1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include <net/udp_tunnel.h> 13 /* All i40e tracepoints are defined by the include below, which 14 * must be included exactly once across the whole kernel with 15 * CREATE_TRACE_POINTS defined 16 */ 17 #define CREATE_TRACE_POINTS 18 #include "i40e_trace.h" 19 20 const char i40e_driver_name[] = "i40e"; 21 static const char i40e_driver_string[] = 22 "Intel(R) Ethernet Connection XL710 Network Driver"; 23 24 #define DRV_KERN "-k" 25 26 #define DRV_VERSION_MAJOR 2 27 #define DRV_VERSION_MINOR 3 28 #define DRV_VERSION_BUILD 2 29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 30 __stringify(DRV_VERSION_MINOR) "." \ 31 __stringify(DRV_VERSION_BUILD) DRV_KERN 32 const char i40e_driver_version_str[] = DRV_VERSION; 33 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 34 35 /* a bit of forward declarations */ 36 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 37 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 38 static int i40e_add_vsi(struct i40e_vsi *vsi); 39 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 40 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 41 static int i40e_setup_misc_vector(struct i40e_pf *pf); 42 static void i40e_determine_queue_usage(struct i40e_pf *pf); 43 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 44 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 45 static int i40e_reset(struct i40e_pf *pf); 46 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 47 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 48 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 49 static int i40e_get_capabilities(struct i40e_pf *pf, 50 enum i40e_admin_queue_opc list_type); 51 52 53 /* i40e_pci_tbl - PCI Device ID Table 54 * 55 * Last entry must be all 0s 56 * 57 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 58 * Class, Class Mask, private data (not used) } 59 */ 60 static const struct pci_device_id i40e_pci_tbl[] = { 61 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 80 /* required last entry */ 81 {0, } 82 }; 83 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 84 85 #define I40E_MAX_VF_COUNT 128 86 static int debug = -1; 87 module_param(debug, uint, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 89 90 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 91 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 92 MODULE_LICENSE("GPL"); 93 MODULE_VERSION(DRV_VERSION); 94 95 static struct workqueue_struct *i40e_wq; 96 97 /** 98 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 99 * @hw: pointer to the HW structure 100 * @mem: ptr to mem struct to fill out 101 * @size: size of memory requested 102 * @alignment: what to align the allocation to 103 **/ 104 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 105 u64 size, u32 alignment) 106 { 107 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 108 109 mem->size = ALIGN(size, alignment); 110 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, 111 &mem->pa, GFP_KERNEL); 112 if (!mem->va) 113 return -ENOMEM; 114 115 return 0; 116 } 117 118 /** 119 * i40e_free_dma_mem_d - OS specific memory free for shared code 120 * @hw: pointer to the HW structure 121 * @mem: ptr to mem struct to free 122 **/ 123 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 124 { 125 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 126 127 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 128 mem->va = NULL; 129 mem->pa = 0; 130 mem->size = 0; 131 132 return 0; 133 } 134 135 /** 136 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 137 * @hw: pointer to the HW structure 138 * @mem: ptr to mem struct to fill out 139 * @size: size of memory requested 140 **/ 141 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 142 u32 size) 143 { 144 mem->size = size; 145 mem->va = kzalloc(size, GFP_KERNEL); 146 147 if (!mem->va) 148 return -ENOMEM; 149 150 return 0; 151 } 152 153 /** 154 * i40e_free_virt_mem_d - OS specific memory free for shared code 155 * @hw: pointer to the HW structure 156 * @mem: ptr to mem struct to free 157 **/ 158 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 159 { 160 /* it's ok to kfree a NULL pointer */ 161 kfree(mem->va); 162 mem->va = NULL; 163 mem->size = 0; 164 165 return 0; 166 } 167 168 /** 169 * i40e_get_lump - find a lump of free generic resource 170 * @pf: board private structure 171 * @pile: the pile of resource to search 172 * @needed: the number of items needed 173 * @id: an owner id to stick on the items assigned 174 * 175 * Returns the base item index of the lump, or negative for error 176 * 177 * The search_hint trick and lack of advanced fit-finding only work 178 * because we're highly likely to have all the same size lump requests. 179 * Linear search time and any fragmentation should be minimal. 180 **/ 181 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 182 u16 needed, u16 id) 183 { 184 int ret = -ENOMEM; 185 int i, j; 186 187 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 188 dev_info(&pf->pdev->dev, 189 "param err: pile=%s needed=%d id=0x%04x\n", 190 pile ? "<valid>" : "<null>", needed, id); 191 return -EINVAL; 192 } 193 194 /* start the linear search with an imperfect hint */ 195 i = pile->search_hint; 196 while (i < pile->num_entries) { 197 /* skip already allocated entries */ 198 if (pile->list[i] & I40E_PILE_VALID_BIT) { 199 i++; 200 continue; 201 } 202 203 /* do we have enough in this lump? */ 204 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 205 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 206 break; 207 } 208 209 if (j == needed) { 210 /* there was enough, so assign it to the requestor */ 211 for (j = 0; j < needed; j++) 212 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 213 ret = i; 214 pile->search_hint = i + j; 215 break; 216 } 217 218 /* not enough, so skip over it and continue looking */ 219 i += j; 220 } 221 222 return ret; 223 } 224 225 /** 226 * i40e_put_lump - return a lump of generic resource 227 * @pile: the pile of resource to search 228 * @index: the base item index 229 * @id: the owner id of the items assigned 230 * 231 * Returns the count of items in the lump 232 **/ 233 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 234 { 235 int valid_id = (id | I40E_PILE_VALID_BIT); 236 int count = 0; 237 int i; 238 239 if (!pile || index >= pile->num_entries) 240 return -EINVAL; 241 242 for (i = index; 243 i < pile->num_entries && pile->list[i] == valid_id; 244 i++) { 245 pile->list[i] = 0; 246 count++; 247 } 248 249 if (count && index < pile->search_hint) 250 pile->search_hint = index; 251 252 return count; 253 } 254 255 /** 256 * i40e_find_vsi_from_id - searches for the vsi with the given id 257 * @pf: the pf structure to search for the vsi 258 * @id: id of the vsi it is searching for 259 **/ 260 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 261 { 262 int i; 263 264 for (i = 0; i < pf->num_alloc_vsi; i++) 265 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 266 return pf->vsi[i]; 267 268 return NULL; 269 } 270 271 /** 272 * i40e_service_event_schedule - Schedule the service task to wake up 273 * @pf: board private structure 274 * 275 * If not already scheduled, this puts the task into the work queue 276 **/ 277 void i40e_service_event_schedule(struct i40e_pf *pf) 278 { 279 if (!test_bit(__I40E_DOWN, pf->state) && 280 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 281 queue_work(i40e_wq, &pf->service_task); 282 } 283 284 /** 285 * i40e_tx_timeout - Respond to a Tx Hang 286 * @netdev: network interface device structure 287 * 288 * If any port has noticed a Tx timeout, it is likely that the whole 289 * device is munged, not just the one netdev port, so go for the full 290 * reset. 291 **/ 292 static void i40e_tx_timeout(struct net_device *netdev) 293 { 294 struct i40e_netdev_priv *np = netdev_priv(netdev); 295 struct i40e_vsi *vsi = np->vsi; 296 struct i40e_pf *pf = vsi->back; 297 struct i40e_ring *tx_ring = NULL; 298 unsigned int i, hung_queue = 0; 299 u32 head, val; 300 301 pf->tx_timeout_count++; 302 303 /* find the stopped queue the same way the stack does */ 304 for (i = 0; i < netdev->num_tx_queues; i++) { 305 struct netdev_queue *q; 306 unsigned long trans_start; 307 308 q = netdev_get_tx_queue(netdev, i); 309 trans_start = q->trans_start; 310 if (netif_xmit_stopped(q) && 311 time_after(jiffies, 312 (trans_start + netdev->watchdog_timeo))) { 313 hung_queue = i; 314 break; 315 } 316 } 317 318 if (i == netdev->num_tx_queues) { 319 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 320 } else { 321 /* now that we have an index, find the tx_ring struct */ 322 for (i = 0; i < vsi->num_queue_pairs; i++) { 323 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 324 if (hung_queue == 325 vsi->tx_rings[i]->queue_index) { 326 tx_ring = vsi->tx_rings[i]; 327 break; 328 } 329 } 330 } 331 } 332 333 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 334 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 335 else if (time_before(jiffies, 336 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 337 return; /* don't do any new action before the next timeout */ 338 339 if (tx_ring) { 340 head = i40e_get_head(tx_ring); 341 /* Read interrupt register */ 342 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 343 val = rd32(&pf->hw, 344 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 345 tx_ring->vsi->base_vector - 1)); 346 else 347 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 348 349 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 350 vsi->seid, hung_queue, tx_ring->next_to_clean, 351 head, tx_ring->next_to_use, 352 readl(tx_ring->tail), val); 353 } 354 355 pf->tx_timeout_last_recovery = jiffies; 356 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 357 pf->tx_timeout_recovery_level, hung_queue); 358 359 switch (pf->tx_timeout_recovery_level) { 360 case 1: 361 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 362 break; 363 case 2: 364 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 365 break; 366 case 3: 367 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 368 break; 369 default: 370 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 371 break; 372 } 373 374 i40e_service_event_schedule(pf); 375 pf->tx_timeout_recovery_level++; 376 } 377 378 /** 379 * i40e_get_vsi_stats_struct - Get System Network Statistics 380 * @vsi: the VSI we care about 381 * 382 * Returns the address of the device statistics structure. 383 * The statistics are actually updated from the service task. 384 **/ 385 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 386 { 387 return &vsi->net_stats; 388 } 389 390 /** 391 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 392 * @ring: Tx ring to get statistics from 393 * @stats: statistics entry to be updated 394 **/ 395 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 396 struct rtnl_link_stats64 *stats) 397 { 398 u64 bytes, packets; 399 unsigned int start; 400 401 do { 402 start = u64_stats_fetch_begin_irq(&ring->syncp); 403 packets = ring->stats.packets; 404 bytes = ring->stats.bytes; 405 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 406 407 stats->tx_packets += packets; 408 stats->tx_bytes += bytes; 409 } 410 411 /** 412 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 413 * @netdev: network interface device structure 414 * @stats: data structure to store statistics 415 * 416 * Returns the address of the device statistics structure. 417 * The statistics are actually updated from the service task. 418 **/ 419 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 420 struct rtnl_link_stats64 *stats) 421 { 422 struct i40e_netdev_priv *np = netdev_priv(netdev); 423 struct i40e_ring *tx_ring, *rx_ring; 424 struct i40e_vsi *vsi = np->vsi; 425 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 426 int i; 427 428 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 429 return; 430 431 if (!vsi->tx_rings) 432 return; 433 434 rcu_read_lock(); 435 for (i = 0; i < vsi->num_queue_pairs; i++) { 436 u64 bytes, packets; 437 unsigned int start; 438 439 tx_ring = READ_ONCE(vsi->tx_rings[i]); 440 if (!tx_ring) 441 continue; 442 i40e_get_netdev_stats_struct_tx(tx_ring, stats); 443 444 rx_ring = &tx_ring[1]; 445 446 do { 447 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 448 packets = rx_ring->stats.packets; 449 bytes = rx_ring->stats.bytes; 450 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 451 452 stats->rx_packets += packets; 453 stats->rx_bytes += bytes; 454 455 if (i40e_enabled_xdp_vsi(vsi)) 456 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats); 457 } 458 rcu_read_unlock(); 459 460 /* following stats updated by i40e_watchdog_subtask() */ 461 stats->multicast = vsi_stats->multicast; 462 stats->tx_errors = vsi_stats->tx_errors; 463 stats->tx_dropped = vsi_stats->tx_dropped; 464 stats->rx_errors = vsi_stats->rx_errors; 465 stats->rx_dropped = vsi_stats->rx_dropped; 466 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 467 stats->rx_length_errors = vsi_stats->rx_length_errors; 468 } 469 470 /** 471 * i40e_vsi_reset_stats - Resets all stats of the given vsi 472 * @vsi: the VSI to have its stats reset 473 **/ 474 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 475 { 476 struct rtnl_link_stats64 *ns; 477 int i; 478 479 if (!vsi) 480 return; 481 482 ns = i40e_get_vsi_stats_struct(vsi); 483 memset(ns, 0, sizeof(*ns)); 484 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 485 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 486 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 487 if (vsi->rx_rings && vsi->rx_rings[0]) { 488 for (i = 0; i < vsi->num_queue_pairs; i++) { 489 memset(&vsi->rx_rings[i]->stats, 0, 490 sizeof(vsi->rx_rings[i]->stats)); 491 memset(&vsi->rx_rings[i]->rx_stats, 0, 492 sizeof(vsi->rx_rings[i]->rx_stats)); 493 memset(&vsi->tx_rings[i]->stats, 0, 494 sizeof(vsi->tx_rings[i]->stats)); 495 memset(&vsi->tx_rings[i]->tx_stats, 0, 496 sizeof(vsi->tx_rings[i]->tx_stats)); 497 } 498 } 499 vsi->stat_offsets_loaded = false; 500 } 501 502 /** 503 * i40e_pf_reset_stats - Reset all of the stats for the given PF 504 * @pf: the PF to be reset 505 **/ 506 void i40e_pf_reset_stats(struct i40e_pf *pf) 507 { 508 int i; 509 510 memset(&pf->stats, 0, sizeof(pf->stats)); 511 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 512 pf->stat_offsets_loaded = false; 513 514 for (i = 0; i < I40E_MAX_VEB; i++) { 515 if (pf->veb[i]) { 516 memset(&pf->veb[i]->stats, 0, 517 sizeof(pf->veb[i]->stats)); 518 memset(&pf->veb[i]->stats_offsets, 0, 519 sizeof(pf->veb[i]->stats_offsets)); 520 pf->veb[i]->stat_offsets_loaded = false; 521 } 522 } 523 pf->hw_csum_rx_error = 0; 524 } 525 526 /** 527 * i40e_stat_update48 - read and update a 48 bit stat from the chip 528 * @hw: ptr to the hardware info 529 * @hireg: the high 32 bit reg to read 530 * @loreg: the low 32 bit reg to read 531 * @offset_loaded: has the initial offset been loaded yet 532 * @offset: ptr to current offset value 533 * @stat: ptr to the stat 534 * 535 * Since the device stats are not reset at PFReset, they likely will not 536 * be zeroed when the driver starts. We'll save the first values read 537 * and use them as offsets to be subtracted from the raw values in order 538 * to report stats that count from zero. In the process, we also manage 539 * the potential roll-over. 540 **/ 541 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 542 bool offset_loaded, u64 *offset, u64 *stat) 543 { 544 u64 new_data; 545 546 if (hw->device_id == I40E_DEV_ID_QEMU) { 547 new_data = rd32(hw, loreg); 548 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 549 } else { 550 new_data = rd64(hw, loreg); 551 } 552 if (!offset_loaded) 553 *offset = new_data; 554 if (likely(new_data >= *offset)) 555 *stat = new_data - *offset; 556 else 557 *stat = (new_data + BIT_ULL(48)) - *offset; 558 *stat &= 0xFFFFFFFFFFFFULL; 559 } 560 561 /** 562 * i40e_stat_update32 - read and update a 32 bit stat from the chip 563 * @hw: ptr to the hardware info 564 * @reg: the hw reg to read 565 * @offset_loaded: has the initial offset been loaded yet 566 * @offset: ptr to current offset value 567 * @stat: ptr to the stat 568 **/ 569 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 570 bool offset_loaded, u64 *offset, u64 *stat) 571 { 572 u32 new_data; 573 574 new_data = rd32(hw, reg); 575 if (!offset_loaded) 576 *offset = new_data; 577 if (likely(new_data >= *offset)) 578 *stat = (u32)(new_data - *offset); 579 else 580 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 581 } 582 583 /** 584 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 585 * @hw: ptr to the hardware info 586 * @reg: the hw reg to read and clear 587 * @stat: ptr to the stat 588 **/ 589 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 590 { 591 u32 new_data = rd32(hw, reg); 592 593 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 594 *stat += new_data; 595 } 596 597 /** 598 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 599 * @vsi: the VSI to be updated 600 **/ 601 void i40e_update_eth_stats(struct i40e_vsi *vsi) 602 { 603 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 604 struct i40e_pf *pf = vsi->back; 605 struct i40e_hw *hw = &pf->hw; 606 struct i40e_eth_stats *oes; 607 struct i40e_eth_stats *es; /* device's eth stats */ 608 609 es = &vsi->eth_stats; 610 oes = &vsi->eth_stats_offsets; 611 612 /* Gather up the stats that the hw collects */ 613 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 614 vsi->stat_offsets_loaded, 615 &oes->tx_errors, &es->tx_errors); 616 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 617 vsi->stat_offsets_loaded, 618 &oes->rx_discards, &es->rx_discards); 619 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 620 vsi->stat_offsets_loaded, 621 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 622 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 623 vsi->stat_offsets_loaded, 624 &oes->tx_errors, &es->tx_errors); 625 626 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 627 I40E_GLV_GORCL(stat_idx), 628 vsi->stat_offsets_loaded, 629 &oes->rx_bytes, &es->rx_bytes); 630 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 631 I40E_GLV_UPRCL(stat_idx), 632 vsi->stat_offsets_loaded, 633 &oes->rx_unicast, &es->rx_unicast); 634 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 635 I40E_GLV_MPRCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_multicast, &es->rx_multicast); 638 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 639 I40E_GLV_BPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_broadcast, &es->rx_broadcast); 642 643 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 644 I40E_GLV_GOTCL(stat_idx), 645 vsi->stat_offsets_loaded, 646 &oes->tx_bytes, &es->tx_bytes); 647 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 648 I40E_GLV_UPTCL(stat_idx), 649 vsi->stat_offsets_loaded, 650 &oes->tx_unicast, &es->tx_unicast); 651 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 652 I40E_GLV_MPTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_multicast, &es->tx_multicast); 655 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 656 I40E_GLV_BPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_broadcast, &es->tx_broadcast); 659 vsi->stat_offsets_loaded = true; 660 } 661 662 /** 663 * i40e_update_veb_stats - Update Switch component statistics 664 * @veb: the VEB being updated 665 **/ 666 static void i40e_update_veb_stats(struct i40e_veb *veb) 667 { 668 struct i40e_pf *pf = veb->pf; 669 struct i40e_hw *hw = &pf->hw; 670 struct i40e_eth_stats *oes; 671 struct i40e_eth_stats *es; /* device's eth stats */ 672 struct i40e_veb_tc_stats *veb_oes; 673 struct i40e_veb_tc_stats *veb_es; 674 int i, idx = 0; 675 676 idx = veb->stats_idx; 677 es = &veb->stats; 678 oes = &veb->stats_offsets; 679 veb_es = &veb->tc_stats; 680 veb_oes = &veb->tc_stats_offsets; 681 682 /* Gather up the stats that the hw collects */ 683 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 684 veb->stat_offsets_loaded, 685 &oes->tx_discards, &es->tx_discards); 686 if (hw->revision_id > 0) 687 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 688 veb->stat_offsets_loaded, 689 &oes->rx_unknown_protocol, 690 &es->rx_unknown_protocol); 691 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 692 veb->stat_offsets_loaded, 693 &oes->rx_bytes, &es->rx_bytes); 694 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 695 veb->stat_offsets_loaded, 696 &oes->rx_unicast, &es->rx_unicast); 697 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 698 veb->stat_offsets_loaded, 699 &oes->rx_multicast, &es->rx_multicast); 700 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 701 veb->stat_offsets_loaded, 702 &oes->rx_broadcast, &es->rx_broadcast); 703 704 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 705 veb->stat_offsets_loaded, 706 &oes->tx_bytes, &es->tx_bytes); 707 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 708 veb->stat_offsets_loaded, 709 &oes->tx_unicast, &es->tx_unicast); 710 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 711 veb->stat_offsets_loaded, 712 &oes->tx_multicast, &es->tx_multicast); 713 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 714 veb->stat_offsets_loaded, 715 &oes->tx_broadcast, &es->tx_broadcast); 716 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 717 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 718 I40E_GLVEBTC_RPCL(i, idx), 719 veb->stat_offsets_loaded, 720 &veb_oes->tc_rx_packets[i], 721 &veb_es->tc_rx_packets[i]); 722 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 723 I40E_GLVEBTC_RBCL(i, idx), 724 veb->stat_offsets_loaded, 725 &veb_oes->tc_rx_bytes[i], 726 &veb_es->tc_rx_bytes[i]); 727 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 728 I40E_GLVEBTC_TPCL(i, idx), 729 veb->stat_offsets_loaded, 730 &veb_oes->tc_tx_packets[i], 731 &veb_es->tc_tx_packets[i]); 732 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 733 I40E_GLVEBTC_TBCL(i, idx), 734 veb->stat_offsets_loaded, 735 &veb_oes->tc_tx_bytes[i], 736 &veb_es->tc_tx_bytes[i]); 737 } 738 veb->stat_offsets_loaded = true; 739 } 740 741 /** 742 * i40e_update_vsi_stats - Update the vsi statistics counters. 