct udp_tunnel_info *ti) 11505 { 11506 struct i40e_netdev_priv *np = netdev_priv(netdev); 11507 struct i40e_vsi *vsi = np->vsi; 11508 struct i40e_pf *pf = vsi->back; 11509 u16 port = ntohs(ti->port); 11510 u8 idx; 11511 11512 idx = i40e_get_udp_port_idx(pf, port); 11513 11514 /* Check if port already exists */ 11515 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11516 goto not_found; 11517 11518 switch (ti->type) { 11519 case UDP_TUNNEL_TYPE_VXLAN: 11520 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11521 goto not_found; 11522 break; 11523 case UDP_TUNNEL_TYPE_GENEVE: 11524 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11525 goto not_found; 11526 break; 11527 default: 11528 goto not_found; 11529 } 11530 11531 /* if port exists, set it to 0 (mark for deletion) 11532 * and make it pending 11533 */ 11534 pf->udp_ports[idx].port = 0; 11535 11536 /* Toggle pending bit instead of setting it. This way if we are 11537 * deleting a port that has yet to be added we just clear the pending 11538 * bit and don't have to worry about it. 11539 */ 11540 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11541 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11542 11543 return; 11544 not_found: 11545 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11546 port); 11547 } 11548 11549 static int i40e_get_phys_port_id(struct net_device *netdev, 11550 struct netdev_phys_item_id *ppid) 11551 { 11552 struct i40e_netdev_priv *np = netdev_priv(netdev); 11553 struct i40e_pf *pf = np->vsi->back; 11554 struct i40e_hw *hw = &pf->hw; 11555 11556 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11557 return -EOPNOTSUPP; 11558 11559 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11560 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11561 11562 return 0; 11563 } 11564 11565 /** 11566 * i40e_ndo_fdb_add - add an entry to the hardware database 11567 * @ndm: the input from the stack 11568 * @tb: pointer to array of nladdr (unused) 11569 * @dev: the net device pointer 11570 * @addr: the MAC address entry being added 11571 * @vid: VLAN ID 11572 * @flags: instructions from stack about fdb operation 11573 */ 11574 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11575 struct net_device *dev, 11576 const unsigned char *addr, u16 vid, 11577 u16 flags) 11578 { 11579 struct i40e_netdev_priv *np = netdev_priv(dev); 11580 struct i40e_pf *pf = np->vsi->back; 11581 int err = 0; 11582 11583 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11584 return -EOPNOTSUPP; 11585 11586 if (vid) { 11587 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11588 return -EINVAL; 11589 } 11590 11591 /* Hardware does not support aging addresses so if a 11592 * ndm_state is given only allow permanent addresses 11593 */ 11594 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11595 netdev_info(dev, "FDB only supports static addresses\n"); 11596 return -EINVAL; 11597 } 11598 11599 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11600 err = dev_uc_add_excl(dev, addr); 11601 else if (is_multicast_ether_addr(addr)) 11602 err = dev_mc_add_excl(dev, addr); 11603 else 11604 err = -EINVAL; 11605 11606 /* Only return duplicate errors if NLM_F_EXCL is set */ 11607 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11608 err = 0; 11609 11610 return err; 11611 } 11612 11613 /** 11614 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11615 * @dev: the netdev being configured 11616 * @nlh: RTNL message 11617 * @flags: bridge flags 11618 * 11619 * Inserts a new hardware bridge if not already created and 11620 * enables the bridging mode requested (VEB or VEPA). If the 11621 * hardware bridge has already been inserted and the request 11622 * is to change the mode then that requires a PF reset to 11623 * allow rebuild of the components with required hardware 11624 * bridge mode enabled. 11625 * 11626 * Note: expects to be called while under rtnl_lock() 11627 **/ 11628 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11629 struct nlmsghdr *nlh, 11630 u16 flags) 11631 { 11632 struct i40e_netdev_priv *np = netdev_priv(dev); 11633 struct i40e_vsi *vsi = np->vsi; 11634 struct i40e_pf *pf = vsi->back; 11635 struct i40e_veb *veb = NULL; 11636 struct nlattr *attr, *br_spec; 11637 int i, rem; 11638 11639 /* Only for PF VSI for now */ 11640 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11641 return -EOPNOTSUPP; 11642 11643 /* Find the HW bridge for PF VSI */ 11644 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11645 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11646 veb = pf->veb[i]; 11647 } 11648 11649 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11650 11651 nla_for_each_nested(attr, br_spec, rem) { 11652 __u16 mode; 11653 11654 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11655 continue; 11656 11657 mode = nla_get_u16(attr); 11658 if ((mode != BRIDGE_MODE_VEPA) && 11659 (mode != BRIDGE_MODE_VEB)) 11660 return -EINVAL; 11661 11662 /* Insert a new HW bridge */ 11663 if (!veb) { 11664 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11665 vsi->tc_config.enabled_tc); 11666 if (veb) { 11667 veb->bridge_mode = mode; 11668 i40e_config_bridge_mode(veb); 11669 } else { 11670 /* No Bridge HW offload available */ 11671 return -ENOENT; 11672 } 11673 break; 11674 } else if (mode != veb->bridge_mode) { 11675 /* Existing HW bridge but different mode needs reset */ 11676 veb->bridge_mode = mode; 11677 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11678 if (mode == BRIDGE_MODE_VEB) 11679 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11680 else 11681 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11682 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11683 break; 11684 } 11685 } 11686 11687 return 0; 11688 } 11689 11690 /** 11691 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11692 * @skb: skb buff 11693 * @pid: process id 11694 * @seq: RTNL message seq # 11695 * @dev: the netdev being configured 11696 * @filter_mask: unused 11697 * @nlflags: netlink flags passed in 11698 * 11699 * Return the mode in which the hardware bridge is operating in 11700 * i.e VEB or VEPA. 11701 **/ 11702 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11703 struct net_device *dev, 11704 u32 __always_unused filter_mask, 11705 int nlflags) 11706 { 11707 struct i40e_netdev_priv *np = netdev_priv(dev); 11708 struct i40e_vsi *vsi = np->vsi; 11709 struct i40e_pf *pf = vsi->back; 11710 struct i40e_veb *veb = NULL; 11711 int i; 11712 11713 /* Only for PF VSI for now */ 11714 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11715 return -EOPNOTSUPP; 11716 11717 /* Find the HW bridge for the PF VSI */ 11718 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11719 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11720 veb = pf->veb[i]; 11721 } 11722 11723 if (!veb) 11724 return 0; 11725 11726 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11727 0, 0, nlflags, filter_mask, NULL); 11728 } 11729 11730 /** 11731 * i40e_features_check - Validate encapsulated packet conforms to limits 11732 * @skb: skb buff 11733 * @dev: This physical port's netdev 11734 * @features: Offload features that the stack believes apply 11735 **/ 11736 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11737 struct net_device *dev, 11738 netdev_features_t features) 11739 { 11740 size_t len; 11741 11742 /* No point in doing any of this if neither checksum nor GSO are 11743 * being requested for this frame. We can rule out both by just 11744 * checking for CHECKSUM_PARTIAL 11745 */ 11746 if (skb->ip_summed != CHECKSUM_PARTIAL) 11747 return features; 11748 11749 /* We cannot support GSO if the MSS is going to be less than 11750 * 64 bytes. If it is then we need to drop support for GSO. 11751 */ 11752 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11753 features &= ~NETIF_F_GSO_MASK; 11754 11755 /* MACLEN can support at most 63 words */ 11756 len = skb_network_header(skb) - skb->data; 11757 if (len & ~(63 * 2)) 11758 goto out_err; 11759 11760 /* IPLEN and EIPLEN can support at most 127 dwords */ 11761 len = skb_transport_header(skb) - skb_network_header(skb); 11762 if (len & ~(127 * 4)) 11763 goto out_err; 11764 11765 if (skb->encapsulation) { 11766 /* L4TUNLEN can support 127 words */ 11767 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11768 if (len & ~(127 * 2)) 11769 goto out_err; 11770 11771 /* IPLEN can support at most 127 dwords */ 11772 len = skb_inner_transport_header(skb) - 11773 skb_inner_network_header(skb); 11774 if (len & ~(127 * 4)) 11775 goto out_err; 11776 } 11777 11778 /* No need to validate L4LEN as TCP is the only protocol with a 11779 * a flexible value and we support all possible values supported 11780 * by TCP, which is at most 15 dwords 11781 */ 11782 11783 return features; 11784 out_err: 11785 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11786 } 11787 11788 /** 11789 * i40e_xdp_setup - add/remove an XDP program 11790 * @vsi: VSI to changed 11791 * @prog: XDP program 11792 **/ 11793 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11794 struct bpf_prog *prog) 11795 { 11796 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11797 struct i40e_pf *pf = vsi->back; 11798 struct bpf_prog *old_prog; 11799 bool need_reset; 11800 int i; 11801 11802 /* Don't allow frames that span over multiple buffers */ 11803 if (frame_size > vsi->rx_buf_len) 11804 return -EINVAL; 11805 11806 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11807 return 0; 11808 11809 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11810 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11811 11812 if (need_reset) 11813 i40e_prep_for_reset(pf, true); 11814 11815 old_prog = xchg(&vsi->xdp_prog, prog); 11816 11817 if (need_reset) 11818 i40e_reset_and_rebuild(pf, true, true); 11819 11820 for (i = 0; i < vsi->num_queue_pairs; i++) 11821 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11822 11823 if (old_prog) 11824 bpf_prog_put(old_prog); 11825 11826 return 0; 11827 } 11828 11829 /** 11830 * i40e_xdp - implements ndo_bpf for i40e 11831 * @dev: netdevice 11832 * @xdp: XDP command 11833 **/ 11834 static int i40e_xdp(struct net_device *dev, 11835 struct netdev_bpf *xdp) 11836 { 11837 struct i40e_netdev_priv *np = netdev_priv(dev); 11838 struct i40e_vsi *vsi = np->vsi; 11839 11840 if (vsi->type != I40E_VSI_MAIN) 11841 return -EINVAL; 11842 11843 switch (xdp->command) { 11844 case XDP_SETUP_PROG: 11845 return i40e_xdp_setup(vsi, xdp->prog); 11846 case XDP_QUERY_PROG: 11847 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 11848 return 0; 11849 default: 11850 return -EINVAL; 11851 } 11852 } 11853 11854 static const struct net_device_ops i40e_netdev_ops = { 11855 .ndo_open = i40e_open, 11856 .ndo_stop = i40e_close, 11857 .ndo_start_xmit = i40e_lan_xmit_frame, 11858 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 11859 .ndo_set_rx_mode = i40e_set_rx_mode, 11860 .ndo_validate_addr = eth_validate_addr, 11861 .ndo_set_mac_address = i40e_set_mac, 11862 .ndo_change_mtu = i40e_change_mtu, 11863 .ndo_do_ioctl = i40e_ioctl, 11864 .ndo_tx_timeout = i40e_tx_timeout, 11865 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 11866 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 11867 #ifdef CONFIG_NET_POLL_CONTROLLER 11868 .ndo_poll_controller = i40e_netpoll, 11869 #endif 11870 .ndo_setup_tc = __i40e_setup_tc, 11871 .ndo_set_features = i40e_set_features, 11872 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 11873 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 11874 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 11875 .ndo_get_vf_config = i40e_ndo_get_vf_config, 11876 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 11877 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 11878 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 11879 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 11880 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 11881 .ndo_get_phys_port_id = i40e_get_phys_port_id, 11882 .ndo_fdb_add = i40e_ndo_fdb_add, 11883 .ndo_features_check = i40e_features_check, 11884 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 11885 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 11886 .ndo_bpf = i40e_xdp, 11887 .ndo_xdp_xmit = i40e_xdp_xmit, 11888 }; 11889 11890 /** 11891 * i40e_config_netdev - Setup