1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 11 /* Local includes */ 12 #include "i40e.h" 13 #include "i40e_diag.h" 14 #include "i40e_xsk.h" 15 #include <net/udp_tunnel.h> 16 #include <net/xdp_sock_drv.h> 17 /* All i40e tracepoints are defined by the include below, which 18 * must be included exactly once across the whole kernel with 19 * CREATE_TRACE_POINTS defined 20 */ 21 #define CREATE_TRACE_POINTS 22 #include "i40e_trace.h" 23 24 const char i40e_driver_name[] = "i40e"; 25 static const char i40e_driver_string[] = 26 "Intel(R) Ethernet Connection XL710 Network Driver"; 27 28 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 29 30 /* a bit of forward declarations */ 31 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 32 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 33 static int i40e_add_vsi(struct i40e_vsi *vsi); 34 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 35 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired); 36 static int i40e_setup_misc_vector(struct i40e_pf *pf); 37 static void i40e_determine_queue_usage(struct i40e_pf *pf); 38 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 39 static void i40e_prep_for_reset(struct i40e_pf *pf); 40 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 41 bool lock_acquired); 42 static int i40e_reset(struct i40e_pf *pf); 43 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 44 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 45 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 46 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 47 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 48 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 49 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 50 static int i40e_get_capabilities(struct i40e_pf *pf, 51 enum i40e_admin_queue_opc list_type); 52 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 53 54 /* i40e_pci_tbl - PCI Device ID Table 55 * 56 * Last entry must be all 0s 57 * 58 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 59 * Class, Class Mask, private data (not used) } 60 */ 61 static const struct pci_device_id i40e_pci_tbl[] = { 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 86 /* required last entry */ 87 {0, } 88 }; 89 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 90 91 #define I40E_MAX_VF_COUNT 128 92 static int debug = -1; 93 module_param(debug, uint, 0); 94 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 95 96 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 97 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 98 MODULE_LICENSE("GPL v2"); 99 100 static struct workqueue_struct *i40e_wq; 101 102 /** 103 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 104 * @hw: pointer to the HW structure 105 * @mem: ptr to mem struct to fill out 106 * @size: size of memory requested 107 * @alignment: what to align the allocation to 108 **/ 109 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 110 u64 size, u32 alignment) 111 { 112 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 113 114 mem->size = ALIGN(size, alignment); 115 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 116 GFP_KERNEL); 117 if (!mem->va) 118 return -ENOMEM; 119 120 return 0; 121 } 122 123 /** 124 * i40e_free_dma_mem_d - OS specific memory free for shared code 125 * @hw: pointer to the HW structure 126 * @mem: ptr to mem struct to free 127 **/ 128 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 129 { 130 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 131 132 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 133 mem->va = NULL; 134 mem->pa = 0; 135 mem->size = 0; 136 137 return 0; 138 } 139 140 /** 141 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 142 * @hw: pointer to the HW structure 143 * @mem: ptr to mem struct to fill out 144 * @size: size of memory requested 145 **/ 146 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 147 u32 size) 148 { 149 mem->size = size; 150 mem->va = kzalloc(size, GFP_KERNEL); 151 152 if (!mem->va) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 /** 159 * i40e_free_virt_mem_d - OS specific memory free for shared code 160 * @hw: pointer to the HW structure 161 * @mem: ptr to mem struct to free 162 **/ 163 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 164 { 165 /* it's ok to kfree a NULL pointer */ 166 kfree(mem->va); 167 mem->va = NULL; 168 mem->size = 0; 169 170 return 0; 171 } 172 173 /** 174 * i40e_get_lump - find a lump of free generic resource 175 * @pf: board private structure 176 * @pile: the pile of resource to search 177 * @needed: the number of items needed 178 * @id: an owner id to stick on the items assigned 179 * 180 * Returns the base item index of the lump, or negative for error 181 * 182 * The search_hint trick and lack of advanced fit-finding only work 183 * because we're highly likely to have all the same size lump requests. 184 * Linear search time and any fragmentation should be minimal. 185 **/ 186 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 187 u16 needed, u16 id) 188 { 189 int ret = -ENOMEM; 190 int i, j; 191 192 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 193 dev_info(&pf->pdev->dev, 194 "param err: pile=%s needed=%d id=0x%04x\n", 195 pile ? "<valid>" : "<null>", needed, id); 196 return -EINVAL; 197 } 198 199 /* start the linear search with an imperfect hint */ 200 i = pile->search_hint; 201 while (i < pile->num_entries) { 202 /* skip already allocated entries */ 203 if (pile->list[i] & I40E_PILE_VALID_BIT) { 204 i++; 205 continue; 206 } 207 208 /* do we have enough in this lump? */ 209 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 210 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 211 break; 212 } 213 214 if (j == needed) { 215 /* there was enough, so assign it to the requestor */ 216 for (j = 0; j < needed; j++) 217 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 218 ret = i; 219 pile->search_hint = i + j; 220 break; 221 } 222 223 /* not enough, so skip over it and continue looking */ 224 i += j; 225 } 226 227 return ret; 228 } 229 230 /** 231 * i40e_put_lump - return a lump of generic resource 232 * @pile: the pile of resource to search 233 * @index: the base item index 234 * @id: the owner id of the items assigned 235 * 236 * Returns the count of items in the lump 237 **/ 238 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 239 { 240 int valid_id = (id | I40E_PILE_VALID_BIT); 241 int count = 0; 242 int i; 243 244 if (!pile || index >= pile->num_entries) 245 return -EINVAL; 246 247 for (i = index; 248 i < pile->num_entries && pile->list[i] == valid_id; 249 i++) { 250 pile->list[i] = 0; 251 count++; 252 } 253 254 if (count && index < pile->search_hint) 255 pile->search_hint = index; 256 257 return count; 258 } 259 260 /** 261 * i40e_find_vsi_from_id - searches for the vsi with the given id 262 * @pf: the pf structure to search for the vsi 263 * @id: id of the vsi it is searching for 264 **/ 265 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 266 { 267 int i; 268 269 for (i = 0; i < pf->num_alloc_vsi; i++) 270 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 271 return pf->vsi[i]; 272 273 return NULL; 274 } 275 276 /** 277 * i40e_service_event_schedule - Schedule the service task to wake up 278 * @pf: board private structure 279 * 280 * If not already scheduled, this puts the task into the work queue 281 **/ 282 void i40e_service_event_schedule(struct i40e_pf *pf) 283 { 284 if ((!test_bit(__I40E_DOWN, pf->state) && 285 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 286 test_bit(__I40E_RECOVERY_MODE, pf->state)) 287 queue_work(i40e_wq, &pf->service_task); 288 } 289 290 /** 291 * i40e_tx_timeout - Respond to a Tx Hang 292 * @netdev: network interface device structure 293 * @txqueue: queue number timing out 294 * 295 * If any port has noticed a Tx timeout, it is likely that the whole 296 * device is munged, not just the one netdev port, so go for the full 297 * reset. 298 **/ 299 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 300 { 301 struct i40e_netdev_priv *np = netdev_priv(netdev); 302 struct i40e_vsi *vsi = np->vsi; 303 struct i40e_pf *pf = vsi->back; 304 struct i40e_ring *tx_ring = NULL; 305 unsigned int i; 306 u32 head, val; 307 308 pf->tx_timeout_count++; 309 310 /* with txqueue index, find the tx_ring struct */ 311 for (i = 0; i < vsi->num_queue_pairs; i++) { 312 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 313 if (txqueue == 314 vsi->tx_rings[i]->queue_index) { 315 tx_ring = vsi->tx_rings[i]; 316 break; 317 } 318 } 319 } 320 321 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 322 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 323 else if (time_before(jiffies, 324 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 325 return; /* don't do any new action before the next timeout */ 326 327 /* don't kick off another recovery if one is already pending */ 328 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 329 return; 330 331 if (tx_ring) { 332 head = i40e_get_head(tx_ring); 333 /* Read interrupt register */ 334 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 335 val = rd32(&pf->hw, 336 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 337 tx_ring->vsi->base_vector - 1)); 338 else 339 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 340 341 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 342 vsi->seid, txqueue, tx_ring->next_to_clean, 343 head, tx_ring->next_to_use, 344 readl(tx_ring->tail), val); 345 } 346 347 pf->tx_timeout_last_recovery = jiffies; 348 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 349 pf->tx_timeout_recovery_level, txqueue); 350 351 switch (pf->tx_timeout_recovery_level) { 352 case 1: 353 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 354 break; 355 case 2: 356 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 357 break; 358 case 3: 359 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 360 break; 361 default: 362 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 363 break; 364 } 365 366 i40e_service_event_schedule(pf); 367 pf->tx_timeout_recovery_level++; 368 } 369 370 /** 371 * i40e_get_vsi_stats_struct - Get System Network Statistics 372 * @vsi: the VSI we care about 373 * 374 * Returns the address of the device statistics structure. 375 * The statistics are actually updated from the service task. 376 **/ 377 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 378 { 379 return &vsi->net_stats; 380 } 381 382 /** 383 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 384 * @ring: Tx ring to get statistics from 385 * @stats: statistics entry to be updated 386 **/ 387 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 388 struct rtnl_link_stats64 *stats) 389 { 390 u64 bytes, packets; 391 unsigned int start; 392 393 do { 394 start = u64_stats_fetch_begin_irq(&ring->syncp); 395 packets = ring->stats.packets; 396 bytes = ring->stats.bytes; 397 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 398 399 stats->tx_packets += packets; 400 stats->tx_bytes += bytes; 401 } 402 403 /** 404 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 405 * @netdev: network interface device structure 406 * @stats: data structure to store statistics 407 * 408 * Returns the address of the device statistics structure. 409 * The statistics are actually updated from the service task. 410 **/ 411 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 412 struct rtnl_link_stats64 *stats) 413 { 414 struct i40e_netdev_priv *np = netdev_priv(netdev); 415 struct i40e_vsi *vsi = np->vsi; 416 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 417 struct i40e_ring *ring; 418 int i; 419 420 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 421 return; 422 423 if (!vsi->tx_rings) 424 return; 425 426 rcu_read_lock(); 427 for (i = 0; i < vsi->num_queue_pairs; i++) { 428 u64 bytes, packets; 429 unsigned int start; 430 431 ring = READ_ONCE(vsi->tx_rings[i]); 432 if (!ring) 433 continue; 434 i40e_get_netdev_stats_struct_tx(ring, stats); 435 436 if (i40e_enabled_xdp_vsi(vsi)) { 437 ring = READ_ONCE(vsi->xdp_rings[i]); 438 if (!ring) 439 continue; 440 i40e_get_netdev_stats_struct_tx(ring, stats); 441 } 442 443 ring = READ_ONCE(vsi->rx_rings[i]); 444 if (!ring) 445 continue; 446 do { 447 start = u64_stats_fetch_begin_irq(&ring->syncp); 448 packets = ring->stats.packets; 449 bytes = ring->stats.bytes; 450 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 451 452 stats->rx_packets += packets; 453 stats->rx_bytes += bytes; 454 455 } 456 rcu_read_unlock(); 457 458 /* following stats updated by i40e_watchdog_subtask() */ 459 stats->multicast = vsi_stats->multicast; 460 stats->tx_errors = vsi_stats->tx_errors; 461 stats->tx_dropped = vsi_stats->tx_dropped; 462 stats->rx_errors = vsi_stats->rx_errors; 463 stats->rx_dropped = vsi_stats->rx_dropped; 464 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 465 stats->rx_length_errors = vsi_stats->rx_length_errors; 466 } 467 468 /** 469 * i40e_vsi_reset_stats - Resets all stats of the given vsi 470 * @vsi: the VSI to have its stats reset 471 **/ 472 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 473 { 474 struct rtnl_link_stats64 *ns; 475 int i; 476 477 if (!vsi) 478 return; 479 480 ns = i40e_get_vsi_stats_struct(vsi); 481 memset(ns, 0, sizeof(*ns)); 482 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 483 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 484 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 485 if (vsi->rx_rings && vsi->rx_rings[0]) { 486 for (i = 0; i < vsi->num_queue_pairs; i++) { 487 memset(&vsi->rx_rings[i]->stats, 0, 488 sizeof(vsi->rx_rings[i]->stats)); 489 memset(&vsi->rx_rings[i]->rx_stats, 0, 490 sizeof(vsi->rx_rings[i]->rx_stats)); 491 memset(&vsi->tx_rings[i]->stats, 0, 492 sizeof(vsi->tx_rings[i]->stats)); 493 memset(&vsi->tx_rings[i]->tx_stats, 0, 494 sizeof(vsi->tx_rings[i]->tx_stats)); 495 } 496 } 497 vsi->stat_offsets_loaded = false; 498 } 499 500 /** 501 * i40e_pf_reset_stats - Reset all of the stats for the given PF 502 * @pf: the PF to be reset 503 **/ 504 void i40e_pf_reset_stats(struct i40e_pf *pf) 505 { 506 int i; 507 508 memset(&pf->stats, 0, sizeof(pf->stats)); 509 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 510 pf->stat_offsets_loaded = false; 511 512 for (i = 0; i < I40E_MAX_VEB; i++) { 513 if (pf->veb[i]) { 514 memset(&pf->veb[i]->stats, 0, 515 sizeof(pf->veb[i]->stats)); 516 memset(&pf->veb[i]->stats_offsets, 0, 517 sizeof(pf->veb[i]->stats_offsets)); 518 memset(&pf->veb[i]->tc_stats, 0, 519 sizeof(pf->veb[i]->tc_stats)); 520 memset(&pf->veb[i]->tc_stats_offsets, 0, 521 sizeof(pf->veb[i]->tc_stats_offsets)); 522 pf->veb[i]->stat_offsets_loaded = false; 523 } 524 } 525 pf->hw_csum_rx_error = 0; 526 } 527 528 /** 529 * i40e_stat_update48 - read and update a 48 bit stat from the chip 530 * @hw: ptr to the hardware info 531 * @hireg: the high 32 bit reg to read 532 * @loreg: the low 32 bit reg to read 533 * @offset_loaded: has the initial offset been loaded yet 534 * @offset: ptr to current offset value 535 * @stat: ptr to the stat 536 * 537 * Since the device stats are not reset at PFReset, they likely will not 538 * be zeroed when the driver starts. We'll save the first values read 539 * and use them as offsets to be subtracted from the raw values in order 540 * to report stats that count from zero. In the process, we also manage 541 * the potential roll-over. 542 **/ 543 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 544 bool offset_loaded, u64 *offset, u64 *stat) 545 { 546 u64 new_data; 547 548 if (hw->device_id == I40E_DEV_ID_QEMU) { 549 new_data = rd32(hw, loreg); 550 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 551 } else { 552 new_data = rd64(hw, loreg); 553 } 554 if (!offset_loaded) 555 *offset = new_data; 556 if (likely(new_data >= *offset)) 557 *stat = new_data - *offset; 558 else 559 *stat = (new_data + BIT_ULL(48)) - *offset; 560 *stat &= 0xFFFFFFFFFFFFULL; 561 } 562 563 /** 564 * i40e_stat_update32 - read and update a 32 bit stat from the chip 565 * @hw: ptr to the hardware info 566 * @reg: the hw reg to read 567 * @offset_loaded: has the initial offset been loaded yet 568 * @offset: ptr to current offset value 569 * @stat: ptr to the stat 570 **/ 571 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 572 bool offset_loaded, u64 *offset, u64 *stat) 573 { 574 u32 new_data; 575 576 new_data = rd32(hw, reg); 577 if (!offset_loaded) 578 *offset = new_data; 579 if (likely(new_data >= *offset)) 580 *stat = (u32)(new_data - *offset); 581 else 582 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 583 } 584 585 /** 586 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 587 * @hw: ptr to the hardware info 588 * @reg: the hw reg to read and clear 589 * @stat: ptr to the stat 590 **/ 591 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 592 { 593 u32 new_data = rd32(hw, reg); 594 595 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 596 *stat += new_data; 597 } 598 599 /** 600 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 601 * @vsi: the VSI to be updated 602 **/ 603 void i40e_update_eth_stats(struct i40e_vsi *vsi) 604 { 605 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 606 struct i40e_pf *pf = vsi->back; 607 struct i40e_hw *hw = &pf->hw; 608 struct i40e_eth_stats *oes; 609 struct i40e_eth_stats *es; /* device's eth stats */ 610 611 es = &vsi->eth_stats; 612 oes = &vsi->eth_stats_offsets; 613 614 /* Gather up the stats that the hw collects */ 615 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 616 vsi->stat_offsets_loaded, 617 &oes->tx_errors, &es->tx_errors); 618 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 619 vsi->stat_offsets_loaded, 620 &oes->rx_discards, &es->rx_discards); 621 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 624 625 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 626 I40E_GLV_GORCL(stat_idx), 627 vsi->stat_offsets_loaded, 628 &oes->rx_bytes, &es->rx_bytes); 629 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 630 I40E_GLV_UPRCL(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->rx_unicast, &es->rx_unicast); 633 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 634 I40E_GLV_MPRCL(stat_idx), 635 vsi->stat_offsets_loaded, 636 &oes->rx_multicast, &es->rx_multicast); 637 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 638 I40E_GLV_BPRCL(stat_idx), 639 vsi->stat_offsets_loaded, 640 &oes->rx_broadcast, &es->rx_broadcast); 641 642 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 643 I40E_GLV_GOTCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->tx_bytes, &es->tx_bytes); 646 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 647 I40E_GLV_UPTCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->tx_unicast, &es->tx_unicast); 650 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 651 I40E_GLV_MPTCL(stat_idx), 652 vsi->stat_offsets_loaded, 653 &oes->tx_multicast, &es->tx_multicast); 654 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 655 I40E_GLV_BPTCL(stat_idx), 656 vsi->stat_offsets_loaded, 657 &oes->tx_broadcast, &es->tx_broadcast); 658 vsi->stat_offsets_loaded = true; 659 } 660 661 /** 662 * i40e_update_veb_stats - Update Switch component statistics 663 * @veb: the VEB being updated 664 **/ 665 void i40e_update_veb_stats(struct i40e_veb *veb) 666 { 667 struct i40e_pf *pf = veb->pf; 668 struct i40e_hw *hw = &pf->hw; 669 struct i40e_eth_stats *oes; 670 struct i40e_eth_stats *es; /* device's eth stats */ 671 struct i40e_veb_tc_stats *veb_oes; 672 struct i40e_veb_tc_stats *veb_es; 673 int i, idx = 0; 674 675 idx = veb->stats_idx; 676 es = &veb->stats; 677 oes = &veb->stats_offsets; 678 veb_es = &veb->tc_stats; 679 veb_oes = &veb->tc_stats_offsets; 680 681 /* Gather up the stats that the hw collects */ 682 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 683 veb->stat_offsets_loaded, 684 &oes->tx_discards, &es->tx_discards); 685 if (hw->revision_id > 0) 686 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 687 veb->stat_offsets_loaded, 688 &oes->rx_unknown_protocol, 689 &es->rx_unknown_protocol); 690 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 691 veb->stat_offsets_loaded, 692 &oes->rx_bytes, &es->rx_bytes); 693 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 694 veb->stat_offsets_loaded, 695 &oes->rx_unicast, &es->rx_unicast); 696 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 697 veb->stat_offsets_loaded, 698 &oes->rx_multicast, &es->rx_multicast); 699 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_broadcast, &es->rx_broadcast); 702 703 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 704 veb->stat_offsets_loaded, 705 &oes->tx_bytes, &es->tx_bytes); 706 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 707 veb->stat_offsets_loaded, 708 &oes->tx_unicast, &es->tx_unicast); 709 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 710 veb->stat_offsets_loaded, 711 &oes->tx_multicast, &es->tx_multicast); 712 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_broadcast, &es->tx_broadcast); 715 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 716 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 717 I40E_GLVEBTC_RPCL(i, idx), 718 veb->stat_offsets_loaded, 719 &veb_oes->tc_rx_packets[i], 720 &veb_es->tc_rx_packets[i]); 721 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 722 I40E_GLVEBTC_RBCL(i, idx), 723 veb->stat_offsets_loaded, 724 &veb_oes->tc_rx_bytes[i], 725 &veb_es->tc_rx_bytes[i]); 726 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 727 I40E_GLVEBTC_TPCL(i, idx), 728 veb->stat_offsets_loaded, 729 &veb_oes->tc_tx_packets[i], 730 &veb_es->tc_tx_packets[i]); 731 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 732 I40E_GLVEBTC_TBCL(i, idx), 733 veb->stat_offsets_loaded, 734 &veb_oes->tc_tx_bytes[i], 735 &veb_es->tc_tx_bytes[i]); 736 } 737 veb->stat_offsets_loaded = true; 738 } 739 740 /** 741 * i40e_update_vsi_stats - Update the vsi statistics counters. 742 * @vsi: the VSI to be updated 743 * 744 * There are a few instances where we store the same stat in a 745 * couple of different structs. This is partly because we have 746 * the netdev stats that need to be filled out, which is slightly 747 * different from the "eth_stats" defined by the chip and used in 748 * VF communications. We sort it out here. 749 **/ 750 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 751 { 752 struct i40e_pf *pf = vsi->back; 753 struct rtnl_link_stats64 *ons; 754 struct rtnl_link_stats64 *ns; /* netdev stats */ 755 struct i40e_eth_stats *oes; 756 struct i40e_eth_stats *es; /* device's eth stats */ 757 u32 tx_restart, tx_busy; 758 struct i40e_ring *p; 759 u32 rx_page, rx_buf; 760 u64 bytes, packets; 761 unsigned int start; 762 u64 tx_linearize; 763 u64 tx_force_wb; 764 u64 rx_p, rx_b; 765 u64 tx_p, tx_b; 766 u16 q; 767 768 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 769 test_bit(__I40E_CONFIG_BUSY, pf->state)) 770 return; 771 772 ns = i40e_get_vsi_stats_struct(vsi); 773 ons = &vsi->net_stats_offsets; 774 es = &vsi->eth_stats; 775 oes = &vsi->eth_stats_offsets; 776 777 /* Gather up the netdev and vsi stats that the driver collects 778 * on the fly during packet processing 779 */ 780 rx_b = rx_p = 0; 781 tx_b = tx_p = 0; 782 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 783 rx_page = 0; 784 rx_buf = 0; 785 rcu_read_lock(); 786 for (q = 0; q < vsi->num_queue_pairs; q++) { 787 /* locate Tx ring */ 788 p = READ_ONCE(vsi->tx_rings[q]); 789 if (!p) 790 continue; 791 792 do { 793 start = u64_stats_fetch_begin_irq(&p->syncp); 794 packets = p->stats.packets; 795 bytes = p->stats.bytes; 796 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 797 tx_b += bytes; 798 tx_p += packets; 799 tx_restart += p->tx_stats.restart_queue; 800 tx_busy += p->tx_stats.tx_busy; 801 tx_linearize += p->tx_stats.tx_linearize; 802 tx_force_wb += p->tx_stats.tx_force_wb; 803 804 /* locate Rx ring */ 805 p = READ_ONCE(vsi->rx_rings[q]); 806 if (!p) 807 continue; 808 809 do { 810 start = u64_stats_fetch_begin_irq(&p->syncp); 811 packets = p->stats.packets; 812 bytes = p->stats.bytes; 813 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 814 rx_b += bytes; 815 rx_p += packets; 816 rx_buf += p->rx_stats.alloc_buff_failed; 817 rx_page += p->rx_stats.alloc_page_failed; 818 819 if (i40e_enabled_xdp_vsi(vsi)) { 820 /* locate XDP ring */ 821 p = READ_ONCE(vsi->xdp_rings[q]); 822 if (!p) 823 continue; 824 825 do { 826 start = u64_stats_fetch_begin_irq(&p->syncp); 827 packets = p->stats.packets; 828 bytes = p->stats.bytes; 829 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 830 tx_b += bytes; 831 tx_p += packets; 832 tx_restart += p->tx_stats.restart_queue; 833 tx_busy += p->tx_stats.tx_busy; 834 tx_linearize += p->tx_stats.tx_linearize; 835 tx_force_wb += p->tx_stats.tx_force_wb; 836 } 837 } 838 rcu_read_unlock(); 839 vsi->tx_restart = tx_restart; 840 vsi->tx_busy = tx_busy; 841 vsi->tx_linearize = tx_linearize; 842 vsi->tx_force_wb = tx_force_wb; 843 vsi->rx_page_failed = rx_page; 844 vsi->rx_buf_failed = rx_buf; 845 846 ns->rx_packets = rx_p; 847 ns->rx_bytes = rx_b; 848 ns->tx_packets = tx_p; 849 ns->tx_bytes = tx_b; 850 851 /* update netdev stats from eth stats */ 852 i40e_update_eth_stats(vsi); 853 ons->tx_errors = oes->tx_errors; 854 ns->tx_errors = es->tx_errors; 855 ons->multicast = oes->rx_multicast; 856 ns->multicast = es->rx_multicast; 857 ons->rx_dropped = oes->rx_discards; 858 ns->rx_dropped = es->rx_discards; 859 ons->tx_dropped = oes->tx_discards; 860 ns->tx_dropped = es->tx_discards; 861 862 /* pull in a couple PF stats if this is the main vsi */ 863 if (vsi == pf->vsi[pf->lan_vsi]) { 864 ns->rx_crc_errors = pf->stats.crc_errors; 865 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 866 ns->rx_length_errors = pf->stats.rx_length_errors; 867 } 868 } 869 870 /** 871 * i40e_update_pf_stats - Update the PF statistics counters. 872 * @pf: the PF to be updated 873 **/ 874 static void i40e_update_pf_stats(struct i40e_pf *pf) 875 { 876 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 877 struct i40e_hw_port_stats *nsd = &pf->stats; 878 struct i40e_hw *hw = &pf->hw; 879 u32 val; 880 int i; 881 882 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 883 I40E_GLPRT_GORCL(hw->port), 884 pf->stat_offsets_loaded, 885 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 886 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 887 I40E_GLPRT_GOTCL(hw->port), 888 pf->stat_offsets_loaded, 889 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 890 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_discards, 893 &nsd->eth.rx_discards); 894 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 895 I40E_GLPRT_UPRCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.rx_unicast, 898 &nsd->eth.rx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 900 I40E_GLPRT_MPRCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.rx_multicast, 903 &nsd->eth.rx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 905 I40E_GLPRT_BPRCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.rx_broadcast, 908 &nsd->eth.rx_broadcast); 909 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 910 I40E_GLPRT_UPTCL(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->eth.tx_unicast, 913 &nsd->eth.tx_unicast); 914 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 915 I40E_GLPRT_MPTCL(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->eth.tx_multicast, 918 &nsd->eth.tx_multicast); 919 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 920 I40E_GLPRT_BPTCL(hw->port), 921 pf->stat_offsets_loaded, 922 &osd->eth.tx_broadcast, 923 &nsd->eth.tx_broadcast); 924 925 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 926 pf->stat_offsets_loaded, 927 &osd->tx_dropped_link_down, 928 &nsd->tx_dropped_link_down); 929 930 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->crc_errors, &nsd->crc_errors); 933 934 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 935 pf->stat_offsets_loaded, 936 &osd->illegal_bytes, &nsd->illegal_bytes); 937 938 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->mac_local_faults, 941 &nsd->mac_local_faults); 942 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 943 pf->stat_offsets_loaded, 944 &osd->mac_remote_faults, 945 &nsd->mac_remote_faults); 946 947 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 948 pf->stat_offsets_loaded, 949 &osd->rx_length_errors, 950 &nsd->rx_length_errors); 951 952 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 953 pf->stat_offsets_loaded, 954 &osd->link_xon_rx, &nsd->link_xon_rx); 955 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 956 pf->stat_offsets_loaded, 957 &osd->link_xon_tx, &nsd->link_xon_tx); 958 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 959 pf->stat_offsets_loaded, 960 &osd->link_xoff_rx, &nsd->link_xoff_rx); 961 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 962 pf->stat_offsets_loaded, 963 &osd->link_xoff_tx, &nsd->link_xoff_tx); 964 965 for (i = 0; i < 8; i++) { 966 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 967 pf->stat_offsets_loaded, 968 &osd->priority_xoff_rx[i], 969 &nsd->priority_xoff_rx[i]); 970 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 971 pf->stat_offsets_loaded, 972 &osd->priority_xon_rx[i], 973 &nsd->priority_xon_rx[i]); 974 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 975 pf->stat_offsets_loaded, 976 &osd->priority_xon_tx[i], 977 &nsd->priority_xon_tx[i]); 978 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 979 pf->stat_offsets_loaded, 980 &osd->priority_xoff_tx[i], 981 &nsd->priority_xoff_tx[i]); 982 i40e_stat_update32(hw, 983 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 984 pf->stat_offsets_loaded, 985 &osd->priority_xon_2_xoff[i], 986 &nsd->priority_xon_2_xoff[i]); 987 } 988 989 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 990 I40E_GLPRT_PRC64L(hw->port), 991 pf->stat_offsets_loaded, 992 &osd->rx_size_64, &nsd->rx_size_64); 993 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 994 I40E_GLPRT_PRC127L(hw->port), 995 pf->stat_offsets_loaded, 996 &osd->rx_size_127, &nsd->rx_size_127); 997 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 998 I40E_GLPRT_PRC255L(hw->port), 999 pf->stat_offsets_loaded, 1000 &osd->rx_size_255, &nsd->rx_size_255); 1001 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1002 I40E_GLPRT_PRC511L(hw->port), 1003 pf->stat_offsets_loaded, 1004 &osd->rx_size_511, &nsd->rx_size_511); 1005 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1006 I40E_GLPRT_PRC1023L(hw->port), 1007 pf->stat_offsets_loaded, 1008 &osd->rx_size_1023, &nsd->rx_size_1023); 1009 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1010 I40E_GLPRT_PRC1522L(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->rx_size_1522, &nsd->rx_size_1522); 1013 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1014 I40E_GLPRT_PRC9522L(hw->port), 1015 pf->stat_offsets_loaded, 1016 &osd->rx_size_big, &nsd->rx_size_big); 1017 1018 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1019 I40E_GLPRT_PTC64L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->tx_size_64, &nsd->tx_size_64); 1022 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1023 I40E_GLPRT_PTC127L(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->tx_size_127, &nsd->tx_size_127); 1026 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1027 I40E_GLPRT_PTC255L(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->tx_size_255, &nsd->tx_size_255); 1030 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1031 I40E_GLPRT_PTC511L(hw->port), 1032 pf->stat_offsets_loaded, 1033 &osd->tx_size_511, &nsd->tx_size_511); 1034 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1035 I40E_GLPRT_PTC1023L(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->tx_size_1023, &nsd->tx_size_1023); 1038 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1039 I40E_GLPRT_PTC1522L(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->tx_size_1522, &nsd->tx_size_1522); 1042 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1043 I40E_GLPRT_PTC9522L(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->tx_size_big, &nsd->tx_size_big); 1046 1047 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1048 pf->stat_offsets_loaded, 1049 &osd->rx_undersize, &nsd->rx_undersize); 1050 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1051 pf->stat_offsets_loaded, 1052 &osd->rx_fragments, &nsd->rx_fragments); 1053 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1054 pf->stat_offsets_loaded, 1055 &osd->rx_oversize, &nsd->rx_oversize); 1056 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1057 pf->stat_offsets_loaded, 1058 &osd->rx_jabber, &nsd->rx_jabber); 1059 1060 /* FDIR stats */ 1061 i40e_stat_update_and_clear32(hw, 1062 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1063 &nsd->fd_atr_match); 1064 i40e_stat_update_and_clear32(hw, 1065 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1066 &nsd->fd_sb_match); 1067 i40e_stat_update_and_clear32(hw, 1068 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1069 &nsd->fd_atr_tunnel_match); 1070 1071 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1072 nsd->tx_lpi_status = 1073 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1074 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1075 nsd->rx_lpi_status = 1076 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1077 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1078 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1079 pf->stat_offsets_loaded, 1080 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1081 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1082 pf->stat_offsets_loaded, 1083 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1084 1085 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1086 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1087 nsd->fd_sb_status = true; 1088 else 1089 nsd->fd_sb_status = false; 1090 1091 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1092 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1093 nsd->fd_atr_status = true; 1094 else 1095 nsd->fd_atr_status = false; 1096 1097 pf->stat_offsets_loaded = true; 1098 } 1099 1100 /** 1101 * i40e_update_stats - Update the various statistics counters. 1102 * @vsi: the VSI to be updated 1103 * 1104 * Update the various stats for this VSI and its related entities. 1105 **/ 1106 void i40e_update_stats(struct i40e_vsi *vsi) 1107 { 1108 struct i40e_pf *pf = vsi->back; 1109 1110 if (vsi == pf->vsi[pf->lan_vsi]) 1111 i40e_update_pf_stats(pf); 1112 1113 i40e_update_vsi_stats(vsi); 1114 } 1115 1116 /** 1117 * i40e_count_filters - counts VSI mac filters 1118 * @vsi: the VSI to be searched 1119 * 1120 * Returns count of mac filters 1121 **/ 1122 int i40e_count_filters(struct i40e_vsi *vsi) 1123 { 1124 struct i40e_mac_filter *f; 1125 struct hlist_node *h; 1126 int bkt; 1127 int cnt = 0; 1128 1129 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1130 ++cnt; 1131 1132 return cnt; 1133 } 1134 1135 /** 1136 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1137 * @vsi: the VSI to be searched 1138 * @macaddr: the MAC address 1139 * @vlan: the vlan 1140 * 1141 * Returns ptr to the filter object or NULL 1142 **/ 1143 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1144 const u8 *macaddr, s16 vlan) 1145 { 1146 struct i40e_mac_filter *f; 1147 u64 key; 1148 1149 if (!vsi || !macaddr) 1150 return NULL; 1151 1152 key = i40e_addr_to_hkey(macaddr); 1153 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1154 if ((ether_addr_equal(macaddr, f->macaddr)) && 1155 (vlan == f->vlan)) 1156 return f; 1157 } 1158 return NULL; 1159 } 1160 1161 /** 1162 * i40e_find_mac - Find a mac addr in the macvlan filters list 1163 * @vsi: the VSI to be searched 1164 * @macaddr: the MAC address we are searching for 1165 * 1166 * Returns the first filter with the provided MAC address or NULL if 1167 * MAC address was not found 1168 **/ 1169 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1170 { 1171 struct i40e_mac_filter *f; 1172 u64 key; 1173 1174 if (!vsi || !macaddr) 1175 return NULL; 1176 1177 key = i40e_addr_to_hkey(macaddr); 1178 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1179 if ((ether_addr_equal(macaddr, f->macaddr))) 1180 return f; 1181 } 1182 return NULL; 1183 } 1184 1185 /** 1186 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1187 * @vsi: the VSI to be searched 1188 * 1189 * Returns true if VSI is in vlan mode or false otherwise 1190 **/ 1191 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1192 { 1193 /* If we have a PVID, always operate in VLAN mode */ 1194 if (vsi->info.pvid) 1195 return true; 1196 1197 /* We need to operate in VLAN mode whenever we have any filters with 1198 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1199 * time, incurring search cost repeatedly. However, we can notice two 1200 * things: 1201 * 1202 * 1) the only place where we can gain a VLAN filter is in 1203 * i40e_add_filter. 1204 * 1205 * 2) the only place where filters are actually removed is in 1206 * i40e_sync_filters_subtask. 1207 * 1208 * Thus, we can simply use a boolean value, has_vlan_filters which we 1209 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1210 * we have to perform the full search after deleting filters in 1211 * i40e_sync_filters_subtask, but we already have to search 1212 * filters here and can perform the check at the same time. This 1213 * results in avoiding embedding a loop for VLAN mode inside another 1214 * loop over all the filters, and should maintain correctness as noted 1215 * above. 1216 */ 1217 return vsi->has_vlan_filter; 1218 } 1219 1220 /** 1221 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1222 * @vsi: the VSI to configure 1223 * @tmp_add_list: list of filters ready to be added 1224 * @tmp_del_list: list of filters ready to be deleted 1225 * @vlan_filters: the number of active VLAN filters 1226 * 1227 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1228 * behave as expected. If we have any active VLAN filters remaining or about 1229 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1230 * so that they only match against untagged traffic. If we no longer have any 1231 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1232 * so that they match against both tagged and untagged traffic. In this way, 1233 * we ensure that we correctly receive the desired traffic. This ensures that 1234 * when we have an active VLAN we will receive only untagged traffic and 1235 * traffic matching active VLANs. If we have no active VLANs then we will 1236 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1237 * 1238 * Finally, in a similar fashion, this function also corrects filters when 1239 * there is an active PVID assigned to this VSI. 1240 * 1241 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1242 * 1243 * This function is only expected to be called from within 1244 * i40e_sync_vsi_filters. 1245 * 1246 * NOTE: This function expects to be called while under the 1247 * mac_filter_hash_lock 1248 */ 1249 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1250 struct hlist_head *tmp_add_list, 1251 struct hlist_head *tmp_del_list, 1252 int vlan_filters) 1253 { 1254 s16 pvid = le16_to_cpu(vsi->info.pvid); 1255 struct i40e_mac_filter *f, *add_head; 1256 struct i40e_new_mac_filter *new; 1257 struct hlist_node *h; 1258 int bkt, new_vlan; 1259 1260 /* To determine if a particular filter needs to be replaced we 1261 * have the three following conditions: 1262 * 1263 * a) if we have a PVID assigned, then all filters which are 1264 * not marked as VLAN=PVID must be replaced with filters that 1265 * are. 1266 * b) otherwise, if we have any active VLANS, all filters 1267 * which are marked as VLAN=-1 must be replaced with 1268 * filters marked as VLAN=0 1269 * c) finally, if we do not have any active VLANS, all filters 1270 * which are marked as VLAN=0 must be replaced with filters 1271 * marked as VLAN=-1 1272 */ 1273 1274 /* Update the filters about to be added in place */ 1275 hlist_for_each_entry(new, tmp_add_list, hlist) { 1276 if (pvid && new->f->vlan != pvid) 1277 new->f->vlan = pvid; 1278 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1279 new->f->vlan = 0; 1280 else if (!vlan_filters && new->f->vlan == 0) 1281 new->f->vlan = I40E_VLAN_ANY; 1282 } 1283 1284 /* Update the remaining active filters */ 1285 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1286 /* Combine the checks for whether a filter needs to be changed 1287 * and then determine the new VLAN inside the if block, in 1288 * order to avoid duplicating code for adding the new filter 1289 * then deleting the old filter. 1290 */ 1291 if ((pvid && f->vlan != pvid) || 1292 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1293 (!vlan_filters && f->vlan == 0)) { 1294 /* Determine the new vlan we will be adding */ 1295 if (pvid) 1296 new_vlan = pvid; 1297 else if (vlan_filters) 1298 new_vlan = 0; 1299 else 1300 new_vlan = I40E_VLAN_ANY; 1301 1302 /* Create the new filter */ 1303 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1304 if (!add_head) 1305 return -ENOMEM; 1306 1307 /* Create a temporary i40e_new_mac_filter */ 1308 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1309 if (!new) 1310 return -ENOMEM; 1311 1312 new->f = add_head; 1313 new->state = add_head->state; 1314 1315 /* Add the new filter to the tmp list */ 1316 hlist_add_head(&new->hlist, tmp_add_list); 1317 1318 /* Put the original filter into the delete list */ 1319 f->state = I40E_FILTER_REMOVE; 1320 hash_del(&f->hlist); 1321 hlist_add_head(&f->hlist, tmp_del_list); 1322 } 1323 } 1324 1325 vsi->has_vlan_filter = !!vlan_filters; 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1332 * @vsi: the PF Main VSI - inappropriate for any other VSI 1333 * @macaddr: the MAC address 1334 * 1335 * Remove whatever filter the firmware set up so the driver can manage 1336 * its own filtering intelligently. 1337 **/ 1338 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1339 { 1340 struct i40e_aqc_remove_macvlan_element_data element; 1341 struct i40e_pf *pf = vsi->back; 1342 1343 /* Only appropriate for the PF main VSI */ 1344 if (vsi->type != I40E_VSI_MAIN) 1345 return; 1346 1347 memset(&element, 0, sizeof(element)); 1348 ether_addr_copy(element.mac_addr, macaddr); 1349 element.vlan_tag = 0; 1350 /* Ignore error returns, some firmware does it this way... */ 1351 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1352 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1353 1354 memset(&element, 0, sizeof(element)); 1355 ether_addr_copy(element.mac_addr, macaddr); 1356 element.vlan_tag = 0; 1357 /* ...and some firmware does it this way. */ 1358 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1359 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1360 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1361 } 1362 1363 /** 1364 * i40e_add_filter - Add a mac/vlan filter to the VSI 1365 * @vsi: the VSI to be searched 1366 * @macaddr: the MAC address 1367 * @vlan: the vlan 1368 * 1369 * Returns ptr to the filter object or NULL when no memory available. 1370 * 1371 * NOTE: This function is expected to be called with mac_filter_hash_lock 1372 * being held. 1373 **/ 1374 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1375 const u8 *macaddr, s16 vlan) 1376 { 1377 struct i40e_mac_filter *f; 1378 u64 key; 1379 1380 if (!vsi || !macaddr) 1381 return NULL; 1382 1383 f = i40e_find_filter(vsi, macaddr, vlan); 1384 if (!f) { 1385 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1386 if (!f) 1387 return NULL; 1388 1389 /* Update the boolean indicating if we need to function in 1390 * VLAN mode. 1391 */ 1392 if (vlan >= 0) 1393 vsi->has_vlan_filter = true; 1394 1395 ether_addr_copy(f->macaddr, macaddr); 1396 f->vlan = vlan; 1397 f->state = I40E_FILTER_NEW; 1398 INIT_HLIST_NODE(&f->hlist); 1399 1400 key = i40e_addr_to_hkey(macaddr); 1401 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1402 1403 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1404 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1405 } 1406 1407 /* If we're asked to add a filter that has been marked for removal, it 1408 * is safe to simply restore it to active state. __i40e_del_filter 1409 * will have simply deleted any filters which were previously marked 1410 * NEW or FAILED, so if it is currently marked REMOVE it must have 1411 * previously been ACTIVE. Since we haven't yet run the sync filters 1412 * task, just restore this filter to the ACTIVE state so that the 1413 * sync task leaves it in place 1414 */ 1415 if (f->state == I40E_FILTER_REMOVE) 1416 f->state = I40E_FILTER_ACTIVE; 1417 1418 return f; 1419 } 1420 1421 /** 1422 * __i40e_del_filter - Remove a specific filter from the VSI 1423 * @vsi: VSI to remove from 1424 * @f: the filter to remove from the list 1425 * 1426 * This function should be called instead of i40e_del_filter only if you know 1427 * the exact filter you will remove already, such as via i40e_find_filter or 1428 * i40e_find_mac. 1429 * 1430 * NOTE: This function is expected to be called with mac_filter_hash_lock 1431 * being held. 1432 * ANOTHER NOTE: This function MUST be called from within the context of 1433 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1434 * instead of list_for_each_entry(). 1435 **/ 1436 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1437 { 1438 if (!f) 1439 return; 1440 1441 /* If the filter was never added to firmware then we can just delete it 1442 * directly and we don't want to set the status to remove or else an 1443 * admin queue command will unnecessarily fire. 1444 */ 1445 if ((f->state == I40E_FILTER_FAILED) || 1446 (f->state == I40E_FILTER_NEW)) { 1447 hash_del(&f->hlist); 1448 kfree(f); 1449 } else { 1450 f->state = I40E_FILTER_REMOVE; 1451 } 1452 1453 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1454 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1455 } 1456 1457 /** 1458 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1459 * @vsi: the VSI to be searched 1460 * @macaddr: the MAC address 1461 * @vlan: the VLAN 1462 * 1463 * NOTE: This function is expected to be called with mac_filter_hash_lock 1464 * being held. 1465 * ANOTHER NOTE: This function MUST be called from within the context of 1466 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1467 * instead of list_for_each_entry(). 1468 **/ 1469 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1470 { 1471 struct i40e_mac_filter *f; 1472 1473 if (!vsi || !macaddr) 1474 return; 1475 1476 f = i40e_find_filter(vsi, macaddr, vlan); 1477 __i40e_del_filter(vsi, f); 1478 } 1479 1480 /** 1481 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1482 * @vsi: the VSI to be searched 1483 * @macaddr: the mac address to be filtered 1484 * 1485 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1486 * go through all the macvlan filters and add a macvlan filter for each 1487 * unique vlan that already exists. If a PVID has been assigned, instead only 1488 * add the macaddr to that VLAN. 1489 * 1490 * Returns last filter added on success, else NULL 1491 **/ 1492 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1493 const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f, *add = NULL; 1496 struct hlist_node *h; 1497 int bkt; 1498 1499 if (vsi->info.pvid) 1500 return i40e_add_filter(vsi, macaddr, 1501 le16_to_cpu(vsi->info.pvid)); 1502 1503 if (!i40e_is_vsi_in_vlan(vsi)) 1504 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1505 1506 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1507 if (f->state == I40E_FILTER_REMOVE) 1508 continue; 1509 add = i40e_add_filter(vsi, macaddr, f->vlan); 1510 if (!add) 1511 return NULL; 1512 } 1513 1514 return add; 1515 } 1516 1517 /** 1518 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1519 * @vsi: the VSI to be searched 1520 * @macaddr: the mac address to be removed 1521 * 1522 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1523 * associated with. 1524 * 1525 * Returns 0 for success, or error 1526 **/ 1527 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1528 { 1529 struct i40e_mac_filter *f; 1530 struct hlist_node *h; 1531 bool found = false; 1532 int bkt; 1533 1534 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1535 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1536 if (ether_addr_equal(macaddr, f->macaddr)) { 1537 __i40e_del_filter(vsi, f); 1538 found = true; 1539 } 1540 } 1541 1542 if (found) 1543 return 0; 1544 else 1545 return -ENOENT; 1546 } 1547 1548 /** 1549 * i40e_set_mac - NDO callback to set mac address 1550 * @netdev: network interface device structure 1551 * @p: pointer to an address structure 1552 * 1553 * Returns 0 on success, negative on failure 1554 **/ 1555 static int i40e_set_mac(struct net_device *netdev, void *p) 1556 { 1557 struct i40e_netdev_priv *np = netdev_priv(netdev); 1558 struct i40e_vsi *vsi = np->vsi; 1559 struct i40e_pf *pf = vsi->back; 1560 struct i40e_hw *hw = &pf->hw; 1561 struct sockaddr *addr = p; 1562 1563 if (!is_valid_ether_addr(addr->sa_data)) 1564 return -EADDRNOTAVAIL; 1565 1566 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1567 netdev_info(netdev, "already using mac address %pM\n", 1568 addr->sa_data); 1569 return 0; 1570 } 1571 1572 if (test_bit(__I40E_DOWN, pf->state) || 1573 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1574 return -EADDRNOTAVAIL; 1575 1576 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1577 netdev_info(netdev, "returning to hw mac address %pM\n", 1578 hw->mac.addr); 1579 else 1580 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1581 1582 /* Copy the address first, so that we avoid a possible race with 1583 * .set_rx_mode(). 1584 * - Remove old address from MAC filter 1585 * - Copy new address 1586 * - Add new address to MAC filter 1587 */ 1588 spin_lock_bh(&vsi->mac_filter_hash_lock); 1589 i40e_del_mac_filter(vsi, netdev->dev_addr); 1590 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1591 i40e_add_mac_filter(vsi, netdev->dev_addr); 1592 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1593 1594 if (vsi->type == I40E_VSI_MAIN) { 1595 i40e_status ret; 1596 1597 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1598 addr->sa_data, NULL); 1599 if (ret) 1600 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1601 i40e_stat_str(hw, ret), 1602 i40e_aq_str(hw, hw->aq.asq_last_status)); 1603 } 1604 1605 /* schedule our worker thread which will take care of 1606 * applying the new filter changes 1607 */ 1608 i40e_service_event_schedule(pf); 1609 return 0; 1610 } 1611 1612 /** 1613 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1614 * @vsi: vsi structure 1615 * @seed: RSS hash seed 1616 * @lut: pointer to lookup table of lut_size 1617 * @lut_size: size of the lookup table 1618 **/ 1619 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1620 u8 *lut, u16 lut_size) 1621 { 1622 struct i40e_pf *pf = vsi->back; 1623 struct i40e_hw *hw = &pf->hw; 1624 int ret = 0; 1625 1626 if (seed) { 1627 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1628 (struct i40e_aqc_get_set_rss_key_data *)seed; 1629 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1630 if (ret) { 1631 dev_info(&pf->pdev->dev, 1632 "Cannot set RSS key, err %s aq_err %s\n", 1633 i40e_stat_str(hw, ret), 1634 i40e_aq_str(hw, hw->aq.asq_last_status)); 1635 return ret; 1636 } 1637 } 1638 if (lut) { 1639 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1640 1641 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1642 if (ret) { 1643 dev_info(&pf->pdev->dev, 1644 "Cannot set RSS lut, err %s aq_err %s\n", 1645 i40e_stat_str(hw, ret), 1646 i40e_aq_str(hw, hw->aq.asq_last_status)); 1647 return ret; 1648 } 1649 } 1650 return ret; 1651 } 1652 1653 /** 1654 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1655 * @vsi: VSI structure 1656 **/ 1657 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1658 { 1659 struct i40e_pf *pf = vsi->back; 1660 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1661 u8 *lut; 1662 int ret; 1663 1664 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1665 return 0; 1666 if (!vsi->rss_size) 1667 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1668 vsi->num_queue_pairs); 1669 if (!vsi->rss_size) 1670 return -EINVAL; 1671 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1672 if (!lut) 1673 return -ENOMEM; 1674 1675 /* Use the user configured hash keys and lookup table if there is one, 1676 * otherwise use default 1677 */ 1678 if (vsi->rss_lut_user) 1679 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1680 else 1681 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1682 if (vsi->rss_hkey_user) 1683 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1684 else 1685 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1686 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1687 kfree(lut); 1688 return ret; 1689 } 1690 1691 /** 1692 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1693 * @vsi: the VSI being configured, 1694 * @ctxt: VSI context structure 1695 * @enabled_tc: number of traffic classes to enable 1696 * 1697 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1698 **/ 1699 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1700 struct i40e_vsi_context *ctxt, 1701 u8 enabled_tc) 1702 { 1703 u16 qcount = 0, max_qcount, qmap, sections = 0; 1704 int i, override_q, pow, num_qps, ret; 1705 u8 netdev_tc = 0, offset = 0; 1706 1707 if (vsi->type != I40E_VSI_MAIN) 1708 return -EINVAL; 1709 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1710 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1711 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1712 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1713 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1714 1715 /* find the next higher power-of-2 of num queue pairs */ 1716 pow = ilog2(num_qps); 1717 if (!is_power_of_2(num_qps)) 1718 pow++; 1719 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1720 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1721 1722 /* Setup queue offset/count for all TCs for given VSI */ 1723 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1725 /* See if the given TC is enabled for the given VSI */ 1726 if (vsi->tc_config.enabled_tc & BIT(i)) { 1727 offset = vsi->mqprio_qopt.qopt.offset[i]; 1728 qcount = vsi->mqprio_qopt.qopt.count[i]; 1729 if (qcount > max_qcount) 1730 max_qcount = qcount; 1731 vsi->tc_config.tc_info[i].qoffset = offset; 1732 vsi->tc_config.tc_info[i].qcount = qcount; 1733 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1734 } else { 1735 /* TC is not enabled so set the offset to 1736 * default queue and allocate one queue 1737 * for the given TC. 1738 */ 1739 vsi->tc_config.tc_info[i].qoffset = 0; 1740 vsi->tc_config.tc_info[i].qcount = 1; 1741 vsi->tc_config.tc_info[i].netdev_tc = 0; 1742 } 1743 } 1744 1745 /* Set actual Tx/Rx queue pairs */ 1746 vsi->num_queue_pairs = offset + qcount; 1747 1748 /* Setup queue TC[0].qmap for given VSI context */ 1749 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1750 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1751 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1752 ctxt->info.valid_sections |= cpu_to_le16(sections); 1753 1754 /* Reconfigure RSS for main VSI with max queue count */ 1755 vsi->rss_size = max_qcount; 1756 ret = i40e_vsi_config_rss(vsi); 1757 if (ret) { 1758 dev_info(&vsi->back->pdev->dev, 1759 "Failed to reconfig rss for num_queues (%u)\n", 1760 max_qcount); 1761 return ret; 1762 } 1763 vsi->reconfig_rss = true; 1764 dev_dbg(&vsi->back->pdev->dev, 1765 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1766 1767 /* Find queue count available for channel VSIs and starting offset 1768 * for channel VSIs 1769 */ 1770 override_q = vsi->mqprio_qopt.qopt.count[0]; 1771 if (override_q && override_q < vsi->num_queue_pairs) { 1772 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1773 vsi->next_base_queue = override_q; 1774 } 1775 return 0; 1776 } 1777 1778 /** 1779 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1780 * @vsi: the VSI being setup 1781 * @ctxt: VSI context structure 1782 * @enabled_tc: Enabled TCs bitmap 1783 * @is_add: True if called before Add VSI 1784 * 1785 * Setup VSI queue mapping for enabled traffic classes. 1786 **/ 1787 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1788 struct i40e_vsi_context *ctxt, 1789 u8 enabled_tc, 1790 bool is_add) 1791 { 1792 struct i40e_pf *pf = vsi->back; 1793 u16 sections = 0; 1794 u8 netdev_tc = 0; 1795 u16 numtc = 1; 1796 u16 qcount; 1797 u8 offset; 1798 u16 qmap; 1799 int i; 1800 u16 num_tc_qps = 0; 1801 1802 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1803 offset = 0; 1804 1805 /* Number of queues per enabled TC */ 1806 num_tc_qps = vsi->alloc_queue_pairs; 1807 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1808 /* Find numtc from enabled TC bitmap */ 1809 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1810 if (enabled_tc & BIT(i)) /* TC is enabled */ 1811 numtc++; 1812 } 1813 if (!numtc) { 1814 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1815 numtc = 1; 1816 } 1817 num_tc_qps = num_tc_qps / numtc; 1818 num_tc_qps = min_t(int, num_tc_qps, 1819 i40e_pf_get_max_q_per_tc(pf)); 1820 } 1821 1822 vsi->tc_config.numtc = numtc; 1823 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1824 1825 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1826 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1827 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1828 1829 /* Setup queue offset/count for all TCs for given VSI */ 1830 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1831 /* See if the given TC is enabled for the given VSI */ 1832 if (vsi->tc_config.enabled_tc & BIT(i)) { 1833 /* TC is enabled */ 1834 int pow, num_qps; 1835 1836 switch (vsi->type) { 1837 case I40E_VSI_MAIN: 1838 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1839 I40E_FLAG_FD_ATR_ENABLED)) || 1840 vsi->tc_config.enabled_tc != 1) { 1841 qcount = min_t(int, pf->alloc_rss_size, 1842 num_tc_qps); 1843 break; 1844 } 1845 fallthrough; 1846 case I40E_VSI_FDIR: 1847 case I40E_VSI_SRIOV: 1848 case I40E_VSI_VMDQ2: 1849 default: 1850 qcount = num_tc_qps; 1851 WARN_ON(i != 0); 1852 break; 1853 } 1854 vsi->tc_config.tc_info[i].qoffset = offset; 1855 vsi->tc_config.tc_info[i].qcount = qcount; 1856 1857 /* find the next higher power-of-2 of num queue pairs */ 1858 num_qps = qcount; 1859 pow = 0; 1860 while (num_qps && (BIT_ULL(pow) < qcount)) { 1861 pow++; 1862 num_qps >>= 1; 1863 } 1864 1865 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1866 qmap = 1867 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1868 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1869 1870 offset += qcount; 1871 } else { 1872 /* TC is not enabled so set the offset to 1873 * default queue and allocate one queue 1874 * for the given TC. 1875 */ 1876 vsi->tc_config.tc_info[i].qoffset = 0; 1877 vsi->tc_config.tc_info[i].qcount = 1; 1878 vsi->tc_config.tc_info[i].netdev_tc = 0; 1879 1880 qmap = 0; 1881 } 1882 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1883 } 1884 1885 /* Set actual Tx/Rx queue pairs */ 1886 vsi->num_queue_pairs = offset; 1887 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1888 if (vsi->req_queue_pairs > 0) 1889 vsi->num_queue_pairs = vsi->req_queue_pairs; 1890 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1891 vsi->num_queue_pairs = pf->num_lan_msix; 1892 } 1893 1894 /* Scheduler section valid can only be set for ADD VSI */ 1895 if (is_add) { 1896 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1897 1898 ctxt->info.up_enable_bits = enabled_tc; 1899 } 1900 if (vsi->type == I40E_VSI_SRIOV) { 1901 ctxt->info.mapping_flags |= 1902 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1903 for (i = 0; i < vsi->num_queue_pairs; i++) 1904 ctxt->info.queue_mapping[i] = 1905 cpu_to_le16(vsi->base_queue + i); 1906 } else { 1907 ctxt->info.mapping_flags |= 1908 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1909 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1910 } 1911 ctxt->info.valid_sections |= cpu_to_le16(sections); 1912 } 1913 1914 /** 1915 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1916 * @netdev: the netdevice 1917 * @addr: address to add 1918 * 1919 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1920 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1921 */ 1922 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1923 { 1924 struct i40e_netdev_priv *np = netdev_priv(netdev); 1925 struct i40e_vsi *vsi = np->vsi; 1926 1927 if (i40e_add_mac_filter(vsi, addr)) 1928 return 0; 1929 else 1930 return -ENOMEM; 1931 } 1932 1933 /** 1934 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1935 * @netdev: the netdevice 1936 * @addr: address to add 1937 * 1938 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1939 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1940 */ 1941 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1942 { 1943 struct i40e_netdev_priv *np = netdev_priv(netdev); 1944 struct i40e_vsi *vsi = np->vsi; 1945 1946 /* Under some circumstances, we might receive a request to delete 1947 * our own device address from our uc list. Because we store the 1948 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1949 * such requests and not delete our device address from this list. 1950 */ 1951 if (ether_addr_equal(addr, netdev->dev_addr)) 1952 return 0; 1953 1954 i40e_del_mac_filter(vsi, addr); 1955 1956 return 0; 1957 } 1958 1959 /** 1960 * i40e_set_rx_mode - NDO callback to set the netdev filters 1961 * @netdev: network interface device structure 1962 **/ 1963 static void i40e_set_rx_mode(struct net_device *netdev) 1964 { 1965 struct i40e_netdev_priv *np = netdev_priv(netdev); 1966 struct i40e_vsi *vsi = np->vsi; 1967 1968 spin_lock_bh(&vsi->mac_filter_hash_lock); 1969 1970 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1971 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1972 1973 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1974 1975 /* check for other flag changes */ 1976 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1977 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1978 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1979 } 1980 } 1981 1982 /** 1983 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1984 * @vsi: Pointer to VSI struct 1985 * @from: Pointer to list which contains MAC filter entries - changes to 1986 * those entries needs to be undone. 1987 * 1988 * MAC filter entries from this list were slated for deletion. 1989 **/ 1990 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1991 struct hlist_head *from) 1992 { 1993 struct i40e_mac_filter *f; 1994 struct hlist_node *h; 1995 1996 hlist_for_each_entry_safe(f, h, from, hlist) { 1997 u64 key = i40e_addr_to_hkey(f->macaddr); 1998 1999 /* Move the element back into MAC filter list*/ 2000 hlist_del(&f->hlist); 2001 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2002 } 2003 } 2004 2005 /** 2006 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2007 * @vsi: Pointer to vsi struct 2008 * @from: Pointer to list which contains MAC filter entries - changes to 2009 * those entries needs to be undone. 2010 * 2011 * MAC filter entries from this list were slated for addition. 2012 **/ 2013 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2014 struct hlist_head *from) 2015 { 2016 struct i40e_new_mac_filter *new; 2017 struct hlist_node *h; 2018 2019 hlist_for_each_entry_safe(new, h, from, hlist) { 2020 /* We can simply free the wrapper structure */ 2021 hlist_del(&new->hlist); 2022 kfree(new); 2023 } 2024 } 2025 2026 /** 2027 * i40e_next_filter - Get the next non-broadcast filter from a list 2028 * @next: pointer to filter in list 2029 * 2030 * Returns the next non-broadcast filter in the list. Required so that we 2031 * ignore broadcast filters within the list, since these are not handled via 2032 * the normal firmware update path. 2033 */ 2034 static 2035 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2036 { 2037 hlist_for_each_entry_continue(next, hlist) { 2038 if (!is_broadcast_ether_addr(next->f->macaddr)) 2039 return next; 2040 } 2041 2042 return NULL; 2043 } 2044 2045 /** 2046 * i40e_update_filter_state - Update filter state based on return data 2047 * from firmware 2048 * @count: Number of filters added 2049 * @add_list: return data from fw 2050 * @add_head: pointer to first filter in current batch 2051 * 2052 * MAC filter entries from list were slated to be added to device. Returns 2053 * number of successful filters. Note that 0 does NOT mean success! 