743 * @vsi: the VSI to be updated 744 * 745 * There are a few instances where we store the same stat in a 746 * couple of different structs. This is partly because we have 747 * the netdev stats that need to be filled out, which is slightly 748 * different from the "eth_stats" defined by the chip and used in 749 * VF communications. We sort it out here. 750 **/ 751 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 752 { 753 struct i40e_pf *pf = vsi->back; 754 struct rtnl_link_stats64 *ons; 755 struct rtnl_link_stats64 *ns; /* netdev stats */ 756 struct i40e_eth_stats *oes; 757 struct i40e_eth_stats *es; /* device's eth stats */ 758 u32 tx_restart, tx_busy; 759 struct i40e_ring *p; 760 u32 rx_page, rx_buf; 761 u64 bytes, packets; 762 unsigned int start; 763 u64 tx_linearize; 764 u64 tx_force_wb; 765 u64 rx_p, rx_b; 766 u64 tx_p, tx_b; 767 u16 q; 768 769 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 770 test_bit(__I40E_CONFIG_BUSY, pf->state)) 771 return; 772 773 ns = i40e_get_vsi_stats_struct(vsi); 774 ons = &vsi->net_stats_offsets; 775 es = &vsi->eth_stats; 776 oes = &vsi->eth_stats_offsets; 777 778 /* Gather up the netdev and vsi stats that the driver collects 779 * on the fly during packet processing 780 */ 781 rx_b = rx_p = 0; 782 tx_b = tx_p = 0; 783 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 784 rx_page = 0; 785 rx_buf = 0; 786 rcu_read_lock(); 787 for (q = 0; q < vsi->num_queue_pairs; q++) { 788 /* locate Tx ring */ 789 p = READ_ONCE(vsi->tx_rings[q]); 790 791 do { 792 start = u64_stats_fetch_begin_irq(&p->syncp); 793 packets = p->stats.packets; 794 bytes = p->stats.bytes; 795 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 796 tx_b += bytes; 797 tx_p += packets; 798 tx_restart += p->tx_stats.restart_queue; 799 tx_busy += p->tx_stats.tx_busy; 800 tx_linearize += p->tx_stats.tx_linearize; 801 tx_force_wb += p->tx_stats.tx_force_wb; 802 803 /* Rx queue is part of the same block as Tx queue */ 804 p = &p[1]; 805 do { 806 start = u64_stats_fetch_begin_irq(&p->syncp); 807 packets = p->stats.packets; 808 bytes = p->stats.bytes; 809 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 810 rx_b += bytes; 811 rx_p += packets; 812 rx_buf += p->rx_stats.alloc_buff_failed; 813 rx_page += p->rx_stats.alloc_page_failed; 814 } 815 rcu_read_unlock(); 816 vsi->tx_restart = tx_restart; 817 vsi->tx_busy = tx_busy; 818 vsi->tx_linearize = tx_linearize; 819 vsi->tx_force_wb = tx_force_wb; 820 vsi->rx_page_failed = rx_page; 821 vsi->rx_buf_failed = rx_buf; 822 823 ns->rx_packets = rx_p; 824 ns->rx_bytes = rx_b; 825 ns->tx_packets = tx_p; 826 ns->tx_bytes = tx_b; 827 828 /* update netdev stats from eth stats */ 829 i40e_update_eth_stats(vsi); 830 ons->tx_errors = oes->tx_errors; 831 ns->tx_errors = es->tx_errors; 832 ons->multicast = oes->rx_multicast; 833 ns->multicast = es->rx_multicast; 834 ons->rx_dropped = oes->rx_discards; 835 ns->rx_dropped = es->rx_discards; 836 ons->tx_dropped = oes->tx_discards; 837 ns->tx_dropped = es->tx_discards; 838 839 /* pull in a couple PF stats if this is the main vsi */ 840 if (vsi == pf->vsi[pf->lan_vsi]) { 841 ns->rx_crc_errors = pf->stats.crc_errors; 842 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 843 ns->rx_length_errors = pf->stats.rx_length_errors; 844 } 845 } 846 847 /** 848 * i40e_update_pf_stats - Update the PF statistics counters. 849 * @pf: the PF to be updated 850 **/ 851 static void i40e_update_pf_stats(struct i40e_pf *pf) 852 { 853 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 854 struct i40e_hw_port_stats *nsd = &pf->stats; 855 struct i40e_hw *hw = &pf->hw; 856 u32 val; 857 int i; 858 859 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 860 I40E_GLPRT_GORCL(hw->port), 861 pf->stat_offsets_loaded, 862 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 863 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 864 I40E_GLPRT_GOTCL(hw->port), 865 pf->stat_offsets_loaded, 866 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 867 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 868 pf->stat_offsets_loaded, 869 &osd->eth.rx_discards, 870 &nsd->eth.rx_discards); 871 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 872 I40E_GLPRT_UPRCL(hw->port), 873 pf->stat_offsets_loaded, 874 &osd->eth.rx_unicast, 875 &nsd->eth.rx_unicast); 876 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 877 I40E_GLPRT_MPRCL(hw->port), 878 pf->stat_offsets_loaded, 879 &osd->eth.rx_multicast, 880 &nsd->eth.rx_multicast); 881 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 882 I40E_GLPRT_BPRCL(hw->port), 883 pf->stat_offsets_loaded, 884 &osd->eth.rx_broadcast, 885 &nsd->eth.rx_broadcast); 886 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 887 I40E_GLPRT_UPTCL(hw->port), 888 pf->stat_offsets_loaded, 889 &osd->eth.tx_unicast, 890 &nsd->eth.tx_unicast); 891 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 892 I40E_GLPRT_MPTCL(hw->port), 893 pf->stat_offsets_loaded, 894 &osd->eth.tx_multicast, 895 &nsd->eth.tx_multicast); 896 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 897 I40E_GLPRT_BPTCL(hw->port), 898 pf->stat_offsets_loaded, 899 &osd->eth.tx_broadcast, 900 &nsd->eth.tx_broadcast); 901 902 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 903 pf->stat_offsets_loaded, 904 &osd->tx_dropped_link_down, 905 &nsd->tx_dropped_link_down); 906 907 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 908 pf->stat_offsets_loaded, 909 &osd->crc_errors, &nsd->crc_errors); 910 911 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 912 pf->stat_offsets_loaded, 913 &osd->illegal_bytes, &nsd->illegal_bytes); 914 915 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->mac_local_faults, 918 &nsd->mac_local_faults); 919 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->mac_remote_faults, 922 &nsd->mac_remote_faults); 923 924 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 925 pf->stat_offsets_loaded, 926 &osd->rx_length_errors, 927 &nsd->rx_length_errors); 928 929 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 930 pf->stat_offsets_loaded, 931 &osd->link_xon_rx, &nsd->link_xon_rx); 932 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->link_xon_tx, &nsd->link_xon_tx); 935 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 936 pf->stat_offsets_loaded, 937 &osd->link_xoff_rx, &nsd->link_xoff_rx); 938 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->link_xoff_tx, &nsd->link_xoff_tx); 941 942 for (i = 0; i < 8; i++) { 943 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 944 pf->stat_offsets_loaded, 945 &osd->priority_xoff_rx[i], 946 &nsd->priority_xoff_rx[i]); 947 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 948 pf->stat_offsets_loaded, 949 &osd->priority_xon_rx[i], 950 &nsd->priority_xon_rx[i]); 951 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 952 pf->stat_offsets_loaded, 953 &osd->priority_xon_tx[i], 954 &nsd->priority_xon_tx[i]); 955 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 956 pf->stat_offsets_loaded, 957 &osd->priority_xoff_tx[i], 958 &nsd->priority_xoff_tx[i]); 959 i40e_stat_update32(hw, 960 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 961 pf->stat_offsets_loaded, 962 &osd->priority_xon_2_xoff[i], 963 &nsd->priority_xon_2_xoff[i]); 964 } 965 966 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 967 I40E_GLPRT_PRC64L(hw->port), 968 pf->stat_offsets_loaded, 969 &osd->rx_size_64, &nsd->rx_size_64); 970 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 971 I40E_GLPRT_PRC127L(hw->port), 972 pf->stat_offsets_loaded, 973 &osd->rx_size_127, &nsd->rx_size_127); 974 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 975 I40E_GLPRT_PRC255L(hw->port), 976 pf->stat_offsets_loaded, 977 &osd->rx_size_255, &nsd->rx_size_255); 978 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 979 I40E_GLPRT_PRC511L(hw->port), 980 pf->stat_offsets_loaded, 981 &osd->rx_size_511, &nsd->rx_size_511); 982 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 983 I40E_GLPRT_PRC1023L(hw->port), 984 pf->stat_offsets_loaded, 985 &osd->rx_size_1023, &nsd->rx_size_1023); 986 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 987 I40E_GLPRT_PRC1522L(hw->port), 988 pf->stat_offsets_loaded, 989 &osd->rx_size_1522, &nsd->rx_size_1522); 990 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 991 I40E_GLPRT_PRC9522L(hw->port), 992 pf->stat_offsets_loaded, 993 &osd->rx_size_big, &nsd->rx_size_big); 994 995 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 996 I40E_GLPRT_PTC64L(hw->port), 997 pf->stat_offsets_loaded, 998 &osd->tx_size_64, &nsd->tx_size_64); 999 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1000 I40E_GLPRT_PTC127L(hw->port), 1001 pf->stat_offsets_loaded, 1002 &osd->tx_size_127, &nsd->tx_size_127); 1003 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1004 I40E_GLPRT_PTC255L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->tx_size_255, &nsd->tx_size_255); 1007 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1008 I40E_GLPRT_PTC511L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->tx_size_511, &nsd->tx_size_511); 1011 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1012 I40E_GLPRT_PTC1023L(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->tx_size_1023, &nsd->tx_size_1023); 1015 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1016 I40E_GLPRT_PTC1522L(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->tx_size_1522, &nsd->tx_size_1522); 1019 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1020 I40E_GLPRT_PTC9522L(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->tx_size_big, &nsd->tx_size_big); 1023 1024 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->rx_undersize, &nsd->rx_undersize); 1027 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->rx_fragments, &nsd->rx_fragments); 1030 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1031 pf->stat_offsets_loaded, 1032 &osd->rx_oversize, &nsd->rx_oversize); 1033 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1034 pf->stat_offsets_loaded, 1035 &osd->rx_jabber, &nsd->rx_jabber); 1036 1037 /* FDIR stats */ 1038 i40e_stat_update_and_clear32(hw, 1039 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1040 &nsd->fd_atr_match); 1041 i40e_stat_update_and_clear32(hw, 1042 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1043 &nsd->fd_sb_match); 1044 i40e_stat_update_and_clear32(hw, 1045 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1046 &nsd->fd_atr_tunnel_match); 1047 1048 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1049 nsd->tx_lpi_status = 1050 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1051 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1052 nsd->rx_lpi_status = 1053 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1054 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1055 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1056 pf->stat_offsets_loaded, 1057 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1058 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1059 pf->stat_offsets_loaded, 1060 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1061 1062 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1063 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1064 nsd->fd_sb_status = true; 1065 else 1066 nsd->fd_sb_status = false; 1067 1068 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1069 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1070 nsd->fd_atr_status = true; 1071 else 1072 nsd->fd_atr_status = false; 1073 1074 pf->stat_offsets_loaded = true; 1075 } 1076 1077 /** 1078 * i40e_update_stats - Update the various statistics counters. 1079 * @vsi: the VSI to be updated 1080 * 1081 * Update the various stats for this VSI and its related entities. 1082 **/ 1083 void i40e_update_stats(struct i40e_vsi *vsi) 1084 { 1085 struct i40e_pf *pf = vsi->back; 1086 1087 if (vsi == pf->vsi[pf->lan_vsi]) 1088 i40e_update_pf_stats(pf); 1089 1090 i40e_update_vsi_stats(vsi); 1091 } 1092 1093 /** 1094 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1095 * @vsi: the VSI to be searched 1096 * @macaddr: the MAC address 1097 * @vlan: the vlan 1098 * 1099 * Returns ptr to the filter object or NULL 1100 **/ 1101 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1102 const u8 *macaddr, s16 vlan) 1103 { 1104 struct i40e_mac_filter *f; 1105 u64 key; 1106 1107 if (!vsi || !macaddr) 1108 return NULL; 1109 1110 key = i40e_addr_to_hkey(macaddr); 1111 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1112 if ((ether_addr_equal(macaddr, f->macaddr)) && 1113 (vlan == f->vlan)) 1114 return f; 1115 } 1116 return NULL; 1117 } 1118 1119 /** 1120 * i40e_find_mac - Find a mac addr in the macvlan filters list 1121 * @vsi: the VSI to be searched 1122 * @macaddr: the MAC address we are searching for 1123 * 1124 * Returns the first filter with the provided MAC address or NULL if 1125 * MAC address was not found 1126 **/ 1127 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1128 { 1129 struct i40e_mac_filter *f; 1130 u64 key; 1131 1132 if (!vsi || !macaddr) 1133 return NULL; 1134 1135 key = i40e_addr_to_hkey(macaddr); 1136 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1137 if ((ether_addr_equal(macaddr, f->macaddr))) 1138 return f; 1139 } 1140 return NULL; 1141 } 1142 1143 /** 1144 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1145 * @vsi: the VSI to be searched 1146 * 1147 * Returns true if VSI is in vlan mode or false otherwise 1148 **/ 1149 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1150 { 1151 /* If we have a PVID, always operate in VLAN mode */ 1152 if (vsi->info.pvid) 1153 return true; 1154 1155 /* We need to operate in VLAN mode whenever we have any filters with 1156 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1157 * time, incurring search cost repeatedly. However, we can notice two 1158 * things: 1159 * 1160 * 1) the only place where we can gain a VLAN filter is in 1161 * i40e_add_filter. 1162 * 1163 * 2) the only place where filters are actually removed is in 1164 * i40e_sync_filters_subtask. 1165 * 1166 * Thus, we can simply use a boolean value, has_vlan_filters which we 1167 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1168 * we have to perform the full search after deleting filters in 1169 * i40e_sync_filters_subtask, but we already have to search 1170 * filters here and can perform the check at the same time. This 1171 * results in avoiding embedding a loop for VLAN mode inside another 1172 * loop over all the filters, and should maintain correctness as noted 1173 * above. 1174 */ 1175 return vsi->has_vlan_filter; 1176 } 1177 1178 /** 1179 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1180 * @vsi: the VSI to configure 1181 * @tmp_add_list: list of filters ready to be added 1182 * @tmp_del_list: list of filters ready to be deleted 1183 * @vlan_filters: the number of active VLAN filters 1184 * 1185 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1186 * behave as expected. If we have any active VLAN filters remaining or about 1187 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1188 * so that they only match against untagged traffic. If we no longer have any 1189 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1190 * so that they match against both tagged and untagged traffic. In this way, 1191 * we ensure that we correctly receive the desired traffic. This ensures that 1192 * when we have an active VLAN we will receive only untagged traffic and 1193 * traffic matching active VLANs. If we have no active VLANs then we will 1194 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1195 * 1196 * Finally, in a similar fashion, this function also corrects filters when 1197 * there is an active PVID assigned to this VSI. 1198 * 1199 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1200 * 1201 * This function is only expected to be called from within 1202 * i40e_sync_vsi_filters. 1203 * 1204 * NOTE: This function expects to be called while under the 1205 * mac_filter_hash_lock 1206 */ 1207 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1208 struct hlist_head *tmp_add_list, 1209 struct hlist_head *tmp_del_list, 1210 int vlan_filters) 1211 { 1212 s16 pvid = le16_to_cpu(vsi->info.pvid); 1213 struct i40e_mac_filter *f, *add_head; 1214 struct i40e_new_mac_filter *new; 1215 struct hlist_node *h; 1216 int bkt, new_vlan; 1217 1218 /* To determine if a particular filter needs to be replaced we 1219 * have the three following conditions: 1220 * 1221 * a) if we have a PVID assigned, then all filters which are 1222 * not marked as VLAN=PVID must be replaced with filters that 1223 * are. 1224 * b) otherwise, if we have any active VLANS, all filters 1225 * which are marked as VLAN=-1 must be replaced with 1226 * filters marked as VLAN=0 1227 * c) finally, if we do not have any active VLANS, all filters 1228 * which are marked as VLAN=0 must be replaced with filters 1229 * marked as VLAN=-1 1230 */ 1231 1232 /* Update the filters about to be added in place */ 1233 hlist_for_each_entry(new, tmp_add_list, hlist) { 1234 if (pvid && new->f->vlan != pvid) 1235 new->f->vlan = pvid; 1236 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1237 new->f->vlan = 0; 1238 else if (!vlan_filters && new->f->vlan == 0) 1239 new->f->vlan = I40E_VLAN_ANY; 1240 } 1241 1242 /* Update the remaining active filters */ 1243 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1244 /* Combine the checks for whether a filter needs to be changed 1245 * and then determine the new VLAN inside the if block, in 1246 * order to avoid duplicating code for adding the new filter 1247 * then deleting the old filter. 1248 */ 1249 if ((pvid && f->vlan != pvid) || 1250 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1251 (!vlan_filters && f->vlan == 0)) { 1252 /* Determine the new vlan we will be adding */ 1253 if (pvid) 1254 new_vlan = pvid; 1255 else if (vlan_filters) 1256 new_vlan = 0; 1257 else 1258 new_vlan = I40E_VLAN_ANY; 1259 1260 /* Create the new filter */ 1261 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1262 if (!add_head) 1263 return -ENOMEM; 1264 1265 /* Create a temporary i40e_new_mac_filter */ 1266 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1267 if (!new) 1268 return -ENOMEM; 1269 1270 new->f = add_head; 1271 new->state = add_head->state; 1272 1273 /* Add the new filter to the tmp list */ 1274 hlist_add_head(&new->hlist, tmp_add_list); 1275 1276 /* Put the original filter into the delete list */ 1277 f->state = I40E_FILTER_REMOVE; 1278 hash_del(&f->hlist); 1279 hlist_add_head(&f->hlist, tmp_del_list); 1280 } 1281 } 1282 1283 vsi->has_vlan_filter = !!vlan_filters; 1284 1285 return 0; 1286 } 1287 1288 /** 1289 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1290 * @vsi: the PF Main VSI - inappropriate for any other VSI 1291 * @macaddr: the MAC address 1292 * 1293 * Remove whatever filter the firmware set up so the driver can manage 1294 * its own filtering intelligently. 1295 **/ 1296 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1297 { 1298 struct i40e_aqc_remove_macvlan_element_data element; 1299 struct i40e_pf *pf = vsi->back; 1300 1301 /* Only appropriate for the PF main VSI */ 1302 if (vsi->type != I40E_VSI_MAIN) 1303 return; 1304 1305 memset(&element, 0, sizeof(element)); 1306 ether_addr_copy(element.mac_addr, macaddr); 1307 element.vlan_tag = 0; 1308 /* Ignore error returns, some firmware does it this way... */ 1309 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1310 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1311 1312 memset(&element, 0, sizeof(element)); 1313 ether_addr_copy(element.mac_addr, macaddr); 1314 element.vlan_tag = 0; 1315 /* ...and some firmware does it this way. */ 1316 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1317 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1318 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1319 } 1320 1321 /** 1322 * i40e_add_filter - Add a mac/vlan filter to the VSI 1323 * @vsi: the VSI to be searched 1324 * @macaddr: the MAC address 1325 * @vlan: the vlan 1326 * 1327 * Returns ptr to the filter object or NULL when no memory available. 1328 * 1329 * NOTE: This function is expected to be called with mac_filter_hash_lock 1330 * being held. 1331 **/ 1332 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1333 const u8 *macaddr, s16 vlan) 1334 { 1335 struct i40e_mac_filter *f; 1336 u64 key; 1337 1338 if (!vsi || !macaddr) 1339 return NULL; 1340 1341 f = i40e_find_filter(vsi, macaddr, vlan); 1342 if (!f) { 1343 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1344 if (!f) 1345 return NULL; 1346 1347 /* Update the boolean indicating if we need to function in 1348 * VLAN mode. 1349 */ 1350 if (vlan >= 0) 1351 vsi->has_vlan_filter = true; 1352 1353 ether_addr_copy(f->macaddr, macaddr); 1354 f->vlan = vlan; 1355 f->state = I40E_FILTER_NEW; 1356 INIT_HLIST_NODE(&f->hlist); 1357 1358 key = i40e_addr_to_hkey(macaddr); 1359 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1360 1361 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1362 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1363 } 1364 1365 /* If we're asked to add a filter that has been marked for removal, it 1366 * is safe to simply restore it to active state. __i40e_del_filter 1367 * will have simply deleted any filters which were previously marked 1368 * NEW or FAILED, so if it is currently marked REMOVE it must have 1369 * previously been ACTIVE. Since we haven't yet run the sync filters 1370 * task, just restore this filter to the ACTIVE state so that the 1371 * sync task leaves it in place 1372 */ 1373 if (f->state == I40E_FILTER_REMOVE) 1374 f->state = I40E_FILTER_ACTIVE; 1375 1376 return f; 1377 } 1378 1379 /** 1380 * __i40e_del_filter - Remove a specific filter from the VSI 1381 * @vsi: VSI to remove from 1382 * @f: the filter to remove from the list 1383 * 1384 * This function should be called instead of i40e_del_filter only if you know 1385 * the exact filter you will remove already, such as via i40e_find_filter or 1386 * i40e_find_mac. 1387 * 1388 * NOTE: This function is expected to be called with mac_filter_hash_lock 1389 * being held. 1390 * ANOTHER NOTE: This function MUST be called from within the context of 1391 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1392 * instead of list_for_each_entry(). 1393 **/ 1394 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1395 { 1396 if (!f) 1397 return; 1398 1399 /* If the filter was never added to firmware then we can just delete it 1400 * directly and we don't want to set the status to remove or else an 1401 * admin queue command will unnecessarily fire. 1402 */ 1403 if ((f->state == I40E_FILTER_FAILED) || 1404 (f->state == I40E_FILTER_NEW)) { 1405 hash_del(&f->hlist); 1406 kfree(f); 1407 } else { 1408 f->state = I40E_FILTER_REMOVE; 1409 } 1410 1411 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1412 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->state); 1413 } 1414 1415 /** 1416 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1417 * @vsi: the VSI to be searched 1418 * @macaddr: the MAC address 1419 * @vlan: the VLAN 1420 * 1421 * NOTE: This function is expected to be called with mac_filter_hash_lock 1422 * being held. 1423 * ANOTHER NOTE: This function MUST be called from within the context of 1424 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1425 * instead of list_for_each_entry(). 