the netdev flags 11892 * @vsi: the VSI being configured 11893 * 11894 * Returns 0 on success, negative value on failure 11895 **/ 11896 static int i40e_config_netdev(struct i40e_vsi *vsi) 11897 { 11898 struct i40e_pf *pf = vsi->back; 11899 struct i40e_hw *hw = &pf->hw; 11900 struct i40e_netdev_priv *np; 11901 struct net_device *netdev; 11902 u8 broadcast[ETH_ALEN]; 11903 u8 mac_addr[ETH_ALEN]; 11904 int etherdev_size; 11905 netdev_features_t hw_enc_features; 11906 netdev_features_t hw_features; 11907 11908 etherdev_size = sizeof(struct i40e_netdev_priv); 11909 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 11910 if (!netdev) 11911 return -ENOMEM; 11912 11913 vsi->netdev = netdev; 11914 np = netdev_priv(netdev); 11915 np->vsi = vsi; 11916 11917 hw_enc_features = NETIF_F_SG | 11918 NETIF_F_IP_CSUM | 11919 NETIF_F_IPV6_CSUM | 11920 NETIF_F_HIGHDMA | 11921 NETIF_F_SOFT_FEATURES | 11922 NETIF_F_TSO | 11923 NETIF_F_TSO_ECN | 11924 NETIF_F_TSO6 | 11925 NETIF_F_GSO_GRE | 11926 NETIF_F_GSO_GRE_CSUM | 11927 NETIF_F_GSO_PARTIAL | 11928 NETIF_F_GSO_UDP_TUNNEL | 11929 NETIF_F_GSO_UDP_TUNNEL_CSUM | 11930 NETIF_F_SCTP_CRC | 11931 NETIF_F_RXHASH | 11932 NETIF_F_RXCSUM | 11933 0; 11934 11935 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 11936 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 11937 11938 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 11939 11940 netdev->hw_enc_features |= hw_enc_features; 11941 11942 /* record features VLANs can make use of */ 11943 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 11944 11945 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 11946 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 11947 11948 hw_features = hw_enc_features | 11949 NETIF_F_HW_VLAN_CTAG_TX | 11950 NETIF_F_HW_VLAN_CTAG_RX; 11951 11952 netdev->hw_features |= hw_features; 11953 11954 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 11955 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11956 11957 if (vsi->type == I40E_VSI_MAIN) { 11958 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 11959 ether_addr_copy(mac_addr, hw->mac.perm_addr); 11960 /* The following steps are necessary for two reasons. First, 11961 * some older NVM configurations load a default MAC-VLAN 11962 * filter that will accept any tagged packet, and we want to 11963 * replace this with a normal filter. Additionally, it is 11964 * possible our MAC address was provided by the platform using 11965 * Open Firmware or similar. 11966 * 11967 * Thus, we need to remove the default filter and install one 11968 * specific to the MAC address. 11969 */ 11970 i40e_rm_default_mac_filter(vsi, mac_addr); 11971 spin_lock_bh(&vsi->mac_filter_hash_lock); 11972 i40e_add_mac_filter(vsi, mac_addr); 11973 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11974 } else { 11975 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 11976 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 11977 * the end, which is 4 bytes long, so force truncation of the 11978 * original name by IFNAMSIZ - 4 11979 */ 11980 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 11981 IFNAMSIZ - 4, 11982 pf->vsi[pf->lan_vsi]->netdev->name); 11983 eth_random_addr(mac_addr); 11984 11985 spin_lock_bh(&vsi->mac_filter_hash_lock); 11986 i40e_add_mac_filter(vsi, mac_addr); 11987 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11988 } 11989 11990 /* Add the broadcast filter so that we initially will receive 11991 * broadcast packets. Note that when a new VLAN is first added the 11992 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 11993 * specific filters as part of transitioning into "vlan" operation. 11994 * When more VLANs are added, the driver will copy each existing MAC 11995 * filter and add it for the new VLAN. 11996 * 11997 * Broadcast filters are handled specially by 11998 * i40e_sync_filters_subtask, as the driver must to set the broadcast 11999 * promiscuous bit instead of adding this directly as a MAC/VLAN 12000 * filter. The subtask will update the correct broadcast promiscuous 12001 * bits as VLANs become active or inactive. 12002 */ 12003 eth_broadcast_addr(broadcast); 12004 spin_lock_bh(&vsi->mac_filter_hash_lock); 12005 i40e_add_mac_filter(vsi, broadcast); 12006 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12007 12008 ether_addr_copy(netdev->dev_addr, mac_addr); 12009 ether_addr_copy(netdev->perm_addr, mac_addr); 12010 12011 netdev->priv_flags |= IFF_UNICAST_FLT; 12012 netdev->priv_flags |= IFF_SUPP_NOFCS; 12013 /* Setup netdev TC information */ 12014 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12015 12016 netdev->netdev_ops = &i40e_netdev_ops; 12017 netdev->watchdog_timeo = 5 * HZ; 12018 i40e_set_ethtool_ops(netdev); 12019 12020 /* MTU range: 68 - 9706 */ 12021 netdev->min_mtu = ETH_MIN_MTU; 12022 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12023 12024 return 0; 12025 } 12026 12027 /** 12028 * i40e_vsi_delete - Delete a VSI from the switch 12029 * @vsi: the VSI being removed 12030 * 12031 * Returns 0 on success, negative value on failure 12032 **/ 12033 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12034 { 12035 /* remove default VSI is not allowed */ 12036 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12037 return; 12038 12039 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12040 } 12041 12042 /** 12043 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12044 * @vsi: the VSI being queried 12045 * 12046 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12047 **/ 12048 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12049 { 12050 struct i40e_veb *veb; 12051 struct i40e_pf *pf = vsi->back; 12052 12053 /* Uplink is not a bridge so default to VEB */ 12054 if (vsi->veb_idx == I40E_NO_VEB) 12055 return 1; 12056 12057 veb = pf->veb[vsi->veb_idx]; 12058 if (!veb) { 12059 dev_info(&pf->pdev->dev, 12060 "There is no veb associated with the bridge\n"); 12061 return -ENOENT; 12062 } 12063 12064 /* Uplink is a bridge in VEPA mode */ 12065 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12066 return 0; 12067 } else { 12068 /* Uplink is a bridge in VEB mode */ 12069 return 1; 12070 } 12071 12072 /* VEPA is now default bridge, so return 0 */ 12073 return 0; 12074 } 12075 12076 /** 12077 * i40e_add_vsi - Add a VSI to the switch 12078 * @vsi: the VSI being configured 12079 * 12080 * This initializes a VSI context depending on the VSI type to be added and 12081 * passes it down to the add_vsi aq command. 12082 **/ 12083 static int i40e_add_vsi(struct i40e_vsi *vsi) 12084 { 12085 int ret = -ENODEV; 12086 struct i40e_pf *pf = vsi->back; 12087 struct i40e_hw *hw = &pf->hw; 12088 struct i40e_vsi_context ctxt; 12089 struct i40e_mac_filter *f; 12090 struct hlist_node *h; 12091 int bkt; 12092 12093 u8 enabled_tc = 0x1; /* TC0 enabled */ 12094 int f_count = 0; 12095 12096 memset(&ctxt, 0, sizeof(ctxt)); 12097 switch (vsi->type) { 12098 case I40E_VSI_MAIN: 12099 /* The PF's main VSI is already setup as part of the 12100 * device initialization, so we'll not bother with 12101 * the add_vsi call, but we will retrieve the current 12102 * VSI context. 12103 */ 12104 ctxt.seid = pf->main_vsi_seid; 12105 ctxt.pf_num = pf->hw.pf_id; 12106 ctxt.vf_num = 0; 12107 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12108 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12109 if (ret) { 12110 dev_info(&pf->pdev->dev, 12111 "couldn't get PF vsi config, err %s aq_err %s\n", 12112 i40e_stat_str(&pf->hw, ret), 12113 i40e_aq_str(&pf->hw, 12114 pf->hw.aq.asq_last_status)); 12115 return -ENOENT; 12116 } 12117 vsi->info = ctxt.info; 12118 vsi->info.valid_sections = 0; 12119 12120 vsi->seid = ctxt.seid; 12121 vsi->id = ctxt.vsi_number; 12122 12123 enabled_tc = i40e_pf_get_tc_map(pf); 12124 12125 /* Source pruning is enabled by default, so the flag is 12126 * negative logic - if it's set, we need to fiddle with 12127 * the VSI to disable source pruning. 12128 */ 12129 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12130 memset(&ctxt, 0, sizeof(ctxt)); 12131 ctxt.seid = pf->main_vsi_seid; 12132 ctxt.pf_num = pf->hw.pf_id; 12133 ctxt.vf_num = 0; 12134 ctxt.info.valid_sections |= 12135 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12136 ctxt.info.switch_id = 12137 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12138 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12139 if (ret) { 12140 dev_info(&pf->pdev->dev, 12141 "update vsi failed, err %s aq_err %s\n", 12142 i40e_stat_str(&pf->hw, ret), 12143 i40e_aq_str(&pf->hw, 12144 pf->hw.aq.asq_last_status)); 12145 ret = -ENOENT; 12146 goto err; 12147 } 12148 } 12149 12150 /* MFP mode setup queue map and update VSI */ 12151 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12152 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12153 memset(&ctxt, 0, sizeof(ctxt)); 12154 ctxt.seid = pf->main_vsi_seid; 12155 ctxt.pf_num = pf->hw.pf_id; 12156 ctxt.vf_num = 0; 12157 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12158 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12159 if (ret) { 12160 dev_info(&pf->pdev->dev, 12161 "update vsi failed, err %s aq_err %s\n", 12162 i40e_stat_str(&pf->hw, ret), 12163 i40e_aq_str(&pf->hw, 12164 pf->hw.aq.asq_last_status)); 12165 ret = -ENOENT; 12166 goto err; 12167 } 12168 /* update the local VSI info queue map */ 12169 i40e_vsi_update_queue_map(vsi, &ctxt); 12170 vsi->info.valid_sections = 0; 12171 } else { 12172 /* Default/Main VSI is only enabled for TC0 12173 * reconfigure it to enable all TCs that are 12174 * available on the port in SFP mode. 12175 * For MFP case the iSCSI PF would use this 12176 * flow to enable LAN+iSCSI TC. 12177 */ 12178 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12179 if (ret) { 12180 /* Single TC condition is not fatal, 12181 * message and continue 12182 */ 12183 dev_info(&pf->pdev->dev, 12184 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12185 enabled_tc, 12186 i40e_stat_str(&pf->hw, ret), 12187 i40e_aq_str(&pf->hw, 12188 pf->hw.aq.asq_last_status)); 12189 } 12190 } 12191 break; 12192 12193 case I40E_VSI_FDIR: 12194 ctxt.pf_num = hw->pf_id; 12195 ctxt.vf_num = 0; 12196 ctxt.uplink_seid = vsi->uplink_seid; 12197 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12198 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12199 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12200 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12201 ctxt.info.valid_sections |= 12202 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12203 ctxt.info.switch_id = 12204 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12205 } 12206 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12207 break; 12208 12209 case I40E_VSI_VMDQ2: 12210 ctxt.pf_num = hw->pf_id; 12211 ctxt.vf_num = 0; 12212 ctxt.uplink_seid = vsi->uplink_seid; 12213 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12214 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12215 12216 /* This VSI is connected to VEB so the switch_id 12217 * should be set to zero by default. 12218 */ 12219 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12220 ctxt.info.valid_sections |= 12221 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12222 ctxt.info.switch_id = 12223 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12224 } 12225 12226 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12227 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12228 break; 12229 12230 case I40E_VSI_SRIOV: 12231 ctxt.pf_num = hw->pf_id; 12232 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12233 ctxt.uplink_seid = vsi->uplink_seid; 12234 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12235 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12236 12237 /* This VSI is connected to VEB so the switch_id 12238 * should be set to zero by default. 