2054 **/ 2055 static int 2056 i40e_update_filter_state(int count, 2057 struct i40e_aqc_add_macvlan_element_data *add_list, 2058 struct i40e_new_mac_filter *add_head) 2059 { 2060 int retval = 0; 2061 int i; 2062 2063 for (i = 0; i < count; i++) { 2064 /* Always check status of each filter. We don't need to check 2065 * the firmware return status because we pre-set the filter 2066 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2067 * request to the adminq. Thus, if it no longer matches then 2068 * we know the filter is active. 2069 */ 2070 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2071 add_head->state = I40E_FILTER_FAILED; 2072 } else { 2073 add_head->state = I40E_FILTER_ACTIVE; 2074 retval++; 2075 } 2076 2077 add_head = i40e_next_filter(add_head); 2078 if (!add_head) 2079 break; 2080 } 2081 2082 return retval; 2083 } 2084 2085 /** 2086 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2087 * @vsi: ptr to the VSI 2088 * @vsi_name: name to display in messages 2089 * @list: the list of filters to send to firmware 2090 * @num_del: the number of filters to delete 2091 * @retval: Set to -EIO on failure to delete 2092 * 2093 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2094 * *retval instead of a return value so that success does not force ret_val to 2095 * be set to 0. This ensures that a sequence of calls to this function 2096 * preserve the previous value of *retval on successful delete. 2097 */ 2098 static 2099 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2100 struct i40e_aqc_remove_macvlan_element_data *list, 2101 int num_del, int *retval) 2102 { 2103 struct i40e_hw *hw = &vsi->back->hw; 2104 i40e_status aq_ret; 2105 int aq_err; 2106 2107 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2108 aq_err = hw->aq.asq_last_status; 2109 2110 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2111 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2112 *retval = -EIO; 2113 dev_info(&vsi->back->pdev->dev, 2114 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2115 vsi_name, i40e_stat_str(hw, aq_ret), 2116 i40e_aq_str(hw, aq_err)); 2117 } 2118 } 2119 2120 /** 2121 * i40e_aqc_add_filters - Request firmware to add a set of filters 2122 * @vsi: ptr to the VSI 2123 * @vsi_name: name to display in messages 2124 * @list: the list of filters to send to firmware 2125 * @add_head: Position in the add hlist 2126 * @num_add: the number of filters to add 2127 * 2128 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2129 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2130 * space for more filters. 2131 */ 2132 static 2133 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2134 struct i40e_aqc_add_macvlan_element_data *list, 2135 struct i40e_new_mac_filter *add_head, 2136 int num_add) 2137 { 2138 struct i40e_hw *hw = &vsi->back->hw; 2139 int aq_err, fcnt; 2140 2141 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2142 aq_err = hw->aq.asq_last_status; 2143 fcnt = i40e_update_filter_state(num_add, list, add_head); 2144 2145 if (fcnt != num_add) { 2146 if (vsi->type == I40E_VSI_MAIN) { 2147 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2148 dev_warn(&vsi->back->pdev->dev, 2149 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2150 i40e_aq_str(hw, aq_err), vsi_name); 2151 } else if (vsi->type == I40E_VSI_SRIOV || 2152 vsi->type == I40E_VSI_VMDQ1 || 2153 vsi->type == I40E_VSI_VMDQ2) { 2154 dev_warn(&vsi->back->pdev->dev, 2155 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2156 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2157 } else { 2158 dev_warn(&vsi->back->pdev->dev, 2159 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2160 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2161 } 2162 } 2163 } 2164 2165 /** 2166 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2167 * @vsi: pointer to the VSI 2168 * @vsi_name: the VSI name 2169 * @f: filter data 2170 * 2171 * This function sets or clears the promiscuous broadcast flags for VLAN 2172 * filters in order to properly receive broadcast frames. Assumes that only 2173 * broadcast filters are passed. 2174 * 2175 * Returns status indicating success or failure; 2176 **/ 2177 static i40e_status 2178 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2179 struct i40e_mac_filter *f) 2180 { 2181 bool enable = f->state == I40E_FILTER_NEW; 2182 struct i40e_hw *hw = &vsi->back->hw; 2183 i40e_status aq_ret; 2184 2185 if (f->vlan == I40E_VLAN_ANY) { 2186 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2187 vsi->seid, 2188 enable, 2189 NULL); 2190 } else { 2191 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2192 vsi->seid, 2193 enable, 2194 f->vlan, 2195 NULL); 2196 } 2197 2198 if (aq_ret) { 2199 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2200 dev_warn(&vsi->back->pdev->dev, 2201 "Error %s, forcing overflow promiscuous on %s\n", 2202 i40e_aq_str(hw, hw->aq.asq_last_status), 2203 vsi_name); 2204 } 2205 2206 return aq_ret; 2207 } 2208 2209 /** 2210 * i40e_set_promiscuous - set promiscuous mode 2211 * @pf: board private structure 2212 * @promisc: promisc on or off 2213 * 2214 * There are different ways of setting promiscuous mode on a PF depending on 2215 * what state/environment we're in. This identifies and sets it appropriately. 2216 * Returns 0 on success. 2217 **/ 2218 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2219 { 2220 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2221 struct i40e_hw *hw = &pf->hw; 2222 i40e_status aq_ret; 2223 2224 if (vsi->type == I40E_VSI_MAIN && 2225 pf->lan_veb != I40E_NO_VEB && 2226 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2227 /* set defport ON for Main VSI instead of true promisc 2228 * this way we will get all unicast/multicast and VLAN 2229 * promisc behavior but will not get VF or VMDq traffic 2230 * replicated on the Main VSI. 2231 */ 2232 if (promisc) 2233 aq_ret = i40e_aq_set_default_vsi(hw, 2234 vsi->seid, 2235 NULL); 2236 else 2237 aq_ret = i40e_aq_clear_default_vsi(hw, 2238 vsi->seid, 2239 NULL); 2240 if (aq_ret) { 2241 dev_info(&pf->pdev->dev, 2242 "Set default VSI failed, err %s, aq_err %s\n", 2243 i40e_stat_str(hw, aq_ret), 2244 i40e_aq_str(hw, hw->aq.asq_last_status)); 2245 } 2246 } else { 2247 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2248 hw, 2249 vsi->seid, 2250 promisc, NULL, 2251 true); 2252 if (aq_ret) { 2253 dev_info(&pf->pdev->dev, 2254 "set unicast promisc failed, err %s, aq_err %s\n", 2255 i40e_stat_str(hw, aq_ret), 2256 i40e_aq_str(hw, hw->aq.asq_last_status)); 2257 } 2258 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2259 hw, 2260 vsi->seid, 2261 promisc, NULL); 2262 if (aq_ret) { 2263 dev_info(&pf->pdev->dev, 2264 "set multicast promisc failed, err %s, aq_err %s\n", 2265 i40e_stat_str(hw, aq_ret), 2266 i40e_aq_str(hw, hw->aq.asq_last_status)); 2267 } 2268 } 2269 2270 if (!aq_ret) 2271 pf->cur_promisc = promisc; 2272 2273 return aq_ret; 2274 } 2275 2276 /** 2277 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2278 * @vsi: ptr to the VSI 2279 * 2280 * Push any outstanding VSI filter changes through the AdminQ. 2281 * 2282 * Returns 0 or error value 2283 **/ 2284 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2285 { 2286 struct hlist_head tmp_add_list, tmp_del_list; 2287 struct i40e_mac_filter *f; 2288 struct i40e_new_mac_filter *new, *add_head = NULL; 2289 struct i40e_hw *hw = &vsi->back->hw; 2290 bool old_overflow, new_overflow; 2291 unsigned int failed_filters = 0; 2292 unsigned int vlan_filters = 0; 2293 char vsi_name[16] = "PF"; 2294 int filter_list_len = 0; 2295 i40e_status aq_ret = 0; 2296 u32 changed_flags = 0; 2297 struct hlist_node *h; 2298 struct i40e_pf *pf; 2299 int num_add = 0; 2300 int num_del = 0; 2301 int retval = 0; 2302 u16 cmd_flags; 2303 int list_size; 2304 int bkt; 2305 2306 /* empty array typed pointers, kcalloc later */ 2307 struct i40e_aqc_add_macvlan_element_data *add_list; 2308 struct i40e_aqc_remove_macvlan_element_data *del_list; 2309 2310 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2311 usleep_range(1000, 2000); 2312 pf = vsi->back; 2313 2314 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2315 2316 if (vsi->netdev) { 2317 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2318 vsi->current_netdev_flags = vsi->netdev->flags; 2319 } 2320 2321 INIT_HLIST_HEAD(&tmp_add_list); 2322 INIT_HLIST_HEAD(&tmp_del_list); 2323 2324 if (vsi->type == I40E_VSI_SRIOV) 2325 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2326 else if (vsi->type != I40E_VSI_MAIN) 2327 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2328 2329 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2330 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2331 2332 spin_lock_bh(&vsi->mac_filter_hash_lock); 2333 /* Create a list of filters to delete. */ 2334 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2335 if (f->state == I40E_FILTER_REMOVE) { 2336 /* Move the element into temporary del_list */ 2337 hash_del(&f->hlist); 2338 hlist_add_head(&f->hlist, &tmp_del_list); 2339 2340 /* Avoid counting removed filters */ 2341 continue; 2342 } 2343 if (f->state == I40E_FILTER_NEW) { 2344 /* Create a temporary i40e_new_mac_filter */ 2345 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2346 if (!new) 2347 goto err_no_memory_locked; 2348 2349 /* Store pointer to the real filter */ 2350 new->f = f; 2351 new->state = f->state; 2352 2353 /* Add it to the hash list */ 2354 hlist_add_head(&new->hlist, &tmp_add_list); 2355 } 2356 2357 /* Count the number of active (current and new) VLAN 2358 * filters we have now. Does not count filters which 2359 * are marked for deletion. 2360 */ 2361 if (f->vlan > 0) 2362 vlan_filters++; 2363 } 2364 2365 retval = i40e_correct_mac_vlan_filters(vsi, 2366 &tmp_add_list, 2367 &tmp_del_list, 2368 vlan_filters); 2369 if (retval) 2370 goto err_no_memory_locked; 2371 2372 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2373 } 2374 2375 /* Now process 'del_list' outside the lock */ 2376 if (!hlist_empty(&tmp_del_list)) { 2377 filter_list_len = hw->aq.asq_buf_size / 2378 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2379 list_size = filter_list_len * 2380 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2381 del_list = kzalloc(list_size, GFP_ATOMIC); 2382 if (!del_list) 2383 goto err_no_memory; 2384 2385 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2386 cmd_flags = 0; 2387 2388 /* handle broadcast filters by updating the broadcast 2389 * promiscuous flag and release filter list. 2390 */ 2391 if (is_broadcast_ether_addr(f->macaddr)) { 2392 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2393 2394 hlist_del(&f->hlist); 2395 kfree(f); 2396 continue; 2397 } 2398 2399 /* add to delete list */ 2400 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2401 if (f->vlan == I40E_VLAN_ANY) { 2402 del_list[num_del].vlan_tag = 0; 2403 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2404 } else { 2405 del_list[num_del].vlan_tag = 2406 cpu_to_le16((u16)(f->vlan)); 2407 } 2408 2409 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2410 del_list[num_del].flags = cmd_flags; 2411 num_del++; 2412 2413 /* flush a full buffer */ 2414 if (num_del == filter_list_len) { 2415 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2416 num_del, &retval); 2417 memset(del_list, 0, list_size); 2418 num_del = 0; 2419 } 2420 /* Release memory for MAC filter entries which were 2421 * synced up with HW. 2422 */ 2423 hlist_del(&f->hlist); 2424 kfree(f); 2425 } 2426 2427 if (num_del) { 2428 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2429 num_del, &retval); 2430 } 2431 2432 kfree(del_list); 2433 del_list = NULL; 2434 } 2435 2436 if (!hlist_empty(&tmp_add_list)) { 2437 /* Do all the adds now. */ 2438 filter_list_len = hw->aq.asq_buf_size / 2439 sizeof(struct i40e_aqc_add_macvlan_element_data); 2440 list_size = filter_list_len * 2441 sizeof(struct i40e_aqc_add_macvlan_element_data); 2442 add_list = kzalloc(list_size, GFP_ATOMIC); 2443 if (!add_list) 2444 goto err_no_memory; 2445 2446 num_add = 0; 2447 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2448 /* handle broadcast filters by updating the broadcast 2449 * promiscuous flag instead of adding a MAC filter. 2450 */ 2451 if (is_broadcast_ether_addr(new->f->macaddr)) { 2452 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2453 new->f)) 2454 new->state = I40E_FILTER_FAILED; 2455 else 2456 new->state = I40E_FILTER_ACTIVE; 2457 continue; 2458 } 2459 2460 /* add to add array */ 2461 if (num_add == 0) 2462 add_head = new; 2463 cmd_flags = 0; 2464 ether_addr_copy(add_list[num_add].mac_addr, 2465 new->f->macaddr); 2466 if (new->f->vlan == I40E_VLAN_ANY) { 2467 add_list[num_add].vlan_tag = 0; 2468 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2469 } else { 2470 add_list[num_add].vlan_tag = 2471 cpu_to_le16((u16)(new->f->vlan)); 2472 } 2473 add_list[num_add].queue_number = 0; 2474 /* set invalid match method for later detection */ 2475 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2476 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2477 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2478 num_add++; 2479 2480 /* flush a full buffer */ 2481 if (num_add == filter_list_len) { 2482 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2483 add_head, num_add); 2484 memset(add_list, 0, list_size); 2485 num_add = 0; 2486 } 2487 } 2488 if (num_add) { 2489 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2490 num_add); 2491 } 2492 /* Now move all of the filters from the temp add list back to 2493 * the VSI's list. 2494 */ 2495 spin_lock_bh(&vsi->mac_filter_hash_lock); 2496 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2497 /* Only update the state if we're still NEW */ 2498 if (new->f->state == I40E_FILTER_NEW) 2499 new->f->state = new->state; 2500 hlist_del(&new->hlist); 2501 kfree(new); 2502 } 2503 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2504 kfree(add_list); 2505 add_list = NULL; 2506 } 2507 2508 /* Determine the number of active and failed filters. */ 2509 spin_lock_bh(&vsi->mac_filter_hash_lock); 2510 vsi->active_filters = 0; 2511 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2512 if (f->state == I40E_FILTER_ACTIVE) 2513 vsi->active_filters++; 2514 else if (f->state == I40E_FILTER_FAILED) 2515 failed_filters++; 2516 } 2517 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2518 2519 /* Check if we are able to exit overflow promiscuous mode. We can 2520 * safely exit if we didn't just enter, we no longer have any failed 2521 * filters, and we have reduced filters below the threshold value. 2522 */ 2523 if (old_overflow && !failed_filters && 2524 vsi->active_filters < vsi->promisc_threshold) { 2525 dev_info(&pf->pdev->dev, 2526 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2527 vsi_name); 2528 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2529 vsi->promisc_threshold = 0; 2530 } 2531 2532 /* if the VF is not trusted do not do promisc */ 2533 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2534 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2535 goto out; 2536 } 2537 2538 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2539 2540 /* If we are entering overflow promiscuous, we need to calculate a new 2541 * threshold for when we are safe to exit 2542 */ 2543 if (!old_overflow && new_overflow) 2544 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2545 2546 /* check for changes in promiscuous modes */ 2547 if (changed_flags & IFF_ALLMULTI) { 2548 bool cur_multipromisc; 2549 2550 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2551 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2552 vsi->seid, 2553 cur_multipromisc, 2554 NULL); 2555 if (aq_ret) { 2556 retval = i40e_aq_rc_to_posix(aq_ret, 2557 hw->aq.asq_last_status); 2558 dev_info(&pf->pdev->dev, 2559 "set multi promisc failed on %s, err %s aq_err %s\n", 2560 vsi_name, 2561 i40e_stat_str(hw, aq_ret), 2562 i40e_aq_str(hw, hw->aq.asq_last_status)); 2563 } else { 2564 dev_info(&pf->pdev->dev, "%s allmulti mode.\n", 2565 cur_multipromisc ? "entering" : "leaving"); 2566 } 2567 } 2568 2569 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2570 bool cur_promisc; 2571 2572 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2573 new_overflow); 2574 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2575 if (aq_ret) { 2576 retval = i40e_aq_rc_to_posix(aq_ret, 2577 hw->aq.asq_last_status); 2578 dev_info(&pf->pdev->dev, 2579 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2580 cur_promisc ? "on" : "off", 2581 vsi_name, 2582 i40e_stat_str(hw, aq_ret), 2583 i40e_aq_str(hw, hw->aq.asq_last_status)); 2584 } 2585 } 2586 out: 2587 /* if something went wrong then set the changed flag so we try again */ 2588 if (retval) 2589 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2592 return retval; 2593 2594 err_no_memory: 2595 /* Restore elements on the temporary add and delete lists */ 2596 spin_lock_bh(&vsi->mac_filter_hash_lock); 2597 err_no_memory_locked: 2598 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2599 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2600 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2601 2602 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2603 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2604 return -ENOMEM; 2605 } 2606 2607 /** 2608 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2609 * @pf: board private structure 2610 **/ 2611 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2612 { 2613 int v; 2614 2615 if (!pf) 2616 return; 2617 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2618 return; 2619 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2620 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2621 return; 2622 } 2623 2624 for (v = 0; v < pf->num_alloc_vsi; v++) { 2625 if (pf->vsi[v] && 2626 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2627 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2628 2629 if (ret) { 2630 /* come back and try again later */ 2631 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2632 pf->state); 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 /** 2640 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2641 * @vsi: the vsi 2642 **/ 2643 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2644 { 2645 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2646 return I40E_RXBUFFER_2048; 2647 else 2648 return I40E_RXBUFFER_3072; 2649 } 2650 2651 /** 2652 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2653 * @netdev: network interface device structure 2654 * @new_mtu: new value for maximum frame size 2655 * 2656 * Returns 0 on success, negative on failure 2657 **/ 2658 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2659 { 2660 struct i40e_netdev_priv *np = netdev_priv(netdev); 2661 struct i40e_vsi *vsi = np->vsi; 2662 struct i40e_pf *pf = vsi->back; 2663 2664 if (i40e_enabled_xdp_vsi(vsi)) { 2665 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2666 2667 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2668 return -EINVAL; 2669 } 2670 2671 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2672 netdev->mtu, new_mtu); 2673 netdev->mtu = new_mtu; 2674 if (netif_running(netdev)) 2675 i40e_vsi_reinit_locked(vsi); 2676 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2677 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2678 return 0; 2679 } 2680 2681 /** 2682 * i40e_ioctl - Access the hwtstamp interface 2683 * @netdev: network interface device structure 2684 * @ifr: interface request data 2685 * @cmd: ioctl command 2686 **/ 2687 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2688 { 2689 struct i40e_netdev_priv *np = netdev_priv(netdev); 2690 struct i40e_pf *pf = np->vsi->back; 2691 2692 switch (cmd) { 2693 case SIOCGHWTSTAMP: 2694 return i40e_ptp_get_ts_config(pf, ifr); 2695 case SIOCSHWTSTAMP: 2696 return i40e_ptp_set_ts_config(pf, ifr); 2697 default: 2698 return -EOPNOTSUPP; 2699 } 2700 } 2701 2702 /** 2703 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2704 * @vsi: the vsi being adjusted 2705 **/ 2706 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2707 { 2708 struct i40e_vsi_context ctxt; 2709 i40e_status ret; 2710 2711 /* Don't modify stripping options if a port VLAN is active */ 2712 if (vsi->info.pvid) 2713 return; 2714 2715 if ((vsi->info.valid_sections & 2716 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2717 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2718 return; /* already enabled */ 2719 2720 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2721 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2722 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2723 2724 ctxt.seid = vsi->seid; 2725 ctxt.info = vsi->info; 2726 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2727 if (ret) { 2728 dev_info(&vsi->back->pdev->dev, 2729 "update vlan stripping failed, err %s aq_err %s\n", 2730 i40e_stat_str(&vsi->back->hw, ret), 2731 i40e_aq_str(&vsi->back->hw, 2732 vsi->back->hw.aq.asq_last_status)); 2733 } 2734 } 2735 2736 /** 2737 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2738 * @vsi: the vsi being adjusted 2739 **/ 2740 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2741 { 2742 struct i40e_vsi_context ctxt; 2743 i40e_status ret; 2744 2745 /* Don't modify stripping options if a port VLAN is active */ 2746 if (vsi->info.pvid) 2747 return; 2748 2749 if ((vsi->info.valid_sections & 2750 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2751 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2752 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2753 return; /* already disabled */ 2754 2755 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2756 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2757 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2758 2759 ctxt.seid = vsi->seid; 2760 ctxt.info = vsi->info; 2761 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2762 if (ret) { 2763 dev_info(&vsi->back->pdev->dev, 2764 "update vlan stripping failed, err %s aq_err %s\n", 2765 i40e_stat_str(&vsi->back->hw, ret), 2766 i40e_aq_str(&vsi->back->hw, 2767 vsi->back->hw.aq.asq_last_status)); 2768 } 2769 } 2770 2771 /** 2772 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2773 * @vsi: the vsi being configured 2774 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2775 * 2776 * This is a helper function for adding a new MAC/VLAN filter with the 2777 * specified VLAN for each existing MAC address already in the hash table. 2778 * This function does *not* perform any accounting to update filters based on 2779 * VLAN mode. 2780 * 2781 * NOTE: this function expects to be called while under the 2782 * mac_filter_hash_lock 2783 **/ 2784 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2785 { 2786 struct i40e_mac_filter *f, *add_f; 2787 struct hlist_node *h; 2788 int bkt; 2789 2790 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2791 if (f->state == I40E_FILTER_REMOVE) 2792 continue; 2793 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2794 if (!add_f) { 2795 dev_info(&vsi->back->pdev->dev, 2796 "Could not add vlan filter %d for %pM\n", 2797 vid, f->macaddr); 2798 return -ENOMEM; 2799 } 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be added 2809 **/ 2810 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 int err; 2813 2814 if (vsi->info.pvid) 2815 return -EINVAL; 2816 2817 /* The network stack will attempt to add VID=0, with the intention to 2818 * receive priority tagged packets with a VLAN of 0. Our HW receives 2819 * these packets by default when configured to receive untagged 2820 * packets, so we don't need to add a filter for this case. 2821 * Additionally, HW interprets adding a VID=0 filter as meaning to 2822 * receive *only* tagged traffic and stops receiving untagged traffic. 2823 * Thus, we do not want to actually add a filter for VID=0 2824 */ 2825 if (!vid) 2826 return 0; 2827 2828 /* Locked once because all functions invoked below iterates list*/ 2829 spin_lock_bh(&vsi->mac_filter_hash_lock); 2830 err = i40e_add_vlan_all_mac(vsi, vid); 2831 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2832 if (err) 2833 return err; 2834 2835 /* schedule our worker thread which will take care of 2836 * applying the new filter changes 2837 */ 2838 i40e_service_event_schedule(vsi->back); 2839 return 0; 2840 } 2841 2842 /** 2843 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2844 * @vsi: the vsi being configured 2845 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2846 * 2847 * This function should be used to remove all VLAN filters which match the 2848 * given VID. It does not schedule the service event and does not take the 2849 * mac_filter_hash_lock so it may be combined with other operations under 2850 * a single invocation of the mac_filter_hash_lock. 2851 * 2852 * NOTE: this function expects to be called while under the 2853 * mac_filter_hash_lock 2854 */ 2855 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2856 { 2857 struct i40e_mac_filter *f; 2858 struct hlist_node *h; 2859 int bkt; 2860 2861 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2862 if (f->vlan == vid) 2863 __i40e_del_filter(vsi, f); 2864 } 2865 } 2866 2867 /** 2868 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2869 * @vsi: the VSI being configured 2870 * @vid: VLAN id to be removed 2871 **/ 2872 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2873 { 2874 if (!vid || vsi->info.pvid) 2875 return; 2876 2877 spin_lock_bh(&vsi->mac_filter_hash_lock); 2878 i40e_rm_vlan_all_mac(vsi, vid); 2879 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2880 2881 /* schedule our worker thread which will take care of 2882 * applying the new filter changes 2883 */ 2884 i40e_service_event_schedule(vsi->back); 2885 } 2886 2887 /** 2888 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2889 * @netdev: network interface to be adjusted 2890 * @proto: unused protocol value 2891 * @vid: vlan id to be added 2892 * 2893 * net_device_ops implementation for adding vlan ids 2894 **/ 2895 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2896 __always_unused __be16 proto, u16 vid) 2897 { 2898 struct i40e_netdev_priv *np = netdev_priv(netdev); 2899 struct i40e_vsi *vsi = np->vsi; 2900 int ret = 0; 2901 2902 if (vid >= VLAN_N_VID) 2903 return -EINVAL; 2904 2905 ret = i40e_vsi_add_vlan(vsi, vid); 2906 if (!ret) 2907 set_bit(vid, vsi->active_vlans); 2908 2909 return ret; 2910 } 2911 2912 /** 2913 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2914 * @netdev: network interface to be adjusted 2915 * @proto: unused protocol value 2916 * @vid: vlan id to be added 2917 **/ 2918 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2919 __always_unused __be16 proto, u16 vid) 2920 { 2921 struct i40e_netdev_priv *np = netdev_priv(netdev); 2922 struct i40e_vsi *vsi = np->vsi; 2923 2924 if (vid >= VLAN_N_VID) 2925 return; 2926 set_bit(vid, vsi->active_vlans); 2927 } 2928 2929 /** 2930 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2931 * @netdev: network interface to be adjusted 2932 * @proto: unused protocol value 2933 * @vid: vlan id to be removed 2934 * 2935 * net_device_ops implementation for removing vlan ids 2936 **/ 2937 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2938 __always_unused __be16 proto, u16 vid) 2939 { 2940 struct i40e_netdev_priv *np = netdev_priv(netdev); 2941 struct i40e_vsi *vsi = np->vsi; 2942 2943 /* return code is ignored as there is nothing a user 2944 * can do about failure to remove and a log message was 2945 * already printed from the other function 2946 */ 2947 i40e_vsi_kill_vlan(vsi, vid); 2948 2949 clear_bit(vid, vsi->active_vlans); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2956 * @vsi: the vsi being brought back up 2957 **/ 2958 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2959 { 2960 u16 vid; 2961 2962 if (!vsi->netdev) 2963 return; 2964 2965 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2966 i40e_vlan_stripping_enable(vsi); 2967 else 2968 i40e_vlan_stripping_disable(vsi); 2969 2970 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2971 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2972 vid); 2973 } 2974 2975 /** 2976 * i40e_vsi_add_pvid - Add pvid for the VSI 2977 * @vsi: the vsi being adjusted 2978 * @vid: the vlan id to set as a PVID 2979 **/ 2980 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2981 { 2982 struct i40e_vsi_context ctxt; 2983 i40e_status ret; 2984 2985 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2986 vsi->info.pvid = cpu_to_le16(vid); 2987 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2988 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2989 I40E_AQ_VSI_PVLAN_EMOD_STR; 2990 2991 ctxt.seid = vsi->seid; 2992 ctxt.info = vsi->info; 2993 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2994 if (ret) { 2995 dev_info(&vsi->back->pdev->dev, 2996 "add pvid failed, err %s aq_err %s\n", 2997 i40e_stat_str(&vsi->back->hw, ret), 2998 i40e_aq_str(&vsi->back->hw, 2999 vsi->back->hw.aq.asq_last_status)); 3000 return -ENOENT; 3001 } 3002 3003 return 0; 3004 } 3005 3006 /** 3007 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3008 * @vsi: the vsi being adjusted 3009 * 3010 * Just use the vlan_rx_register() service to put it back to normal 3011 **/ 3012 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3013 { 3014 vsi->info.pvid = 0; 3015 3016 i40e_vlan_stripping_disable(vsi); 3017 } 3018 3019 /** 3020 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3021 * @vsi: ptr to the VSI 3022 * 3023 * If this function returns with an error, then it's possible one or 3024 * more of the rings is populated (while the rest are not). It is the 3025 * callers duty to clean those orphaned rings. 3026 * 3027 * Return 0 on success, negative on failure 3028 **/ 3029 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3030 { 3031 int i, err = 0; 3032 3033 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3034 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3035 3036 if (!i40e_enabled_xdp_vsi(vsi)) 3037 return err; 3038 3039 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3040 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3041 3042 return err; 3043 } 3044 3045 /** 3046 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3047 * @vsi: ptr to the VSI 3048 * 3049 * Free VSI's transmit software resources 3050 **/ 3051 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3052 { 3053 int i; 3054 3055 if (vsi->tx_rings) { 3056 for (i = 0; i < vsi->num_queue_pairs; i++) 3057 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3058 i40e_free_tx_resources(vsi->tx_rings[i]); 3059 } 3060 3061 if (vsi->xdp_rings) { 3062 for (i = 0; i < vsi->num_queue_pairs; i++) 3063 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3064 i40e_free_tx_resources(vsi->xdp_rings[i]); 3065 } 3066 } 3067 3068 /** 3069 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3070 * @vsi: ptr to the VSI 3071 * 3072 * If this function returns with an error, then it's possible one or 3073 * more of the rings is populated (while the rest are not). It is the 3074 * callers duty to clean those orphaned rings. 3075 * 3076 * Return 0 on success, negative on failure 3077 **/ 3078 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3079 { 3080 int i, err = 0; 3081 3082 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3083 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3084 return err; 3085 } 3086 3087 /** 3088 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3089 * @vsi: ptr to the VSI 3090 * 3091 * Free all receive software resources 3092 **/ 3093 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3094 { 3095 int i; 3096 3097 if (!vsi->rx_rings) 3098 return; 3099 3100 for (i = 0; i < vsi->num_queue_pairs; i++) 3101 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3102 i40e_free_rx_resources(vsi->rx_rings[i]); 3103 } 3104 3105 /** 3106 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3107 * @ring: The Tx ring to configure 3108 * 3109 * This enables/disables XPS for a given Tx descriptor ring 3110 * based on the TCs enabled for the VSI that ring belongs to. 3111 **/ 3112 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3113 { 3114 int cpu; 3115 3116 if (!ring->q_vector || !ring->netdev || ring->ch) 3117 return; 3118 3119 /* We only initialize XPS once, so as not to overwrite user settings */ 3120 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3121 return; 3122 3123 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3124 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3125 ring->queue_index); 3126 } 3127 3128 /** 3129 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3130 * @ring: The Tx or Rx ring 3131 * 3132 * Returns the AF_XDP buffer pool or NULL. 3133 **/ 3134 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3135 { 3136 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3137 int qid = ring->queue_index; 3138 3139 if (ring_is_xdp(ring)) 3140 qid -= ring->vsi->alloc_queue_pairs; 3141 3142 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3143 return NULL; 3144 3145 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3146 } 3147 3148 /** 3149 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3150 * @ring: The Tx ring to configure 3151 * 3152 * Configure the Tx descriptor ring in the HMC context. 3153 **/ 3154 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3155 { 3156 struct i40e_vsi *vsi = ring->vsi; 3157 u16 pf_q = vsi->base_queue + ring->queue_index; 3158 struct i40e_hw *hw = &vsi->back->hw; 3159 struct i40e_hmc_obj_txq tx_ctx; 3160 i40e_status err = 0; 3161 u32 qtx_ctl = 0; 3162 3163 if (ring_is_xdp(ring)) 3164 ring->xsk_pool = i40e_xsk_pool(ring); 3165 3166 /* some ATR related tx ring init */ 3167 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3168 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3169 ring->atr_count = 0; 3170 } else { 3171 ring->atr_sample_rate = 0; 3172 } 3173 3174 /* configure XPS */ 3175 i40e_config_xps_tx_ring(ring); 3176 3177 /* clear the context structure first */ 3178 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3179 3180 tx_ctx.new_context = 1; 3181 tx_ctx.base = (ring->dma / 128); 3182 tx_ctx.qlen = ring->count; 3183 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3184 I40E_FLAG_FD_ATR_ENABLED)); 3185 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3186 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3187 if (vsi->type != I40E_VSI_FDIR) 3188 tx_ctx.head_wb_ena = 1; 3189 tx_ctx.head_wb_addr = ring->dma + 3190 (ring->count * sizeof(struct i40e_tx_desc)); 3191 3192 /* As part of VSI creation/update, FW allocates certain 3193 * Tx arbitration queue sets for each TC enabled for 3194 * the VSI. The FW returns the handles to these queue 3195 * sets as part of the response buffer to Add VSI, 3196 * Update VSI, etc. AQ commands. It is expected that 3197 * these queue set handles be associated with the Tx 3198 * queues by the driver as part of the TX queue context 3199 * initialization. This has to be done regardless of 3200 * DCB as by default everything is mapped to TC0. 3201 */ 3202 3203 if (ring->ch) 3204 tx_ctx.rdylist = 3205 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3206 3207 else 3208 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3209 3210 tx_ctx.rdylist_act = 0; 3211 3212 /* clear the context in the HMC */ 3213 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3214 if (err) { 3215 dev_info(&vsi->back->pdev->dev, 3216 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3217 ring->queue_index, pf_q, err); 3218 return -ENOMEM; 3219 } 3220 3221 /* set the context in the HMC */ 3222 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3223 if (err) { 3224 dev_info(&vsi->back->pdev->dev, 3225 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3226 ring->queue_index, pf_q, err); 3227 return -ENOMEM; 3228 } 3229 3230 /* Now associate this queue with this PCI function */ 3231 if (ring->ch) { 3232 if (ring->ch->type == I40E_VSI_VMDQ2) 3233 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3234 else 3235 return -EINVAL; 3236 3237 qtx_ctl |= (ring->ch->vsi_number << 3238 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3239 I40E_QTX_CTL_VFVM_INDX_MASK; 3240 } else { 3241 if (vsi->type == I40E_VSI_VMDQ2) { 3242 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3243 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3244 I40E_QTX_CTL_VFVM_INDX_MASK; 3245 } else { 3246 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3247 } 3248 } 3249 3250 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3251 I40E_QTX_CTL_PF_INDX_MASK); 3252 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3253 i40e_flush(hw); 3254 3255 /* cache tail off for easier writes later */ 3256 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * i40e_rx_offset - Return expected offset into page to access data 3263 * @rx_ring: Ring we are requesting offset of 3264 * 3265 * Returns the offset value for ring into the data buffer. 3266 */ 3267 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3268 { 3269 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3270 } 3271 3272 /** 3273 * i40e_configure_rx_ring - Configure a receive ring context 3274 * @ring: The Rx ring to configure 3275 * 3276 * Configure the Rx descriptor ring in the HMC context. 3277 **/ 3278 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3279 { 3280 struct i40e_vsi *vsi = ring->vsi; 3281 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3282 u16 pf_q = vsi->base_queue + ring->queue_index; 3283 struct i40e_hw *hw = &vsi->back->hw; 3284 struct i40e_hmc_obj_rxq rx_ctx; 3285 i40e_status err = 0; 3286 bool ok; 3287 int ret; 3288 3289 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3290 3291 /* clear the context structure first */ 3292 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3293 3294 if (ring->vsi->type == I40E_VSI_MAIN) 3295 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3296 3297 kfree(ring->rx_bi); 3298 ring->xsk_pool = i40e_xsk_pool(ring); 3299 if (ring->xsk_pool) { 3300 ret = i40e_alloc_rx_bi_zc(ring); 3301 if (ret) 3302 return ret; 3303 ring->rx_buf_len = 3304 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3305 /* For AF_XDP ZC, we disallow packets to span on 3306 * multiple buffers, thus letting us skip that 3307 * handling in the fast-path. 3308 */ 3309 chain_len = 1; 3310 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3311 MEM_TYPE_XSK_BUFF_POOL, 3312 NULL); 3313 if (ret) 3314 return ret; 3315 dev_info(&vsi->back->pdev->dev, 3316 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3317 ring->queue_index); 3318 3319 } else { 3320 ret = i40e_alloc_rx_bi(ring); 3321 if (ret) 3322 return ret; 3323 ring->rx_buf_len = vsi->rx_buf_len; 3324 if (ring->vsi->type == I40E_VSI_MAIN) { 3325 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3326 MEM_TYPE_PAGE_SHARED, 3327 NULL); 3328 if (ret) 3329 return ret; 3330 } 3331 } 3332 3333 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3334 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3335 3336 rx_ctx.base = (ring->dma / 128); 3337 rx_ctx.qlen = ring->count; 3338 3339 /* use 16 byte descriptors */ 3340 rx_ctx.dsize = 0; 3341 3342 /* descriptor type is always zero 3343 * rx_ctx.dtype = 0; 3344 */ 3345 rx_ctx.hsplit_0 = 0; 3346 3347 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3348 if (hw->revision_id == 0) 3349 rx_ctx.lrxqthresh = 0; 3350 else 3351 rx_ctx.lrxqthresh = 1; 3352 rx_ctx.crcstrip = 1; 3353 rx_ctx.l2tsel = 1; 3354 /* this controls whether VLAN is stripped from inner headers */ 3355 rx_ctx.showiv = 0; 3356 /* set the prefena field to 1 because the manual says to */ 3357 rx_ctx.prefena = 1; 3358 3359 /* clear the context in the HMC */ 3360 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3361 if (err) { 3362 dev_info(&vsi->back->pdev->dev, 3363 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3364 ring->queue_index, pf_q, err); 3365 return -ENOMEM; 3366 } 3367 3368 /* set the context in the HMC */ 3369 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3370 if (err) { 3371 dev_info(&vsi->back->pdev->dev, 3372 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3373 ring->queue_index, pf_q, err); 3374 return -ENOMEM; 3375 } 3376 3377 /* configure Rx buffer alignment */ 3378 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3379 clear_ring_build_skb_enabled(ring); 3380 else 3381 set_ring_build_skb_enabled(ring); 3382 3383 ring->rx_offset = i40e_rx_offset(ring); 3384 3385 /* cache tail for quicker writes, and clear the reg before use */ 3386 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3387 writel(0, ring->tail); 3388 3389 if (ring->xsk_pool) { 3390 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3391 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3392 } else { 3393 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3394 } 3395 if (!ok) { 3396 /* Log this in case the user has forgotten to give the kernel 3397 * any buffers, even later in the application. 3398 */ 3399 dev_info(&vsi->back->pdev->dev, 3400 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3401 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3402 ring->queue_index, pf_q); 3403 } 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * i40e_vsi_configure_tx - Configure the VSI for Tx 3410 * @vsi: VSI structure describing this set of rings and resources 3411 * 3412 * Configure the Tx VSI for operation. 3413 **/ 3414 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3415 { 3416 int err = 0; 3417 u16 i; 3418 3419 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3420 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3421 3422 if (err || !i40e_enabled_xdp_vsi(vsi)) 3423 return err; 3424 3425 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3426 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3427 3428 return err; 3429 } 3430 3431 /** 3432 * i40e_vsi_configure_rx - Configure the VSI for Rx 3433 * @vsi: the VSI being configured 3434 * 3435 * Configure the Rx VSI for operation. 3436 **/ 3437 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3438 { 3439 int err = 0; 3440 u16 i; 3441 3442 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3443 vsi->max_frame = I40E_MAX_RXBUFFER; 3444 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3445 #if (PAGE_SIZE < 8192) 3446 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3447 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3448 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3449 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3450 #endif 3451 } else { 3452 vsi->max_frame = I40E_MAX_RXBUFFER; 3453 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3454 I40E_RXBUFFER_2048; 3455 } 3456 3457 /* set up individual rings */ 3458 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3459 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3460 3461 return err; 3462 } 3463 3464 /** 3465 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3466 * @vsi: ptr to the VSI 3467 **/ 3468 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3469 { 3470 struct i40e_ring *tx_ring, *rx_ring; 3471 u16 qoffset, qcount; 3472 int i, n; 3473 3474 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3475 /* Reset the TC information */ 3476 for (i = 0; i < vsi->num_queue_pairs; i++) { 3477 rx_ring = vsi->rx_rings[i]; 3478 tx_ring = vsi->tx_rings[i]; 3479 rx_ring->dcb_tc = 0; 3480 tx_ring->dcb_tc = 0; 3481 } 3482 return; 3483 } 3484 3485 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3486 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3487 continue; 3488 3489 qoffset = vsi->tc_config.tc_info[n].qoffset; 3490 qcount = vsi->tc_config.tc_info[n].qcount; 3491 for (i = qoffset; i < (qoffset + qcount); i++) { 3492 rx_ring = vsi->rx_rings[i]; 3493 tx_ring = vsi->tx_rings[i]; 3494 rx_ring->dcb_tc = n; 3495 tx_ring->dcb_tc = n; 3496 } 3497 } 3498 } 3499 3500 /** 3501 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3502 * @vsi: ptr to the VSI 3503 **/ 3504 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3505 { 3506 if (vsi->netdev) 3507 i40e_set_rx_mode(vsi->netdev); 3508 } 3509 3510 /** 3511 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3512 * @pf: Pointer to the targeted PF 3513 * 3514 * Set all flow director counters to 0. 3515 */ 3516 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3517 { 3518 pf->fd_tcp4_filter_cnt = 0; 3519 pf->fd_udp4_filter_cnt = 0; 3520 pf->fd_sctp4_filter_cnt = 0; 3521 pf->fd_ip4_filter_cnt = 0; 3522 pf->fd_tcp6_filter_cnt = 0; 3523 pf->fd_udp6_filter_cnt = 0; 3524 pf->fd_sctp6_filter_cnt = 0; 3525 pf->fd_ip6_filter_cnt = 0; 3526 } 3527 3528 /** 3529 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3530 * @vsi: Pointer to the targeted VSI 3531 * 3532 * This function replays the hlist on the hw where all the SB Flow Director 3533 * filters were saved. 3534 **/ 3535 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3536 { 3537 struct i40e_fdir_filter *filter; 3538 struct i40e_pf *pf = vsi->back; 3539 struct hlist_node *node; 3540 3541 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3542 return; 3543 3544 /* Reset FDir counters as we're replaying all existing filters */ 3545 i40e_reset_fdir_filter_cnt(pf); 3546 3547 hlist_for_each_entry_safe(filter, node, 3548 &pf->fdir_filter_list, fdir_node) { 3549 i40e_add_del_fdir(vsi, filter, true); 3550 } 3551 } 3552 3553 /** 3554 * i40e_vsi_configure - Set up the VSI for action 3555 * @vsi: the VSI being configured 3556 **/ 3557 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3558 { 3559 int err; 3560 3561 i40e_set_vsi_rx_mode(vsi); 3562 i40e_restore_vlan(vsi); 3563 i40e_vsi_config_dcb_rings(vsi); 3564 err = i40e_vsi_configure_tx(vsi); 3565 if (!err) 3566 err = i40e_vsi_configure_rx(vsi); 3567 3568 return err; 3569 } 3570 3571 /** 3572 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3573 * @vsi: the VSI being configured 3574 **/ 3575 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3576 { 3577 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3578 struct i40e_pf *pf = vsi->back; 3579 struct i40e_hw *hw = &pf->hw; 3580 u16 vector; 3581 int i, q; 3582 u32 qp; 3583 3584 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3585 * and PFINT_LNKLSTn registers, e.g.: 3586 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3587 */ 3588 qp = vsi->base_queue; 3589 vector = vsi->base_vector; 3590 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3591 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3592 3593 q_vector->rx.next_update = jiffies + 1; 3594 q_vector->rx.target_itr = 3595 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3596 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3597 q_vector->rx.target_itr >> 1); 3598 q_vector->rx.current_itr = q_vector->rx.target_itr; 3599 3600 q_vector->tx.next_update = jiffies + 1; 3601 q_vector->tx.target_itr = 3602 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3603 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3604 q_vector->tx.target_itr >> 1); 3605 q_vector->tx.current_itr = q_vector->tx.target_itr; 3606 3607 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3608 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3609 3610 /* Linked list for the queuepairs assigned to this vector */ 3611 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3612 for (q = 0; q < q_vector->num_ringpairs; q++) { 3613 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3614 u32 val; 3615 3616 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3617 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3618 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3619 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3620 (I40E_QUEUE_TYPE_TX << 3621 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3622 3623 wr32(hw, I40E_QINT_RQCTL(qp), val); 3624 3625 if (has_xdp) { 3626 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3627 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3628 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3629 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3630 (I40E_QUEUE_TYPE_TX << 3631 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3632 3633 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3634 } 3635 3636 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3637 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3638 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3639 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3640 (I40E_QUEUE_TYPE_RX << 3641 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3642 3643 /* Terminate the linked list */ 3644 if (q == (q_vector->num_ringpairs - 1)) 3645 val |= (I40E_QUEUE_END_OF_LIST << 3646 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3647 3648 wr32(hw, I40E_QINT_TQCTL(qp), val); 3649 qp++; 3650 } 3651 } 3652 3653 i40e_flush(hw); 3654 } 3655 3656 /** 3657 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3658 * @pf: pointer to private device data structure 3659 **/ 3660 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3661 { 3662 struct i40e_hw *hw = &pf->hw; 3663 u32 val; 3664 3665 /* clear things first */ 3666 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3667 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3668 3669 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3670 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3671 I40E_PFINT_ICR0_ENA_GRST_MASK | 3672 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3673 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3674 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3675 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3676 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3677 3678 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3679 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3680 3681 if (pf->flags & I40E_FLAG_PTP) 3682 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3683 3684 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3685 3686 /* SW_ITR_IDX = 0, but don't change INTENA */ 3687 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3688 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3689 3690 /* OTHER_ITR_IDX = 0 */ 3691 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3692 } 3693 3694 /** 3695 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3696 * @vsi: the VSI being configured 3697 **/ 3698 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3699 { 3700 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3701 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3702 struct i40e_pf *pf = vsi->back; 3703 struct i40e_hw *hw = &pf->hw; 3704 u32 val; 3705 3706 /* set the ITR configuration */ 3707 q_vector->rx.next_update = jiffies + 1; 3708 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3709 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3710 q_vector->rx.current_itr = q_vector->rx.target_itr; 3711 q_vector->tx.next_update = jiffies + 1; 3712 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3713 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3714 q_vector->tx.current_itr = q_vector->tx.target_itr; 3715 3716 i40e_enable_misc_int_causes(pf); 3717 3718 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3719 wr32(hw, I40E_PFINT_LNKLST0, 0); 3720 3721 /* Associate the queue pair to the vector and enable the queue int */ 3722 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3723 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3724 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3725 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3726 3727 wr32(hw, I40E_QINT_RQCTL(0), val); 3728 3729 if (i40e_enabled_xdp_vsi(vsi)) { 3730 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3731 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3732 (I40E_QUEUE_TYPE_TX 3733 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3734 3735 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3736 } 3737 3738 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3739 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3740 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3741 3742 wr32(hw, I40E_QINT_TQCTL(0), val); 3743 i40e_flush(hw); 3744 } 3745 3746 /** 3747 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3748 * @pf: board private structure 3749 **/ 3750 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3751 { 3752 struct i40e_hw *hw = &pf->hw; 3753 3754 wr32(hw, I40E_PFINT_DYN_CTL0, 3755 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3756 i40e_flush(hw); 3757 } 3758 3759 /** 3760 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3761 * @pf: board private structure 3762 **/ 3763 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3764 { 3765 struct i40e_hw *hw = &pf->hw; 3766 u32 val; 3767 3768 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3769 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3770 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3771 3772 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3773 i40e_flush(hw); 3774 } 3775 3776 /** 3777 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3778 * @irq: interrupt number 3779 * @data: pointer to a q_vector 3780 **/ 3781 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3782 { 3783 struct i40e_q_vector *q_vector = data; 3784 3785 if (!q_vector->tx.ring && !q_vector->rx.ring) 3786 return IRQ_HANDLED; 3787 3788 napi_schedule_irqoff(&q_vector->napi); 3789 3790 return IRQ_HANDLED; 3791 } 3792 3793 /** 3794 * i40e_irq_affinity_notify - Callback for affinity changes 3795 * @notify: context as to what irq was changed 3796 * @mask: the new affinity mask 3797 * 3798 * This is a callback function used by the irq_set_affinity_notifier function 3799 * so that we may register to receive changes to the irq affinity masks. 3800 **/ 3801 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3802 const cpumask_t *mask) 3803 { 3804 struct i40e_q_vector *q_vector = 3805 container_of(notify, struct i40e_q_vector, affinity_notify); 3806 3807 cpumask_copy(&q_vector->affinity_mask, mask); 3808 } 3809 3810 /** 3811 * i40e_irq_affinity_release - Callback for affinity notifier release 3812 * @ref: internal core kernel usage 3813 * 3814 * This is a callback function used by the irq_set_affinity_notifier function 3815 * to inform the current notification subscriber that they will no longer 3816 * receive notifications. 3817 **/ 3818 static void i40e_irq_affinity_release(struct kref *ref) {} 3819 3820 /** 3821 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3822 * @vsi: the VSI being configured 3823 * @basename: name for the vector 3824 * 3825 * Allocates MSI-X vectors and requests interrupts from the kernel. 3826 **/ 3827 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3828 { 3829 int q_vectors = vsi->num_q_vectors; 3830 struct i40e_pf *pf = vsi->back; 3831 int base = vsi->base_vector; 3832 int rx_int_idx = 0; 3833 int tx_int_idx = 0; 3834 int vector, err; 3835 int irq_num; 3836 int cpu; 3837 3838 for (vector = 0; vector < q_vectors; vector++) { 3839 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3840 3841 irq_num = pf->msix_entries[base + vector].vector; 3842 3843 if (q_vector->tx.ring && q_vector->rx.ring) { 3844 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3845 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3846 tx_int_idx++; 3847 } else if (q_vector->rx.ring) { 3848 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3849 "%s-%s-%d", basename, "rx", rx_int_idx++); 3850 } else if (q_vector->tx.ring) { 3851 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3852 "%s-%s-%d", basename, "tx", tx_int_idx++); 3853 } else { 3854 /* skip this unused q_vector */ 3855 continue; 3856 } 3857 err = request_irq(irq_num, 3858 vsi->irq_handler, 3859 0, 3860 q_vector->name, 3861 q_vector); 3862 if (err) { 3863 dev_info(&pf->pdev->dev, 3864 "MSIX request_irq failed, error: %d\n", err); 3865 goto free_queue_irqs; 3866 } 3867 3868 /* register for affinity change notifications */ 3869 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3870 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3871 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3872 /* Spread affinity hints out across online CPUs. 3873 * 3874 * get_cpu_mask returns a static constant mask with 3875 * a permanent lifetime so it's ok to pass to 3876 * irq_set_affinity_hint without making a copy. 3877 */ 3878 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3879 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3880 } 3881 3882 vsi->irqs_ready = true; 3883 return 0; 3884 3885 free_queue_irqs: 3886 while (vector) { 3887 vector--; 3888 irq_num = pf->msix_entries[base + vector].vector; 3889 irq_set_affinity_notifier(irq_num, NULL); 3890 irq_set_affinity_hint(irq_num, NULL); 3891 free_irq(irq_num, &vsi->q_vectors[vector]); 3892 } 3893 return err; 3894 } 3895 3896 /** 3897 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3898 * @vsi: the VSI being un-configured 3899 **/ 3900 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3901 { 3902 struct i40e_pf *pf = vsi->back; 3903 struct i40e_hw *hw = &pf->hw; 3904 int base = vsi->base_vector; 3905 int i; 3906 3907 /* disable interrupt causation from each queue */ 3908 for (i = 0; i < vsi->num_queue_pairs; i++) { 3909 u32 val; 3910 3911 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3912 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3913 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3914 3915 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3916 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3917 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3918 3919 if (!i40e_enabled_xdp_vsi(vsi)) 3920 continue; 3921 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3922 } 3923 3924 /* disable each interrupt */ 3925 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3926 for (i = vsi->base_vector; 3927 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3928 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3929 3930 i40e_flush(hw); 3931 for (i = 0; i < vsi->num_q_vectors; i++) 3932 synchronize_irq(pf->msix_entries[i + base].vector); 3933 } else { 3934 /* Legacy and MSI mode - this stops all interrupt handling */ 3935 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3936 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3937 i40e_flush(hw); 3938 synchronize_irq(pf->pdev->irq); 3939 } 3940 } 3941 3942 /** 3943 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3944 * @vsi: the VSI being configured 3945 **/ 3946 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3947 { 3948 struct i40e_pf *pf = vsi->back; 3949 int i; 3950 3951 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3952 for (i = 0; i < vsi->num_q_vectors; i++) 3953 i40e_irq_dynamic_enable(vsi, i); 3954 } else { 3955 i40e_irq_dynamic_enable_icr0(pf); 3956 } 3957 3958 i40e_flush(&pf->hw); 3959 return 0; 3960 } 3961 3962 /** 3963 * i40e_free_misc_vector - Free the vector that handles non-queue events 3964 * @pf: board private structure 3965 **/ 3966 static void i40e_free_misc_vector(struct i40e_pf *pf) 3967 { 3968 /* Disable ICR 0 */ 3969 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3970 i40e_flush(&pf->hw); 3971 3972 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3973 synchronize_irq(pf->msix_entries[0].vector); 3974 free_irq(pf->msix_entries[0].vector, pf); 3975 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3976 } 3977 } 3978 3979 /** 3980 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3981 * @irq: interrupt number 3982 * @data: pointer to a q_vector 3983 * 3984 * This is the handler used for all MSI/Legacy interrupts, and deals 3985 * with both queue and non-queue interrupts. This is also used in 3986 * MSIX mode to handle the non-queue interrupts. 3987 **/ 3988 static irqreturn_t i40e_intr(int irq, void *data) 3989 { 3990 struct i40e_pf *pf = (struct i40e_pf *)data; 3991 struct i40e_hw *hw = &pf->hw; 3992 irqreturn_t ret = IRQ_NONE; 3993 u32 icr0, icr0_remaining; 3994 u32 val, ena_mask; 3995 3996 icr0 = rd32(hw, I40E_PFINT_ICR0); 3997 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3998 3999 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4000 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4001 goto enable_intr; 4002 4003 /* if interrupt but no bits showing, must be SWINT */ 4004 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4005 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4006 pf->sw_int_count++; 4007 4008 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 4009 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4010 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4011 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4012 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4013 } 4014 4015 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4016 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4017 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4018 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4019 4020 /* We do not have a way to disarm Queue causes while leaving 4021 * interrupt enabled for all other causes, ideally 4022 * interrupt should be disabled while we are in NAPI but 4023 * this is not a performance path and napi_schedule() 4024 * can deal with rescheduling. 4025 */ 4026 if (!test_bit(__I40E_DOWN, pf->state)) 4027 napi_schedule_irqoff(&q_vector->napi); 4028 } 4029 4030 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4031 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4032 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4033 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4034 } 4035 4036 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4037 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4038 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4039 } 4040 4041 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4042 /* disable any further VFLR event notifications */ 4043 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4044 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4045 4046 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4047 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4048 } else { 4049 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4050 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4051 } 4052 } 4053 4054 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4055 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4056 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4057 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4058 val = rd32(hw, I40E_GLGEN_RSTAT); 4059 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4060 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4061 if (val == I40E_RESET_CORER) { 4062 pf->corer_count++; 4063 } else if (val == I40E_RESET_GLOBR) { 4064 pf->globr_count++; 4065 } else if (val == I40E_RESET_EMPR) { 4066 pf->empr_count++; 4067 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4068 } 4069 } 4070 4071 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4072 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4073 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4074 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4075 rd32(hw, I40E_PFHMC_ERRORINFO), 4076 rd32(hw, I40E_PFHMC_ERRORDATA)); 4077 } 4078 4079 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4080 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4081 4082 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK) 4083 schedule_work(&pf->ptp_extts0_work); 4084 4085 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) 4086 i40e_ptp_tx_hwtstamp(pf); 4087 4088 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4089 } 4090 4091 /* If a critical error is pending we have no choice but to reset the 4092 * device. 4093 * Report and mask out any remaining unexpected interrupts. 