1426 **/ 1427 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1428 { 1429 struct i40e_mac_filter *f; 1430 1431 if (!vsi || !macaddr) 1432 return; 1433 1434 f = i40e_find_filter(vsi, macaddr, vlan); 1435 __i40e_del_filter(vsi, f); 1436 } 1437 1438 /** 1439 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1440 * @vsi: the VSI to be searched 1441 * @macaddr: the mac address to be filtered 1442 * 1443 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1444 * go through all the macvlan filters and add a macvlan filter for each 1445 * unique vlan that already exists. If a PVID has been assigned, instead only 1446 * add the macaddr to that VLAN. 1447 * 1448 * Returns last filter added on success, else NULL 1449 **/ 1450 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1451 const u8 *macaddr) 1452 { 1453 struct i40e_mac_filter *f, *add = NULL; 1454 struct hlist_node *h; 1455 int bkt; 1456 1457 if (vsi->info.pvid) 1458 return i40e_add_filter(vsi, macaddr, 1459 le16_to_cpu(vsi->info.pvid)); 1460 1461 if (!i40e_is_vsi_in_vlan(vsi)) 1462 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1463 1464 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1465 if (f->state == I40E_FILTER_REMOVE) 1466 continue; 1467 add = i40e_add_filter(vsi, macaddr, f->vlan); 1468 if (!add) 1469 return NULL; 1470 } 1471 1472 return add; 1473 } 1474 1475 /** 1476 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1477 * @vsi: the VSI to be searched 1478 * @macaddr: the mac address to be removed 1479 * 1480 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1481 * associated with. 1482 * 1483 * Returns 0 for success, or error 1484 **/ 1485 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1486 { 1487 struct i40e_mac_filter *f; 1488 struct hlist_node *h; 1489 bool found = false; 1490 int bkt; 1491 1492 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock), 1493 "Missing mac_filter_hash_lock\n"); 1494 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1495 if (ether_addr_equal(macaddr, f->macaddr)) { 1496 __i40e_del_filter(vsi, f); 1497 found = true; 1498 } 1499 } 1500 1501 if (found) 1502 return 0; 1503 else 1504 return -ENOENT; 1505 } 1506 1507 /** 1508 * i40e_set_mac - NDO callback to set mac address 1509 * @netdev: network interface device structure 1510 * @p: pointer to an address structure 1511 * 1512 * Returns 0 on success, negative on failure 1513 **/ 1514 static int i40e_set_mac(struct net_device *netdev, void *p) 1515 { 1516 struct i40e_netdev_priv *np = netdev_priv(netdev); 1517 struct i40e_vsi *vsi = np->vsi; 1518 struct i40e_pf *pf = vsi->back; 1519 struct i40e_hw *hw = &pf->hw; 1520 struct sockaddr *addr = p; 1521 1522 if (!is_valid_ether_addr(addr->sa_data)) 1523 return -EADDRNOTAVAIL; 1524 1525 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1526 netdev_info(netdev, "already using mac address %pM\n", 1527 addr->sa_data); 1528 return 0; 1529 } 1530 1531 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) || 1532 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state)) 1533 return -EADDRNOTAVAIL; 1534 1535 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1536 netdev_info(netdev, "returning to hw mac address %pM\n", 1537 hw->mac.addr); 1538 else 1539 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1540 1541 /* Copy the address first, so that we avoid a possible race with 1542 * .set_rx_mode(). If we copy after changing the address in the filter 1543 * list, we might open ourselves to a narrow race window where 1544 * .set_rx_mode could delete our dev_addr filter and prevent traffic 1545 * from passing. 1546 */ 1547 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1548 1549 spin_lock_bh(&vsi->mac_filter_hash_lock); 1550 i40e_del_mac_filter(vsi, netdev->dev_addr); 1551 i40e_add_mac_filter(vsi, addr->sa_data); 1552 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1553 if (vsi->type == I40E_VSI_MAIN) { 1554 i40e_status ret; 1555 1556 ret = i40e_aq_mac_address_write(&vsi->back->hw, 1557 I40E_AQC_WRITE_TYPE_LAA_WOL, 1558 addr->sa_data, NULL); 1559 if (ret) 1560 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1561 i40e_stat_str(hw, ret), 1562 i40e_aq_str(hw, hw->aq.asq_last_status)); 1563 } 1564 1565 /* schedule our worker thread which will take care of 1566 * applying the new filter changes 1567 */ 1568 i40e_service_event_schedule(vsi->back); 1569 return 0; 1570 } 1571 1572 /** 1573 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1574 * @vsi: vsi structure 1575 * @seed: RSS hash seed 1576 **/ 1577 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1578 u8 *lut, u16 lut_size) 1579 { 1580 struct i40e_pf *pf = vsi->back; 1581 struct i40e_hw *hw = &pf->hw; 1582 int ret = 0; 1583 1584 if (seed) { 1585 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1586 (struct i40e_aqc_get_set_rss_key_data *)seed; 1587 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1588 if (ret) { 1589 dev_info(&pf->pdev->dev, 1590 "Cannot set RSS key, err %s aq_err %s\n", 1591 i40e_stat_str(hw, ret), 1592 i40e_aq_str(hw, hw->aq.asq_last_status)); 1593 return ret; 1594 } 1595 } 1596 if (lut) { 1597 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1598 1599 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1600 if (ret) { 1601 dev_info(&pf->pdev->dev, 1602 "Cannot set RSS lut, err %s aq_err %s\n", 1603 i40e_stat_str(hw, ret), 1604 i40e_aq_str(hw, hw->aq.asq_last_status)); 1605 return ret; 1606 } 1607 } 1608 return ret; 1609 } 1610 1611 /** 1612 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1613 * @vsi: VSI structure 1614 **/ 1615 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1616 { 1617 struct i40e_pf *pf = vsi->back; 1618 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1619 u8 *lut; 1620 int ret; 1621 1622 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1623 return 0; 1624 if (!vsi->rss_size) 1625 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1626 vsi->num_queue_pairs); 1627 if (!vsi->rss_size) 1628 return -EINVAL; 1629 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1630 if (!lut) 1631 return -ENOMEM; 1632 1633 /* Use the user configured hash keys and lookup table if there is one, 1634 * otherwise use default 1635 */ 1636 if (vsi->rss_lut_user) 1637 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1638 else 1639 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1640 if (vsi->rss_hkey_user) 1641 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1642 else 1643 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1644 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1645 kfree(lut); 1646 return ret; 1647 } 1648 1649 /** 1650 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1651 * @vsi: the VSI being configured, 1652 * @ctxt: VSI context structure 1653 * @enabled_tc: number of traffic classes to enable 1654 * 1655 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1656 **/ 1657 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1658 struct i40e_vsi_context *ctxt, 1659 u8 enabled_tc) 1660 { 1661 u16 qcount = 0, max_qcount, qmap, sections = 0; 1662 int i, override_q, pow, num_qps, ret; 1663 u8 netdev_tc = 0, offset = 0; 1664 1665 if (vsi->type != I40E_VSI_MAIN) 1666 return -EINVAL; 1667 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1668 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1669 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1670 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1671 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1672 1673 /* find the next higher power-of-2 of num queue pairs */ 1674 pow = ilog2(num_qps); 1675 if (!is_power_of_2(num_qps)) 1676 pow++; 1677 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1678 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1679 1680 /* Setup queue offset/count for all TCs for given VSI */ 1681 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1682 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1683 /* See if the given TC is enabled for the given VSI */ 1684 if (vsi->tc_config.enabled_tc & BIT(i)) { 1685 offset = vsi->mqprio_qopt.qopt.offset[i]; 1686 qcount = vsi->mqprio_qopt.qopt.count[i]; 1687 if (qcount > max_qcount) 1688 max_qcount = qcount; 1689 vsi->tc_config.tc_info[i].qoffset = offset; 1690 vsi->tc_config.tc_info[i].qcount = qcount; 1691 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1692 } else { 1693 /* TC is not enabled so set the offset to 1694 * default queue and allocate one queue 1695 * for the given TC. 1696 */ 1697 vsi->tc_config.tc_info[i].qoffset = 0; 1698 vsi->tc_config.tc_info[i].qcount = 1; 1699 vsi->tc_config.tc_info[i].netdev_tc = 0; 1700 } 1701 } 1702 1703 /* Set actual Tx/Rx queue pairs */ 1704 vsi->num_queue_pairs = offset + qcount; 1705 1706 /* Setup queue TC[0].qmap for given VSI context */ 1707 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1708 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1709 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1710 ctxt->info.valid_sections |= cpu_to_le16(sections); 1711 1712 /* Reconfigure RSS for main VSI with max queue count */ 1713 vsi->rss_size = max_qcount; 1714 ret = i40e_vsi_config_rss(vsi); 1715 if (ret) { 1716 dev_info(&vsi->back->pdev->dev, 1717 "Failed to reconfig rss for num_queues (%u)\n", 1718 max_qcount); 1719 return ret; 1720 } 1721 vsi->reconfig_rss = true; 1722 dev_dbg(&vsi->back->pdev->dev, 1723 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1724 1725 /* Find queue count available for channel VSIs and starting offset 1726 * for channel VSIs 1727 */ 1728 override_q = vsi->mqprio_qopt.qopt.count[0]; 1729 if (override_q && override_q < vsi->num_queue_pairs) { 1730 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1731 vsi->next_base_queue = override_q; 1732 } 1733 return 0; 1734 } 1735 1736 /** 1737 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1738 * @vsi: the VSI being setup 1739 * @ctxt: VSI context structure 1740 * @enabled_tc: Enabled TCs bitmap 1741 * @is_add: True if called before Add VSI 1742 * 1743 * Setup VSI queue mapping for enabled traffic classes. 1744 **/ 1745 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1746 struct i40e_vsi_context *ctxt, 1747 u8 enabled_tc, 1748 bool is_add) 1749 { 1750 struct i40e_pf *pf = vsi->back; 1751 u16 sections = 0; 1752 u8 netdev_tc = 0; 1753 u16 numtc = 1; 1754 u16 qcount; 1755 u8 offset; 1756 u16 qmap; 1757 int i; 1758 u16 num_tc_qps = 0; 1759 1760 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1761 offset = 0; 1762 1763 /* Number of queues per enabled TC */ 1764 num_tc_qps = vsi->alloc_queue_pairs; 1765 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1766 /* Find numtc from enabled TC bitmap */ 1767 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1768 if (enabled_tc & BIT(i)) /* TC is enabled */ 1769 numtc++; 1770 } 1771 if (!numtc) { 1772 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1773 numtc = 1; 1774 } 1775 num_tc_qps = num_tc_qps / numtc; 1776 num_tc_qps = min_t(int, num_tc_qps, 1777 i40e_pf_get_max_q_per_tc(pf)); 1778 } 1779 1780 vsi->tc_config.numtc = numtc; 1781 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1782 1783 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1784 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1785 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1786 1787 /* Setup queue offset/count for all TCs for given VSI */ 1788 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1789 /* See if the given TC is enabled for the given VSI */ 1790 if (vsi->tc_config.enabled_tc & BIT(i)) { 1791 /* TC is enabled */ 1792 int pow, num_qps; 1793 1794 switch (vsi->type) { 1795 case I40E_VSI_MAIN: 1796 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1797 I40E_FLAG_FD_ATR_ENABLED)) || 1798 vsi->tc_config.enabled_tc != 1) { 1799 qcount = min_t(int, pf->alloc_rss_size, 1800 num_tc_qps); 1801 break; 1802 } 1803 /* fall through */ 1804 case I40E_VSI_FDIR: 1805 case I40E_VSI_SRIOV: 1806 case I40E_VSI_VMDQ2: 1807 default: 1808 qcount = num_tc_qps; 1809 WARN_ON(i != 0); 1810 break; 1811 } 1812 vsi->tc_config.tc_info[i].qoffset = offset; 1813 vsi->tc_config.tc_info[i].qcount = qcount; 1814 1815 /* find the next higher power-of-2 of num queue pairs */ 1816 num_qps = qcount; 1817 pow = 0; 1818 while (num_qps && (BIT_ULL(pow) < qcount)) { 1819 pow++; 1820 num_qps >>= 1; 1821 } 1822 1823 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1824 qmap = 1825 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1826 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1827 1828 offset += qcount; 1829 } else { 1830 /* TC is not enabled so set the offset to 1831 * default queue and allocate one queue 1832 * for the given TC. 1833 */ 1834 vsi->tc_config.tc_info[i].qoffset = 0; 1835 vsi->tc_config.tc_info[i].qcount = 1; 1836 vsi->tc_config.tc_info[i].netdev_tc = 0; 1837 1838 qmap = 0; 1839 } 1840 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1841 } 1842 1843 /* Set actual Tx/Rx queue pairs */ 1844 vsi->num_queue_pairs = offset; 1845 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1846 if (vsi->req_queue_pairs > 0) 1847 vsi->num_queue_pairs = vsi->req_queue_pairs; 1848 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1849 vsi->num_queue_pairs = pf->num_lan_msix; 1850 } 1851 1852 /* Scheduler section valid can only be set for ADD VSI */ 1853 if (is_add) { 1854 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1855 1856 ctxt->info.up_enable_bits = enabled_tc; 1857 } 1858 if (vsi->type == I40E_VSI_SRIOV) { 1859 ctxt->info.mapping_flags |= 1860 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1861 for (i = 0; i < vsi->num_queue_pairs; i++) 1862 ctxt->info.queue_mapping[i] = 1863 cpu_to_le16(vsi->base_queue + i); 1864 } else { 1865 ctxt->info.mapping_flags |= 1866 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1867 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1868 } 1869 ctxt->info.valid_sections |= cpu_to_le16(sections); 1870 } 1871 1872 /** 1873 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1874 * @netdev: the netdevice 1875 * @addr: address to add 1876 * 1877 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1878 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1879 */ 1880 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1881 { 1882 struct i40e_netdev_priv *np = netdev_priv(netdev); 1883 struct i40e_vsi *vsi = np->vsi; 1884 1885 if (i40e_add_mac_filter(vsi, addr)) 1886 return 0; 1887 else 1888 return -ENOMEM; 1889 } 1890 1891 /** 1892 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1893 * @netdev: the netdevice 1894 * @addr: address to add 1895 * 1896 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1897 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1898 */ 1899 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1900 { 1901 struct i40e_netdev_priv *np = netdev_priv(netdev); 1902 struct i40e_vsi *vsi = np->vsi; 1903 1904 /* Under some circumstances, we might receive a request to delete 1905 * our own device address from our uc list. Because we store the 1906 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1907 * such requests and not delete our device address from this list. 1908 */ 1909 if (ether_addr_equal(addr, netdev->dev_addr)) 1910 return 0; 1911 1912 i40e_del_mac_filter(vsi, addr); 1913 1914 return 0; 1915 } 1916 1917 /** 1918 * i40e_set_rx_mode - NDO callback to set the netdev filters 1919 * @netdev: network interface device structure 1920 **/ 1921 static void i40e_set_rx_mode(struct net_device *netdev) 1922 { 1923 struct i40e_netdev_priv *np = netdev_priv(netdev); 1924 struct i40e_vsi *vsi = np->vsi; 1925 1926 spin_lock_bh(&vsi->mac_filter_hash_lock); 1927 1928 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1929 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1930 1931 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1932 1933 /* check for other flag changes */ 1934 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1935 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1936 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1937 } 1938 } 1939 1940 /** 1941 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1942 * @vsi: Pointer to VSI struct 1943 * @from: Pointer to list which contains MAC filter entries - changes to 1944 * those entries needs to be undone. 1945 * 1946 * MAC filter entries from this list were slated for deletion. 1947 **/ 1948 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1949 struct hlist_head *from) 1950 { 1951 struct i40e_mac_filter *f; 1952 struct hlist_node *h; 1953 1954 hlist_for_each_entry_safe(f, h, from, hlist) { 1955 u64 key = i40e_addr_to_hkey(f->macaddr); 1956 1957 /* Move the element back into MAC filter list*/ 1958 hlist_del(&f->hlist); 1959 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1960 } 1961 } 1962 1963 /** 1964 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1965 * @vsi: Pointer to vsi struct 1966 * @from: Pointer to list which contains MAC filter entries - changes to 1967 * those entries needs to be undone. 1968 * 1969 * MAC filter entries from this list were slated for addition. 1970 **/ 1971 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1972 struct hlist_head *from) 1973 { 1974 struct i40e_new_mac_filter *new; 1975 struct hlist_node *h; 1976 1977 hlist_for_each_entry_safe(new, h, from, hlist) { 1978 /* We can simply free the wrapper structure */ 1979 hlist_del(&new->hlist); 1980 kfree(new); 1981 } 1982 } 1983 1984 /** 1985 * i40e_next_entry - Get the next non-broadcast filter from a list 1986 * @next: pointer to filter in list 1987 * 1988 * Returns the next non-broadcast filter in the list. Required so that we 1989 * ignore broadcast filters within the list, since these are not handled via 1990 * the normal firmware update path. 1991 */ 1992 static 1993 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 1994 { 1995 hlist_for_each_entry_continue(next, hlist) { 1996 if (!is_broadcast_ether_addr(next->f->macaddr)) 1997 return next; 1998 } 1999 2000 return NULL; 2001 } 2002 2003 /** 2004 * i40e_update_filter_state - Update filter state based on return data 2005 * from firmware 2006 * @count: Number of filters added 2007 * @add_list: return data from fw 2008 * @add_head: pointer to first filter in current batch 2009 * 2010 * MAC filter entries from list were slated to be added to device. Returns 2011 * number of successful filters. Note that 0 does NOT mean success! 2012 **/ 2013 static int 2014 i40e_update_filter_state(int count, 2015 struct i40e_aqc_add_macvlan_element_data *add_list, 2016 struct i40e_new_mac_filter *add_head) 2017 { 2018 int retval = 0; 2019 int i; 2020 2021 for (i = 0; i < count; i++) { 2022 /* Always check status of each filter. We don't need to check 2023 * the firmware return status because we pre-set the filter 2024 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2025 * request to the adminq. Thus, if it no longer matches then 2026 * we know the filter is active. 2027 */ 2028 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2029 add_head->state = I40E_FILTER_FAILED; 2030 } else { 2031 add_head->state = I40E_FILTER_ACTIVE; 2032 retval++; 2033 } 2034 2035 add_head = i40e_next_filter(add_head); 2036 if (!add_head) 2037 break; 2038 } 2039 2040 return retval; 2041 } 2042 2043 /** 2044 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2045 * @vsi: ptr to the VSI 2046 * @vsi_name: name to display in messages 2047 * @list: the list of filters to send to firmware 2048 * @num_del: the number of filters to delete 2049 * @retval: Set to -EIO on failure to delete 2050 * 2051 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2052 * *retval instead of a return value so that success does not force ret_val to 2053 * be set to 0. This ensures that a sequence of calls to this function 2054 * preserve the previous value of *retval on successful delete. 2055 */ 2056 static 2057 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2058 struct i40e_aqc_remove_macvlan_element_data *list, 2059 int num_del, int *retval) 2060 { 2061 struct i40e_hw *hw = &vsi->back->hw; 2062 i40e_status aq_ret; 2063 int aq_err; 2064 2065 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2066 aq_err = hw->aq.asq_last_status; 2067 2068 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2069 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2070 *retval = -EIO; 2071 dev_info(&vsi->back->pdev->dev, 2072 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2073 vsi_name, i40e_stat_str(hw, aq_ret), 2074 i40e_aq_str(hw, aq_err)); 2075 } 2076 } 2077 2078 /** 2079 * i40e_aqc_add_filters - Request firmware to add a set of filters 2080 * @vsi: ptr to the VSI 2081 * @vsi_name: name to display in messages 2082 * @list: the list of filters to send to firmware 2083 * @add_head: Position in the add hlist 2084 * @num_add: the number of filters to add 2085 * 2086 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2087 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2088 * space for more filters. 2089 */ 2090 static 2091 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2092 struct i40e_aqc_add_macvlan_element_data *list, 2093 struct i40e_new_mac_filter *add_head, 2094 int num_add) 2095 { 2096 struct i40e_hw *hw = &vsi->back->hw; 2097 int aq_err, fcnt; 2098 2099 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2100 aq_err = hw->aq.asq_last_status; 2101 fcnt = i40e_update_filter_state(num_add, list, add_head); 2102 2103 if (fcnt != num_add) { 2104 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2105 dev_warn(&vsi->back->pdev->dev, 2106 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2107 i40e_aq_str(hw, aq_err), 2108 vsi_name); 2109 } 2110 } 2111 2112 /** 2113 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2114 * @vsi: pointer to the VSI 2115 * @vsi_name: the VSI name 2116 * @f: filter data 2117 * 2118 * This function sets or clears the promiscuous broadcast flags for VLAN 2119 * filters in order to properly receive broadcast frames. Assumes that only 2120 * broadcast filters are passed. 2121 * 2122 * Returns status indicating success or failure; 2123 **/ 2124 static i40e_status 2125 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2126 struct i40e_mac_filter *f) 2127 { 2128 bool enable = f->state == I40E_FILTER_NEW; 2129 struct i40e_hw *hw = &vsi->back->hw; 2130 i40e_status aq_ret; 2131 2132 if (f->vlan == I40E_VLAN_ANY) { 2133 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2134 vsi->seid, 2135 enable, 2136 NULL); 2137 } else { 2138 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2139 vsi->seid, 2140 enable, 2141 f->vlan, 2142 NULL); 2143 } 2144 2145 if (aq_ret) { 2146 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2147 dev_warn(&vsi->back->pdev->dev, 2148 "Error %s, forcing overflow promiscuous on %s\n", 2149 i40e_aq_str(hw, hw->aq.asq_last_status), 2150 vsi_name); 2151 } 2152 2153 return aq_ret; 2154 } 2155 2156 /** 2157 * i40e_set_promiscuous - set promiscuous mode 2158 * @pf: board private structure 2159 * @promisc: promisc on or off 2160 * 2161 * There are different ways of setting promiscuous mode on a PF depending on 2162 * what state/environment we're in. This identifies and sets it appropriately. 2163 * Returns 0 on success. 2164 **/ 2165 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2166 { 2167 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2168 struct i40e_hw *hw = &pf->hw; 2169 i40e_status aq_ret; 2170 2171 if (vsi->type == I40E_VSI_MAIN && 2172 pf->lan_veb != I40E_NO_VEB && 2173 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2174 /* set defport ON for Main VSI instead of true promisc 2175 * this way we will get all unicast/multicast and VLAN 2176 * promisc behavior but will not get VF or VMDq traffic 2177 * replicated on the Main VSI. 2178 */ 2179 if (promisc) 2180 aq_ret = i40e_aq_set_default_vsi(hw, 2181 vsi->seid, 2182 NULL); 2183 else 2184 aq_ret = i40e_aq_clear_default_vsi(hw, 2185 vsi->seid, 2186 NULL); 2187 if (aq_ret) { 2188 dev_info(&pf->pdev->dev, 2189 "Set default VSI failed, err %s, aq_err %s\n", 2190 i40e_stat_str(hw, aq_ret), 2191 i40e_aq_str(hw, hw->aq.asq_last_status)); 2192 } 2193 } else { 2194 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2195 hw, 2196 vsi->seid, 2197 promisc, NULL, 2198 true); 2199 if (aq_ret) { 2200 dev_info(&pf->pdev->dev, 2201 "set unicast promisc failed, err %s, aq_err %s\n", 2202 i40e_stat_str(hw, aq_ret), 2203 i40e_aq_str(hw, hw->aq.asq_last_status)); 2204 } 2205 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2206 hw, 2207 vsi->seid, 2208 promisc, NULL); 2209 if (aq_ret) { 2210 dev_info(&pf->pdev->dev, 2211 "set multicast promisc failed, err %s, aq_err %s\n", 2212 i40e_stat_str(hw, aq_ret), 2213 i40e_aq_str(hw, hw->aq.asq_last_status)); 2214 } 2215 } 2216 2217 if (!aq_ret) 2218 pf->cur_promisc = promisc; 2219 2220 return aq_ret; 2221 } 2222 2223 /** 2224 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2225 * @vsi: ptr to the VSI 2226 * 2227 * Push any outstanding VSI filter changes through the AdminQ. 