12239 */ 12240 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12241 ctxt.info.valid_sections |= 12242 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12243 ctxt.info.switch_id = 12244 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12245 } 12246 12247 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12248 ctxt.info.valid_sections |= 12249 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12250 ctxt.info.queueing_opt_flags |= 12251 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12252 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12253 } 12254 12255 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12256 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12257 if (pf->vf[vsi->vf_id].spoofchk) { 12258 ctxt.info.valid_sections |= 12259 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12260 ctxt.info.sec_flags |= 12261 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12262 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12263 } 12264 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12265 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12266 break; 12267 12268 case I40E_VSI_IWARP: 12269 /* send down message to iWARP */ 12270 break; 12271 12272 default: 12273 return -ENODEV; 12274 } 12275 12276 if (vsi->type != I40E_VSI_MAIN) { 12277 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12278 if (ret) { 12279 dev_info(&vsi->back->pdev->dev, 12280 "add vsi failed, err %s aq_err %s\n", 12281 i40e_stat_str(&pf->hw, ret), 12282 i40e_aq_str(&pf->hw, 12283 pf->hw.aq.asq_last_status)); 12284 ret = -ENOENT; 12285 goto err; 12286 } 12287 vsi->info = ctxt.info; 12288 vsi->info.valid_sections = 0; 12289 vsi->seid = ctxt.seid; 12290 vsi->id = ctxt.vsi_number; 12291 } 12292 12293 vsi->active_filters = 0; 12294 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12295 spin_lock_bh(&vsi->mac_filter_hash_lock); 12296 /* If macvlan filters already exist, force them to get loaded */ 12297 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12298 f->state = I40E_FILTER_NEW; 12299 f_count++; 12300 } 12301 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12302 12303 if (f_count) { 12304 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12305 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12306 } 12307 12308 /* Update VSI BW information */ 12309 ret = i40e_vsi_get_bw_info(vsi); 12310 if (ret) { 12311 dev_info(&pf->pdev->dev, 12312 "couldn't get vsi bw info, err %s aq_err %s\n", 12313 i40e_stat_str(&pf->hw, ret), 12314 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12315 /* VSI is already added so not tearing that up */ 12316 ret = 0; 12317 } 12318 12319 err: 12320 return ret; 12321 } 12322 12323 /** 12324 * i40e_vsi_release - Delete a VSI and free its resources 12325 * @vsi: the VSI being removed 12326 * 12327 * Returns 0 on success or < 0 on error 12328 **/ 12329 int i40e_vsi_release(struct i40e_vsi *vsi) 12330 { 12331 struct i40e_mac_filter *f; 12332 struct hlist_node *h; 12333 struct i40e_veb *veb = NULL; 12334 struct i40e_pf *pf; 12335 u16 uplink_seid; 12336 int i, n, bkt; 12337 12338 pf = vsi->back; 12339 12340 /* release of a VEB-owner or last VSI is not allowed */ 12341 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12342 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12343 vsi->seid, vsi->uplink_seid); 12344 return -ENODEV; 12345 } 12346 if (vsi == pf->vsi[pf->lan_vsi] && 12347 !test_bit(__I40E_DOWN, pf->state)) { 12348 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12349 return -ENODEV; 12350 } 12351 12352 uplink_seid = vsi->uplink_seid; 12353 if (vsi->type != I40E_VSI_SRIOV) { 12354 if (vsi->netdev_registered) { 12355 vsi->netdev_registered = false; 12356 if (vsi->netdev) { 12357 /* results in a call to i40e_close() */ 12358 unregister_netdev(vsi->netdev); 12359 } 12360 } else { 12361 i40e_vsi_close(vsi); 12362 } 12363 i40e_vsi_disable_irq(vsi); 12364 } 12365 12366 spin_lock_bh(&vsi->mac_filter_hash_lock); 12367 12368 /* clear the sync flag on all filters */ 12369 if (vsi->netdev) { 12370 __dev_uc_unsync(vsi->netdev, NULL); 12371 __dev_mc_unsync(vsi->netdev, NULL); 12372 } 12373 12374 /* make sure any remaining filters are marked for deletion */ 12375 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12376 __i40e_del_filter(vsi, f); 12377 12378 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12379 12380 i40e_sync_vsi_filters(vsi); 12381 12382 i40e_vsi_delete(vsi); 12383 i40e_vsi_free_q_vectors(vsi); 12384 if (vsi->netdev) { 12385 free_netdev(vsi->netdev); 12386 vsi->netdev = NULL; 12387 } 12388 i40e_vsi_clear_rings(vsi); 12389 i40e_vsi_clear(vsi); 12390 12391 /* If this was the last thing on the VEB, except for the 12392 * controlling VSI, remove the VEB, which puts the controlling 12393 * VSI onto the next level down in the switch. 12394 * 12395 * Well, okay, there's one more exception here: don't remove 12396 * the orphan VEBs yet. We'll wait for an explicit remove request 12397 * from up the network stack. 12398 */ 12399 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12400 if (pf->vsi[i] && 12401 pf->vsi[i]->uplink_seid == uplink_seid && 12402 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12403 n++; /* count the VSIs */ 12404 } 12405 } 12406 for (i = 0; i < I40E_MAX_VEB; i++) { 12407 if (!pf->veb[i]) 12408 continue; 12409 if (pf->veb[i]->uplink_seid == uplink_seid) 12410 n++; /* count the VEBs */ 12411 if (pf->veb[i]->seid == uplink_seid) 12412 veb = pf->veb[i]; 12413 } 12414 if (n == 0 && veb && veb->uplink_seid != 0) 12415 i40e_veb_release(veb); 12416 12417 return 0; 12418 } 12419 12420 /** 12421 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12422 * @vsi: ptr to the VSI 12423 * 12424 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12425 * corresponding SW VSI structure and initializes num_queue_pairs for the 12426 * newly allocated VSI. 12427 * 12428 * Returns 0 on success or negative on failure 12429 **/ 12430 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12431 { 12432 int ret = -ENOENT; 12433 struct i40e_pf *pf = vsi->back; 12434 12435 if (vsi->q_vectors[0]) { 12436 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12437 vsi->seid); 12438 return -EEXIST; 12439 } 12440 12441 if (vsi->base_vector) { 12442 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12443 vsi->seid, vsi->base_vector); 12444 return -EEXIST; 12445 } 12446 12447 ret = i40e_vsi_alloc_q_vectors(vsi); 12448 if (ret) { 12449 dev_info(&pf->pdev->dev, 12450 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12451 vsi->num_q_vectors, vsi->seid, ret); 12452 vsi->num_q_vectors = 0; 12453 goto vector_setup_out; 12454 } 12455 12456 /* In Legacy mode, we do not have to get any other vector since we 12457 * piggyback on the misc/ICR0 for queue interrupts. 12458 */ 12459 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12460 return ret; 12461 if (vsi->num_q_vectors) 12462 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12463 vsi->num_q_vectors, vsi->idx); 12464 if (vsi->base_vector < 0) { 12465 dev_info(&pf->pdev->dev, 12466 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12467 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12468 i40e_vsi_free_q_vectors(vsi); 12469 ret = -ENOENT; 12470 goto vector_setup_out; 12471 } 12472 12473 vector_setup_out: 12474 return ret; 12475 } 12476 12477 /** 12478 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12479 * @vsi: pointer to the vsi. 12480 * 12481 * This re-allocates a vsi's queue resources. 12482 * 12483 * Returns pointer to the successfully allocated and configured VSI sw struct 12484 * on success, otherwise returns NULL on failure. 12485 **/ 12486 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12487 { 12488 u16 alloc_queue_pairs; 12489 struct i40e_pf *pf; 12490 u8 enabled_tc; 12491 int ret; 12492 12493 if (!vsi) 12494 return NULL; 12495 12496 pf = vsi->back; 12497 12498 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12499 i40e_vsi_clear_rings(vsi); 12500 12501 i40e_vsi_free_arrays(vsi, false); 12502 i40e_set_num_rings_in_vsi(vsi); 12503 ret = i40e_vsi_alloc_arrays(vsi, false); 12504 if (ret) 12505 goto err_vsi; 12506 12507 alloc_queue_pairs = vsi->alloc_queue_pairs * 12508 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12509 12510 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12511 if (ret < 0) { 12512 dev_info(&pf->pdev->dev, 12513 "failed to get tracking for %d queues for VSI %d err %d\n", 12514 alloc_queue_pairs, vsi->seid, ret); 12515 goto err_vsi; 12516 } 12517 vsi->base_queue = ret; 12518 12519 /* Update the FW view of the VSI. Force a reset of TC and queue 12520 * layout configurations. 12521 */ 12522 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12523 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12524 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12525 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12526 if (vsi->type == I40E_VSI_MAIN) 12527 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12528 12529 /* assign it some queues */ 12530 ret = i40e_alloc_rings(vsi); 12531 if (ret) 12532 goto err_rings; 12533 12534 /* map all of the rings to the q_vectors */ 12535 i40e_vsi_map_rings_to_vectors(vsi); 12536 return vsi; 12537 12538 err_rings: 12539 i40e_vsi_free_q_vectors(vsi); 12540 if (vsi->netdev_registered) { 12541 vsi->netdev_registered = false; 12542 unregister_netdev(vsi->netdev); 12543 free_netdev(vsi->netdev); 12544 vsi->netdev = NULL; 12545 } 12546 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12547 err_vsi: 12548 i40e_vsi_clear(vsi); 12549 return NULL; 12550 } 12551 12552 /** 12553 * i40e_vsi_setup - Set up a VSI by a given type 12554 * @pf: board private structure 12555 * @type: VSI type 12556 * @uplink_seid: the switch element to link to 12557 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12558 * 12559 * This allocates the sw VSI structure and its queue resources, then add a VSI 12560 * to the identified VEB. 12561 * 12562 * Returns pointer to the successfully allocated and configure VSI sw struct on 12563 * success, otherwise returns NULL on failure. 12564 **/ 12565 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12566 u16 uplink_seid, u32 param1) 12567 { 12568 struct i40e_vsi *vsi = NULL; 12569 struct i40e_veb *veb = NULL; 12570 u16 alloc_queue_pairs; 12571 int ret, i; 12572 int v_idx; 12573 12574 /* The requested uplink_seid must be either 12575 * - the PF's port seid 12576 * no VEB is needed because this is the PF 12577 * or this is a Flow Director special case VSI 12578 * - seid of an existing VEB 12579 * - seid of a VSI that owns an existing VEB 12580 * - seid of a VSI that doesn't own a VEB 12581 * a new VEB is created and the VSI becomes the owner 12582 * - seid of the PF VSI, which is what creates the first VEB 12583 * this is a special case of the previous 12584 * 12585 * Find which uplink_seid we were given and create a new VEB if needed 12586 */ 12587 for (i = 0; i < I40E_MAX_VEB; i++) { 12588 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12589 veb = pf->veb[i]; 12590 break; 12591 } 12592 } 12593 12594 if (!veb && uplink_seid != pf->mac_seid) { 12595 12596 for (i = 0; i < pf->num_alloc_vsi; i++) { 12597 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12598 vsi = pf->vsi[i]; 12599 break; 12600 } 12601 } 12602 if (!vsi) { 12603 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12604 uplink_seid); 12605 return NULL; 12606 } 12607 12608 if (vsi->uplink_seid == pf->mac_seid) 12609 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12610 vsi->tc_config.enabled_tc); 12611 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12612 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12613 vsi->tc_config.enabled_tc); 12614 if (veb) { 12615 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12616 dev_info(&vsi->back->pdev->dev, 12617 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12618 return NULL; 12619 } 12620 /* We come up by default in VEPA mode if SRIOV is not 12621 * already enabled, in which case we can't force VEPA 12622 * mode. 12623 */ 12624 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12625 veb->bridge_mode = BRIDGE_MODE_VEPA; 12626 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12627 } 12628 i40e_config_bridge_mode(veb); 12629 } 12630 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12631 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12632 veb = pf->veb[i]; 12633 } 12634 if (!veb) { 12635 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12636 return NULL; 12637 } 12638 12639 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12640 uplink_seid = veb->seid; 12641 } 12642 12643 /* get vsi sw struct */ 12644 v_idx = i40e_vsi_mem_alloc(pf, type); 12645 if (v_idx < 0) 12646 goto err_alloc; 12647 vsi = pf->vsi[v_idx]; 12648 if (!vsi) 12649 