4094 */ 4095 icr0_remaining = icr0 & ena_mask; 4096 if (icr0_remaining) { 4097 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4098 icr0_remaining); 4099 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4100 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4101 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4102 dev_info(&pf->pdev->dev, "device will be reset\n"); 4103 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4104 i40e_service_event_schedule(pf); 4105 } 4106 ena_mask &= ~icr0_remaining; 4107 } 4108 ret = IRQ_HANDLED; 4109 4110 enable_intr: 4111 /* re-enable interrupt causes */ 4112 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4113 if (!test_bit(__I40E_DOWN, pf->state) || 4114 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4115 i40e_service_event_schedule(pf); 4116 i40e_irq_dynamic_enable_icr0(pf); 4117 } 4118 4119 return ret; 4120 } 4121 4122 /** 4123 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4124 * @tx_ring: tx ring to clean 4125 * @budget: how many cleans we're allowed 4126 * 4127 * Returns true if there's any budget left (e.g. the clean is finished) 4128 **/ 4129 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4130 { 4131 struct i40e_vsi *vsi = tx_ring->vsi; 4132 u16 i = tx_ring->next_to_clean; 4133 struct i40e_tx_buffer *tx_buf; 4134 struct i40e_tx_desc *tx_desc; 4135 4136 tx_buf = &tx_ring->tx_bi[i]; 4137 tx_desc = I40E_TX_DESC(tx_ring, i); 4138 i -= tx_ring->count; 4139 4140 do { 4141 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4142 4143 /* if next_to_watch is not set then there is no work pending */ 4144 if (!eop_desc) 4145 break; 4146 4147 /* prevent any other reads prior to eop_desc */ 4148 smp_rmb(); 4149 4150 /* if the descriptor isn't done, no work yet to do */ 4151 if (!(eop_desc->cmd_type_offset_bsz & 4152 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4153 break; 4154 4155 /* clear next_to_watch to prevent false hangs */ 4156 tx_buf->next_to_watch = NULL; 4157 4158 tx_desc->buffer_addr = 0; 4159 tx_desc->cmd_type_offset_bsz = 0; 4160 /* move past filter desc */ 4161 tx_buf++; 4162 tx_desc++; 4163 i++; 4164 if (unlikely(!i)) { 4165 i -= tx_ring->count; 4166 tx_buf = tx_ring->tx_bi; 4167 tx_desc = I40E_TX_DESC(tx_ring, 0); 4168 } 4169 /* unmap skb header data */ 4170 dma_unmap_single(tx_ring->dev, 4171 dma_unmap_addr(tx_buf, dma), 4172 dma_unmap_len(tx_buf, len), 4173 DMA_TO_DEVICE); 4174 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4175 kfree(tx_buf->raw_buf); 4176 4177 tx_buf->raw_buf = NULL; 4178 tx_buf->tx_flags = 0; 4179 tx_buf->next_to_watch = NULL; 4180 dma_unmap_len_set(tx_buf, len, 0); 4181 tx_desc->buffer_addr = 0; 4182 tx_desc->cmd_type_offset_bsz = 0; 4183 4184 /* move us past the eop_desc for start of next FD desc */ 4185 tx_buf++; 4186 tx_desc++; 4187 i++; 4188 if (unlikely(!i)) { 4189 i -= tx_ring->count; 4190 tx_buf = tx_ring->tx_bi; 4191 tx_desc = I40E_TX_DESC(tx_ring, 0); 4192 } 4193 4194 /* update budget accounting */ 4195 budget--; 4196 } while (likely(budget)); 4197 4198 i += tx_ring->count; 4199 tx_ring->next_to_clean = i; 4200 4201 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4202 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4203 4204 return budget > 0; 4205 } 4206 4207 /** 4208 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4209 * @irq: interrupt number 4210 * @data: pointer to a q_vector 4211 **/ 4212 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4213 { 4214 struct i40e_q_vector *q_vector = data; 4215 struct i40e_vsi *vsi; 4216 4217 if (!q_vector->tx.ring) 4218 return IRQ_HANDLED; 4219 4220 vsi = q_vector->tx.ring->vsi; 4221 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4222 4223 return IRQ_HANDLED; 4224 } 4225 4226 /** 4227 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4228 * @vsi: the VSI being configured 4229 * @v_idx: vector index 4230 * @qp_idx: queue pair index 4231 **/ 4232 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4233 { 4234 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4235 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4236 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4237 4238 tx_ring->q_vector = q_vector; 4239 tx_ring->next = q_vector->tx.ring; 4240 q_vector->tx.ring = tx_ring; 4241 q_vector->tx.count++; 4242 4243 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4244 if (i40e_enabled_xdp_vsi(vsi)) { 4245 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4246 4247 xdp_ring->q_vector = q_vector; 4248 xdp_ring->next = q_vector->tx.ring; 4249 q_vector->tx.ring = xdp_ring; 4250 q_vector->tx.count++; 4251 } 4252 4253 rx_ring->q_vector = q_vector; 4254 rx_ring->next = q_vector->rx.ring; 4255 q_vector->rx.ring = rx_ring; 4256 q_vector->rx.count++; 4257 } 4258 4259 /** 4260 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4261 * @vsi: the VSI being configured 4262 * 4263 * This function maps descriptor rings to the queue-specific vectors 4264 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4265 * one vector per queue pair, but on a constrained vector budget, we 4266 * group the queue pairs as "efficiently" as possible. 4267 **/ 4268 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4269 { 4270 int qp_remaining = vsi->num_queue_pairs; 4271 int q_vectors = vsi->num_q_vectors; 4272 int num_ringpairs; 4273 int v_start = 0; 4274 int qp_idx = 0; 4275 4276 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4277 * group them so there are multiple queues per vector. 4278 * It is also important to go through all the vectors available to be 4279 * sure that if we don't use all the vectors, that the remaining vectors 4280 * are cleared. This is especially important when decreasing the 4281 * number of queues in use. 4282 */ 4283 for (; v_start < q_vectors; v_start++) { 4284 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4285 4286 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4287 4288 q_vector->num_ringpairs = num_ringpairs; 4289 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4290 4291 q_vector->rx.count = 0; 4292 q_vector->tx.count = 0; 4293 q_vector->rx.ring = NULL; 4294 q_vector->tx.ring = NULL; 4295 4296 while (num_ringpairs--) { 4297 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4298 qp_idx++; 4299 qp_remaining--; 4300 } 4301 } 4302 } 4303 4304 /** 4305 * i40e_vsi_request_irq - Request IRQ from the OS 4306 * @vsi: the VSI being configured 4307 * @basename: name for the vector 4308 **/ 4309 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4310 { 4311 struct i40e_pf *pf = vsi->back; 4312 int err; 4313 4314 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4315 err = i40e_vsi_request_irq_msix(vsi, basename); 4316 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4317 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4318 pf->int_name, pf); 4319 else 4320 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4321 pf->int_name, pf); 4322 4323 if (err) 4324 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4325 4326 return err; 4327 } 4328 4329 #ifdef CONFIG_NET_POLL_CONTROLLER 4330 /** 4331 * i40e_netpoll - A Polling 'interrupt' handler 4332 * @netdev: network interface device structure 4333 * 4334 * This is used by netconsole to send skbs without having to re-enable 4335 * interrupts. It's not called while the normal interrupt routine is executing. 4336 **/ 4337 static void i40e_netpoll(struct net_device *netdev) 4338 { 4339 struct i40e_netdev_priv *np = netdev_priv(netdev); 4340 struct i40e_vsi *vsi = np->vsi; 4341 struct i40e_pf *pf = vsi->back; 4342 int i; 4343 4344 /* if interface is down do nothing */ 4345 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4346 return; 4347 4348 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4349 for (i = 0; i < vsi->num_q_vectors; i++) 4350 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4351 } else { 4352 i40e_intr(pf->pdev->irq, netdev); 4353 } 4354 } 4355 #endif 4356 4357 #define I40E_QTX_ENA_WAIT_COUNT 50 4358 4359 /** 4360 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4361 * @pf: the PF being configured 4362 * @pf_q: the PF queue 4363 * @enable: enable or disable state of the queue 4364 * 4365 * This routine will wait for the given Tx queue of the PF to reach the 4366 * enabled or disabled state. 4367 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4368 * multiple retries; else will return 0 in case of success. 4369 **/ 4370 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4371 { 4372 int i; 4373 u32 tx_reg; 4374 4375 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4376 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4377 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4378 break; 4379 4380 usleep_range(10, 20); 4381 } 4382 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4383 return -ETIMEDOUT; 4384 4385 return 0; 4386 } 4387 4388 /** 4389 * i40e_control_tx_q - Start or stop a particular Tx queue 4390 * @pf: the PF structure 4391 * @pf_q: the PF queue to configure 4392 * @enable: start or stop the queue 4393 * 4394 * This function enables or disables a single queue. Note that any delay 4395 * required after the operation is expected to be handled by the caller of 4396 * this function. 4397 **/ 4398 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4399 { 4400 struct i40e_hw *hw = &pf->hw; 4401 u32 tx_reg; 4402 int i; 4403 4404 /* warn the TX unit of coming changes */ 4405 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4406 if (!enable) 4407 usleep_range(10, 20); 4408 4409 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4410 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4411 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4412 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4413 break; 4414 usleep_range(1000, 2000); 4415 } 4416 4417 /* Skip if the queue is already in the requested state */ 4418 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4419 return; 4420 4421 /* turn on/off the queue */ 4422 if (enable) { 4423 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4424 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4425 } else { 4426 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4427 } 4428 4429 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4430 } 4431 4432 /** 4433 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4434 * @seid: VSI SEID 4435 * @pf: the PF structure 4436 * @pf_q: the PF queue to configure 4437 * @is_xdp: true if the queue is used for XDP 4438 * @enable: start or stop the queue 4439 **/ 4440 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4441 bool is_xdp, bool enable) 4442 { 4443 int ret; 4444 4445 i40e_control_tx_q(pf, pf_q, enable); 4446 4447 /* wait for the change to finish */ 4448 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4449 if (ret) { 4450 dev_info(&pf->pdev->dev, 4451 "VSI seid %d %sTx ring %d %sable timeout\n", 4452 seid, (is_xdp ? "XDP " : ""), pf_q, 4453 (enable ? "en" : "dis")); 4454 } 4455 4456 return ret; 4457 } 4458 4459 /** 4460 * i40e_vsi_control_tx - Start or stop a VSI's rings 4461 * @vsi: the VSI being configured 4462 * @enable: start or stop the rings 4463 **/ 4464 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4465 { 4466 struct i40e_pf *pf = vsi->back; 4467 int i, pf_q, ret = 0; 4468 4469 pf_q = vsi->base_queue; 4470 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4471 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4472 pf_q, 4473 false /*is xdp*/, enable); 4474 if (ret) 4475 break; 4476 4477 if (!i40e_enabled_xdp_vsi(vsi)) 4478 continue; 4479 4480 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4481 pf_q + vsi->alloc_queue_pairs, 4482 true /*is xdp*/, enable); 4483 if (ret) 4484 break; 4485 } 4486 return ret; 4487 } 4488 4489 /** 4490 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4491 * @pf: the PF being configured 4492 * @pf_q: the PF queue 4493 * @enable: enable or disable state of the queue 4494 * 4495 * This routine will wait for the given Rx queue of the PF to reach the 4496 * enabled or disabled state. 4497 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4498 * multiple retries; else will return 0 in case of success. 4499 **/ 4500 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4501 { 4502 int i; 4503 u32 rx_reg; 4504 4505 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4506 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4507 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4508 break; 4509 4510 usleep_range(10, 20); 4511 } 4512 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4513 return -ETIMEDOUT; 4514 4515 return 0; 4516 } 4517 4518 /** 4519 * i40e_control_rx_q - Start or stop a particular Rx queue 4520 * @pf: the PF structure 4521 * @pf_q: the PF queue to configure 4522 * @enable: start or stop the queue 4523 * 4524 * This function enables or disables a single queue. Note that 4525 * any delay required after the operation is expected to be 4526 * handled by the caller of this function. 4527 **/ 4528 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4529 { 4530 struct i40e_hw *hw = &pf->hw; 4531 u32 rx_reg; 4532 int i; 4533 4534 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4535 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4536 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4537 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4538 break; 4539 usleep_range(1000, 2000); 4540 } 4541 4542 /* Skip if the queue is already in the requested state */ 4543 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4544 return; 4545 4546 /* turn on/off the queue */ 4547 if (enable) 4548 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4549 else 4550 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4551 4552 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4553 } 4554 4555 /** 4556 * i40e_control_wait_rx_q 4557 * @pf: the PF structure 4558 * @pf_q: queue being configured 4559 * @enable: start or stop the rings 4560 * 4561 * This function enables or disables a single queue along with waiting 4562 * for the change to finish. The caller of this function should handle 4563 * the delays needed in the case of disabling queues. 4564 **/ 4565 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4566 { 4567 int ret = 0; 4568 4569 i40e_control_rx_q(pf, pf_q, enable); 4570 4571 /* wait for the change to finish */ 4572 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4573 if (ret) 4574 return ret; 4575 4576 return ret; 4577 } 4578 4579 /** 4580 * i40e_vsi_control_rx - Start or stop a VSI's rings 4581 * @vsi: the VSI being configured 4582 * @enable: start or stop the rings 4583 **/ 4584 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4585 { 4586 struct i40e_pf *pf = vsi->back; 4587 int i, pf_q, ret = 0; 4588 4589 pf_q = vsi->base_queue; 4590 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4591 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4592 if (ret) { 4593 dev_info(&pf->pdev->dev, 4594 "VSI seid %d Rx ring %d %sable timeout\n", 4595 vsi->seid, pf_q, (enable ? "en" : "dis")); 4596 break; 4597 } 4598 } 4599 4600 /* Due to HW errata, on Rx disable only, the register can indicate done 4601 * before it really is. Needs 50ms to be sure 4602 */ 4603 if (!enable) 4604 mdelay(50); 4605 4606 return ret; 4607 } 4608 4609 /** 4610 * i40e_vsi_start_rings - Start a VSI's rings 4611 * @vsi: the VSI being configured 4612 **/ 4613 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4614 { 4615 int ret = 0; 4616 4617 /* do rx first for enable and last for disable */ 4618 ret = i40e_vsi_control_rx(vsi, true); 4619 if (ret) 4620 return ret; 4621 ret = i40e_vsi_control_tx(vsi, true); 4622 4623 return ret; 4624 } 4625 4626 /** 4627 * i40e_vsi_stop_rings - Stop a VSI's rings 4628 * @vsi: the VSI being configured 4629 **/ 4630 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4631 { 4632 /* When port TX is suspended, don't wait */ 4633 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4634 return i40e_vsi_stop_rings_no_wait(vsi); 4635 4636 /* do rx first for enable and last for disable 4637 * Ignore return value, we need to shutdown whatever we can 4638 */ 4639 i40e_vsi_control_tx(vsi, false); 4640 i40e_vsi_control_rx(vsi, false); 4641 } 4642 4643 /** 4644 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4645 * @vsi: the VSI being shutdown 4646 * 4647 * This function stops all the rings for a VSI but does not delay to verify 4648 * that rings have been disabled. It is expected that the caller is shutting 4649 * down multiple VSIs at once and will delay together for all the VSIs after 4650 * initiating the shutdown. This is particularly useful for shutting down lots 4651 * of VFs together. Otherwise, a large delay can be incurred while configuring 4652 * each VSI in serial. 4653 **/ 4654 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4655 { 4656 struct i40e_pf *pf = vsi->back; 4657 int i, pf_q; 4658 4659 pf_q = vsi->base_queue; 4660 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4661 i40e_control_tx_q(pf, pf_q, false); 4662 i40e_control_rx_q(pf, pf_q, false); 4663 } 4664 } 4665 4666 /** 4667 * i40e_vsi_free_irq - Free the irq association with the OS 4668 * @vsi: the VSI being configured 4669 **/ 4670 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4671 { 4672 struct i40e_pf *pf = vsi->back; 4673 struct i40e_hw *hw = &pf->hw; 4674 int base = vsi->base_vector; 4675 u32 val, qp; 4676 int i; 4677 4678 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4679 if (!vsi->q_vectors) 4680 return; 4681 4682 if (!vsi->irqs_ready) 4683 return; 4684 4685 vsi->irqs_ready = false; 4686 for (i = 0; i < vsi->num_q_vectors; i++) { 4687 int irq_num; 4688 u16 vector; 4689 4690 vector = i + base; 4691 irq_num = pf->msix_entries[vector].vector; 4692 4693 /* free only the irqs that were actually requested */ 4694 if (!vsi->q_vectors[i] || 4695 !vsi->q_vectors[i]->num_ringpairs) 4696 continue; 4697 4698 /* clear the affinity notifier in the IRQ descriptor */ 4699 irq_set_affinity_notifier(irq_num, NULL); 4700 /* remove our suggested affinity mask for this IRQ */ 4701 irq_set_affinity_hint(irq_num, NULL); 4702 synchronize_irq(irq_num); 4703 free_irq(irq_num, vsi->q_vectors[i]); 4704 4705 /* Tear down the interrupt queue link list 4706 * 4707 * We know that they come in pairs and always 4708 * the Rx first, then the Tx. To clear the 4709 * link list, stick the EOL value into the 4710 * next_q field of the registers. 4711 */ 4712 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4713 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4714 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4715 val |= I40E_QUEUE_END_OF_LIST 4716 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4717 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4718 4719 while (qp != I40E_QUEUE_END_OF_LIST) { 4720 u32 next; 4721 4722 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4723 4724 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4725 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4726 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4727 I40E_QINT_RQCTL_INTEVENT_MASK); 4728 4729 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4730 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4731 4732 wr32(hw, I40E_QINT_RQCTL(qp), val); 4733 4734 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4735 4736 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4737 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4738 4739 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4740 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4741 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4742 I40E_QINT_TQCTL_INTEVENT_MASK); 4743 4744 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4745 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4746 4747 wr32(hw, I40E_QINT_TQCTL(qp), val); 4748 qp = next; 4749 } 4750 } 4751 } else { 4752 free_irq(pf->pdev->irq, pf); 4753 4754 val = rd32(hw, I40E_PFINT_LNKLST0); 4755 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4756 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4757 val |= I40E_QUEUE_END_OF_LIST 4758 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4759 wr32(hw, I40E_PFINT_LNKLST0, val); 4760 4761 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4762 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4763 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4764 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4765 I40E_QINT_RQCTL_INTEVENT_MASK); 4766 4767 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4768 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4769 4770 wr32(hw, I40E_QINT_RQCTL(qp), val); 4771 4772 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4773 4774 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4775 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4776 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4777 I40E_QINT_TQCTL_INTEVENT_MASK); 4778 4779 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4780 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4781 4782 wr32(hw, I40E_QINT_TQCTL(qp), val); 4783 } 4784 } 4785 4786 /** 4787 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4788 * @vsi: the VSI being configured 4789 * @v_idx: Index of vector to be freed 4790 * 4791 * This function frees the memory allocated to the q_vector. In addition if 4792 * NAPI is enabled it will delete any references to the NAPI struct prior 4793 * to freeing the q_vector. 4794 **/ 4795 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4796 { 4797 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4798 struct i40e_ring *ring; 4799 4800 if (!q_vector) 4801 return; 4802 4803 /* disassociate q_vector from rings */ 4804 i40e_for_each_ring(ring, q_vector->tx) 4805 ring->q_vector = NULL; 4806 4807 i40e_for_each_ring(ring, q_vector->rx) 4808 ring->q_vector = NULL; 4809 4810 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4811 if (vsi->netdev) 4812 netif_napi_del(&q_vector->napi); 4813 4814 vsi->q_vectors[v_idx] = NULL; 4815 4816 kfree_rcu(q_vector, rcu); 4817 } 4818 4819 /** 4820 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4821 * @vsi: the VSI being un-configured 4822 * 4823 * This frees the memory allocated to the q_vectors and 4824 * deletes references to the NAPI struct. 4825 **/ 4826 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4827 { 4828 int v_idx; 4829 4830 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4831 i40e_free_q_vector(vsi, v_idx); 4832 } 4833 4834 /** 4835 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4836 * @pf: board private structure 4837 **/ 4838 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4839 { 4840 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4841 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4842 pci_disable_msix(pf->pdev); 4843 kfree(pf->msix_entries); 4844 pf->msix_entries = NULL; 4845 kfree(pf->irq_pile); 4846 pf->irq_pile = NULL; 4847 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4848 pci_disable_msi(pf->pdev); 4849 } 4850 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4851 } 4852 4853 /** 4854 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4855 * @pf: board private structure 4856 * 4857 * We go through and clear interrupt specific resources and reset the structure 4858 * to pre-load conditions 4859 **/ 4860 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4861 { 4862 int i; 4863 4864 i40e_free_misc_vector(pf); 4865 4866 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4867 I40E_IWARP_IRQ_PILE_ID); 4868 4869 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4870 for (i = 0; i < pf->num_alloc_vsi; i++) 4871 if (pf->vsi[i]) 4872 i40e_vsi_free_q_vectors(pf->vsi[i]); 4873 i40e_reset_interrupt_capability(pf); 4874 } 4875 4876 /** 4877 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4878 * @vsi: the VSI being configured 4879 **/ 4880 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4881 { 4882 int q_idx; 4883 4884 if (!vsi->netdev) 4885 return; 4886 4887 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4888 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4889 4890 if (q_vector->rx.ring || q_vector->tx.ring) 4891 napi_enable(&q_vector->napi); 4892 } 4893 } 4894 4895 /** 4896 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4897 * @vsi: the VSI being configured 4898 **/ 4899 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4900 { 4901 int q_idx; 4902 4903 if (!vsi->netdev) 4904 return; 4905 4906 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4907 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4908 4909 if (q_vector->rx.ring || q_vector->tx.ring) 4910 napi_disable(&q_vector->napi); 4911 } 4912 } 4913 4914 /** 4915 * i40e_vsi_close - Shut down a VSI 4916 * @vsi: the vsi to be quelled 4917 **/ 4918 static void i40e_vsi_close(struct i40e_vsi *vsi) 4919 { 4920 struct i40e_pf *pf = vsi->back; 4921 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4922 i40e_down(vsi); 4923 i40e_vsi_free_irq(vsi); 4924 i40e_vsi_free_tx_resources(vsi); 4925 i40e_vsi_free_rx_resources(vsi); 4926 vsi->current_netdev_flags = 0; 4927 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4928 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4929 set_bit(__I40E_CLIENT_RESET, pf->state); 4930 } 4931 4932 /** 4933 * i40e_quiesce_vsi - Pause a given VSI 4934 * @vsi: the VSI being paused 4935 **/ 4936 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4937 { 4938 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4939 return; 4940 4941 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4942 if (vsi->netdev && netif_running(vsi->netdev)) 4943 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4944 else 4945 i40e_vsi_close(vsi); 4946 } 4947 4948 /** 4949 * i40e_unquiesce_vsi - Resume a given VSI 4950 * @vsi: the VSI being resumed 4951 **/ 4952 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4953 { 4954 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4955 return; 4956 4957 if (vsi->netdev && netif_running(vsi->netdev)) 4958 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4959 else 4960 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4961 } 4962 4963 /** 4964 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4965 * @pf: the PF 4966 **/ 4967 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4968 { 4969 int v; 4970 4971 for (v = 0; v < pf->num_alloc_vsi; v++) { 4972 if (pf->vsi[v]) 4973 i40e_quiesce_vsi(pf->vsi[v]); 4974 } 4975 } 4976 4977 /** 4978 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4979 * @pf: the PF 4980 **/ 4981 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4982 { 4983 int v; 4984 4985 for (v = 0; v < pf->num_alloc_vsi; v++) { 4986 if (pf->vsi[v]) 4987 i40e_unquiesce_vsi(pf->vsi[v]); 4988 } 4989 } 4990 4991 /** 4992 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4993 * @vsi: the VSI being configured 4994 * 4995 * Wait until all queues on a given VSI have been disabled. 4996 **/ 4997 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4998 { 4999 struct i40e_pf *pf = vsi->back; 5000 int i, pf_q, ret; 5001 5002 pf_q = vsi->base_queue; 5003 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5004 /* Check and wait for the Tx queue */ 5005 ret = i40e_pf_txq_wait(pf, pf_q, false); 5006 if (ret) { 5007 dev_info(&pf->pdev->dev, 5008 "VSI seid %d Tx ring %d disable timeout\n", 5009 vsi->seid, pf_q); 5010 return ret; 5011 } 5012 5013 if (!i40e_enabled_xdp_vsi(vsi)) 5014 goto wait_rx; 5015 5016 /* Check and wait for the XDP Tx queue */ 5017 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5018 false); 5019 if (ret) { 5020 dev_info(&pf->pdev->dev, 5021 "VSI seid %d XDP Tx ring %d disable timeout\n", 5022 vsi->seid, pf_q); 5023 return ret; 5024 } 5025 wait_rx: 5026 /* Check and wait for the Rx queue */ 5027 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5028 if (ret) { 5029 dev_info(&pf->pdev->dev, 5030 "VSI seid %d Rx ring %d disable timeout\n", 5031 vsi->seid, pf_q); 5032 return ret; 5033 } 5034 } 5035 5036 return 0; 5037 } 5038 5039 #ifdef CONFIG_I40E_DCB 5040 /** 5041 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5042 * @pf: the PF 5043 * 5044 * This function waits for the queues to be in disabled state for all the 5045 * VSIs that are managed by this PF. 5046 **/ 5047 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5048 { 5049 int v, ret = 0; 5050 5051 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5052 if (pf->vsi[v]) { 5053 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5054 if (ret) 5055 break; 5056 } 5057 } 5058 5059 return ret; 5060 } 5061 5062 #endif 5063 5064 /** 5065 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5066 * @pf: pointer to PF 5067 * 5068 * Get TC map for ISCSI PF type that will include iSCSI TC 5069 * and LAN TC. 5070 **/ 5071 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5072 { 5073 struct i40e_dcb_app_priority_table app; 5074 struct i40e_hw *hw = &pf->hw; 5075 u8 enabled_tc = 1; /* TC0 is always enabled */ 5076 u8 tc, i; 5077 /* Get the iSCSI APP TLV */ 5078 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5079 5080 for (i = 0; i < dcbcfg->numapps; i++) { 5081 app = dcbcfg->app[i]; 5082 if (app.selector == I40E_APP_SEL_TCPIP && 5083 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5084 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5085 enabled_tc |= BIT(tc); 5086 break; 5087 } 5088 } 5089 5090 return enabled_tc; 5091 } 5092 5093 /** 5094 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5095 * @dcbcfg: the corresponding DCBx configuration structure 5096 * 5097 * Return the number of TCs from given DCBx configuration 5098 **/ 5099 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5100 { 5101 int i, tc_unused = 0; 5102 u8 num_tc = 0; 5103 u8 ret = 0; 5104 5105 /* Scan the ETS Config Priority Table to find 5106 * traffic class enabled for a given priority 5107 * and create a bitmask of enabled TCs 5108 */ 5109 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5110 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5111 5112 /* Now scan the bitmask to check for 5113 * contiguous TCs starting with TC0 5114 */ 5115 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5116 if (num_tc & BIT(i)) { 5117 if (!tc_unused) { 5118 ret++; 5119 } else { 5120 pr_err("Non-contiguous TC - Disabling DCB\n"); 5121 return 1; 5122 } 5123 } else { 5124 tc_unused = 1; 5125 } 5126 } 5127 5128 /* There is always at least TC0 */ 5129 if (!ret) 5130 ret = 1; 5131 5132 return ret; 5133 } 5134 5135 /** 5136 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5137 * @dcbcfg: the corresponding DCBx configuration structure 5138 * 5139 * Query the current DCB configuration and return the number of 5140 * traffic classes enabled from the given DCBX config 5141 **/ 5142 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5143 { 5144 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5145 u8 enabled_tc = 1; 5146 u8 i; 5147 5148 for (i = 0; i < num_tc; i++) 5149 enabled_tc |= BIT(i); 5150 5151 return enabled_tc; 5152 } 5153 5154 /** 5155 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5156 * @pf: PF being queried 5157 * 5158 * Query the current MQPRIO configuration and return the number of 5159 * traffic classes enabled. 5160 **/ 5161 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5162 { 5163 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5164 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5165 u8 enabled_tc = 1, i; 5166 5167 for (i = 1; i < num_tc; i++) 5168 enabled_tc |= BIT(i); 5169 return enabled_tc; 5170 } 5171 5172 /** 5173 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5174 * @pf: PF being queried 5175 * 5176 * Return number of traffic classes enabled for the given PF 5177 **/ 5178 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5179 { 5180 struct i40e_hw *hw = &pf->hw; 5181 u8 i, enabled_tc = 1; 5182 u8 num_tc = 0; 5183 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5184 5185 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5186 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5187 5188 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5189 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5190 return 1; 5191 5192 /* SFP mode will be enabled for all TCs on port */ 5193 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5194 return i40e_dcb_get_num_tc(dcbcfg); 5195 5196 /* MFP mode return count of enabled TCs for this PF */ 5197 if (pf->hw.func_caps.iscsi) 5198 enabled_tc = i40e_get_iscsi_tc_map(pf); 5199 else 5200 return 1; /* Only TC0 */ 5201 5202 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5203 if (enabled_tc & BIT(i)) 5204 num_tc++; 5205 } 5206 return num_tc; 5207 } 5208 5209 /** 5210 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5211 * @pf: PF being queried 5212 * 5213 * Return a bitmap for enabled traffic classes for this PF. 5214 **/ 5215 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5216 { 5217 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5218 return i40e_mqprio_get_enabled_tc(pf); 5219 5220 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5221 * default TC 5222 */ 5223 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5224 return I40E_DEFAULT_TRAFFIC_CLASS; 5225 5226 /* SFP mode we want PF to be enabled for all TCs */ 5227 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5228 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5229 5230 /* MFP enabled and iSCSI PF type */ 5231 if (pf->hw.func_caps.iscsi) 5232 return i40e_get_iscsi_tc_map(pf); 5233 else 5234 return I40E_DEFAULT_TRAFFIC_CLASS; 5235 } 5236 5237 /** 5238 * i40e_vsi_get_bw_info - Query VSI BW Information 5239 * @vsi: the VSI being queried 5240 * 5241 * Returns 0 on success, negative value on failure 5242 **/ 5243 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5244 { 5245 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5246 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5247 struct i40e_pf *pf = vsi->back; 5248 struct i40e_hw *hw = &pf->hw; 5249 i40e_status ret; 5250 u32 tc_bw_max; 5251 int i; 5252 5253 /* Get the VSI level BW configuration */ 5254 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5255 if (ret) { 5256 dev_info(&pf->pdev->dev, 5257 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5258 i40e_stat_str(&pf->hw, ret), 5259 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5260 return -EINVAL; 5261 } 5262 5263 /* Get the VSI level BW configuration per TC */ 5264 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5265 NULL); 5266 if (ret) { 5267 dev_info(&pf->pdev->dev, 5268 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5269 i40e_stat_str(&pf->hw, ret), 5270 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5271 return -EINVAL; 5272 } 5273 5274 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5275 dev_info(&pf->pdev->dev, 5276 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5277 bw_config.tc_valid_bits, 5278 bw_ets_config.tc_valid_bits); 5279 /* Still continuing */ 5280 } 5281 5282 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5283 vsi->bw_max_quanta = bw_config.max_bw; 5284 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5285 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5286 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5287 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5288 vsi->bw_ets_limit_credits[i] = 5289 le16_to_cpu(bw_ets_config.credits[i]); 5290 /* 3 bits out of 4 for each TC */ 5291 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5292 } 5293 5294 return 0; 5295 } 5296 5297 /** 5298 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5299 * @vsi: the VSI being configured 5300 * @enabled_tc: TC bitmap 5301 * @bw_share: BW shared credits per TC 5302 * 5303 * Returns 0 on success, negative value on failure 5304 **/ 5305 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5306 u8 *bw_share) 5307 { 5308 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5309 struct i40e_pf *pf = vsi->back; 5310 i40e_status ret; 5311 int i; 5312 5313 /* There is no need to reset BW when mqprio mode is on. */ 5314 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5315 return 0; 5316 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5317 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5318 if (ret) 5319 dev_info(&pf->pdev->dev, 5320 "Failed to reset tx rate for vsi->seid %u\n", 5321 vsi->seid); 5322 return ret; 5323 } 5324 memset(&bw_data, 0, sizeof(bw_data)); 5325 bw_data.tc_valid_bits = enabled_tc; 5326 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5327 bw_data.tc_bw_credits[i] = bw_share[i]; 5328 5329 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5330 if (ret) { 5331 dev_info(&pf->pdev->dev, 5332 "AQ command Config VSI BW allocation per TC failed = %d\n", 5333 pf->hw.aq.asq_last_status); 5334 return -EINVAL; 5335 } 5336 5337 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5338 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5339 5340 return 0; 5341 } 5342 5343 /** 5344 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5345 * @vsi: the VSI being configured 5346 * @enabled_tc: TC map to be enabled 5347 * 5348 **/ 5349 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5350 { 5351 struct net_device *netdev = vsi->netdev; 5352 struct i40e_pf *pf = vsi->back; 5353 struct i40e_hw *hw = &pf->hw; 5354 u8 netdev_tc = 0; 5355 int i; 5356 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5357 5358 if (!netdev) 5359 return; 5360 5361 if (!enabled_tc) { 5362 netdev_reset_tc(netdev); 5363 return; 5364 } 5365 5366 /* Set up actual enabled TCs on the VSI */ 5367 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5368 return; 5369 5370 /* set per TC queues for the VSI */ 5371 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5372 /* Only set TC queues for enabled tcs 5373 * 5374 * e.g. For a VSI that has TC0 and TC3 enabled the 5375 * enabled_tc bitmap would be 0x00001001; the driver 5376 * will set the numtc for netdev as 2 that will be 5377 * referenced by the netdev layer as TC 0 and 1. 5378 */ 5379 if (vsi->tc_config.enabled_tc & BIT(i)) 5380 netdev_set_tc_queue(netdev, 5381 vsi->tc_config.tc_info[i].netdev_tc, 5382 vsi->tc_config.tc_info[i].qcount, 5383 vsi->tc_config.tc_info[i].qoffset); 5384 } 5385 5386 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5387 return; 5388 5389 /* Assign UP2TC map for the VSI */ 5390 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5391 /* Get the actual TC# for the UP */ 5392 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5393 /* Get the mapped netdev TC# for the UP */ 5394 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5395 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5396 } 5397 } 5398 5399 /** 5400 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5401 * @vsi: the VSI being configured 5402 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5403 **/ 5404 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5405 struct i40e_vsi_context *ctxt) 5406 { 5407 /* copy just the sections touched not the entire info 5408 * since not all sections are valid as returned by 5409 * update vsi params 5410 */ 5411 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5412 memcpy(&vsi->info.queue_mapping, 5413 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5414 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5415 sizeof(vsi->info.tc_mapping)); 5416 } 5417 5418 /** 5419 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5420 * @vsi: VSI to be configured 5421 * @enabled_tc: TC bitmap 5422 * 5423 * This configures a particular VSI for TCs that are mapped to the 5424 * given TC bitmap. It uses default bandwidth share for TCs across 5425 * VSIs to configure TC for a particular VSI. 5426 * 5427 * NOTE: 5428 * It is expected that the VSI queues have been quisced before calling 5429 * this function. 5430 **/ 5431 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5432 { 5433 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5434 struct i40e_pf *pf = vsi->back; 5435 struct i40e_hw *hw = &pf->hw; 5436 struct i40e_vsi_context ctxt; 5437 int ret = 0; 5438 int i; 5439 5440 /* Check if enabled_tc is same as existing or new TCs */ 5441 if (vsi->tc_config.enabled_tc == enabled_tc && 5442 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5443 return ret; 5444 5445 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5446 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5447 if (enabled_tc & BIT(i)) 5448 bw_share[i] = 1; 5449 } 5450 5451 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5452 if (ret) { 5453 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5454 5455 dev_info(&pf->pdev->dev, 5456 "Failed configuring TC map %d for VSI %d\n", 5457 enabled_tc, vsi->seid); 5458 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5459 &bw_config, NULL); 5460 if (ret) { 5461 dev_info(&pf->pdev->dev, 5462 "Failed querying vsi bw info, err %s aq_err %s\n", 5463 i40e_stat_str(hw, ret), 5464 i40e_aq_str(hw, hw->aq.asq_last_status)); 5465 goto out; 5466 } 5467 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5468 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5469 5470 if (!valid_tc) 5471 valid_tc = bw_config.tc_valid_bits; 5472 /* Always enable TC0, no matter what */ 5473 valid_tc |= 1; 5474 dev_info(&pf->pdev->dev, 5475 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5476 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5477 enabled_tc = valid_tc; 5478 } 5479 5480 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5481 if (ret) { 5482 dev_err(&pf->pdev->dev, 5483 "Unable to configure TC map %d for VSI %d\n", 5484 enabled_tc, vsi->seid); 5485 goto out; 5486 } 5487 } 5488 5489 /* Update Queue Pairs Mapping for currently enabled UPs */ 5490 ctxt.seid = vsi->seid; 5491 ctxt.pf_num = vsi->back->hw.pf_id; 5492 ctxt.vf_num = 0; 5493 ctxt.uplink_seid = vsi->uplink_seid; 5494 ctxt.info = vsi->info; 5495 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5496 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5497 if (ret) 5498 goto out; 5499 } else { 5500 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5501 } 5502 5503 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5504 * queues changed. 5505 */ 5506 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5507 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5508 vsi->num_queue_pairs); 5509 ret = i40e_vsi_config_rss(vsi); 5510 if (ret) { 5511 dev_info(&vsi->back->pdev->dev, 5512 "Failed to reconfig rss for num_queues\n"); 5513 return ret; 5514 } 5515 vsi->reconfig_rss = false; 5516 } 5517 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5518 ctxt.info.valid_sections |= 5519 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5520 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5521 } 5522 5523 /* Update the VSI after updating the VSI queue-mapping 5524 * information 5525 */ 5526 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5527 if (ret) { 5528 dev_info(&pf->pdev->dev, 5529 "Update vsi tc config failed, err %s aq_err %s\n", 5530 i40e_stat_str(hw, ret), 5531 i40e_aq_str(hw, hw->aq.asq_last_status)); 5532 goto out; 5533 } 5534 /* update the local VSI info with updated queue map */ 5535 i40e_vsi_update_queue_map(vsi, &ctxt); 5536 vsi->info.valid_sections = 0; 5537 5538 /* Update current VSI BW information */ 5539 ret = i40e_vsi_get_bw_info(vsi); 5540 if (ret) { 5541 dev_info(&pf->pdev->dev, 5542 "Failed updating vsi bw info, err %s aq_err %s\n", 5543 i40e_stat_str(hw, ret), 5544 i40e_aq_str(hw, hw->aq.asq_last_status)); 5545 goto out; 5546 } 5547 5548 /* Update the netdev TC setup */ 5549 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5550 out: 5551 return ret; 5552 } 5553 5554 /** 5555 * i40e_get_link_speed - Returns link speed for the interface 5556 * @vsi: VSI to be configured 5557 * 5558 **/ 5559 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5560 { 5561 struct i40e_pf *pf = vsi->back; 5562 5563 switch (pf->hw.phy.link_info.link_speed) { 5564 case I40E_LINK_SPEED_40GB: 5565 return 40000; 5566 case I40E_LINK_SPEED_25GB: 5567 return 25000; 5568 case I40E_LINK_SPEED_20GB: 5569 return 20000; 5570 case I40E_LINK_SPEED_10GB: 5571 return 10000; 5572 case I40E_LINK_SPEED_1GB: 5573 return 1000; 5574 default: 5575 return -EINVAL; 5576 } 5577 } 5578 5579 /** 5580 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5581 * @vsi: VSI to be configured 5582 * @seid: seid of the channel/VSI 5583 * @max_tx_rate: max TX rate to be configured as BW limit 5584 * 5585 * Helper function to set BW limit for a given VSI 5586 **/ 5587 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5588 { 5589 struct i40e_pf *pf = vsi->back; 5590 u64 credits = 0; 5591 int speed = 0; 5592 int ret = 0; 5593 5594 speed = i40e_get_link_speed(vsi); 5595 if (max_tx_rate > speed) { 5596 dev_err(&pf->pdev->dev, 5597 "Invalid max tx rate %llu specified for VSI seid %d.", 5598 max_tx_rate, seid); 5599 return -EINVAL; 5600 } 5601 if (max_tx_rate && max_tx_rate < 50) { 5602 dev_warn(&pf->pdev->dev, 5603 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5604 max_tx_rate = 50; 5605 } 5606 5607 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5608 credits = max_tx_rate; 5609 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5610 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5611 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5612 if (ret) 5613 dev_err(&pf->pdev->dev, 5614 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5615 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5616 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5617 return ret; 5618 } 5619 5620 /** 5621 * i40e_remove_queue_channels - Remove queue channels for the TCs 5622 * @vsi: VSI to be configured 5623 * 5624 * Remove queue channels for the TCs 5625 **/ 5626 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5627 { 5628 enum i40e_admin_queue_err last_aq_status; 5629 struct i40e_cloud_filter *cfilter; 5630 struct i40e_channel *ch, *ch_tmp; 5631 struct i40e_pf *pf = vsi->back; 5632 struct hlist_node *node; 5633 int ret, i; 5634 5635 /* Reset rss size that was stored when reconfiguring rss for 5636 * channel VSIs with non-power-of-2 queue count. 5637 */ 5638 vsi->current_rss_size = 0; 5639 5640 /* perform cleanup for channels if they exist */ 5641 if (list_empty(&vsi->ch_list)) 5642 return; 5643 5644 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5645 struct i40e_vsi *p_vsi; 5646 5647 list_del(&ch->list); 5648 p_vsi = ch->parent_vsi; 5649 if (!p_vsi || !ch->initialized) { 5650 kfree(ch); 5651 continue; 5652 } 5653 /* Reset queue contexts */ 5654 for (i = 0; i < ch->num_queue_pairs; i++) { 5655 struct i40e_ring *tx_ring, *rx_ring; 5656 u16 pf_q; 5657 5658 pf_q = ch->base_queue + i; 5659 tx_ring = vsi->tx_rings[pf_q]; 5660 tx_ring->ch = NULL; 5661 5662 rx_ring = vsi->rx_rings[pf_q]; 5663 rx_ring->ch = NULL; 5664 } 5665 5666 /* Reset BW configured for this VSI via mqprio */ 5667 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5668 if (ret) 5669 dev_info(&vsi->back->pdev->dev, 5670 "Failed to reset tx rate for ch->seid %u\n", 5671 ch->seid); 5672 5673 /* delete cloud filters associated with this channel */ 5674 hlist_for_each_entry_safe(cfilter, node, 5675 &pf->cloud_filter_list, cloud_node) { 5676 if (cfilter->seid != ch->seid) 5677 continue; 5678 5679 hash_del(&cfilter->cloud_node); 5680 if (cfilter->dst_port) 5681 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5682 cfilter, 5683 false); 5684 else 5685 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5686 false); 5687 last_aq_status = pf->hw.aq.asq_last_status; 5688 if (ret) 5689 dev_info(&pf->pdev->dev, 5690 "Failed to delete cloud filter, err %s aq_err %s\n", 5691 i40e_stat_str(&pf->hw, ret), 5692 i40e_aq_str(&pf->hw, last_aq_status)); 5693 kfree(cfilter); 5694 } 5695 5696 /* delete VSI from FW */ 5697 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5698 NULL); 5699 if (ret) 5700 dev_err(&vsi->back->pdev->dev, 5701 "unable to remove channel (%d) for parent VSI(%d)\n", 5702 ch->seid, p_vsi->seid); 5703 kfree(ch); 5704 } 5705 INIT_LIST_HEAD(&vsi->ch_list); 5706 } 5707 5708 /** 5709 * i40e_is_any_channel - channel exist or not 5710 * @vsi: ptr to VSI to which channels are associated with 5711 * 5712 * Returns true or false if channel(s) exist for associated VSI or not 5713 **/ 5714 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5715 { 5716 struct i40e_channel *ch, *ch_tmp; 5717 5718 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5719 if (ch->initialized) 5720 return true; 5721 } 5722 5723 return false; 5724 } 5725 5726 /** 5727 * i40e_get_max_queues_for_channel 5728 * @vsi: ptr to VSI to which channels are associated with 5729 * 5730 * Helper function which returns max value among the queue counts set on the 5731 * channels/TCs created. 5732 **/ 5733 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5734 { 5735 struct i40e_channel *ch, *ch_tmp; 5736 int max = 0; 5737 5738 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5739 if (!ch->initialized) 5740 continue; 5741 if (ch->num_queue_pairs > max) 5742 max = ch->num_queue_pairs; 5743 } 5744 5745 return max; 5746 } 5747 5748 /** 5749 * i40e_validate_num_queues - validate num_queues w.r.t channel 5750 * @pf: ptr to PF device 5751 * @num_queues: number of queues 5752 * @vsi: the parent VSI 5753 * @reconfig_rss: indicates should the RSS be reconfigured or not 5754 * 5755 * This function validates number of queues in the context of new channel 5756 * which is being established and determines if RSS should be reconfigured 5757 * or not for parent VSI. 5758 **/ 5759 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5760 struct i40e_vsi *vsi, bool *reconfig_rss) 5761 { 5762 int max_ch_queues; 5763 5764 if (!reconfig_rss) 5765 return -EINVAL; 5766 5767 *reconfig_rss = false; 5768 if (vsi->current_rss_size) { 5769 if (num_queues > vsi->current_rss_size) { 5770 dev_dbg(&pf->pdev->dev, 5771 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5772 num_queues, vsi->current_rss_size); 5773 return -EINVAL; 5774 } else if ((num_queues < vsi->current_rss_size) && 5775 (!is_power_of_2(num_queues))) { 5776 dev_dbg(&pf->pdev->dev, 5777 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5778 num_queues, vsi->current_rss_size); 5779 return -EINVAL; 5780 } 5781 } 5782 5783 if (!is_power_of_2(num_queues)) { 5784 /* Find the max num_queues configured for channel if channel 5785 * exist. 5786 * if channel exist, then enforce 'num_queues' to be more than 5787 * max ever queues configured for channel. 5788 */ 5789 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5790 if (num_queues < max_ch_queues) { 5791 dev_dbg(&pf->pdev->dev, 5792 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5793 num_queues, max_ch_queues); 5794 return -EINVAL; 5795 } 5796 *reconfig_rss = true; 5797 } 5798 5799 return 0; 5800 } 5801 5802 /** 5803 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5804 * @vsi: the VSI being setup 5805 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5806 * 5807 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5808 **/ 5809 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5810 { 5811 struct i40e_pf *pf = vsi->back; 5812 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5813 struct i40e_hw *hw = &pf->hw; 5814 int local_rss_size; 5815 u8 *lut; 5816 int ret; 5817 5818 if (!vsi->rss_size) 5819 return -EINVAL; 5820 5821 if (rss_size > vsi->rss_size) 5822 return -EINVAL; 5823 5824 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5825 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5826 if (!lut) 5827 return -ENOMEM; 5828 5829 /* Ignoring user configured lut if there is one */ 5830 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5831 5832 /* Use user configured hash key if there is one, otherwise 5833 * use default. 5834 */ 5835 if (vsi->rss_hkey_user) 5836 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5837 else 5838 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5839 5840 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5841 if (ret) { 5842 dev_info(&pf->pdev->dev, 5843 "Cannot set RSS lut, err %s aq_err %s\n", 5844 i40e_stat_str(hw, ret), 5845 i40e_aq_str(hw, hw->aq.asq_last_status)); 5846 kfree(lut); 5847 return ret; 5848 } 5849 kfree(lut); 5850 5851 /* Do the update w.r.t. storing rss_size */ 5852 if (!vsi->orig_rss_size) 5853 vsi->orig_rss_size = vsi->rss_size; 5854 vsi->current_rss_size = local_rss_size; 5855 5856 return ret; 5857 } 5858 5859 /** 5860 * i40e_channel_setup_queue_map - Setup a channel queue map 5861 * @pf: ptr to PF device 5862 * @ctxt: VSI context structure 5863 * @ch: ptr to channel structure 5864 * 5865 * Setup queue map for a specific channel 5866 **/ 5867 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5868 struct i40e_vsi_context *ctxt, 5869 struct i40e_channel *ch) 5870 { 5871 u16 qcount, qmap, sections = 0; 5872 u8 offset = 0; 5873 int pow; 5874 5875 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5876 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5877 5878 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5879 ch->num_queue_pairs = qcount; 5880 5881 /* find the next higher power-of-2 of num queue pairs */ 5882 pow = ilog2(qcount); 5883 if (!is_power_of_2(qcount)) 5884 pow++; 5885 5886 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5887 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5888 5889 /* Setup queue TC[0].qmap for given VSI context */ 5890 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5891 5892 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5893 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5894 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5895 ctxt->info.valid_sections |= cpu_to_le16(sections); 5896 } 5897 5898 /** 5899 * i40e_add_channel - add a channel by adding VSI 5900 * @pf: ptr to PF device 5901 * @uplink_seid: underlying HW switching element (VEB) ID 5902 * @ch: ptr to channel structure 5903 * 5904 * Add a channel (VSI) using add_vsi and queue_map 5905 **/ 5906 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5907 struct i40e_channel *ch) 5908 { 5909 struct i40e_hw *hw = &pf->hw; 5910 struct i40e_vsi_context ctxt; 5911 u8 enabled_tc = 0x1; /* TC0 enabled */ 5912 int ret; 5913 5914 if (ch->type != I40E_VSI_VMDQ2) { 5915 dev_info(&pf->pdev->dev, 5916 "add new vsi failed, ch->type %d\n", ch->type); 5917 return -EINVAL; 5918 } 5919 5920 memset(&ctxt, 0, sizeof(ctxt)); 5921 ctxt.pf_num = hw->pf_id; 5922 ctxt.vf_num = 0; 5923 ctxt.uplink_seid = uplink_seid; 5924 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5925 if (ch->type == I40E_VSI_VMDQ2) 5926 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5927 5928 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5929 ctxt.info.valid_sections |= 5930 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5931 ctxt.info.switch_id = 5932 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5933 } 5934 5935 /* Set queue map for a given VSI context */ 5936 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5937 5938 /* Now time to create VSI */ 5939 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5940 if (ret) { 5941 dev_info(&pf->pdev->dev, 5942 "add new vsi failed, err %s aq_err %s\n", 5943 i40e_stat_str(&pf->hw, ret), 5944 i40e_aq_str(&pf->hw, 5945 pf->hw.aq.asq_last_status)); 5946 return -ENOENT; 5947 } 5948 5949 /* Success, update channel, set enabled_tc only if the channel 5950 * is not a macvlan 5951 */ 5952 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5953 ch->seid = ctxt.seid; 5954 ch->vsi_number = ctxt.vsi_number; 5955 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 5956 5957 /* copy just the sections touched not the entire info 5958 * since not all sections are valid as returned by 5959 * update vsi params 5960 */ 5961 ch->info.mapping_flags = ctxt.info.mapping_flags; 5962 memcpy(&ch->info.queue_mapping, 5963 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5964 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5965 sizeof(ctxt.info.tc_mapping)); 5966 5967 return 0; 5968 } 5969 5970 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5971 u8 *bw_share) 5972 { 5973 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5974 i40e_status ret; 5975 int i; 5976 5977 memset(&bw_data, 0, sizeof(bw_data)); 5978 bw_data.tc_valid_bits = ch->enabled_tc; 5979 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5980 bw_data.tc_bw_credits[i] = bw_share[i]; 5981 5982 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5983 &bw_data, NULL); 5984 if (ret) { 5985 dev_info(&vsi->back->pdev->dev, 5986 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5987 vsi->back->hw.aq.asq_last_status, ch->seid); 5988 return -EINVAL; 5989 } 5990 5991 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5992 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5993 5994 return 0; 5995 } 5996 5997 /** 5998 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5999 * @pf: ptr to PF device 6000 * @vsi: the VSI being setup 6001 * @ch: ptr to channel structure 6002 * 6003 * Configure TX rings associated with channel (VSI) since queues are being 6004 * from parent VSI. 6005 **/ 6006 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6007 struct i40e_vsi *vsi, 6008 struct i40e_channel *ch) 6009 { 6010 i40e_status ret; 6011 int i; 6012 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6013 6014 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6015 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6016 if (ch->enabled_tc & BIT(i)) 6017 bw_share[i] = 1; 6018 } 6019 6020 /* configure BW for new VSI */ 6021 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6022 if (ret) { 6023 dev_info(&vsi->back->pdev->dev, 6024 "Failed configuring TC map %d for channel (seid %u)\n", 6025 ch->enabled_tc, ch->seid); 6026 return ret; 6027 } 6028 6029 for (i = 0; i < ch->num_queue_pairs; i++) { 6030 struct i40e_ring *tx_ring, *rx_ring; 6031 u16 pf_q; 6032 6033 pf_q = ch->base_queue + i; 6034 6035 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6036 * context 6037 */ 6038 tx_ring = vsi->tx_rings[pf_q]; 6039 tx_ring->ch = ch; 6040 6041 /* Get the RX ring ptr */ 6042 rx_ring = vsi->rx_rings[pf_q]; 6043 rx_ring->ch = ch; 6044 } 6045 6046 return 0; 6047 } 6048 6049 /** 6050 * i40e_setup_hw_channel - setup new channel 6051 * @pf: ptr to PF device 6052 * @vsi: the VSI being setup 6053 * @ch: ptr to channel structure 6054 * @uplink_seid: underlying HW switching element (VEB) ID 6055 * @type: type of channel to be created (VMDq2/VF) 6056 * 6057 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6058 * and configures TX rings accordingly 6059 **/ 6060 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6061 struct i40e_vsi *vsi, 6062 struct i40e_channel *ch, 6063 u16 uplink_seid, u8 type) 6064 { 6065 int ret; 6066 6067 ch->initialized = false; 6068 ch->base_queue = vsi->next_base_queue; 6069 ch->type = type; 6070 6071 /* Proceed with creation of channel (VMDq2) VSI */ 6072 ret = i40e_add_channel(pf, uplink_seid, ch); 6073 if (ret) { 6074 dev_info(&pf->pdev->dev, 6075 "failed to add_channel using uplink_seid %u\n", 6076 uplink_seid); 6077 return ret; 6078 } 6079 6080 /* Mark the successful creation of channel */ 6081 ch->initialized = true; 6082 6083 /* Reconfigure TX queues using QTX_CTL register */ 6084 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6085 if (ret) { 6086 dev_info(&pf->pdev->dev, 6087 "failed to configure TX rings for channel %u\n", 6088 ch->seid); 6089 return ret; 6090 } 6091 6092 /* update 'next_base_queue' */ 6093 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6094 dev_dbg(&pf->pdev->dev, 6095 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6096 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6097 ch->num_queue_pairs, 6098 vsi->next_base_queue); 6099 return ret; 6100 } 6101 6102 /** 6103 * i40e_setup_channel - setup new channel using uplink element 6104 * @pf: ptr to PF device 6105 * @vsi: pointer to the VSI to set up the channel within 6106 * @ch: ptr to channel structure 6107 * 6108 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6109 * and uplink switching element (uplink_seid) 6110 **/ 6111 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6112 struct i40e_channel *ch) 6113 { 6114 u8 vsi_type; 6115 u16 seid; 6116 int ret; 6117 6118 if (vsi->type == I40E_VSI_MAIN) { 6119 vsi_type = I40E_VSI_VMDQ2; 6120 } else { 6121 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6122 vsi->type); 6123 return false; 6124 } 6125 6126 /* underlying switching element */ 6127 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6128 6129 /* create channel (VSI), configure TX rings */ 6130 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6131 if (ret) { 6132 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6133 return false; 6134 } 6135 6136 return ch->initialized ? true : false; 6137 } 6138 6139 /** 6140 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6141 * @vsi: ptr to VSI which has PF backing 6142 * 6143 * Sets up switch mode correctly if it needs to be changed and perform 6144 * what are allowed modes. 6145 **/ 6146 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6147 { 6148 u8 mode; 6149 struct i40e_pf *pf = vsi->back; 6150 struct i40e_hw *hw = &pf->hw; 6151 int ret; 6152 6153 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6154 if (ret) 6155 return -EINVAL; 6156 6157 if (hw->dev_caps.switch_mode) { 6158 /* if switch mode is set, support mode2 (non-tunneled for 6159 * cloud filter) for now 6160 */ 6161 u32 switch_mode = hw->dev_caps.switch_mode & 6162 I40E_SWITCH_MODE_MASK; 6163 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6164 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6165 return 0; 6166 dev_err(&pf->pdev->dev, 6167 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6168 hw->dev_caps.switch_mode); 6169 return -EINVAL; 6170 } 6171 } 6172 6173 /* Set Bit 7 to be valid */ 6174 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6175 6176 /* Set L4type for TCP support */ 6177 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6178 6179 /* Set cloud filter mode */ 6180 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6181 6182 /* Prep mode field for set_switch_config */ 6183 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6184 pf->last_sw_conf_valid_flags, 6185 mode, NULL); 6186 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6187 dev_err(&pf->pdev->dev, 6188 "couldn't set switch config bits, err %s aq_err %s\n", 6189 i40e_stat_str(hw, ret), 6190 i40e_aq_str(hw, 6191 hw->aq.asq_last_status)); 6192 6193 return ret; 6194 } 6195 6196 /** 6197 * i40e_create_queue_channel - function to create channel 6198 * @vsi: VSI to be configured 6199 * @ch: ptr to channel (it contains channel specific params) 6200 * 6201 * This function creates channel (VSI) using num_queues specified by user, 6202 * reconfigs RSS if needed. 