2228 * 2229 * Returns 0 or error value 2230 **/ 2231 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2232 { 2233 struct hlist_head tmp_add_list, tmp_del_list; 2234 struct i40e_mac_filter *f; 2235 struct i40e_new_mac_filter *new, *add_head = NULL; 2236 struct i40e_hw *hw = &vsi->back->hw; 2237 bool old_overflow, new_overflow; 2238 unsigned int failed_filters = 0; 2239 unsigned int vlan_filters = 0; 2240 char vsi_name[16] = "PF"; 2241 int filter_list_len = 0; 2242 i40e_status aq_ret = 0; 2243 u32 changed_flags = 0; 2244 struct hlist_node *h; 2245 struct i40e_pf *pf; 2246 int num_add = 0; 2247 int num_del = 0; 2248 int retval = 0; 2249 u16 cmd_flags; 2250 int list_size; 2251 int bkt; 2252 2253 /* empty array typed pointers, kcalloc later */ 2254 struct i40e_aqc_add_macvlan_element_data *add_list; 2255 struct i40e_aqc_remove_macvlan_element_data *del_list; 2256 2257 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2258 usleep_range(1000, 2000); 2259 pf = vsi->back; 2260 2261 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2262 2263 if (vsi->netdev) { 2264 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2265 vsi->current_netdev_flags = vsi->netdev->flags; 2266 } 2267 2268 INIT_HLIST_HEAD(&tmp_add_list); 2269 INIT_HLIST_HEAD(&tmp_del_list); 2270 2271 if (vsi->type == I40E_VSI_SRIOV) 2272 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2273 else if (vsi->type != I40E_VSI_MAIN) 2274 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2275 2276 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2277 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2278 2279 spin_lock_bh(&vsi->mac_filter_hash_lock); 2280 /* Create a list of filters to delete. */ 2281 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2282 if (f->state == I40E_FILTER_REMOVE) { 2283 /* Move the element into temporary del_list */ 2284 hash_del(&f->hlist); 2285 hlist_add_head(&f->hlist, &tmp_del_list); 2286 2287 /* Avoid counting removed filters */ 2288 continue; 2289 } 2290 if (f->state == I40E_FILTER_NEW) { 2291 /* Create a temporary i40e_new_mac_filter */ 2292 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2293 if (!new) 2294 goto err_no_memory_locked; 2295 2296 /* Store pointer to the real filter */ 2297 new->f = f; 2298 new->state = f->state; 2299 2300 /* Add it to the hash list */ 2301 hlist_add_head(&new->hlist, &tmp_add_list); 2302 } 2303 2304 /* Count the number of active (current and new) VLAN 2305 * filters we have now. Does not count filters which 2306 * are marked for deletion. 2307 */ 2308 if (f->vlan > 0) 2309 vlan_filters++; 2310 } 2311 2312 retval = i40e_correct_mac_vlan_filters(vsi, 2313 &tmp_add_list, 2314 &tmp_del_list, 2315 vlan_filters); 2316 if (retval) 2317 goto err_no_memory_locked; 2318 2319 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2320 } 2321 2322 /* Now process 'del_list' outside the lock */ 2323 if (!hlist_empty(&tmp_del_list)) { 2324 filter_list_len = hw->aq.asq_buf_size / 2325 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2326 list_size = filter_list_len * 2327 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2328 del_list = kzalloc(list_size, GFP_ATOMIC); 2329 if (!del_list) 2330 goto err_no_memory; 2331 2332 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2333 cmd_flags = 0; 2334 2335 /* handle broadcast filters by updating the broadcast 2336 * promiscuous flag and release filter list. 2337 */ 2338 if (is_broadcast_ether_addr(f->macaddr)) { 2339 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2340 2341 hlist_del(&f->hlist); 2342 kfree(f); 2343 continue; 2344 } 2345 2346 /* add to delete list */ 2347 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2348 if (f->vlan == I40E_VLAN_ANY) { 2349 del_list[num_del].vlan_tag = 0; 2350 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2351 } else { 2352 del_list[num_del].vlan_tag = 2353 cpu_to_le16((u16)(f->vlan)); 2354 } 2355 2356 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2357 del_list[num_del].flags = cmd_flags; 2358 num_del++; 2359 2360 /* flush a full buffer */ 2361 if (num_del == filter_list_len) { 2362 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2363 num_del, &retval); 2364 memset(del_list, 0, list_size); 2365 num_del = 0; 2366 } 2367 /* Release memory for MAC filter entries which were 2368 * synced up with HW. 2369 */ 2370 hlist_del(&f->hlist); 2371 kfree(f); 2372 } 2373 2374 if (num_del) { 2375 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2376 num_del, &retval); 2377 } 2378 2379 kfree(del_list); 2380 del_list = NULL; 2381 } 2382 2383 if (!hlist_empty(&tmp_add_list)) { 2384 /* Do all the adds now. */ 2385 filter_list_len = hw->aq.asq_buf_size / 2386 sizeof(struct i40e_aqc_add_macvlan_element_data); 2387 list_size = filter_list_len * 2388 sizeof(struct i40e_aqc_add_macvlan_element_data); 2389 add_list = kzalloc(list_size, GFP_ATOMIC); 2390 if (!add_list) 2391 goto err_no_memory; 2392 2393 num_add = 0; 2394 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2395 /* handle broadcast filters by updating the broadcast 2396 * promiscuous flag instead of adding a MAC filter. 2397 */ 2398 if (is_broadcast_ether_addr(new->f->macaddr)) { 2399 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2400 new->f)) 2401 new->state = I40E_FILTER_FAILED; 2402 else 2403 new->state = I40E_FILTER_ACTIVE; 2404 continue; 2405 } 2406 2407 /* add to add array */ 2408 if (num_add == 0) 2409 add_head = new; 2410 cmd_flags = 0; 2411 ether_addr_copy(add_list[num_add].mac_addr, 2412 new->f->macaddr); 2413 if (new->f->vlan == I40E_VLAN_ANY) { 2414 add_list[num_add].vlan_tag = 0; 2415 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2416 } else { 2417 add_list[num_add].vlan_tag = 2418 cpu_to_le16((u16)(new->f->vlan)); 2419 } 2420 add_list[num_add].queue_number = 0; 2421 /* set invalid match method for later detection */ 2422 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2423 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2424 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2425 num_add++; 2426 2427 /* flush a full buffer */ 2428 if (num_add == filter_list_len) { 2429 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2430 add_head, num_add); 2431 memset(add_list, 0, list_size); 2432 num_add = 0; 2433 } 2434 } 2435 if (num_add) { 2436 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2437 num_add); 2438 } 2439 /* Now move all of the filters from the temp add list back to 2440 * the VSI's list. 2441 */ 2442 spin_lock_bh(&vsi->mac_filter_hash_lock); 2443 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2444 /* Only update the state if we're still NEW */ 2445 if (new->f->state == I40E_FILTER_NEW) 2446 new->f->state = new->state; 2447 hlist_del(&new->hlist); 2448 kfree(new); 2449 } 2450 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2451 kfree(add_list); 2452 add_list = NULL; 2453 } 2454 2455 /* Determine the number of active and failed filters. */ 2456 spin_lock_bh(&vsi->mac_filter_hash_lock); 2457 vsi->active_filters = 0; 2458 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2459 if (f->state == I40E_FILTER_ACTIVE) 2460 vsi->active_filters++; 2461 else if (f->state == I40E_FILTER_FAILED) 2462 failed_filters++; 2463 } 2464 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2465 2466 /* Check if we are able to exit overflow promiscuous mode. We can 2467 * safely exit if we didn't just enter, we no longer have any failed 2468 * filters, and we have reduced filters below the threshold value. 2469 */ 2470 if (old_overflow && !failed_filters && 2471 vsi->active_filters < vsi->promisc_threshold) { 2472 dev_info(&pf->pdev->dev, 2473 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2474 vsi_name); 2475 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2476 vsi->promisc_threshold = 0; 2477 } 2478 2479 /* if the VF is not trusted do not do promisc */ 2480 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2481 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2482 goto out; 2483 } 2484 2485 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2486 2487 /* If we are entering overflow promiscuous, we need to calculate a new 2488 * threshold for when we are safe to exit 2489 */ 2490 if (!old_overflow && new_overflow) 2491 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2492 2493 /* check for changes in promiscuous modes */ 2494 if (changed_flags & IFF_ALLMULTI) { 2495 bool cur_multipromisc; 2496 2497 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2498 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2499 vsi->seid, 2500 cur_multipromisc, 2501 NULL); 2502 if (aq_ret) { 2503 retval = i40e_aq_rc_to_posix(aq_ret, 2504 hw->aq.asq_last_status); 2505 dev_info(&pf->pdev->dev, 2506 "set multi promisc failed on %s, err %s aq_err %s\n", 2507 vsi_name, 2508 i40e_stat_str(hw, aq_ret), 2509 i40e_aq_str(hw, hw->aq.asq_last_status)); 2510 } 2511 } 2512 2513 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2514 bool cur_promisc; 2515 2516 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2517 new_overflow); 2518 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2519 if (aq_ret) { 2520 retval = i40e_aq_rc_to_posix(aq_ret, 2521 hw->aq.asq_last_status); 2522 dev_info(&pf->pdev->dev, 2523 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2524 cur_promisc ? "on" : "off", 2525 vsi_name, 2526 i40e_stat_str(hw, aq_ret), 2527 i40e_aq_str(hw, hw->aq.asq_last_status)); 2528 } 2529 } 2530 out: 2531 /* if something went wrong then set the changed flag so we try again */ 2532 if (retval) 2533 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2534 2535 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2536 return retval; 2537 2538 err_no_memory: 2539 /* Restore elements on the temporary add and delete lists */ 2540 spin_lock_bh(&vsi->mac_filter_hash_lock); 2541 err_no_memory_locked: 2542 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2543 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2544 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2545 2546 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2547 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2548 return -ENOMEM; 2549 } 2550 2551 /** 2552 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2553 * @pf: board private structure 2554 **/ 2555 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2556 { 2557 int v; 2558 2559 if (!pf) 2560 return; 2561 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2562 return; 2563 2564 for (v = 0; v < pf->num_alloc_vsi; v++) { 2565 if (pf->vsi[v] && 2566 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2567 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2568 2569 if (ret) { 2570 /* come back and try again later */ 2571 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2572 pf->state); 2573 break; 2574 } 2575 } 2576 } 2577 } 2578 2579 /** 2580 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2581 * @vsi: the vsi 2582 **/ 2583 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2584 { 2585 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2586 return I40E_RXBUFFER_2048; 2587 else 2588 return I40E_RXBUFFER_3072; 2589 } 2590 2591 /** 2592 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2593 * @netdev: network interface device structure 2594 * @new_mtu: new value for maximum frame size 2595 * 2596 * Returns 0 on success, negative on failure 2597 **/ 2598 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2599 { 2600 struct i40e_netdev_priv *np = netdev_priv(netdev); 2601 struct i40e_vsi *vsi = np->vsi; 2602 struct i40e_pf *pf = vsi->back; 2603 2604 if (i40e_enabled_xdp_vsi(vsi)) { 2605 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2606 2607 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2608 return -EINVAL; 2609 } 2610 2611 netdev_info(netdev, "changing MTU from %d to %d\n", 2612 netdev->mtu, new_mtu); 2613 netdev->mtu = new_mtu; 2614 if (netif_running(netdev)) 2615 i40e_vsi_reinit_locked(vsi); 2616 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2617 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2618 return 0; 2619 } 2620 2621 /** 2622 * i40e_ioctl - Access the hwtstamp interface 2623 * @netdev: network interface device structure 2624 * @ifr: interface request data 2625 * @cmd: ioctl command 2626 **/ 2627 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2628 { 2629 struct i40e_netdev_priv *np = netdev_priv(netdev); 2630 struct i40e_pf *pf = np->vsi->back; 2631 2632 switch (cmd) { 2633 case SIOCGHWTSTAMP: 2634 return i40e_ptp_get_ts_config(pf, ifr); 2635 case SIOCSHWTSTAMP: 2636 return i40e_ptp_set_ts_config(pf, ifr); 2637 default: 2638 return -EOPNOTSUPP; 2639 } 2640 } 2641 2642 /** 2643 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2644 * @vsi: the vsi being adjusted 2645 **/ 2646 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2647 { 2648 struct i40e_vsi_context ctxt; 2649 i40e_status ret; 2650 2651 if ((vsi->info.valid_sections & 2652 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2653 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2654 return; /* already enabled */ 2655 2656 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2657 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2658 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2659 2660 ctxt.seid = vsi->seid; 2661 ctxt.info = vsi->info; 2662 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2663 if (ret) { 2664 dev_info(&vsi->back->pdev->dev, 2665 "update vlan stripping failed, err %s aq_err %s\n", 2666 i40e_stat_str(&vsi->back->hw, ret), 2667 i40e_aq_str(&vsi->back->hw, 2668 vsi->back->hw.aq.asq_last_status)); 2669 } 2670 } 2671 2672 /** 2673 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2674 * @vsi: the vsi being adjusted 2675 **/ 2676 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2677 { 2678 struct i40e_vsi_context ctxt; 2679 i40e_status ret; 2680 2681 if ((vsi->info.valid_sections & 2682 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2683 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2684 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2685 return; /* already disabled */ 2686 2687 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2688 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2689 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2690 2691 ctxt.seid = vsi->seid; 2692 ctxt.info = vsi->info; 2693 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2694 if (ret) { 2695 dev_info(&vsi->back->pdev->dev, 2696 "update vlan stripping failed, err %s aq_err %s\n", 2697 i40e_stat_str(&vsi->back->hw, ret), 2698 i40e_aq_str(&vsi->back->hw, 2699 vsi->back->hw.aq.asq_last_status)); 2700 } 2701 } 2702 2703 /** 2704 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2705 * @vsi: the vsi being configured 2706 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2707 * 2708 * This is a helper function for adding a new MAC/VLAN filter with the 2709 * specified VLAN for each existing MAC address already in the hash table. 2710 * This function does *not* perform any accounting to update filters based on 2711 * VLAN mode. 2712 * 2713 * NOTE: this function expects to be called while under the 2714 * mac_filter_hash_lock 2715 **/ 2716 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2717 { 2718 struct i40e_mac_filter *f, *add_f; 2719 struct hlist_node *h; 2720 int bkt; 2721 2722 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2723 if (f->state == I40E_FILTER_REMOVE) 2724 continue; 2725 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2726 if (!add_f) { 2727 dev_info(&vsi->back->pdev->dev, 2728 "Could not add vlan filter %d for %pM\n", 2729 vid, f->macaddr); 2730 return -ENOMEM; 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2739 * @vsi: the VSI being configured 2740 * @vid: VLAN id to be added 2741 **/ 2742 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2743 { 2744 int err; 2745 2746 if (vsi->info.pvid) 2747 return -EINVAL; 2748 2749 /* The network stack will attempt to add VID=0, with the intention to 2750 * receive priority tagged packets with a VLAN of 0. Our HW receives 2751 * these packets by default when configured to receive untagged 2752 * packets, so we don't need to add a filter for this case. 2753 * Additionally, HW interprets adding a VID=0 filter as meaning to 2754 * receive *only* tagged traffic and stops receiving untagged traffic. 2755 * Thus, we do not want to actually add a filter for VID=0 2756 */ 2757 if (!vid) 2758 return 0; 2759 2760 /* Locked once because all functions invoked below iterates list*/ 2761 spin_lock_bh(&vsi->mac_filter_hash_lock); 2762 err = i40e_add_vlan_all_mac(vsi, vid); 2763 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2764 if (err) 2765 return err; 2766 2767 /* schedule our worker thread which will take care of 2768 * applying the new filter changes 2769 */ 2770 i40e_service_event_schedule(vsi->back); 2771 return 0; 2772 } 2773 2774 /** 2775 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2776 * @vsi: the vsi being configured 2777 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2778 * 2779 * This function should be used to remove all VLAN filters which match the 2780 * given VID. It does not schedule the service event and does not take the 2781 * mac_filter_hash_lock so it may be combined with other operations under 2782 * a single invocation of the mac_filter_hash_lock. 2783 * 2784 * NOTE: this function expects to be called while under the 2785 * mac_filter_hash_lock 2786 */ 2787 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2788 { 2789 struct i40e_mac_filter *f; 2790 struct hlist_node *h; 2791 int bkt; 2792 2793 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2794 if (f->vlan == vid) 2795 __i40e_del_filter(vsi, f); 2796 } 2797 } 2798 2799 /** 2800 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2801 * @vsi: the VSI being configured 2802 * @vid: VLAN id to be removed 2803 **/ 2804 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2805 { 2806 if (!vid || vsi->info.pvid) 2807 return; 2808 2809 spin_lock_bh(&vsi->mac_filter_hash_lock); 2810 i40e_rm_vlan_all_mac(vsi, vid); 2811 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2812 2813 /* schedule our worker thread which will take care of 2814 * applying the new filter changes 2815 */ 2816 i40e_service_event_schedule(vsi->back); 2817 } 2818 2819 /** 2820 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2821 * @netdev: network interface to be adjusted 2822 * @proto: unused protocol value 2823 * @vid: vlan id to be added 2824 * 2825 * net_device_ops implementation for adding vlan ids 2826 **/ 2827 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2828 __always_unused __be16 proto, u16 vid) 2829 { 2830 struct i40e_netdev_priv *np = netdev_priv(netdev); 2831 struct i40e_vsi *vsi = np->vsi; 2832 int ret = 0; 2833 2834 if (vid >= VLAN_N_VID) 2835 return -EINVAL; 2836 2837 ret = i40e_vsi_add_vlan(vsi, vid); 2838 if (!ret) 2839 set_bit(vid, vsi->active_vlans); 2840 2841 return ret; 2842 } 2843 2844 /** 2845 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2846 * @netdev: network interface to be adjusted 2847 * @proto: unused protocol value 2848 * @vid: vlan id to be added 2849 **/ 2850 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2851 __always_unused __be16 proto, u16 vid) 2852 { 2853 struct i40e_netdev_priv *np = netdev_priv(netdev); 2854 struct i40e_vsi *vsi = np->vsi; 2855 2856 if (vid >= VLAN_N_VID) 2857 return; 2858 set_bit(vid, vsi->active_vlans); 2859 } 2860 2861 /** 2862 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2863 * @netdev: network interface to be adjusted 2864 * @proto: unused protocol value 2865 * @vid: vlan id to be removed 2866 * 2867 * net_device_ops implementation for removing vlan ids 2868 **/ 2869 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2870 __always_unused __be16 proto, u16 vid) 2871 { 2872 struct i40e_netdev_priv *np = netdev_priv(netdev); 2873 struct i40e_vsi *vsi = np->vsi; 2874 2875 /* return code is ignored as there is nothing a user 2876 * can do about failure to remove and a log message was 2877 * already printed from the other function 2878 */ 2879 i40e_vsi_kill_vlan(vsi, vid); 2880 2881 clear_bit(vid, vsi->active_vlans); 2882 2883 return 0; 2884 } 2885 2886 /** 2887 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2888 * @vsi: the vsi being brought back up 2889 **/ 2890 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2891 { 2892 u16 vid; 2893 2894 if (!vsi->netdev) 2895 return; 2896 2897 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2898 i40e_vlan_stripping_enable(vsi); 2899 else 2900 i40e_vlan_stripping_disable(vsi); 2901 2902 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2903 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2904 vid); 2905 } 2906 2907 /** 2908 * i40e_vsi_add_pvid - Add pvid for the VSI 2909 * @vsi: the vsi being adjusted 2910 * @vid: the vlan id to set as a PVID 2911 **/ 2912 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2913 { 2914 struct i40e_vsi_context ctxt; 2915 i40e_status ret; 2916 2917 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2918 vsi->info.pvid = cpu_to_le16(vid); 2919 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2920 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2921 I40E_AQ_VSI_PVLAN_EMOD_STR; 2922 2923 ctxt.seid = vsi->seid; 2924 ctxt.info = vsi->info; 2925 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2926 if (ret) { 2927 dev_info(&vsi->back->pdev->dev, 2928 "add pvid failed, err %s aq_err %s\n", 2929 i40e_stat_str(&vsi->back->hw, ret), 2930 i40e_aq_str(&vsi->back->hw, 2931 vsi->back->hw.aq.asq_last_status)); 2932 return -ENOENT; 2933 } 2934 2935 return 0; 2936 } 2937 2938 /** 2939 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2940 * @vsi: the vsi being adjusted 2941 * 2942 * Just use the vlan_rx_register() service to put it back to normal 2943 **/ 2944 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2945 { 2946 i40e_vlan_stripping_disable(vsi); 2947 2948 vsi->info.pvid = 0; 2949 } 2950 2951 /** 2952 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2953 * @vsi: ptr to the VSI 2954 * 2955 * If this function returns with an error, then it's possible one or 2956 * more of the rings is populated (while the rest are not). It is the 2957 * callers duty to clean those orphaned rings. 2958 * 2959 * Return 0 on success, negative on failure 2960 **/ 2961 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2962 { 2963 int i, err = 0; 2964 2965 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2966 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2967 2968 if (!i40e_enabled_xdp_vsi(vsi)) 2969 return err; 2970 2971 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2972 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2973 2974 return err; 2975 } 2976 2977 /** 2978 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 2979 * @vsi: ptr to the VSI 2980 * 2981 * Free VSI's transmit software resources 2982 **/ 2983 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 2984 { 2985 int i; 2986 2987 if (vsi->tx_rings) { 2988 for (i = 0; i < vsi->num_queue_pairs; i++) 2989 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2990 i40e_free_tx_resources(vsi->tx_rings[i]); 2991 } 2992 2993 if (vsi->xdp_rings) { 2994 for (i = 0; i < vsi->num_queue_pairs; i++) 2995 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2996 i40e_free_tx_resources(vsi->xdp_rings[i]); 2997 } 2998 } 2999 3000 /** 3001 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3002 * @vsi: ptr to the VSI 3003 * 3004 * If this function returns with an error, then it's possible one or 3005 * more of the rings is populated (while the rest are not). It is the 3006 * callers duty to clean those orphaned rings. 