goto err_alloc; 12650 vsi->type = type; 12651 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 12652 12653 if (type == I40E_VSI_MAIN) 12654 pf->lan_vsi = v_idx; 12655 else if (type == I40E_VSI_SRIOV) 12656 vsi->vf_id = param1; 12657 /* assign it some queues */ 12658 alloc_queue_pairs = vsi->alloc_queue_pairs * 12659 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12660 12661 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12662 if (ret < 0) { 12663 dev_info(&pf->pdev->dev, 12664 "failed to get tracking for %d queues for VSI %d err=%d\n", 12665 alloc_queue_pairs, vsi->seid, ret); 12666 goto err_vsi; 12667 } 12668 vsi->base_queue = ret; 12669 12670 /* get a VSI from the hardware */ 12671 vsi->uplink_seid = uplink_seid; 12672 ret = i40e_add_vsi(vsi); 12673 if (ret) 12674 goto err_vsi; 12675 12676 switch (vsi->type) { 12677 /* setup the netdev if needed */ 12678 case I40E_VSI_MAIN: 12679 case I40E_VSI_VMDQ2: 12680 ret = i40e_config_netdev(vsi); 12681 if (ret) 12682 goto err_netdev; 12683 ret = register_netdev(vsi->netdev); 12684 if (ret) 12685 goto err_netdev; 12686 vsi->netdev_registered = true; 12687 netif_carrier_off(vsi->netdev); 12688 #ifdef CONFIG_I40E_DCB 12689 /* Setup DCB netlink interface */ 12690 i40e_dcbnl_setup(vsi); 12691 #endif /* CONFIG_I40E_DCB */ 12692 /* fall through */ 12693 12694 case I40E_VSI_FDIR: 12695 /* set up vectors and rings if needed */ 12696 ret = i40e_vsi_setup_vectors(vsi); 12697 if (ret) 12698 goto err_msix; 12699 12700 ret = i40e_alloc_rings(vsi); 12701 if (ret) 12702 goto err_rings; 12703 12704 /* map all of the rings to the q_vectors */ 12705 i40e_vsi_map_rings_to_vectors(vsi); 12706 12707 i40e_vsi_reset_stats(vsi); 12708 break; 12709 12710 default: 12711 /* no netdev or rings for the other VSI types */ 12712 break; 12713 } 12714 12715 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 12716 (vsi->type == I40E_VSI_VMDQ2)) { 12717 ret = i40e_vsi_config_rss(vsi); 12718 } 12719 return vsi; 12720 12721 err_rings: 12722 i40e_vsi_free_q_vectors(vsi); 12723 err_msix: 12724 if (vsi->netdev_registered) { 12725 vsi->netdev_registered = false; 12726 unregister_netdev(vsi->netdev); 12727 free_netdev(vsi->netdev); 12728 vsi->netdev = NULL; 12729 } 12730 err_netdev: 12731 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12732 err_vsi: 12733 i40e_vsi_clear(vsi); 12734 err_alloc: 12735 return NULL; 12736 } 12737 12738 /** 12739 * i40e_veb_get_bw_info - Query VEB BW information 12740 * @veb: the veb to query 12741 * 12742 * Query the Tx scheduler BW configuration data for given VEB 12743 **/ 12744 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 12745 { 12746 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 12747 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 12748 struct i40e_pf *pf = veb->pf; 12749 struct i40e_hw *hw = &pf->hw; 12750 u32 tc_bw_max; 12751 int ret = 0; 12752 int i; 12753 12754 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 12755 &bw_data, NULL); 12756 if (ret) { 12757 dev_info(&pf->pdev->dev, 12758 "query veb bw config failed, err %s aq_err %s\n", 12759 i40e_stat_str(&pf->hw, ret), 12760 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12761 goto out; 12762 } 12763 12764 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 12765 &ets_data, NULL); 12766 if (ret) { 12767 dev_info(&pf->pdev->dev, 12768 "query veb bw ets config failed, err %s aq_err %s\n", 12769 i40e_stat_str(&pf->hw, ret), 12770 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12771 goto out; 12772 } 12773 12774 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 12775 veb->bw_max_quanta = ets_data.tc_bw_max; 12776 veb->is_abs_credits = bw_data.absolute_credits_enable; 12777 veb->enabled_tc = ets_data.tc_valid_bits; 12778 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 12779 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 12780 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 12781 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 12782 veb->bw_tc_limit_credits[i] = 12783 le16_to_cpu(bw_data.tc_bw_limits[i]); 12784 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 12785 } 12786 12787 out: 12788 return ret; 12789 } 12790 12791 /** 12792 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 12793 * @pf: board private structure 12794 * 12795 * On error: returns error code (negative) 12796 * On success: returns vsi index in PF (positive) 12797 **/ 12798 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 12799 { 12800 int ret = -ENOENT; 12801 struct i40e_veb *veb; 12802 int i; 12803 12804 /* Need to protect the allocation of switch elements at the PF level */ 12805 mutex_lock(&pf->switch_mutex); 12806 12807 /* VEB list may be fragmented if VEB creation/destruction has 12808 * been happening. We can afford to do a quick scan to look 12809 * for any free slots in the list. 12810 * 12811 * find next empty veb slot, looping back around if necessary 12812 */ 12813 i = 0; 12814 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 12815 i++; 12816 if (i >= I40E_MAX_VEB) { 12817 ret = -ENOMEM; 12818 goto err_alloc_veb; /* out of VEB slots! */ 12819 } 12820 12821 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 12822 if (!veb) { 12823 ret = -ENOMEM; 12824 goto err_alloc_veb; 12825 } 12826 veb->pf = pf; 12827 veb->idx = i; 12828 veb->enabled_tc = 1; 12829 12830 pf->veb[i] = veb; 12831 ret = i; 12832 err_alloc_veb: 12833 mutex_unlock(&pf->switch_mutex); 12834 return ret; 12835 } 12836 12837 /** 12838 * i40e_switch_branch_release - Delete a branch of the switch tree 12839 * @branch: where to start deleting 12840 * 12841 * This uses recursion to find the tips of the branch to be 12842 * removed, deleting until we get back to and can delete this VEB. 12843 **/ 12844 static void i40e_switch_branch_release(struct i40e_veb *branch) 12845 { 12846 struct i40e_pf *pf = branch->pf; 12847 u16 branch_seid = branch->seid; 12848 u16 veb_idx = branch->idx; 12849 int i; 12850 12851 /* release any VEBs on this VEB - RECURSION */ 12852 for (i = 0; i < I40E_MAX_VEB; i++) { 12853 if (!pf->veb[i]) 12854 continue; 12855 if (pf->veb[i]->uplink_seid == branch->seid) 12856 i40e_switch_branch_release(pf->veb[i]); 12857 } 12858 12859 /* Release the VSIs on this VEB, but not the owner VSI. 12860 * 12861 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 12862 * the VEB itself, so don't use (*branch) after this loop. 12863 */ 12864 for (i = 0; i < pf->num_alloc_vsi; i++) { 12865 if (!pf->vsi[i]) 12866 continue; 12867 if (pf->vsi[i]->uplink_seid == branch_seid && 12868 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12869 i40e_vsi_release(pf->vsi[i]); 12870 } 12871 } 12872 12873 /* There's one corner case where the VEB might not have been 12874 * removed, so double check it here and remove it if needed. 12875 * This case happens if the veb was created from the debugfs 12876 * commands and no VSIs were added to it. 12877 */ 12878 if (pf->veb[veb_idx]) 12879 i40e_veb_release(pf->veb[veb_idx]); 12880 } 12881 12882 /** 12883 * i40e_veb_clear - remove veb struct 12884 * @veb: the veb to remove 12885 **/ 12886 static void i40e_veb_clear(struct i40e_veb *veb) 12887 { 12888 if (!veb) 12889 return; 12890 12891 if (veb->pf) { 12892 struct i40e_pf *pf = veb->pf; 12893 12894 mutex_lock(&pf->switch_mutex); 12895 if (pf->veb[veb->idx] == veb) 12896 pf->veb[veb->idx] = NULL; 12897 mutex_unlock(&pf->switch_mutex); 12898 } 12899 12900 kfree(veb); 12901 } 12902 12903 /** 12904 * i40e_veb_release - Delete a VEB and free its resources 12905 * @veb: the VEB being removed 12906 **/ 12907 void i40e_veb_release(struct i40e_veb *veb) 12908 { 12909 struct i40e_vsi *vsi = NULL; 12910 struct i40e_pf *pf; 12911 int i, n = 0; 12912 12913 pf = veb->pf; 12914 12915 /* find the remaining VSI and check for extras */ 12916 for (i = 0; i < pf->num_alloc_vsi; i++) { 12917 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 12918 n++; 12919 vsi = pf->vsi[i]; 12920 } 12921 } 12922 if (n != 1) { 12923 dev_info(&pf->pdev->dev, 12924 "can't remove VEB %d with %d VSIs left\n", 12925 veb->seid, n); 12926 return; 12927 } 12928 12929 /* move the remaining VSI to uplink veb */ 12930 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 12931 if (veb->uplink_seid) { 12932 vsi->uplink_seid = veb->uplink_seid; 12933 if (veb->uplink_seid == pf->mac_seid) 12934 vsi->veb_idx = I40E_NO_VEB; 12935 else 12936 vsi->veb_idx = veb->veb_idx; 12937 } else { 12938 /* floating VEB */ 12939 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 12940 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 12941 } 12942 12943 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12944 i40e_veb_clear(veb); 12945 } 12946 12947 /** 12948 * i40e_add_veb - create the VEB in the switch 12949 * @veb: the VEB to be instantiated 12950 * @vsi: the controlling VSI 12951 **/ 12952 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 12953 { 12954 struct i40e_pf *pf = veb->pf; 12955 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 12956 int ret; 12957 12958 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 12959 veb->enabled_tc, false, 12960 &veb->seid, enable_stats, NULL); 12961 12962 /* get a VEB from the hardware */ 12963 if (ret) { 12964 dev_info(&pf->pdev->dev, 12965 "couldn't add VEB, err %s aq_err %s\n", 12966 i40e_stat_str(&pf->hw, ret), 12967 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12968 return -EPERM; 12969 } 12970 12971 /* get statistics counter */ 12972 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 12973 &veb->stats_idx, NULL, NULL, NULL); 12974 if (ret) { 12975 dev_info(&pf->pdev->dev, 12976 "couldn't get VEB statistics idx, err %s aq_err %s\n", 12977 i40e_stat_str(&pf->hw, ret), 12978 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12979 return -EPERM; 12980 } 12981 ret = i40e_veb_get_bw_info(veb); 12982 if (ret) { 12983 dev_info(&pf->pdev->dev, 12984 "couldn't get VEB bw info, err %s aq_err %s\n", 12985 i40e_stat_str(&pf->hw, ret), 12986 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12987 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12988 return -ENOENT; 12989 } 12990 12991 vsi->uplink_seid = veb->seid; 12992 vsi->veb_idx = veb->idx; 12993 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12994 12995 return 0; 12996 } 12997 12998 /** 12999 * i40e_veb_setup - Set up a VEB 13000 * @pf: board private structure 13001 * @flags: VEB setup flags 13002 * @uplink_seid: the switch element to link to 13003 * @vsi_seid: the initial VSI seid 13004 * @enabled_tc: Enabled TC bit-map 13005 * 13006 * This allocates the sw VEB structure and links it into the switch 13007 * It is possible and legal for this to be a duplicate of an already 13008 * existing VEB. It is also possible for both uplink and vsi seids 13009 * to be zero, in order to create a floating VEB. 13010 * 13011 * Returns pointer to the successfully allocated VEB sw struct on 13012 * success, otherwise returns NULL on failure. 13013 **/ 13014 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13015 u16 uplink_seid, u16 vsi_seid, 13016 u8 enabled_tc) 13017 { 13018 struct i40e_veb *veb, *uplink_veb = NULL; 13019 int vsi_idx, veb_idx; 13020 int ret; 13021 13022 /* if one seid is 0, the other must be 0 to create a floating relay */ 13023 if ((uplink_seid == 0 || vsi_seid == 0) && 13024 (uplink_seid + vsi_seid != 0)) { 13025 dev_info(&pf->pdev->dev, 13026 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13027 uplink_seid, vsi_seid); 13028 return NULL; 13029 } 13030 13031 /* make sure there is such a vsi and uplink */ 13032 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13033 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13034 break; 13035 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) { 13036 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13037 vsi_seid); 13038 return NULL; 13039 } 13040 13041 if (uplink_seid && uplink_seid != pf->mac_seid) { 13042 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13043 if (pf->veb[veb_idx] && 13044 pf->veb[veb_idx]->seid == uplink_seid) { 13045 uplink_veb = pf->veb[veb_idx]; 13046 break; 13047 } 13048 } 13049 if (!uplink_veb) { 13050 dev_info(&pf->pdev->dev, 13051 "uplink seid %d not found\n", uplink_seid); 13052 return NULL; 13053 } 13054 } 13055 13056 /* get veb sw struct */ 13057 veb_idx = i40e_veb_mem_alloc(pf); 13058 if (veb_idx < 0) 13059 goto err_alloc; 13060 veb = pf->veb[veb_idx]; 13061 veb->flags = flags; 13062 veb->uplink_seid = uplink_seid; 13063 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13064 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13065 13066 /* create the VEB in the switch */ 13067 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13068 if (ret) 13069 goto err_veb; 13070 if (vsi_idx == pf->lan_vsi) 13071 pf->lan_veb = veb->idx; 13072 13073 return veb; 13074 13075 err_veb: 13076 i40e_veb_clear(veb); 13077 err_alloc: 13078 return NULL; 13079 } 13080 13081 /** 13082 * i40e_setup_pf_switch_element - set PF vars based on switch type 13083 * @pf: board private structure 13084 * @ele: element we are building info from 13085 * @num_reported: total number of elements 13086 * @printconfig: should we print the contents 13087 * 13088 * helper function to assist in extracting a few useful SEID values. 