6203 **/ 6204 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6205 struct i40e_channel *ch) 6206 { 6207 struct i40e_pf *pf = vsi->back; 6208 bool reconfig_rss; 6209 int err; 6210 6211 if (!ch) 6212 return -EINVAL; 6213 6214 if (!ch->num_queue_pairs) { 6215 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6216 ch->num_queue_pairs); 6217 return -EINVAL; 6218 } 6219 6220 /* validate user requested num_queues for channel */ 6221 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6222 &reconfig_rss); 6223 if (err) { 6224 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6225 ch->num_queue_pairs); 6226 return -EINVAL; 6227 } 6228 6229 /* By default we are in VEPA mode, if this is the first VF/VMDq 6230 * VSI to be added switch to VEB mode. 6231 */ 6232 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6233 (!i40e_is_any_channel(vsi))) { 6234 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6235 dev_dbg(&pf->pdev->dev, 6236 "Failed to create channel. Override queues (%u) not power of 2\n", 6237 vsi->tc_config.tc_info[0].qcount); 6238 return -EINVAL; 6239 } 6240 6241 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6242 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6243 6244 if (vsi->type == I40E_VSI_MAIN) { 6245 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6246 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6247 true); 6248 else 6249 i40e_do_reset_safe(pf, 6250 I40E_PF_RESET_FLAG); 6251 } 6252 } 6253 /* now onwards for main VSI, number of queues will be value 6254 * of TC0's queue count 6255 */ 6256 } 6257 6258 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6259 * it should be more than num_queues 6260 */ 6261 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6262 dev_dbg(&pf->pdev->dev, 6263 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6264 vsi->cnt_q_avail, ch->num_queue_pairs); 6265 return -EINVAL; 6266 } 6267 6268 /* reconfig_rss only if vsi type is MAIN_VSI */ 6269 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6270 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6271 if (err) { 6272 dev_info(&pf->pdev->dev, 6273 "Error: unable to reconfig rss for num_queues (%u)\n", 6274 ch->num_queue_pairs); 6275 return -EINVAL; 6276 } 6277 } 6278 6279 if (!i40e_setup_channel(pf, vsi, ch)) { 6280 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6281 return -EINVAL; 6282 } 6283 6284 dev_info(&pf->pdev->dev, 6285 "Setup channel (id:%u) utilizing num_queues %d\n", 6286 ch->seid, ch->num_queue_pairs); 6287 6288 /* configure VSI for BW limit */ 6289 if (ch->max_tx_rate) { 6290 u64 credits = ch->max_tx_rate; 6291 6292 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6293 return -EINVAL; 6294 6295 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6296 dev_dbg(&pf->pdev->dev, 6297 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6298 ch->max_tx_rate, 6299 credits, 6300 ch->seid); 6301 } 6302 6303 /* in case of VF, this will be main SRIOV VSI */ 6304 ch->parent_vsi = vsi; 6305 6306 /* and update main_vsi's count for queue_available to use */ 6307 vsi->cnt_q_avail -= ch->num_queue_pairs; 6308 6309 return 0; 6310 } 6311 6312 /** 6313 * i40e_configure_queue_channels - Add queue channel for the given TCs 6314 * @vsi: VSI to be configured 6315 * 6316 * Configures queue channel mapping to the given TCs 6317 **/ 6318 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6319 { 6320 struct i40e_channel *ch; 6321 u64 max_rate = 0; 6322 int ret = 0, i; 6323 6324 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6325 vsi->tc_seid_map[0] = vsi->seid; 6326 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6327 if (vsi->tc_config.enabled_tc & BIT(i)) { 6328 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6329 if (!ch) { 6330 ret = -ENOMEM; 6331 goto err_free; 6332 } 6333 6334 INIT_LIST_HEAD(&ch->list); 6335 ch->num_queue_pairs = 6336 vsi->tc_config.tc_info[i].qcount; 6337 ch->base_queue = 6338 vsi->tc_config.tc_info[i].qoffset; 6339 6340 /* Bandwidth limit through tc interface is in bytes/s, 6341 * change to Mbit/s 6342 */ 6343 max_rate = vsi->mqprio_qopt.max_rate[i]; 6344 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6345 ch->max_tx_rate = max_rate; 6346 6347 list_add_tail(&ch->list, &vsi->ch_list); 6348 6349 ret = i40e_create_queue_channel(vsi, ch); 6350 if (ret) { 6351 dev_err(&vsi->back->pdev->dev, 6352 "Failed creating queue channel with TC%d: queues %d\n", 6353 i, ch->num_queue_pairs); 6354 goto err_free; 6355 } 6356 vsi->tc_seid_map[i] = ch->seid; 6357 } 6358 } 6359 return ret; 6360 6361 err_free: 6362 i40e_remove_queue_channels(vsi); 6363 return ret; 6364 } 6365 6366 /** 6367 * i40e_veb_config_tc - Configure TCs for given VEB 6368 * @veb: given VEB 6369 * @enabled_tc: TC bitmap 6370 * 6371 * Configures given TC bitmap for VEB (switching) element 6372 **/ 6373 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6374 { 6375 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6376 struct i40e_pf *pf = veb->pf; 6377 int ret = 0; 6378 int i; 6379 6380 /* No TCs or already enabled TCs just return */ 6381 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6382 return ret; 6383 6384 bw_data.tc_valid_bits = enabled_tc; 6385 /* bw_data.absolute_credits is not set (relative) */ 6386 6387 /* Enable ETS TCs with equal BW Share for now */ 6388 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6389 if (enabled_tc & BIT(i)) 6390 bw_data.tc_bw_share_credits[i] = 1; 6391 } 6392 6393 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6394 &bw_data, NULL); 6395 if (ret) { 6396 dev_info(&pf->pdev->dev, 6397 "VEB bw config failed, err %s aq_err %s\n", 6398 i40e_stat_str(&pf->hw, ret), 6399 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6400 goto out; 6401 } 6402 6403 /* Update the BW information */ 6404 ret = i40e_veb_get_bw_info(veb); 6405 if (ret) { 6406 dev_info(&pf->pdev->dev, 6407 "Failed getting veb bw config, err %s aq_err %s\n", 6408 i40e_stat_str(&pf->hw, ret), 6409 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6410 } 6411 6412 out: 6413 return ret; 6414 } 6415 6416 #ifdef CONFIG_I40E_DCB 6417 /** 6418 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6419 * @pf: PF struct 6420 * 6421 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6422 * the caller would've quiesce all the VSIs before calling 6423 * this function 6424 **/ 6425 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6426 { 6427 u8 tc_map = 0; 6428 int ret; 6429 u8 v; 6430 6431 /* Enable the TCs available on PF to all VEBs */ 6432 tc_map = i40e_pf_get_tc_map(pf); 6433 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6434 return; 6435 6436 for (v = 0; v < I40E_MAX_VEB; v++) { 6437 if (!pf->veb[v]) 6438 continue; 6439 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6440 if (ret) { 6441 dev_info(&pf->pdev->dev, 6442 "Failed configuring TC for VEB seid=%d\n", 6443 pf->veb[v]->seid); 6444 /* Will try to configure as many components */ 6445 } 6446 } 6447 6448 /* Update each VSI */ 6449 for (v = 0; v < pf->num_alloc_vsi; v++) { 6450 if (!pf->vsi[v]) 6451 continue; 6452 6453 /* - Enable all TCs for the LAN VSI 6454 * - For all others keep them at TC0 for now 6455 */ 6456 if (v == pf->lan_vsi) 6457 tc_map = i40e_pf_get_tc_map(pf); 6458 else 6459 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6460 6461 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6462 if (ret) { 6463 dev_info(&pf->pdev->dev, 6464 "Failed configuring TC for VSI seid=%d\n", 6465 pf->vsi[v]->seid); 6466 /* Will try to configure as many components */ 6467 } else { 6468 /* Re-configure VSI vectors based on updated TC map */ 6469 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6470 if (pf->vsi[v]->netdev) 6471 i40e_dcbnl_set_all(pf->vsi[v]); 6472 } 6473 } 6474 } 6475 6476 /** 6477 * i40e_resume_port_tx - Resume port Tx 6478 * @pf: PF struct 6479 * 6480 * Resume a port's Tx and issue a PF reset in case of failure to 6481 * resume. 6482 **/ 6483 static int i40e_resume_port_tx(struct i40e_pf *pf) 6484 { 6485 struct i40e_hw *hw = &pf->hw; 6486 int ret; 6487 6488 ret = i40e_aq_resume_port_tx(hw, NULL); 6489 if (ret) { 6490 dev_info(&pf->pdev->dev, 6491 "Resume Port Tx failed, err %s aq_err %s\n", 6492 i40e_stat_str(&pf->hw, ret), 6493 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6494 /* Schedule PF reset to recover */ 6495 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6496 i40e_service_event_schedule(pf); 6497 } 6498 6499 return ret; 6500 } 6501 6502 /** 6503 * i40e_suspend_port_tx - Suspend port Tx 6504 * @pf: PF struct 6505 * 6506 * Suspend a port's Tx and issue a PF reset in case of failure. 6507 **/ 6508 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6509 { 6510 struct i40e_hw *hw = &pf->hw; 6511 int ret; 6512 6513 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6514 if (ret) { 6515 dev_info(&pf->pdev->dev, 6516 "Suspend Port Tx failed, err %s aq_err %s\n", 6517 i40e_stat_str(&pf->hw, ret), 6518 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6519 /* Schedule PF reset to recover */ 6520 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6521 i40e_service_event_schedule(pf); 6522 } 6523 6524 return ret; 6525 } 6526 6527 /** 6528 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6529 * @pf: PF being configured 6530 * @new_cfg: New DCBX configuration 6531 * 6532 * Program DCB settings into HW and reconfigure VEB/VSIs on 6533 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6534 **/ 6535 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6536 struct i40e_dcbx_config *new_cfg) 6537 { 6538 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6539 int ret; 6540 6541 /* Check if need reconfiguration */ 6542 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6543 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6544 return 0; 6545 } 6546 6547 /* Config change disable all VSIs */ 6548 i40e_pf_quiesce_all_vsi(pf); 6549 6550 /* Copy the new config to the current config */ 6551 *old_cfg = *new_cfg; 6552 old_cfg->etsrec = old_cfg->etscfg; 6553 ret = i40e_set_dcb_config(&pf->hw); 6554 if (ret) { 6555 dev_info(&pf->pdev->dev, 6556 "Set DCB Config failed, err %s aq_err %s\n", 6557 i40e_stat_str(&pf->hw, ret), 6558 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6559 goto out; 6560 } 6561 6562 /* Changes in configuration update VEB/VSI */ 6563 i40e_dcb_reconfigure(pf); 6564 out: 6565 /* In case of reset do not try to resume anything */ 6566 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6567 /* Re-start the VSIs if disabled */ 6568 ret = i40e_resume_port_tx(pf); 6569 /* In case of error no point in resuming VSIs */ 6570 if (ret) 6571 goto err; 6572 i40e_pf_unquiesce_all_vsi(pf); 6573 } 6574 err: 6575 return ret; 6576 } 6577 6578 /** 6579 * i40e_hw_dcb_config - Program new DCBX settings into HW 6580 * @pf: PF being configured 6581 * @new_cfg: New DCBX configuration 6582 * 6583 * Program DCB settings into HW and reconfigure VEB/VSIs on 6584 * given PF 6585 **/ 6586 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6587 { 6588 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6589 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6590 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6591 struct i40e_dcbx_config *old_cfg; 6592 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6593 struct i40e_rx_pb_config pb_cfg; 6594 struct i40e_hw *hw = &pf->hw; 6595 u8 num_ports = hw->num_ports; 6596 bool need_reconfig; 6597 int ret = -EINVAL; 6598 u8 lltc_map = 0; 6599 u8 tc_map = 0; 6600 u8 new_numtc; 6601 u8 i; 6602 6603 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6604 /* Un-pack information to Program ETS HW via shared API 6605 * numtc, tcmap 6606 * LLTC map 6607 * ETS/NON-ETS arbiter mode 6608 * max exponent (credit refills) 6609 * Total number of ports 6610 * PFC priority bit-map 6611 * Priority Table 6612 * BW % per TC 6613 * Arbiter mode between UPs sharing same TC 6614 * TSA table (ETS or non-ETS) 6615 * EEE enabled or not 6616 * MFS TC table 6617 */ 6618 6619 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6620 6621 memset(&ets_data, 0, sizeof(ets_data)); 6622 for (i = 0; i < new_numtc; i++) { 6623 tc_map |= BIT(i); 6624 switch (new_cfg->etscfg.tsatable[i]) { 6625 case I40E_IEEE_TSA_ETS: 6626 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6627 ets_data.tc_bw_share_credits[i] = 6628 new_cfg->etscfg.tcbwtable[i]; 6629 break; 6630 case I40E_IEEE_TSA_STRICT: 6631 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6632 lltc_map |= BIT(i); 6633 ets_data.tc_bw_share_credits[i] = 6634 I40E_DCB_STRICT_PRIO_CREDITS; 6635 break; 6636 default: 6637 /* Invalid TSA type */ 6638 need_reconfig = false; 6639 goto out; 6640 } 6641 } 6642 6643 old_cfg = &hw->local_dcbx_config; 6644 /* Check if need reconfiguration */ 6645 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6646 6647 /* If needed, enable/disable frame tagging, disable all VSIs 6648 * and suspend port tx 6649 */ 6650 if (need_reconfig) { 6651 /* Enable DCB tagging only when more than one TC */ 6652 if (new_numtc > 1) 6653 pf->flags |= I40E_FLAG_DCB_ENABLED; 6654 else 6655 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6656 6657 set_bit(__I40E_PORT_SUSPENDED, pf->state); 6658 /* Reconfiguration needed quiesce all VSIs */ 6659 i40e_pf_quiesce_all_vsi(pf); 6660 ret = i40e_suspend_port_tx(pf); 6661 if (ret) 6662 goto err; 6663 } 6664 6665 /* Configure Port ETS Tx Scheduler */ 6666 ets_data.tc_valid_bits = tc_map; 6667 ets_data.tc_strict_priority_flags = lltc_map; 6668 ret = i40e_aq_config_switch_comp_ets 6669 (hw, pf->mac_seid, &ets_data, 6670 i40e_aqc_opc_modify_switching_comp_ets, NULL); 6671 if (ret) { 6672 dev_info(&pf->pdev->dev, 6673 "Modify Port ETS failed, err %s aq_err %s\n", 6674 i40e_stat_str(&pf->hw, ret), 6675 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6676 goto out; 6677 } 6678 6679 /* Configure Rx ETS HW */ 6680 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 6681 i40e_dcb_hw_set_num_tc(hw, new_numtc); 6682 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 6683 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 6684 I40E_DCB_DEFAULT_MAX_EXPONENT, 6685 lltc_map); 6686 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 6687 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 6688 prio_type); 6689 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 6690 new_cfg->etscfg.prioritytable); 6691 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 6692 6693 /* Configure Rx Packet Buffers in HW */ 6694 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6695 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 6696 mfs_tc[i] += I40E_PACKET_HDR_PAD; 6697 } 6698 6699 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 6700 false, new_cfg->pfc.pfcenable, 6701 mfs_tc, &pb_cfg); 6702 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 6703 6704 /* Update the local Rx Packet buffer config */ 6705 pf->pb_cfg = pb_cfg; 6706 6707 /* Inform the FW about changes to DCB configuration */ 6708 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 6709 if (ret) { 6710 dev_info(&pf->pdev->dev, 6711 "DCB Updated failed, err %s aq_err %s\n", 6712 i40e_stat_str(&pf->hw, ret), 6713 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6714 goto out; 6715 } 6716 6717 /* Update the port DCBx configuration */ 6718 *old_cfg = *new_cfg; 6719 6720 /* Changes in configuration update VEB/VSI */ 6721 i40e_dcb_reconfigure(pf); 6722 out: 6723 /* Re-start the VSIs if disabled */ 6724 if (need_reconfig) { 6725 ret = i40e_resume_port_tx(pf); 6726 6727 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 6728 /* In case of error no point in resuming VSIs */ 6729 if (ret) 6730 goto err; 6731 6732 /* Wait for the PF's queues to be disabled */ 6733 ret = i40e_pf_wait_queues_disabled(pf); 6734 if (ret) { 6735 /* Schedule PF reset to recover */ 6736 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6737 i40e_service_event_schedule(pf); 6738 goto err; 6739 } else { 6740 i40e_pf_unquiesce_all_vsi(pf); 6741 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6742 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 6743 } 6744 /* registers are set, lets apply */ 6745 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) 6746 ret = i40e_hw_set_dcb_config(pf, new_cfg); 6747 } 6748 6749 err: 6750 return ret; 6751 } 6752 6753 /** 6754 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 6755 * @pf: PF being queried 6756 * 6757 * Set default DCB configuration in case DCB is to be done in SW. 6758 **/ 6759 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 6760 { 6761 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 6762 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6763 struct i40e_hw *hw = &pf->hw; 6764 int err; 6765 6766 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) { 6767 /* Update the local cached instance with TC0 ETS */ 6768 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 6769 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6770 pf->tmp_cfg.etscfg.maxtcs = 0; 6771 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6772 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 6773 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 6774 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 6775 /* FW needs one App to configure HW */ 6776 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 6777 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 6778 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 6779 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 6780 6781 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 6782 } 6783 6784 memset(&ets_data, 0, sizeof(ets_data)); 6785 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 6786 ets_data.tc_strict_priority_flags = 0; /* ETS */ 6787 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 6788 6789 /* Enable ETS on the Physical port */ 6790 err = i40e_aq_config_switch_comp_ets 6791 (hw, pf->mac_seid, &ets_data, 6792 i40e_aqc_opc_enable_switching_comp_ets, NULL); 6793 if (err) { 6794 dev_info(&pf->pdev->dev, 6795 "Enable Port ETS failed, err %s aq_err %s\n", 6796 i40e_stat_str(&pf->hw, err), 6797 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6798 err = -ENOENT; 6799 goto out; 6800 } 6801 6802 /* Update the local cached instance with TC0 ETS */ 6803 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6804 dcb_cfg->etscfg.cbs = 0; 6805 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 6806 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6807 6808 out: 6809 return err; 6810 } 6811 6812 /** 6813 * i40e_init_pf_dcb - Initialize DCB configuration 6814 * @pf: PF being configured 6815 * 6816 * Query the current DCB configuration and cache it 6817 * in the hardware structure 6818 **/ 6819 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6820 { 6821 struct i40e_hw *hw = &pf->hw; 6822 int err; 6823 6824 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6825 * Also do not enable DCBx if FW LLDP agent is disabled 6826 */ 6827 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT) { 6828 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 6829 err = I40E_NOT_SUPPORTED; 6830 goto out; 6831 } 6832 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) { 6833 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 6834 err = i40e_dcb_sw_default_config(pf); 6835 if (err) { 6836 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 6837 goto out; 6838 } 6839 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 6840 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 6841 DCB_CAP_DCBX_VER_IEEE; 6842 /* at init capable but disabled */ 6843 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6844 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6845 goto out; 6846 } 6847 err = i40e_init_dcb(hw, true); 6848 if (!err) { 6849 /* Device/Function is not DCBX capable */ 6850 if ((!hw->func_caps.dcb) || 6851 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6852 dev_info(&pf->pdev->dev, 6853 "DCBX offload is not supported or is disabled for this PF.\n"); 6854 } else { 6855 /* When status is not DISABLED then DCBX in FW */ 6856 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6857 DCB_CAP_DCBX_VER_IEEE; 6858 6859 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6860 /* Enable DCB tagging only when more than one TC 6861 * or explicitly disable if only one TC 6862 */ 6863 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6864 pf->flags |= I40E_FLAG_DCB_ENABLED; 6865 else 6866 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6867 dev_dbg(&pf->pdev->dev, 6868 "DCBX offload is supported for this PF.\n"); 6869 } 6870 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6871 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6872 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6873 } else { 6874 dev_info(&pf->pdev->dev, 6875 "Query for DCB configuration failed, err %s aq_err %s\n", 6876 i40e_stat_str(&pf->hw, err), 6877 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6878 } 6879 6880 out: 6881 return err; 6882 } 6883 #endif /* CONFIG_I40E_DCB */ 6884 6885 /** 6886 * i40e_print_link_message - print link up or down 6887 * @vsi: the VSI for which link needs a message 6888 * @isup: true of link is up, false otherwise 6889 */ 6890 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6891 { 6892 enum i40e_aq_link_speed new_speed; 6893 struct i40e_pf *pf = vsi->back; 6894 char *speed = "Unknown"; 6895 char *fc = "Unknown"; 6896 char *fec = ""; 6897 char *req_fec = ""; 6898 char *an = ""; 6899 6900 if (isup) 6901 new_speed = pf->hw.phy.link_info.link_speed; 6902 else 6903 new_speed = I40E_LINK_SPEED_UNKNOWN; 6904 6905 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6906 return; 6907 vsi->current_isup = isup; 6908 vsi->current_speed = new_speed; 6909 if (!isup) { 6910 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6911 return; 6912 } 6913 6914 /* Warn user if link speed on NPAR enabled partition is not at 6915 * least 10GB 6916 */ 6917 if (pf->hw.func_caps.npar_enable && 6918 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6919 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6920 netdev_warn(vsi->netdev, 6921 "The partition detected link speed that is less than 10Gbps\n"); 6922 6923 switch (pf->hw.phy.link_info.link_speed) { 6924 case I40E_LINK_SPEED_40GB: 6925 speed = "40 G"; 6926 break; 6927 case I40E_LINK_SPEED_20GB: 6928 speed = "20 G"; 6929 break; 6930 case I40E_LINK_SPEED_25GB: 6931 speed = "25 G"; 6932 break; 6933 case I40E_LINK_SPEED_10GB: 6934 speed = "10 G"; 6935 break; 6936 case I40E_LINK_SPEED_5GB: 6937 speed = "5 G"; 6938 break; 6939 case I40E_LINK_SPEED_2_5GB: 6940 speed = "2.5 G"; 6941 break; 6942 case I40E_LINK_SPEED_1GB: 6943 speed = "1000 M"; 6944 break; 6945 case I40E_LINK_SPEED_100MB: 6946 speed = "100 M"; 6947 break; 6948 default: 6949 break; 6950 } 6951 6952 switch (pf->hw.fc.current_mode) { 6953 case I40E_FC_FULL: 6954 fc = "RX/TX"; 6955 break; 6956 case I40E_FC_TX_PAUSE: 6957 fc = "TX"; 6958 break; 6959 case I40E_FC_RX_PAUSE: 6960 fc = "RX"; 6961 break; 6962 default: 6963 fc = "None"; 6964 break; 6965 } 6966 6967 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6968 req_fec = "None"; 6969 fec = "None"; 6970 an = "False"; 6971 6972 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6973 an = "True"; 6974 6975 if (pf->hw.phy.link_info.fec_info & 6976 I40E_AQ_CONFIG_FEC_KR_ENA) 6977 fec = "CL74 FC-FEC/BASE-R"; 6978 else if (pf->hw.phy.link_info.fec_info & 6979 I40E_AQ_CONFIG_FEC_RS_ENA) 6980 fec = "CL108 RS-FEC"; 6981 6982 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6983 * both RS and FC are requested 6984 */ 6985 if (vsi->back->hw.phy.link_info.req_fec_info & 6986 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6987 if (vsi->back->hw.phy.link_info.req_fec_info & 6988 I40E_AQ_REQUEST_FEC_RS) 6989 req_fec = "CL108 RS-FEC"; 6990 else 6991 req_fec = "CL74 FC-FEC/BASE-R"; 6992 } 6993 netdev_info(vsi->netdev, 6994 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 6995 speed, req_fec, fec, an, fc); 6996 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 6997 req_fec = "None"; 6998 fec = "None"; 6999 an = "False"; 7000 7001 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7002 an = "True"; 7003 7004 if (pf->hw.phy.link_info.fec_info & 7005 I40E_AQ_CONFIG_FEC_KR_ENA) 7006 fec = "CL74 FC-FEC/BASE-R"; 7007 7008 if (pf->hw.phy.link_info.req_fec_info & 7009 I40E_AQ_REQUEST_FEC_KR) 7010 req_fec = "CL74 FC-FEC/BASE-R"; 7011 7012 netdev_info(vsi->netdev, 7013 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7014 speed, req_fec, fec, an, fc); 7015 } else { 7016 netdev_info(vsi->netdev, 7017 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7018 speed, fc); 7019 } 7020 7021 } 7022 7023 /** 7024 * i40e_up_complete - Finish the last steps of bringing up a connection 7025 * @vsi: the VSI being configured 7026 **/ 7027 static int i40e_up_complete(struct i40e_vsi *vsi) 7028 { 7029 struct i40e_pf *pf = vsi->back; 7030 int err; 7031 7032 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 7033 i40e_vsi_configure_msix(vsi); 7034 else 7035 i40e_configure_msi_and_legacy(vsi); 7036 7037 /* start rings */ 7038 err = i40e_vsi_start_rings(vsi); 7039 if (err) 7040 return err; 7041 7042 clear_bit(__I40E_VSI_DOWN, vsi->state); 7043 i40e_napi_enable_all(vsi); 7044 i40e_vsi_enable_irq(vsi); 7045 7046 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7047 (vsi->netdev)) { 7048 i40e_print_link_message(vsi, true); 7049 netif_tx_start_all_queues(vsi->netdev); 7050 netif_carrier_on(vsi->netdev); 7051 } 7052 7053 /* replay FDIR SB filters */ 7054 if (vsi->type == I40E_VSI_FDIR) { 7055 /* reset fd counters */ 7056 pf->fd_add_err = 0; 7057 pf->fd_atr_cnt = 0; 7058 i40e_fdir_filter_restore(vsi); 7059 } 7060 7061 /* On the next run of the service_task, notify any clients of the new 7062 * opened netdev 7063 */ 7064 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7065 i40e_service_event_schedule(pf); 7066 7067 return 0; 7068 } 7069 7070 /** 7071 * i40e_vsi_reinit_locked - Reset the VSI 7072 * @vsi: the VSI being configured 7073 * 7074 * Rebuild the ring structs after some configuration 7075 * has changed, e.g. MTU size. 7076 **/ 7077 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7078 { 7079 struct i40e_pf *pf = vsi->back; 7080 7081 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7082 usleep_range(1000, 2000); 7083 i40e_down(vsi); 7084 7085 i40e_up(vsi); 7086 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7087 } 7088 7089 /** 7090 * i40e_force_link_state - Force the link status 7091 * @pf: board private structure 7092 * @is_up: whether the link state should be forced up or down 7093 **/ 7094 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7095 { 7096 struct i40e_aq_get_phy_abilities_resp abilities; 7097 struct i40e_aq_set_phy_config config = {0}; 7098 bool non_zero_phy_type = is_up; 7099 struct i40e_hw *hw = &pf->hw; 7100 i40e_status err; 7101 u64 mask; 7102 u8 speed; 7103 7104 /* Card might've been put in an unstable state by other drivers 7105 * and applications, which causes incorrect speed values being 7106 * set on startup. In order to clear speed registers, we call 7107 * get_phy_capabilities twice, once to get initial state of 7108 * available speeds, and once to get current PHY config. 7109 */ 7110 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7111 NULL); 7112 if (err) { 7113 dev_err(&pf->pdev->dev, 7114 "failed to get phy cap., ret = %s last_status = %s\n", 7115 i40e_stat_str(hw, err), 7116 i40e_aq_str(hw, hw->aq.asq_last_status)); 7117 return err; 7118 } 7119 speed = abilities.link_speed; 7120 7121 /* Get the current phy config */ 7122 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7123 NULL); 7124 if (err) { 7125 dev_err(&pf->pdev->dev, 7126 "failed to get phy cap., ret = %s last_status = %s\n", 7127 i40e_stat_str(hw, err), 7128 i40e_aq_str(hw, hw->aq.asq_last_status)); 7129 return err; 7130 } 7131 7132 /* If link needs to go up, but was not forced to go down, 7133 * and its speed values are OK, no need for a flap 7134 * if non_zero_phy_type was set, still need to force up 7135 */ 7136 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) 7137 non_zero_phy_type = true; 7138 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7139 return I40E_SUCCESS; 7140 7141 /* To force link we need to set bits for all supported PHY types, 7142 * but there are now more than 32, so we need to split the bitmap 7143 * across two fields. 7144 */ 7145 mask = I40E_PHY_TYPES_BITMASK; 7146 config.phy_type = 7147 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7148 config.phy_type_ext = 7149 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7150 /* Copy the old settings, except of phy_type */ 7151 config.abilities = abilities.abilities; 7152 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) { 7153 if (is_up) 7154 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7155 else 7156 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7157 } 7158 if (abilities.link_speed != 0) 7159 config.link_speed = abilities.link_speed; 7160 else 7161 config.link_speed = speed; 7162 config.eee_capability = abilities.eee_capability; 7163 config.eeer = abilities.eeer_val; 7164 config.low_power_ctrl = abilities.d3_lpan; 7165 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7166 I40E_AQ_PHY_FEC_CONFIG_MASK; 7167 err = i40e_aq_set_phy_config(hw, &config, NULL); 7168 7169 if (err) { 7170 dev_err(&pf->pdev->dev, 7171 "set phy config ret = %s last_status = %s\n", 7172 i40e_stat_str(&pf->hw, err), 7173 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7174 return err; 7175 } 7176 7177 /* Update the link info */ 7178 err = i40e_update_link_info(hw); 7179 if (err) { 7180 /* Wait a little bit (on 40G cards it sometimes takes a really 7181 * long time for link to come back from the atomic reset) 7182 * and try once more 7183 */ 7184 msleep(1000); 7185 i40e_update_link_info(hw); 7186 } 7187 7188 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7189 7190 return I40E_SUCCESS; 7191 } 7192 7193 /** 7194 * i40e_up - Bring the connection back up after being down 7195 * @vsi: the VSI being configured 7196 **/ 7197 int i40e_up(struct i40e_vsi *vsi) 7198 { 7199 int err; 7200 7201 if (vsi->type == I40E_VSI_MAIN && 7202 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7203 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7204 i40e_force_link_state(vsi->back, true); 7205 7206 err = i40e_vsi_configure(vsi); 7207 if (!err) 7208 err = i40e_up_complete(vsi); 7209 7210 return err; 7211 } 7212 7213 /** 7214 * i40e_down - Shutdown the connection processing 7215 * @vsi: the VSI being stopped 7216 **/ 7217 void i40e_down(struct i40e_vsi *vsi) 7218 { 7219 int i; 7220 7221 /* It is assumed that the caller of this function 7222 * sets the vsi->state __I40E_VSI_DOWN bit. 7223 */ 7224 if (vsi->netdev) { 7225 netif_carrier_off(vsi->netdev); 7226 netif_tx_disable(vsi->netdev); 7227 } 7228 i40e_vsi_disable_irq(vsi); 7229 i40e_vsi_stop_rings(vsi); 7230 if (vsi->type == I40E_VSI_MAIN && 7231 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7232 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7233 i40e_force_link_state(vsi->back, false); 7234 i40e_napi_disable_all(vsi); 7235 7236 for (i = 0; i < vsi->num_queue_pairs; i++) { 7237 i40e_clean_tx_ring(vsi->tx_rings[i]); 7238 if (i40e_enabled_xdp_vsi(vsi)) { 7239 /* Make sure that in-progress ndo_xdp_xmit and 7240 * ndo_xsk_wakeup calls are completed. 7241 */ 7242 synchronize_rcu(); 7243 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7244 } 7245 i40e_clean_rx_ring(vsi->rx_rings[i]); 7246 } 7247 7248 } 7249 7250 /** 7251 * i40e_validate_mqprio_qopt- validate queue mapping info 7252 * @vsi: the VSI being configured 7253 * @mqprio_qopt: queue parametrs 7254 **/ 7255 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7256 struct tc_mqprio_qopt_offload *mqprio_qopt) 7257 { 7258 u64 sum_max_rate = 0; 7259 u64 max_rate = 0; 7260 int i; 7261 7262 if (mqprio_qopt->qopt.offset[0] != 0 || 7263 mqprio_qopt->qopt.num_tc < 1 || 7264 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7265 return -EINVAL; 7266 for (i = 0; ; i++) { 7267 if (!mqprio_qopt->qopt.count[i]) 7268 return -EINVAL; 7269 if (mqprio_qopt->min_rate[i]) { 7270 dev_err(&vsi->back->pdev->dev, 7271 "Invalid min tx rate (greater than 0) specified\n"); 7272 return -EINVAL; 7273 } 7274 max_rate = mqprio_qopt->max_rate[i]; 7275 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7276 sum_max_rate += max_rate; 7277 7278 if (i >= mqprio_qopt->qopt.num_tc - 1) 7279 break; 7280 if (mqprio_qopt->qopt.offset[i + 1] != 7281 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7282 return -EINVAL; 7283 } 7284 if (vsi->num_queue_pairs < 7285 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7286 return -EINVAL; 7287 } 7288 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7289 dev_err(&vsi->back->pdev->dev, 7290 "Invalid max tx rate specified\n"); 7291 return -EINVAL; 7292 } 7293 return 0; 7294 } 7295 7296 /** 7297 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7298 * @vsi: the VSI being configured 7299 **/ 7300 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7301 { 7302 u16 qcount; 7303 int i; 7304 7305 /* Only TC0 is enabled */ 7306 vsi->tc_config.numtc = 1; 7307 vsi->tc_config.enabled_tc = 1; 7308 qcount = min_t(int, vsi->alloc_queue_pairs, 7309 i40e_pf_get_max_q_per_tc(vsi->back)); 7310 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7311 /* For the TC that is not enabled set the offset to default 7312 * queue and allocate one queue for the given TC. 7313 */ 7314 vsi->tc_config.tc_info[i].qoffset = 0; 7315 if (i == 0) 7316 vsi->tc_config.tc_info[i].qcount = qcount; 7317 else 7318 vsi->tc_config.tc_info[i].qcount = 1; 7319 vsi->tc_config.tc_info[i].netdev_tc = 0; 7320 } 7321 } 7322 7323 /** 7324 * i40e_del_macvlan_filter 7325 * @hw: pointer to the HW structure 7326 * @seid: seid of the channel VSI 7327 * @macaddr: the mac address to apply as a filter 7328 * @aq_err: store the admin Q error 7329 * 7330 * This function deletes a mac filter on the channel VSI which serves as the 7331 * macvlan. Returns 0 on success. 7332 **/ 7333 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7334 const u8 *macaddr, int *aq_err) 7335 { 7336 struct i40e_aqc_remove_macvlan_element_data element; 7337 i40e_status status; 7338 7339 memset(&element, 0, sizeof(element)); 7340 ether_addr_copy(element.mac_addr, macaddr); 7341 element.vlan_tag = 0; 7342 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7343 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7344 *aq_err = hw->aq.asq_last_status; 7345 7346 return status; 7347 } 7348 7349 /** 7350 * i40e_add_macvlan_filter 7351 * @hw: pointer to the HW structure 7352 * @seid: seid of the channel VSI 7353 * @macaddr: the mac address to apply as a filter 7354 * @aq_err: store the admin Q error 7355 * 7356 * This function adds a mac filter on the channel VSI which serves as the 7357 * macvlan. Returns 0 on success. 7358 **/ 7359 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7360 const u8 *macaddr, int *aq_err) 7361 { 7362 struct i40e_aqc_add_macvlan_element_data element; 7363 i40e_status status; 7364 u16 cmd_flags = 0; 7365 7366 ether_addr_copy(element.mac_addr, macaddr); 7367 element.vlan_tag = 0; 7368 element.queue_number = 0; 7369 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7370 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7371 element.flags = cpu_to_le16(cmd_flags); 7372 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7373 *aq_err = hw->aq.asq_last_status; 7374 7375 return status; 7376 } 7377 7378 /** 7379 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7380 * @vsi: the VSI we want to access 7381 * @ch: the channel we want to access 7382 */ 7383 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7384 { 7385 struct i40e_ring *tx_ring, *rx_ring; 7386 u16 pf_q; 7387 int i; 7388 7389 for (i = 0; i < ch->num_queue_pairs; i++) { 7390 pf_q = ch->base_queue + i; 7391 tx_ring = vsi->tx_rings[pf_q]; 7392 tx_ring->ch = NULL; 7393 rx_ring = vsi->rx_rings[pf_q]; 7394 rx_ring->ch = NULL; 7395 } 7396 } 7397 7398 /** 7399 * i40e_free_macvlan_channels 7400 * @vsi: the VSI we want to access 7401 * 7402 * This function frees the Qs of the channel VSI from 7403 * the stack and also deletes the channel VSIs which 7404 * serve as macvlans. 7405 */ 7406 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7407 { 7408 struct i40e_channel *ch, *ch_tmp; 7409 int ret; 7410 7411 if (list_empty(&vsi->macvlan_list)) 7412 return; 7413 7414 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7415 struct i40e_vsi *parent_vsi; 7416 7417 if (i40e_is_channel_macvlan(ch)) { 7418 i40e_reset_ch_rings(vsi, ch); 7419 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7420 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7421 netdev_set_sb_channel(ch->fwd->netdev, 0); 7422 kfree(ch->fwd); 7423 ch->fwd = NULL; 7424 } 7425 7426 list_del(&ch->list); 7427 parent_vsi = ch->parent_vsi; 7428 if (!parent_vsi || !ch->initialized) { 7429 kfree(ch); 7430 continue; 7431 } 7432 7433 /* remove the VSI */ 7434 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7435 NULL); 7436 if (ret) 7437 dev_err(&vsi->back->pdev->dev, 7438 "unable to remove channel (%d) for parent VSI(%d)\n", 7439 ch->seid, parent_vsi->seid); 7440 kfree(ch); 7441 } 7442 vsi->macvlan_cnt = 0; 7443 } 7444 7445 /** 7446 * i40e_fwd_ring_up - bring the macvlan device up 7447 * @vsi: the VSI we want to access 7448 * @vdev: macvlan netdevice 7449 * @fwd: the private fwd structure 7450 */ 7451 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7452 struct i40e_fwd_adapter *fwd) 7453 { 7454 int ret = 0, num_tc = 1, i, aq_err; 7455 struct i40e_channel *ch, *ch_tmp; 7456 struct i40e_pf *pf = vsi->back; 7457 struct i40e_hw *hw = &pf->hw; 7458 7459 if (list_empty(&vsi->macvlan_list)) 7460 return -EINVAL; 7461 7462 /* Go through the list and find an available channel */ 7463 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7464 if (!i40e_is_channel_macvlan(ch)) { 7465 ch->fwd = fwd; 7466 /* record configuration for macvlan interface in vdev */ 7467 for (i = 0; i < num_tc; i++) 7468 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7469 i, 7470 ch->num_queue_pairs, 7471 ch->base_queue); 7472 for (i = 0; i < ch->num_queue_pairs; i++) { 7473 struct i40e_ring *tx_ring, *rx_ring; 7474 u16 pf_q; 7475 7476 pf_q = ch->base_queue + i; 7477 7478 /* Get to TX ring ptr */ 7479 tx_ring = vsi->tx_rings[pf_q]; 7480 tx_ring->ch = ch; 7481 7482 /* Get the RX ring ptr */ 7483 rx_ring = vsi->rx_rings[pf_q]; 7484 rx_ring->ch = ch; 7485 } 7486 break; 7487 } 7488 } 7489 7490 /* Guarantee all rings are updated before we update the 7491 * MAC address filter. 7492 */ 7493 wmb(); 7494 7495 /* Add a mac filter */ 7496 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7497 if (ret) { 7498 /* if we cannot add the MAC rule then disable the offload */ 7499 macvlan_release_l2fw_offload(vdev); 7500 for (i = 0; i < ch->num_queue_pairs; i++) { 7501 struct i40e_ring *rx_ring; 7502 u16 pf_q; 7503 7504 pf_q = ch->base_queue + i; 7505 rx_ring = vsi->rx_rings[pf_q]; 7506 rx_ring->netdev = NULL; 7507 } 7508 dev_info(&pf->pdev->dev, 7509 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7510 i40e_stat_str(hw, ret), 7511 i40e_aq_str(hw, aq_err)); 7512 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7513 } 7514 7515 return ret; 7516 } 7517 7518 /** 7519 * i40e_setup_macvlans - create the channels which will be macvlans 7520 * @vsi: the VSI we want to access 7521 * @macvlan_cnt: no. of macvlans to be setup 7522 * @qcnt: no. of Qs per macvlan 7523 * @vdev: macvlan netdevice 7524 */ 7525 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7526 struct net_device *vdev) 7527 { 7528 struct i40e_pf *pf = vsi->back; 7529 struct i40e_hw *hw = &pf->hw; 7530 struct i40e_vsi_context ctxt; 7531 u16 sections, qmap, num_qps; 7532 struct i40e_channel *ch; 7533 int i, pow, ret = 0; 7534 u8 offset = 0; 7535 7536 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7537 return -EINVAL; 7538 7539 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7540 7541 /* find the next higher power-of-2 of num queue pairs */ 7542 pow = fls(roundup_pow_of_two(num_qps) - 1); 7543 7544 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7545 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7546 7547 /* Setup context bits for the main VSI */ 7548 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7549 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7550 memset(&ctxt, 0, sizeof(ctxt)); 7551 ctxt.seid = vsi->seid; 7552 ctxt.pf_num = vsi->back->hw.pf_id; 7553 ctxt.vf_num = 0; 7554 ctxt.uplink_seid = vsi->uplink_seid; 7555 ctxt.info = vsi->info; 7556 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7557 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7558 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7559 ctxt.info.valid_sections |= cpu_to_le16(sections); 7560 7561 /* Reconfigure RSS for main VSI with new max queue count */ 7562 vsi->rss_size = max_t(u16, num_qps, qcnt); 7563 ret = i40e_vsi_config_rss(vsi); 7564 if (ret) { 7565 dev_info(&pf->pdev->dev, 7566 "Failed to reconfig RSS for num_queues (%u)\n", 7567 vsi->rss_size); 7568 return ret; 7569 } 7570 vsi->reconfig_rss = true; 7571 dev_dbg(&vsi->back->pdev->dev, 7572 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7573 vsi->next_base_queue = num_qps; 7574 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7575 7576 /* Update the VSI after updating the VSI queue-mapping 7577 * information 7578 */ 7579 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7580 if (ret) { 7581 dev_info(&pf->pdev->dev, 7582 "Update vsi tc config failed, err %s aq_err %s\n", 7583 i40e_stat_str(hw, ret), 7584 i40e_aq_str(hw, hw->aq.asq_last_status)); 7585 return ret; 7586 } 7587 /* update the local VSI info with updated queue map */ 7588 i40e_vsi_update_queue_map(vsi, &ctxt); 7589 vsi->info.valid_sections = 0; 7590 7591 /* Create channels for macvlans */ 7592 INIT_LIST_HEAD(&vsi->macvlan_list); 7593 for (i = 0; i < macvlan_cnt; i++) { 7594 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7595 if (!ch) { 7596 ret = -ENOMEM; 7597 goto err_free; 7598 } 7599 INIT_LIST_HEAD(&ch->list); 7600 ch->num_queue_pairs = qcnt; 7601 if (!i40e_setup_channel(pf, vsi, ch)) { 7602 ret = -EINVAL; 7603 kfree(ch); 7604 goto err_free; 7605 } 7606 ch->parent_vsi = vsi; 7607 vsi->cnt_q_avail -= ch->num_queue_pairs; 7608 vsi->macvlan_cnt++; 7609 list_add_tail(&ch->list, &vsi->macvlan_list); 7610 } 7611 7612 return ret; 7613 7614 err_free: 7615 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7616 i40e_free_macvlan_channels(vsi); 7617 7618 return ret; 7619 } 7620 7621 /** 7622 * i40e_fwd_add - configure macvlans 7623 * @netdev: net device to configure 7624 * @vdev: macvlan netdevice 7625 **/ 7626 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7627 { 7628 struct i40e_netdev_priv *np = netdev_priv(netdev); 7629 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7630 struct i40e_vsi *vsi = np->vsi; 7631 struct i40e_pf *pf = vsi->back; 7632 struct i40e_fwd_adapter *fwd; 7633 int avail_macvlan, ret; 7634 7635 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7636 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7637 return ERR_PTR(-EINVAL); 7638 } 7639 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7640 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7641 return ERR_PTR(-EINVAL); 7642 } 7643 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7644 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7645 return ERR_PTR(-EINVAL); 7646 } 7647 7648 /* The macvlan device has to be a single Q device so that the 7649 * tc_to_txq field can be reused to pick the tx queue. 7650 */ 7651 if (netif_is_multiqueue(vdev)) 7652 return ERR_PTR(-ERANGE); 7653 7654 if (!vsi->macvlan_cnt) { 7655 /* reserve bit 0 for the pf device */ 7656 set_bit(0, vsi->fwd_bitmask); 7657 7658 /* Try to reserve as many queues as possible for macvlans. First 7659 * reserve 3/4th of max vectors, then half, then quarter and 7660 * calculate Qs per macvlan as you go 7661 */ 7662 vectors = pf->num_lan_msix; 7663 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7664 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7665 q_per_macvlan = 4; 7666 macvlan_cnt = (vectors - 32) / 4; 7667 } else if (vectors <= 64 && vectors > 32) { 7668 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7669 q_per_macvlan = 2; 7670 macvlan_cnt = (vectors - 16) / 2; 7671 } else if (vectors <= 32 && vectors > 16) { 7672 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7673 q_per_macvlan = 1; 7674 macvlan_cnt = vectors - 16; 7675 } else if (vectors <= 16 && vectors > 8) { 7676 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7677 q_per_macvlan = 1; 7678 macvlan_cnt = vectors - 8; 7679 } else { 7680 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7681 q_per_macvlan = 1; 7682 macvlan_cnt = vectors - 1; 7683 } 7684 7685 if (macvlan_cnt == 0) 7686 return ERR_PTR(-EBUSY); 7687 7688 /* Quiesce VSI queues */ 7689 i40e_quiesce_vsi(vsi); 7690 7691 /* sets up the macvlans but does not "enable" them */ 7692 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7693 vdev); 7694 if (ret) 7695 return ERR_PTR(ret); 7696 7697 /* Unquiesce VSI */ 7698 i40e_unquiesce_vsi(vsi); 7699 } 7700 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7701 vsi->macvlan_cnt); 7702 if (avail_macvlan >= I40E_MAX_MACVLANS) 7703 return ERR_PTR(-EBUSY); 7704 7705 /* create the fwd struct */ 7706 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7707 if (!fwd) 7708 return ERR_PTR(-ENOMEM); 7709 7710 set_bit(avail_macvlan, vsi->fwd_bitmask); 7711 fwd->bit_no = avail_macvlan; 7712 netdev_set_sb_channel(vdev, avail_macvlan); 7713 fwd->netdev = vdev; 7714 7715 if (!netif_running(netdev)) 7716 return fwd; 7717 7718 /* Set fwd ring up */ 7719 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7720 if (ret) { 7721 /* unbind the queues and drop the subordinate channel config */ 7722 netdev_unbind_sb_channel(netdev, vdev); 7723 netdev_set_sb_channel(vdev, 0); 7724 7725 kfree(fwd); 7726 return ERR_PTR(-EINVAL); 7727 } 7728 7729 return fwd; 7730 } 7731 7732 /** 7733 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7734 * @vsi: the VSI we want to access 7735 */ 7736 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7737 { 7738 struct i40e_channel *ch, *ch_tmp; 7739 struct i40e_pf *pf = vsi->back; 7740 struct i40e_hw *hw = &pf->hw; 7741 int aq_err, ret = 0; 7742 7743 if (list_empty(&vsi->macvlan_list)) 7744 return; 7745 7746 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7747 if (i40e_is_channel_macvlan(ch)) { 7748 ret = i40e_del_macvlan_filter(hw, ch->seid, 7749 i40e_channel_mac(ch), 7750 &aq_err); 7751 if (!ret) { 7752 /* Reset queue contexts */ 7753 i40e_reset_ch_rings(vsi, ch); 7754 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7755 netdev_unbind_sb_channel(vsi->netdev, 7756 ch->fwd->netdev); 7757 netdev_set_sb_channel(ch->fwd->netdev, 0); 7758 kfree(ch->fwd); 7759 ch->fwd = NULL; 7760 } 7761 } 7762 } 7763 } 7764 7765 /** 7766 * i40e_fwd_del - delete macvlan interfaces 7767 * @netdev: net device to configure 7768 * @vdev: macvlan netdevice 7769 */ 7770 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7771 { 7772 struct i40e_netdev_priv *np = netdev_priv(netdev); 7773 struct i40e_fwd_adapter *fwd = vdev; 7774 struct i40e_channel *ch, *ch_tmp; 7775 struct i40e_vsi *vsi = np->vsi; 7776 struct i40e_pf *pf = vsi->back; 7777 struct i40e_hw *hw = &pf->hw; 7778 int aq_err, ret = 0; 7779 7780 /* Find the channel associated with the macvlan and del mac filter */ 7781 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7782 if (i40e_is_channel_macvlan(ch) && 7783 ether_addr_equal(i40e_channel_mac(ch), 7784 fwd->netdev->dev_addr)) { 7785 ret = i40e_del_macvlan_filter(hw, ch->seid, 7786 i40e_channel_mac(ch), 7787 &aq_err); 7788 if (!ret) { 7789 /* Reset queue contexts */ 7790 i40e_reset_ch_rings(vsi, ch); 7791 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7792 netdev_unbind_sb_channel(netdev, fwd->netdev); 7793 netdev_set_sb_channel(fwd->netdev, 0); 7794 kfree(ch->fwd); 7795 ch->fwd = NULL; 7796 } else { 7797 dev_info(&pf->pdev->dev, 7798 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7799 i40e_stat_str(hw, ret), 7800 i40e_aq_str(hw, aq_err)); 7801 } 7802 break; 7803 } 7804 } 7805 } 7806 7807 /** 7808 * i40e_setup_tc - configure multiple traffic classes 7809 * @netdev: net device to configure 7810 * @type_data: tc offload data 7811 **/ 7812 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7813 { 7814 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7815 struct i40e_netdev_priv *np = netdev_priv(netdev); 7816 struct i40e_vsi *vsi = np->vsi; 7817 struct i40e_pf *pf = vsi->back; 7818 u8 enabled_tc = 0, num_tc, hw; 7819 bool need_reset = false; 7820 int old_queue_pairs; 7821 int ret = -EINVAL; 7822 u16 mode; 7823 int i; 7824 7825 old_queue_pairs = vsi->num_queue_pairs; 7826 num_tc = mqprio_qopt->qopt.num_tc; 7827 hw = mqprio_qopt->qopt.hw; 7828 mode = mqprio_qopt->mode; 7829 if (!hw) { 7830 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7831 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7832 goto config_tc; 7833 } 7834 7835 /* Check if MFP enabled */ 7836 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7837 netdev_info(netdev, 7838 "Configuring TC not supported in MFP mode\n"); 7839 return ret; 7840 } 7841 switch (mode) { 7842 case TC_MQPRIO_MODE_DCB: 7843 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7844 7845 /* Check if DCB enabled to continue */ 7846 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7847 netdev_info(netdev, 7848 "DCB is not enabled for adapter\n"); 7849 return ret; 7850 } 7851 7852 /* Check whether tc count is within enabled limit */ 7853 if (num_tc > i40e_pf_get_num_tc(pf)) { 7854 netdev_info(netdev, 7855 "TC count greater than enabled on link for adapter\n"); 7856 return ret; 7857 } 7858 break; 7859 case TC_MQPRIO_MODE_CHANNEL: 7860 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7861 netdev_info(netdev, 7862 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7863 return ret; 7864 } 7865 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7866 return ret; 7867 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7868 if (ret) 7869 return ret; 7870 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7871 sizeof(*mqprio_qopt)); 7872 pf->flags |= I40E_FLAG_TC_MQPRIO; 7873 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7874 break; 7875 default: 7876 return -EINVAL; 7877 } 7878 7879 config_tc: 7880 /* Generate TC map for number of tc requested */ 7881 for (i = 0; i < num_tc; i++) 7882 enabled_tc |= BIT(i); 7883 7884 /* Requesting same TC configuration as already enabled */ 7885 if (enabled_tc == vsi->tc_config.enabled_tc && 7886 mode != TC_MQPRIO_MODE_CHANNEL) 7887 return 0; 7888 7889 /* Quiesce VSI queues */ 7890 i40e_quiesce_vsi(vsi); 7891 7892 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7893 i40e_remove_queue_channels(vsi); 7894 7895 /* Configure VSI for enabled TCs */ 7896 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7897 if (ret) { 7898 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7899 vsi->seid); 7900 need_reset = true; 7901 goto exit; 7902 } else { 7903 dev_info(&vsi->back->pdev->dev, 7904 "Setup channel (id:%u) utilizing num_queues %d\n", 7905 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7906 } 7907 7908 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7909 if (vsi->mqprio_qopt.max_rate[0]) { 7910 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7911 7912 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7913 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7914 if (!ret) { 7915 u64 credits = max_tx_rate; 7916 7917 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7918 dev_dbg(&vsi->back->pdev->dev, 7919 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7920 max_tx_rate, 7921 credits, 7922 vsi->seid); 7923 } else { 7924 need_reset = true; 7925 goto exit; 7926 } 7927 } 7928 ret = i40e_configure_queue_channels(vsi); 7929 if (ret) { 7930 vsi->num_queue_pairs = old_queue_pairs; 7931 netdev_info(netdev, 7932 "Failed configuring queue channels\n"); 7933 need_reset = true; 7934 goto exit; 7935 } 7936 } 7937 7938 exit: 7939 /* Reset the configuration data to defaults, only TC0 is enabled */ 7940 if (need_reset) { 7941 i40e_vsi_set_default_tc_config(vsi); 7942 need_reset = false; 7943 } 7944 7945 /* Unquiesce VSI */ 7946 i40e_unquiesce_vsi(vsi); 7947 return ret; 7948 } 7949 7950 /** 7951 * i40e_set_cld_element - sets cloud filter element data 7952 * @filter: cloud filter rule 7953 * @cld: ptr to cloud filter element data 7954 * 7955 * This is helper function to copy data into cloud filter element 7956 **/ 7957 static inline void 7958 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7959 struct i40e_aqc_cloud_filters_element_data *cld) 7960 { 7961 u32 ipa; 7962 int i; 7963 7964 memset(cld, 0, sizeof(*cld)); 7965 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7966 ether_addr_copy(cld->inner_mac, filter->src_mac); 7967 7968 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7969 return; 7970 7971 if (filter->n_proto == ETH_P_IPV6) { 7972 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7973 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 7974 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7975 7976 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 7977 } 7978 } else { 7979 ipa = be32_to_cpu(filter->dst_ipv4); 7980 7981 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7982 } 7983 7984 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7985 7986 /* tenant_id is not supported by FW now, once the support is enabled 7987 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7988 */ 7989 if (filter->tenant_id) 7990 return; 7991 } 7992 7993 /** 7994 * i40e_add_del_cloud_filter - Add/del cloud filter 7995 * @vsi: pointer to VSI 7996 * @filter: cloud filter rule 7997 * @add: if true, add, if false, delete 7998 * 7999 * Add or delete a cloud filter for a specific flow spec. 8000 * Returns 0 if the filter were successfully added. 8001 **/ 8002 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8003 struct i40e_cloud_filter *filter, bool add) 8004 { 8005 struct i40e_aqc_cloud_filters_element_data cld_filter; 8006 struct i40e_pf *pf = vsi->back; 8007 int ret; 8008 static const u16 flag_table[128] = { 8009 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8010 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8011 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8012 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8013 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8014 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8015 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8016 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8017 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8018 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8019 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8020 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8021 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8022 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8023 }; 8024 8025 if (filter->flags >= ARRAY_SIZE(flag_table)) 8026 return I40E_ERR_CONFIG; 8027 8028 memset(&cld_filter, 0, sizeof(cld_filter)); 8029 8030 /* copy element needed to add cloud filter from filter */ 8031 i40e_set_cld_element(filter, &cld_filter); 8032 8033 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8034 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8035 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8036 8037 if (filter->n_proto == ETH_P_IPV6) 8038 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8039 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8040 else 8041 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8042 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8043 8044 if (add) 8045 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8046 &cld_filter, 1); 8047 else 8048 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8049 &cld_filter, 1); 8050 if (ret) 8051 dev_dbg(&pf->pdev->dev, 8052 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8053 add ? "add" : "delete", filter->dst_port, ret, 8054 pf->hw.aq.asq_last_status); 8055 else 8056 dev_info(&pf->pdev->dev, 8057 "%s cloud filter for VSI: %d\n", 8058 add ? "Added" : "Deleted", filter->seid); 8059 return ret; 8060 } 8061 8062 /** 8063 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8064 * @vsi: pointer to VSI 8065 * @filter: cloud filter rule 8066 * @add: if true, add, if false, delete 8067 * 8068 * Add or delete a cloud filter for a specific flow spec using big buffer. 8069 * Returns 0 if the filter were successfully added. 8070 **/ 8071 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8072 struct i40e_cloud_filter *filter, 8073 bool add) 8074 { 8075 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8076 struct i40e_pf *pf = vsi->back; 8077 int ret; 8078 8079 /* Both (src/dst) valid mac_addr are not supported */ 8080 if ((is_valid_ether_addr(filter->dst_mac) && 8081 is_valid_ether_addr(filter->src_mac)) || 8082 (is_multicast_ether_addr(filter->dst_mac) && 8083 is_multicast_ether_addr(filter->src_mac))) 8084 return -EOPNOTSUPP; 8085 8086 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8087 * ports are not supported via big buffer now. 8088 */ 8089 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8090 return -EOPNOTSUPP; 8091 8092 /* adding filter using src_port/src_ip is not supported at this stage */ 8093 if (filter->src_port || 8094 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8095 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8096 return -EOPNOTSUPP; 8097 8098 memset(&cld_filter, 0, sizeof(cld_filter)); 8099 8100 /* copy element needed to add cloud filter from filter */ 8101 i40e_set_cld_element(filter, &cld_filter.element); 8102 8103 if (is_valid_ether_addr(filter->dst_mac) || 8104 is_valid_ether_addr(filter->src_mac) || 8105 is_multicast_ether_addr(filter->dst_mac) || 8106 is_multicast_ether_addr(filter->src_mac)) { 8107 /* MAC + IP : unsupported mode */ 8108 if (filter->dst_ipv4) 8109 return -EOPNOTSUPP; 8110 8111 /* since we validated that L4 port must be valid before 8112 * we get here, start with respective "flags" value 8113 * and update if vlan is present or not 8114 */ 8115 cld_filter.element.flags = 8116 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8117 8118 if (filter->vlan_id) { 8119 cld_filter.element.flags = 8120 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8121 } 8122 8123 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8124 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8125 cld_filter.element.flags = 8126 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8127 if (filter->n_proto == ETH_P_IPV6) 8128 cld_filter.element.flags |= 8129 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8130 else 8131 cld_filter.element.flags |= 8132 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8133 } else { 8134 dev_err(&pf->pdev->dev, 8135 "either mac or ip has to be valid for cloud filter\n"); 8136 return -EINVAL; 8137 } 8138 8139 /* Now copy L4 port in Byte 6..7 in general fields */ 8140 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8141 be16_to_cpu(filter->dst_port); 8142 8143 if (add) { 8144 /* Validate current device switch mode, change if necessary */ 8145 ret = i40e_validate_and_set_switch_mode(vsi); 8146 if (ret) { 8147 dev_err(&pf->pdev->dev, 8148 "failed to set switch mode, ret %d\n", 8149 ret); 8150 return ret; 8151 } 8152 8153 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8154 &cld_filter, 1); 8155 } else { 8156 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8157 &cld_filter, 1); 8158 } 8159 8160 if (ret) 8161 dev_dbg(&pf->pdev->dev, 8162 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8163 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8164 else 8165 dev_info(&pf->pdev->dev, 8166 "%s cloud filter for VSI: %d, L4 port: %d\n", 8167 add ? "add" : "delete", filter->seid, 8168 ntohs(filter->dst_port)); 8169 return ret; 8170 } 8171 8172 /** 8173 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8174 * @vsi: Pointer to VSI 8175 * @f: Pointer to struct flow_cls_offload 8176 * @filter: Pointer to cloud filter structure 8177 * 8178 **/ 8179 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8180 struct flow_cls_offload *f, 8181 struct i40e_cloud_filter *filter) 8182 { 8183 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8184 struct flow_dissector *dissector = rule->match.dissector; 8185 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8186 struct i40e_pf *pf = vsi->back; 8187 u8 field_flags = 0; 8188 8189 if (dissector->used_keys & 8190 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 8191 BIT(FLOW_DISSECTOR_KEY_BASIC) | 8192 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8193 BIT(FLOW_DISSECTOR_KEY_VLAN) | 8194 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8195 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8196 BIT(FLOW_DISSECTOR_KEY_PORTS) | 8197 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8198 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 8199 dissector->used_keys); 8200 return -EOPNOTSUPP; 8201 } 8202 8203 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8204 struct flow_match_enc_keyid match; 8205 8206 flow_rule_match_enc_keyid(rule, &match); 8207 if (match.mask->keyid != 0) 8208 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8209 8210 filter->tenant_id = be32_to_cpu(match.key->keyid); 8211 } 8212 8213 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8214 struct flow_match_basic match; 8215 8216 flow_rule_match_basic(rule, &match); 8217 n_proto_key = ntohs(match.key->n_proto); 8218 n_proto_mask = ntohs(match.mask->n_proto); 8219 8220 if (n_proto_key == ETH_P_ALL) { 8221 n_proto_key = 0; 8222 n_proto_mask = 0; 8223 } 8224 filter->n_proto = n_proto_key & n_proto_mask; 8225 filter->ip_proto = match.key->ip_proto; 8226 } 8227 8228 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8229 struct flow_match_eth_addrs match; 8230 8231 flow_rule_match_eth_addrs(rule, &match); 8232 8233 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8234 if (!is_zero_ether_addr(match.mask->dst)) { 8235 if (is_broadcast_ether_addr(match.mask->dst)) { 8236 field_flags |= I40E_CLOUD_FIELD_OMAC; 8237 } else { 8238 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8239 match.mask->dst); 8240 return I40E_ERR_CONFIG; 8241 } 8242 } 8243 8244 if (!is_zero_ether_addr(match.mask->src)) { 8245 if (is_broadcast_ether_addr(match.mask->src)) { 8246 field_flags |= I40E_CLOUD_FIELD_IMAC; 8247 } else { 8248 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8249 match.mask->src); 8250 return I40E_ERR_CONFIG; 8251 } 8252 } 8253 ether_addr_copy(filter->dst_mac, match.key->dst); 8254 ether_addr_copy(filter->src_mac, match.key->src); 8255 } 8256 8257 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8258 struct flow_match_vlan match; 8259 8260 flow_rule_match_vlan(rule, &match); 8261 if (match.mask->vlan_id) { 8262 if (match.mask->vlan_id == VLAN_VID_MASK) { 8263 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8264 8265 } else { 8266 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8267 match.mask->vlan_id); 8268 return I40E_ERR_CONFIG; 8269 } 8270 } 8271 8272 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8273 } 8274 8275 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8276 struct flow_match_control match; 8277 8278 flow_rule_match_control(rule, &match); 8279 addr_type = match.key->addr_type; 8280 } 8281 8282 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8283 struct flow_match_ipv4_addrs match; 8284 8285 flow_rule_match_ipv4_addrs(rule, &match); 8286 if (match.mask->dst) { 8287 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8288 field_flags |= I40E_CLOUD_FIELD_IIP; 8289 } else { 8290 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8291 &match.mask->dst); 8292 return I40E_ERR_CONFIG; 8293 } 8294 } 8295 8296 if (match.mask->src) { 8297 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8298 field_flags |= I40E_CLOUD_FIELD_IIP; 8299 } else { 8300 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8301 &match.mask->src); 8302 return I40E_ERR_CONFIG; 8303 } 8304 } 8305 8306 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8307 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8308 return I40E_ERR_CONFIG; 8309 } 8310 filter->dst_ipv4 = match.key->dst; 8311 filter->src_ipv4 = match.key->src; 8312 } 8313 8314 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8315 struct flow_match_ipv6_addrs match; 8316 8317 flow_rule_match_ipv6_addrs(rule, &match); 8318 8319 /* src and dest IPV6 address should not be LOOPBACK 8320 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8321 */ 8322 if (ipv6_addr_loopback(&match.key->dst) || 8323 ipv6_addr_loopback(&match.key->src)) { 8324 dev_err(&pf->pdev->dev, 8325 "Bad ipv6, addr is LOOPBACK\n"); 8326 return I40E_ERR_CONFIG; 8327 } 8328 if (!ipv6_addr_any(&match.mask->dst) || 8329 !ipv6_addr_any(&match.mask->src)) 8330 field_flags |= I40E_CLOUD_FIELD_IIP; 8331 8332 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8333 sizeof(filter->src_ipv6)); 8334 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8335 sizeof(filter->dst_ipv6)); 8336 } 8337 8338 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8339 struct flow_match_ports match; 8340 8341 flow_rule_match_ports(rule, &match); 8342 if (match.mask->src) { 8343 if (match.mask->src == cpu_to_be16(0xffff)) { 8344 field_flags |= I40E_CLOUD_FIELD_IIP; 8345 } else { 8346 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8347 be16_to_cpu(match.mask->src)); 8348 return I40E_ERR_CONFIG; 8349 } 8350 } 8351 8352 if (match.mask->dst) { 8353 if (match.mask->dst == cpu_to_be16(0xffff)) { 8354 field_flags |= I40E_CLOUD_FIELD_IIP; 8355 } else { 8356 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8357 be16_to_cpu(match.mask->dst)); 8358 return I40E_ERR_CONFIG; 8359 } 8360 } 8361 8362 filter->dst_port = match.key->dst; 8363 filter->src_port = match.key->src; 8364 8365 switch (filter->ip_proto) { 8366 case IPPROTO_TCP: 8367 case IPPROTO_UDP: 8368 break; 8369 default: 8370 dev_err(&pf->pdev->dev, 8371 "Only UDP and TCP transport are supported\n"); 8372 return -EINVAL; 8373 } 8374 } 8375 filter->flags = field_flags; 8376 return 0; 8377 } 8378 8379 /** 8380 * i40e_handle_tclass: Forward to a traffic class on the device 8381 * @vsi: Pointer to VSI 8382 * @tc: traffic class index on the device 8383 * @filter: Pointer to cloud filter structure 8384 * 8385 **/ 8386 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8387 struct i40e_cloud_filter *filter) 8388 { 8389 struct i40e_channel *ch, *ch_tmp; 8390 8391 /* direct to a traffic class on the same device */ 8392 if (tc == 0) { 8393 filter->seid = vsi->seid; 8394 return 0; 8395 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8396 if (!filter->dst_port) { 8397 dev_err(&vsi->back->pdev->dev, 8398 "Specify destination port to direct to traffic class that is not default\n"); 8399 return -EINVAL; 8400 } 8401 if (list_empty(&vsi->ch_list)) 8402 return -EINVAL; 8403 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8404 list) { 8405 if (ch->seid == vsi->tc_seid_map[tc]) 8406 filter->seid = ch->seid; 8407 } 8408 return 0; 8409 } 8410 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8411 return -EINVAL; 8412 } 8413 8414 /** 8415 * i40e_configure_clsflower - Configure tc flower filters 8416 * @vsi: Pointer to VSI 8417 * @cls_flower: Pointer to struct flow_cls_offload 8418 * 8419 **/ 8420 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8421 struct flow_cls_offload *cls_flower) 8422 { 8423 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8424 struct i40e_cloud_filter *filter = NULL; 8425 struct i40e_pf *pf = vsi->back; 8426 int err = 0; 8427 8428 if (tc < 0) { 8429 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8430 return -EOPNOTSUPP; 8431 } 8432 8433 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8434 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8435 return -EBUSY; 8436 8437 if (pf->fdir_pf_active_filters || 8438 (!hlist_empty(&pf->fdir_filter_list))) { 8439 dev_err(&vsi->back->pdev->dev, 8440 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8441 return -EINVAL; 8442 } 8443 8444 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8445 dev_err(&vsi->back->pdev->dev, 8446 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8447 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8448 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8449 } 8450 8451 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8452 if (!filter) 8453 return -ENOMEM; 8454 8455 filter->cookie = cls_flower->cookie; 8456 8457 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8458 if (err < 0) 8459 goto err; 8460 8461 err = i40e_handle_tclass(vsi, tc, filter); 8462 if (err < 0) 8463 goto err; 8464 8465 /* Add cloud filter */ 8466 if (filter->dst_port) 8467 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8468 else 8469 err = i40e_add_del_cloud_filter(vsi, filter, true); 8470 8471 if (err) { 8472 dev_err(&pf->pdev->dev, 8473 "Failed to add cloud filter, err %s\n", 8474 i40e_stat_str(&pf->hw, err)); 8475 goto err; 8476 } 8477 8478 /* add filter to the ordered list */ 8479 INIT_HLIST_NODE(&filter->cloud_node); 8480 8481 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8482 8483 pf->num_cloud_filters++; 8484 8485 return err; 8486 err: 8487 kfree(filter); 8488 return err; 8489 } 8490 8491 /** 8492 * i40e_find_cloud_filter - Find the could filter in the list 8493 * @vsi: Pointer to VSI 8494 * @cookie: filter specific cookie 8495 * 8496 **/ 8497 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8498 unsigned long *cookie) 8499 { 8500 struct i40e_cloud_filter *filter = NULL; 8501 struct hlist_node *node2; 8502 8503 hlist_for_each_entry_safe(filter, node2, 8504 &vsi->back->cloud_filter_list, cloud_node) 8505 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8506 return filter; 8507 return NULL; 8508 } 8509 8510 /** 8511 * i40e_delete_clsflower - Remove tc flower filters 8512 * @vsi: Pointer to VSI 8513 * @cls_flower: Pointer to struct flow_cls_offload 8514 * 8515 **/ 8516 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8517 struct flow_cls_offload *cls_flower) 8518 { 8519 struct i40e_cloud_filter *filter = NULL; 8520 struct i40e_pf *pf = vsi->back; 8521 int err = 0; 8522 8523 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8524 8525 if (!filter) 8526 return -EINVAL; 8527 8528 hash_del(&filter->cloud_node); 8529 8530 if (filter->dst_port) 8531 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8532 else 8533 err = i40e_add_del_cloud_filter(vsi, filter, false); 8534 8535 kfree(filter); 8536 if (err) { 8537 dev_err(&pf->pdev->dev, 8538 "Failed to delete cloud filter, err %s\n", 8539 i40e_stat_str(&pf->hw, err)); 8540 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8541 } 8542 8543 pf->num_cloud_filters--; 8544 if (!pf->num_cloud_filters) 8545 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8546 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8547 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8548 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8549 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8550 } 8551 return 0; 8552 } 8553 8554 /** 8555 * i40e_setup_tc_cls_flower - flower classifier offloads 8556 * @np: net device to configure 8557 * @cls_flower: offload data 8558 **/ 8559 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8560 struct flow_cls_offload *cls_flower) 8561 { 8562 struct i40e_vsi *vsi = np->vsi; 8563 8564 switch (cls_flower->command) { 8565 case FLOW_CLS_REPLACE: 8566 return i40e_configure_clsflower(vsi, cls_flower); 8567 case FLOW_CLS_DESTROY: 8568 return i40e_delete_clsflower(vsi, cls_flower); 8569 case FLOW_CLS_STATS: 8570 return -EOPNOTSUPP; 8571 default: 8572 return -EOPNOTSUPP; 8573 } 8574 } 8575 8576 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8577 void *cb_priv) 8578 { 8579 struct i40e_netdev_priv *np = cb_priv; 8580 8581 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8582 return -EOPNOTSUPP; 8583 8584 switch (type) { 8585 case TC_SETUP_CLSFLOWER: 8586 return i40e_setup_tc_cls_flower(np, type_data); 8587 8588 default: 8589 return -EOPNOTSUPP; 8590 } 8591 } 8592 8593 static LIST_HEAD(i40e_block_cb_list); 8594 8595 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8596 void *type_data) 8597 { 8598 struct i40e_netdev_priv *np = netdev_priv(netdev); 8599 8600 switch (type) { 8601 case TC_SETUP_QDISC_MQPRIO: 8602 return i40e_setup_tc(netdev, type_data); 8603 case TC_SETUP_BLOCK: 8604 return flow_block_cb_setup_simple(type_data, 8605 &i40e_block_cb_list, 8606 i40e_setup_tc_block_cb, 8607 np, np, true); 8608 default: 8609 return -EOPNOTSUPP; 8610 } 8611 } 8612 8613 /** 8614 * i40e_open - Called when a network interface is made active 8615 * @netdev: network interface device structure 8616 * 8617 * The open entry point is called when a network interface is made 8618 * active by the system (IFF_UP). At this point all resources needed 8619 * for transmit and receive operations are allocated, the interrupt 8620 * handler is registered with the OS, the netdev watchdog subtask is 8621 * enabled, and the stack is notified that the interface is ready. 