3007 * 3008 * Return 0 on success, negative on failure 3009 **/ 3010 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3011 { 3012 int i, err = 0; 3013 3014 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3015 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3016 return err; 3017 } 3018 3019 /** 3020 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3021 * @vsi: ptr to the VSI 3022 * 3023 * Free all receive software resources 3024 **/ 3025 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3026 { 3027 int i; 3028 3029 if (!vsi->rx_rings) 3030 return; 3031 3032 for (i = 0; i < vsi->num_queue_pairs; i++) 3033 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3034 i40e_free_rx_resources(vsi->rx_rings[i]); 3035 } 3036 3037 /** 3038 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3039 * @ring: The Tx ring to configure 3040 * 3041 * This enables/disables XPS for a given Tx descriptor ring 3042 * based on the TCs enabled for the VSI that ring belongs to. 3043 **/ 3044 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3045 { 3046 int cpu; 3047 3048 if (!ring->q_vector || !ring->netdev || ring->ch) 3049 return; 3050 3051 /* We only initialize XPS once, so as not to overwrite user settings */ 3052 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3053 return; 3054 3055 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3056 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3057 ring->queue_index); 3058 } 3059 3060 /** 3061 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3062 * @ring: The Tx ring to configure 3063 * 3064 * Configure the Tx descriptor ring in the HMC context. 3065 **/ 3066 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3067 { 3068 struct i40e_vsi *vsi = ring->vsi; 3069 u16 pf_q = vsi->base_queue + ring->queue_index; 3070 struct i40e_hw *hw = &vsi->back->hw; 3071 struct i40e_hmc_obj_txq tx_ctx; 3072 i40e_status err = 0; 3073 u32 qtx_ctl = 0; 3074 3075 /* some ATR related tx ring init */ 3076 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3077 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3078 ring->atr_count = 0; 3079 } else { 3080 ring->atr_sample_rate = 0; 3081 } 3082 3083 /* configure XPS */ 3084 i40e_config_xps_tx_ring(ring); 3085 3086 /* clear the context structure first */ 3087 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3088 3089 tx_ctx.new_context = 1; 3090 tx_ctx.base = (ring->dma / 128); 3091 tx_ctx.qlen = ring->count; 3092 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3093 I40E_FLAG_FD_ATR_ENABLED)); 3094 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3095 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3096 if (vsi->type != I40E_VSI_FDIR) 3097 tx_ctx.head_wb_ena = 1; 3098 tx_ctx.head_wb_addr = ring->dma + 3099 (ring->count * sizeof(struct i40e_tx_desc)); 3100 3101 /* As part of VSI creation/update, FW allocates certain 3102 * Tx arbitration queue sets for each TC enabled for 3103 * the VSI. The FW returns the handles to these queue 3104 * sets as part of the response buffer to Add VSI, 3105 * Update VSI, etc. AQ commands. It is expected that 3106 * these queue set handles be associated with the Tx 3107 * queues by the driver as part of the TX queue context 3108 * initialization. This has to be done regardless of 3109 * DCB as by default everything is mapped to TC0. 3110 */ 3111 3112 if (ring->ch) 3113 tx_ctx.rdylist = 3114 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3115 3116 else 3117 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3118 3119 tx_ctx.rdylist_act = 0; 3120 3121 /* clear the context in the HMC */ 3122 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3123 if (err) { 3124 dev_info(&vsi->back->pdev->dev, 3125 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3126 ring->queue_index, pf_q, err); 3127 return -ENOMEM; 3128 } 3129 3130 /* set the context in the HMC */ 3131 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3132 if (err) { 3133 dev_info(&vsi->back->pdev->dev, 3134 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3135 ring->queue_index, pf_q, err); 3136 return -ENOMEM; 3137 } 3138 3139 /* Now associate this queue with this PCI function */ 3140 if (ring->ch) { 3141 if (ring->ch->type == I40E_VSI_VMDQ2) 3142 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3143 else 3144 return -EINVAL; 3145 3146 qtx_ctl |= (ring->ch->vsi_number << 3147 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3148 I40E_QTX_CTL_VFVM_INDX_MASK; 3149 } else { 3150 if (vsi->type == I40E_VSI_VMDQ2) { 3151 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3152 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3153 I40E_QTX_CTL_VFVM_INDX_MASK; 3154 } else { 3155 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3156 } 3157 } 3158 3159 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3160 I40E_QTX_CTL_PF_INDX_MASK); 3161 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3162 i40e_flush(hw); 3163 3164 /* cache tail off for easier writes later */ 3165 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3166 3167 return 0; 3168 } 3169 3170 /** 3171 * i40e_configure_rx_ring - Configure a receive ring context 3172 * @ring: The Rx ring to configure 3173 * 3174 * Configure the Rx descriptor ring in the HMC context. 3175 **/ 3176 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3177 { 3178 struct i40e_vsi *vsi = ring->vsi; 3179 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3180 u16 pf_q = vsi->base_queue + ring->queue_index; 3181 struct i40e_hw *hw = &vsi->back->hw; 3182 struct i40e_hmc_obj_rxq rx_ctx; 3183 i40e_status err = 0; 3184 3185 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3186 3187 /* clear the context structure first */ 3188 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3189 3190 ring->rx_buf_len = vsi->rx_buf_len; 3191 3192 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3193 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3194 3195 rx_ctx.base = (ring->dma / 128); 3196 rx_ctx.qlen = ring->count; 3197 3198 /* use 32 byte descriptors */ 3199 rx_ctx.dsize = 1; 3200 3201 /* descriptor type is always zero 3202 * rx_ctx.dtype = 0; 3203 */ 3204 rx_ctx.hsplit_0 = 0; 3205 3206 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3207 if (hw->revision_id == 0) 3208 rx_ctx.lrxqthresh = 0; 3209 else 3210 rx_ctx.lrxqthresh = 1; 3211 rx_ctx.crcstrip = 1; 3212 rx_ctx.l2tsel = 1; 3213 /* this controls whether VLAN is stripped from inner headers */ 3214 rx_ctx.showiv = 0; 3215 /* set the prefena field to 1 because the manual says to */ 3216 rx_ctx.prefena = 1; 3217 3218 /* clear the context in the HMC */ 3219 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3220 if (err) { 3221 dev_info(&vsi->back->pdev->dev, 3222 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3223 ring->queue_index, pf_q, err); 3224 return -ENOMEM; 3225 } 3226 3227 /* set the context in the HMC */ 3228 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3229 if (err) { 3230 dev_info(&vsi->back->pdev->dev, 3231 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3232 ring->queue_index, pf_q, err); 3233 return -ENOMEM; 3234 } 3235 3236 /* configure Rx buffer alignment */ 3237 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3238 clear_ring_build_skb_enabled(ring); 3239 else 3240 set_ring_build_skb_enabled(ring); 3241 3242 /* cache tail for quicker writes, and clear the reg before use */ 3243 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3244 writel(0, ring->tail); 3245 3246 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3247 3248 return 0; 3249 } 3250 3251 /** 3252 * i40e_vsi_configure_tx - Configure the VSI for Tx 3253 * @vsi: VSI structure describing this set of rings and resources 3254 * 3255 * Configure the Tx VSI for operation. 3256 **/ 3257 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3258 { 3259 int err = 0; 3260 u16 i; 3261 3262 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3263 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3264 3265 if (!i40e_enabled_xdp_vsi(vsi)) 3266 return err; 3267 3268 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3269 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3270 3271 return err; 3272 } 3273 3274 /** 3275 * i40e_vsi_configure_rx - Configure the VSI for Rx 3276 * @vsi: the VSI being configured 3277 * 3278 * Configure the Rx VSI for operation. 3279 **/ 3280 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3281 { 3282 int err = 0; 3283 u16 i; 3284 3285 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3286 vsi->max_frame = I40E_MAX_RXBUFFER; 3287 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3288 #if (PAGE_SIZE < 8192) 3289 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3290 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3291 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3292 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3293 #endif 3294 } else { 3295 vsi->max_frame = I40E_MAX_RXBUFFER; 3296 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3297 I40E_RXBUFFER_2048; 3298 } 3299 3300 /* set up individual rings */ 3301 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3302 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3303 3304 return err; 3305 } 3306 3307 /** 3308 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3309 * @vsi: ptr to the VSI 3310 **/ 3311 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3312 { 3313 struct i40e_ring *tx_ring, *rx_ring; 3314 u16 qoffset, qcount; 3315 int i, n; 3316 3317 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3318 /* Reset the TC information */ 3319 for (i = 0; i < vsi->num_queue_pairs; i++) { 3320 rx_ring = vsi->rx_rings[i]; 3321 tx_ring = vsi->tx_rings[i]; 3322 rx_ring->dcb_tc = 0; 3323 tx_ring->dcb_tc = 0; 3324 } 3325 return; 3326 } 3327 3328 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3329 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3330 continue; 3331 3332 qoffset = vsi->tc_config.tc_info[n].qoffset; 3333 qcount = vsi->tc_config.tc_info[n].qcount; 3334 for (i = qoffset; i < (qoffset + qcount); i++) { 3335 rx_ring = vsi->rx_rings[i]; 3336 tx_ring = vsi->tx_rings[i]; 3337 rx_ring->dcb_tc = n; 3338 tx_ring->dcb_tc = n; 3339 } 3340 } 3341 } 3342 3343 /** 3344 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3345 * @vsi: ptr to the VSI 3346 **/ 3347 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3348 { 3349 if (vsi->netdev) 3350 i40e_set_rx_mode(vsi->netdev); 3351 } 3352 3353 /** 3354 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3355 * @vsi: Pointer to the targeted VSI 3356 * 3357 * This function replays the hlist on the hw where all the SB Flow Director 3358 * filters were saved. 3359 **/ 3360 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3361 { 3362 struct i40e_fdir_filter *filter; 3363 struct i40e_pf *pf = vsi->back; 3364 struct hlist_node *node; 3365 3366 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3367 return; 3368 3369 /* Reset FDir counters as we're replaying all existing filters */ 3370 pf->fd_tcp4_filter_cnt = 0; 3371 pf->fd_udp4_filter_cnt = 0; 3372 pf->fd_sctp4_filter_cnt = 0; 3373 pf->fd_ip4_filter_cnt = 0; 3374 3375 hlist_for_each_entry_safe(filter, node, 3376 &pf->fdir_filter_list, fdir_node) { 3377 i40e_add_del_fdir(vsi, filter, true); 3378 } 3379 } 3380 3381 /** 3382 * i40e_vsi_configure - Set up the VSI for action 3383 * @vsi: the VSI being configured 3384 **/ 3385 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3386 { 3387 int err; 3388 3389 i40e_set_vsi_rx_mode(vsi); 3390 i40e_restore_vlan(vsi); 3391 i40e_vsi_config_dcb_rings(vsi); 3392 err = i40e_vsi_configure_tx(vsi); 3393 if (!err) 3394 err = i40e_vsi_configure_rx(vsi); 3395 3396 return err; 3397 } 3398 3399 /** 3400 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3401 * @vsi: the VSI being configured 3402 **/ 3403 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3404 { 3405 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3406 struct i40e_pf *pf = vsi->back; 3407 struct i40e_hw *hw = &pf->hw; 3408 u16 vector; 3409 int i, q; 3410 u32 qp; 3411 3412 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3413 * and PFINT_LNKLSTn registers, e.g.: 3414 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3415 */ 3416 qp = vsi->base_queue; 3417 vector = vsi->base_vector; 3418 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3419 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3420 3421 q_vector->rx.next_update = jiffies + 1; 3422 q_vector->rx.target_itr = 3423 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3424 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3425 q_vector->rx.target_itr); 3426 q_vector->rx.current_itr = q_vector->rx.target_itr; 3427 3428 q_vector->tx.next_update = jiffies + 1; 3429 q_vector->tx.target_itr = 3430 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3431 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3432 q_vector->tx.target_itr); 3433 q_vector->tx.current_itr = q_vector->tx.target_itr; 3434 3435 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3436 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3437 3438 /* Linked list for the queuepairs assigned to this vector */ 3439 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3440 for (q = 0; q < q_vector->num_ringpairs; q++) { 3441 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3442 u32 val; 3443 3444 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3445 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3446 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3447 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3448 (I40E_QUEUE_TYPE_TX << 3449 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3450 3451 wr32(hw, I40E_QINT_RQCTL(qp), val); 3452 3453 if (has_xdp) { 3454 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3455 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3456 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3457 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3458 (I40E_QUEUE_TYPE_TX << 3459 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3460 3461 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3462 } 3463 3464 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3465 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3466 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3467 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3468 (I40E_QUEUE_TYPE_RX << 3469 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3470 3471 /* Terminate the linked list */ 3472 if (q == (q_vector->num_ringpairs - 1)) 3473 val |= (I40E_QUEUE_END_OF_LIST << 3474 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3475 3476 wr32(hw, I40E_QINT_TQCTL(qp), val); 3477 qp++; 3478 } 3479 } 3480 3481 i40e_flush(hw); 3482 } 3483 3484 /** 3485 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3486 * @pf: pointer to private device data structure 3487 **/ 3488 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3489 { 3490 struct i40e_hw *hw = &pf->hw; 3491 u32 val; 3492 3493 /* clear things first */ 3494 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3495 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3496 3497 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3498 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3499 I40E_PFINT_ICR0_ENA_GRST_MASK | 3500 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3501 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3502 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3503 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3504 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3505 3506 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3507 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3508 3509 if (pf->flags & I40E_FLAG_PTP) 3510 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3511 3512 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3513 3514 /* SW_ITR_IDX = 0, but don't change INTENA */ 3515 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3516 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3517 3518 /* OTHER_ITR_IDX = 0 */ 3519 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3520 } 3521 3522 /** 3523 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3524 * @vsi: the VSI being configured 3525 **/ 3526 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3527 { 3528 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3529 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3530 struct i40e_pf *pf = vsi->back; 3531 struct i40e_hw *hw = &pf->hw; 3532 u32 val; 3533 3534 /* set the ITR configuration */ 3535 q_vector->rx.next_update = jiffies + 1; 3536 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3537 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3538 q_vector->rx.current_itr = q_vector->rx.target_itr; 3539 q_vector->tx.next_update = jiffies + 1; 3540 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3541 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3542 q_vector->tx.current_itr = q_vector->tx.target_itr; 3543 3544 i40e_enable_misc_int_causes(pf); 3545 3546 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3547 wr32(hw, I40E_PFINT_LNKLST0, 0); 3548 3549 /* Associate the queue pair to the vector and enable the queue int */ 3550 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3551 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3552 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3553 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3554 3555 wr32(hw, I40E_QINT_RQCTL(0), val); 3556 3557 if (i40e_enabled_xdp_vsi(vsi)) { 3558 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3559 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3560 (I40E_QUEUE_TYPE_TX 3561 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3562 3563 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3564 } 3565 3566 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3567 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3568 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3569 3570 wr32(hw, I40E_QINT_TQCTL(0), val); 3571 i40e_flush(hw); 3572 } 3573 3574 /** 3575 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3576 * @pf: board private structure 3577 **/ 3578 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3579 { 3580 struct i40e_hw *hw = &pf->hw; 3581 3582 wr32(hw, I40E_PFINT_DYN_CTL0, 3583 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3584 i40e_flush(hw); 3585 } 3586 3587 /** 3588 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3589 * @pf: board private structure 3590 **/ 3591 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3592 { 3593 struct i40e_hw *hw = &pf->hw; 3594 u32 val; 3595 3596 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3597 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3598 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3599 3600 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3601 i40e_flush(hw); 3602 } 3603 3604 /** 3605 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3606 * @irq: interrupt number 3607 * @data: pointer to a q_vector 3608 **/ 3609 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3610 { 3611 struct i40e_q_vector *q_vector = data; 3612 3613 if (!q_vector->tx.ring && !q_vector->rx.ring) 3614 return IRQ_HANDLED; 3615 3616 napi_schedule_irqoff(&q_vector->napi); 3617 3618 return IRQ_HANDLED; 3619 } 3620 3621 /** 3622 * i40e_irq_affinity_notify - Callback for affinity changes 3623 * @notify: context as to what irq was changed 3624 * @mask: the new affinity mask 3625 * 3626 * This is a callback function used by the irq_set_affinity_notifier function 3627 * so that we may register to receive changes to the irq affinity masks. 3628 **/ 3629 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3630 const cpumask_t *mask) 3631 { 3632 struct i40e_q_vector *q_vector = 3633 container_of(notify, struct i40e_q_vector, affinity_notify); 3634 3635 cpumask_copy(&q_vector->affinity_mask, mask); 3636 } 3637 3638 /** 3639 * i40e_irq_affinity_release - Callback for affinity notifier release 3640 * @ref: internal core kernel usage 3641 * 3642 * This is a callback function used by the irq_set_affinity_notifier function 3643 * to inform the current notification subscriber that they will no longer 3644 * receive notifications. 3645 **/ 3646 static void i40e_irq_affinity_release(struct kref *ref) {} 3647 3648 /** 3649 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3650 * @vsi: the VSI being configured 3651 * @basename: name for the vector 3652 * 3653 * Allocates MSI-X vectors and requests interrupts from the kernel. 3654 **/ 3655 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3656 { 3657 int q_vectors = vsi->num_q_vectors; 3658 struct i40e_pf *pf = vsi->back; 3659 int base = vsi->base_vector; 3660 int rx_int_idx = 0; 3661 int tx_int_idx = 0; 3662 int vector, err; 3663 int irq_num; 3664 int cpu; 3665 3666 for (vector = 0; vector < q_vectors; vector++) { 3667 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3668 3669 irq_num = pf->msix_entries[base + vector].vector; 3670 3671 if (q_vector->tx.ring && q_vector->rx.ring) { 3672 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3673 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3674 tx_int_idx++; 3675 } else if (q_vector->rx.ring) { 3676 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3677 "%s-%s-%d", basename, "rx", rx_int_idx++); 3678 } else if (q_vector->tx.ring) { 3679 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3680 "%s-%s-%d", basename, "tx", tx_int_idx++); 3681 } else { 3682 /* skip this unused q_vector */ 3683 continue; 3684 } 3685 err = request_irq(irq_num, 3686 vsi->irq_handler, 3687 0, 3688 q_vector->name, 3689 q_vector); 3690 if (err) { 3691 dev_info(&pf->pdev->dev, 3692 "MSIX request_irq failed, error: %d\n", err); 3693 goto free_queue_irqs; 3694 } 3695 3696 /* register for affinity change notifications */ 3697 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3698 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3699 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3700 /* Spread affinity hints out across online CPUs. 3701 * 3702 * get_cpu_mask returns a static constant mask with 3703 * a permanent lifetime so it's ok to pass to 3704 * irq_set_affinity_hint without making a copy. 3705 */ 3706 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3707 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3708 } 3709 3710 vsi->irqs_ready = true; 3711 return 0; 3712 3713 free_queue_irqs: 3714 while (vector) { 3715 vector--; 3716 irq_num = pf->msix_entries[base + vector].vector; 3717 irq_set_affinity_notifier(irq_num, NULL); 3718 irq_set_affinity_hint(irq_num, NULL); 3719 free_irq(irq_num, &vsi->q_vectors[vector]); 3720 } 3721 return err; 3722 } 3723 3724 /** 3725 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3726 * @vsi: the VSI being un-configured 3727 **/ 3728 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3729 { 3730 struct i40e_pf *pf = vsi->back; 3731 struct i40e_hw *hw = &pf->hw; 3732 int base = vsi->base_vector; 3733 int i; 3734 3735 /* disable interrupt causation from each queue */ 3736 for (i = 0; i < vsi->num_queue_pairs; i++) { 3737 u32 val; 3738 3739 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3740 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3741 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3742 3743 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3744 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3745 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3746 3747 if (!i40e_enabled_xdp_vsi(vsi)) 3748 continue; 3749 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3750 } 3751 3752 /* disable each interrupt */ 3753 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3754 for (i = vsi->base_vector; 3755 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3756 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3757 3758 i40e_flush(hw); 3759 for (i = 0; i < vsi->num_q_vectors; i++) 3760 synchronize_irq(pf->msix_entries[i + base].vector); 3761 } else { 3762 /* Legacy and MSI mode - this stops all interrupt handling */ 3763 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3764 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3765 i40e_flush(hw); 3766 synchronize_irq(pf->pdev->irq); 3767 } 3768 } 3769 3770 /** 3771 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3772 * @vsi: the VSI being configured 3773 **/ 3774 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3775 { 3776 struct i40e_pf *pf = vsi->back; 3777 int i; 3778 3779 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3780 for (i = 0; i < vsi->num_q_vectors; i++) 3781 i40e_irq_dynamic_enable(vsi, i); 3782 } else { 3783 i40e_irq_dynamic_enable_icr0(pf); 3784 } 3785 3786 i40e_flush(&pf->hw); 3787 return 0; 3788 } 3789 3790 /** 3791 * i40e_free_misc_vector - Free the vector that handles non-queue events 3792 * @pf: board private structure 3793 **/ 3794 static void i40e_free_misc_vector(struct i40e_pf *pf) 3795 { 3796 /* Disable ICR 0 */ 3797 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3798 i40e_flush(&pf->hw); 3799 3800 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3801 synchronize_irq(pf->msix_entries[0].vector); 3802 free_irq(pf->msix_entries[0].vector, pf); 3803 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3804 } 3805 } 3806 3807 /** 3808 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3809 * @irq: interrupt number 3810 * @data: pointer to a q_vector 3811 * 3812 * This is the handler used for all MSI/Legacy interrupts, and deals 3813 * with both queue and non-queue interrupts. This is also used in 3814 * MSIX mode to handle the non-queue interrupts. 