13089 **/ 13090 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13091 struct i40e_aqc_switch_config_element_resp *ele, 13092 u16 num_reported, bool printconfig) 13093 { 13094 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13095 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13096 u8 element_type = ele->element_type; 13097 u16 seid = le16_to_cpu(ele->seid); 13098 13099 if (printconfig) 13100 dev_info(&pf->pdev->dev, 13101 "type=%d seid=%d uplink=%d downlink=%d\n", 13102 element_type, seid, uplink_seid, downlink_seid); 13103 13104 switch (element_type) { 13105 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13106 pf->mac_seid = seid; 13107 break; 13108 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13109 /* Main VEB? */ 13110 if (uplink_seid != pf->mac_seid) 13111 break; 13112 if (pf->lan_veb == I40E_NO_VEB) { 13113 int v; 13114 13115 /* find existing or else empty VEB */ 13116 for (v = 0; v < I40E_MAX_VEB; v++) { 13117 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13118 pf->lan_veb = v; 13119 break; 13120 } 13121 } 13122 if (pf->lan_veb == I40E_NO_VEB) { 13123 v = i40e_veb_mem_alloc(pf); 13124 if (v < 0) 13125 break; 13126 pf->lan_veb = v; 13127 } 13128 } 13129 13130 pf->veb[pf->lan_veb]->seid = seid; 13131 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13132 pf->veb[pf->lan_veb]->pf = pf; 13133 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13134 break; 13135 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13136 if (num_reported != 1) 13137 break; 13138 /* This is immediately after a reset so we can assume this is 13139 * the PF's VSI 13140 */ 13141 pf->mac_seid = uplink_seid; 13142 pf->pf_seid = downlink_seid; 13143 pf->main_vsi_seid = seid; 13144 if (printconfig) 13145 dev_info(&pf->pdev->dev, 13146 "pf_seid=%d main_vsi_seid=%d\n", 13147 pf->pf_seid, pf->main_vsi_seid); 13148 break; 13149 case I40E_SWITCH_ELEMENT_TYPE_PF: 13150 case I40E_SWITCH_ELEMENT_TYPE_VF: 13151 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13152 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13153 case I40E_SWITCH_ELEMENT_TYPE_PE: 13154 case I40E_SWITCH_ELEMENT_TYPE_PA: 13155 /* ignore these for now */ 13156 break; 13157 default: 13158 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13159 element_type, seid); 13160 break; 13161 } 13162 } 13163 13164 /** 13165 * i40e_fetch_switch_configuration - Get switch config from firmware 13166 * @pf: board private structure 13167 * @printconfig: should we print the contents 13168 * 13169 * Get the current switch configuration from the device and 13170 * extract a few useful SEID values. 13171 **/ 13172 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13173 { 13174 struct i40e_aqc_get_switch_config_resp *sw_config; 13175 u16 next_seid = 0; 13176 int ret = 0; 13177 u8 *aq_buf; 13178 int i; 13179 13180 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13181 if (!aq_buf) 13182 return -ENOMEM; 13183 13184 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13185 do { 13186 u16 num_reported, num_total; 13187 13188 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13189 I40E_AQ_LARGE_BUF, 13190 &next_seid, NULL); 13191 if (ret) { 13192 dev_info(&pf->pdev->dev, 13193 "get switch config failed err %s aq_err %s\n", 13194 i40e_stat_str(&pf->hw, ret), 13195 i40e_aq_str(&pf->hw, 13196 pf->hw.aq.asq_last_status)); 13197 kfree(aq_buf); 13198 return -ENOENT; 13199 } 13200 13201 num_reported = le16_to_cpu(sw_config->header.num_reported); 13202 num_total = le16_to_cpu(sw_config->header.num_total); 13203 13204 if (printconfig) 13205 dev_info(&pf->pdev->dev, 13206 "header: %d reported %d total\n", 13207 num_reported, num_total); 13208 13209 for (i = 0; i < num_reported; i++) { 13210 struct i40e_aqc_switch_config_element_resp *ele = 13211 &sw_config->element[i]; 13212 13213 i40e_setup_pf_switch_element(pf, ele, num_reported, 13214 printconfig); 13215 } 13216 } while (next_seid != 0); 13217 13218 kfree(aq_buf); 13219 return ret; 13220 } 13221 13222 /** 13223 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13224 * @pf: board private structure 13225 * @reinit: if the Main VSI needs to re-initialized. 13226 * 13227 * Returns 0 on success, negative value on failure 13228 **/ 13229 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13230 { 13231 u16 flags = 0; 13232 int ret; 13233 13234 /* find out what's out there already */ 13235 ret = i40e_fetch_switch_configuration(pf, false); 13236 if (ret) { 13237 dev_info(&pf->pdev->dev, 13238 "couldn't fetch switch config, err %s aq_err %s\n", 13239 i40e_stat_str(&pf->hw, ret), 13240 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13241 return ret; 13242 } 13243 i40e_pf_reset_stats(pf); 13244 13245 /* set the switch config bit for the whole device to 13246 * support limited promisc or true promisc 13247 * when user requests promisc. The default is limited 13248 * promisc. 13249 */ 13250 13251 if ((pf->hw.pf_id == 0) && 13252 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13253 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13254 pf->last_sw_conf_flags = flags; 13255 } 13256 13257 if (pf->hw.pf_id == 0) { 13258 u16 valid_flags; 13259 13260 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13261 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13262 NULL); 13263 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13264 dev_info(&pf->pdev->dev, 13265 "couldn't set switch config bits, err %s aq_err %s\n", 13266 i40e_stat_str(&pf->hw, ret), 13267 i40e_aq_str(&pf->hw, 13268 pf->hw.aq.asq_last_status)); 13269 /* not a fatal problem, just keep going */ 13270 } 13271 pf->last_sw_conf_valid_flags = valid_flags; 13272 } 13273 13274 /* first time setup */ 13275 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13276 struct i40e_vsi *vsi = NULL; 13277 u16 uplink_seid; 13278 13279 /* Set up the PF VSI associated with the PF's main VSI 13280 * that is already in the HW switch 13281 */ 13282 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13283 uplink_seid = pf->veb[pf->lan_veb]->seid; 13284 else 13285 uplink_seid = pf->mac_seid; 13286 if (pf->lan_vsi == I40E_NO_VSI) 13287 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13288 else if (reinit) 13289 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13290 if (!vsi) { 13291 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13292 i40e_cloud_filter_exit(pf); 13293 i40e_fdir_teardown(pf); 13294 return -EAGAIN; 13295 } 13296 } else { 13297 /* force a reset of TC and queue layout configurations */ 13298 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13299 13300 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13301 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13302 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13303 } 13304 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13305 13306 i40e_fdir_sb_setup(pf); 13307 13308 /* Setup static PF queue filter control settings */ 13309 ret = i40e_setup_pf_filter_control(pf); 13310 if (ret) { 13311 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13312 ret); 13313 /* Failure here should not stop continuing other steps */ 13314 } 13315 13316 /* enable RSS in the HW, even for only one queue, as the stack can use 13317 * the hash 13318 */ 13319 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13320 i40e_pf_config_rss(pf); 13321 13322 /* fill in link information and enable LSE reporting */ 13323 i40e_link_event(pf); 13324 13325 /* Initialize user-specific link properties */ 13326 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13327 I40E_AQ_AN_COMPLETED) ? true : false); 13328 13329 i40e_ptp_init(pf); 13330 13331 /* repopulate tunnel port filters */ 13332 i40e_sync_udp_filters(pf); 13333 13334 return ret; 13335 } 13336 13337 /** 13338 * i40e_determine_queue_usage - Work out queue distribution 13339 * @pf: board private structure 13340 **/ 13341 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13342 { 13343 int queues_left; 13344 int q_max; 13345 13346 pf->num_lan_qps = 0; 13347 13348 /* Find the max queues to be put into basic use. We'll always be 13349 * using TC0, whether or not DCB is running, and TC0 will get the 13350 * big RSS set. 13351 */ 13352 queues_left = pf->hw.func_caps.num_tx_qp; 13353 13354 if ((queues_left == 1) || 13355 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13356 /* one qp for PF, no queues for anything else */ 13357 queues_left = 0; 13358 pf->alloc_rss_size = pf->num_lan_qps = 1; 13359 13360 /* make sure all the fancies are disabled */ 13361 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13362 I40E_FLAG_IWARP_ENABLED | 13363 I40E_FLAG_FD_SB_ENABLED | 13364 I40E_FLAG_FD_ATR_ENABLED | 13365 I40E_FLAG_DCB_CAPABLE | 13366 I40E_FLAG_DCB_ENABLED | 13367 I40E_FLAG_SRIOV_ENABLED | 13368 I40E_FLAG_VMDQ_ENABLED); 13369 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13370 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13371 I40E_FLAG_FD_SB_ENABLED | 13372 I40E_FLAG_FD_ATR_ENABLED | 13373 I40E_FLAG_DCB_CAPABLE))) { 13374 /* one qp for PF */ 13375 pf->alloc_rss_size = pf->num_lan_qps = 1; 13376 queues_left -= pf->num_lan_qps; 13377 13378 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13379 I40E_FLAG_IWARP_ENABLED | 13380 I40E_FLAG_FD_SB_ENABLED | 13381 I40E_FLAG_FD_ATR_ENABLED | 13382 I40E_FLAG_DCB_ENABLED | 13383 I40E_FLAG_VMDQ_ENABLED); 13384 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13385 } else { 13386 /* Not enough queues for all TCs */ 13387 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13388 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13389 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13390 I40E_FLAG_DCB_ENABLED); 13391 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13392 } 13393 13394 /* limit lan qps to the smaller of qps, cpus or msix */ 13395 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13396 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13397 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13398 pf->num_lan_qps = q_max; 13399 13400 queues_left -= pf->num_lan_qps; 13401 } 13402 13403 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13404 if (queues_left > 1) { 13405 queues_left -= 1; /* save 1 queue for FD */ 13406 } else { 13407 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13408 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13409 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13410 } 13411 } 13412 13413 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13414 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13415 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13416 (queues_left / pf->num_vf_qps)); 13417 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13418 } 13419 13420 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13421 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13422 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13423 (queues_left / pf->num_vmdq_qps)); 13424 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13425 } 13426 13427 pf->queues_left = queues_left; 13428 dev_dbg(&pf->pdev->dev, 13429 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13430 pf->hw.func_caps.num_tx_qp, 13431 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13432 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13433 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13434 queues_left); 13435 } 13436 13437 /** 13438 * i40e_setup_pf_filter_control - Setup PF static filter control 13439 * @pf: PF to be setup 13440 * 13441 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13442 * settings. If PE/FCoE are enabled then it will also set the per PF 13443 * based filter sizes required for them. It also enables Flow director, 13444 * ethertype and macvlan type filter settings for the pf. 13445 * 13446 * Returns 0 on success, negative on failure 13447 **/ 13448 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13449 { 13450 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13451 13452 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13453 13454 /* Flow Director is enabled */ 13455 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13456 settings->enable_fdir = true; 13457 13458 /* Ethtype and MACVLAN filters enabled for PF */ 13459 settings->enable_ethtype = true; 13460 settings->enable_macvlan = true; 13461 13462 if (i40e_set_filter_control(&pf->hw, settings)) 13463 return -ENOENT; 13464 13465 return 0; 13466 } 13467 13468 #define INFO_STRING_LEN 255 13469 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13470 static void i40e_print_features(struct i40e_pf *pf) 13471 { 13472 struct i40e_hw *hw = &pf->hw; 13473 char *buf; 13474 int i; 13475 13476 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13477 if (!buf) 13478 return; 13479 13480 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13481 #ifdef CONFIG_PCI_IOV 13482 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13483 #endif 13484 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13485 pf->hw.func_caps.num_vsis, 13486 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13487 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13488 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13489 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13490 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13491 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13492 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13493 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13494 } 13495 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13496 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13497 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13498 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13499 if (pf->flags & I40E_FLAG_PTP) 13500 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13501 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13502 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13503 else 13504 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13505 13506 dev_info(&pf->pdev->dev, "%s\n", buf); 13507 kfree(buf); 13508 WARN_ON(i > INFO_STRING_LEN); 13509 } 13510 13511 /** 13512 * i40e_get_platform_mac_addr - get platform-specific MAC address 13513 * @pdev: PCI device information struct 13514 * @pf: board private structure 13515 * 13516 * Look up the MAC address for the device. First we'll try 13517 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13518 * specific fallback. Otherwise, we'll default to the stored value in 13519 * firmware. 13520 **/ 13521 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13522 { 13523 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13524 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13525 } 13526 13527 /** 13528 * i40e_probe - Device initialization routine 13529 * @pdev: PCI device information struct 13530 * @ent: entry in i40e_pci_tbl 13531 * 13532 * i40e_probe initializes a PF identified by a pci_dev structure. 13533 * The OS initialization, configuring of the PF private structure, 13534 * and a hardware reset occur. 13535 * 13536 * Returns 0 on success, negative on failure 13537 **/ 13538 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13539 { 13540 struct i40e_aq_get_phy_abilities_resp abilities; 13541 struct i40e_pf *pf; 13542 struct i40e_hw *hw; 13543 static u16 pfs_found; 13544 u16 wol_nvm_bits; 13545 u16 link_status; 13546 int err; 13547 u32 val; 13548 u32 i; 13549 u8 set_fc_aq_fail; 13550 13551 err = pci_enable_device_mem(pdev); 13552 if (err) 13553 return err; 13554 13555 /* set up for high or low dma */ 13556 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13557 if (err) { 13558 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13559 if (err) { 13560 dev_err(&pdev->dev, 13561 "DMA configuration failed: 0x%x\n", err); 13562 goto err_dma; 13563 } 13564 } 13565 13566 /* set up pci connections */ 13567 err = pci_request_mem_regions(pdev, i40e_driver_name); 13568 if (err) { 13569 dev_info(&pdev->dev, 13570 "pci_request_selected_regions failed %d\n", err); 13571 goto err_pci_reg; 13572 } 13573 13574 pci_enable_pcie_error_reporting(pdev); 13575 pci_set_master(pdev); 13576 13577 /* Now that we have a PCI connection, we need to do the 13578 * low level device setup. This is primarily setting up 13579 * the Admin Queue structures and then querying for the 13580 * device's current profile information. 13581 */ 13582 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13583 if (!pf) { 13584 err = -ENOMEM; 13585 goto err_pf_alloc; 13586 } 13587 pf->next_vsi = 0; 13588 pf->pdev = pdev; 13589 set_bit(__I40E_DOWN, pf->state); 13590 13591 hw = &pf->hw; 13592 hw->back = pf; 13593 13594 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13595 I40E_MAX_CSR_SPACE); 13596 13597 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13598 if (!hw->hw_addr) { 13599 err = -EIO; 13600 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13601 (unsigned int)pci_resource_start(pdev, 0), 13602 pf->ioremap_len, err); 13603 goto err_ioremap; 13604 } 13605 hw->vendor_id = pdev->vendor; 13606 hw->device_id = pdev->device; 13607 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13608 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13609 hw->subsystem_device_id = pdev->subsystem_device; 13610 hw->bus.device = PCI_SLOT(pdev->devfn); 13611 hw->bus.func = PCI_FUNC(pdev->devfn); 13612 hw->bus.bus_id = pdev->bus->number; 13613 pf->instance = pfs_found; 13614 13615 /* Select something other than the 802.1ad ethertype for the 13616 * switch to use internally and drop on ingress. 13617 */ 13618 hw->switch_tag = 0xffff; 13619 hw->first_tag = ETH_P_8021AD; 13620 hw->second_tag = ETH_P_8021Q; 13621 13622 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13623 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13624 13625 /* set up the locks for the AQ, do this only once in probe 13626 * and destroy them only once in remove 13627 */ 13628 mutex_init(&hw->aq.asq_mutex); 13629 mutex_init(&hw->aq.arq_mutex); 13630 13631 pf->msg_enable = netif_msg_init(debug, 13632 NETIF_MSG_DRV | 13633 NETIF_MSG_PROBE | 13634 NETIF_MSG_LINK); 13635 if (debug < -1) 13636 pf->hw.debug_mask = debug; 13637 13638 /* do a special CORER for clearing PXE mode once at init */ 13639 if (hw->revision_id == 0 && 13640 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13641 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13642 i40e_flush(hw); 13643 msleep(200); 13644 pf->corer_count++; 13645 13646 i40e_clear_pxe_mode(hw); 13647 } 13648 13649 /* Reset here to make sure all is clean and to define PF 'n' */ 13650 i40e_clear_hw(hw); 13651 err = i40e_pf_reset(hw); 13652 if (err) { 13653 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 13654 goto err_pf_reset; 13655 } 13656 pf->pfr_count++; 13657 13658 hw->aq.num_arq_entries = I40E_AQ_LEN; 13659 hw->aq.num_asq_entries = I40E_AQ_LEN; 13660 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13661 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13662 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 13663 13664 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 13665 "%s-%s:misc", 13666 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 13667 13668 err = i40e_init_shared_code(hw); 13669 if (err) { 13670 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 13671 err); 13672 goto err_pf_reset; 13673 } 13674 13675 /* set up a default setting for link flow control */ 13676 pf->hw.fc.requested_mode = I40E_FC_NONE; 13677 13678 err = i40e_init_adminq(hw); 13679 if (err) { 13680 if (err == I40E_ERR_FIRMWARE_API_VERSION) 13681 dev_info(&pdev->dev, 13682 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 13683 else 13684 dev_info(&pdev->dev, 13685 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 13686 13687 goto err_pf_reset; 13688 } 13689 i40e_get_oem_version(hw); 13690 13691 /* provide nvm, fw, api versions */ 13692 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 13693 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 13694 hw->aq.api_maj_ver, hw->aq.api_min_ver, 13695 i40e_nvm_version_str(hw)); 13696 13697 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 13698 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 13699 dev_info(&pdev->dev, 13700 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 13701 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 13702 dev_info(&pdev->dev, 13703 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 13704 13705 i40e_verify_eeprom(pf); 13706 13707 /* Rev 0 hardware was never productized */ 13708 if (hw->revision_id < 1) 13709 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 13710 13711 i40e_clear_pxe_mode(hw); 13712 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 13713 if (err) 13714 goto err_adminq_setup; 13715 13716 err = i40e_sw_init(pf); 13717 if (err) { 13718 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 13719 goto err_sw_init; 13720 } 13721 13722 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 13723 hw->func_caps.num_rx_qp, 0, 0); 13724 if (err) { 13725 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 13726 goto err_init_lan_hmc; 13727 } 13728 13729 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 13730 if (err) { 13731 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 13732 err = -ENOENT; 13733 goto err_configure_lan_hmc; 13734 } 13735 13736 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 13737 * Ignore error return codes because if it was already disabled via 13738 * hardware settings this will fail 13739 */ 13740 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 13741 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 13742 i40e_aq_stop_lldp(hw, true, NULL); 13743 } 13744 13745 /* allow a platform config to override the HW addr */ 13746 i40e_get_platform_mac_addr(pdev, pf); 13747 13748 if (!is_valid_ether_addr(hw->mac.addr)) { 13749 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 13750 err = -EIO; 13751 goto err_mac_addr; 13752 } 13753 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 13754 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 13755 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 13756 if (is_valid_ether_addr(hw->mac.port_addr)) 13757 pf->hw_features |= I40E_HW_PORT_ID_VALID; 13758 13759 pci_set_drvdata(pdev, pf); 13760 pci_save_state(pdev); 13761 13762 /* Enable FW to write default DCB config on link-up */ 13763 i40e_aq_set_dcb_parameters(hw, true, NULL); 13764 13765 #ifdef CONFIG_I40E_DCB 13766 err = i40e_init_pf_dcb(pf); 13767 if (err) { 13768 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 13769 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 13770 /* Continue without DCB enabled */ 13771 } 13772 #endif /* CONFIG_I40E_DCB */ 13773 13774 /* set up periodic task facility */ 13775 timer_setup(&pf->service_timer, i40e_service_timer, 0); 13776 pf->service_timer_period = HZ; 13777 13778 INIT_WORK(&pf->service_task, i40e_service_task); 13779 clear_bit(__I40E_SERVICE_SCHED, pf->state); 13780 13781 /* NVM bit on means WoL disabled for the port */ 13782 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 13783 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 13784 pf->wol_en = false; 13785 else 13786 pf->wol_en = true; 13787 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 13788 13789 /* set up the main switch operations */ 13790 i40e_determine_queue_usage(pf); 13791 err = i40e_init_interrupt_scheme(pf); 13792 if (err) 13793 goto err_switch_setup; 13794 13795 /* The number of VSIs reported by the FW is the minimum guaranteed 13796 * to us; HW supports far more and we share the remaining pool with 13797 * the other PFs. We allocate space for more than the guarantee with 13798 * the understanding that we might not get them all later. 