8622 * 8623 * Returns 0 on success, negative value on failure 8624 **/ 8625 int i40e_open(struct net_device *netdev) 8626 { 8627 struct i40e_netdev_priv *np = netdev_priv(netdev); 8628 struct i40e_vsi *vsi = np->vsi; 8629 struct i40e_pf *pf = vsi->back; 8630 int err; 8631 8632 /* disallow open during test or if eeprom is broken */ 8633 if (test_bit(__I40E_TESTING, pf->state) || 8634 test_bit(__I40E_BAD_EEPROM, pf->state)) 8635 return -EBUSY; 8636 8637 netif_carrier_off(netdev); 8638 8639 if (i40e_force_link_state(pf, true)) 8640 return -EAGAIN; 8641 8642 err = i40e_vsi_open(vsi); 8643 if (err) 8644 return err; 8645 8646 /* configure global TSO hardware offload settings */ 8647 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8648 TCP_FLAG_FIN) >> 16); 8649 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8650 TCP_FLAG_FIN | 8651 TCP_FLAG_CWR) >> 16); 8652 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8653 udp_tunnel_get_rx_info(netdev); 8654 8655 return 0; 8656 } 8657 8658 /** 8659 * i40e_vsi_open - 8660 * @vsi: the VSI to open 8661 * 8662 * Finish initialization of the VSI. 8663 * 8664 * Returns 0 on success, negative value on failure 8665 * 8666 * Note: expects to be called while under rtnl_lock() 8667 **/ 8668 int i40e_vsi_open(struct i40e_vsi *vsi) 8669 { 8670 struct i40e_pf *pf = vsi->back; 8671 char int_name[I40E_INT_NAME_STR_LEN]; 8672 int err; 8673 8674 /* allocate descriptors */ 8675 err = i40e_vsi_setup_tx_resources(vsi); 8676 if (err) 8677 goto err_setup_tx; 8678 err = i40e_vsi_setup_rx_resources(vsi); 8679 if (err) 8680 goto err_setup_rx; 8681 8682 err = i40e_vsi_configure(vsi); 8683 if (err) 8684 goto err_setup_rx; 8685 8686 if (vsi->netdev) { 8687 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8688 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8689 err = i40e_vsi_request_irq(vsi, int_name); 8690 if (err) 8691 goto err_setup_rx; 8692 8693 /* Notify the stack of the actual queue counts. */ 8694 err = netif_set_real_num_tx_queues(vsi->netdev, 8695 vsi->num_queue_pairs); 8696 if (err) 8697 goto err_set_queues; 8698 8699 err = netif_set_real_num_rx_queues(vsi->netdev, 8700 vsi->num_queue_pairs); 8701 if (err) 8702 goto err_set_queues; 8703 8704 } else if (vsi->type == I40E_VSI_FDIR) { 8705 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8706 dev_driver_string(&pf->pdev->dev), 8707 dev_name(&pf->pdev->dev)); 8708 err = i40e_vsi_request_irq(vsi, int_name); 8709 if (err) 8710 goto err_setup_rx; 8711 8712 } else { 8713 err = -EINVAL; 8714 goto err_setup_rx; 8715 } 8716 8717 err = i40e_up_complete(vsi); 8718 if (err) 8719 goto err_up_complete; 8720 8721 return 0; 8722 8723 err_up_complete: 8724 i40e_down(vsi); 8725 err_set_queues: 8726 i40e_vsi_free_irq(vsi); 8727 err_setup_rx: 8728 i40e_vsi_free_rx_resources(vsi); 8729 err_setup_tx: 8730 i40e_vsi_free_tx_resources(vsi); 8731 if (vsi == pf->vsi[pf->lan_vsi]) 8732 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8733 8734 return err; 8735 } 8736 8737 /** 8738 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8739 * @pf: Pointer to PF 8740 * 8741 * This function destroys the hlist where all the Flow Director 8742 * filters were saved. 8743 **/ 8744 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8745 { 8746 struct i40e_fdir_filter *filter; 8747 struct i40e_flex_pit *pit_entry, *tmp; 8748 struct hlist_node *node2; 8749 8750 hlist_for_each_entry_safe(filter, node2, 8751 &pf->fdir_filter_list, fdir_node) { 8752 hlist_del(&filter->fdir_node); 8753 kfree(filter); 8754 } 8755 8756 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8757 list_del(&pit_entry->list); 8758 kfree(pit_entry); 8759 } 8760 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8761 8762 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8763 list_del(&pit_entry->list); 8764 kfree(pit_entry); 8765 } 8766 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8767 8768 pf->fdir_pf_active_filters = 0; 8769 i40e_reset_fdir_filter_cnt(pf); 8770 8771 /* Reprogram the default input set for TCP/IPv4 */ 8772 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8773 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8774 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8775 8776 /* Reprogram the default input set for TCP/IPv6 */ 8777 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 8778 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8779 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8780 8781 /* Reprogram the default input set for UDP/IPv4 */ 8782 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8783 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8784 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8785 8786 /* Reprogram the default input set for UDP/IPv6 */ 8787 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 8788 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8789 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8790 8791 /* Reprogram the default input set for SCTP/IPv4 */ 8792 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8793 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8794 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8795 8796 /* Reprogram the default input set for SCTP/IPv6 */ 8797 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 8798 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8799 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8800 8801 /* Reprogram the default input set for Other/IPv4 */ 8802 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8803 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8804 8805 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8806 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8807 8808 /* Reprogram the default input set for Other/IPv6 */ 8809 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 8810 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8811 8812 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 8813 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8814 } 8815 8816 /** 8817 * i40e_cloud_filter_exit - Cleans up the cloud filters 8818 * @pf: Pointer to PF 8819 * 8820 * This function destroys the hlist where all the cloud filters 8821 * were saved. 8822 **/ 8823 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8824 { 8825 struct i40e_cloud_filter *cfilter; 8826 struct hlist_node *node; 8827 8828 hlist_for_each_entry_safe(cfilter, node, 8829 &pf->cloud_filter_list, cloud_node) { 8830 hlist_del(&cfilter->cloud_node); 8831 kfree(cfilter); 8832 } 8833 pf->num_cloud_filters = 0; 8834 8835 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8836 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8837 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8838 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8839 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8840 } 8841 } 8842 8843 /** 8844 * i40e_close - Disables a network interface 8845 * @netdev: network interface device structure 8846 * 8847 * The close entry point is called when an interface is de-activated 8848 * by the OS. The hardware is still under the driver's control, but 8849 * this netdev interface is disabled. 8850 * 8851 * Returns 0, this is not allowed to fail 8852 **/ 8853 int i40e_close(struct net_device *netdev) 8854 { 8855 struct i40e_netdev_priv *np = netdev_priv(netdev); 8856 struct i40e_vsi *vsi = np->vsi; 8857 8858 i40e_vsi_close(vsi); 8859 8860 return 0; 8861 } 8862 8863 /** 8864 * i40e_do_reset - Start a PF or Core Reset sequence 8865 * @pf: board private structure 8866 * @reset_flags: which reset is requested 8867 * @lock_acquired: indicates whether or not the lock has been acquired 8868 * before this function was called. 8869 * 8870 * The essential difference in resets is that the PF Reset 8871 * doesn't clear the packet buffers, doesn't reset the PE 8872 * firmware, and doesn't bother the other PFs on the chip. 8873 **/ 8874 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8875 { 8876 u32 val; 8877 8878 /* do the biggest reset indicated */ 8879 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8880 8881 /* Request a Global Reset 8882 * 8883 * This will start the chip's countdown to the actual full 8884 * chip reset event, and a warning interrupt to be sent 8885 * to all PFs, including the requestor. Our handler 8886 * for the warning interrupt will deal with the shutdown 8887 * and recovery of the switch setup. 8888 */ 8889 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8890 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8891 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8892 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8893 8894 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8895 8896 /* Request a Core Reset 8897 * 8898 * Same as Global Reset, except does *not* include the MAC/PHY 8899 */ 8900 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8901 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8902 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8903 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8904 i40e_flush(&pf->hw); 8905 8906 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8907 8908 /* Request a PF Reset 8909 * 8910 * Resets only the PF-specific registers 8911 * 8912 * This goes directly to the tear-down and rebuild of 8913 * the switch, since we need to do all the recovery as 8914 * for the Core Reset. 8915 */ 8916 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8917 i40e_handle_reset_warning(pf, lock_acquired); 8918 8919 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 8920 /* Request a PF Reset 8921 * 8922 * Resets PF and reinitializes PFs VSI. 8923 */ 8924 i40e_prep_for_reset(pf); 8925 i40e_reset_and_rebuild(pf, true, lock_acquired); 8926 dev_info(&pf->pdev->dev, 8927 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8928 "FW LLDP is disabled\n" : 8929 "FW LLDP is enabled\n"); 8930 8931 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8932 int v; 8933 8934 /* Find the VSI(s) that requested a re-init */ 8935 dev_info(&pf->pdev->dev, 8936 "VSI reinit requested\n"); 8937 for (v = 0; v < pf->num_alloc_vsi; v++) { 8938 struct i40e_vsi *vsi = pf->vsi[v]; 8939 8940 if (vsi != NULL && 8941 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8942 vsi->state)) 8943 i40e_vsi_reinit_locked(pf->vsi[v]); 8944 } 8945 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8946 int v; 8947 8948 /* Find the VSI(s) that needs to be brought down */ 8949 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8950 for (v = 0; v < pf->num_alloc_vsi; v++) { 8951 struct i40e_vsi *vsi = pf->vsi[v]; 8952 8953 if (vsi != NULL && 8954 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8955 vsi->state)) { 8956 set_bit(__I40E_VSI_DOWN, vsi->state); 8957 i40e_down(vsi); 8958 } 8959 } 8960 } else { 8961 dev_info(&pf->pdev->dev, 8962 "bad reset request 0x%08x\n", reset_flags); 8963 } 8964 } 8965 8966 #ifdef CONFIG_I40E_DCB 8967 /** 8968 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8969 * @pf: board private structure 8970 * @old_cfg: current DCB config 8971 * @new_cfg: new DCB config 8972 **/ 8973 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8974 struct i40e_dcbx_config *old_cfg, 8975 struct i40e_dcbx_config *new_cfg) 8976 { 8977 bool need_reconfig = false; 8978 8979 /* Check if ETS configuration has changed */ 8980 if (memcmp(&new_cfg->etscfg, 8981 &old_cfg->etscfg, 8982 sizeof(new_cfg->etscfg))) { 8983 /* If Priority Table has changed reconfig is needed */ 8984 if (memcmp(&new_cfg->etscfg.prioritytable, 8985 &old_cfg->etscfg.prioritytable, 8986 sizeof(new_cfg->etscfg.prioritytable))) { 8987 need_reconfig = true; 8988 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8989 } 8990 8991 if (memcmp(&new_cfg->etscfg.tcbwtable, 8992 &old_cfg->etscfg.tcbwtable, 8993 sizeof(new_cfg->etscfg.tcbwtable))) 8994 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8995 8996 if (memcmp(&new_cfg->etscfg.tsatable, 8997 &old_cfg->etscfg.tsatable, 8998 sizeof(new_cfg->etscfg.tsatable))) 8999 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9000 } 9001 9002 /* Check if PFC configuration has changed */ 9003 if (memcmp(&new_cfg->pfc, 9004 &old_cfg->pfc, 9005 sizeof(new_cfg->pfc))) { 9006 need_reconfig = true; 9007 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9008 } 9009 9010 /* Check if APP Table has changed */ 9011 if (memcmp(&new_cfg->app, 9012 &old_cfg->app, 9013 sizeof(new_cfg->app))) { 9014 need_reconfig = true; 9015 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9016 } 9017 9018 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9019 return need_reconfig; 9020 } 9021 9022 /** 9023 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9024 * @pf: board private structure 9025 * @e: event info posted on ARQ 9026 **/ 9027 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9028 struct i40e_arq_event_info *e) 9029 { 9030 struct i40e_aqc_lldp_get_mib *mib = 9031 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9032 struct i40e_hw *hw = &pf->hw; 9033 struct i40e_dcbx_config tmp_dcbx_cfg; 9034 bool need_reconfig = false; 9035 int ret = 0; 9036 u8 type; 9037 9038 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9039 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9040 (hw->phy.link_info.link_speed & 9041 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9042 !(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9043 /* let firmware decide if the DCB should be disabled */ 9044 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9045 9046 /* Not DCB capable or capability disabled */ 9047 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9048 return ret; 9049 9050 /* Ignore if event is not for Nearest Bridge */ 9051 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9052 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9053 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9054 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9055 return ret; 9056 9057 /* Check MIB Type and return if event for Remote MIB update */ 9058 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9059 dev_dbg(&pf->pdev->dev, 9060 "LLDP event mib type %s\n", type ? "remote" : "local"); 9061 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9062 /* Update the remote cached instance and return */ 9063 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9064 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9065 &hw->remote_dcbx_config); 9066 goto exit; 9067 } 9068 9069 /* Store the old configuration */ 9070 tmp_dcbx_cfg = hw->local_dcbx_config; 9071 9072 /* Reset the old DCBx configuration data */ 9073 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9074 /* Get updated DCBX data from firmware */ 9075 ret = i40e_get_dcb_config(&pf->hw); 9076 if (ret) { 9077 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9078 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9079 (hw->phy.link_info.link_speed & 9080 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9081 dev_warn(&pf->pdev->dev, 9082 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9083 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9084 } else { 9085 dev_info(&pf->pdev->dev, 9086 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 9087 i40e_stat_str(&pf->hw, ret), 9088 i40e_aq_str(&pf->hw, 9089 pf->hw.aq.asq_last_status)); 9090 } 9091 goto exit; 9092 } 9093 9094 /* No change detected in DCBX configs */ 9095 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9096 sizeof(tmp_dcbx_cfg))) { 9097 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9098 goto exit; 9099 } 9100 9101 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9102 &hw->local_dcbx_config); 9103 9104 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9105 9106 if (!need_reconfig) 9107 goto exit; 9108 9109 /* Enable DCB tagging only when more than one TC */ 9110 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9111 pf->flags |= I40E_FLAG_DCB_ENABLED; 9112 else 9113 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9114 9115 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9116 /* Reconfiguration needed quiesce all VSIs */ 9117 i40e_pf_quiesce_all_vsi(pf); 9118 9119 /* Changes in configuration update VEB/VSI */ 9120 i40e_dcb_reconfigure(pf); 9121 9122 ret = i40e_resume_port_tx(pf); 9123 9124 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9125 /* In case of error no point in resuming VSIs */ 9126 if (ret) 9127 goto exit; 9128 9129 /* Wait for the PF's queues to be disabled */ 9130 ret = i40e_pf_wait_queues_disabled(pf); 9131 if (ret) { 9132 /* Schedule PF reset to recover */ 9133 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9134 i40e_service_event_schedule(pf); 9135 } else { 9136 i40e_pf_unquiesce_all_vsi(pf); 9137 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9138 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9139 } 9140 9141 exit: 9142 return ret; 9143 } 9144 #endif /* CONFIG_I40E_DCB */ 9145 9146 /** 9147 * i40e_do_reset_safe - Protected reset path for userland calls. 9148 * @pf: board private structure 9149 * @reset_flags: which reset is requested 9150 * 9151 **/ 9152 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9153 { 9154 rtnl_lock(); 9155 i40e_do_reset(pf, reset_flags, true); 9156 rtnl_unlock(); 9157 } 9158 9159 /** 9160 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9161 * @pf: board private structure 9162 * @e: event info posted on ARQ 9163 * 9164 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9165 * and VF queues 9166 **/ 9167 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9168 struct i40e_arq_event_info *e) 9169 { 9170 struct i40e_aqc_lan_overflow *data = 9171 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9172 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9173 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9174 struct i40e_hw *hw = &pf->hw; 9175 struct i40e_vf *vf; 9176 u16 vf_id; 9177 9178 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9179 queue, qtx_ctl); 9180 9181 /* Queue belongs to VF, find the VF and issue VF reset */ 9182 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 9183 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 9184 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 9185 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 9186 vf_id -= hw->func_caps.vf_base_id; 9187 vf = &pf->vf[vf_id]; 9188 i40e_vc_notify_vf_reset(vf); 9189 /* Allow VF to process pending reset notification */ 9190 msleep(20); 9191 i40e_reset_vf(vf, false); 9192 } 9193 } 9194 9195 /** 9196 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9197 * @pf: board private structure 9198 **/ 9199 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9200 { 9201 u32 val, fcnt_prog; 9202 9203 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9204 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9205 return fcnt_prog; 9206 } 9207 9208 /** 9209 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9210 * @pf: board private structure 9211 **/ 9212 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9213 { 9214 u32 val, fcnt_prog; 9215 9216 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9217 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9218 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 9219 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 9220 return fcnt_prog; 9221 } 9222 9223 /** 9224 * i40e_get_global_fd_count - Get total FD filters programmed on device 9225 * @pf: board private structure 9226 **/ 9227 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9228 { 9229 u32 val, fcnt_prog; 9230 9231 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9232 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9233 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 9234 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 9235 return fcnt_prog; 9236 } 9237 9238 /** 9239 * i40e_reenable_fdir_sb - Restore FDir SB capability 9240 * @pf: board private structure 9241 **/ 9242 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9243 { 9244 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9245 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 9246 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9247 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9248 } 9249 9250 /** 9251 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9252 * @pf: board private structure 9253 **/ 9254 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9255 { 9256 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9257 /* ATR uses the same filtering logic as SB rules. It only 9258 * functions properly if the input set mask is at the default 9259 * settings. It is safe to restore the default input set 9260 * because there are no active TCPv4 filter rules. 9261 */ 9262 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9263 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9264 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9265 9266 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 9267 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9268 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9269 } 9270 } 9271 9272 /** 9273 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9274 * @pf: board private structure 9275 * @filter: FDir filter to remove 9276 */ 9277 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9278 struct i40e_fdir_filter *filter) 9279 { 9280 /* Update counters */ 9281 pf->fdir_pf_active_filters--; 9282 pf->fd_inv = 0; 9283 9284 switch (filter->flow_type) { 9285 case TCP_V4_FLOW: 9286 pf->fd_tcp4_filter_cnt--; 9287 break; 9288 case UDP_V4_FLOW: 9289 pf->fd_udp4_filter_cnt--; 9290 break; 9291 case SCTP_V4_FLOW: 9292 pf->fd_sctp4_filter_cnt--; 9293 break; 9294 case TCP_V6_FLOW: 9295 pf->fd_tcp6_filter_cnt--; 9296 break; 9297 case UDP_V6_FLOW: 9298 pf->fd_udp6_filter_cnt--; 9299 break; 9300 case SCTP_V6_FLOW: 9301 pf->fd_udp6_filter_cnt--; 9302 break; 9303 case IP_USER_FLOW: 9304 switch (filter->ipl4_proto) { 9305 case IPPROTO_TCP: 9306 pf->fd_tcp4_filter_cnt--; 9307 break; 9308 case IPPROTO_UDP: 9309 pf->fd_udp4_filter_cnt--; 9310 break; 9311 case IPPROTO_SCTP: 9312 pf->fd_sctp4_filter_cnt--; 9313 break; 9314 case IPPROTO_IP: 9315 pf->fd_ip4_filter_cnt--; 9316 break; 9317 } 9318 break; 9319 case IPV6_USER_FLOW: 9320 switch (filter->ipl4_proto) { 9321 case IPPROTO_TCP: 9322 pf->fd_tcp6_filter_cnt--; 9323 break; 9324 case IPPROTO_UDP: 9325 pf->fd_udp6_filter_cnt--; 9326 break; 9327 case IPPROTO_SCTP: 9328 pf->fd_sctp6_filter_cnt--; 9329 break; 9330 case IPPROTO_IP: 9331 pf->fd_ip6_filter_cnt--; 9332 break; 9333 } 9334 break; 9335 } 9336 9337 /* Remove the filter from the list and free memory */ 9338 hlist_del(&filter->fdir_node); 9339 kfree(filter); 9340 } 9341 9342 /** 9343 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9344 * @pf: board private structure 9345 **/ 9346 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9347 { 9348 struct i40e_fdir_filter *filter; 9349 u32 fcnt_prog, fcnt_avail; 9350 struct hlist_node *node; 9351 9352 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9353 return; 9354 9355 /* Check if we have enough room to re-enable FDir SB capability. */ 9356 fcnt_prog = i40e_get_global_fd_count(pf); 9357 fcnt_avail = pf->fdir_pf_filter_count; 9358 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9359 (pf->fd_add_err == 0) || 9360 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9361 i40e_reenable_fdir_sb(pf); 9362 9363 /* We should wait for even more space before re-enabling ATR. 9364 * Additionally, we cannot enable ATR as long as we still have TCP SB 9365 * rules active. 9366 */ 9367 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9368 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9369 i40e_reenable_fdir_atr(pf); 9370 9371 /* if hw had a problem adding a filter, delete it */ 9372 if (pf->fd_inv > 0) { 9373 hlist_for_each_entry_safe(filter, node, 9374 &pf->fdir_filter_list, fdir_node) 9375 if (filter->fd_id == pf->fd_inv) 9376 i40e_delete_invalid_filter(pf, filter); 9377 } 9378 } 9379 9380 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9381 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9382 /** 9383 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9384 * @pf: board private structure 9385 **/ 9386 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9387 { 9388 unsigned long min_flush_time; 9389 int flush_wait_retry = 50; 9390 bool disable_atr = false; 9391 int fd_room; 9392 int reg; 9393 9394 if (!time_after(jiffies, pf->fd_flush_timestamp + 9395 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9396 return; 9397 9398 /* If the flush is happening too quick and we have mostly SB rules we 9399 * should not re-enable ATR for some time. 9400 */ 9401 min_flush_time = pf->fd_flush_timestamp + 9402 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9403 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9404 9405 if (!(time_after(jiffies, min_flush_time)) && 9406 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9407 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9408 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9409 disable_atr = true; 9410 } 9411 9412 pf->fd_flush_timestamp = jiffies; 9413 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9414 /* flush all filters */ 9415 wr32(&pf->hw, I40E_PFQF_CTL_1, 9416 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9417 i40e_flush(&pf->hw); 9418 pf->fd_flush_cnt++; 9419 pf->fd_add_err = 0; 9420 do { 9421 /* Check FD flush status every 5-6msec */ 9422 usleep_range(5000, 6000); 9423 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9424 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9425 break; 9426 } while (flush_wait_retry--); 9427 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9428 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9429 } else { 9430 /* replay sideband filters */ 9431 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9432 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9433 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9434 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9435 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9436 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9437 } 9438 } 9439 9440 /** 9441 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9442 * @pf: board private structure 9443 **/ 9444 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9445 { 9446 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9447 } 9448 9449 /** 9450 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9451 * @pf: board private structure 9452 **/ 9453 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9454 { 9455 9456 /* if interface is down do nothing */ 9457 if (test_bit(__I40E_DOWN, pf->state)) 9458 return; 9459 9460 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9461 i40e_fdir_flush_and_replay(pf); 9462 9463 i40e_fdir_check_and_reenable(pf); 9464 9465 } 9466 9467 /** 9468 * i40e_vsi_link_event - notify VSI of a link event 9469 * @vsi: vsi to be notified 9470 * @link_up: link up or down 9471 **/ 9472 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9473 { 9474 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9475 return; 9476 9477 switch (vsi->type) { 9478 case I40E_VSI_MAIN: 9479 if (!vsi->netdev || !vsi->netdev_registered) 9480 break; 9481 9482 if (link_up) { 9483 netif_carrier_on(vsi->netdev); 9484 netif_tx_wake_all_queues(vsi->netdev); 9485 } else { 9486 netif_carrier_off(vsi->netdev); 9487 netif_tx_stop_all_queues(vsi->netdev); 9488 } 9489 break; 9490 9491 case I40E_VSI_SRIOV: 9492 case I40E_VSI_VMDQ2: 9493 case I40E_VSI_CTRL: 9494 case I40E_VSI_IWARP: 9495 case I40E_VSI_MIRROR: 9496 default: 9497 /* there is no notification for other VSIs */ 9498 break; 9499 } 9500 } 9501 9502 /** 9503 * i40e_veb_link_event - notify elements on the veb of a link event 9504 * @veb: veb to be notified 9505 * @link_up: link up or down 9506 **/ 9507 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9508 { 9509 struct i40e_pf *pf; 9510 int i; 9511 9512 if (!veb || !veb->pf) 9513 return; 9514 pf = veb->pf; 9515 9516 /* depth first... */ 9517 for (i = 0; i < I40E_MAX_VEB; i++) 9518 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9519 i40e_veb_link_event(pf->veb[i], link_up); 9520 9521 /* ... now the local VSIs */ 9522 for (i = 0; i < pf->num_alloc_vsi; i++) 9523 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9524 i40e_vsi_link_event(pf->vsi[i], link_up); 9525 } 9526 9527 /** 9528 * i40e_link_event - Update netif_carrier status 9529 * @pf: board private structure 9530 **/ 9531 static void i40e_link_event(struct i40e_pf *pf) 9532 { 9533 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9534 u8 new_link_speed, old_link_speed; 9535 i40e_status status; 9536 bool new_link, old_link; 9537 #ifdef CONFIG_I40E_DCB 9538 int err; 9539 #endif /* CONFIG_I40E_DCB */ 9540 9541 /* set this to force the get_link_status call to refresh state */ 9542 pf->hw.phy.get_link_info = true; 9543 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9544 status = i40e_get_link_status(&pf->hw, &new_link); 9545 9546 /* On success, disable temp link polling */ 9547 if (status == I40E_SUCCESS) { 9548 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9549 } else { 9550 /* Enable link polling temporarily until i40e_get_link_status 9551 * returns I40E_SUCCESS 9552 */ 9553 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9554 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9555 status); 9556 return; 9557 } 9558 9559 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9560 new_link_speed = pf->hw.phy.link_info.link_speed; 9561 9562 if (new_link == old_link && 9563 new_link_speed == old_link_speed && 9564 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9565 new_link == netif_carrier_ok(vsi->netdev))) 9566 return; 9567 9568 i40e_print_link_message(vsi, new_link); 9569 9570 /* Notify the base of the switch tree connected to 9571 * the link. Floating VEBs are not notified. 9572 */ 9573 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9574 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9575 else 9576 i40e_vsi_link_event(vsi, new_link); 9577 9578 if (pf->vf) 9579 i40e_vc_notify_link_state(pf); 9580 9581 if (pf->flags & I40E_FLAG_PTP) 9582 i40e_ptp_set_increment(pf); 9583 #ifdef CONFIG_I40E_DCB 9584 if (new_link == old_link) 9585 return; 9586 /* Not SW DCB so firmware will take care of default settings */ 9587 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9588 return; 9589 9590 /* We cover here only link down, as after link up in case of SW DCB 9591 * SW LLDP agent will take care of setting it up 9592 */ 9593 if (!new_link) { 9594 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9595 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9596 err = i40e_dcb_sw_default_config(pf); 9597 if (err) { 9598 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 9599 I40E_FLAG_DCB_ENABLED); 9600 } else { 9601 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9602 DCB_CAP_DCBX_VER_IEEE; 9603 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9604 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9605 } 9606 } 9607 #endif /* CONFIG_I40E_DCB */ 9608 } 9609 9610 /** 9611 * i40e_watchdog_subtask - periodic checks not using event driven response 9612 * @pf: board private structure 9613 **/ 9614 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9615 { 9616 int i; 9617 9618 /* if interface is down do nothing */ 9619 if (test_bit(__I40E_DOWN, pf->state) || 9620 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9621 return; 9622 9623 /* make sure we don't do these things too often */ 9624 if (time_before(jiffies, (pf->service_timer_previous + 9625 pf->service_timer_period))) 9626 return; 9627 pf->service_timer_previous = jiffies; 9628 9629 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9630 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9631 i40e_link_event(pf); 9632 9633 /* Update the stats for active netdevs so the network stack 9634 * can look at updated numbers whenever it cares to 9635 */ 9636 for (i = 0; i < pf->num_alloc_vsi; i++) 9637 if (pf->vsi[i] && pf->vsi[i]->netdev) 9638 i40e_update_stats(pf->vsi[i]); 9639 9640 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9641 /* Update the stats for the active switching components */ 9642 for (i = 0; i < I40E_MAX_VEB; i++) 9643 if (pf->veb[i]) 9644 i40e_update_veb_stats(pf->veb[i]); 9645 } 9646 9647 i40e_ptp_rx_hang(pf); 9648 i40e_ptp_tx_hang(pf); 9649 } 9650 9651 /** 9652 * i40e_reset_subtask - Set up for resetting the device and driver 9653 * @pf: board private structure 9654 **/ 9655 static void i40e_reset_subtask(struct i40e_pf *pf) 9656 { 9657 u32 reset_flags = 0; 9658 9659 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9660 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9661 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9662 } 9663 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9664 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9665 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9666 } 9667 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9668 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9669 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9670 } 9671 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9672 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9673 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9674 } 9675 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9676 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9677 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9678 } 9679 9680 /* If there's a recovery already waiting, it takes 9681 * precedence before starting a new reset sequence. 9682 */ 9683 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9684 i40e_prep_for_reset(pf); 9685 i40e_reset(pf); 9686 i40e_rebuild(pf, false, false); 9687 } 9688 9689 /* If we're already down or resetting, just bail */ 9690 if (reset_flags && 9691 !test_bit(__I40E_DOWN, pf->state) && 9692 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9693 i40e_do_reset(pf, reset_flags, false); 9694 } 9695 } 9696 9697 /** 9698 * i40e_handle_link_event - Handle link event 9699 * @pf: board private structure 9700 * @e: event info posted on ARQ 9701 **/ 9702 static void i40e_handle_link_event(struct i40e_pf *pf, 9703 struct i40e_arq_event_info *e) 9704 { 9705 struct i40e_aqc_get_link_status *status = 9706 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9707 9708 /* Do a new status request to re-enable LSE reporting 9709 * and load new status information into the hw struct 9710 * This completely ignores any state information 9711 * in the ARQ event info, instead choosing to always 9712 * issue the AQ update link status command. 9713 */ 9714 i40e_link_event(pf); 9715 9716 /* Check if module meets thermal requirements */ 9717 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9718 dev_err(&pf->pdev->dev, 9719 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9720 dev_err(&pf->pdev->dev, 9721 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9722 } else { 9723 /* check for unqualified module, if link is down, suppress 9724 * the message if link was forced to be down. 9725 */ 9726 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9727 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9728 (!(status->link_info & I40E_AQ_LINK_UP)) && 9729 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9730 dev_err(&pf->pdev->dev, 9731 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9732 dev_err(&pf->pdev->dev, 9733 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9734 } 9735 } 9736 } 9737 9738 /** 9739 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9740 * @pf: board private structure 9741 **/ 9742 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9743 { 9744 struct i40e_arq_event_info event; 9745 struct i40e_hw *hw = &pf->hw; 9746 u16 pending, i = 0; 9747 i40e_status ret; 9748 u16 opcode; 9749 u32 oldval; 9750 u32 val; 9751 9752 /* Do not run clean AQ when PF reset fails */ 9753 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9754 return; 9755 9756 /* check for error indications */ 9757 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9758 oldval = val; 9759 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9760 if (hw->debug_mask & I40E_DEBUG_AQ) 9761 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9762 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9763 } 9764 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9765 if (hw->debug_mask & I40E_DEBUG_AQ) 9766 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9767 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9768 pf->arq_overflows++; 9769 } 9770 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9771 if (hw->debug_mask & I40E_DEBUG_AQ) 9772 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9773 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9774 } 9775 if (oldval != val) 9776 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9777 9778 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9779 oldval = val; 9780 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9781 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9782 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9783 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9784 } 9785 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9786 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9787 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9788 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9789 } 9790 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9791 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9792 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9793 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9794 } 9795 if (oldval != val) 9796 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9797 9798 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9799 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9800 if (!event.msg_buf) 9801 return; 9802 9803 do { 9804 ret = i40e_clean_arq_element(hw, &event, &pending); 9805 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9806 break; 9807 else if (ret) { 9808 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9809 break; 9810 } 9811 9812 opcode = le16_to_cpu(event.desc.opcode); 9813 switch (opcode) { 9814 9815 case i40e_aqc_opc_get_link_status: 9816 rtnl_lock(); 9817 i40e_handle_link_event(pf, &event); 9818 rtnl_unlock(); 9819 break; 9820 case i40e_aqc_opc_send_msg_to_pf: 9821 ret = i40e_vc_process_vf_msg(pf, 9822 le16_to_cpu(event.desc.retval), 9823 le32_to_cpu(event.desc.cookie_high), 9824 le32_to_cpu(event.desc.cookie_low), 9825 event.msg_buf, 9826 event.msg_len); 9827 break; 9828 case i40e_aqc_opc_lldp_update_mib: 9829 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9830 #ifdef CONFIG_I40E_DCB 9831 rtnl_lock(); 9832 i40e_handle_lldp_event(pf, &event); 9833 rtnl_unlock(); 9834 #endif /* CONFIG_I40E_DCB */ 9835 break; 9836 case i40e_aqc_opc_event_lan_overflow: 9837 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9838 i40e_handle_lan_overflow_event(pf, &event); 9839 break; 9840 case i40e_aqc_opc_send_msg_to_peer: 9841 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9842 break; 9843 case i40e_aqc_opc_nvm_erase: 9844 case i40e_aqc_opc_nvm_update: 9845 case i40e_aqc_opc_oem_post_update: 9846 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9847 "ARQ NVM operation 0x%04x completed\n", 9848 opcode); 9849 break; 9850 default: 9851 dev_info(&pf->pdev->dev, 9852 "ARQ: Unknown event 0x%04x ignored\n", 9853 opcode); 9854 break; 9855 } 9856 } while (i++ < pf->adminq_work_limit); 9857 9858 if (i < pf->adminq_work_limit) 9859 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9860 9861 /* re-enable Admin queue interrupt cause */ 9862 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9863 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9864 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9865 i40e_flush(hw); 9866 9867 kfree(event.msg_buf); 9868 } 9869 9870 /** 9871 * i40e_verify_eeprom - make sure eeprom is good to use 9872 * @pf: board private structure 9873 **/ 9874 static void i40e_verify_eeprom(struct i40e_pf *pf) 9875 { 9876 int err; 9877 9878 err = i40e_diag_eeprom_test(&pf->hw); 9879 if (err) { 9880 /* retry in case of garbage read */ 9881 err = i40e_diag_eeprom_test(&pf->hw); 9882 if (err) { 9883 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9884 err); 9885 set_bit(__I40E_BAD_EEPROM, pf->state); 9886 } 9887 } 9888 9889 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9890 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9891 clear_bit(__I40E_BAD_EEPROM, pf->state); 9892 } 9893 } 9894 9895 /** 9896 * i40e_enable_pf_switch_lb 9897 * @pf: pointer to the PF structure 9898 * 9899 * enable switch loop back or die - no point in a return value 9900 **/ 9901 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9902 { 9903 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9904 struct i40e_vsi_context ctxt; 9905 int ret; 9906 9907 ctxt.seid = pf->main_vsi_seid; 9908 ctxt.pf_num = pf->hw.pf_id; 9909 ctxt.vf_num = 0; 9910 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9911 if (ret) { 9912 dev_info(&pf->pdev->dev, 9913 "couldn't get PF vsi config, err %s aq_err %s\n", 9914 i40e_stat_str(&pf->hw, ret), 9915 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9916 return; 9917 } 9918 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9919 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9920 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9921 9922 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9923 if (ret) { 9924 dev_info(&pf->pdev->dev, 9925 "update vsi switch failed, err %s aq_err %s\n", 9926 i40e_stat_str(&pf->hw, ret), 9927 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9928 } 9929 } 9930 9931 /** 9932 * i40e_disable_pf_switch_lb 9933 * @pf: pointer to the PF structure 9934 * 9935 * disable switch loop back or die - no point in a return value 9936 **/ 9937 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9938 { 9939 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9940 struct i40e_vsi_context ctxt; 9941 int ret; 9942 9943 ctxt.seid = pf->main_vsi_seid; 9944 ctxt.pf_num = pf->hw.pf_id; 9945 ctxt.vf_num = 0; 9946 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9947 if (ret) { 9948 dev_info(&pf->pdev->dev, 9949 "couldn't get PF vsi config, err %s aq_err %s\n", 9950 i40e_stat_str(&pf->hw, ret), 9951 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9952 return; 9953 } 9954 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9955 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9956 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9957 9958 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9959 if (ret) { 9960 dev_info(&pf->pdev->dev, 9961 "update vsi switch failed, err %s aq_err %s\n", 9962 i40e_stat_str(&pf->hw, ret), 9963 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9964 } 9965 } 9966 9967 /** 9968 * i40e_config_bridge_mode - Configure the HW bridge mode 9969 * @veb: pointer to the bridge instance 9970 * 9971 * Configure the loop back mode for the LAN VSI that is downlink to the 9972 * specified HW bridge instance. It is expected this function is called 9973 * when a new HW bridge is instantiated. 9974 **/ 9975 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9976 { 9977 struct i40e_pf *pf = veb->pf; 9978 9979 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9980 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9981 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9982 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9983 i40e_disable_pf_switch_lb(pf); 9984 else 9985 i40e_enable_pf_switch_lb(pf); 9986 } 9987 9988 /** 9989 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 9990 * @veb: pointer to the VEB instance 9991 * 9992 * This is a recursive function that first builds the attached VSIs then 9993 * recurses in to build the next layer of VEB. We track the connections 9994 * through our own index numbers because the seid's from the HW could 9995 * change across the reset. 9996 **/ 9997 static int i40e_reconstitute_veb(struct i40e_veb *veb) 9998 { 9999 struct i40e_vsi *ctl_vsi = NULL; 10000 struct i40e_pf *pf = veb->pf; 10001 int v, veb_idx; 10002 int ret; 10003 10004 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10005 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10006 if (pf->vsi[v] && 10007 pf->vsi[v]->veb_idx == veb->idx && 10008 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10009 ctl_vsi = pf->vsi[v]; 10010 break; 10011 } 10012 } 10013 if (!ctl_vsi) { 10014 dev_info(&pf->pdev->dev, 10015 "missing owner VSI for veb_idx %d\n", veb->idx); 10016 ret = -ENOENT; 10017 goto end_reconstitute; 10018 } 10019 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10020 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10021 ret = i40e_add_vsi(ctl_vsi); 10022 if (ret) { 10023 dev_info(&pf->pdev->dev, 10024 "rebuild of veb_idx %d owner VSI failed: %d\n", 10025 veb->idx, ret); 10026 goto end_reconstitute; 10027 } 10028 i40e_vsi_reset_stats(ctl_vsi); 10029 10030 /* create the VEB in the switch and move the VSI onto the VEB */ 10031 ret = i40e_add_veb(veb, ctl_vsi); 10032 if (ret) 10033 goto end_reconstitute; 10034 10035 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 10036 veb->bridge_mode = BRIDGE_MODE_VEB; 10037 else 10038 veb->bridge_mode = BRIDGE_MODE_VEPA; 10039 i40e_config_bridge_mode(veb); 10040 10041 /* create the remaining VSIs attached to this VEB */ 10042 for (v = 0; v < pf->num_alloc_vsi; v++) { 10043 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10044 continue; 10045 10046 if (pf->vsi[v]->veb_idx == veb->idx) { 10047 struct i40e_vsi *vsi = pf->vsi[v]; 10048 10049 vsi->uplink_seid = veb->seid; 10050 ret = i40e_add_vsi(vsi); 10051 if (ret) { 10052 dev_info(&pf->pdev->dev, 10053 "rebuild of vsi_idx %d failed: %d\n", 10054 v, ret); 10055 goto end_reconstitute; 10056 } 10057 i40e_vsi_reset_stats(vsi); 10058 } 10059 } 10060 10061 /* create any VEBs attached to this VEB - RECURSION */ 10062 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10063 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10064 pf->veb[veb_idx]->uplink_seid = veb->seid; 10065 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10066 if (ret) 10067 break; 10068 } 10069 } 10070 10071 end_reconstitute: 10072 return ret; 10073 } 10074 10075 /** 10076 * i40e_get_capabilities - get info about the HW 10077 * @pf: the PF struct 10078 * @list_type: AQ capability to be queried 10079 **/ 10080 static int i40e_get_capabilities(struct i40e_pf *pf, 10081 enum i40e_admin_queue_opc list_type) 10082 { 10083 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10084 u16 data_size; 10085 int buf_len; 10086 int err; 10087 10088 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10089 do { 10090 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10091 if (!cap_buf) 10092 return -ENOMEM; 10093 10094 /* this loads the data into the hw struct for us */ 10095 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10096 &data_size, list_type, 10097 NULL); 10098 /* data loaded, buffer no longer needed */ 10099 kfree(cap_buf); 10100 10101 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10102 /* retry with a larger buffer */ 10103 buf_len = data_size; 10104 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 10105 dev_info(&pf->pdev->dev, 10106 "capability discovery failed, err %s aq_err %s\n", 10107 i40e_stat_str(&pf->hw, err), 10108 i40e_aq_str(&pf->hw, 10109 pf->hw.aq.asq_last_status)); 10110 return -ENODEV; 10111 } 10112 } while (err); 10113 10114 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10115 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10116 dev_info(&pf->pdev->dev, 10117 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10118 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10119 pf->hw.func_caps.num_msix_vectors, 10120 pf->hw.func_caps.num_msix_vectors_vf, 10121 pf->hw.func_caps.fd_filters_guaranteed, 10122 pf->hw.func_caps.fd_filters_best_effort, 10123 pf->hw.func_caps.num_tx_qp, 10124 pf->hw.func_caps.num_vsis); 10125 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10126 dev_info(&pf->pdev->dev, 10127 "switch_mode=0x%04x, function_valid=0x%08x\n", 10128 pf->hw.dev_caps.switch_mode, 10129 pf->hw.dev_caps.valid_functions); 10130 dev_info(&pf->pdev->dev, 10131 "SR-IOV=%d, num_vfs for all function=%u\n", 10132 pf->hw.dev_caps.sr_iov_1_1, 10133 pf->hw.dev_caps.num_vfs); 10134 dev_info(&pf->pdev->dev, 10135 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10136 pf->hw.dev_caps.num_vsis, 10137 pf->hw.dev_caps.num_rx_qp, 10138 pf->hw.dev_caps.num_tx_qp); 10139 } 10140 } 10141 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10142 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10143 + pf->hw.func_caps.num_vfs) 10144 if (pf->hw.revision_id == 0 && 10145 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10146 dev_info(&pf->pdev->dev, 10147 "got num_vsis %d, setting num_vsis to %d\n", 10148 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10149 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10150 } 10151 } 10152 return 0; 10153 } 10154 10155 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10156 10157 /** 10158 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10159 * @pf: board private structure 10160 **/ 10161 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10162 { 10163 struct i40e_vsi *vsi; 10164 10165 /* quick workaround for an NVM issue that leaves a critical register 10166 * uninitialized 10167 */ 10168 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10169 static const u32 hkey[] = { 10170 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10171 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10172 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10173 0x95b3a76d}; 10174 int i; 10175 10176 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10177 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10178 } 10179 10180 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 10181 return; 10182 10183 /* find existing VSI and see if it needs configuring */ 10184 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10185 10186 /* create a new VSI if none exists */ 10187 if (!vsi) { 10188 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10189 pf->vsi[pf->lan_vsi]->seid, 0); 10190 if (!vsi) { 10191 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10192 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10193 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10194 return; 10195 } 10196 } 10197 10198 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10199 } 10200 10201 /** 10202 * i40e_fdir_teardown - release the Flow Director resources 10203 * @pf: board private structure 10204 **/ 10205 static void i40e_fdir_teardown(struct i40e_pf *pf) 10206 { 10207 struct i40e_vsi *vsi; 10208 10209 i40e_fdir_filter_exit(pf); 10210 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10211 if (vsi) 10212 i40e_vsi_release(vsi); 10213 } 10214 10215 /** 10216 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10217 * @vsi: PF main vsi 10218 * @seid: seid of main or channel VSIs 10219 * 10220 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10221 * existed before reset 10222 **/ 10223 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10224 { 10225 struct i40e_cloud_filter *cfilter; 10226 struct i40e_pf *pf = vsi->back; 10227 struct hlist_node *node; 10228 i40e_status ret; 10229 10230 /* Add cloud filters back if they exist */ 10231 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10232 cloud_node) { 10233 if (cfilter->seid != seid) 10234 continue; 10235 10236 if (cfilter->dst_port) 10237 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10238 true); 10239 else 10240 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10241 10242 if (ret) { 10243 dev_dbg(&pf->pdev->dev, 10244 "Failed to rebuild cloud filter, err %s aq_err %s\n", 10245 i40e_stat_str(&pf->hw, ret), 10246 i40e_aq_str(&pf->hw, 10247 pf->hw.aq.asq_last_status)); 10248 return ret; 10249 } 10250 } 10251 return 0; 10252 } 10253 10254 /** 10255 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10256 * @vsi: PF main vsi 10257 * 10258 * Rebuilds channel VSIs if they existed before reset 10259 **/ 10260 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10261 { 10262 struct i40e_channel *ch, *ch_tmp; 10263 i40e_status ret; 10264 10265 if (list_empty(&vsi->ch_list)) 10266 return 0; 10267 10268 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10269 if (!ch->initialized) 10270 break; 10271 /* Proceed with creation of channel (VMDq2) VSI */ 10272 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10273 if (ret) { 10274 dev_info(&vsi->back->pdev->dev, 10275 "failed to rebuild channels using uplink_seid %u\n", 10276 vsi->uplink_seid); 10277 return ret; 10278 } 10279 /* Reconfigure TX queues using QTX_CTL register */ 10280 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10281 if (ret) { 10282 dev_info(&vsi->back->pdev->dev, 10283 "failed to configure TX rings for channel %u\n", 10284 ch->seid); 10285 return ret; 10286 } 10287 /* update 'next_base_queue' */ 10288 vsi->next_base_queue = vsi->next_base_queue + 10289 ch->num_queue_pairs; 10290 if (ch->max_tx_rate) { 10291 u64 credits = ch->max_tx_rate; 10292 10293 if (i40e_set_bw_limit(vsi, ch->seid, 10294 ch->max_tx_rate)) 10295 return -EINVAL; 10296 10297 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10298 dev_dbg(&vsi->back->pdev->dev, 10299 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10300 ch->max_tx_rate, 10301 credits, 10302 ch->seid); 10303 } 10304 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10305 if (ret) { 10306 dev_dbg(&vsi->back->pdev->dev, 10307 "Failed to rebuild cloud filters for channel VSI %u\n", 10308 ch->seid); 10309 return ret; 10310 } 10311 } 10312 return 0; 10313 } 10314 10315 /** 10316 * i40e_prep_for_reset - prep for the core to reset 10317 * @pf: board private structure 10318 * 10319 * Close up the VFs and other things in prep for PF Reset. 10320 **/ 10321 static void i40e_prep_for_reset(struct i40e_pf *pf) 10322 { 10323 struct i40e_hw *hw = &pf->hw; 10324 i40e_status ret = 0; 10325 u32 v; 10326 10327 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10328 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10329 return; 10330 if (i40e_check_asq_alive(&pf->hw)) 10331 i40e_vc_notify_reset(pf); 10332 10333 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10334 10335 /* quiesce the VSIs and their queues that are not already DOWN */ 10336 i40e_pf_quiesce_all_vsi(pf); 10337 10338 for (v = 0; v < pf->num_alloc_vsi; v++) { 10339 if (pf->vsi[v]) 10340 pf->vsi[v]->seid = 0; 10341 } 10342 10343 i40e_shutdown_adminq(&pf->hw); 10344 10345 /* call shutdown HMC */ 10346 if (hw->hmc.hmc_obj) { 10347 ret = i40e_shutdown_lan_hmc(hw); 10348 if (ret) 10349 dev_warn(&pf->pdev->dev, 10350 "shutdown_lan_hmc failed: %d\n", ret); 10351 } 10352 10353 /* Save the current PTP time so that we can restore the time after the 10354 * reset completes. 