3815 **/ 3816 static irqreturn_t i40e_intr(int irq, void *data) 3817 { 3818 struct i40e_pf *pf = (struct i40e_pf *)data; 3819 struct i40e_hw *hw = &pf->hw; 3820 irqreturn_t ret = IRQ_NONE; 3821 u32 icr0, icr0_remaining; 3822 u32 val, ena_mask; 3823 3824 icr0 = rd32(hw, I40E_PFINT_ICR0); 3825 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3826 3827 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3828 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3829 goto enable_intr; 3830 3831 /* if interrupt but no bits showing, must be SWINT */ 3832 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3833 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3834 pf->sw_int_count++; 3835 3836 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3837 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3838 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3839 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3840 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3841 } 3842 3843 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3844 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3845 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3846 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3847 3848 /* We do not have a way to disarm Queue causes while leaving 3849 * interrupt enabled for all other causes, ideally 3850 * interrupt should be disabled while we are in NAPI but 3851 * this is not a performance path and napi_schedule() 3852 * can deal with rescheduling. 3853 */ 3854 if (!test_bit(__I40E_DOWN, pf->state)) 3855 napi_schedule_irqoff(&q_vector->napi); 3856 } 3857 3858 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3859 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3860 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3861 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3862 } 3863 3864 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3865 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3866 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3867 } 3868 3869 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3870 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3871 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3872 } 3873 3874 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3875 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3876 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3877 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3878 val = rd32(hw, I40E_GLGEN_RSTAT); 3879 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3880 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3881 if (val == I40E_RESET_CORER) { 3882 pf->corer_count++; 3883 } else if (val == I40E_RESET_GLOBR) { 3884 pf->globr_count++; 3885 } else if (val == I40E_RESET_EMPR) { 3886 pf->empr_count++; 3887 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3888 } 3889 } 3890 3891 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3892 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3893 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3894 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3895 rd32(hw, I40E_PFHMC_ERRORINFO), 3896 rd32(hw, I40E_PFHMC_ERRORDATA)); 3897 } 3898 3899 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3900 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3901 3902 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3903 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3904 i40e_ptp_tx_hwtstamp(pf); 3905 } 3906 } 3907 3908 /* If a critical error is pending we have no choice but to reset the 3909 * device. 3910 * Report and mask out any remaining unexpected interrupts. 3911 */ 3912 icr0_remaining = icr0 & ena_mask; 3913 if (icr0_remaining) { 3914 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3915 icr0_remaining); 3916 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3917 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3918 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3919 dev_info(&pf->pdev->dev, "device will be reset\n"); 3920 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3921 i40e_service_event_schedule(pf); 3922 } 3923 ena_mask &= ~icr0_remaining; 3924 } 3925 ret = IRQ_HANDLED; 3926 3927 enable_intr: 3928 /* re-enable interrupt causes */ 3929 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3930 if (!test_bit(__I40E_DOWN, pf->state)) { 3931 i40e_service_event_schedule(pf); 3932 i40e_irq_dynamic_enable_icr0(pf); 3933 } 3934 3935 return ret; 3936 } 3937 3938 /** 3939 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3940 * @tx_ring: tx ring to clean 3941 * @budget: how many cleans we're allowed 3942 * 3943 * Returns true if there's any budget left (e.g. the clean is finished) 3944 **/ 3945 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3946 { 3947 struct i40e_vsi *vsi = tx_ring->vsi; 3948 u16 i = tx_ring->next_to_clean; 3949 struct i40e_tx_buffer *tx_buf; 3950 struct i40e_tx_desc *tx_desc; 3951 3952 tx_buf = &tx_ring->tx_bi[i]; 3953 tx_desc = I40E_TX_DESC(tx_ring, i); 3954 i -= tx_ring->count; 3955 3956 do { 3957 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 3958 3959 /* if next_to_watch is not set then there is no work pending */ 3960 if (!eop_desc) 3961 break; 3962 3963 /* prevent any other reads prior to eop_desc */ 3964 smp_rmb(); 3965 3966 /* if the descriptor isn't done, no work yet to do */ 3967 if (!(eop_desc->cmd_type_offset_bsz & 3968 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 3969 break; 3970 3971 /* clear next_to_watch to prevent false hangs */ 3972 tx_buf->next_to_watch = NULL; 3973 3974 tx_desc->buffer_addr = 0; 3975 tx_desc->cmd_type_offset_bsz = 0; 3976 /* move past filter desc */ 3977 tx_buf++; 3978 tx_desc++; 3979 i++; 3980 if (unlikely(!i)) { 3981 i -= tx_ring->count; 3982 tx_buf = tx_ring->tx_bi; 3983 tx_desc = I40E_TX_DESC(tx_ring, 0); 3984 } 3985 /* unmap skb header data */ 3986 dma_unmap_single(tx_ring->dev, 3987 dma_unmap_addr(tx_buf, dma), 3988 dma_unmap_len(tx_buf, len), 3989 DMA_TO_DEVICE); 3990 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 3991 kfree(tx_buf->raw_buf); 3992 3993 tx_buf->raw_buf = NULL; 3994 tx_buf->tx_flags = 0; 3995 tx_buf->next_to_watch = NULL; 3996 dma_unmap_len_set(tx_buf, len, 0); 3997 tx_desc->buffer_addr = 0; 3998 tx_desc->cmd_type_offset_bsz = 0; 3999 4000 /* move us past the eop_desc for start of next FD desc */ 4001 tx_buf++; 4002 tx_desc++; 4003 i++; 4004 if (unlikely(!i)) { 4005 i -= tx_ring->count; 4006 tx_buf = tx_ring->tx_bi; 4007 tx_desc = I40E_TX_DESC(tx_ring, 0); 4008 } 4009 4010 /* update budget accounting */ 4011 budget--; 4012 } while (likely(budget)); 4013 4014 i += tx_ring->count; 4015 tx_ring->next_to_clean = i; 4016 4017 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4018 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4019 4020 return budget > 0; 4021 } 4022 4023 /** 4024 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4025 * @irq: interrupt number 4026 * @data: pointer to a q_vector 4027 **/ 4028 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4029 { 4030 struct i40e_q_vector *q_vector = data; 4031 struct i40e_vsi *vsi; 4032 4033 if (!q_vector->tx.ring) 4034 return IRQ_HANDLED; 4035 4036 vsi = q_vector->tx.ring->vsi; 4037 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4038 4039 return IRQ_HANDLED; 4040 } 4041 4042 /** 4043 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4044 * @vsi: the VSI being configured 4045 * @v_idx: vector index 4046 * @qp_idx: queue pair index 4047 **/ 4048 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4049 { 4050 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4051 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4052 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4053 4054 tx_ring->q_vector = q_vector; 4055 tx_ring->next = q_vector->tx.ring; 4056 q_vector->tx.ring = tx_ring; 4057 q_vector->tx.count++; 4058 4059 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4060 if (i40e_enabled_xdp_vsi(vsi)) { 4061 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4062 4063 xdp_ring->q_vector = q_vector; 4064 xdp_ring->next = q_vector->tx.ring; 4065 q_vector->tx.ring = xdp_ring; 4066 q_vector->tx.count++; 4067 } 4068 4069 rx_ring->q_vector = q_vector; 4070 rx_ring->next = q_vector->rx.ring; 4071 q_vector->rx.ring = rx_ring; 4072 q_vector->rx.count++; 4073 } 4074 4075 /** 4076 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4077 * @vsi: the VSI being configured 4078 * 4079 * This function maps descriptor rings to the queue-specific vectors 4080 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4081 * one vector per queue pair, but on a constrained vector budget, we 4082 * group the queue pairs as "efficiently" as possible. 4083 **/ 4084 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4085 { 4086 int qp_remaining = vsi->num_queue_pairs; 4087 int q_vectors = vsi->num_q_vectors; 4088 int num_ringpairs; 4089 int v_start = 0; 4090 int qp_idx = 0; 4091 4092 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4093 * group them so there are multiple queues per vector. 4094 * It is also important to go through all the vectors available to be 4095 * sure that if we don't use all the vectors, that the remaining vectors 4096 * are cleared. This is especially important when decreasing the 4097 * number of queues in use. 4098 */ 4099 for (; v_start < q_vectors; v_start++) { 4100 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4101 4102 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4103 4104 q_vector->num_ringpairs = num_ringpairs; 4105 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4106 4107 q_vector->rx.count = 0; 4108 q_vector->tx.count = 0; 4109 q_vector->rx.ring = NULL; 4110 q_vector->tx.ring = NULL; 4111 4112 while (num_ringpairs--) { 4113 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4114 qp_idx++; 4115 qp_remaining--; 4116 } 4117 } 4118 } 4119 4120 /** 4121 * i40e_vsi_request_irq - Request IRQ from the OS 4122 * @vsi: the VSI being configured 4123 * @basename: name for the vector 4124 **/ 4125 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4126 { 4127 struct i40e_pf *pf = vsi->back; 4128 int err; 4129 4130 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4131 err = i40e_vsi_request_irq_msix(vsi, basename); 4132 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4133 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4134 pf->int_name, pf); 4135 else 4136 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4137 pf->int_name, pf); 4138 4139 if (err) 4140 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4141 4142 return err; 4143 } 4144 4145 #ifdef CONFIG_NET_POLL_CONTROLLER 4146 /** 4147 * i40e_netpoll - A Polling 'interrupt' handler 4148 * @netdev: network interface device structure 4149 * 4150 * This is used by netconsole to send skbs without having to re-enable 4151 * interrupts. It's not called while the normal interrupt routine is executing. 4152 **/ 4153 static void i40e_netpoll(struct net_device *netdev) 4154 { 4155 struct i40e_netdev_priv *np = netdev_priv(netdev); 4156 struct i40e_vsi *vsi = np->vsi; 4157 struct i40e_pf *pf = vsi->back; 4158 int i; 4159 4160 /* if interface is down do nothing */ 4161 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4162 return; 4163 4164 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4165 for (i = 0; i < vsi->num_q_vectors; i++) 4166 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4167 } else { 4168 i40e_intr(pf->pdev->irq, netdev); 4169 } 4170 } 4171 #endif 4172 4173 #define I40E_QTX_ENA_WAIT_COUNT 50 4174 4175 /** 4176 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4177 * @pf: the PF being configured 4178 * @pf_q: the PF queue 4179 * @enable: enable or disable state of the queue 4180 * 4181 * This routine will wait for the given Tx queue of the PF to reach the 4182 * enabled or disabled state. 4183 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4184 * multiple retries; else will return 0 in case of success. 4185 **/ 4186 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4187 { 4188 int i; 4189 u32 tx_reg; 4190 4191 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4192 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4193 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4194 break; 4195 4196 usleep_range(10, 20); 4197 } 4198 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4199 return -ETIMEDOUT; 4200 4201 return 0; 4202 } 4203 4204 /** 4205 * i40e_control_tx_q - Start or stop a particular Tx queue 4206 * @pf: the PF structure 4207 * @pf_q: the PF queue to configure 4208 * @enable: start or stop the queue 4209 * 4210 * This function enables or disables a single queue. Note that any delay 4211 * required after the operation is expected to be handled by the caller of 4212 * this function. 4213 **/ 4214 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4215 { 4216 struct i40e_hw *hw = &pf->hw; 4217 u32 tx_reg; 4218 int i; 4219 4220 /* warn the TX unit of coming changes */ 4221 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4222 if (!enable) 4223 usleep_range(10, 20); 4224 4225 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4226 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4227 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4228 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4229 break; 4230 usleep_range(1000, 2000); 4231 } 4232 4233 /* Skip if the queue is already in the requested state */ 4234 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4235 return; 4236 4237 /* turn on/off the queue */ 4238 if (enable) { 4239 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4240 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4241 } else { 4242 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4243 } 4244 4245 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4246 } 4247 4248 /** 4249 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4250 * @seid: VSI SEID 4251 * @pf: the PF structure 4252 * @pf_q: the PF queue to configure 4253 * @is_xdp: true if the queue is used for XDP 4254 * @enable: start or stop the queue 4255 **/ 4256 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4257 bool is_xdp, bool enable) 4258 { 4259 int ret; 4260 4261 i40e_control_tx_q(pf, pf_q, enable); 4262 4263 /* wait for the change to finish */ 4264 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4265 if (ret) { 4266 dev_info(&pf->pdev->dev, 4267 "VSI seid %d %sTx ring %d %sable timeout\n", 4268 seid, (is_xdp ? "XDP " : ""), pf_q, 4269 (enable ? "en" : "dis")); 4270 } 4271 4272 return ret; 4273 } 4274 4275 /** 4276 * i40e_vsi_control_tx - Start or stop a VSI's rings 4277 * @vsi: the VSI being configured 4278 * @enable: start or stop the rings 4279 **/ 4280 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4281 { 4282 struct i40e_pf *pf = vsi->back; 4283 int i, pf_q, ret = 0; 4284 4285 pf_q = vsi->base_queue; 4286 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4287 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4288 pf_q, 4289 false /*is xdp*/, enable); 4290 if (ret) 4291 break; 4292 4293 if (!i40e_enabled_xdp_vsi(vsi)) 4294 continue; 4295 4296 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4297 pf_q + vsi->alloc_queue_pairs, 4298 true /*is xdp*/, enable); 4299 if (ret) 4300 break; 4301 } 4302 return ret; 4303 } 4304 4305 /** 4306 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4307 * @pf: the PF being configured 4308 * @pf_q: the PF queue 4309 * @enable: enable or disable state of the queue 4310 * 4311 * This routine will wait for the given Rx queue of the PF to reach the 4312 * enabled or disabled state. 4313 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4314 * multiple retries; else will return 0 in case of success. 4315 **/ 4316 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4317 { 4318 int i; 4319 u32 rx_reg; 4320 4321 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4322 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4323 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4324 break; 4325 4326 usleep_range(10, 20); 4327 } 4328 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4329 return -ETIMEDOUT; 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * i40e_control_rx_q - Start or stop a particular Rx queue 4336 * @pf: the PF structure 4337 * @pf_q: the PF queue to configure 4338 * @enable: start or stop the queue 4339 * 4340 * This function enables or disables a single queue. Note that 4341 * any delay required after the operation is expected to be 4342 * handled by the caller of this function. 4343 **/ 4344 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4345 { 4346 struct i40e_hw *hw = &pf->hw; 4347 u32 rx_reg; 4348 int i; 4349 4350 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4351 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4352 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4353 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4354 break; 4355 usleep_range(1000, 2000); 4356 } 4357 4358 /* Skip if the queue is already in the requested state */ 4359 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4360 return; 4361 4362 /* turn on/off the queue */ 4363 if (enable) 4364 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4365 else 4366 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4367 4368 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4369 } 4370 4371 /** 4372 * i40e_control_wait_rx_q 4373 * @pf: the PF structure 4374 * @pf_q: queue being configured 4375 * @enable: start or stop the rings 4376 * 4377 * This function enables or disables a single queue along with waiting 4378 * for the change to finish. The caller of this function should handle 4379 * the delays needed in the case of disabling queues. 4380 **/ 4381 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4382 { 4383 int ret = 0; 4384 4385 i40e_control_rx_q(pf, pf_q, enable); 4386 4387 /* wait for the change to finish */ 4388 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4389 if (ret) 4390 return ret; 4391 4392 return ret; 4393 } 4394 4395 /** 4396 * i40e_vsi_control_rx - Start or stop a VSI's rings 4397 * @vsi: the VSI being configured 4398 * @enable: start or stop the rings 4399 **/ 4400 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4401 { 4402 struct i40e_pf *pf = vsi->back; 4403 int i, pf_q, ret = 0; 4404 4405 pf_q = vsi->base_queue; 4406 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4407 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4408 if (ret) { 4409 dev_info(&pf->pdev->dev, 4410 "VSI seid %d Rx ring %d %sable timeout\n", 4411 vsi->seid, pf_q, (enable ? "en" : "dis")); 4412 break; 4413 } 4414 } 4415 4416 /* Due to HW errata, on Rx disable only, the register can indicate done 4417 * before it really is. Needs 50ms to be sure 4418 */ 4419 if (!enable) 4420 mdelay(50); 4421 4422 return ret; 4423 } 4424 4425 /** 4426 * i40e_vsi_start_rings - Start a VSI's rings 4427 * @vsi: the VSI being configured 4428 **/ 4429 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4430 { 4431 int ret = 0; 4432 4433 /* do rx first for enable and last for disable */ 4434 ret = i40e_vsi_control_rx(vsi, true); 4435 if (ret) 4436 return ret; 4437 ret = i40e_vsi_control_tx(vsi, true); 4438 4439 return ret; 4440 } 4441 4442 /** 4443 * i40e_vsi_stop_rings - Stop a VSI's rings 4444 * @vsi: the VSI being configured 4445 **/ 4446 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4447 { 4448 /* When port TX is suspended, don't wait */ 4449 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4450 return i40e_vsi_stop_rings_no_wait(vsi); 4451 4452 /* do rx first for enable and last for disable 4453 * Ignore return value, we need to shutdown whatever we can 4454 */ 4455 i40e_vsi_control_tx(vsi, false); 4456 i40e_vsi_control_rx(vsi, false); 4457 } 4458 4459 /** 4460 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4461 * @vsi: the VSI being shutdown 4462 * 4463 * This function stops all the rings for a VSI but does not delay to verify 4464 * that rings have been disabled. It is expected that the caller is shutting 4465 * down multiple VSIs at once and will delay together for all the VSIs after 4466 * initiating the shutdown. This is particularly useful for shutting down lots 4467 * of VFs together. Otherwise, a large delay can be incurred while configuring 4468 * each VSI in serial. 4469 **/ 4470 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4471 { 4472 struct i40e_pf *pf = vsi->back; 4473 int i, pf_q; 4474 4475 pf_q = vsi->base_queue; 4476 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4477 i40e_control_tx_q(pf, pf_q, false); 4478 i40e_control_rx_q(pf, pf_q, false); 4479 } 4480 } 4481 4482 /** 4483 * i40e_vsi_free_irq - Free the irq association with the OS 4484 * @vsi: the VSI being configured 4485 **/ 4486 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4487 { 4488 struct i40e_pf *pf = vsi->back; 4489 struct i40e_hw *hw = &pf->hw; 4490 int base = vsi->base_vector; 4491 u32 val, qp; 4492 int i; 4493 4494 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4495 if (!vsi->q_vectors) 4496 return; 4497 4498 if (!vsi->irqs_ready) 4499 return; 4500 4501 vsi->irqs_ready = false; 4502 for (i = 0; i < vsi->num_q_vectors; i++) { 4503 int irq_num; 4504 u16 vector; 4505 4506 vector = i + base; 4507 irq_num = pf->msix_entries[vector].vector; 4508 4509 /* free only the irqs that were actually requested */ 4510 if (!vsi->q_vectors[i] || 4511 !vsi->q_vectors[i]->num_ringpairs) 4512 continue; 4513 4514 /* clear the affinity notifier in the IRQ descriptor */ 4515 irq_set_affinity_notifier(irq_num, NULL); 4516 /* remove our suggested affinity mask for this IRQ */ 4517 irq_set_affinity_hint(irq_num, NULL); 4518 synchronize_irq(irq_num); 4519 free_irq(irq_num, vsi->q_vectors[i]); 4520 4521 /* Tear down the interrupt queue link list 4522 * 4523 * We know that they come in pairs and always 4524 * the Rx first, then the Tx. To clear the 4525 * link list, stick the EOL value into the 4526 * next_q field of the registers. 