13799 */ 13800 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 13801 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 13802 else 13803 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 13804 13805 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 13806 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 13807 GFP_KERNEL); 13808 if (!pf->vsi) { 13809 err = -ENOMEM; 13810 goto err_switch_setup; 13811 } 13812 13813 #ifdef CONFIG_PCI_IOV 13814 /* prep for VF support */ 13815 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13816 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13817 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13818 if (pci_num_vf(pdev)) 13819 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 13820 } 13821 #endif 13822 err = i40e_setup_pf_switch(pf, false); 13823 if (err) { 13824 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 13825 goto err_vsis; 13826 } 13827 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 13828 13829 /* Make sure flow control is set according to current settings */ 13830 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 13831 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 13832 dev_dbg(&pf->pdev->dev, 13833 "Set fc with err %s aq_err %s on get_phy_cap\n", 13834 i40e_stat_str(hw, err), 13835 i40e_aq_str(hw, hw->aq.asq_last_status)); 13836 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 13837 dev_dbg(&pf->pdev->dev, 13838 "Set fc with err %s aq_err %s on set_phy_config\n", 13839 i40e_stat_str(hw, err), 13840 i40e_aq_str(hw, hw->aq.asq_last_status)); 13841 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 13842 dev_dbg(&pf->pdev->dev, 13843 "Set fc with err %s aq_err %s on get_link_info\n", 13844 i40e_stat_str(hw, err), 13845 i40e_aq_str(hw, hw->aq.asq_last_status)); 13846 13847 /* if FDIR VSI was set up, start it now */ 13848 for (i = 0; i < pf->num_alloc_vsi; i++) { 13849 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 13850 i40e_vsi_open(pf->vsi[i]); 13851 break; 13852 } 13853 } 13854 13855 /* The driver only wants link up/down and module qualification 13856 * reports from firmware. Note the negative logic. 13857 */ 13858 err = i40e_aq_set_phy_int_mask(&pf->hw, 13859 ~(I40E_AQ_EVENT_LINK_UPDOWN | 13860 I40E_AQ_EVENT_MEDIA_NA | 13861 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 13862 if (err) 13863 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 13864 i40e_stat_str(&pf->hw, err), 13865 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13866 13867 /* Reconfigure hardware for allowing smaller MSS in the case 13868 * of TSO, so that we avoid the MDD being fired and causing 13869 * a reset in the case of small MSS+TSO. 13870 */ 13871 val = rd32(hw, I40E_REG_MSS); 13872 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 13873 val &= ~I40E_REG_MSS_MIN_MASK; 13874 val |= I40E_64BYTE_MSS; 13875 wr32(hw, I40E_REG_MSS, val); 13876 } 13877 13878 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 13879 msleep(75); 13880 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 13881 if (err) 13882 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 13883 i40e_stat_str(&pf->hw, err), 13884 i40e_aq_str(&pf->hw, 13885 pf->hw.aq.asq_last_status)); 13886 } 13887 /* The main driver is (mostly) up and happy. We need to set this state 13888 * before setting up the misc vector or we get a race and the vector 13889 * ends up disabled forever. 13890 */ 13891 clear_bit(__I40E_DOWN, pf->state); 13892 13893 /* In case of MSIX we are going to setup the misc vector right here 13894 * to handle admin queue events etc. In case of legacy and MSI 13895 * the misc functionality and queue processing is combined in 13896 * the same vector and that gets setup at open. 13897 */ 13898 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13899 err = i40e_setup_misc_vector(pf); 13900 if (err) { 13901 dev_info(&pdev->dev, 13902 "setup of misc vector failed: %d\n", err); 13903 goto err_vsis; 13904 } 13905 } 13906 13907 #ifdef CONFIG_PCI_IOV 13908 /* prep for VF support */ 13909 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13910 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13911 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13912 /* disable link interrupts for VFs */ 13913 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 13914 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 13915 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 13916 i40e_flush(hw); 13917 13918 if (pci_num_vf(pdev)) { 13919 dev_info(&pdev->dev, 13920 "Active VFs found, allocating resources.\n"); 13921 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 13922 if (err) 13923 dev_info(&pdev->dev, 13924 "Error %d allocating resources for existing VFs\n", 13925 err); 13926 } 13927 } 13928 #endif /* CONFIG_PCI_IOV */ 13929 13930 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13931 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 13932 pf->num_iwarp_msix, 13933 I40E_IWARP_IRQ_PILE_ID); 13934 if (pf->iwarp_base_vector < 0) { 13935 dev_info(&pdev->dev, 13936 "failed to get tracking for %d vectors for IWARP err=%d\n", 13937 pf->num_iwarp_msix, pf->iwarp_base_vector); 13938 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 13939 } 13940 } 13941 13942 i40e_dbg_pf_init(pf); 13943 13944 /* tell the firmware that we're starting */ 13945 i40e_send_version(pf); 13946 13947 /* since everything's happy, start the service_task timer */ 13948 mod_timer(&pf->service_timer, 13949 round_jiffies(jiffies + pf->service_timer_period)); 13950 13951 /* add this PF to client device list and launch a client service task */ 13952 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13953 err = i40e_lan_add_device(pf); 13954 if (err) 13955 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 13956 err); 13957 } 13958 13959 #define PCI_SPEED_SIZE 8 13960 #define PCI_WIDTH_SIZE 8 13961 /* Devices on the IOSF bus do not have this information 13962 * and will report PCI Gen 1 x 1 by default so don't bother 13963 * checking them. 13964 */ 13965 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 13966 char speed[PCI_SPEED_SIZE] = "Unknown"; 13967 char width[PCI_WIDTH_SIZE] = "Unknown"; 13968 13969 /* Get the negotiated link width and speed from PCI config 13970 * space 13971 */ 13972 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 13973 &link_status); 13974 13975 i40e_set_pci_config_data(hw, link_status); 13976 13977 switch (hw->bus.speed) { 13978 case i40e_bus_speed_8000: 13979 strncpy(speed, "8.0", PCI_SPEED_SIZE); break; 13980 case i40e_bus_speed_5000: 13981 strncpy(speed, "5.0", PCI_SPEED_SIZE); break; 13982 case i40e_bus_speed_2500: 13983 strncpy(speed, "2.5", PCI_SPEED_SIZE); break; 13984 default: 13985 break; 13986 } 13987 switch (hw->bus.width) { 13988 case i40e_bus_width_pcie_x8: 13989 strncpy(width, "8", PCI_WIDTH_SIZE); break; 13990 case i40e_bus_width_pcie_x4: 13991 strncpy(width, "4", PCI_WIDTH_SIZE); break; 13992 case i40e_bus_width_pcie_x2: 13993 strncpy(width, "2", PCI_WIDTH_SIZE); break; 13994 case i40e_bus_width_pcie_x1: 13995 strncpy(width, "1", PCI_WIDTH_SIZE); break; 13996 default: 13997 break; 13998 } 13999 14000 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14001 speed, width); 14002 14003 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14004 hw->bus.speed < i40e_bus_speed_8000) { 14005 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14006 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14007 } 14008 } 14009 14010 /* get the requested speeds from the fw */ 14011 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14012 if (err) 14013 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14014 i40e_stat_str(&pf->hw, err), 14015 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14016 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14017 14018 /* get the supported phy types from the fw */ 14019 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14020 if (err) 14021 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14022 i40e_stat_str(&pf->hw, err), 14023 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14024 14025 /* Add a filter to drop all Flow control frames from any VSI from being 14026 * transmitted. By doing so we stop a malicious VF from sending out 14027 * PAUSE or PFC frames and potentially controlling traffic for other 14028 * PF/VF VSIs. 14029 * The FW can still send Flow control frames if enabled. 14030 */ 14031 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14032 pf->main_vsi_seid); 14033 14034 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14035 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14036 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14037 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14038 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14039 /* print a string summarizing features */ 14040 i40e_print_features(pf); 14041 14042 return 0; 14043 14044 /* Unwind what we've done if something failed in the setup */ 14045 err_vsis: 14046 set_bit(__I40E_DOWN, pf->state); 14047 i40e_clear_interrupt_scheme(pf); 14048 kfree(pf->vsi); 14049 err_switch_setup: 14050 i40e_reset_interrupt_capability(pf); 14051 del_timer_sync(&pf->service_timer); 14052 err_mac_addr: 14053 err_configure_lan_hmc: 14054 (void)i40e_shutdown_lan_hmc(hw); 14055 err_init_lan_hmc: 14056 kfree(pf->qp_pile); 14057 err_sw_init: 14058 err_adminq_setup: 14059 err_pf_reset: 14060 iounmap(hw->hw_addr); 14061 err_ioremap: 14062 kfree(pf); 14063 err_pf_alloc: 14064 pci_disable_pcie_error_reporting(pdev); 14065 pci_release_mem_regions(pdev); 14066 err_pci_reg: 14067 err_dma: 14068 pci_disable_device(pdev); 14069 return err; 14070 } 14071 14072 /** 14073 * i40e_remove - Device removal routine 14074 * @pdev: PCI device information struct 14075 * 14076 * i40e_remove is called by the PCI subsystem to alert the driver 14077 * that is should release a PCI device. This could be caused by a 14078 * Hot-Plug event, or because the driver is going to be removed from 14079 * memory. 14080 **/ 14081 static void i40e_remove(struct pci_dev *pdev) 14082 { 14083 struct i40e_pf *pf = pci_get_drvdata(pdev); 14084 struct i40e_hw *hw = &pf->hw; 14085 i40e_status ret_code; 14086 int i; 14087 14088 i40e_dbg_pf_exit(pf); 14089 14090 i40e_ptp_stop(pf); 14091 14092 /* Disable RSS in hw */ 14093 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14094 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14095 14096 /* no more scheduling of any task */ 14097 set_bit(__I40E_SUSPENDED, pf->state); 14098 set_bit(__I40E_DOWN, pf->state); 14099 if (pf->service_timer.function) 14100 del_timer_sync(&pf->service_timer); 14101 if (pf->service_task.func) 14102 cancel_work_sync(&pf->service_task); 14103 14104 /* Client close must be called explicitly here because the timer 14105 * has been stopped. 14106 */ 14107 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14108 14109 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14110 i40e_free_vfs(pf); 14111 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14112 } 14113 14114 i40e_fdir_teardown(pf); 14115 14116 /* If there is a switch structure or any orphans, remove them. 14117 * This will leave only the PF's VSI remaining. 