10355 */ 10356 i40e_ptp_save_hw_time(pf); 10357 } 10358 10359 /** 10360 * i40e_send_version - update firmware with driver version 10361 * @pf: PF struct 10362 */ 10363 static void i40e_send_version(struct i40e_pf *pf) 10364 { 10365 struct i40e_driver_version dv; 10366 10367 dv.major_version = 0xff; 10368 dv.minor_version = 0xff; 10369 dv.build_version = 0xff; 10370 dv.subbuild_version = 0; 10371 strlcpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10372 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10373 } 10374 10375 /** 10376 * i40e_get_oem_version - get OEM specific version information 10377 * @hw: pointer to the hardware structure 10378 **/ 10379 static void i40e_get_oem_version(struct i40e_hw *hw) 10380 { 10381 u16 block_offset = 0xffff; 10382 u16 block_length = 0; 10383 u16 capabilities = 0; 10384 u16 gen_snap = 0; 10385 u16 release = 0; 10386 10387 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10388 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10389 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10390 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10391 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10392 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10393 #define I40E_NVM_OEM_LENGTH 3 10394 10395 /* Check if pointer to OEM version block is valid. */ 10396 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10397 if (block_offset == 0xffff) 10398 return; 10399 10400 /* Check if OEM version block has correct length. */ 10401 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10402 &block_length); 10403 if (block_length < I40E_NVM_OEM_LENGTH) 10404 return; 10405 10406 /* Check if OEM version format is as expected. */ 10407 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10408 &capabilities); 10409 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10410 return; 10411 10412 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10413 &gen_snap); 10414 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10415 &release); 10416 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 10417 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10418 } 10419 10420 /** 10421 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10422 * @pf: board private structure 10423 **/ 10424 static int i40e_reset(struct i40e_pf *pf) 10425 { 10426 struct i40e_hw *hw = &pf->hw; 10427 i40e_status ret; 10428 10429 ret = i40e_pf_reset(hw); 10430 if (ret) { 10431 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10432 set_bit(__I40E_RESET_FAILED, pf->state); 10433 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10434 } else { 10435 pf->pfr_count++; 10436 } 10437 return ret; 10438 } 10439 10440 /** 10441 * i40e_rebuild - rebuild using a saved config 10442 * @pf: board private structure 10443 * @reinit: if the Main VSI needs to re-initialized. 10444 * @lock_acquired: indicates whether or not the lock has been acquired 10445 * before this function was called. 10446 **/ 10447 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10448 { 10449 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 10450 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10451 struct i40e_hw *hw = &pf->hw; 10452 i40e_status ret; 10453 u32 val; 10454 int v; 10455 10456 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10457 i40e_check_recovery_mode(pf)) { 10458 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10459 } 10460 10461 if (test_bit(__I40E_DOWN, pf->state) && 10462 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 10463 !old_recovery_mode_bit) 10464 goto clear_recovery; 10465 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10466 10467 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10468 ret = i40e_init_adminq(&pf->hw); 10469 if (ret) { 10470 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 10471 i40e_stat_str(&pf->hw, ret), 10472 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10473 goto clear_recovery; 10474 } 10475 i40e_get_oem_version(&pf->hw); 10476 10477 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10478 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 10479 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 10480 /* The following delay is necessary for 4.33 firmware and older 10481 * to recover after EMP reset. 200 ms should suffice but we 10482 * put here 300 ms to be sure that FW is ready to operate 10483 * after reset. 10484 */ 10485 mdelay(300); 10486 } 10487 10488 /* re-verify the eeprom if we just had an EMP reset */ 10489 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10490 i40e_verify_eeprom(pf); 10491 10492 /* if we are going out of or into recovery mode we have to act 10493 * accordingly with regard to resources initialization 10494 * and deinitialization 10495 */ 10496 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 10497 old_recovery_mode_bit) { 10498 if (i40e_get_capabilities(pf, 10499 i40e_aqc_opc_list_func_capabilities)) 10500 goto end_unlock; 10501 10502 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10503 /* we're staying in recovery mode so we'll reinitialize 10504 * misc vector here 10505 */ 10506 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10507 goto end_unlock; 10508 } else { 10509 if (!lock_acquired) 10510 rtnl_lock(); 10511 /* we're going out of recovery mode so we'll free 10512 * the IRQ allocated specifically for recovery mode 10513 * and restore the interrupt scheme 10514 */ 10515 free_irq(pf->pdev->irq, pf); 10516 i40e_clear_interrupt_scheme(pf); 10517 if (i40e_restore_interrupt_scheme(pf)) 10518 goto end_unlock; 10519 } 10520 10521 /* tell the firmware that we're starting */ 10522 i40e_send_version(pf); 10523 10524 /* bail out in case recovery mode was detected, as there is 10525 * no need for further configuration. 10526 */ 10527 goto end_unlock; 10528 } 10529 10530 i40e_clear_pxe_mode(hw); 10531 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10532 if (ret) 10533 goto end_core_reset; 10534 10535 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10536 hw->func_caps.num_rx_qp, 0, 0); 10537 if (ret) { 10538 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10539 goto end_core_reset; 10540 } 10541 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10542 if (ret) { 10543 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10544 goto end_core_reset; 10545 } 10546 10547 #ifdef CONFIG_I40E_DCB 10548 /* Enable FW to write a default DCB config on link-up 10549 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10550 * is not supported with new link speed 10551 */ 10552 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 10553 i40e_aq_set_dcb_parameters(hw, false, NULL); 10554 } else { 10555 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10556 (hw->phy.link_info.link_speed & 10557 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10558 i40e_aq_set_dcb_parameters(hw, false, NULL); 10559 dev_warn(&pf->pdev->dev, 10560 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10561 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10562 } else { 10563 i40e_aq_set_dcb_parameters(hw, true, NULL); 10564 ret = i40e_init_pf_dcb(pf); 10565 if (ret) { 10566 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10567 ret); 10568 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10569 /* Continue without DCB enabled */ 10570 } 10571 } 10572 } 10573 10574 #endif /* CONFIG_I40E_DCB */ 10575 if (!lock_acquired) 10576 rtnl_lock(); 10577 ret = i40e_setup_pf_switch(pf, reinit, true); 10578 if (ret) 10579 goto end_unlock; 10580 10581 /* The driver only wants link up/down and module qualification 10582 * reports from firmware. Note the negative logic. 10583 */ 10584 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10585 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10586 I40E_AQ_EVENT_MEDIA_NA | 10587 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10588 if (ret) 10589 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10590 i40e_stat_str(&pf->hw, ret), 10591 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10592 10593 /* Rebuild the VSIs and VEBs that existed before reset. 10594 * They are still in our local switch element arrays, so only 10595 * need to rebuild the switch model in the HW. 10596 * 10597 * If there were VEBs but the reconstitution failed, we'll try 10598 * to recover minimal use by getting the basic PF VSI working. 10599 */ 10600 if (vsi->uplink_seid != pf->mac_seid) { 10601 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10602 /* find the one VEB connected to the MAC, and find orphans */ 10603 for (v = 0; v < I40E_MAX_VEB; v++) { 10604 if (!pf->veb[v]) 10605 continue; 10606 10607 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10608 pf->veb[v]->uplink_seid == 0) { 10609 ret = i40e_reconstitute_veb(pf->veb[v]); 10610 10611 if (!ret) 10612 continue; 10613 10614 /* If Main VEB failed, we're in deep doodoo, 10615 * so give up rebuilding the switch and set up 10616 * for minimal rebuild of PF VSI. 10617 * If orphan failed, we'll report the error 10618 * but try to keep going. 10619 */ 10620 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10621 dev_info(&pf->pdev->dev, 10622 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10623 ret); 10624 vsi->uplink_seid = pf->mac_seid; 10625 break; 10626 } else if (pf->veb[v]->uplink_seid == 0) { 10627 dev_info(&pf->pdev->dev, 10628 "rebuild of orphan VEB failed: %d\n", 10629 ret); 10630 } 10631 } 10632 } 10633 } 10634 10635 if (vsi->uplink_seid == pf->mac_seid) { 10636 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10637 /* no VEB, so rebuild only the Main VSI */ 10638 ret = i40e_add_vsi(vsi); 10639 if (ret) { 10640 dev_info(&pf->pdev->dev, 10641 "rebuild of Main VSI failed: %d\n", ret); 10642 goto end_unlock; 10643 } 10644 } 10645 10646 if (vsi->mqprio_qopt.max_rate[0]) { 10647 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10648 u64 credits = 0; 10649 10650 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10651 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10652 if (ret) 10653 goto end_unlock; 10654 10655 credits = max_tx_rate; 10656 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10657 dev_dbg(&vsi->back->pdev->dev, 10658 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10659 max_tx_rate, 10660 credits, 10661 vsi->seid); 10662 } 10663 10664 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10665 if (ret) 10666 goto end_unlock; 10667 10668 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10669 * for this main VSI if they exist 10670 */ 10671 ret = i40e_rebuild_channels(vsi); 10672 if (ret) 10673 goto end_unlock; 10674 10675 /* Reconfigure hardware for allowing smaller MSS in the case 10676 * of TSO, so that we avoid the MDD being fired and causing 10677 * a reset in the case of small MSS+TSO. 10678 */ 10679 #define I40E_REG_MSS 0x000E64DC 10680 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10681 #define I40E_64BYTE_MSS 0x400000 10682 val = rd32(hw, I40E_REG_MSS); 10683 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10684 val &= ~I40E_REG_MSS_MIN_MASK; 10685 val |= I40E_64BYTE_MSS; 10686 wr32(hw, I40E_REG_MSS, val); 10687 } 10688 10689 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10690 msleep(75); 10691 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10692 if (ret) 10693 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10694 i40e_stat_str(&pf->hw, ret), 10695 i40e_aq_str(&pf->hw, 10696 pf->hw.aq.asq_last_status)); 10697 } 10698 /* reinit the misc interrupt */ 10699 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10700 ret = i40e_setup_misc_vector(pf); 10701 10702 /* Add a filter to drop all Flow control frames from any VSI from being 10703 * transmitted. By doing so we stop a malicious VF from sending out 10704 * PAUSE or PFC frames and potentially controlling traffic for other 10705 * PF/VF VSIs. 10706 * The FW can still send Flow control frames if enabled. 10707 */ 10708 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10709 pf->main_vsi_seid); 10710 10711 /* restart the VSIs that were rebuilt and running before the reset */ 10712 i40e_pf_unquiesce_all_vsi(pf); 10713 10714 /* Release the RTNL lock before we start resetting VFs */ 10715 if (!lock_acquired) 10716 rtnl_unlock(); 10717 10718 /* Restore promiscuous settings */ 10719 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10720 if (ret) 10721 dev_warn(&pf->pdev->dev, 10722 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10723 pf->cur_promisc ? "on" : "off", 10724 i40e_stat_str(&pf->hw, ret), 10725 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10726 10727 i40e_reset_all_vfs(pf, true); 10728 10729 /* tell the firmware that we're starting */ 10730 i40e_send_version(pf); 10731 10732 /* We've already released the lock, so don't do it again */ 10733 goto end_core_reset; 10734 10735 end_unlock: 10736 if (!lock_acquired) 10737 rtnl_unlock(); 10738 end_core_reset: 10739 clear_bit(__I40E_RESET_FAILED, pf->state); 10740 clear_recovery: 10741 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10742 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10743 } 10744 10745 /** 10746 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10747 * @pf: board private structure 10748 * @reinit: if the Main VSI needs to re-initialized. 10749 * @lock_acquired: indicates whether or not the lock has been acquired 10750 * before this function was called. 10751 **/ 10752 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10753 bool lock_acquired) 10754 { 10755 int ret; 10756 /* Now we wait for GRST to settle out. 10757 * We don't have to delete the VEBs or VSIs from the hw switch 10758 * because the reset will make them disappear. 10759 */ 10760 ret = i40e_reset(pf); 10761 if (!ret) 10762 i40e_rebuild(pf, reinit, lock_acquired); 10763 } 10764 10765 /** 10766 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10767 * @pf: board private structure 10768 * 10769 * Close up the VFs and other things in prep for a Core Reset, 10770 * then get ready to rebuild the world. 10771 * @lock_acquired: indicates whether or not the lock has been acquired 10772 * before this function was called. 10773 **/ 10774 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10775 { 10776 i40e_prep_for_reset(pf); 10777 i40e_reset_and_rebuild(pf, false, lock_acquired); 10778 } 10779 10780 /** 10781 * i40e_handle_mdd_event 10782 * @pf: pointer to the PF structure 10783 * 10784 * Called from the MDD irq handler to identify possibly malicious vfs 10785 **/ 10786 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10787 { 10788 struct i40e_hw *hw = &pf->hw; 10789 bool mdd_detected = false; 10790 struct i40e_vf *vf; 10791 u32 reg; 10792 int i; 10793 10794 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10795 return; 10796 10797 /* find what triggered the MDD event */ 10798 reg = rd32(hw, I40E_GL_MDET_TX); 10799 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10800 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10801 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10802 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10803 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10804 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10805 I40E_GL_MDET_TX_EVENT_SHIFT; 10806 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10807 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10808 pf->hw.func_caps.base_queue; 10809 if (netif_msg_tx_err(pf)) 10810 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10811 event, queue, pf_num, vf_num); 10812 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10813 mdd_detected = true; 10814 } 10815 reg = rd32(hw, I40E_GL_MDET_RX); 10816 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10817 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10818 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10819 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10820 I40E_GL_MDET_RX_EVENT_SHIFT; 10821 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10822 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10823 pf->hw.func_caps.base_queue; 10824 if (netif_msg_rx_err(pf)) 10825 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10826 event, queue, func); 10827 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10828 mdd_detected = true; 10829 } 10830 10831 if (mdd_detected) { 10832 reg = rd32(hw, I40E_PF_MDET_TX); 10833 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10834 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10835 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10836 } 10837 reg = rd32(hw, I40E_PF_MDET_RX); 10838 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10839 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10840 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10841 } 10842 } 10843 10844 /* see if one of the VFs needs its hand slapped */ 10845 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10846 vf = &(pf->vf[i]); 10847 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10848 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10849 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10850 vf->num_mdd_events++; 10851 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10852 i); 10853 dev_info(&pf->pdev->dev, 10854 "Use PF Control I/F to re-enable the VF\n"); 10855 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10856 } 10857 10858 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10859 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10860 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10861 vf->num_mdd_events++; 10862 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10863 i); 10864 dev_info(&pf->pdev->dev, 10865 "Use PF Control I/F to re-enable the VF\n"); 10866 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10867 } 10868 } 10869 10870 /* re-enable mdd interrupt cause */ 10871 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10872 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10873 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10874 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10875 i40e_flush(hw); 10876 } 10877 10878 /** 10879 * i40e_service_task - Run the driver's async subtasks 10880 * @work: pointer to work_struct containing our data 10881 **/ 10882 static void i40e_service_task(struct work_struct *work) 10883 { 10884 struct i40e_pf *pf = container_of(work, 10885 struct i40e_pf, 10886 service_task); 10887 unsigned long start_time = jiffies; 10888 10889 /* don't bother with service tasks if a reset is in progress */ 10890 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10891 test_bit(__I40E_SUSPENDED, pf->state)) 10892 return; 10893 10894 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10895 return; 10896 10897 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10898 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10899 i40e_sync_filters_subtask(pf); 10900 i40e_reset_subtask(pf); 10901 i40e_handle_mdd_event(pf); 10902 i40e_vc_process_vflr_event(pf); 10903 i40e_watchdog_subtask(pf); 10904 i40e_fdir_reinit_subtask(pf); 10905 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10906 /* Client subtask will reopen next time through. */ 10907 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10908 true); 10909 } else { 10910 i40e_client_subtask(pf); 10911 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10912 pf->state)) 10913 i40e_notify_client_of_l2_param_changes( 10914 pf->vsi[pf->lan_vsi]); 10915 } 10916 i40e_sync_filters_subtask(pf); 10917 } else { 10918 i40e_reset_subtask(pf); 10919 } 10920 10921 i40e_clean_adminq_subtask(pf); 10922 10923 /* flush memory to make sure state is correct before next watchdog */ 10924 smp_mb__before_atomic(); 10925 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10926 10927 /* If the tasks have taken longer than one timer cycle or there 10928 * is more work to be done, reschedule the service task now 10929 * rather than wait for the timer to tick again. 10930 */ 10931 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10932 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10933 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10934 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10935 i40e_service_event_schedule(pf); 10936 } 10937 10938 /** 10939 * i40e_service_timer - timer callback 10940 * @t: timer list pointer 10941 **/ 10942 static void i40e_service_timer(struct timer_list *t) 10943 { 10944 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10945 10946 mod_timer(&pf->service_timer, 10947 round_jiffies(jiffies + pf->service_timer_period)); 10948 i40e_service_event_schedule(pf); 10949 } 10950 10951 /** 10952 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10953 * @vsi: the VSI being configured 10954 **/ 10955 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10956 { 10957 struct i40e_pf *pf = vsi->back; 10958 10959 switch (vsi->type) { 10960 case I40E_VSI_MAIN: 10961 vsi->alloc_queue_pairs = pf->num_lan_qps; 10962 if (!vsi->num_tx_desc) 10963 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10964 I40E_REQ_DESCRIPTOR_MULTIPLE); 10965 if (!vsi->num_rx_desc) 10966 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10967 I40E_REQ_DESCRIPTOR_MULTIPLE); 10968 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10969 vsi->num_q_vectors = pf->num_lan_msix; 10970 else 10971 vsi->num_q_vectors = 1; 10972 10973 break; 10974 10975 case I40E_VSI_FDIR: 10976 vsi->alloc_queue_pairs = 1; 10977 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10978 I40E_REQ_DESCRIPTOR_MULTIPLE); 10979 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10980 I40E_REQ_DESCRIPTOR_MULTIPLE); 10981 vsi->num_q_vectors = pf->num_fdsb_msix; 10982 break; 10983 10984 case I40E_VSI_VMDQ2: 10985 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10986 if (!vsi->num_tx_desc) 10987 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10988 I40E_REQ_DESCRIPTOR_MULTIPLE); 10989 if (!vsi->num_rx_desc) 10990 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10991 I40E_REQ_DESCRIPTOR_MULTIPLE); 10992 vsi->num_q_vectors = pf->num_vmdq_msix; 10993 break; 10994 10995 case I40E_VSI_SRIOV: 10996 vsi->alloc_queue_pairs = pf->num_vf_qps; 10997 if (!vsi->num_tx_desc) 10998 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10999 I40E_REQ_DESCRIPTOR_MULTIPLE); 11000 if (!vsi->num_rx_desc) 11001 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11002 I40E_REQ_DESCRIPTOR_MULTIPLE); 11003 break; 11004 11005 default: 11006 WARN_ON(1); 11007 return -ENODATA; 11008 } 11009 11010 if (is_kdump_kernel()) { 11011 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS; 11012 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS; 11013 } 11014 11015 return 0; 11016 } 11017 11018 /** 11019 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11020 * @vsi: VSI pointer 11021 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11022 * 11023 * On error: returns error code (negative) 11024 * On success: returns 0 11025 **/ 11026 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11027 { 11028 struct i40e_ring **next_rings; 11029 int size; 11030 int ret = 0; 11031 11032 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11033 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11034 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11035 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11036 if (!vsi->tx_rings) 11037 return -ENOMEM; 11038 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11039 if (i40e_enabled_xdp_vsi(vsi)) { 11040 vsi->xdp_rings = next_rings; 11041 next_rings += vsi->alloc_queue_pairs; 11042 } 11043 vsi->rx_rings = next_rings; 11044 11045 if (alloc_qvectors) { 11046 /* allocate memory for q_vector pointers */ 11047 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11048 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11049 if (!vsi->q_vectors) { 11050 ret = -ENOMEM; 11051 goto err_vectors; 11052 } 11053 } 11054 return ret; 11055 11056 err_vectors: 11057 kfree(vsi->tx_rings); 11058 return ret; 11059 } 11060 11061 /** 11062 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11063 * @pf: board private structure 11064 * @type: type of VSI 11065 * 11066 * On error: returns error code (negative) 11067 * On success: returns vsi index in PF (positive) 11068 **/ 11069 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11070 { 11071 int ret = -ENODEV; 11072 struct i40e_vsi *vsi; 11073 int vsi_idx; 11074 int i; 11075 11076 /* Need to protect the allocation of the VSIs at the PF level */ 11077 mutex_lock(&pf->switch_mutex); 11078 11079 /* VSI list may be fragmented if VSI creation/destruction has 11080 * been happening. We can afford to do a quick scan to look 11081 * for any free VSIs in the list. 11082 * 11083 * find next empty vsi slot, looping back around if necessary 11084 */ 11085 i = pf->next_vsi; 11086 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11087 i++; 11088 if (i >= pf->num_alloc_vsi) { 11089 i = 0; 11090 while (i < pf->next_vsi && pf->vsi[i]) 11091 i++; 11092 } 11093 11094 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11095 vsi_idx = i; /* Found one! */ 11096 } else { 11097 ret = -ENODEV; 11098 goto unlock_pf; /* out of VSI slots! */ 11099 } 11100 pf->next_vsi = ++i; 11101 11102 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11103 if (!vsi) { 11104 ret = -ENOMEM; 11105 goto unlock_pf; 11106 } 11107 vsi->type = type; 11108 vsi->back = pf; 11109 set_bit(__I40E_VSI_DOWN, vsi->state); 11110 vsi->flags = 0; 11111 vsi->idx = vsi_idx; 11112 vsi->int_rate_limit = 0; 11113 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11114 pf->rss_table_size : 64; 11115 vsi->netdev_registered = false; 11116 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11117 hash_init(vsi->mac_filter_hash); 11118 vsi->irqs_ready = false; 11119 11120 if (type == I40E_VSI_MAIN) { 11121 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11122 if (!vsi->af_xdp_zc_qps) 11123 goto err_rings; 11124 } 11125 11126 ret = i40e_set_num_rings_in_vsi(vsi); 11127 if (ret) 11128 goto err_rings; 11129 11130 ret = i40e_vsi_alloc_arrays(vsi, true); 11131 if (ret) 11132 goto err_rings; 11133 11134 /* Setup default MSIX irq handler for VSI */ 11135 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11136 11137 /* Initialize VSI lock */ 11138 spin_lock_init(&vsi->mac_filter_hash_lock); 11139 pf->vsi[vsi_idx] = vsi; 11140 ret = vsi_idx; 11141 goto unlock_pf; 11142 11143 err_rings: 11144 bitmap_free(vsi->af_xdp_zc_qps); 11145 pf->next_vsi = i - 1; 11146 kfree(vsi); 11147 unlock_pf: 11148 mutex_unlock(&pf->switch_mutex); 11149 return ret; 11150 } 11151 11152 /** 11153 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11154 * @vsi: VSI pointer 11155 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11156 * 11157 * On error: returns error code (negative) 11158 * On success: returns 0 11159 **/ 11160 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11161 { 11162 /* free the ring and vector containers */ 11163 if (free_qvectors) { 11164 kfree(vsi->q_vectors); 11165 vsi->q_vectors = NULL; 11166 } 11167 kfree(vsi->tx_rings); 11168 vsi->tx_rings = NULL; 11169 vsi->rx_rings = NULL; 11170 vsi->xdp_rings = NULL; 11171 } 11172 11173 /** 11174 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11175 * and lookup table 11176 * @vsi: Pointer to VSI structure 11177 */ 11178 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11179 { 11180 if (!vsi) 11181 return; 11182 11183 kfree(vsi->rss_hkey_user); 11184 vsi->rss_hkey_user = NULL; 11185 11186 kfree(vsi->rss_lut_user); 11187 vsi->rss_lut_user = NULL; 11188 } 11189 11190 /** 11191 * i40e_vsi_clear - Deallocate the VSI provided 11192 * @vsi: the VSI being un-configured 11193 **/ 11194 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11195 { 11196 struct i40e_pf *pf; 11197 11198 if (!vsi) 11199 return 0; 11200 11201 if (!vsi->back) 11202 goto free_vsi; 11203 pf = vsi->back; 11204 11205 mutex_lock(&pf->switch_mutex); 11206 if (!pf->vsi[vsi->idx]) { 11207 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11208 vsi->idx, vsi->idx, vsi->type); 11209 goto unlock_vsi; 11210 } 11211 11212 if (pf->vsi[vsi->idx] != vsi) { 11213 dev_err(&pf->pdev->dev, 11214 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11215 pf->vsi[vsi->idx]->idx, 11216 pf->vsi[vsi->idx]->type, 11217 vsi->idx, vsi->type); 11218 goto unlock_vsi; 11219 } 11220 11221 /* updates the PF for this cleared vsi */ 11222 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11223 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11224 11225 bitmap_free(vsi->af_xdp_zc_qps); 11226 i40e_vsi_free_arrays(vsi, true); 11227 i40e_clear_rss_config_user(vsi); 11228 11229 pf->vsi[vsi->idx] = NULL; 11230 if (vsi->idx < pf->next_vsi) 11231 pf->next_vsi = vsi->idx; 11232 11233 unlock_vsi: 11234 mutex_unlock(&pf->switch_mutex); 11235 free_vsi: 11236 kfree(vsi); 11237 11238 return 0; 11239 } 11240 11241 /** 11242 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11243 * @vsi: the VSI being cleaned 11244 **/ 11245 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11246 { 11247 int i; 11248 11249 if (vsi->tx_rings && vsi->tx_rings[0]) { 11250 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11251 kfree_rcu(vsi->tx_rings[i], rcu); 11252 WRITE_ONCE(vsi->tx_rings[i], NULL); 11253 WRITE_ONCE(vsi->rx_rings[i], NULL); 11254 if (vsi->xdp_rings) 11255 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11256 } 11257 } 11258 } 11259 11260 /** 11261 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11262 * @vsi: the VSI being configured 11263 **/ 11264 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11265 { 11266 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11267 struct i40e_pf *pf = vsi->back; 11268 struct i40e_ring *ring; 11269 11270 /* Set basic values in the rings to be used later during open() */ 11271 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11272 /* allocate space for both Tx and Rx in one shot */ 11273 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11274 if (!ring) 11275 goto err_out; 11276 11277 ring->queue_index = i; 11278 ring->reg_idx = vsi->base_queue + i; 11279 ring->ring_active = false; 11280 ring->vsi = vsi; 11281 ring->netdev = vsi->netdev; 11282 ring->dev = &pf->pdev->dev; 11283 ring->count = vsi->num_tx_desc; 11284 ring->size = 0; 11285 ring->dcb_tc = 0; 11286 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11287 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11288 ring->itr_setting = pf->tx_itr_default; 11289 WRITE_ONCE(vsi->tx_rings[i], ring++); 11290 11291 if (!i40e_enabled_xdp_vsi(vsi)) 11292 goto setup_rx; 11293 11294 ring->queue_index = vsi->alloc_queue_pairs + i; 11295 ring->reg_idx = vsi->base_queue + ring->queue_index; 11296 ring->ring_active = false; 11297 ring->vsi = vsi; 11298 ring->netdev = NULL; 11299 ring->dev = &pf->pdev->dev; 11300 ring->count = vsi->num_tx_desc; 11301 ring->size = 0; 11302 ring->dcb_tc = 0; 11303 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11304 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11305 set_ring_xdp(ring); 11306 ring->itr_setting = pf->tx_itr_default; 11307 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11308 11309 setup_rx: 11310 ring->queue_index = i; 11311 ring->reg_idx = vsi->base_queue + i; 11312 ring->ring_active = false; 11313 ring->vsi = vsi; 11314 ring->netdev = vsi->netdev; 11315 ring->dev = &pf->pdev->dev; 11316 ring->count = vsi->num_rx_desc; 11317 ring->size = 0; 11318 ring->dcb_tc = 0; 11319 ring->itr_setting = pf->rx_itr_default; 11320 WRITE_ONCE(vsi->rx_rings[i], ring); 11321 } 11322 11323 return 0; 11324 11325 err_out: 11326 i40e_vsi_clear_rings(vsi); 11327 return -ENOMEM; 11328 } 11329 11330 /** 11331 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11332 * @pf: board private structure 11333 * @vectors: the number of MSI-X vectors to request 11334 * 11335 * Returns the number of vectors reserved, or error 11336 **/ 11337 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11338 { 11339 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11340 I40E_MIN_MSIX, vectors); 11341 if (vectors < 0) { 11342 dev_info(&pf->pdev->dev, 11343 "MSI-X vector reservation failed: %d\n", vectors); 11344 vectors = 0; 11345 } 11346 11347 return vectors; 11348 } 11349 11350 /** 11351 * i40e_init_msix - Setup the MSIX capability 11352 * @pf: board private structure 11353 * 11354 * Work with the OS to set up the MSIX vectors needed. 11355 * 11356 * Returns the number of vectors reserved or negative on failure 11357 **/ 11358 static int i40e_init_msix(struct i40e_pf *pf) 11359 { 11360 struct i40e_hw *hw = &pf->hw; 11361 int cpus, extra_vectors; 11362 int vectors_left; 11363 int v_budget, i; 11364 int v_actual; 11365 int iwarp_requested = 0; 11366 11367 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 11368 return -ENODEV; 11369 11370 /* The number of vectors we'll request will be comprised of: 11371 * - Add 1 for "other" cause for Admin Queue events, etc. 11372 * - The number of LAN queue pairs 11373 * - Queues being used for RSS. 11374 * We don't need as many as max_rss_size vectors. 11375 * use rss_size instead in the calculation since that 11376 * is governed by number of cpus in the system. 11377 * - assumes symmetric Tx/Rx pairing 11378 * - The number of VMDq pairs 11379 * - The CPU count within the NUMA node if iWARP is enabled 11380 * Once we count this up, try the request. 11381 * 11382 * If we can't get what we want, we'll simplify to nearly nothing 11383 * and try again. If that still fails, we punt. 11384 */ 11385 vectors_left = hw->func_caps.num_msix_vectors; 11386 v_budget = 0; 11387 11388 /* reserve one vector for miscellaneous handler */ 11389 if (vectors_left) { 11390 v_budget++; 11391 vectors_left--; 11392 } 11393 11394 /* reserve some vectors for the main PF traffic queues. Initially we 11395 * only reserve at most 50% of the available vectors, in the case that 11396 * the number of online CPUs is large. This ensures that we can enable 11397 * extra features as well. Once we've enabled the other features, we 11398 * will use any remaining vectors to reach as close as we can to the 11399 * number of online CPUs. 11400 */ 11401 cpus = num_online_cpus(); 11402 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11403 vectors_left -= pf->num_lan_msix; 11404 11405 /* reserve one vector for sideband flow director */ 11406 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11407 if (vectors_left) { 11408 pf->num_fdsb_msix = 1; 11409 v_budget++; 11410 vectors_left--; 11411 } else { 11412 pf->num_fdsb_msix = 0; 11413 } 11414 } 11415 11416 /* can we reserve enough for iWARP? */ 11417 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11418 iwarp_requested = pf->num_iwarp_msix; 11419 11420 if (!vectors_left) 11421 pf->num_iwarp_msix = 0; 11422 else if (vectors_left < pf->num_iwarp_msix) 11423 pf->num_iwarp_msix = 1; 11424 v_budget += pf->num_iwarp_msix; 11425 vectors_left -= pf->num_iwarp_msix; 11426 } 11427 11428 /* any vectors left over go for VMDq support */ 11429 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11430 if (!vectors_left) { 11431 pf->num_vmdq_msix = 0; 11432 pf->num_vmdq_qps = 0; 11433 } else { 11434 int vmdq_vecs_wanted = 11435 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11436 int vmdq_vecs = 11437 min_t(int, vectors_left, vmdq_vecs_wanted); 11438 11439 /* if we're short on vectors for what's desired, we limit 11440 * the queues per vmdq. If this is still more than are 11441 * available, the user will need to change the number of 11442 * queues/vectors used by the PF later with the ethtool 11443 * channels command 11444 */ 11445 if (vectors_left < vmdq_vecs_wanted) { 11446 pf->num_vmdq_qps = 1; 11447 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11448 vmdq_vecs = min_t(int, 11449 vectors_left, 11450 vmdq_vecs_wanted); 11451 } 11452 pf->num_vmdq_msix = pf->num_vmdq_qps; 11453 11454 v_budget += vmdq_vecs; 11455 vectors_left -= vmdq_vecs; 11456 } 11457 } 11458 11459 /* On systems with a large number of SMP cores, we previously limited 11460 * the number of vectors for num_lan_msix to be at most 50% of the 11461 * available vectors, to allow for other features. Now, we add back 11462 * the remaining vectors. However, we ensure that the total 11463 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11464 * calculate the number of vectors we can add without going over the 11465 * cap of CPUs. For systems with a small number of CPUs this will be 11466 * zero. 11467 */ 11468 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11469 pf->num_lan_msix += extra_vectors; 11470 vectors_left -= extra_vectors; 11471 11472 WARN(vectors_left < 0, 11473 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11474 11475 v_budget += pf->num_lan_msix; 11476 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11477 GFP_KERNEL); 11478 if (!pf->msix_entries) 11479 return -ENOMEM; 11480 11481 for (i = 0; i < v_budget; i++) 11482 pf->msix_entries[i].entry = i; 11483 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11484 11485 if (v_actual < I40E_MIN_MSIX) { 11486 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11487 kfree(pf->msix_entries); 11488 pf->msix_entries = NULL; 11489 pci_disable_msix(pf->pdev); 11490 return -ENODEV; 11491 11492 } else if (v_actual == I40E_MIN_MSIX) { 11493 /* Adjust for minimal MSIX use */ 11494 pf->num_vmdq_vsis = 0; 11495 pf->num_vmdq_qps = 0; 11496 pf->num_lan_qps = 1; 11497 pf->num_lan_msix = 1; 11498 11499 } else if (v_actual != v_budget) { 11500 /* If we have limited resources, we will start with no vectors 11501 * for the special features and then allocate vectors to some 11502 * of these features based on the policy and at the end disable 11503 * the features that did not get any vectors. 11504 */ 11505 int vec; 11506 11507 dev_info(&pf->pdev->dev, 11508 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11509 v_actual, v_budget); 11510 /* reserve the misc vector */ 11511 vec = v_actual - 1; 11512 11513 /* Scale vector usage down */ 11514 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11515 pf->num_vmdq_vsis = 1; 11516 pf->num_vmdq_qps = 1; 11517 11518 /* partition out the remaining vectors */ 11519 switch (vec) { 11520 case 2: 11521 pf->num_lan_msix = 1; 11522 break; 11523 case 3: 11524 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11525 pf->num_lan_msix = 1; 11526 pf->num_iwarp_msix = 1; 11527 } else { 11528 pf->num_lan_msix = 2; 11529 } 11530 break; 11531 default: 11532 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11533 pf->num_iwarp_msix = min_t(int, (vec / 3), 11534 iwarp_requested); 11535 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11536 I40E_DEFAULT_NUM_VMDQ_VSI); 11537 } else { 11538 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11539 I40E_DEFAULT_NUM_VMDQ_VSI); 11540 } 11541 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11542 pf->num_fdsb_msix = 1; 11543 vec--; 11544 } 11545 pf->num_lan_msix = min_t(int, 11546 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11547 pf->num_lan_msix); 11548 pf->num_lan_qps = pf->num_lan_msix; 11549 break; 11550 } 11551 } 11552 11553 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11554 (pf->num_fdsb_msix == 0)) { 11555 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11556 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11557 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11558 } 11559 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11560 (pf->num_vmdq_msix == 0)) { 11561 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11562 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11563 } 11564 11565 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11566 (pf->num_iwarp_msix == 0)) { 11567 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11568 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11569 } 11570 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11571 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11572 pf->num_lan_msix, 11573 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11574 pf->num_fdsb_msix, 11575 pf->num_iwarp_msix); 11576 11577 return v_actual; 11578 } 11579 11580 /** 11581 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11582 * @vsi: the VSI being configured 11583 * @v_idx: index of the vector in the vsi struct 11584 * 11585 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11586 **/ 11587 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11588 { 11589 struct i40e_q_vector *q_vector; 11590 11591 /* allocate q_vector */ 11592 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11593 if (!q_vector) 11594 return -ENOMEM; 11595 11596 q_vector->vsi = vsi; 11597 q_vector->v_idx = v_idx; 11598 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11599 11600 if (vsi->netdev) 11601 netif_napi_add(vsi->netdev, &q_vector->napi, 11602 i40e_napi_poll, NAPI_POLL_WEIGHT); 11603 11604 /* tie q_vector and vsi together */ 11605 vsi->q_vectors[v_idx] = q_vector; 11606 11607 return 0; 11608 } 11609 11610 /** 11611 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11612 * @vsi: the VSI being configured 11613 * 11614 * We allocate one q_vector per queue interrupt. If allocation fails we 11615 * return -ENOMEM. 11616 **/ 11617 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11618 { 11619 struct i40e_pf *pf = vsi->back; 11620 int err, v_idx, num_q_vectors; 11621 11622 /* if not MSIX, give the one vector only to the LAN VSI */ 11623 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11624 num_q_vectors = vsi->num_q_vectors; 11625 else if (vsi == pf->vsi[pf->lan_vsi]) 11626 num_q_vectors = 1; 11627 else 11628 return -EINVAL; 11629 11630 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11631 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 11632 if (err) 11633 goto err_out; 11634 } 11635 11636 return 0; 11637 11638 err_out: 11639 while (v_idx--) 11640 i40e_free_q_vector(vsi, v_idx); 11641 11642 return err; 11643 } 11644 11645 /** 11646 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11647 * @pf: board private structure to initialize 11648 **/ 11649 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11650 { 11651 int vectors = 0; 11652 ssize_t size; 11653 11654 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11655 vectors = i40e_init_msix(pf); 11656 if (vectors < 0) { 11657 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11658 I40E_FLAG_IWARP_ENABLED | 11659 I40E_FLAG_RSS_ENABLED | 11660 I40E_FLAG_DCB_CAPABLE | 11661 I40E_FLAG_DCB_ENABLED | 11662 I40E_FLAG_SRIOV_ENABLED | 11663 I40E_FLAG_FD_SB_ENABLED | 11664 I40E_FLAG_FD_ATR_ENABLED | 11665 I40E_FLAG_VMDQ_ENABLED); 11666 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11667 11668 /* rework the queue expectations without MSIX */ 11669 i40e_determine_queue_usage(pf); 11670 } 11671 } 11672 11673 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11674 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11675 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11676 vectors = pci_enable_msi(pf->pdev); 11677 if (vectors < 0) { 11678 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11679 vectors); 11680 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11681 } 11682 vectors = 1; /* one MSI or Legacy vector */ 11683 } 11684 11685 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11686 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11687 11688 /* set up vector assignment tracking */ 11689 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11690 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11691 if (!pf->irq_pile) 11692 return -ENOMEM; 11693 11694 pf->irq_pile->num_entries = vectors; 11695 pf->irq_pile->search_hint = 0; 11696 11697 /* track first vector for misc interrupts, ignore return */ 11698 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11699 11700 return 0; 11701 } 11702 11703 /** 11704 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11705 * @pf: private board data structure 11706 * 11707 * Restore the interrupt scheme that was cleared when we suspended the 11708 * device. This should be called during resume to re-allocate the q_vectors 11709 * and reacquire IRQs. 11710 */ 11711 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11712 { 11713 int err, i; 11714 11715 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11716 * scheme. We need to re-enabled them here in order to attempt to 11717 * re-acquire the MSI or MSI-X vectors 11718 */ 11719 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11720 11721 err = i40e_init_interrupt_scheme(pf); 11722 if (err) 11723 return err; 11724 11725 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11726 * rings together again. 11727 */ 11728 for (i = 0; i < pf->num_alloc_vsi; i++) { 11729 if (pf->vsi[i]) { 11730 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11731 if (err) 11732 goto err_unwind; 11733 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11734 } 11735 } 11736 11737 err = i40e_setup_misc_vector(pf); 11738 if (err) 11739 goto err_unwind; 11740 11741 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11742 i40e_client_update_msix_info(pf); 11743 11744 return 0; 11745 11746 err_unwind: 11747 while (i--) { 11748 if (pf->vsi[i]) 11749 i40e_vsi_free_q_vectors(pf->vsi[i]); 11750 } 11751 11752 return err; 11753 } 11754 11755 /** 11756 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11757 * non queue events in recovery mode 11758 * @pf: board private structure 11759 * 11760 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11761 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11762 * This is handled differently than in recovery mode since no Tx/Rx resources 11763 * are being allocated. 11764 **/ 11765 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11766 { 11767 int err; 11768 11769 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11770 err = i40e_setup_misc_vector(pf); 11771 11772 if (err) { 11773 dev_info(&pf->pdev->dev, 11774 "MSI-X misc vector request failed, error %d\n", 11775 err); 11776 return err; 11777 } 11778 } else { 11779 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11780 11781 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11782 pf->int_name, pf); 11783 11784 if (err) { 11785 dev_info(&pf->pdev->dev, 11786 "MSI/legacy misc vector request failed, error %d\n", 11787 err); 11788 return err; 11789 } 11790 i40e_enable_misc_int_causes(pf); 11791 i40e_irq_dynamic_enable_icr0(pf); 11792 } 11793 11794 return 0; 11795 } 11796 11797 /** 11798 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11799 * @pf: board private structure 11800 * 11801 * This sets up the handler for MSIX 0, which is used to manage the 11802 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11803 * when in MSI or Legacy interrupt mode. 11804 **/ 11805 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11806 { 11807 struct i40e_hw *hw = &pf->hw; 11808 int err = 0; 11809 11810 /* Only request the IRQ once, the first time through. */ 11811 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11812 err = request_irq(pf->msix_entries[0].vector, 11813 i40e_intr, 0, pf->int_name, pf); 11814 if (err) { 11815 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11816 dev_info(&pf->pdev->dev, 11817 "request_irq for %s failed: %d\n", 11818 pf->int_name, err); 11819 return -EFAULT; 11820 } 11821 } 11822 11823 i40e_enable_misc_int_causes(pf); 11824 11825 /* associate no queues to the misc vector */ 11826 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11827 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11828 11829 i40e_flush(hw); 11830 11831 i40e_irq_dynamic_enable_icr0(pf); 11832 11833 return err; 11834 } 11835 11836 /** 11837 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11838 * @vsi: Pointer to vsi structure 11839 * @seed: Buffter to store the hash keys 11840 * @lut: Buffer to store the lookup table entries 11841 * @lut_size: Size of buffer to store the lookup table entries 11842 * 11843 * Return 0 on success, negative on failure 11844 */ 11845 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11846 u8 *lut, u16 lut_size) 11847 { 11848 struct i40e_pf *pf = vsi->back; 11849 struct i40e_hw *hw = &pf->hw; 11850 int ret = 0; 11851 11852 if (seed) { 11853 ret = i40e_aq_get_rss_key(hw, vsi->id, 11854 (struct i40e_aqc_get_set_rss_key_data *)seed); 11855 if (ret) { 11856 dev_info(&pf->pdev->dev, 11857 "Cannot get RSS key, err %s aq_err %s\n", 11858 i40e_stat_str(&pf->hw, ret), 11859 i40e_aq_str(&pf->hw, 11860 pf->hw.aq.asq_last_status)); 11861 return ret; 11862 } 11863 } 11864 11865 if (lut) { 11866 bool pf_lut = vsi->type == I40E_VSI_MAIN; 11867 11868 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11869 if (ret) { 11870 dev_info(&pf->pdev->dev, 11871 "Cannot get RSS lut, err %s aq_err %s\n", 11872 i40e_stat_str(&pf->hw, ret), 11873 i40e_aq_str(&pf->hw, 11874 pf->hw.aq.asq_last_status)); 11875 return ret; 11876 } 11877 } 11878 11879 return ret; 11880 } 11881 11882 /** 11883 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11884 * @vsi: Pointer to vsi structure 11885 * @seed: RSS hash seed 11886 * @lut: Lookup table 11887 * @lut_size: Lookup table size 11888 * 11889 * Returns 0 on success, negative on failure 11890 **/ 11891 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11892 const u8 *lut, u16 lut_size) 11893 { 11894 struct i40e_pf *pf = vsi->back; 11895 struct i40e_hw *hw = &pf->hw; 11896 u16 vf_id = vsi->vf_id; 11897 u8 i; 11898 11899 /* Fill out hash function seed */ 11900 if (seed) { 11901 u32 *seed_dw = (u32 *)seed; 11902 11903 if (vsi->type == I40E_VSI_MAIN) { 11904 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11905 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11906 } else if (vsi->type == I40E_VSI_SRIOV) { 11907 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11908 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11909 } else { 11910 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11911 } 11912 } 11913 11914 if (lut) { 11915 u32 *lut_dw = (u32 *)lut; 11916 11917 if (vsi->type == I40E_VSI_MAIN) { 11918 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11919 return -EINVAL; 11920 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11921 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11922 } else if (vsi->type == I40E_VSI_SRIOV) { 11923 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11924 return -EINVAL; 11925 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11926 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11927 } else { 11928 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11929 } 11930 } 11931 i40e_flush(hw); 11932 11933 return 0; 11934 } 11935 11936 /** 11937 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11938 * @vsi: Pointer to VSI structure 11939 * @seed: Buffer to store the keys 11940 * @lut: Buffer to store the lookup table entries 11941 * @lut_size: Size of buffer to store the lookup table entries 11942 * 11943 * Returns 0 on success, negative on failure 11944 */ 11945 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11946 u8 *lut, u16 lut_size) 11947 { 11948 struct i40e_pf *pf = vsi->back; 11949 struct i40e_hw *hw = &pf->hw; 11950 u16 i; 11951 11952 if (seed) { 11953 u32 *seed_dw = (u32 *)seed; 11954 11955 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11956 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11957 } 11958 if (lut) { 11959 u32 *lut_dw = (u32 *)lut; 11960 11961 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11962 return -EINVAL; 11963 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11964 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11965 } 11966 11967 return 0; 11968 } 11969 11970 /** 11971 * i40e_config_rss - Configure RSS keys and lut 11972 * @vsi: Pointer to VSI structure 11973 * @seed: RSS hash seed 11974 * @lut: Lookup table 11975 * @lut_size: Lookup table size 11976 * 11977 * Returns 0 on success, negative on failure 11978 */ 11979 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11980 { 11981 struct i40e_pf *pf = vsi->back; 11982 11983 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11984 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11985 else 11986 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11987 } 11988 11989 /** 11990 * i40e_get_rss - Get RSS keys and lut 11991 * @vsi: Pointer to VSI structure 11992 * @seed: Buffer to store the keys 11993 * @lut: Buffer to store the lookup table entries 11994 * @lut_size: Size of buffer to store the lookup table entries 11995 * 11996 * Returns 0 on success, negative on failure 11997 */ 11998 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11999 { 12000 struct i40e_pf *pf = vsi->back; 12001 12002 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 12003 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12004 else 12005 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12006 } 12007 12008 /** 12009 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12010 * @pf: Pointer to board private structure 12011 * @lut: Lookup table 12012 * @rss_table_size: Lookup table size 12013 * @rss_size: Range of queue number for hashing 12014 */ 12015 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12016 u16 rss_table_size, u16 rss_size) 12017 { 12018 u16 i; 12019 12020 for (i = 0; i < rss_table_size; i++) 12021 lut[i] = i % rss_size; 12022 } 12023 12024 /** 12025 * i40e_pf_config_rss - Prepare for RSS if used 12026 * @pf: board private structure 12027 **/ 12028 static int i40e_pf_config_rss(struct i40e_pf *pf) 12029 { 12030 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12031 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12032 u8 *lut; 12033 struct i40e_hw *hw = &pf->hw; 12034 u32 reg_val; 12035 u64 hena; 12036 int ret; 12037 12038 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12039 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12040 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12041 hena |= i40e_pf_get_default_rss_hena(pf); 12042 12043 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12044 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12045 12046 /* Determine the RSS table size based on the hardware capabilities */ 12047 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12048 reg_val = (pf->rss_table_size == 512) ? 12049 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12050 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12051 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12052 12053 /* Determine the RSS size of the VSI */ 12054 if (!vsi->rss_size) { 12055 u16 qcount; 12056 /* If the firmware does something weird during VSI init, we 12057 * could end up with zero TCs. Check for that to avoid 12058 * divide-by-zero. It probably won't pass traffic, but it also 12059 * won't panic. 12060 */ 12061 qcount = vsi->num_queue_pairs / 12062 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12063 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12064 } 12065 if (!vsi->rss_size) 12066 return -EINVAL; 12067 12068 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12069 if (!lut) 12070 return -ENOMEM; 12071 12072 /* Use user configured lut if there is one, otherwise use default */ 12073 if (vsi->rss_lut_user) 12074 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12075 else 12076 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12077 12078 /* Use user configured hash key if there is one, otherwise 12079 * use default. 12080 */ 12081 if (vsi->rss_hkey_user) 12082 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12083 else 12084 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12085 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12086 kfree(lut); 12087 12088 return ret; 12089 } 12090 12091 /** 12092 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12093 * @pf: board private structure 12094 * @queue_count: the requested queue count for rss. 12095 * 12096 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12097 * count which may be different from the requested queue count. 12098 * Note: expects to be called while under rtnl_lock() 12099 **/ 12100 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12101 { 12102 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12103 int new_rss_size; 12104 12105 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 12106 return 0; 12107 12108 queue_count = min_t(int, queue_count, num_online_cpus()); 12109 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12110 12111 if (queue_count != vsi->num_queue_pairs) { 12112 u16 qcount; 12113 12114 vsi->req_queue_pairs = queue_count; 12115 i40e_prep_for_reset(pf); 12116 12117 pf->alloc_rss_size = new_rss_size; 12118 12119 i40e_reset_and_rebuild(pf, true, true); 12120 12121 /* Discard the user configured hash keys and lut, if less 12122 * queues are enabled. 12123 */ 12124 if (queue_count < vsi->rss_size) { 12125 i40e_clear_rss_config_user(vsi); 12126 dev_dbg(&pf->pdev->dev, 12127 "discard user configured hash keys and lut\n"); 12128 } 12129 12130 /* Reset vsi->rss_size, as number of enabled queues changed */ 12131 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12132 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12133 12134 i40e_pf_config_rss(pf); 12135 } 12136 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12137 vsi->req_queue_pairs, pf->rss_size_max); 12138 return pf->alloc_rss_size; 12139 } 12140 12141 /** 12142 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12143 * @pf: board private structure 12144 **/ 12145 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 12146 { 12147 i40e_status status; 12148 bool min_valid, max_valid; 12149 u32 max_bw, min_bw; 12150 12151 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12152 &min_valid, &max_valid); 12153 12154 if (!status) { 12155 if (min_valid) 12156 pf->min_bw = min_bw; 12157 if (max_valid) 12158 pf->max_bw = max_bw; 12159 } 12160 12161 return status; 12162 } 12163 12164 /** 12165 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12166 * @pf: board private structure 12167 **/ 12168 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 12169 { 12170 struct i40e_aqc_configure_partition_bw_data bw_data; 12171 i40e_status status; 12172 12173 memset(&bw_data, 0, sizeof(bw_data)); 12174 12175 /* Set the valid bit for this PF */ 12176 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12177 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12178 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12179 12180 /* Set the new bandwidths */ 12181 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12182 12183 return status; 12184 } 12185 12186 /** 12187 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12188 * @pf: board private structure 12189 **/ 12190 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12191 { 12192 /* Commit temporary BW setting to permanent NVM image */ 12193 enum i40e_admin_queue_err last_aq_status; 12194 i40e_status ret; 12195 u16 nvm_word; 12196 12197 if (pf->hw.partition_id != 1) { 12198 dev_info(&pf->pdev->dev, 12199 "Commit BW only works on partition 1! This is partition %d", 12200 pf->hw.partition_id); 12201 ret = I40E_NOT_SUPPORTED; 12202 goto bw_commit_out; 12203 } 12204 12205 /* Acquire NVM for read access */ 12206 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12207 last_aq_status = pf->hw.aq.asq_last_status; 12208 if (ret) { 12209 dev_info(&pf->pdev->dev, 12210 "Cannot acquire NVM for read access, err %s aq_err %s\n", 12211 i40e_stat_str(&pf->hw, ret), 12212 i40e_aq_str(&pf->hw, last_aq_status)); 12213 goto bw_commit_out; 12214 } 12215 12216 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12217 ret = i40e_aq_read_nvm(&pf->hw, 12218 I40E_SR_NVM_CONTROL_WORD, 12219 0x10, sizeof(nvm_word), &nvm_word, 12220 false, NULL); 12221 /* Save off last admin queue command status before releasing 12222 * the NVM 12223 */ 12224 last_aq_status = pf->hw.aq.asq_last_status; 12225 i40e_release_nvm(&pf->hw); 12226 if (ret) { 12227 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 12228 i40e_stat_str(&pf->hw, ret), 12229 i40e_aq_str(&pf->hw, last_aq_status)); 12230 goto bw_commit_out; 12231 } 12232 12233 /* Wait a bit for NVM release to complete */ 12234 msleep(50); 12235 12236 /* Acquire NVM for write access */ 12237 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12238 last_aq_status = pf->hw.aq.asq_last_status; 12239 if (ret) { 12240 dev_info(&pf->pdev->dev, 12241 "Cannot acquire NVM for write access, err %s aq_err %s\n", 12242 i40e_stat_str(&pf->hw, ret), 12243 i40e_aq_str(&pf->hw, last_aq_status)); 12244 goto bw_commit_out; 12245 } 12246 /* Write it back out unchanged to initiate update NVM, 12247 * which will force a write of the shadow (alt) RAM to 12248 * the NVM - thus storing the bandwidth values permanently. 12249 */ 12250 ret = i40e_aq_update_nvm(&pf->hw, 12251 I40E_SR_NVM_CONTROL_WORD, 12252 0x10, sizeof(nvm_word), 12253 &nvm_word, true, 0, NULL); 12254 /* Save off last admin queue command status before releasing 12255 * the NVM 12256 */ 12257 last_aq_status = pf->hw.aq.asq_last_status; 12258 i40e_release_nvm(&pf->hw); 12259 if (ret) 12260 dev_info(&pf->pdev->dev, 12261 "BW settings NOT SAVED, err %s aq_err %s\n", 12262 i40e_stat_str(&pf->hw, ret), 12263 i40e_aq_str(&pf->hw, last_aq_status)); 12264 bw_commit_out: 12265 12266 return ret; 12267 } 12268 12269 /** 12270 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12271 * if total port shutdown feature is enabled for this PF 12272 * @pf: board private structure 12273 **/ 12274 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12275 { 12276 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12277 #define I40E_FEATURES_ENABLE_PTR 0x2A 12278 #define I40E_CURRENT_SETTING_PTR 0x2B 12279 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12280 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12281 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12282 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12283 i40e_status read_status = I40E_SUCCESS; 12284 u16 sr_emp_sr_settings_ptr = 0; 12285 u16 features_enable = 0; 12286 u16 link_behavior = 0; 12287 bool ret = false; 12288 12289 read_status = i40e_read_nvm_word(&pf->hw, 12290 I40E_SR_EMP_SR_SETTINGS_PTR, 12291 &sr_emp_sr_settings_ptr); 12292 if (read_status) 12293 goto err_nvm; 12294 read_status = i40e_read_nvm_word(&pf->hw, 12295 sr_emp_sr_settings_ptr + 12296 I40E_FEATURES_ENABLE_PTR, 12297 &features_enable); 12298 if (read_status) 12299 goto err_nvm; 12300 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12301 read_status = i40e_read_nvm_module_data(&pf->hw, 12302 I40E_SR_EMP_SR_SETTINGS_PTR, 12303 I40E_CURRENT_SETTING_PTR, 12304 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12305 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12306 &link_behavior); 12307 if (read_status) 12308 goto err_nvm; 12309 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12310 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12311 } 12312 return ret; 12313 12314 err_nvm: 12315 dev_warn(&pf->pdev->dev, 12316 "total-port-shutdown feature is off due to read nvm error: %s\n", 12317 i40e_stat_str(&pf->hw, read_status)); 12318 return ret; 12319 } 12320 12321 /** 12322 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12323 * @pf: board private structure to initialize 12324 * 12325 * i40e_sw_init initializes the Adapter private data structure. 12326 * Fields are initialized based on PCI device information and 12327 * OS network device settings (MTU size). 