4527 */ 4528 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4529 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4530 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4531 val |= I40E_QUEUE_END_OF_LIST 4532 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4533 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4534 4535 while (qp != I40E_QUEUE_END_OF_LIST) { 4536 u32 next; 4537 4538 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4539 4540 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4541 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4542 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4543 I40E_QINT_RQCTL_INTEVENT_MASK); 4544 4545 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4546 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4547 4548 wr32(hw, I40E_QINT_RQCTL(qp), val); 4549 4550 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4551 4552 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4553 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4554 4555 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4556 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4557 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4558 I40E_QINT_TQCTL_INTEVENT_MASK); 4559 4560 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4561 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4562 4563 wr32(hw, I40E_QINT_TQCTL(qp), val); 4564 qp = next; 4565 } 4566 } 4567 } else { 4568 free_irq(pf->pdev->irq, pf); 4569 4570 val = rd32(hw, I40E_PFINT_LNKLST0); 4571 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4572 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4573 val |= I40E_QUEUE_END_OF_LIST 4574 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4575 wr32(hw, I40E_PFINT_LNKLST0, val); 4576 4577 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4578 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4579 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4580 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4581 I40E_QINT_RQCTL_INTEVENT_MASK); 4582 4583 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4584 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4585 4586 wr32(hw, I40E_QINT_RQCTL(qp), val); 4587 4588 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4589 4590 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4591 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4592 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4593 I40E_QINT_TQCTL_INTEVENT_MASK); 4594 4595 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4596 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4597 4598 wr32(hw, I40E_QINT_TQCTL(qp), val); 4599 } 4600 } 4601 4602 /** 4603 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4604 * @vsi: the VSI being configured 4605 * @v_idx: Index of vector to be freed 4606 * 4607 * This function frees the memory allocated to the q_vector. In addition if 4608 * NAPI is enabled it will delete any references to the NAPI struct prior 4609 * to freeing the q_vector. 4610 **/ 4611 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4612 { 4613 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4614 struct i40e_ring *ring; 4615 4616 if (!q_vector) 4617 return; 4618 4619 /* disassociate q_vector from rings */ 4620 i40e_for_each_ring(ring, q_vector->tx) 4621 ring->q_vector = NULL; 4622 4623 i40e_for_each_ring(ring, q_vector->rx) 4624 ring->q_vector = NULL; 4625 4626 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4627 if (vsi->netdev) 4628 netif_napi_del(&q_vector->napi); 4629 4630 vsi->q_vectors[v_idx] = NULL; 4631 4632 kfree_rcu(q_vector, rcu); 4633 } 4634 4635 /** 4636 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4637 * @vsi: the VSI being un-configured 4638 * 4639 * This frees the memory allocated to the q_vectors and 4640 * deletes references to the NAPI struct. 4641 **/ 4642 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4643 { 4644 int v_idx; 4645 4646 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4647 i40e_free_q_vector(vsi, v_idx); 4648 } 4649 4650 /** 4651 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4652 * @pf: board private structure 4653 **/ 4654 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4655 { 4656 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4657 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4658 pci_disable_msix(pf->pdev); 4659 kfree(pf->msix_entries); 4660 pf->msix_entries = NULL; 4661 kfree(pf->irq_pile); 4662 pf->irq_pile = NULL; 4663 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4664 pci_disable_msi(pf->pdev); 4665 } 4666 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4667 } 4668 4669 /** 4670 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4671 * @pf: board private structure 4672 * 4673 * We go through and clear interrupt specific resources and reset the structure 4674 * to pre-load conditions 4675 **/ 4676 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4677 { 4678 int i; 4679 4680 i40e_free_misc_vector(pf); 4681 4682 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4683 I40E_IWARP_IRQ_PILE_ID); 4684 4685 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4686 for (i = 0; i < pf->num_alloc_vsi; i++) 4687 if (pf->vsi[i]) 4688 i40e_vsi_free_q_vectors(pf->vsi[i]); 4689 i40e_reset_interrupt_capability(pf); 4690 } 4691 4692 /** 4693 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4694 * @vsi: the VSI being configured 4695 **/ 4696 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4697 { 4698 int q_idx; 4699 4700 if (!vsi->netdev) 4701 return; 4702 4703 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4704 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4705 4706 if (q_vector->rx.ring || q_vector->tx.ring) 4707 napi_enable(&q_vector->napi); 4708 } 4709 } 4710 4711 /** 4712 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4713 * @vsi: the VSI being configured 4714 **/ 4715 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4716 { 4717 int q_idx; 4718 4719 if (!vsi->netdev) 4720 return; 4721 4722 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4723 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4724 4725 if (q_vector->rx.ring || q_vector->tx.ring) 4726 napi_disable(&q_vector->napi); 4727 } 4728 } 4729 4730 /** 4731 * i40e_vsi_close - Shut down a VSI 4732 * @vsi: the vsi to be quelled 4733 **/ 4734 static void i40e_vsi_close(struct i40e_vsi *vsi) 4735 { 4736 struct i40e_pf *pf = vsi->back; 4737 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4738 i40e_down(vsi); 4739 i40e_vsi_free_irq(vsi); 4740 i40e_vsi_free_tx_resources(vsi); 4741 i40e_vsi_free_rx_resources(vsi); 4742 vsi->current_netdev_flags = 0; 4743 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4744 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4745 set_bit(__I40E_CLIENT_RESET, pf->state); 4746 } 4747 4748 /** 4749 * i40e_quiesce_vsi - Pause a given VSI 4750 * @vsi: the VSI being paused 4751 **/ 4752 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4753 { 4754 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4755 return; 4756 4757 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4758 if (vsi->netdev && netif_running(vsi->netdev)) 4759 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4760 else 4761 i40e_vsi_close(vsi); 4762 } 4763 4764 /** 4765 * i40e_unquiesce_vsi - Resume a given VSI 4766 * @vsi: the VSI being resumed 4767 **/ 4768 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4769 { 4770 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4771 return; 4772 4773 if (vsi->netdev && netif_running(vsi->netdev)) 4774 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4775 else 4776 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4777 } 4778 4779 /** 4780 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4781 * @pf: the PF 4782 **/ 4783 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4784 { 4785 int v; 4786 4787 for (v = 0; v < pf->num_alloc_vsi; v++) { 4788 if (pf->vsi[v]) 4789 i40e_quiesce_vsi(pf->vsi[v]); 4790 } 4791 } 4792 4793 /** 4794 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4795 * @pf: the PF 4796 **/ 4797 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4798 { 4799 int v; 4800 4801 for (v = 0; v < pf->num_alloc_vsi; v++) { 4802 if (pf->vsi[v]) 4803 i40e_unquiesce_vsi(pf->vsi[v]); 4804 } 4805 } 4806 4807 /** 4808 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4809 * @vsi: the VSI being configured 4810 * 4811 * Wait until all queues on a given VSI have been disabled. 4812 **/ 4813 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4814 { 4815 struct i40e_pf *pf = vsi->back; 4816 int i, pf_q, ret; 4817 4818 pf_q = vsi->base_queue; 4819 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4820 /* Check and wait for the Tx queue */ 4821 ret = i40e_pf_txq_wait(pf, pf_q, false); 4822 if (ret) { 4823 dev_info(&pf->pdev->dev, 4824 "VSI seid %d Tx ring %d disable timeout\n", 4825 vsi->seid, pf_q); 4826 return ret; 4827 } 4828 4829 if (!i40e_enabled_xdp_vsi(vsi)) 4830 goto wait_rx; 4831 4832 /* Check and wait for the XDP Tx queue */ 4833 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4834 false); 4835 if (ret) { 4836 dev_info(&pf->pdev->dev, 4837 "VSI seid %d XDP Tx ring %d disable timeout\n", 4838 vsi->seid, pf_q); 4839 return ret; 4840 } 4841 wait_rx: 4842 /* Check and wait for the Rx queue */ 4843 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4844 if (ret) { 4845 dev_info(&pf->pdev->dev, 4846 "VSI seid %d Rx ring %d disable timeout\n", 4847 vsi->seid, pf_q); 4848 return ret; 4849 } 4850 } 4851 4852 return 0; 4853 } 4854 4855 #ifdef CONFIG_I40E_DCB 4856 /** 4857 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4858 * @pf: the PF 4859 * 4860 * This function waits for the queues to be in disabled state for all the 4861 * VSIs that are managed by this PF. 4862 **/ 4863 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4864 { 4865 int v, ret = 0; 4866 4867 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4868 if (pf->vsi[v]) { 4869 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4870 if (ret) 4871 break; 4872 } 4873 } 4874 4875 return ret; 4876 } 4877 4878 #endif 4879 4880 /** 4881 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4882 * @pf: pointer to PF 4883 * 4884 * Get TC map for ISCSI PF type that will include iSCSI TC 4885 * and LAN TC. 4886 **/ 4887 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4888 { 4889 struct i40e_dcb_app_priority_table app; 4890 struct i40e_hw *hw = &pf->hw; 4891 u8 enabled_tc = 1; /* TC0 is always enabled */ 4892 u8 tc, i; 4893 /* Get the iSCSI APP TLV */ 4894 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4895 4896 for (i = 0; i < dcbcfg->numapps; i++) { 4897 app = dcbcfg->app[i]; 4898 if (app.selector == I40E_APP_SEL_TCPIP && 4899 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4900 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4901 enabled_tc |= BIT(tc); 4902 break; 4903 } 4904 } 4905 4906 return enabled_tc; 4907 } 4908 4909 /** 4910 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4911 * @dcbcfg: the corresponding DCBx configuration structure 4912 * 4913 * Return the number of TCs from given DCBx configuration 4914 **/ 4915 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4916 { 4917 int i, tc_unused = 0; 4918 u8 num_tc = 0; 4919 u8 ret = 0; 4920 4921 /* Scan the ETS Config Priority Table to find 4922 * traffic class enabled for a given priority 4923 * and create a bitmask of enabled TCs 4924 */ 4925 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 4926 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 4927 4928 /* Now scan the bitmask to check for 4929 * contiguous TCs starting with TC0 4930 */ 4931 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 4932 if (num_tc & BIT(i)) { 4933 if (!tc_unused) { 4934 ret++; 4935 } else { 4936 pr_err("Non-contiguous TC - Disabling DCB\n"); 4937 return 1; 4938 } 4939 } else { 4940 tc_unused = 1; 4941 } 4942 } 4943 4944 /* There is always at least TC0 */ 4945 if (!ret) 4946 ret = 1; 4947 4948 return ret; 4949 } 4950 4951 /** 4952 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 4953 * @dcbcfg: the corresponding DCBx configuration structure 4954 * 4955 * Query the current DCB configuration and return the number of 4956 * traffic classes enabled from the given DCBX config 4957 **/ 4958 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 4959 { 4960 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 4961 u8 enabled_tc = 1; 4962 u8 i; 4963 4964 for (i = 0; i < num_tc; i++) 4965 enabled_tc |= BIT(i); 4966 4967 return enabled_tc; 4968 } 4969 4970 /** 4971 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 4972 * @pf: PF being queried 4973 * 4974 * Query the current MQPRIO configuration and return the number of 4975 * traffic classes enabled. 4976 **/ 4977 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 4978 { 4979 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4980 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 4981 u8 enabled_tc = 1, i; 4982 4983 for (i = 1; i < num_tc; i++) 4984 enabled_tc |= BIT(i); 4985 return enabled_tc; 4986 } 4987 4988 /** 4989 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 4990 * @pf: PF being queried 4991 * 4992 * Return number of traffic classes enabled for the given PF 4993 **/ 4994 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 4995 { 4996 struct i40e_hw *hw = &pf->hw; 4997 u8 i, enabled_tc = 1; 4998 u8 num_tc = 0; 4999 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5000 5001 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5002 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5003 5004 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5005 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5006 return 1; 5007 5008 /* SFP mode will be enabled for all TCs on port */ 5009 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5010 return i40e_dcb_get_num_tc(dcbcfg); 5011 5012 /* MFP mode return count of enabled TCs for this PF */ 5013 if (pf->hw.func_caps.iscsi) 5014 enabled_tc = i40e_get_iscsi_tc_map(pf); 5015 else 5016 return 1; /* Only TC0 */ 5017 5018 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5019 if (enabled_tc & BIT(i)) 5020 num_tc++; 5021 } 5022 return num_tc; 5023 } 5024 5025 /** 5026 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5027 * @pf: PF being queried 5028 * 5029 * Return a bitmap for enabled traffic classes for this PF. 5030 **/ 5031 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5032 { 5033 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5034 return i40e_mqprio_get_enabled_tc(pf); 5035 5036 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5037 * default TC 5038 */ 5039 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5040 return I40E_DEFAULT_TRAFFIC_CLASS; 5041 5042 /* SFP mode we want PF to be enabled for all TCs */ 5043 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5044 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5045 5046 /* MFP enabled and iSCSI PF type */ 5047 if (pf->hw.func_caps.iscsi) 5048 return i40e_get_iscsi_tc_map(pf); 5049 else 5050 return I40E_DEFAULT_TRAFFIC_CLASS; 5051 } 5052 5053 /** 5054 * i40e_vsi_get_bw_info - Query VSI BW Information 5055 * @vsi: the VSI being queried 5056 * 5057 * Returns 0 on success, negative value on failure 5058 **/ 5059 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5060 { 5061 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5062 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5063 struct i40e_pf *pf = vsi->back; 5064 struct i40e_hw *hw = &pf->hw; 5065 i40e_status ret; 5066 u32 tc_bw_max; 5067 int i; 5068 5069 /* Get the VSI level BW configuration */ 5070 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5071 if (ret) { 5072 dev_info(&pf->pdev->dev, 5073 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5074 i40e_stat_str(&pf->hw, ret), 5075 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5076 return -EINVAL; 5077 } 5078 5079 /* Get the VSI level BW configuration per TC */ 5080 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5081 NULL); 5082 if (ret) { 5083 dev_info(&pf->pdev->dev, 5084 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5085 i40e_stat_str(&pf->hw, ret), 5086 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5087 return -EINVAL; 5088 } 5089 5090 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5091 dev_info(&pf->pdev->dev, 5092 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5093 bw_config.tc_valid_bits, 5094 bw_ets_config.tc_valid_bits); 5095 /* Still continuing */ 5096 } 5097 5098 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5099 vsi->bw_max_quanta = bw_config.max_bw; 5100 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5101 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5102 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5103 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5104 vsi->bw_ets_limit_credits[i] = 5105 le16_to_cpu(bw_ets_config.credits[i]); 5106 /* 3 bits out of 4 for each TC */ 5107 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5108 } 5109 5110 return 0; 5111 } 5112 5113 /** 5114 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5115 * @vsi: the VSI being configured 5116 * @enabled_tc: TC bitmap 5117 * @bw_share: BW shared credits per TC 5118 * 5119 * Returns 0 on success, negative value on failure 5120 **/ 5121 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5122 u8 *bw_share) 5123 { 5124 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5125 struct i40e_pf *pf = vsi->back; 5126 i40e_status ret; 5127 int i; 5128 5129 /* There is no need to reset BW when mqprio mode is on. */ 5130 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5131 return 0; 5132 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5133 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5134 if (ret) 5135 dev_info(&pf->pdev->dev, 5136 "Failed to reset tx rate for vsi->seid %u\n", 5137 vsi->seid); 5138 return ret; 5139 } 5140 bw_data.tc_valid_bits = enabled_tc; 5141 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5142 bw_data.tc_bw_credits[i] = bw_share[i]; 5143 5144 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5145 if (ret) { 5146 dev_info(&pf->pdev->dev, 5147 "AQ command Config VSI BW allocation per TC failed = %d\n", 5148 pf->hw.aq.asq_last_status); 5149 return -EINVAL; 5150 } 5151 5152 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5153 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5154 5155 return 0; 5156 } 5157 5158 /** 5159 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5160 * @vsi: the VSI being configured 5161 * @enabled_tc: TC map to be enabled 5162 * 5163 **/ 5164 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5165 { 5166 struct net_device *netdev = vsi->netdev; 5167 struct i40e_pf *pf = vsi->back; 5168 struct i40e_hw *hw = &pf->hw; 5169 u8 netdev_tc = 0; 5170 int i; 5171 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5172 5173 if (!netdev) 5174 return; 5175 5176 if (!enabled_tc) { 5177 netdev_reset_tc(netdev); 5178 return; 5179 } 5180 5181 /* Set up actual enabled TCs on the VSI */ 5182 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5183 return; 5184 5185 /* set per TC queues for the VSI */ 5186 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5187 /* Only set TC queues for enabled tcs 5188 * 5189 * e.g. For a VSI that has TC0 and TC3 enabled the 5190 * enabled_tc bitmap would be 0x00001001; the driver 5191 * will set the numtc for netdev as 2 that will be 5192 * referenced by the netdev layer as TC 0 and 1. 5193 */ 5194 if (vsi->tc_config.enabled_tc & BIT(i)) 5195 netdev_set_tc_queue(netdev, 5196 vsi->tc_config.tc_info[i].netdev_tc, 5197 vsi->tc_config.tc_info[i].qcount, 5198 vsi->tc_config.tc_info[i].qoffset); 5199 } 5200 5201 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5202 return; 5203 5204 /* Assign UP2TC map for the VSI */ 5205 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5206 /* Get the actual TC# for the UP */ 5207 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5208 /* Get the mapped netdev TC# for the UP */ 5209 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5210 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5211 } 5212 } 5213 5214 /** 5215 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5216 * @vsi: the VSI being configured 5217 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5218 **/ 5219 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5220 struct i40e_vsi_context *ctxt) 5221 { 5222 /* copy just the sections touched not the entire info 5223 * since not all sections are valid as returned by 5224 * update vsi params 5225 */ 5226 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5227 memcpy(&vsi->info.queue_mapping, 5228 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5229 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5230 sizeof(vsi->info.tc_mapping)); 5231 } 5232 5233 /** 5234 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5235 * @vsi: VSI to be configured 5236 * @enabled_tc: TC bitmap 5237 * 5238 * This configures a particular VSI for TCs that are mapped to the 5239 * given TC bitmap. It uses default bandwidth share for TCs across 5240 * VSIs to configure TC for a particular VSI. 5241 * 5242 * NOTE: 5243 * It is expected that the VSI queues have been quisced before calling 5244 * this function. 5245 **/ 5246 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5247 { 5248 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5249 struct i40e_pf *pf = vsi->back; 5250 struct i40e_hw *hw = &pf->hw; 5251 struct i40e_vsi_context ctxt; 5252 int ret = 0; 5253 int i; 5254 5255 /* Check if enabled_tc is same as existing or new TCs */ 5256 if (vsi->tc_config.enabled_tc == enabled_tc && 5257 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5258 return ret; 5259 5260 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5261 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5262 if (enabled_tc & BIT(i)) 5263 bw_share[i] = 1; 5264 } 5265 5266 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5267 if (ret) { 5268 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5269 5270 dev_info(&pf->pdev->dev, 5271 "Failed configuring TC map %d for VSI %d\n", 5272 enabled_tc, vsi->seid); 5273 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5274 &bw_config, NULL); 5275 if (ret) { 5276 dev_info(&pf->pdev->dev, 5277 "Failed querying vsi bw info, err %s aq_err %s\n", 5278 i40e_stat_str(hw, ret), 5279 i40e_aq_str(hw, hw->aq.asq_last_status)); 5280 goto out; 5281 } 5282 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5283 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5284 5285 if (!valid_tc) 5286 valid_tc = bw_config.tc_valid_bits; 5287 /* Always enable TC0, no matter what */ 5288 valid_tc |= 1; 5289 dev_info(&pf->pdev->dev, 5290 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5291 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5292 enabled_tc = valid_tc; 5293 } 5294 5295 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5296 if (ret) { 5297 dev_err(&pf->pdev->dev, 5298 "Unable to configure TC map %d for VSI %d\n", 5299 enabled_tc, vsi->seid); 5300 goto out; 5301 } 5302 } 5303 5304 /* Update Queue Pairs Mapping for currently enabled UPs */ 5305 ctxt.seid = vsi->seid; 5306 ctxt.pf_num = vsi->back->hw.pf_id; 5307 ctxt.vf_num = 0; 5308 ctxt.uplink_seid = vsi->uplink_seid; 5309 ctxt.info = vsi->info; 5310 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5311 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5312 if (ret) 5313 goto out; 5314 } else { 5315 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5316 } 5317 5318 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5319 * queues changed. 