14118 */ 14119 for (i = 0; i < I40E_MAX_VEB; i++) { 14120 if (!pf->veb[i]) 14121 continue; 14122 14123 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14124 pf->veb[i]->uplink_seid == 0) 14125 i40e_switch_branch_release(pf->veb[i]); 14126 } 14127 14128 /* Now we can shutdown the PF's VSI, just before we kill 14129 * adminq and hmc. 14130 */ 14131 if (pf->vsi[pf->lan_vsi]) 14132 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14133 14134 i40e_cloud_filter_exit(pf); 14135 14136 /* remove attached clients */ 14137 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14138 ret_code = i40e_lan_del_device(pf); 14139 if (ret_code) 14140 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14141 ret_code); 14142 } 14143 14144 /* shutdown and destroy the HMC */ 14145 if (hw->hmc.hmc_obj) { 14146 ret_code = i40e_shutdown_lan_hmc(hw); 14147 if (ret_code) 14148 dev_warn(&pdev->dev, 14149 "Failed to destroy the HMC resources: %d\n", 14150 ret_code); 14151 } 14152 14153 /* shutdown the adminq */ 14154 i40e_shutdown_adminq(hw); 14155 14156 /* destroy the locks only once, here */ 14157 mutex_destroy(&hw->aq.arq_mutex); 14158 mutex_destroy(&hw->aq.asq_mutex); 14159 14160 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14161 i40e_clear_interrupt_scheme(pf); 14162 for (i = 0; i < pf->num_alloc_vsi; i++) { 14163 if (pf->vsi[i]) { 14164 i40e_vsi_clear_rings(pf->vsi[i]); 14165 i40e_vsi_clear(pf->vsi[i]); 14166 pf->vsi[i] = NULL; 14167 } 14168 } 14169 14170 for (i = 0; i < I40E_MAX_VEB; i++) { 14171 kfree(pf->veb[i]); 14172 pf->veb[i] = NULL; 14173 } 14174 14175 kfree(pf->qp_pile); 14176 kfree(pf->vsi); 14177 14178 iounmap(hw->hw_addr); 14179 kfree(pf); 14180 pci_release_mem_regions(pdev); 14181 14182 pci_disable_pcie_error_reporting(pdev); 14183 pci_disable_device(pdev); 14184 } 14185 14186 /** 14187 * i40e_pci_error_detected - warning that something funky happened in PCI land 14188 * @pdev: PCI device information struct 14189 * @error: the type of PCI error 14190 * 14191 * Called to warn that something happened and the error handling steps 14192 * are in progress. Allows the driver to quiesce things, be ready for 14193 * remediation. 14194 **/ 14195 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14196 enum pci_channel_state error) 14197 { 14198 struct i40e_pf *pf = pci_get_drvdata(pdev); 14199 14200 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14201 14202 if (!pf) { 14203 dev_info(&pdev->dev, 14204 "Cannot recover - error happened during device probe\n"); 14205 return PCI_ERS_RESULT_DISCONNECT; 14206 } 14207 14208 /* shutdown all operations */ 14209 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14210 i40e_prep_for_reset(pf, false); 14211 14212 /* Request a slot reset */ 14213 return PCI_ERS_RESULT_NEED_RESET; 14214 } 14215 14216 /** 14217 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14218 * @pdev: PCI device information struct 14219 * 14220 * Called to find if the driver can work with the device now that 14221 * the pci slot has been reset. If a basic connection seems good 14222 * (registers are readable and have sane content) then return a 14223 * happy little PCI_ERS_RESULT_xxx. 14224 **/ 14225 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14226 { 14227 struct i40e_pf *pf = pci_get_drvdata(pdev); 14228 pci_ers_result_t result; 14229 int err; 14230 u32 reg; 14231 14232 dev_dbg(&pdev->dev, "%s\n", __func__); 14233 if (pci_enable_device_mem(pdev)) { 14234 dev_info(&pdev->dev, 14235 "Cannot re-enable PCI device after reset.\n"); 14236 result = PCI_ERS_RESULT_DISCONNECT; 14237 } else { 14238 pci_set_master(pdev); 14239 pci_restore_state(pdev); 14240 pci_save_state(pdev); 14241 pci_wake_from_d3(pdev, false); 14242 14243 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14244 if (reg == 0) 14245 result = PCI_ERS_RESULT_RECOVERED; 14246 else 14247 result = PCI_ERS_RESULT_DISCONNECT; 14248 } 14249 14250 err = pci_cleanup_aer_uncorrect_error_status(pdev); 14251 if (err) { 14252 dev_info(&pdev->dev, 14253 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 14254 err); 14255 /* non-fatal, continue */ 14256 } 14257 14258 return result; 14259 } 14260 14261 /** 14262 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14263 * @pdev: PCI device information struct 14264 */ 14265 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14266 { 14267 struct i40e_pf *pf = pci_get_drvdata(pdev); 14268 14269 i40e_prep_for_reset(pf, false); 14270 } 14271 14272 /** 14273 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14274 * @pdev: PCI device information struct 14275 */ 14276 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14277 { 14278 struct i40e_pf *pf = pci_get_drvdata(pdev); 14279 14280 i40e_reset_and_rebuild(pf, false, false); 14281 } 14282 14283 /** 14284 * i40e_pci_error_resume - restart operations after PCI error recovery 14285 * @pdev: PCI device information struct 14286 * 14287 * Called to allow the driver to bring things back up after PCI error 14288 * and/or reset recovery has finished. 14289 **/ 14290 static void i40e_pci_error_resume(struct pci_dev *pdev) 14291 { 14292 struct i40e_pf *pf = pci_get_drvdata(pdev); 14293 14294 dev_dbg(&pdev->dev, "%s\n", __func__); 14295 if (test_bit(__I40E_SUSPENDED, pf->state)) 14296 return; 14297 14298 i40e_handle_reset_warning(pf, false); 14299 } 14300 14301 /** 14302 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14303 * using the mac_address_write admin q function 14304 * @pf: pointer to i40e_pf struct 14305 **/ 14306 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14307 { 14308 struct i40e_hw *hw = &pf->hw; 14309 i40e_status ret; 14310 u8 mac_addr[6]; 14311 u16 flags = 0; 14312 14313 /* Get current MAC address in case it's an LAA */ 14314 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14315 ether_addr_copy(mac_addr, 14316 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14317 } else { 14318 dev_err(&pf->pdev->dev, 14319 "Failed to retrieve MAC address; using default\n"); 14320 ether_addr_copy(mac_addr, hw->mac.addr); 14321 } 14322 14323 /* The FW expects the mac address write cmd to first be called with 14324 * one of these flags before calling it again with the multicast 14325 * enable flags. 14326 */ 14327 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14328 14329 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14330 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14331 14332 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14333 if (ret) { 14334 dev_err(&pf->pdev->dev, 14335 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14336 return; 14337 } 14338 14339 flags = I40E_AQC_MC_MAG_EN 14340 | I40E_AQC_WOL_PRESERVE_ON_PFR 14341 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14342 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14343 if (ret) 14344 dev_err(&pf->pdev->dev, 14345 "Failed to enable Multicast Magic Packet wake up\n"); 14346 } 14347 14348 /** 14349 * i40e_shutdown - PCI callback for shutting down 14350 * @pdev: PCI device information struct 14351 **/ 14352 static void i40e_shutdown(struct pci_dev *pdev) 14353 { 14354 struct i40e_pf *pf = pci_get_drvdata(pdev); 14355 struct i40e_hw *hw = &pf->hw; 14356 14357 set_bit(__I40E_SUSPENDED, pf->state); 14358 set_bit(__I40E_DOWN, pf->state); 14359 14360 del_timer_sync(&pf->service_timer); 14361 cancel_work_sync(&pf->service_task); 14362 i40e_cloud_filter_exit(pf); 14363 i40e_fdir_teardown(pf); 14364 14365 /* Client close must be called explicitly here because the timer 14366 * has been stopped. 14367 */ 14368 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14369 14370 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14371 i40e_enable_mc_magic_wake(pf); 14372 14373 i40e_prep_for_reset(pf, false); 14374 14375 wr32(hw, I40E_PFPM_APM, 14376 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14377 wr32(hw, I40E_PFPM_WUFC, 14378 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14379 14380 i40e_clear_interrupt_scheme(pf); 14381 14382 if (system_state == SYSTEM_POWER_OFF) { 14383 pci_wake_from_d3(pdev, pf->wol_en); 14384 pci_set_power_state(pdev, PCI_D3hot); 14385 } 14386 } 14387 14388 /** 14389 * i40e_suspend - PM callback for moving to D3 14390 * @dev: generic device information structure 14391 **/ 14392 static int __maybe_unused i40e_suspend(struct device *dev) 14393 { 14394 struct pci_dev *pdev = to_pci_dev(dev); 14395 struct i40e_pf *pf = pci_get_drvdata(pdev); 14396 struct i40e_hw *hw = &pf->hw; 14397 14398 /* If we're already suspended, then there is nothing to do */ 14399 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14400 return 0; 14401 14402 set_bit(__I40E_DOWN, pf->state); 14403 14404 /* Ensure service task will not be running */ 14405 del_timer_sync(&pf->service_timer); 14406 cancel_work_sync(&pf->service_task); 14407 14408 /* Client close must be called explicitly here because the timer 14409 * has been stopped. 14410 */ 14411 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14412 14413 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14414 i40e_enable_mc_magic_wake(pf); 14415 14416 /* Since we're going to destroy queues during the 14417 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14418 * whole section 14419 */ 14420 rtnl_lock(); 14421 14422 i40e_prep_for_reset(pf, true); 14423 14424 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14425 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14426 14427 /* Clear the interrupt scheme and release our IRQs so that the system 14428 * can safely hibernate even when there are a large number of CPUs. 14429 * Otherwise hibernation might fail when mapping all the vectors back 14430 * to CPU0. 14431 */ 14432 i40e_clear_interrupt_scheme(pf); 14433 14434 rtnl_unlock(); 14435 14436 return 0; 14437 } 14438 14439 /** 14440 * i40e_resume - PM callback for waking up from D3 14441 * @dev: generic device information structure 14442 **/ 14443 static int __maybe_unused i40e_resume(struct device *dev) 14444 { 14445 struct pci_dev *pdev = to_pci_dev(dev); 14446 struct i40e_pf *pf = pci_get_drvdata(pdev); 14447 int err; 14448 14449 /* If we're not suspended, then there is nothing to do */ 14450 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14451 return 0; 14452 14453 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 14454 * since we're going to be restoring queues 14455 */ 14456 rtnl_lock(); 14457 14458 /* We cleared the interrupt scheme when we suspended, so we need to 14459 * restore it now to resume device functionality. 14460 */ 14461 err = i40e_restore_interrupt_scheme(pf); 14462 if (err) { 14463 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14464 err); 14465 } 14466 14467 clear_bit(__I40E_DOWN, pf->state); 14468 i40e_reset_and_rebuild(pf, false, true); 14469 14470 rtnl_unlock(); 14471 14472 /* Clear suspended state last after everything is recovered */ 14473 clear_bit(__I40E_SUSPENDED, pf->state); 14474 14475 /* Restart the service task */ 14476 mod_timer(&pf->service_timer, 14477 round_jiffies(jiffies + pf->service_timer_period)); 14478 14479 return 0; 14480 } 14481 14482 static const struct pci_error_handlers i40e_err_handler = { 14483 .error_detected = i40e_pci_error_detected, 14484 .slot_reset = i40e_pci_error_slot_reset, 14485 .reset_prepare = i40e_pci_error_reset_prepare, 14486 .reset_done = i40e_pci_error_reset_done, 14487 .resume = i40e_pci_error_resume, 14488 }; 14489 14490 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14491 14492 static struct pci_driver i40e_driver = { 14493 .name = i40e_driver_name, 14494 .id_table = i40e_pci_tbl, 14495 .probe = i40e_probe, 14496 .remove = i40e_remove, 14497 .driver = { 14498 .pm = &i40e_pm_ops, 14499 }, 14500 .shutdown = i40e_shutdown, 14501 .err_handler = &i40e_err_handler, 14502 .sriov_configure = i40e_pci_sriov_configure, 14503 }; 14504 14505 /** 14506 * i40e_init_module - Driver registration routine 14507 * 14508 * i40e_init_module is the first routine called when the driver is 14509 * loaded. All it does is register with the PCI subsystem. 14510 **/ 14511 static int __init i40e_init_module(void) 14512 { 14513 pr_info("%s: %s - version %s\n", i40e_driver_name, 14514 i40e_driver_string, i40e_driver_version_str); 14515 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14516 14517 /* There is no need to throttle the number of active tasks because 14518 * each device limits its own task using a state bit for scheduling 14519 * the service task, and the device tasks do not interfere with each 14520 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14521 * since we need to be able to guarantee forward progress even under 14522 * memory pressure. 14523 */ 14524 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14525 if (!i40e_wq) { 14526 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14527 return -ENOMEM; 14528 } 14529 14530 i40e_dbg_init(); 14531 return pci_register_driver(&i40e_driver); 14532 } 14533 module_init(i40e_init_module); 14534 14535 /** 14536 * i40e_exit_module - Driver exit cleanup routine 14537 * 14538 * i40e_exit_module is called just before the driver is removed 14539 * from memory. 14540 **/ 14541 static void __exit i40e_exit_module(void) 14542 { 14543 pci_unregister_driver(&i40e_driver); 14544 destroy_workqueue(i40e_wq); 14545 i40e_dbg_exit(); 14546 } 14547 module_exit(i40e_exit_module); 14548