12328 **/ 12329 static int i40e_sw_init(struct i40e_pf *pf) 12330 { 12331 int err = 0; 12332 int size; 12333 u16 pow; 12334 12335 /* Set default capability flags */ 12336 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 12337 I40E_FLAG_MSI_ENABLED | 12338 I40E_FLAG_MSIX_ENABLED; 12339 12340 /* Set default ITR */ 12341 pf->rx_itr_default = I40E_ITR_RX_DEF; 12342 pf->tx_itr_default = I40E_ITR_TX_DEF; 12343 12344 /* Depending on PF configurations, it is possible that the RSS 12345 * maximum might end up larger than the available queues 12346 */ 12347 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12348 pf->alloc_rss_size = 1; 12349 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12350 pf->rss_size_max = min_t(int, pf->rss_size_max, 12351 pf->hw.func_caps.num_tx_qp); 12352 12353 /* find the next higher power-of-2 of num cpus */ 12354 pow = roundup_pow_of_two(num_online_cpus()); 12355 pf->rss_size_max = min_t(int, pf->rss_size_max, pow); 12356 12357 if (pf->hw.func_caps.rss) { 12358 pf->flags |= I40E_FLAG_RSS_ENABLED; 12359 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12360 num_online_cpus()); 12361 } 12362 12363 /* MFP mode enabled */ 12364 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12365 pf->flags |= I40E_FLAG_MFP_ENABLED; 12366 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12367 if (i40e_get_partition_bw_setting(pf)) { 12368 dev_warn(&pf->pdev->dev, 12369 "Could not get partition bw settings\n"); 12370 } else { 12371 dev_info(&pf->pdev->dev, 12372 "Partition BW Min = %8.8x, Max = %8.8x\n", 12373 pf->min_bw, pf->max_bw); 12374 12375 /* nudge the Tx scheduler */ 12376 i40e_set_partition_bw_setting(pf); 12377 } 12378 } 12379 12380 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12381 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12382 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 12383 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 12384 if (pf->flags & I40E_FLAG_MFP_ENABLED && 12385 pf->hw.num_partitions > 1) 12386 dev_info(&pf->pdev->dev, 12387 "Flow Director Sideband mode Disabled in MFP mode\n"); 12388 else 12389 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12390 pf->fdir_pf_filter_count = 12391 pf->hw.func_caps.fd_filters_guaranteed; 12392 pf->hw.fdir_shared_filter_count = 12393 pf->hw.func_caps.fd_filters_best_effort; 12394 } 12395 12396 if (pf->hw.mac.type == I40E_MAC_X722) { 12397 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 12398 I40E_HW_128_QP_RSS_CAPABLE | 12399 I40E_HW_ATR_EVICT_CAPABLE | 12400 I40E_HW_WB_ON_ITR_CAPABLE | 12401 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 12402 I40E_HW_NO_PCI_LINK_CHECK | 12403 I40E_HW_USE_SET_LLDP_MIB | 12404 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 12405 I40E_HW_PTP_L4_CAPABLE | 12406 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 12407 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 12408 12409 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 12410 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 12411 I40E_FDEVICT_PCTYPE_DEFAULT) { 12412 dev_warn(&pf->pdev->dev, 12413 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 12414 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 12415 } 12416 } else if ((pf->hw.aq.api_maj_ver > 1) || 12417 ((pf->hw.aq.api_maj_ver == 1) && 12418 (pf->hw.aq.api_min_ver > 4))) { 12419 /* Supported in FW API version higher than 1.4 */ 12420 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 12421 } 12422 12423 /* Enable HW ATR eviction if possible */ 12424 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 12425 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 12426 12427 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12428 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 12429 (pf->hw.aq.fw_maj_ver < 4))) { 12430 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 12431 /* No DCB support for FW < v4.33 */ 12432 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 12433 } 12434 12435 /* Disable FW LLDP if FW < v4.3 */ 12436 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12437 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 12438 (pf->hw.aq.fw_maj_ver < 4))) 12439 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 12440 12441 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 12442 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12443 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 12444 (pf->hw.aq.fw_maj_ver >= 5))) 12445 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 12446 12447 /* Enable PTP L4 if FW > v6.0 */ 12448 if (pf->hw.mac.type == I40E_MAC_XL710 && 12449 pf->hw.aq.fw_maj_ver >= 6) 12450 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 12451 12452 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12453 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12454 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 12455 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12456 } 12457 12458 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12459 pf->flags |= I40E_FLAG_IWARP_ENABLED; 12460 /* IWARP needs one extra vector for CQP just like MISC.*/ 12461 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12462 } 12463 /* Stopping FW LLDP engine is supported on XL710 and X722 12464 * starting from FW versions determined in i40e_init_adminq. 12465 * Stopping the FW LLDP engine is not supported on XL710 12466 * if NPAR is functioning so unset this hw flag in this case. 12467 */ 12468 if (pf->hw.mac.type == I40E_MAC_XL710 && 12469 pf->hw.func_caps.npar_enable && 12470 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12471 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12472 12473 #ifdef CONFIG_PCI_IOV 12474 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12475 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12476 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12477 pf->num_req_vfs = min_t(int, 12478 pf->hw.func_caps.num_vfs, 12479 I40E_MAX_VF_COUNT); 12480 } 12481 #endif /* CONFIG_PCI_IOV */ 12482 pf->eeprom_version = 0xDEAD; 12483 pf->lan_veb = I40E_NO_VEB; 12484 pf->lan_vsi = I40E_NO_VSI; 12485 12486 /* By default FW has this off for performance reasons */ 12487 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12488 12489 /* set up queue assignment tracking */ 12490 size = sizeof(struct i40e_lump_tracking) 12491 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12492 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12493 if (!pf->qp_pile) { 12494 err = -ENOMEM; 12495 goto sw_init_done; 12496 } 12497 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12498 pf->qp_pile->search_hint = 0; 12499 12500 pf->tx_timeout_recovery_level = 1; 12501 12502 if (pf->hw.mac.type != I40E_MAC_X722 && 12503 i40e_is_total_port_shutdown_enabled(pf)) { 12504 /* Link down on close must be on when total port shutdown 12505 * is enabled for a given port 12506 */ 12507 pf->flags |= (I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED | 12508 I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED); 12509 dev_info(&pf->pdev->dev, 12510 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12511 } 12512 mutex_init(&pf->switch_mutex); 12513 12514 sw_init_done: 12515 return err; 12516 } 12517 12518 /** 12519 * i40e_set_ntuple - set the ntuple feature flag and take action 12520 * @pf: board private structure to initialize 12521 * @features: the feature set that the stack is suggesting 12522 * 12523 * returns a bool to indicate if reset needs to happen 12524 **/ 12525 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12526 { 12527 bool need_reset = false; 12528 12529 /* Check if Flow Director n-tuple support was enabled or disabled. If 12530 * the state changed, we need to reset. 12531 */ 12532 if (features & NETIF_F_NTUPLE) { 12533 /* Enable filters and mark for reset */ 12534 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12535 need_reset = true; 12536 /* enable FD_SB only if there is MSI-X vector and no cloud 12537 * filters exist 12538 */ 12539 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12540 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12541 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12542 } 12543 } else { 12544 /* turn off filters, mark for reset and clear SW filter list */ 12545 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12546 need_reset = true; 12547 i40e_fdir_filter_exit(pf); 12548 } 12549 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12550 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12551 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12552 12553 /* reset fd counters */ 12554 pf->fd_add_err = 0; 12555 pf->fd_atr_cnt = 0; 12556 /* if ATR was auto disabled it can be re-enabled. */ 12557 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12558 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12559 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12560 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12561 } 12562 return need_reset; 12563 } 12564 12565 /** 12566 * i40e_clear_rss_lut - clear the rx hash lookup table 12567 * @vsi: the VSI being configured 12568 **/ 12569 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12570 { 12571 struct i40e_pf *pf = vsi->back; 12572 struct i40e_hw *hw = &pf->hw; 12573 u16 vf_id = vsi->vf_id; 12574 u8 i; 12575 12576 if (vsi->type == I40E_VSI_MAIN) { 12577 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12578 wr32(hw, I40E_PFQF_HLUT(i), 0); 12579 } else if (vsi->type == I40E_VSI_SRIOV) { 12580 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12581 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12582 } else { 12583 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12584 } 12585 } 12586 12587 /** 12588 * i40e_set_features - set the netdev feature flags 12589 * @netdev: ptr to the netdev being adjusted 12590 * @features: the feature set that the stack is suggesting 12591 * Note: expects to be called while under rtnl_lock() 12592 **/ 12593 static int i40e_set_features(struct net_device *netdev, 12594 netdev_features_t features) 12595 { 12596 struct i40e_netdev_priv *np = netdev_priv(netdev); 12597 struct i40e_vsi *vsi = np->vsi; 12598 struct i40e_pf *pf = vsi->back; 12599 bool need_reset; 12600 12601 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12602 i40e_pf_config_rss(pf); 12603 else if (!(features & NETIF_F_RXHASH) && 12604 netdev->features & NETIF_F_RXHASH) 12605 i40e_clear_rss_lut(vsi); 12606 12607 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12608 i40e_vlan_stripping_enable(vsi); 12609 else 12610 i40e_vlan_stripping_disable(vsi); 12611 12612 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12613 dev_err(&pf->pdev->dev, 12614 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12615 return -EINVAL; 12616 } 12617 12618 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12619 i40e_del_all_macvlans(vsi); 12620 12621 need_reset = i40e_set_ntuple(pf, features); 12622 12623 if (need_reset) 12624 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12625 12626 return 0; 12627 } 12628 12629 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12630 unsigned int table, unsigned int idx, 12631 struct udp_tunnel_info *ti) 12632 { 12633 struct i40e_netdev_priv *np = netdev_priv(netdev); 12634 struct i40e_hw *hw = &np->vsi->back->hw; 12635 u8 type, filter_index; 12636 i40e_status ret; 12637 12638 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12639 I40E_AQC_TUNNEL_TYPE_NGE; 12640 12641 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12642 NULL); 12643 if (ret) { 12644 netdev_info(netdev, "add UDP port failed, err %s aq_err %s\n", 12645 i40e_stat_str(hw, ret), 12646 i40e_aq_str(hw, hw->aq.asq_last_status)); 12647 return -EIO; 12648 } 12649 12650 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12651 return 0; 12652 } 12653 12654 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12655 unsigned int table, unsigned int idx, 12656 struct udp_tunnel_info *ti) 12657 { 12658 struct i40e_netdev_priv *np = netdev_priv(netdev); 12659 struct i40e_hw *hw = &np->vsi->back->hw; 12660 i40e_status ret; 12661 12662 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 12663 if (ret) { 12664 netdev_info(netdev, "delete UDP port failed, err %s aq_err %s\n", 12665 i40e_stat_str(hw, ret), 12666 i40e_aq_str(hw, hw->aq.asq_last_status)); 12667 return -EIO; 12668 } 12669 12670 return 0; 12671 } 12672 12673 static int i40e_get_phys_port_id(struct net_device *netdev, 12674 struct netdev_phys_item_id *ppid) 12675 { 12676 struct i40e_netdev_priv *np = netdev_priv(netdev); 12677 struct i40e_pf *pf = np->vsi->back; 12678 struct i40e_hw *hw = &pf->hw; 12679 12680 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12681 return -EOPNOTSUPP; 12682 12683 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12684 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12685 12686 return 0; 12687 } 12688 12689 /** 12690 * i40e_ndo_fdb_add - add an entry to the hardware database 12691 * @ndm: the input from the stack 12692 * @tb: pointer to array of nladdr (unused) 12693 * @dev: the net device pointer 12694 * @addr: the MAC address entry being added 12695 * @vid: VLAN ID 12696 * @flags: instructions from stack about fdb operation 12697 * @extack: netlink extended ack, unused currently 12698 */ 12699 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12700 struct net_device *dev, 12701 const unsigned char *addr, u16 vid, 12702 u16 flags, 12703 struct netlink_ext_ack *extack) 12704 { 12705 struct i40e_netdev_priv *np = netdev_priv(dev); 12706 struct i40e_pf *pf = np->vsi->back; 12707 int err = 0; 12708 12709 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12710 return -EOPNOTSUPP; 12711 12712 if (vid) { 12713 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12714 return -EINVAL; 12715 } 12716 12717 /* Hardware does not support aging addresses so if a 12718 * ndm_state is given only allow permanent addresses 12719 */ 12720 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12721 netdev_info(dev, "FDB only supports static addresses\n"); 12722 return -EINVAL; 12723 } 12724 12725 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12726 err = dev_uc_add_excl(dev, addr); 12727 else if (is_multicast_ether_addr(addr)) 12728 err = dev_mc_add_excl(dev, addr); 12729 else 12730 err = -EINVAL; 12731 12732 /* Only return duplicate errors if NLM_F_EXCL is set */ 12733 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12734 err = 0; 12735 12736 return err; 12737 } 12738 12739 /** 12740 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12741 * @dev: the netdev being configured 12742 * @nlh: RTNL message 12743 * @flags: bridge flags 12744 * @extack: netlink extended ack 12745 * 12746 * Inserts a new hardware bridge if not already created and 12747 * enables the bridging mode requested (VEB or VEPA). If the 12748 * hardware bridge has already been inserted and the request 12749 * is to change the mode then that requires a PF reset to 12750 * allow rebuild of the components with required hardware 12751 * bridge mode enabled. 12752 * 12753 * Note: expects to be called while under rtnl_lock() 12754 **/ 12755 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12756 struct nlmsghdr *nlh, 12757 u16 flags, 12758 struct netlink_ext_ack *extack) 12759 { 12760 struct i40e_netdev_priv *np = netdev_priv(dev); 12761 struct i40e_vsi *vsi = np->vsi; 12762 struct i40e_pf *pf = vsi->back; 12763 struct i40e_veb *veb = NULL; 12764 struct nlattr *attr, *br_spec; 12765 int i, rem; 12766 12767 /* Only for PF VSI for now */ 12768 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12769 return -EOPNOTSUPP; 12770 12771 /* Find the HW bridge for PF VSI */ 12772 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12773 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12774 veb = pf->veb[i]; 12775 } 12776 12777 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12778 12779 nla_for_each_nested(attr, br_spec, rem) { 12780 __u16 mode; 12781 12782 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12783 continue; 12784 12785 mode = nla_get_u16(attr); 12786 if ((mode != BRIDGE_MODE_VEPA) && 12787 (mode != BRIDGE_MODE_VEB)) 12788 return -EINVAL; 12789 12790 /* Insert a new HW bridge */ 12791 if (!veb) { 12792 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12793 vsi->tc_config.enabled_tc); 12794 if (veb) { 12795 veb->bridge_mode = mode; 12796 i40e_config_bridge_mode(veb); 12797 } else { 12798 /* No Bridge HW offload available */ 12799 return -ENOENT; 12800 } 12801 break; 12802 } else if (mode != veb->bridge_mode) { 12803 /* Existing HW bridge but different mode needs reset */ 12804 veb->bridge_mode = mode; 12805 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12806 if (mode == BRIDGE_MODE_VEB) 12807 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12808 else 12809 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12810 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12811 break; 12812 } 12813 } 12814 12815 return 0; 12816 } 12817 12818 /** 12819 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12820 * @skb: skb buff 12821 * @pid: process id 12822 * @seq: RTNL message seq # 12823 * @dev: the netdev being configured 12824 * @filter_mask: unused 12825 * @nlflags: netlink flags passed in 12826 * 12827 * Return the mode in which the hardware bridge is operating in 12828 * i.e VEB or VEPA. 12829 **/ 12830 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12831 struct net_device *dev, 12832 u32 __always_unused filter_mask, 12833 int nlflags) 12834 { 12835 struct i40e_netdev_priv *np = netdev_priv(dev); 12836 struct i40e_vsi *vsi = np->vsi; 12837 struct i40e_pf *pf = vsi->back; 12838 struct i40e_veb *veb = NULL; 12839 int i; 12840 12841 /* Only for PF VSI for now */ 12842 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12843 return -EOPNOTSUPP; 12844 12845 /* Find the HW bridge for the PF VSI */ 12846 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12847 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12848 veb = pf->veb[i]; 12849 } 12850 12851 if (!veb) 12852 return 0; 12853 12854 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12855 0, 0, nlflags, filter_mask, NULL); 12856 } 12857 12858 /** 12859 * i40e_features_check - Validate encapsulated packet conforms to limits 12860 * @skb: skb buff 12861 * @dev: This physical port's netdev 12862 * @features: Offload features that the stack believes apply 12863 **/ 12864 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12865 struct net_device *dev, 12866 netdev_features_t features) 12867 { 12868 size_t len; 12869 12870 /* No point in doing any of this if neither checksum nor GSO are 12871 * being requested for this frame. We can rule out both by just 12872 * checking for CHECKSUM_PARTIAL 12873 */ 12874 if (skb->ip_summed != CHECKSUM_PARTIAL) 12875 return features; 12876 12877 /* We cannot support GSO if the MSS is going to be less than 12878 * 64 bytes. If it is then we need to drop support for GSO. 12879 */ 12880 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12881 features &= ~NETIF_F_GSO_MASK; 12882 12883 /* MACLEN can support at most 63 words */ 12884 len = skb_network_header(skb) - skb->data; 12885 if (len & ~(63 * 2)) 12886 goto out_err; 12887 12888 /* IPLEN and EIPLEN can support at most 127 dwords */ 12889 len = skb_transport_header(skb) - skb_network_header(skb); 12890 if (len & ~(127 * 4)) 12891 goto out_err; 12892 12893 if (skb->encapsulation) { 12894 /* L4TUNLEN can support 127 words */ 12895 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12896 if (len & ~(127 * 2)) 12897 goto out_err; 12898 12899 /* IPLEN can support at most 127 dwords */ 12900 len = skb_inner_transport_header(skb) - 12901 skb_inner_network_header(skb); 12902 if (len & ~(127 * 4)) 12903 goto out_err; 12904 } 12905 12906 /* No need to validate L4LEN as TCP is the only protocol with a 12907 * a flexible value and we support all possible values supported 12908 * by TCP, which is at most 15 dwords 12909 */ 12910 12911 return features; 12912 out_err: 12913 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12914 } 12915 12916 /** 12917 * i40e_xdp_setup - add/remove an XDP program 12918 * @vsi: VSI to changed 12919 * @prog: XDP program 12920 * @extack: netlink extended ack 12921 **/ 12922 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 12923 struct netlink_ext_ack *extack) 12924 { 12925 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12926 struct i40e_pf *pf = vsi->back; 12927 struct bpf_prog *old_prog; 12928 bool need_reset; 12929 int i; 12930 12931 /* Don't allow frames that span over multiple buffers */ 12932 if (frame_size > vsi->rx_buf_len) { 12933 NL_SET_ERR_MSG_MOD(extack, "MTU too large to enable XDP"); 12934 return -EINVAL; 12935 } 12936 12937 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12938 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12939 12940 if (need_reset) 12941 i40e_prep_for_reset(pf); 12942 12943 old_prog = xchg(&vsi->xdp_prog, prog); 12944 12945 if (need_reset) { 12946 if (!prog) 12947 /* Wait until ndo_xsk_wakeup completes. */ 12948 synchronize_rcu(); 12949 i40e_reset_and_rebuild(pf, true, true); 12950 } 12951 12952 for (i = 0; i < vsi->num_queue_pairs; i++) 12953 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12954 12955 if (old_prog) 12956 bpf_prog_put(old_prog); 12957 12958 /* Kick start the NAPI context if there is an AF_XDP socket open 12959 * on that queue id. This so that receiving will start. 12960 */ 12961 if (need_reset && prog) 12962 for (i = 0; i < vsi->num_queue_pairs; i++) 12963 if (vsi->xdp_rings[i]->xsk_pool) 12964 (void)i40e_xsk_wakeup(vsi->netdev, i, 12965 XDP_WAKEUP_RX); 12966 12967 return 0; 12968 } 12969 12970 /** 12971 * i40e_enter_busy_conf - Enters busy config state 12972 * @vsi: vsi 12973 * 12974 * Returns 0 on success, <0 for failure. 12975 **/ 12976 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12977 { 12978 struct i40e_pf *pf = vsi->back; 12979 int timeout = 50; 12980 12981 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12982 timeout--; 12983 if (!timeout) 12984 return -EBUSY; 12985 usleep_range(1000, 2000); 12986 } 12987 12988 return 0; 12989 } 12990 12991 /** 12992 * i40e_exit_busy_conf - Exits busy config state 12993 * @vsi: vsi 12994 **/ 12995 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12996 { 12997 struct i40e_pf *pf = vsi->back; 12998 12999 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13000 } 13001 13002 /** 13003 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13004 * @vsi: vsi 13005 * @queue_pair: queue pair 13006 **/ 13007 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13008 { 13009 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13010 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13011 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13012 sizeof(vsi->tx_rings[queue_pair]->stats)); 13013 if (i40e_enabled_xdp_vsi(vsi)) { 13014 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13015 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13016 } 13017 } 13018 13019 /** 13020 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13021 * @vsi: vsi 13022 * @queue_pair: queue pair 13023 **/ 13024 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13025 { 13026 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13027 if (i40e_enabled_xdp_vsi(vsi)) { 13028 /* Make sure that in-progress ndo_xdp_xmit calls are 13029 * completed. 13030 */ 13031 synchronize_rcu(); 13032 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13033 } 13034 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13035 } 13036 13037 /** 13038 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13039 * @vsi: vsi 13040 * @queue_pair: queue pair 13041 * @enable: true for enable, false for disable 13042 **/ 13043 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13044 bool enable) 13045 { 13046 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13047 struct i40e_q_vector *q_vector = rxr->q_vector; 13048 13049 if (!vsi->netdev) 13050 return; 13051 13052 /* All rings in a qp belong to the same qvector. */ 13053 if (q_vector->rx.ring || q_vector->tx.ring) { 13054 if (enable) 13055 napi_enable(&q_vector->napi); 13056 else 13057 napi_disable(&q_vector->napi); 13058 } 13059 } 13060 13061 /** 13062 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13063 * @vsi: vsi 13064 * @queue_pair: queue pair 13065 * @enable: true for enable, false for disable 13066 * 13067 * Returns 0 on success, <0 on failure. 13068 **/ 13069 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13070 bool enable) 13071 { 13072 struct i40e_pf *pf = vsi->back; 13073 int pf_q, ret = 0; 13074 13075 pf_q = vsi->base_queue + queue_pair; 13076 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13077 false /*is xdp*/, enable); 13078 if (ret) { 13079 dev_info(&pf->pdev->dev, 13080 "VSI seid %d Tx ring %d %sable timeout\n", 13081 vsi->seid, pf_q, (enable ? "en" : "dis")); 13082 return ret; 13083 } 13084 13085 i40e_control_rx_q(pf, pf_q, enable); 13086 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13087 if (ret) { 13088 dev_info(&pf->pdev->dev, 13089 "VSI seid %d Rx ring %d %sable timeout\n", 13090 vsi->seid, pf_q, (enable ? "en" : "dis")); 13091 return ret; 13092 } 13093 13094 /* Due to HW errata, on Rx disable only, the register can 13095 * indicate done before it really is. Needs 50ms to be sure 13096 */ 13097 if (!enable) 13098 mdelay(50); 13099 13100 if (!i40e_enabled_xdp_vsi(vsi)) 13101 return ret; 13102 13103 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13104 pf_q + vsi->alloc_queue_pairs, 13105 true /*is xdp*/, enable); 13106 if (ret) { 13107 dev_info(&pf->pdev->dev, 13108 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13109 vsi->seid, pf_q, (enable ? "en" : "dis")); 13110 } 13111 13112 return ret; 13113 } 13114 13115 /** 13116 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13117 * @vsi: vsi 13118 * @queue_pair: queue_pair 13119 **/ 13120 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13121 { 13122 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13123 struct i40e_pf *pf = vsi->back; 13124 struct i40e_hw *hw = &pf->hw; 13125 13126 /* All rings in a qp belong to the same qvector. */ 13127 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 13128 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13129 else 13130 i40e_irq_dynamic_enable_icr0(pf); 13131 13132 i40e_flush(hw); 13133 } 13134 13135 /** 13136 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13137 * @vsi: vsi 13138 * @queue_pair: queue_pair 13139 **/ 13140 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13141 { 13142 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13143 struct i40e_pf *pf = vsi->back; 13144 struct i40e_hw *hw = &pf->hw; 13145 13146 /* For simplicity, instead of removing the qp interrupt causes 13147 * from the interrupt linked list, we simply disable the interrupt, and 13148 * leave the list intact. 13149 * 13150 * All rings in a qp belong to the same qvector. 13151 */ 13152 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13153 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13154 13155 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13156 i40e_flush(hw); 13157 synchronize_irq(pf->msix_entries[intpf].vector); 13158 } else { 13159 /* Legacy and MSI mode - this stops all interrupt handling */ 13160 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13161 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13162 i40e_flush(hw); 13163 synchronize_irq(pf->pdev->irq); 13164 } 13165 } 13166 13167 /** 13168 * i40e_queue_pair_disable - Disables a queue pair 13169 * @vsi: vsi 13170 * @queue_pair: queue pair 13171 * 13172 * Returns 0 on success, <0 on failure. 13173 **/ 13174 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13175 { 13176 int err; 13177 13178 err = i40e_enter_busy_conf(vsi); 13179 if (err) 13180 return err; 13181 13182 i40e_queue_pair_disable_irq(vsi, queue_pair); 13183 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13184 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13185 i40e_queue_pair_clean_rings(vsi, queue_pair); 13186 i40e_queue_pair_reset_stats(vsi, queue_pair); 13187 13188 return err; 13189 } 13190 13191 /** 13192 * i40e_queue_pair_enable - Enables a queue pair 13193 * @vsi: vsi 13194 * @queue_pair: queue pair 13195 * 13196 * Returns 0 on success, <0 on failure. 13197 **/ 13198 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13199 { 13200 int err; 13201 13202 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13203 if (err) 13204 return err; 13205 13206 if (i40e_enabled_xdp_vsi(vsi)) { 13207 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13208 if (err) 13209 return err; 13210 } 13211 13212 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13213 if (err) 13214 return err; 13215 13216 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13217 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13218 i40e_queue_pair_enable_irq(vsi, queue_pair); 13219 13220 i40e_exit_busy_conf(vsi); 13221 13222 return err; 13223 } 13224 13225 /** 13226 * i40e_xdp - implements ndo_bpf for i40e 13227 * @dev: netdevice 13228 * @xdp: XDP command 13229 **/ 13230 static int i40e_xdp(struct net_device *dev, 13231 struct netdev_bpf *xdp) 13232 { 13233 struct i40e_netdev_priv *np = netdev_priv(dev); 13234 struct i40e_vsi *vsi = np->vsi; 13235 13236 if (vsi->type != I40E_VSI_MAIN) 13237 return -EINVAL; 13238 13239 switch (xdp->command) { 13240 case XDP_SETUP_PROG: 13241 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13242 case XDP_SETUP_XSK_POOL: 13243 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13244 xdp->xsk.queue_id); 13245 default: 13246 return -EINVAL; 13247 } 13248 } 13249 13250 static const struct net_device_ops i40e_netdev_ops = { 13251 .ndo_open = i40e_open, 13252 .ndo_stop = i40e_close, 13253 .ndo_start_xmit = i40e_lan_xmit_frame, 13254 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13255 .ndo_set_rx_mode = i40e_set_rx_mode, 13256 .ndo_validate_addr = eth_validate_addr, 13257 .ndo_set_mac_address = i40e_set_mac, 13258 .ndo_change_mtu = i40e_change_mtu, 13259 .ndo_eth_ioctl = i40e_ioctl, 13260 .ndo_tx_timeout = i40e_tx_timeout, 13261 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13262 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13263 #ifdef CONFIG_NET_POLL_CONTROLLER 13264 .ndo_poll_controller = i40e_netpoll, 13265 #endif 13266 .ndo_setup_tc = __i40e_setup_tc, 13267 .ndo_set_features = i40e_set_features, 13268 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13269 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13270 .ndo_get_vf_stats = i40e_get_vf_stats, 13271 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13272 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13273 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13274 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13275 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13276 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13277 .ndo_fdb_add = i40e_ndo_fdb_add, 13278 .ndo_features_check = i40e_features_check, 13279 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13280 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13281 .ndo_bpf = i40e_xdp, 13282 .ndo_xdp_xmit = i40e_xdp_xmit, 13283 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13284 .ndo_dfwd_add_station = i40e_fwd_add, 13285 .ndo_dfwd_del_station = i40e_fwd_del, 13286 }; 13287 13288 /** 13289 * i40e_config_netdev - Setup the netdev flags 13290 * @vsi: the VSI being configured 13291 * 13292 * Returns 0 on success, negative value on failure 13293 **/ 13294 static int i40e_config_netdev(struct i40e_vsi *vsi) 13295 { 13296 struct i40e_pf *pf = vsi->back; 13297 struct i40e_hw *hw = &pf->hw; 13298 struct i40e_netdev_priv *np; 13299 struct net_device *netdev; 13300 u8 broadcast[ETH_ALEN]; 13301 u8 mac_addr[ETH_ALEN]; 13302 int etherdev_size; 13303 netdev_features_t hw_enc_features; 13304 netdev_features_t hw_features; 13305 13306 etherdev_size = sizeof(struct i40e_netdev_priv); 13307 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13308 if (!netdev) 13309 return -ENOMEM; 13310 13311 vsi->netdev = netdev; 13312 np = netdev_priv(netdev); 13313 np->vsi = vsi; 13314 13315 hw_enc_features = NETIF_F_SG | 13316 NETIF_F_IP_CSUM | 13317 NETIF_F_IPV6_CSUM | 13318 NETIF_F_HIGHDMA | 13319 NETIF_F_SOFT_FEATURES | 13320 NETIF_F_TSO | 13321 NETIF_F_TSO_ECN | 13322 NETIF_F_TSO6 | 13323 NETIF_F_GSO_GRE | 13324 NETIF_F_GSO_GRE_CSUM | 13325 NETIF_F_GSO_PARTIAL | 13326 NETIF_F_GSO_IPXIP4 | 13327 NETIF_F_GSO_IPXIP6 | 13328 NETIF_F_GSO_UDP_TUNNEL | 13329 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13330 NETIF_F_GSO_UDP_L4 | 13331 NETIF_F_SCTP_CRC | 13332 NETIF_F_RXHASH | 13333 NETIF_F_RXCSUM | 13334 0; 13335 13336 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 13337 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13338 13339 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13340 13341 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13342 13343 netdev->hw_enc_features |= hw_enc_features; 13344 13345 /* record features VLANs can make use of */ 13346 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13347 13348 /* enable macvlan offloads */ 13349 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13350 13351 hw_features = hw_enc_features | 13352 NETIF_F_HW_VLAN_CTAG_TX | 13353 NETIF_F_HW_VLAN_CTAG_RX; 13354 13355 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 13356 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13357 13358 netdev->hw_features |= hw_features; 13359 13360 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13361 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13362 13363 if (vsi->type == I40E_VSI_MAIN) { 13364 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13365 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13366 /* The following steps are necessary for two reasons. First, 13367 * some older NVM configurations load a default MAC-VLAN 13368 * filter that will accept any tagged packet, and we want to 13369 * replace this with a normal filter. Additionally, it is 13370 * possible our MAC address was provided by the platform using 13371 * Open Firmware or similar. 13372 * 13373 * Thus, we need to remove the default filter and install one 13374 * specific to the MAC address. 13375 */ 13376 i40e_rm_default_mac_filter(vsi, mac_addr); 13377 spin_lock_bh(&vsi->mac_filter_hash_lock); 13378 i40e_add_mac_filter(vsi, mac_addr); 13379 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13380 } else { 13381 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13382 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13383 * the end, which is 4 bytes long, so force truncation of the 13384 * original name by IFNAMSIZ - 4 13385 */ 13386 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13387 IFNAMSIZ - 4, 13388 pf->vsi[pf->lan_vsi]->netdev->name); 13389 eth_random_addr(mac_addr); 13390 13391 spin_lock_bh(&vsi->mac_filter_hash_lock); 13392 i40e_add_mac_filter(vsi, mac_addr); 13393 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13394 } 13395 13396 /* Add the broadcast filter so that we initially will receive 13397 * broadcast packets. Note that when a new VLAN is first added the 13398 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13399 * specific filters as part of transitioning into "vlan" operation. 13400 * When more VLANs are added, the driver will copy each existing MAC 13401 * filter and add it for the new VLAN. 13402 * 13403 * Broadcast filters are handled specially by 13404 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13405 * promiscuous bit instead of adding this directly as a MAC/VLAN 13406 * filter. The subtask will update the correct broadcast promiscuous 13407 * bits as VLANs become active or inactive. 13408 */ 13409 eth_broadcast_addr(broadcast); 13410 spin_lock_bh(&vsi->mac_filter_hash_lock); 13411 i40e_add_mac_filter(vsi, broadcast); 13412 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13413 13414 ether_addr_copy(netdev->dev_addr, mac_addr); 13415 ether_addr_copy(netdev->perm_addr, mac_addr); 13416 13417 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13418 netdev->neigh_priv_len = sizeof(u32) * 4; 13419 13420 netdev->priv_flags |= IFF_UNICAST_FLT; 13421 netdev->priv_flags |= IFF_SUPP_NOFCS; 13422 /* Setup netdev TC information */ 13423 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13424 13425 netdev->netdev_ops = &i40e_netdev_ops; 13426 netdev->watchdog_timeo = 5 * HZ; 13427 i40e_set_ethtool_ops(netdev); 13428 13429 /* MTU range: 68 - 9706 */ 13430 netdev->min_mtu = ETH_MIN_MTU; 13431 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13432 13433 return 0; 13434 } 13435 13436 /** 13437 * i40e_vsi_delete - Delete a VSI from the switch 13438 * @vsi: the VSI being removed 13439 * 13440 * Returns 0 on success, negative value on failure 13441 **/ 13442 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13443 { 13444 /* remove default VSI is not allowed */ 13445 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13446 return; 13447 13448 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13449 } 13450 13451 /** 13452 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13453 * @vsi: the VSI being queried 13454 * 13455 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13456 **/ 13457 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13458 { 13459 struct i40e_veb *veb; 13460 struct i40e_pf *pf = vsi->back; 13461 13462 /* Uplink is not a bridge so default to VEB */ 13463 if (vsi->veb_idx >= I40E_MAX_VEB) 13464 return 1; 13465 13466 veb = pf->veb[vsi->veb_idx]; 13467 if (!veb) { 13468 dev_info(&pf->pdev->dev, 13469 "There is no veb associated with the bridge\n"); 13470 return -ENOENT; 13471 } 13472 13473 /* Uplink is a bridge in VEPA mode */ 13474 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13475 return 0; 13476 } else { 13477 /* Uplink is a bridge in VEB mode */ 13478 return 1; 13479 } 13480 13481 /* VEPA is now default bridge, so return 0 */ 13482 return 0; 13483 } 13484 13485 /** 13486 * i40e_add_vsi - Add a VSI to the switch 13487 * @vsi: the VSI being configured 13488 * 13489 * This initializes a VSI context depending on the VSI type to be added and 13490 * passes it down to the add_vsi aq command. 13491 **/ 13492 static int i40e_add_vsi(struct i40e_vsi *vsi) 13493 { 13494 int ret = -ENODEV; 13495 struct i40e_pf *pf = vsi->back; 13496 struct i40e_hw *hw = &pf->hw; 13497 struct i40e_vsi_context ctxt; 13498 struct i40e_mac_filter *f; 13499 struct hlist_node *h; 13500 int bkt; 13501 13502 u8 enabled_tc = 0x1; /* TC0 enabled */ 13503 int f_count = 0; 13504 13505 memset(&ctxt, 0, sizeof(ctxt)); 13506 switch (vsi->type) { 13507 case I40E_VSI_MAIN: 13508 /* The PF's main VSI is already setup as part of the 13509 * device initialization, so we'll not bother with 13510 * the add_vsi call, but we will retrieve the current 13511 * VSI context. 13512 */ 13513 ctxt.seid = pf->main_vsi_seid; 13514 ctxt.pf_num = pf->hw.pf_id; 13515 ctxt.vf_num = 0; 13516 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13517 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13518 if (ret) { 13519 dev_info(&pf->pdev->dev, 13520 "couldn't get PF vsi config, err %s aq_err %s\n", 13521 i40e_stat_str(&pf->hw, ret), 13522 i40e_aq_str(&pf->hw, 13523 pf->hw.aq.asq_last_status)); 13524 return -ENOENT; 13525 } 13526 vsi->info = ctxt.info; 13527 vsi->info.valid_sections = 0; 13528 13529 vsi->seid = ctxt.seid; 13530 vsi->id = ctxt.vsi_number; 13531 13532 enabled_tc = i40e_pf_get_tc_map(pf); 13533 13534 /* Source pruning is enabled by default, so the flag is 13535 * negative logic - if it's set, we need to fiddle with 13536 * the VSI to disable source pruning. 13537 */ 13538 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13539 memset(&ctxt, 0, sizeof(ctxt)); 13540 ctxt.seid = pf->main_vsi_seid; 13541 ctxt.pf_num = pf->hw.pf_id; 13542 ctxt.vf_num = 0; 13543 ctxt.info.valid_sections |= 13544 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13545 ctxt.info.switch_id = 13546 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13547 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13548 if (ret) { 13549 dev_info(&pf->pdev->dev, 13550 "update vsi failed, err %s aq_err %s\n", 13551 i40e_stat_str(&pf->hw, ret), 13552 i40e_aq_str(&pf->hw, 13553 pf->hw.aq.asq_last_status)); 13554 ret = -ENOENT; 13555 goto err; 13556 } 13557 } 13558 13559 /* MFP mode setup queue map and update VSI */ 13560 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13561 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13562 memset(&ctxt, 0, sizeof(ctxt)); 13563 ctxt.seid = pf->main_vsi_seid; 13564 ctxt.pf_num = pf->hw.pf_id; 13565 ctxt.vf_num = 0; 13566 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13567 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13568 if (ret) { 13569 dev_info(&pf->pdev->dev, 13570 "update vsi failed, err %s aq_err %s\n", 13571 i40e_stat_str(&pf->hw, ret), 13572 i40e_aq_str(&pf->hw, 13573 pf->hw.aq.asq_last_status)); 13574 ret = -ENOENT; 13575 goto err; 13576 } 13577 /* update the local VSI info queue map */ 13578 i40e_vsi_update_queue_map(vsi, &ctxt); 13579 vsi->info.valid_sections = 0; 13580 } else { 13581 /* Default/Main VSI is only enabled for TC0 13582 * reconfigure it to enable all TCs that are 13583 * available on the port in SFP mode. 13584 * For MFP case the iSCSI PF would use this 13585 * flow to enable LAN+iSCSI TC. 13586 */ 13587 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13588 if (ret) { 13589 /* Single TC condition is not fatal, 13590 * message and continue 13591 */ 13592 dev_info(&pf->pdev->dev, 13593 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13594 enabled_tc, 13595 i40e_stat_str(&pf->hw, ret), 13596 i40e_aq_str(&pf->hw, 13597 pf->hw.aq.asq_last_status)); 13598 } 13599 } 13600 break; 13601 13602 case I40E_VSI_FDIR: 13603 ctxt.pf_num = hw->pf_id; 13604 ctxt.vf_num = 0; 13605 ctxt.uplink_seid = vsi->uplink_seid; 13606 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13607 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13608 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13609 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13610 ctxt.info.valid_sections |= 13611 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13612 ctxt.info.switch_id = 13613 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13614 } 13615 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13616 break; 13617 13618 case I40E_VSI_VMDQ2: 13619 ctxt.pf_num = hw->pf_id; 13620 ctxt.vf_num = 0; 13621 ctxt.uplink_seid = vsi->uplink_seid; 13622 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13623 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13624 13625 /* This VSI is connected to VEB so the switch_id 13626 * should be set to zero by default. 13627 */ 13628 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13629 ctxt.info.valid_sections |= 13630 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13631 ctxt.info.switch_id = 13632 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13633 } 13634 13635 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13636 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13637 break; 13638 13639 case I40E_VSI_SRIOV: 13640 ctxt.pf_num = hw->pf_id; 13641 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13642 ctxt.uplink_seid = vsi->uplink_seid; 13643 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13644 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13645 13646 /* This VSI is connected to VEB so the switch_id 13647 * should be set to zero by default. 13648 */ 13649 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13650 ctxt.info.valid_sections |= 13651 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13652 ctxt.info.switch_id = 13653 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13654 } 13655 13656 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13657 ctxt.info.valid_sections |= 13658 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13659 ctxt.info.queueing_opt_flags |= 13660 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13661 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13662 } 13663 13664 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13665 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13666 if (pf->vf[vsi->vf_id].spoofchk) { 13667 ctxt.info.valid_sections |= 13668 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13669 ctxt.info.sec_flags |= 13670 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13671 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13672 } 13673 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13674 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13675 break; 13676 13677 case I40E_VSI_IWARP: 13678 /* send down message to iWARP */ 13679 break; 13680 13681 default: 13682 return -ENODEV; 13683 } 13684 13685 if (vsi->type != I40E_VSI_MAIN) { 13686 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13687 if (ret) { 13688 dev_info(&vsi->back->pdev->dev, 13689 "add vsi failed, err %s aq_err %s\n", 13690 i40e_stat_str(&pf->hw, ret), 13691 i40e_aq_str(&pf->hw, 13692 pf->hw.aq.asq_last_status)); 13693 ret = -ENOENT; 13694 goto err; 13695 } 13696 vsi->info = ctxt.info; 13697 vsi->info.valid_sections = 0; 13698 vsi->seid = ctxt.seid; 13699 vsi->id = ctxt.vsi_number; 13700 } 13701 13702 vsi->active_filters = 0; 13703 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13704 spin_lock_bh(&vsi->mac_filter_hash_lock); 13705 /* If macvlan filters already exist, force them to get loaded */ 13706 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13707 f->state = I40E_FILTER_NEW; 13708 f_count++; 13709 } 13710 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13711 13712 if (f_count) { 13713 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13714 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13715 } 13716 13717 /* Update VSI BW information */ 13718 ret = i40e_vsi_get_bw_info(vsi); 13719 if (ret) { 13720 dev_info(&pf->pdev->dev, 13721 "couldn't get vsi bw info, err %s aq_err %s\n", 13722 i40e_stat_str(&pf->hw, ret), 13723 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13724 /* VSI is already added so not tearing that up */ 13725 ret = 0; 13726 } 13727 13728 err: 13729 return ret; 13730 } 13731 13732 /** 13733 * i40e_vsi_release - Delete a VSI and free its resources 13734 * @vsi: the VSI being removed 13735 * 13736 * Returns 0 on success or < 0 on error 13737 **/ 13738 int i40e_vsi_release(struct i40e_vsi *vsi) 13739 { 13740 struct i40e_mac_filter *f; 13741 struct hlist_node *h; 13742 struct i40e_veb *veb = NULL; 13743 struct i40e_pf *pf; 13744 u16 uplink_seid; 13745 int i, n, bkt; 13746 13747 pf = vsi->back; 13748 13749 /* release of a VEB-owner or last VSI is not allowed */ 13750 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13751 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13752 vsi->seid, vsi->uplink_seid); 13753 return -ENODEV; 13754 } 13755 if (vsi == pf->vsi[pf->lan_vsi] && 13756 !test_bit(__I40E_DOWN, pf->state)) { 13757 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13758 return -ENODEV; 13759 } 13760 13761 uplink_seid = vsi->uplink_seid; 13762 if (vsi->type != I40E_VSI_SRIOV) { 13763 if (vsi->netdev_registered) { 13764 vsi->netdev_registered = false; 13765 if (vsi->netdev) { 13766 /* results in a call to i40e_close() */ 13767 unregister_netdev(vsi->netdev); 13768 } 13769 } else { 13770 i40e_vsi_close(vsi); 13771 } 13772 i40e_vsi_disable_irq(vsi); 13773 } 13774 13775 spin_lock_bh(&vsi->mac_filter_hash_lock); 13776 13777 /* clear the sync flag on all filters */ 13778 if (vsi->netdev) { 13779 __dev_uc_unsync(vsi->netdev, NULL); 13780 __dev_mc_unsync(vsi->netdev, NULL); 13781 } 13782 13783 /* make sure any remaining filters are marked for deletion */ 13784 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13785 __i40e_del_filter(vsi, f); 13786 13787 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13788 13789 i40e_sync_vsi_filters(vsi); 13790 13791 i40e_vsi_delete(vsi); 13792 i40e_vsi_free_q_vectors(vsi); 13793 if (vsi->netdev) { 13794 free_netdev(vsi->netdev); 13795 vsi->netdev = NULL; 13796 } 13797 i40e_vsi_clear_rings(vsi); 13798 i40e_vsi_clear(vsi); 13799 13800 /* If this was the last thing on the VEB, except for the 13801 * controlling VSI, remove the VEB, which puts the controlling 13802 * VSI onto the next level down in the switch. 13803 * 13804 * Well, okay, there's one more exception here: don't remove 13805 * the orphan VEBs yet. We'll wait for an explicit remove request 13806 * from up the network stack. 13807 */ 13808 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13809 if (pf->vsi[i] && 13810 pf->vsi[i]->uplink_seid == uplink_seid && 13811 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13812 n++; /* count the VSIs */ 13813 } 13814 } 13815 for (i = 0; i < I40E_MAX_VEB; i++) { 13816 if (!pf->veb[i]) 13817 continue; 13818 if (pf->veb[i]->uplink_seid == uplink_seid) 13819 n++; /* count the VEBs */ 13820 if (pf->veb[i]->seid == uplink_seid) 13821 veb = pf->veb[i]; 13822 } 13823 if (n == 0 && veb && veb->uplink_seid != 0) 13824 i40e_veb_release(veb); 13825 13826 return 0; 13827 } 13828 13829 /** 13830 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13831 * @vsi: ptr to the VSI 13832 * 13833 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13834 * corresponding SW VSI structure and initializes num_queue_pairs for the 13835 * newly allocated VSI. 13836 * 13837 * Returns 0 on success or negative on failure 13838 **/ 13839 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13840 { 13841 int ret = -ENOENT; 13842 struct i40e_pf *pf = vsi->back; 13843 13844 if (vsi->q_vectors[0]) { 13845 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13846 vsi->seid); 13847 return -EEXIST; 13848 } 13849 13850 if (vsi->base_vector) { 13851 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13852 vsi->seid, vsi->base_vector); 13853 return -EEXIST; 13854 } 13855 13856 ret = i40e_vsi_alloc_q_vectors(vsi); 13857 if (ret) { 13858 dev_info(&pf->pdev->dev, 13859 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13860 vsi->num_q_vectors, vsi->seid, ret); 13861 vsi->num_q_vectors = 0; 13862 goto vector_setup_out; 13863 } 13864 13865 /* In Legacy mode, we do not have to get any other vector since we 13866 * piggyback on the misc/ICR0 for queue interrupts. 13867 */ 13868 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13869 return ret; 13870 if (vsi->num_q_vectors) 13871 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13872 vsi->num_q_vectors, vsi->idx); 13873 if (vsi->base_vector < 0) { 13874 dev_info(&pf->pdev->dev, 13875 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13876 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13877 i40e_vsi_free_q_vectors(vsi); 13878 ret = -ENOENT; 13879 goto vector_setup_out; 13880 } 13881 13882 vector_setup_out: 13883 return ret; 13884 } 13885 13886 /** 13887 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13888 * @vsi: pointer to the vsi. 13889 * 13890 * This re-allocates a vsi's queue resources. 13891 * 13892 * Returns pointer to the successfully allocated and configured VSI sw struct 13893 * on success, otherwise returns NULL on failure. 13894 **/ 13895 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13896 { 13897 u16 alloc_queue_pairs; 13898 struct i40e_pf *pf; 13899 u8 enabled_tc; 13900 int ret; 13901 13902 if (!vsi) 13903 return NULL; 13904 13905 pf = vsi->back; 13906 13907 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13908 i40e_vsi_clear_rings(vsi); 13909 13910 i40e_vsi_free_arrays(vsi, false); 13911 i40e_set_num_rings_in_vsi(vsi); 13912 ret = i40e_vsi_alloc_arrays(vsi, false); 13913 if (ret) 13914 goto err_vsi; 13915 13916 alloc_queue_pairs = vsi->alloc_queue_pairs * 13917 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13918 13919 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13920 if (ret < 0) { 13921 dev_info(&pf->pdev->dev, 13922 "failed to get tracking for %d queues for VSI %d err %d\n", 13923 alloc_queue_pairs, vsi->seid, ret); 13924 goto err_vsi; 13925 } 13926 vsi->base_queue = ret; 13927 13928 /* Update the FW view of the VSI. Force a reset of TC and queue 13929 * layout configurations. 13930 */ 13931 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13932 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13933 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13934 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13935 if (vsi->type == I40E_VSI_MAIN) 13936 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13937 13938 /* assign it some queues */ 13939 ret = i40e_alloc_rings(vsi); 13940 if (ret) 13941 goto err_rings; 13942 13943 /* map all of the rings to the q_vectors */ 13944 i40e_vsi_map_rings_to_vectors(vsi); 13945 return vsi; 13946 13947 err_rings: 13948 i40e_vsi_free_q_vectors(vsi); 13949 if (vsi->netdev_registered) { 13950 vsi->netdev_registered = false; 13951 unregister_netdev(vsi->netdev); 13952 free_netdev(vsi->netdev); 13953 vsi->netdev = NULL; 13954 } 13955 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13956 err_vsi: 13957 i40e_vsi_clear(vsi); 13958 return NULL; 13959 } 13960 13961 /** 13962 * i40e_vsi_setup - Set up a VSI by a given type 13963 * @pf: board private structure 13964 * @type: VSI type 13965 * @uplink_seid: the switch element to link to 13966 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13967 * 13968 * This allocates the sw VSI structure and its queue resources, then add a VSI 13969 * to the identified VEB. 13970 * 13971 * Returns pointer to the successfully allocated and configure VSI sw struct on 13972 * success, otherwise returns NULL on failure. 13973 **/ 13974 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13975 u16 uplink_seid, u32 param1) 13976 { 13977 struct i40e_vsi *vsi = NULL; 13978 struct i40e_veb *veb = NULL; 13979 u16 alloc_queue_pairs; 13980 int ret, i; 13981 int v_idx; 13982 13983 /* The requested uplink_seid must be either 13984 * - the PF's port seid 13985 * no VEB is needed because this is the PF 13986 * or this is a Flow Director special case VSI 13987 * - seid of an existing VEB 13988 * - seid of a VSI that owns an existing VEB 13989 * - seid of a VSI that doesn't own a VEB 13990 * a new VEB is created and the VSI becomes the owner 13991 * - seid of the PF VSI, which is what creates the first VEB 13992 * this is a special case of the previous 13993 * 13994 * Find which uplink_seid we were given and create a new VEB if needed 13995 */ 13996 for (i = 0; i < I40E_MAX_VEB; i++) { 13997 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13998 veb = pf->veb[i]; 13999 break; 14000 } 14001 } 14002 14003 if (!veb && uplink_seid != pf->mac_seid) { 14004 14005 for (i = 0; i < pf->num_alloc_vsi; i++) { 14006 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14007 vsi = pf->vsi[i]; 14008 break; 14009 } 14010 } 14011 if (!vsi) { 14012 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14013 uplink_seid); 14014 return NULL; 14015 } 14016 14017 if (vsi->uplink_seid == pf->mac_seid) 14018 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14019 vsi->tc_config.enabled_tc); 14020 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14021 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14022 vsi->tc_config.enabled_tc); 14023 if (veb) { 14024 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14025 dev_info(&vsi->back->pdev->dev, 14026 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14027 return NULL; 14028 } 14029 /* We come up by default in VEPA mode if SRIOV is not 14030 * already enabled, in which case we can't force VEPA 14031 * mode. 14032 */ 14033 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 14034 veb->bridge_mode = BRIDGE_MODE_VEPA; 14035 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 14036 } 14037 i40e_config_bridge_mode(veb); 14038 } 14039 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14040 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14041 veb = pf->veb[i]; 14042 } 14043 if (!veb) { 14044 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14045 return NULL; 14046 } 14047 14048 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14049 uplink_seid = veb->seid; 14050 } 14051 14052 /* get vsi sw struct */ 14053 v_idx = i40e_vsi_mem_alloc(pf, type); 14054 if (v_idx < 0) 14055 goto err_alloc; 14056 vsi = pf->vsi[v_idx]; 14057 if (!vsi) 14058 goto err_alloc; 14059 vsi->type = type; 14060 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14061 14062 if (type == I40E_VSI_MAIN) 14063 pf->lan_vsi = v_idx; 14064 else if (type == I40E_VSI_SRIOV) 14065 vsi->vf_id = param1; 14066 /* assign it some queues */ 14067 alloc_queue_pairs = vsi->alloc_queue_pairs * 14068 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14069 14070 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14071 if (ret < 0) { 14072 dev_info(&pf->pdev->dev, 14073 "failed to get tracking for %d queues for VSI %d err=%d\n", 14074 alloc_queue_pairs, vsi->seid, ret); 14075 goto err_vsi; 14076 } 14077 vsi->base_queue = ret; 14078 14079 /* get a VSI from the hardware */ 14080 vsi->uplink_seid = uplink_seid; 14081 ret = i40e_add_vsi(vsi); 14082 if (ret) 14083 goto err_vsi; 14084 14085 switch (vsi->type) { 14086 /* setup the netdev if needed */ 14087 case I40E_VSI_MAIN: 14088 case I40E_VSI_VMDQ2: 14089 ret = i40e_config_netdev(vsi); 14090 if (ret) 14091 goto err_netdev; 14092 ret = register_netdev(vsi->netdev); 14093 if (ret) 14094 goto err_netdev; 14095 vsi->netdev_registered = true; 14096 netif_carrier_off(vsi->netdev); 14097 #ifdef CONFIG_I40E_DCB 14098 /* Setup DCB netlink interface */ 14099 i40e_dcbnl_setup(vsi); 14100 #endif /* CONFIG_I40E_DCB */ 14101 fallthrough; 14102 case I40E_VSI_FDIR: 14103 /* set up vectors and rings if needed */ 14104 ret = i40e_vsi_setup_vectors(vsi); 14105 if (ret) 14106 goto err_msix; 14107 14108 ret = i40e_alloc_rings(vsi); 14109 if (ret) 14110 goto err_rings; 14111 14112 /* map all of the rings to the q_vectors */ 14113 i40e_vsi_map_rings_to_vectors(vsi); 14114 14115 i40e_vsi_reset_stats(vsi); 14116 break; 14117 default: 14118 /* no netdev or rings for the other VSI types */ 14119 break; 14120 } 14121 14122 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 14123 (vsi->type == I40E_VSI_VMDQ2)) { 14124 ret = i40e_vsi_config_rss(vsi); 14125 } 14126 return vsi; 14127 14128 err_rings: 14129 i40e_vsi_free_q_vectors(vsi); 14130 err_msix: 14131 if (vsi->netdev_registered) { 14132 vsi->netdev_registered = false; 14133 unregister_netdev(vsi->netdev); 14134 free_netdev(vsi->netdev); 14135 vsi->netdev = NULL; 14136 } 14137 err_netdev: 14138 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14139 err_vsi: 14140 i40e_vsi_clear(vsi); 14141 err_alloc: 14142 return NULL; 14143 } 14144 14145 /** 14146 * i40e_veb_get_bw_info - Query VEB BW information 14147 * @veb: the veb to query 14148 * 14149 * Query the Tx scheduler BW configuration data for given VEB 14150 **/ 14151 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14152 { 14153 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14154 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14155 struct i40e_pf *pf = veb->pf; 14156 struct i40e_hw *hw = &pf->hw; 14157 u32 tc_bw_max; 14158 int ret = 0; 14159 int i; 14160 14161 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14162 &bw_data, NULL); 14163 if (ret) { 14164 dev_info(&pf->pdev->dev, 14165 "query veb bw config failed, err %s aq_err %s\n", 14166 i40e_stat_str(&pf->hw, ret), 14167 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14168 goto out; 14169 } 14170 14171 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14172 &ets_data, NULL); 14173 if (ret) { 14174 dev_info(&pf->pdev->dev, 14175 "query veb bw ets config failed, err %s aq_err %s\n", 14176 i40e_stat_str(&pf->hw, ret), 14177 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14178 goto out; 14179 } 14180 14181 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14182 veb->bw_max_quanta = ets_data.tc_bw_max; 14183 veb->is_abs_credits = bw_data.absolute_credits_enable; 14184 veb->enabled_tc = ets_data.tc_valid_bits; 14185 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14186 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14187 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14188 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14189 veb->bw_tc_limit_credits[i] = 14190 le16_to_cpu(bw_data.tc_bw_limits[i]); 14191 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14192 } 14193 14194 out: 14195 return ret; 14196 } 14197 14198 /** 14199 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14200 * @pf: board private structure 14201 * 14202 * On error: returns error code (negative) 14203 * On success: returns vsi index in PF (positive) 14204 **/ 14205 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14206 { 14207 int ret = -ENOENT; 14208 struct i40e_veb *veb; 14209 int i; 14210 14211 /* Need to protect the allocation of switch elements at the PF level */ 14212 mutex_lock(&pf->switch_mutex); 14213 14214 /* VEB list may be fragmented if VEB creation/destruction has 14215 * been happening. We can afford to do a quick scan to look 14216 * for any free slots in the list. 14217 * 14218 * find next empty veb slot, looping back around if necessary 14219 */ 14220 i = 0; 14221 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14222 i++; 14223 if (i >= I40E_MAX_VEB) { 14224 ret = -ENOMEM; 14225 goto err_alloc_veb; /* out of VEB slots! */ 14226 } 14227 14228 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14229 if (!veb) { 14230 ret = -ENOMEM; 14231 goto err_alloc_veb; 14232 } 14233 veb->pf = pf; 14234 veb->idx = i; 14235 veb->enabled_tc = 1; 14236 14237 pf->veb[i] = veb; 14238 ret = i; 14239 err_alloc_veb: 14240 mutex_unlock(&pf->switch_mutex); 14241 return ret; 14242 } 14243 14244 /** 14245 * i40e_switch_branch_release - Delete a branch of the switch tree 14246 * @branch: where to start deleting 14247 * 14248 * This uses recursion to find the tips of the branch to be 14249 * removed, deleting until we get back to and can delete this VEB. 14250 **/ 14251 static void i40e_switch_branch_release(struct i40e_veb *branch) 14252 { 14253 struct i40e_pf *pf = branch->pf; 14254 u16 branch_seid = branch->seid; 14255 u16 veb_idx = branch->idx; 14256 int i; 14257 14258 /* release any VEBs on this VEB - RECURSION */ 14259 for (i = 0; i < I40E_MAX_VEB; i++) { 14260 if (!pf->veb[i]) 14261 continue; 14262 if (pf->veb[i]->uplink_seid == branch->seid) 14263 i40e_switch_branch_release(pf->veb[i]); 14264 } 14265 14266 /* Release the VSIs on this VEB, but not the owner VSI. 14267 * 14268 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14269 * the VEB itself, so don't use (*branch) after this loop. 14270 */ 14271 for (i = 0; i < pf->num_alloc_vsi; i++) { 14272 if (!pf->vsi[i]) 14273 continue; 14274 if (pf->vsi[i]->uplink_seid == branch_seid && 14275 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14276 i40e_vsi_release(pf->vsi[i]); 14277 } 14278 } 14279 14280 /* There's one corner case where the VEB might not have been 14281 * removed, so double check it here and remove it if needed. 14282 * This case happens if the veb was created from the debugfs 14283 * commands and no VSIs were added to it. 14284 */ 14285 if (pf->veb[veb_idx]) 14286 i40e_veb_release(pf->veb[veb_idx]); 14287 } 14288 14289 /** 14290 * i40e_veb_clear - remove veb struct 14291 * @veb: the veb to remove 14292 **/ 14293 static void i40e_veb_clear(struct i40e_veb *veb) 14294 { 14295 if (!veb) 14296 return; 14297 14298 if (veb->pf) { 14299 struct i40e_pf *pf = veb->pf; 14300 14301 mutex_lock(&pf->switch_mutex); 14302 if (pf->veb[veb->idx] == veb) 14303 pf->veb[veb->idx] = NULL; 14304 mutex_unlock(&pf->switch_mutex); 14305 } 14306 14307 kfree(veb); 14308 } 14309 14310 /** 14311 * i40e_veb_release - Delete a VEB and free its resources 14312 * @veb: the VEB being removed 14313 **/ 14314 void i40e_veb_release(struct i40e_veb *veb) 14315 { 14316 struct i40e_vsi *vsi = NULL; 14317 struct i40e_pf *pf; 14318 int i, n = 0; 14319 14320 pf = veb->pf; 14321 14322 /* find the remaining VSI and check for extras */ 14323 for (i = 0; i < pf->num_alloc_vsi; i++) { 14324 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14325 n++; 14326 vsi = pf->vsi[i]; 14327 } 14328 } 14329 if (n != 1) { 14330 dev_info(&pf->pdev->dev, 14331 "can't remove VEB %d with %d VSIs left\n", 14332 veb->seid, n); 14333 return; 14334 } 14335 14336 /* move the remaining VSI to uplink veb */ 14337 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14338 if (veb->uplink_seid) { 14339 vsi->uplink_seid = veb->uplink_seid; 14340 if (veb->uplink_seid == pf->mac_seid) 14341 vsi->veb_idx = I40E_NO_VEB; 14342 else 14343 vsi->veb_idx = veb->veb_idx; 14344 } else { 14345 /* floating VEB */ 14346 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14347 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14348 } 14349 14350 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14351 i40e_veb_clear(veb); 14352 } 14353 14354 /** 14355 * i40e_add_veb - create the VEB in the switch 14356 * @veb: the VEB to be instantiated 14357 * @vsi: the controlling VSI 14358 **/ 14359 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14360 { 14361 struct i40e_pf *pf = veb->pf; 14362 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 14363 int ret; 14364 14365 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14366 veb->enabled_tc, false, 14367 &veb->seid, enable_stats, NULL); 14368 14369 /* get a VEB from the hardware */ 14370 if (ret) { 14371 dev_info(&pf->pdev->dev, 14372 "couldn't add VEB, err %s aq_err %s\n", 14373 i40e_stat_str(&pf->hw, ret), 14374 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14375 return -EPERM; 14376 } 14377 14378 /* get statistics counter */ 14379 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14380 &veb->stats_idx, NULL, NULL, NULL); 14381 if (ret) { 14382 dev_info(&pf->pdev->dev, 14383 "couldn't get VEB statistics idx, err %s aq_err %s\n", 14384 i40e_stat_str(&pf->hw, ret), 14385 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14386 return -EPERM; 14387 } 14388 ret = i40e_veb_get_bw_info(veb); 14389 if (ret) { 14390 dev_info(&pf->pdev->dev, 14391 "couldn't get VEB bw info, err %s aq_err %s\n", 14392 i40e_stat_str(&pf->hw, ret), 14393 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14394 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14395 return -ENOENT; 14396 } 14397 14398 vsi->uplink_seid = veb->seid; 14399 vsi->veb_idx = veb->idx; 14400 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14401 14402 return 0; 14403 } 14404 14405 /** 14406 * i40e_veb_setup - Set up a VEB 14407 * @pf: board private structure 14408 * @flags: VEB setup flags 14409 * @uplink_seid: the switch element to link to 14410 * @vsi_seid: the initial VSI seid 14411 * @enabled_tc: Enabled TC bit-map 14412 * 14413 * This allocates the sw VEB structure and links it into the switch 14414 * It is possible and legal for this to be a duplicate of an already 14415 * existing VEB. It is also possible for both uplink and vsi seids 14416 * to be zero, in order to create a floating VEB. 14417 * 14418 * Returns pointer to the successfully allocated VEB sw struct on 14419 * success, otherwise returns NULL on failure. 14420 **/ 14421 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14422 u16 uplink_seid, u16 vsi_seid, 14423 u8 enabled_tc) 14424 { 14425 struct i40e_veb *veb, *uplink_veb = NULL; 14426 int vsi_idx, veb_idx; 14427 int ret; 14428 14429 /* if one seid is 0, the other must be 0 to create a floating relay */ 14430 if ((uplink_seid == 0 || vsi_seid == 0) && 14431 (uplink_seid + vsi_seid != 0)) { 14432 dev_info(&pf->pdev->dev, 14433 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14434 uplink_seid, vsi_seid); 14435 return NULL; 14436 } 14437 14438 /* make sure there is such a vsi and uplink */ 14439 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14440 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14441 break; 14442 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14443 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14444 vsi_seid); 14445 return NULL; 14446 } 14447 14448 if (uplink_seid && uplink_seid != pf->mac_seid) { 14449 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14450 if (pf->veb[veb_idx] && 14451 pf->veb[veb_idx]->seid == uplink_seid) { 14452 uplink_veb = pf->veb[veb_idx]; 14453 break; 14454 } 14455 } 14456 if (!uplink_veb) { 14457 dev_info(&pf->pdev->dev, 14458 "uplink seid %d not found\n", uplink_seid); 14459 return NULL; 14460 } 14461 } 14462 14463 /* get veb sw struct */ 14464 veb_idx = i40e_veb_mem_alloc(pf); 14465 if (veb_idx < 0) 14466 goto err_alloc; 14467 veb = pf->veb[veb_idx]; 14468 veb->flags = flags; 14469 veb->uplink_seid = uplink_seid; 14470 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14471 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14472 14473 /* create the VEB in the switch */ 14474 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14475 if (ret) 14476 goto err_veb; 14477 if (vsi_idx == pf->lan_vsi) 14478 pf->lan_veb = veb->idx; 14479 14480 return veb; 14481 14482 err_veb: 14483 i40e_veb_clear(veb); 14484 err_alloc: 14485 return NULL; 14486 } 14487 14488 /** 14489 * i40e_setup_pf_switch_element - set PF vars based on switch type 14490 * @pf: board private structure 14491 * @ele: element we are building info from 14492 * @num_reported: total number of elements 14493 * @printconfig: should we print the contents 14494 * 14495 * helper function to assist in extracting a few useful SEID values. 14496 **/ 14497 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14498 struct i40e_aqc_switch_config_element_resp *ele, 14499 u16 num_reported, bool printconfig) 14500 { 14501 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14502 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14503 u8 element_type = ele->element_type; 14504 u16 seid = le16_to_cpu(ele->seid); 14505 14506 if (printconfig) 14507 dev_info(&pf->pdev->dev, 14508 "type=%d seid=%d uplink=%d downlink=%d\n", 14509 element_type, seid, uplink_seid, downlink_seid); 14510 14511 switch (element_type) { 14512 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14513 pf->mac_seid = seid; 14514 break; 14515 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14516 /* Main VEB? */ 14517 if (uplink_seid != pf->mac_seid) 14518 break; 14519 if (pf->lan_veb >= I40E_MAX_VEB) { 14520 int v; 14521 14522 /* find existing or else empty VEB */ 14523 for (v = 0; v < I40E_MAX_VEB; v++) { 14524 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14525 pf->lan_veb = v; 14526 break; 14527 } 14528 } 14529 if (pf->lan_veb >= I40E_MAX_VEB) { 14530 v = i40e_veb_mem_alloc(pf); 14531 if (v < 0) 14532 break; 14533 pf->lan_veb = v; 14534 } 14535 } 14536 if (pf->lan_veb >= I40E_MAX_VEB) 14537 break; 14538 14539 pf->veb[pf->lan_veb]->seid = seid; 14540 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14541 pf->veb[pf->lan_veb]->pf = pf; 14542 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14543 break; 14544 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14545 if (num_reported != 1) 14546 break; 14547 /* This is immediately after a reset so we can assume this is 14548 * the PF's VSI 14549 */ 14550 pf->mac_seid = uplink_seid; 14551 pf->pf_seid = downlink_seid; 14552 pf->main_vsi_seid = seid; 14553 if (printconfig) 14554 dev_info(&pf->pdev->dev, 14555 "pf_seid=%d main_vsi_seid=%d\n", 14556 pf->pf_seid, pf->main_vsi_seid); 14557 break; 14558 case I40E_SWITCH_ELEMENT_TYPE_PF: 14559 case I40E_SWITCH_ELEMENT_TYPE_VF: 14560 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14561 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14562 case I40E_SWITCH_ELEMENT_TYPE_PE: 14563 case I40E_SWITCH_ELEMENT_TYPE_PA: 14564 /* ignore these for now */ 14565 break; 14566 default: 14567 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14568 element_type, seid); 14569 break; 14570 } 14571 } 14572 14573 /** 14574 * i40e_fetch_switch_configuration - Get switch config from firmware 14575 * @pf: board private structure 14576 * @printconfig: should we print the contents 14577 * 14578 * Get the current switch configuration from the device and 14579 * extract a few useful SEID values. 14580 **/ 14581 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14582 { 14583 struct i40e_aqc_get_switch_config_resp *sw_config; 14584 u16 next_seid = 0; 14585 int ret = 0; 14586 u8 *aq_buf; 14587 int i; 14588 14589 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14590 if (!aq_buf) 14591 return -ENOMEM; 14592 14593 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14594 do { 14595 u16 num_reported, num_total; 14596 14597 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14598 I40E_AQ_LARGE_BUF, 14599 &next_seid, NULL); 14600 if (ret) { 14601 dev_info(&pf->pdev->dev, 14602 "get switch config failed err %s aq_err %s\n", 14603 i40e_stat_str(&pf->hw, ret), 14604 i40e_aq_str(&pf->hw, 14605 pf->hw.aq.asq_last_status)); 14606 kfree(aq_buf); 14607 return -ENOENT; 14608 } 14609 14610 num_reported = le16_to_cpu(sw_config->header.num_reported); 14611 num_total = le16_to_cpu(sw_config->header.num_total); 14612 14613 if (printconfig) 14614 dev_info(&pf->pdev->dev, 14615 "header: %d reported %d total\n", 14616 num_reported, num_total); 14617 14618 for (i = 0; i < num_reported; i++) { 14619 struct i40e_aqc_switch_config_element_resp *ele = 14620 &sw_config->element[i]; 14621 14622 i40e_setup_pf_switch_element(pf, ele, num_reported, 14623 printconfig); 14624 } 14625 } while (next_seid != 0); 14626 14627 kfree(aq_buf); 14628 return ret; 14629 } 14630 14631 /** 14632 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14633 * @pf: board private structure 14634 * @reinit: if the Main VSI needs to re-initialized. 14635 * @lock_acquired: indicates whether or not the lock has been acquired 14636 * 14637 * Returns 0 on success, negative value on failure 14638 **/ 14639 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired) 14640 { 14641 u16 flags = 0; 14642 int ret; 14643 14644 /* find out what's out there already */ 14645 ret = i40e_fetch_switch_configuration(pf, false); 14646 if (ret) { 14647 dev_info(&pf->pdev->dev, 14648 "couldn't fetch switch config, err %s aq_err %s\n", 14649 i40e_stat_str(&pf->hw, ret), 14650 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14651 return ret; 14652 } 14653 i40e_pf_reset_stats(pf); 14654 14655 /* set the switch config bit for the whole device to 14656 * support limited promisc or true promisc 14657 * when user requests promisc. The default is limited 14658 * promisc. 14659 */ 14660 14661 if ((pf->hw.pf_id == 0) && 14662 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14663 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14664 pf->last_sw_conf_flags = flags; 14665 } 14666 14667 if (pf->hw.pf_id == 0) { 14668 u16 valid_flags; 14669 14670 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14671 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14672 NULL); 14673 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14674 dev_info(&pf->pdev->dev, 14675 "couldn't set switch config bits, err %s aq_err %s\n", 14676 i40e_stat_str(&pf->hw, ret), 14677 i40e_aq_str(&pf->hw, 14678 pf->hw.aq.asq_last_status)); 14679 /* not a fatal problem, just keep going */ 14680 } 14681 pf->last_sw_conf_valid_flags = valid_flags; 14682 } 14683 14684 /* first time setup */ 14685 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14686 struct i40e_vsi *vsi = NULL; 14687 u16 uplink_seid; 14688 14689 /* Set up the PF VSI associated with the PF's main VSI 14690 * that is already in the HW switch 14691 */ 14692 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14693 uplink_seid = pf->veb[pf->lan_veb]->seid; 14694 else 14695 uplink_seid = pf->mac_seid; 14696 if (pf->lan_vsi == I40E_NO_VSI) 14697 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14698 else if (reinit) 14699 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14700 if (!vsi) { 14701 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14702 i40e_cloud_filter_exit(pf); 14703 i40e_fdir_teardown(pf); 14704 return -EAGAIN; 14705 } 14706 } else { 14707 /* force a reset of TC and queue layout configurations */ 14708 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14709 14710 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14711 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14712 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14713 } 14714 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14715 14716 i40e_fdir_sb_setup(pf); 14717 14718 /* Setup static PF queue filter control settings */ 14719 ret = i40e_setup_pf_filter_control(pf); 14720 if (ret) { 14721 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14722 ret); 14723 /* Failure here should not stop continuing other steps */ 14724 } 14725 14726 /* enable RSS in the HW, even for only one queue, as the stack can use 14727 * the hash 14728 */ 14729 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14730 i40e_pf_config_rss(pf); 14731 14732 /* fill in link information and enable LSE reporting */ 14733 i40e_link_event(pf); 14734 14735 /* Initialize user-specific link properties */ 14736 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14737 I40E_AQ_AN_COMPLETED) ? true : false); 14738 14739 i40e_ptp_init(pf); 14740 14741 if (!lock_acquired) 14742 rtnl_lock(); 14743 14744 /* repopulate tunnel port filters */ 14745 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 14746 14747 if (!lock_acquired) 14748 rtnl_unlock(); 14749 14750 return ret; 14751 } 14752 14753 /** 14754 * i40e_determine_queue_usage - Work out queue distribution 14755 * @pf: board private structure 14756 **/ 14757 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14758 { 14759 int queues_left; 14760 int q_max; 14761 14762 pf->num_lan_qps = 0; 14763 14764 /* Find the max queues to be put into basic use. We'll always be 14765 * using TC0, whether or not DCB is running, and TC0 will get the 14766 * big RSS set. 14767 */ 14768 queues_left = pf->hw.func_caps.num_tx_qp; 14769 14770 if ((queues_left == 1) || 14771 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14772 /* one qp for PF, no queues for anything else */ 14773 queues_left = 0; 14774 pf->alloc_rss_size = pf->num_lan_qps = 1; 14775 14776 /* make sure all the fancies are disabled */ 14777 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14778 I40E_FLAG_IWARP_ENABLED | 14779 I40E_FLAG_FD_SB_ENABLED | 14780 I40E_FLAG_FD_ATR_ENABLED | 14781 I40E_FLAG_DCB_CAPABLE | 14782 I40E_FLAG_DCB_ENABLED | 14783 I40E_FLAG_SRIOV_ENABLED | 14784 I40E_FLAG_VMDQ_ENABLED); 14785 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14786 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14787 I40E_FLAG_FD_SB_ENABLED | 14788 I40E_FLAG_FD_ATR_ENABLED | 14789 I40E_FLAG_DCB_CAPABLE))) { 14790 /* one qp for PF */ 14791 pf->alloc_rss_size = pf->num_lan_qps = 1; 14792 queues_left -= pf->num_lan_qps; 14793 14794 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14795 I40E_FLAG_IWARP_ENABLED | 14796 I40E_FLAG_FD_SB_ENABLED | 14797 I40E_FLAG_FD_ATR_ENABLED | 14798 I40E_FLAG_DCB_ENABLED | 14799 I40E_FLAG_VMDQ_ENABLED); 14800 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14801 } else { 14802 /* Not enough queues for all TCs */ 14803 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14804 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14805 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14806 I40E_FLAG_DCB_ENABLED); 14807 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14808 } 14809 14810 /* limit lan qps to the smaller of qps, cpus or msix */ 14811 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14812 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14813 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14814 pf->num_lan_qps = q_max; 14815 14816 queues_left -= pf->num_lan_qps; 14817 } 14818 14819 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14820 if (queues_left > 1) { 14821 queues_left -= 1; /* save 1 queue for FD */ 14822 } else { 14823 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14824 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14825 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14826 } 14827 } 14828 14829 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14830 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14831 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14832 (queues_left / pf->num_vf_qps)); 14833 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14834 } 14835 14836 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14837 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14838 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14839 (queues_left / pf->num_vmdq_qps)); 14840 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14841 } 14842 14843 pf->queues_left = queues_left; 14844 dev_dbg(&pf->pdev->dev, 14845 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14846 pf->hw.func_caps.num_tx_qp, 14847 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14848 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14849 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14850 queues_left); 14851 } 14852 14853 /** 14854 * i40e_setup_pf_filter_control - Setup PF static filter control 14855 * @pf: PF to be setup 14856 * 14857 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14858 * settings. If PE/FCoE are enabled then it will also set the per PF 14859 * based filter sizes required for them. It also enables Flow director, 14860 * ethertype and macvlan type filter settings for the pf. 14861 * 14862 * Returns 0 on success, negative on failure 14863 **/ 14864 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14865 { 14866 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14867 14868 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14869 14870 /* Flow Director is enabled */ 14871 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14872 settings->enable_fdir = true; 14873 14874 /* Ethtype and MACVLAN filters enabled for PF */ 14875 settings->enable_ethtype = true; 14876 settings->enable_macvlan = true; 14877 14878 if (i40e_set_filter_control(&pf->hw, settings)) 14879 return -ENOENT; 14880 14881 return 0; 14882 } 14883 14884 #define INFO_STRING_LEN 255 14885 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14886 static void i40e_print_features(struct i40e_pf *pf) 14887 { 14888 struct i40e_hw *hw = &pf->hw; 14889 char *buf; 14890 int i; 14891 14892 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14893 if (!buf) 14894 return; 14895 14896 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14897 #ifdef CONFIG_PCI_IOV 14898 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14899 #endif 14900 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14901 pf->hw.func_caps.num_vsis, 14902 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14903 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14904 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 14905 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14906 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 14907 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14908 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 14909 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 14910 } 14911 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14912 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 14913 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 14914 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 14915 if (pf->flags & I40E_FLAG_PTP) 14916 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 14917 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14918 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 14919 else 14920 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 14921 14922 dev_info(&pf->pdev->dev, "%s\n", buf); 14923 kfree(buf); 14924 WARN_ON(i > INFO_STRING_LEN); 14925 } 14926 14927 /** 14928 * i40e_get_platform_mac_addr - get platform-specific MAC address 14929 * @pdev: PCI device information struct 14930 * @pf: board private structure 14931 * 14932 * Look up the MAC address for the device. First we'll try 14933 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14934 * specific fallback. Otherwise, we'll default to the stored value in 14935 * firmware. 14936 **/ 14937 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14938 { 14939 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14940 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14941 } 14942 14943 /** 14944 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14945 * @fec_cfg: FEC option to set in flags 14946 * @flags: ptr to flags in which we set FEC option 14947 **/ 14948 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14949 { 14950 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14951 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14952 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14953 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14954 *flags |= I40E_FLAG_RS_FEC; 14955 *flags &= ~I40E_FLAG_BASE_R_FEC; 14956 } 14957 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14958 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14959 *flags |= I40E_FLAG_BASE_R_FEC; 14960 *flags &= ~I40E_FLAG_RS_FEC; 14961 } 14962 if (fec_cfg == 0) 14963 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14964 } 14965 14966 /** 14967 * i40e_check_recovery_mode - check if we are running transition firmware 14968 * @pf: board private structure 14969 * 14970 * Check registers indicating the firmware runs in recovery mode. Sets the 14971 * appropriate driver state. 14972 * 14973 * Returns true if the recovery mode was detected, false otherwise 14974 **/ 14975 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14976 { 14977 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 14978 14979 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 14980 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14981 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14982 set_bit(__I40E_RECOVERY_MODE, pf->state); 14983 14984 return true; 14985 } 14986 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14987 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 14988 14989 return false; 14990 } 14991 14992 /** 14993 * i40e_pf_loop_reset - perform reset in a loop. 14994 * @pf: board private structure 14995 * 14996 * This function is useful when a NIC is about to enter recovery mode. 14997 * When a NIC's internal data structures are corrupted the NIC's 14998 * firmware is going to enter recovery mode. 14999 * Right after a POR it takes about 7 minutes for firmware to enter 15000 * recovery mode. Until that time a NIC is in some kind of intermediate 15001 * state. After that time period the NIC almost surely enters 15002 * recovery mode. The only way for a driver to detect intermediate 15003 * state is to issue a series of pf-resets and check a return value. 15004 * If a PF reset returns success then the firmware could be in recovery 15005 * mode so the caller of this code needs to check for recovery mode 15006 * if this function returns success. There is a little chance that 15007 * firmware will hang in intermediate state forever. 15008 * Since waiting 7 minutes is quite a lot of time this function waits 15009 * 10 seconds and then gives up by returning an error. 15010 * 15011 * Return 0 on success, negative on failure. 15012 **/ 15013 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 15014 { 15015 /* wait max 10 seconds for PF reset to succeed */ 15016 const unsigned long time_end = jiffies + 10 * HZ; 15017 15018 struct i40e_hw *hw = &pf->hw; 15019 i40e_status ret; 15020 15021 ret = i40e_pf_reset(hw); 15022 while (ret != I40E_SUCCESS && time_before(jiffies, time_end)) { 15023 usleep_range(10000, 20000); 15024 ret = i40e_pf_reset(hw); 15025 } 15026 15027 if (ret == I40E_SUCCESS) 15028 pf->pfr_count++; 15029 else 15030 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15031 15032 return ret; 15033 } 15034 15035 /** 15036 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15037 * @pf: board private structure 15038 * 15039 * Check FW registers to determine if FW issued unexpected EMP Reset. 15040 * Every time when unexpected EMP Reset occurs the FW increments 15041 * a counter of unexpected EMP Resets. When the counter reaches 10 15042 * the FW should enter the Recovery mode 15043 * 15044 * Returns true if FW issued unexpected EMP Reset 15045 **/ 15046 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15047 { 15048 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15049 I40E_GL_FWSTS_FWS1B_MASK; 15050 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15051 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15052 } 15053 15054 /** 15055 * i40e_handle_resets - handle EMP resets and PF resets 15056 * @pf: board private structure 15057 * 15058 * Handle both EMP resets and PF resets and conclude whether there are 15059 * any issues regarding these resets. If there are any issues then 15060 * generate log entry. 15061 * 15062 * Return 0 if NIC is healthy or negative value when there are issues 15063 * with resets 15064 **/ 15065 static i40e_status i40e_handle_resets(struct i40e_pf *pf) 15066 { 15067 const i40e_status pfr = i40e_pf_loop_reset(pf); 15068 const bool is_empr = i40e_check_fw_empr(pf); 15069 15070 if (is_empr || pfr != I40E_SUCCESS) 15071 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15072 15073 return is_empr ? I40E_ERR_RESET_FAILED : pfr; 15074 } 15075 15076 /** 15077 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15078 * @pf: board private structure 15079 * @hw: ptr to the hardware info 15080 * 15081 * This function does a minimal setup of all subsystems needed for running 15082 * recovery mode. 15083 * 15084 * Returns 0 on success, negative on failure 15085 **/ 15086 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15087 { 15088 struct i40e_vsi *vsi; 15089 int err; 15090 int v_idx; 15091 15092 pci_save_state(pf->pdev); 15093 15094 /* set up periodic task facility */ 15095 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15096 pf->service_timer_period = HZ; 15097 15098 INIT_WORK(&pf->service_task, i40e_service_task); 15099 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15100 15101 err = i40e_init_interrupt_scheme(pf); 15102 if (err) 15103 goto err_switch_setup; 15104 15105 /* The number of VSIs reported by the FW is the minimum guaranteed 15106 * to us; HW supports far more and we share the remaining pool with 15107 * the other PFs. We allocate space for more than the guarantee with 15108 * the understanding that we might not get them all later. 15109 */ 15110 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15111 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15112 else 15113 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15114 15115 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15116 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15117 GFP_KERNEL); 15118 if (!pf->vsi) { 15119 err = -ENOMEM; 15120 goto err_switch_setup; 15121 } 15122 15123 /* We allocate one VSI which is needed as absolute minimum 15124 * in order to register the netdev 15125 */ 15126 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15127 if (v_idx < 0) { 15128 err = v_idx; 15129 goto err_switch_setup; 15130 } 15131 pf->lan_vsi = v_idx; 15132 vsi = pf->vsi[v_idx]; 15133 if (!vsi) { 15134 err = -EFAULT; 15135 goto err_switch_setup; 15136 } 15137 vsi->alloc_queue_pairs = 1; 15138 err = i40e_config_netdev(vsi); 15139 if (err) 15140 goto err_switch_setup; 15141 err = register_netdev(vsi->netdev); 15142 if (err) 15143 goto err_switch_setup; 15144 vsi->netdev_registered = true; 15145 i40e_dbg_pf_init(pf); 15146 15147 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15148 if (err) 15149 goto err_switch_setup; 15150 15151 /* tell the firmware that we're starting */ 15152 i40e_send_version(pf); 15153 15154 /* since everything's happy, start the service_task timer */ 15155 mod_timer(&pf->service_timer, 15156 round_jiffies(jiffies + pf->service_timer_period)); 15157 15158 return 0; 15159 15160 err_switch_setup: 15161 i40e_reset_interrupt_capability(pf); 15162 del_timer_sync(&pf->service_timer); 15163 i40e_shutdown_adminq(hw); 15164 iounmap(hw->hw_addr); 15165 pci_disable_pcie_error_reporting(pf->pdev); 15166 pci_release_mem_regions(pf->pdev); 15167 pci_disable_device(pf->pdev); 15168 kfree(pf); 15169 15170 return err; 15171 } 15172 15173 /** 15174 * i40e_set_subsystem_device_id - set subsystem device id 15175 * @hw: pointer to the hardware info 15176 * 15177 * Set PCI subsystem device id either from a pci_dev structure or 15178 * a specific FW register. 15179 **/ 15180 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw) 15181 { 15182 struct pci_dev *pdev = ((struct i40e_pf *)hw->back)->pdev; 15183 15184 hw->subsystem_device_id = pdev->subsystem_device ? 15185 pdev->subsystem_device : 15186 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX); 15187 } 15188 15189 /** 15190 * i40e_probe - Device initialization routine 15191 * @pdev: PCI device information struct 15192 * @ent: entry in i40e_pci_tbl 15193 * 15194 * i40e_probe initializes a PF identified by a pci_dev structure. 15195 * The OS initialization, configuring of the PF private structure, 15196 * and a hardware reset occur. 15197 * 15198 * Returns 0 on success, negative on failure 15199 **/ 15200 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15201 { 15202 struct i40e_aq_get_phy_abilities_resp abilities; 15203 #ifdef CONFIG_I40E_DCB 15204 enum i40e_get_fw_lldp_status_resp lldp_status; 15205 i40e_status status; 15206 #endif /* CONFIG_I40E_DCB */ 15207 struct i40e_pf *pf; 15208 struct i40e_hw *hw; 15209 static u16 pfs_found; 15210 u16 wol_nvm_bits; 15211 u16 link_status; 15212 int err; 15213 u32 val; 15214 u32 i; 15215 15216 err = pci_enable_device_mem(pdev); 15217 if (err) 15218 return err; 15219 15220 /* set up for high or low dma */ 15221 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15222 if (err) { 15223 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 15224 if (err) { 15225 dev_err(&pdev->dev, 15226 "DMA configuration failed: 0x%x\n", err); 15227 goto err_dma; 15228 } 15229 } 15230 15231 /* set up pci connections */ 15232 err = pci_request_mem_regions(pdev, i40e_driver_name); 15233 if (err) { 15234 dev_info(&pdev->dev, 15235 "pci_request_selected_regions failed %d\n", err); 15236 goto err_pci_reg; 15237 } 15238 15239 pci_enable_pcie_error_reporting(pdev); 15240 pci_set_master(pdev); 15241 15242 /* Now that we have a PCI connection, we need to do the 15243 * low level device setup. This is primarily setting up 15244 * the Admin Queue structures and then querying for the 15245 * device's current profile information. 15246 */ 15247 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 15248 if (!pf) { 15249 err = -ENOMEM; 15250 goto err_pf_alloc; 15251 } 15252 pf->next_vsi = 0; 15253 pf->pdev = pdev; 15254 set_bit(__I40E_DOWN, pf->state); 15255 15256 hw = &pf->hw; 15257 hw->back = pf; 15258 15259 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15260 I40E_MAX_CSR_SPACE); 15261 /* We believe that the highest register to read is 15262 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15263 * is not less than that before mapping to prevent a 15264 * kernel panic. 15265 */ 15266 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15267 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15268 pf->ioremap_len); 15269 err = -ENOMEM; 15270 goto err_ioremap; 15271 } 15272 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15273 if (!hw->hw_addr) { 15274 err = -EIO; 15275 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15276 (unsigned int)pci_resource_start(pdev, 0), 15277 pf->ioremap_len, err); 15278 goto err_ioremap; 15279 } 15280 hw->vendor_id = pdev->vendor; 15281 hw->device_id = pdev->device; 15282 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15283 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15284 i40e_set_subsystem_device_id(hw); 15285 hw->bus.device = PCI_SLOT(pdev->devfn); 15286 hw->bus.func = PCI_FUNC(pdev->devfn); 15287 hw->bus.bus_id = pdev->bus->number; 15288 pf->instance = pfs_found; 15289 15290 /* Select something other than the 802.1ad ethertype for the 15291 * switch to use internally and drop on ingress. 15292 */ 15293 hw->switch_tag = 0xffff; 15294 hw->first_tag = ETH_P_8021AD; 15295 hw->second_tag = ETH_P_8021Q; 15296 15297 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15298 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15299 INIT_LIST_HEAD(&pf->ddp_old_prof); 15300 15301 /* set up the locks for the AQ, do this only once in probe 15302 * and destroy them only once in remove 15303 */ 15304 mutex_init(&hw->aq.asq_mutex); 15305 mutex_init(&hw->aq.arq_mutex); 15306 15307 pf->msg_enable = netif_msg_init(debug, 15308 NETIF_MSG_DRV | 15309 NETIF_MSG_PROBE | 15310 NETIF_MSG_LINK); 15311 if (debug < -1) 15312 pf->hw.debug_mask = debug; 15313 15314 /* do a special CORER for clearing PXE mode once at init */ 15315 if (hw->revision_id == 0 && 15316 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15317 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15318 i40e_flush(hw); 15319 msleep(200); 15320 pf->corer_count++; 15321 15322 i40e_clear_pxe_mode(hw); 15323 } 15324 15325 /* Reset here to make sure all is clean and to define PF 'n' */ 15326 i40e_clear_hw(hw); 15327 15328 err = i40e_set_mac_type(hw); 15329 if (err) { 15330 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15331 err); 15332 goto err_pf_reset; 15333 } 15334 15335 err = i40e_handle_resets(pf); 15336 if (err) 15337 goto err_pf_reset; 15338 15339 i40e_check_recovery_mode(pf); 15340 15341 if (is_kdump_kernel()) { 15342 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN; 15343 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN; 15344 } else { 15345 hw->aq.num_arq_entries = I40E_AQ_LEN; 15346 hw->aq.num_asq_entries = I40E_AQ_LEN; 15347 } 15348 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15349 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15350 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 15351 15352 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15353 "%s-%s:misc", 15354 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15355 15356 err = i40e_init_shared_code(hw); 15357 if (err) { 15358 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15359 err); 15360 goto err_pf_reset; 15361 } 15362 15363 /* set up a default setting for link flow control */ 15364 pf->hw.fc.requested_mode = I40E_FC_NONE; 15365 15366 err = i40e_init_adminq(hw); 15367 if (err) { 15368 if (err == I40E_ERR_FIRMWARE_API_VERSION) 15369 dev_info(&pdev->dev, 15370 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15371 hw->aq.api_maj_ver, 15372 hw->aq.api_min_ver, 15373 I40E_FW_API_VERSION_MAJOR, 15374 I40E_FW_MINOR_VERSION(hw)); 15375 else 15376 dev_info(&pdev->dev, 15377 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15378 15379 goto err_pf_reset; 15380 } 15381 i40e_get_oem_version(hw); 15382 15383 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15384 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15385 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15386 hw->aq.api_maj_ver, hw->aq.api_min_ver, 15387 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 15388 hw->subsystem_vendor_id, hw->subsystem_device_id); 15389 15390 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 15391 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 15392 dev_info(&pdev->dev, 15393 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 15394 hw->aq.api_maj_ver, 15395 hw->aq.api_min_ver, 15396 I40E_FW_API_VERSION_MAJOR, 15397 I40E_FW_MINOR_VERSION(hw)); 15398 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 15399 dev_info(&pdev->dev, 15400 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15401 hw->aq.api_maj_ver, 15402 hw->aq.api_min_ver, 15403 I40E_FW_API_VERSION_MAJOR, 15404 I40E_FW_MINOR_VERSION(hw)); 15405 15406 i40e_verify_eeprom(pf); 15407 15408 /* Rev 0 hardware was never productized */ 15409 if (hw->revision_id < 1) 15410 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15411 15412 i40e_clear_pxe_mode(hw); 15413 15414 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15415 if (err) 15416 goto err_adminq_setup; 15417 15418 err = i40e_sw_init(pf); 15419 if (err) { 15420 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15421 goto err_sw_init; 15422 } 15423 15424 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15425 return i40e_init_recovery_mode(pf, hw); 15426 15427 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15428 hw->func_caps.num_rx_qp, 0, 0); 15429 if (err) { 15430 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15431 goto err_init_lan_hmc; 15432 } 15433 15434 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15435 if (err) { 15436 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15437 err = -ENOENT; 15438 goto err_configure_lan_hmc; 15439 } 15440 15441 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15442 * Ignore error return codes because if it was already disabled via 15443 * hardware settings this will fail 15444 */ 15445 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 15446 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15447 i40e_aq_stop_lldp(hw, true, false, NULL); 15448 } 15449 15450 /* allow a platform config to override the HW addr */ 15451 i40e_get_platform_mac_addr(pdev, pf); 15452 15453 if (!is_valid_ether_addr(hw->mac.addr)) { 15454 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15455 err = -EIO; 15456 goto err_mac_addr; 15457 } 15458 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15459 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15460 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15461 if (is_valid_ether_addr(hw->mac.port_addr)) 15462 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15463 15464 i40e_ptp_alloc_pins(pf); 15465 pci_set_drvdata(pdev, pf); 15466 pci_save_state(pdev); 15467 15468 #ifdef CONFIG_I40E_DCB 15469 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15470 (!status && 15471 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15472 (pf->flags &= ~I40E_FLAG_DISABLE_FW_LLDP) : 15473 (pf->flags |= I40E_FLAG_DISABLE_FW_LLDP); 15474 dev_info(&pdev->dev, 15475 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15476 "FW LLDP is disabled\n" : 15477 "FW LLDP is enabled\n"); 15478 15479 /* Enable FW to write default DCB config on link-up */ 15480 i40e_aq_set_dcb_parameters(hw, true, NULL); 15481 15482 err = i40e_init_pf_dcb(pf); 15483 if (err) { 15484 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15485 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15486 /* Continue without DCB enabled */ 15487 } 15488 #endif /* CONFIG_I40E_DCB */ 15489 15490 /* set up periodic task facility */ 15491 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15492 pf->service_timer_period = HZ; 15493 15494 INIT_WORK(&pf->service_task, i40e_service_task); 15495 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15496 15497 /* NVM bit on means WoL disabled for the port */ 15498 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15499 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15500 pf->wol_en = false; 15501 else 15502 pf->wol_en = true; 15503 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15504 15505 /* set up the main switch operations */ 15506 i40e_determine_queue_usage(pf); 15507 err = i40e_init_interrupt_scheme(pf); 15508 if (err) 15509 goto err_switch_setup; 15510 15511 /* Reduce Tx and Rx pairs for kdump 15512 * When MSI-X is enabled, it's not allowed to use more TC queue 15513 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus 15514 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1. 15515 */ 15516 if (is_kdump_kernel()) 15517 pf->num_lan_msix = 1; 15518 15519 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15520 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15521 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15522 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15523 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15524 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15525 UDP_TUNNEL_TYPE_GENEVE; 15526 15527 /* The number of VSIs reported by the FW is the minimum guaranteed 15528 * to us; HW supports far more and we share the remaining pool with 15529 * the other PFs. We allocate space for more than the guarantee with 15530 * the understanding that we might not get them all later. 15531 */ 15532 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15533 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15534 else 15535 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15536 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15537 dev_warn(&pf->pdev->dev, 15538 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15539 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15540 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15541 } 15542 15543 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15544 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15545 GFP_KERNEL); 15546 if (!pf->vsi) { 15547 err = -ENOMEM; 15548 goto err_switch_setup; 15549 } 15550 15551 #ifdef CONFIG_PCI_IOV 15552 /* prep for VF support */ 15553 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15554 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15555 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15556 if (pci_num_vf(pdev)) 15557 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15558 } 15559 #endif 15560 err = i40e_setup_pf_switch(pf, false, false); 15561 if (err) { 15562 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15563 goto err_vsis; 15564 } 15565 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15566 15567 /* if FDIR VSI was set up, start it now */ 15568 for (i = 0; i < pf->num_alloc_vsi; i++) { 15569 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15570 i40e_vsi_open(pf->vsi[i]); 15571 break; 15572 } 15573 } 15574 15575 /* The driver only wants link up/down and module qualification 15576 * reports from firmware. Note the negative logic. 15577 */ 15578 err = i40e_aq_set_phy_int_mask(&pf->hw, 15579 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15580 I40E_AQ_EVENT_MEDIA_NA | 15581 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15582 if (err) 15583 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15584 i40e_stat_str(&pf->hw, err), 15585 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15586 15587 /* Reconfigure hardware for allowing smaller MSS in the case 15588 * of TSO, so that we avoid the MDD being fired and causing 15589 * a reset in the case of small MSS+TSO. 15590 */ 15591 val = rd32(hw, I40E_REG_MSS); 15592 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15593 val &= ~I40E_REG_MSS_MIN_MASK; 15594 val |= I40E_64BYTE_MSS; 15595 wr32(hw, I40E_REG_MSS, val); 15596 } 15597 15598 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15599 msleep(75); 15600 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15601 if (err) 15602 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15603 i40e_stat_str(&pf->hw, err), 15604 i40e_aq_str(&pf->hw, 15605 pf->hw.aq.asq_last_status)); 15606 } 15607 /* The main driver is (mostly) up and happy. We need to set this state 15608 * before setting up the misc vector or we get a race and the vector 15609 * ends up disabled forever. 15610 */ 15611 clear_bit(__I40E_DOWN, pf->state); 15612 15613 /* In case of MSIX we are going to setup the misc vector right here 15614 * to handle admin queue events etc. In case of legacy and MSI 15615 * the misc functionality and queue processing is combined in 15616 * the same vector and that gets setup at open. 15617 */ 15618 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15619 err = i40e_setup_misc_vector(pf); 15620 if (err) { 15621 dev_info(&pdev->dev, 15622 "setup of misc vector failed: %d\n", err); 15623 i40e_cloud_filter_exit(pf); 15624 i40e_fdir_teardown(pf); 15625 goto err_vsis; 15626 } 15627 } 15628 15629 #ifdef CONFIG_PCI_IOV 15630 /* prep for VF support */ 15631 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15632 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15633 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15634 /* disable link interrupts for VFs */ 15635 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15636 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15637 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15638 i40e_flush(hw); 15639 15640 if (pci_num_vf(pdev)) { 15641 dev_info(&pdev->dev, 15642 "Active VFs found, allocating resources.\n"); 15643 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15644 if (err) 15645 dev_info(&pdev->dev, 15646 "Error %d allocating resources for existing VFs\n", 15647 err); 15648 } 15649 } 15650 #endif /* CONFIG_PCI_IOV */ 15651 15652 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15653 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15654 pf->num_iwarp_msix, 15655 I40E_IWARP_IRQ_PILE_ID); 15656 if (pf->iwarp_base_vector < 0) { 15657 dev_info(&pdev->dev, 15658 "failed to get tracking for %d vectors for IWARP err=%d\n", 15659 pf->num_iwarp_msix, pf->iwarp_base_vector); 15660 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15661 } 15662 } 15663 15664 i40e_dbg_pf_init(pf); 15665 15666 /* tell the firmware that we're starting */ 15667 i40e_send_version(pf); 15668 15669 /* since everything's happy, start the service_task timer */ 15670 mod_timer(&pf->service_timer, 15671 round_jiffies(jiffies + pf->service_timer_period)); 15672 15673 /* add this PF to client device list and launch a client service task */ 15674 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15675 err = i40e_lan_add_device(pf); 15676 if (err) 15677 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15678 err); 15679 } 15680 15681 #define PCI_SPEED_SIZE 8 15682 #define PCI_WIDTH_SIZE 8 15683 /* Devices on the IOSF bus do not have this information 15684 * and will report PCI Gen 1 x 1 by default so don't bother 15685 * checking them. 15686 */ 15687 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15688 char speed[PCI_SPEED_SIZE] = "Unknown"; 15689 char width[PCI_WIDTH_SIZE] = "Unknown"; 15690 15691 /* Get the negotiated link width and speed from PCI config 15692 * space 15693 */ 15694 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15695 &link_status); 15696 15697 i40e_set_pci_config_data(hw, link_status); 15698 15699 switch (hw->bus.speed) { 15700 case i40e_bus_speed_8000: 15701 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15702 case i40e_bus_speed_5000: 15703 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15704 case i40e_bus_speed_2500: 15705 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15706 default: 15707 break; 15708 } 15709 switch (hw->bus.width) { 15710 case i40e_bus_width_pcie_x8: 15711 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15712 case i40e_bus_width_pcie_x4: 15713 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15714 case i40e_bus_width_pcie_x2: 15715 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15716 case i40e_bus_width_pcie_x1: 15717 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15718 default: 15719 break; 15720 } 15721 15722 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15723 speed, width); 15724 15725 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15726 hw->bus.speed < i40e_bus_speed_8000) { 15727 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15728 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15729 } 15730 } 15731 15732 /* get the requested speeds from the fw */ 15733 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15734 if (err) 15735 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15736 i40e_stat_str(&pf->hw, err), 15737 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15738 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15739 15740 /* set the FEC config due to the board capabilities */ 15741 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15742 15743 /* get the supported phy types from the fw */ 15744 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15745 if (err) 15746 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15747 i40e_stat_str(&pf->hw, err), 15748 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15749 15750 /* make sure the MFS hasn't been set lower than the default */ 15751 #define MAX_FRAME_SIZE_DEFAULT 0x2600 15752 val = (rd32(&pf->hw, I40E_PRTGL_SAH) & 15753 I40E_PRTGL_SAH_MFS_MASK) >> I40E_PRTGL_SAH_MFS_SHIFT; 15754 if (val < MAX_FRAME_SIZE_DEFAULT) 15755 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 15756 i, val); 15757 15758 /* Add a filter to drop all Flow control frames from any VSI from being 15759 * transmitted. By doing so we stop a malicious VF from sending out 15760 * PAUSE or PFC frames and potentially controlling traffic for other 15761 * PF/VF VSIs. 15762 * The FW can still send Flow control frames if enabled. 15763 */ 15764 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15765 pf->main_vsi_seid); 15766 15767 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15768 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15769 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15770 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15771 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15772 /* print a string summarizing features */ 15773 i40e_print_features(pf); 15774 15775 return 0; 15776 15777 /* Unwind what we've done if something failed in the setup */ 15778 err_vsis: 15779 set_bit(__I40E_DOWN, pf->state); 15780 i40e_clear_interrupt_scheme(pf); 15781 kfree(pf->vsi); 15782 err_switch_setup: 15783 i40e_reset_interrupt_capability(pf); 15784 del_timer_sync(&pf->service_timer); 15785 err_mac_addr: 15786 err_configure_lan_hmc: 15787 (void)i40e_shutdown_lan_hmc(hw); 15788 err_init_lan_hmc: 15789 kfree(pf->qp_pile); 15790 err_sw_init: 15791 err_adminq_setup: 15792 err_pf_reset: 15793 iounmap(hw->hw_addr); 15794 err_ioremap: 15795 kfree(pf); 15796 err_pf_alloc: 15797 pci_disable_pcie_error_reporting(pdev); 15798 pci_release_mem_regions(pdev); 15799 err_pci_reg: 15800 err_dma: 15801 pci_disable_device(pdev); 15802 return err; 15803 } 15804 15805 /** 15806 * i40e_remove - Device removal routine 15807 * @pdev: PCI device information struct 15808 * 15809 * i40e_remove is called by the PCI subsystem to alert the driver 15810 * that is should release a PCI device. This could be caused by a 15811 * Hot-Plug event, or because the driver is going to be removed from 15812 * memory. 15813 **/ 15814 static void i40e_remove(struct pci_dev *pdev) 15815 { 15816 struct i40e_pf *pf = pci_get_drvdata(pdev); 15817 struct i40e_hw *hw = &pf->hw; 15818 i40e_status ret_code; 15819 int i; 15820 15821 i40e_dbg_pf_exit(pf); 15822 15823 i40e_ptp_stop(pf); 15824 15825 /* Disable RSS in hw */ 15826 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15827 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15828 15829 while (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 15830 usleep_range(1000, 2000); 15831 15832 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15833 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 15834 i40e_free_vfs(pf); 15835 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15836 } 15837 /* no more scheduling of any task */ 15838 set_bit(__I40E_SUSPENDED, pf->state); 15839 set_bit(__I40E_DOWN, pf->state); 15840 if (pf->service_timer.function) 15841 del_timer_sync(&pf->service_timer); 15842 if (pf->service_task.func) 15843 cancel_work_sync(&pf->service_task); 15844 15845 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15846 struct i40e_vsi *vsi = pf->vsi[0]; 15847 15848 /* We know that we have allocated only one vsi for this PF, 15849 * it was just for registering netdevice, so the interface 15850 * could be visible in the 'ifconfig' output 15851 */ 15852 unregister_netdev(vsi->netdev); 15853 free_netdev(vsi->netdev); 15854 15855 goto unmap; 15856 } 15857 15858 /* Client close must be called explicitly here because the timer 15859 * has been stopped. 15860 */ 15861 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15862 15863 i40e_fdir_teardown(pf); 15864 15865 /* If there is a switch structure or any orphans, remove them. 15866 * This will leave only the PF's VSI remaining. 15867 */ 15868 for (i = 0; i < I40E_MAX_VEB; i++) { 15869 if (!pf->veb[i]) 15870 continue; 15871 15872 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15873 pf->veb[i]->uplink_seid == 0) 15874 i40e_switch_branch_release(pf->veb[i]); 15875 } 15876 15877 /* Now we can shutdown the PF's VSI, just before we kill 15878 * adminq and hmc. 15879 */ 15880 if (pf->vsi[pf->lan_vsi]) 15881 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15882 15883 i40e_cloud_filter_exit(pf); 15884 15885 /* remove attached clients */ 15886 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15887 ret_code = i40e_lan_del_device(pf); 15888 if (ret_code) 15889 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15890 ret_code); 15891 } 15892 15893 /* shutdown and destroy the HMC */ 15894 if (hw->hmc.hmc_obj) { 15895 ret_code = i40e_shutdown_lan_hmc(hw); 15896 if (ret_code) 15897 dev_warn(&pdev->dev, 15898 "Failed to destroy the HMC resources: %d\n", 15899 ret_code); 15900 } 15901 15902 unmap: 15903 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15904 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15905 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15906 free_irq(pf->pdev->irq, pf); 15907 15908 /* shutdown the adminq */ 15909 i40e_shutdown_adminq(hw); 15910 15911 /* destroy the locks only once, here */ 15912 mutex_destroy(&hw->aq.arq_mutex); 15913 mutex_destroy(&hw->aq.asq_mutex); 15914 15915 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15916 rtnl_lock(); 15917 i40e_clear_interrupt_scheme(pf); 15918 for (i = 0; i < pf->num_alloc_vsi; i++) { 15919 if (pf->vsi[i]) { 15920 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15921 i40e_vsi_clear_rings(pf->vsi[i]); 15922 i40e_vsi_clear(pf->vsi[i]); 15923 pf->vsi[i] = NULL; 15924 } 15925 } 15926 rtnl_unlock(); 15927 15928 for (i = 0; i < I40E_MAX_VEB; i++) { 15929 kfree(pf->veb[i]); 15930 pf->veb[i] = NULL; 15931 } 15932 15933 kfree(pf->qp_pile); 15934 kfree(pf->vsi); 15935 15936 iounmap(hw->hw_addr); 15937 kfree(pf); 15938 pci_release_mem_regions(pdev); 15939 15940 pci_disable_pcie_error_reporting(pdev); 15941 pci_disable_device(pdev); 15942 } 15943 15944 /** 15945 * i40e_pci_error_detected - warning that something funky happened in PCI land 15946 * @pdev: PCI device information struct 15947 * @error: the type of PCI error 15948 * 15949 * Called to warn that something happened and the error handling steps 15950 * are in progress. Allows the driver to quiesce things, be ready for 15951 * remediation. 15952 **/ 15953 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15954 pci_channel_state_t error) 15955 { 15956 struct i40e_pf *pf = pci_get_drvdata(pdev); 15957 15958 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15959 15960 if (!pf) { 15961 dev_info(&pdev->dev, 15962 "Cannot recover - error happened during device probe\n"); 15963 return PCI_ERS_RESULT_DISCONNECT; 15964 } 15965 15966 /* shutdown all operations */ 15967 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15968 i40e_prep_for_reset(pf); 15969 15970 /* Request a slot reset */ 15971 return PCI_ERS_RESULT_NEED_RESET; 15972 } 15973 15974 /** 15975 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15976 * @pdev: PCI device information struct 15977 * 15978 * Called to find if the driver can work with the device now that 15979 * the pci slot has been reset. If a basic connection seems good 15980 * (registers are readable and have sane content) then return a 15981 * happy little PCI_ERS_RESULT_xxx. 15982 **/ 15983 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15984 { 15985 struct i40e_pf *pf = pci_get_drvdata(pdev); 15986 pci_ers_result_t result; 15987 u32 reg; 15988 15989 dev_dbg(&pdev->dev, "%s\n", __func__); 15990 if (pci_enable_device_mem(pdev)) { 15991 dev_info(&pdev->dev, 15992 "Cannot re-enable PCI device after reset.\n"); 15993 result = PCI_ERS_RESULT_DISCONNECT; 15994 } else { 15995 pci_set_master(pdev); 15996 pci_restore_state(pdev); 15997 pci_save_state(pdev); 15998 pci_wake_from_d3(pdev, false); 15999 16000 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 16001 if (reg == 0) 16002 result = PCI_ERS_RESULT_RECOVERED; 16003 else 16004 result = PCI_ERS_RESULT_DISCONNECT; 16005 } 16006 16007 return result; 16008 } 16009 16010 /** 16011 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 16012 * @pdev: PCI device information struct 16013 */ 16014 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16015 { 16016 struct i40e_pf *pf = pci_get_drvdata(pdev); 16017 16018 i40e_prep_for_reset(pf); 16019 } 16020 16021 /** 16022 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16023 * @pdev: PCI device information struct 16024 */ 16025 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16026 { 16027 struct i40e_pf *pf = pci_get_drvdata(pdev); 16028 16029 i40e_reset_and_rebuild(pf, false, false); 16030 } 16031 16032 /** 16033 * i40e_pci_error_resume - restart operations after PCI error recovery 16034 * @pdev: PCI device information struct 16035 * 16036 * Called to allow the driver to bring things back up after PCI error 16037 * and/or reset recovery has finished. 16038 **/ 16039 static void i40e_pci_error_resume(struct pci_dev *pdev) 16040 { 16041 struct i40e_pf *pf = pci_get_drvdata(pdev); 16042 16043 dev_dbg(&pdev->dev, "%s\n", __func__); 16044 if (test_bit(__I40E_SUSPENDED, pf->state)) 16045 return; 16046 16047 i40e_handle_reset_warning(pf, false); 16048 } 16049 16050 /** 16051 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16052 * using the mac_address_write admin q function 16053 * @pf: pointer to i40e_pf struct 16054 **/ 16055 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16056 { 16057 struct i40e_hw *hw = &pf->hw; 16058 i40e_status ret; 16059 u8 mac_addr[6]; 16060 u16 flags = 0; 16061 16062 /* Get current MAC address in case it's an LAA */ 16063 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16064 ether_addr_copy(mac_addr, 16065 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16066 } else { 16067 dev_err(&pf->pdev->dev, 16068 "Failed to retrieve MAC address; using default\n"); 16069 ether_addr_copy(mac_addr, hw->mac.addr); 16070 } 16071 16072 /* The FW expects the mac address write cmd to first be called with 16073 * one of these flags before calling it again with the multicast 16074 * enable flags. 16075 */ 16076 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16077 16078 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16079 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16080 16081 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16082 if (ret) { 16083 dev_err(&pf->pdev->dev, 16084 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16085 return; 16086 } 16087 16088 flags = I40E_AQC_MC_MAG_EN 16089 | I40E_AQC_WOL_PRESERVE_ON_PFR 16090 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16091 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16092 if (ret) 16093 dev_err(&pf->pdev->dev, 16094 "Failed to enable Multicast Magic Packet wake up\n"); 16095 } 16096 16097 /** 16098 * i40e_shutdown - PCI callback for shutting down 16099 * @pdev: PCI device information struct 16100 **/ 16101 static void i40e_shutdown(struct pci_dev *pdev) 16102 { 16103 struct i40e_pf *pf = pci_get_drvdata(pdev); 16104 struct i40e_hw *hw = &pf->hw; 16105 16106 set_bit(__I40E_SUSPENDED, pf->state); 16107 set_bit(__I40E_DOWN, pf->state); 16108 16109 del_timer_sync(&pf->service_timer); 16110 cancel_work_sync(&pf->service_task); 16111 i40e_cloud_filter_exit(pf); 16112 i40e_fdir_teardown(pf); 16113 16114 /* Client close must be called explicitly here because the timer 16115 * has been stopped. 16116 */ 16117 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16118 16119 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16120 i40e_enable_mc_magic_wake(pf); 16121 16122 i40e_prep_for_reset(pf); 16123 16124 wr32(hw, I40E_PFPM_APM, 16125 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16126 wr32(hw, I40E_PFPM_WUFC, 16127 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16128 16129 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16130 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16131 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 16132 free_irq(pf->pdev->irq, pf); 16133 16134 /* Since we're going to destroy queues during the 16135 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16136 * whole section 16137 */ 16138 rtnl_lock(); 16139 i40e_clear_interrupt_scheme(pf); 16140 rtnl_unlock(); 16141 16142 if (system_state == SYSTEM_POWER_OFF) { 16143 pci_wake_from_d3(pdev, pf->wol_en); 16144 pci_set_power_state(pdev, PCI_D3hot); 16145 } 16146 } 16147 16148 /** 16149 * i40e_suspend - PM callback for moving to D3 16150 * @dev: generic device information structure 16151 **/ 16152 static int __maybe_unused i40e_suspend(struct device *dev) 16153 { 16154 struct i40e_pf *pf = dev_get_drvdata(dev); 16155 struct i40e_hw *hw = &pf->hw; 16156 16157 /* If we're already suspended, then there is nothing to do */ 16158 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16159 return 0; 16160 16161 set_bit(__I40E_DOWN, pf->state); 16162 16163 /* Ensure service task will not be running */ 16164 del_timer_sync(&pf->service_timer); 16165 cancel_work_sync(&pf->service_task); 16166 16167 /* Client close must be called explicitly here because the timer 16168 * has been stopped. 16169 */ 16170 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16171 16172 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16173 i40e_enable_mc_magic_wake(pf); 16174 16175 /* Since we're going to destroy queues during the 16176 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16177 * whole section 16178 */ 16179 rtnl_lock(); 16180 16181 i40e_prep_for_reset(pf); 16182 16183 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16184 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16185 16186 /* Clear the interrupt scheme and release our IRQs so that the system 16187 * can safely hibernate even when there are a large number of CPUs. 16188 * Otherwise hibernation might fail when mapping all the vectors back 16189 * to CPU0. 16190 */ 16191 i40e_clear_interrupt_scheme(pf); 16192 16193 rtnl_unlock(); 16194 16195 return 0; 16196 } 16197 16198 /** 16199 * i40e_resume - PM callback for waking up from D3 16200 * @dev: generic device information structure 16201 **/ 16202 static int __maybe_unused i40e_resume(struct device *dev) 16203 { 16204 struct i40e_pf *pf = dev_get_drvdata(dev); 16205 int err; 16206 16207 /* If we're not suspended, then there is nothing to do */ 16208 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16209 return 0; 16210 16211 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16212 * since we're going to be restoring queues 16213 */ 16214 rtnl_lock(); 16215 16216 /* We cleared the interrupt scheme when we suspended, so we need to 16217 * restore it now to resume device functionality. 16218 */ 16219 err = i40e_restore_interrupt_scheme(pf); 16220 if (err) { 16221 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16222 err); 16223 } 16224 16225 clear_bit(__I40E_DOWN, pf->state); 16226 i40e_reset_and_rebuild(pf, false, true); 16227 16228 rtnl_unlock(); 16229 16230 /* Clear suspended state last after everything is recovered */ 16231 clear_bit(__I40E_SUSPENDED, pf->state); 16232 16233 /* Restart the service task */ 16234 mod_timer(&pf->service_timer, 16235 round_jiffies(jiffies + pf->service_timer_period)); 16236 16237 return 0; 16238 } 16239 16240 static const struct pci_error_handlers i40e_err_handler = { 16241 .error_detected = i40e_pci_error_detected, 16242 .slot_reset = i40e_pci_error_slot_reset, 16243 .reset_prepare = i40e_pci_error_reset_prepare, 16244 .reset_done = i40e_pci_error_reset_done, 16245 .resume = i40e_pci_error_resume, 16246 }; 16247 16248 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16249 16250 static struct pci_driver i40e_driver = { 16251 .name = i40e_driver_name, 16252 .id_table = i40e_pci_tbl, 16253 .probe = i40e_probe, 16254 .remove = i40e_remove, 16255 .driver = { 16256 .pm = &i40e_pm_ops, 16257 }, 16258 .shutdown = i40e_shutdown, 16259 .err_handler = &i40e_err_handler, 16260 .sriov_configure = i40e_pci_sriov_configure, 16261 }; 16262 16263 /** 16264 * i40e_init_module - Driver registration routine 16265 * 16266 * i40e_init_module is the first routine called when the driver is 16267 * loaded. All it does is register with the PCI subsystem. 16268 **/ 16269 static int __init i40e_init_module(void) 16270 { 16271 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16272 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16273 16274 /* There is no need to throttle the number of active tasks because 16275 * each device limits its own task using a state bit for scheduling 16276 * the service task, and the device tasks do not interfere with each 16277 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16278 * since we need to be able to guarantee forward progress even under 16279 * memory pressure. 16280 */ 16281 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16282 if (!i40e_wq) { 16283 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16284 return -ENOMEM; 16285 } 16286 16287 i40e_dbg_init(); 16288 return pci_register_driver(&i40e_driver); 16289 } 16290 module_init(i40e_init_module); 16291 16292 /** 16293 * i40e_exit_module - Driver exit cleanup routine 16294 * 16295 * i40e_exit_module is called just before the driver is removed 16296 * from memory. 16297 **/ 16298 static void __exit i40e_exit_module(void) 16299 { 16300 pci_unregister_driver(&i40e_driver); 16301 destroy_workqueue(i40e_wq); 16302 ida_destroy(&i40e_client_ida); 16303 i40e_dbg_exit(); 16304 } 16305 module_exit(i40e_exit_module); 16306