5320 */ 5321 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5322 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5323 vsi->num_queue_pairs); 5324 ret = i40e_vsi_config_rss(vsi); 5325 if (ret) { 5326 dev_info(&vsi->back->pdev->dev, 5327 "Failed to reconfig rss for num_queues\n"); 5328 return ret; 5329 } 5330 vsi->reconfig_rss = false; 5331 } 5332 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5333 ctxt.info.valid_sections |= 5334 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5335 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5336 } 5337 5338 /* Update the VSI after updating the VSI queue-mapping 5339 * information 5340 */ 5341 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5342 if (ret) { 5343 dev_info(&pf->pdev->dev, 5344 "Update vsi tc config failed, err %s aq_err %s\n", 5345 i40e_stat_str(hw, ret), 5346 i40e_aq_str(hw, hw->aq.asq_last_status)); 5347 goto out; 5348 } 5349 /* update the local VSI info with updated queue map */ 5350 i40e_vsi_update_queue_map(vsi, &ctxt); 5351 vsi->info.valid_sections = 0; 5352 5353 /* Update current VSI BW information */ 5354 ret = i40e_vsi_get_bw_info(vsi); 5355 if (ret) { 5356 dev_info(&pf->pdev->dev, 5357 "Failed updating vsi bw info, err %s aq_err %s\n", 5358 i40e_stat_str(hw, ret), 5359 i40e_aq_str(hw, hw->aq.asq_last_status)); 5360 goto out; 5361 } 5362 5363 /* Update the netdev TC setup */ 5364 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5365 out: 5366 return ret; 5367 } 5368 5369 /** 5370 * i40e_get_link_speed - Returns link speed for the interface 5371 * @vsi: VSI to be configured 5372 * 5373 **/ 5374 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5375 { 5376 struct i40e_pf *pf = vsi->back; 5377 5378 switch (pf->hw.phy.link_info.link_speed) { 5379 case I40E_LINK_SPEED_40GB: 5380 return 40000; 5381 case I40E_LINK_SPEED_25GB: 5382 return 25000; 5383 case I40E_LINK_SPEED_20GB: 5384 return 20000; 5385 case I40E_LINK_SPEED_10GB: 5386 return 10000; 5387 case I40E_LINK_SPEED_1GB: 5388 return 1000; 5389 default: 5390 return -EINVAL; 5391 } 5392 } 5393 5394 /** 5395 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5396 * @vsi: VSI to be configured 5397 * @seid: seid of the channel/VSI 5398 * @max_tx_rate: max TX rate to be configured as BW limit 5399 * 5400 * Helper function to set BW limit for a given VSI 5401 **/ 5402 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5403 { 5404 struct i40e_pf *pf = vsi->back; 5405 u64 credits = 0; 5406 int speed = 0; 5407 int ret = 0; 5408 5409 speed = i40e_get_link_speed(vsi); 5410 if (max_tx_rate > speed) { 5411 dev_err(&pf->pdev->dev, 5412 "Invalid max tx rate %llu specified for VSI seid %d.", 5413 max_tx_rate, seid); 5414 return -EINVAL; 5415 } 5416 if (max_tx_rate && max_tx_rate < 50) { 5417 dev_warn(&pf->pdev->dev, 5418 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5419 max_tx_rate = 50; 5420 } 5421 5422 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5423 credits = max_tx_rate; 5424 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5425 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5426 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5427 if (ret) 5428 dev_err(&pf->pdev->dev, 5429 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5430 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5431 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5432 return ret; 5433 } 5434 5435 /** 5436 * i40e_remove_queue_channels - Remove queue channels for the TCs 5437 * @vsi: VSI to be configured 5438 * 5439 * Remove queue channels for the TCs 5440 **/ 5441 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5442 { 5443 enum i40e_admin_queue_err last_aq_status; 5444 struct i40e_cloud_filter *cfilter; 5445 struct i40e_channel *ch, *ch_tmp; 5446 struct i40e_pf *pf = vsi->back; 5447 struct hlist_node *node; 5448 int ret, i; 5449 5450 /* Reset rss size that was stored when reconfiguring rss for 5451 * channel VSIs with non-power-of-2 queue count. 5452 */ 5453 vsi->current_rss_size = 0; 5454 5455 /* perform cleanup for channels if they exist */ 5456 if (list_empty(&vsi->ch_list)) 5457 return; 5458 5459 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5460 struct i40e_vsi *p_vsi; 5461 5462 list_del(&ch->list); 5463 p_vsi = ch->parent_vsi; 5464 if (!p_vsi || !ch->initialized) { 5465 kfree(ch); 5466 continue; 5467 } 5468 /* Reset queue contexts */ 5469 for (i = 0; i < ch->num_queue_pairs; i++) { 5470 struct i40e_ring *tx_ring, *rx_ring; 5471 u16 pf_q; 5472 5473 pf_q = ch->base_queue + i; 5474 tx_ring = vsi->tx_rings[pf_q]; 5475 tx_ring->ch = NULL; 5476 5477 rx_ring = vsi->rx_rings[pf_q]; 5478 rx_ring->ch = NULL; 5479 } 5480 5481 /* Reset BW configured for this VSI via mqprio */ 5482 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5483 if (ret) 5484 dev_info(&vsi->back->pdev->dev, 5485 "Failed to reset tx rate for ch->seid %u\n", 5486 ch->seid); 5487 5488 /* delete cloud filters associated with this channel */ 5489 hlist_for_each_entry_safe(cfilter, node, 5490 &pf->cloud_filter_list, cloud_node) { 5491 if (cfilter->seid != ch->seid) 5492 continue; 5493 5494 hash_del(&cfilter->cloud_node); 5495 if (cfilter->dst_port) 5496 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5497 cfilter, 5498 false); 5499 else 5500 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5501 false); 5502 last_aq_status = pf->hw.aq.asq_last_status; 5503 if (ret) 5504 dev_info(&pf->pdev->dev, 5505 "Failed to delete cloud filter, err %s aq_err %s\n", 5506 i40e_stat_str(&pf->hw, ret), 5507 i40e_aq_str(&pf->hw, last_aq_status)); 5508 kfree(cfilter); 5509 } 5510 5511 /* delete VSI from FW */ 5512 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5513 NULL); 5514 if (ret) 5515 dev_err(&vsi->back->pdev->dev, 5516 "unable to remove channel (%d) for parent VSI(%d)\n", 5517 ch->seid, p_vsi->seid); 5518 kfree(ch); 5519 } 5520 INIT_LIST_HEAD(&vsi->ch_list); 5521 } 5522 5523 /** 5524 * i40e_is_any_channel - channel exist or not 5525 * @vsi: ptr to VSI to which channels are associated with 5526 * 5527 * Returns true or false if channel(s) exist for associated VSI or not 5528 **/ 5529 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5530 { 5531 struct i40e_channel *ch, *ch_tmp; 5532 5533 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5534 if (ch->initialized) 5535 return true; 5536 } 5537 5538 return false; 5539 } 5540 5541 /** 5542 * i40e_get_max_queues_for_channel 5543 * @vsi: ptr to VSI to which channels are associated with 5544 * 5545 * Helper function which returns max value among the queue counts set on the 5546 * channels/TCs created. 5547 **/ 5548 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5549 { 5550 struct i40e_channel *ch, *ch_tmp; 5551 int max = 0; 5552 5553 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5554 if (!ch->initialized) 5555 continue; 5556 if (ch->num_queue_pairs > max) 5557 max = ch->num_queue_pairs; 5558 } 5559 5560 return max; 5561 } 5562 5563 /** 5564 * i40e_validate_num_queues - validate num_queues w.r.t channel 5565 * @pf: ptr to PF device 5566 * @num_queues: number of queues 5567 * @vsi: the parent VSI 5568 * @reconfig_rss: indicates should the RSS be reconfigured or not 5569 * 5570 * This function validates number of queues in the context of new channel 5571 * which is being established and determines if RSS should be reconfigured 5572 * or not for parent VSI. 5573 **/ 5574 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5575 struct i40e_vsi *vsi, bool *reconfig_rss) 5576 { 5577 int max_ch_queues; 5578 5579 if (!reconfig_rss) 5580 return -EINVAL; 5581 5582 *reconfig_rss = false; 5583 if (vsi->current_rss_size) { 5584 if (num_queues > vsi->current_rss_size) { 5585 dev_dbg(&pf->pdev->dev, 5586 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5587 num_queues, vsi->current_rss_size); 5588 return -EINVAL; 5589 } else if ((num_queues < vsi->current_rss_size) && 5590 (!is_power_of_2(num_queues))) { 5591 dev_dbg(&pf->pdev->dev, 5592 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5593 num_queues, vsi->current_rss_size); 5594 return -EINVAL; 5595 } 5596 } 5597 5598 if (!is_power_of_2(num_queues)) { 5599 /* Find the max num_queues configured for channel if channel 5600 * exist. 5601 * if channel exist, then enforce 'num_queues' to be more than 5602 * max ever queues configured for channel. 5603 */ 5604 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5605 if (num_queues < max_ch_queues) { 5606 dev_dbg(&pf->pdev->dev, 5607 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5608 num_queues, max_ch_queues); 5609 return -EINVAL; 5610 } 5611 *reconfig_rss = true; 5612 } 5613 5614 return 0; 5615 } 5616 5617 /** 5618 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5619 * @vsi: the VSI being setup 5620 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5621 * 5622 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5623 **/ 5624 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5625 { 5626 struct i40e_pf *pf = vsi->back; 5627 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5628 struct i40e_hw *hw = &pf->hw; 5629 int local_rss_size; 5630 u8 *lut; 5631 int ret; 5632 5633 if (!vsi->rss_size) 5634 return -EINVAL; 5635 5636 if (rss_size > vsi->rss_size) 5637 return -EINVAL; 5638 5639 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5640 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5641 if (!lut) 5642 return -ENOMEM; 5643 5644 /* Ignoring user configured lut if there is one */ 5645 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5646 5647 /* Use user configured hash key if there is one, otherwise 5648 * use default. 5649 */ 5650 if (vsi->rss_hkey_user) 5651 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5652 else 5653 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5654 5655 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5656 if (ret) { 5657 dev_info(&pf->pdev->dev, 5658 "Cannot set RSS lut, err %s aq_err %s\n", 5659 i40e_stat_str(hw, ret), 5660 i40e_aq_str(hw, hw->aq.asq_last_status)); 5661 kfree(lut); 5662 return ret; 5663 } 5664 kfree(lut); 5665 5666 /* Do the update w.r.t. storing rss_size */ 5667 if (!vsi->orig_rss_size) 5668 vsi->orig_rss_size = vsi->rss_size; 5669 vsi->current_rss_size = local_rss_size; 5670 5671 return ret; 5672 } 5673 5674 /** 5675 * i40e_channel_setup_queue_map - Setup a channel queue map 5676 * @pf: ptr to PF device 5677 * @vsi: the VSI being setup 5678 * @ctxt: VSI context structure 5679 * @ch: ptr to channel structure 5680 * 5681 * Setup queue map for a specific channel 5682 **/ 5683 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5684 struct i40e_vsi_context *ctxt, 5685 struct i40e_channel *ch) 5686 { 5687 u16 qcount, qmap, sections = 0; 5688 u8 offset = 0; 5689 int pow; 5690 5691 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5692 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5693 5694 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5695 ch->num_queue_pairs = qcount; 5696 5697 /* find the next higher power-of-2 of num queue pairs */ 5698 pow = ilog2(qcount); 5699 if (!is_power_of_2(qcount)) 5700 pow++; 5701 5702 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5703 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5704 5705 /* Setup queue TC[0].qmap for given VSI context */ 5706 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5707 5708 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5709 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5710 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5711 ctxt->info.valid_sections |= cpu_to_le16(sections); 5712 } 5713 5714 /** 5715 * i40e_add_channel - add a channel by adding VSI 5716 * @pf: ptr to PF device 5717 * @uplink_seid: underlying HW switching element (VEB) ID 5718 * @ch: ptr to channel structure 5719 * 5720 * Add a channel (VSI) using add_vsi and queue_map 5721 **/ 5722 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5723 struct i40e_channel *ch) 5724 { 5725 struct i40e_hw *hw = &pf->hw; 5726 struct i40e_vsi_context ctxt; 5727 u8 enabled_tc = 0x1; /* TC0 enabled */ 5728 int ret; 5729 5730 if (ch->type != I40E_VSI_VMDQ2) { 5731 dev_info(&pf->pdev->dev, 5732 "add new vsi failed, ch->type %d\n", ch->type); 5733 return -EINVAL; 5734 } 5735 5736 memset(&ctxt, 0, sizeof(ctxt)); 5737 ctxt.pf_num = hw->pf_id; 5738 ctxt.vf_num = 0; 5739 ctxt.uplink_seid = uplink_seid; 5740 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5741 if (ch->type == I40E_VSI_VMDQ2) 5742 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5743 5744 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5745 ctxt.info.valid_sections |= 5746 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5747 ctxt.info.switch_id = 5748 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5749 } 5750 5751 /* Set queue map for a given VSI context */ 5752 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5753 5754 /* Now time to create VSI */ 5755 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5756 if (ret) { 5757 dev_info(&pf->pdev->dev, 5758 "add new vsi failed, err %s aq_err %s\n", 5759 i40e_stat_str(&pf->hw, ret), 5760 i40e_aq_str(&pf->hw, 5761 pf->hw.aq.asq_last_status)); 5762 return -ENOENT; 5763 } 5764 5765 /* Success, update channel */ 5766 ch->enabled_tc = enabled_tc; 5767 ch->seid = ctxt.seid; 5768 ch->vsi_number = ctxt.vsi_number; 5769 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5770 5771 /* copy just the sections touched not the entire info 5772 * since not all sections are valid as returned by 5773 * update vsi params 5774 */ 5775 ch->info.mapping_flags = ctxt.info.mapping_flags; 5776 memcpy(&ch->info.queue_mapping, 5777 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5778 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5779 sizeof(ctxt.info.tc_mapping)); 5780 5781 return 0; 5782 } 5783 5784 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5785 u8 *bw_share) 5786 { 5787 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5788 i40e_status ret; 5789 int i; 5790 5791 bw_data.tc_valid_bits = ch->enabled_tc; 5792 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5793 bw_data.tc_bw_credits[i] = bw_share[i]; 5794 5795 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5796 &bw_data, NULL); 5797 if (ret) { 5798 dev_info(&vsi->back->pdev->dev, 5799 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5800 vsi->back->hw.aq.asq_last_status, ch->seid); 5801 return -EINVAL; 5802 } 5803 5804 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5805 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5806 5807 return 0; 5808 } 5809 5810 /** 5811 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5812 * @pf: ptr to PF device 5813 * @vsi: the VSI being setup 5814 * @ch: ptr to channel structure 5815 * 5816 * Configure TX rings associated with channel (VSI) since queues are being 5817 * from parent VSI. 5818 **/ 5819 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5820 struct i40e_vsi *vsi, 5821 struct i40e_channel *ch) 5822 { 5823 i40e_status ret; 5824 int i; 5825 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5826 5827 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5828 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5829 if (ch->enabled_tc & BIT(i)) 5830 bw_share[i] = 1; 5831 } 5832 5833 /* configure BW for new VSI */ 5834 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5835 if (ret) { 5836 dev_info(&vsi->back->pdev->dev, 5837 "Failed configuring TC map %d for channel (seid %u)\n", 5838 ch->enabled_tc, ch->seid); 5839 return ret; 5840 } 5841 5842 for (i = 0; i < ch->num_queue_pairs; i++) { 5843 struct i40e_ring *tx_ring, *rx_ring; 5844 u16 pf_q; 5845 5846 pf_q = ch->base_queue + i; 5847 5848 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5849 * context 5850 */ 5851 tx_ring = vsi->tx_rings[pf_q]; 5852 tx_ring->ch = ch; 5853 5854 /* Get the RX ring ptr */ 5855 rx_ring = vsi->rx_rings[pf_q]; 5856 rx_ring->ch = ch; 5857 } 5858 5859 return 0; 5860 } 5861 5862 /** 5863 * i40e_setup_hw_channel - setup new channel 5864 * @pf: ptr to PF device 5865 * @vsi: the VSI being setup 5866 * @ch: ptr to channel structure 5867 * @uplink_seid: underlying HW switching element (VEB) ID 5868 * @type: type of channel to be created (VMDq2/VF) 5869 * 5870 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5871 * and configures TX rings accordingly 5872 **/ 5873 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5874 struct i40e_vsi *vsi, 5875 struct i40e_channel *ch, 5876 u16 uplink_seid, u8 type) 5877 { 5878 int ret; 5879 5880 ch->initialized = false; 5881 ch->base_queue = vsi->next_base_queue; 5882 ch->type = type; 5883 5884 /* Proceed with creation of channel (VMDq2) VSI */ 5885 ret = i40e_add_channel(pf, uplink_seid, ch); 5886 if (ret) { 5887 dev_info(&pf->pdev->dev, 5888 "failed to add_channel using uplink_seid %u\n", 5889 uplink_seid); 5890 return ret; 5891 } 5892 5893 /* Mark the successful creation of channel */ 5894 ch->initialized = true; 5895 5896 /* Reconfigure TX queues using QTX_CTL register */ 5897 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5898 if (ret) { 5899 dev_info(&pf->pdev->dev, 5900 "failed to configure TX rings for channel %u\n", 5901 ch->seid); 5902 return ret; 5903 } 5904 5905 /* update 'next_base_queue' */ 5906 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5907 dev_dbg(&pf->pdev->dev, 5908 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5909 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5910 ch->num_queue_pairs, 5911 vsi->next_base_queue); 5912 return ret; 5913 } 5914 5915 /** 5916 * i40e_setup_channel - setup new channel using uplink element 5917 * @pf: ptr to PF device 5918 * @type: type of channel to be created (VMDq2/VF) 5919 * @uplink_seid: underlying HW switching element (VEB) ID 5920 * @ch: ptr to channel structure 5921 * 5922 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5923 * and uplink switching element (uplink_seid) 5924 **/ 5925 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5926 struct i40e_channel *ch) 5927 { 5928 u8 vsi_type; 5929 u16 seid; 5930 int ret; 5931 5932 if (vsi->type == I40E_VSI_MAIN) { 5933 vsi_type = I40E_VSI_VMDQ2; 5934 } else { 5935 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5936 vsi->type); 5937 return false; 5938 } 5939 5940 /* underlying switching element */ 5941 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5942 5943 /* create channel (VSI), configure TX rings */ 5944 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5945 if (ret) { 5946 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 5947 return false; 5948 } 5949 5950 return ch->initialized ? true : false; 5951 } 5952 5953 /** 5954 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 5955 * @vsi: ptr to VSI which has PF backing 5956 * 5957 * Sets up switch mode correctly if it needs to be changed and perform 5958 * what are allowed modes. 5959 **/ 5960 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 5961 { 5962 u8 mode; 5963 struct i40e_pf *pf = vsi->back; 5964 struct i40e_hw *hw = &pf->hw; 5965 int ret; 5966 5967 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 5968 if (ret) 5969 return -EINVAL; 5970 5971 if (hw->dev_caps.switch_mode) { 5972 /* if switch mode is set, support mode2 (non-tunneled for 5973 * cloud filter) for now 5974 */ 5975 u32 switch_mode = hw->dev_caps.switch_mode & 5976 I40E_SWITCH_MODE_MASK; 5977 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 5978 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 5979 return 0; 5980 dev_err(&pf->pdev->dev, 5981 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 5982 hw->dev_caps.switch_mode); 5983 return -EINVAL; 5984 } 5985 } 5986 5987 /* Set Bit 7 to be valid */ 5988 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 5989 5990 /* Set L4type for TCP support */ 5991 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 5992 5993 /* Set cloud filter mode */ 5994 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 5995 5996 /* Prep mode field for set_switch_config */ 5997 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 5998 pf->last_sw_conf_valid_flags, 5999 mode, NULL); 6000 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6001 dev_err(&pf->pdev->dev, 6002 "couldn't set switch config bits, err %s aq_err %s\n", 6003 i40e_stat_str(hw, ret), 6004 i40e_aq_str(hw, 6005 hw->aq.asq_last_status)); 6006 6007 return ret; 6008 } 6009 6010 /** 6011 * i40e_create_queue_channel - function to create channel 6012 * @vsi: VSI to be configured 6013 * @ch: ptr to channel (it contains channel specific params) 6014 * 6015 * This function creates channel (VSI) using num_queues specified by user, 6016 * reconfigs RSS if needed. 6017 **/ 6018 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6019 struct i40e_channel *ch) 6020 { 6021 struct i40e_pf *pf = vsi->back; 6022 bool reconfig_rss; 6023 int err; 6024 6025 if (!ch) 6026 return -EINVAL; 6027 6028 if (!ch->num_queue_pairs) { 6029 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6030 ch->num_queue_pairs); 6031 return -EINVAL; 6032 } 6033 6034 /* validate user requested num_queues for channel */ 6035 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6036 &reconfig_rss); 6037 if (err) { 6038 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6039 ch->num_queue_pairs); 6040 return -EINVAL; 6041 } 6042 6043 /* By default we are in VEPA mode, if this is the first VF/VMDq 6044 * VSI to be added switch to VEB mode. 6045 */ 6046 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6047 (!i40e_is_any_channel(vsi))) { 6048 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6049 dev_dbg(&pf->pdev->dev, 6050 "Failed to create channel. Override queues (%u) not power of 2\n", 6051 vsi->tc_config.tc_info[0].qcount); 6052 return -EINVAL; 6053 } 6054 6055 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6056 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6057 6058 if (vsi->type == I40E_VSI_MAIN) { 6059 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6060 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6061 true); 6062 else 6063 i40e_do_reset_safe(pf, 6064 I40E_PF_RESET_FLAG); 6065 } 6066 } 6067 /* now onwards for main VSI, number of queues will be value 6068 * of TC0's queue count 6069 */ 6070 } 6071 6072 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6073 * it should be more than num_queues 6074 */ 6075 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6076 dev_dbg(&pf->pdev->dev, 6077 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6078 vsi->cnt_q_avail, ch->num_queue_pairs); 6079 return -EINVAL; 6080 } 6081 6082 /* reconfig_rss only if vsi type is MAIN_VSI */ 6083 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6084 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6085 if (err) { 6086 dev_info(&pf->pdev->dev, 6087 "Error: unable to reconfig rss for num_queues (%u)\n", 6088 ch->num_queue_pairs); 6089 return -EINVAL; 6090 } 6091 } 6092 6093 if (!i40e_setup_channel(pf, vsi, ch)) { 6094 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6095 return -EINVAL; 6096 } 6097 6098 dev_info(&pf->pdev->dev, 6099 "Setup channel (id:%u) utilizing num_queues %d\n", 6100 ch->seid, ch->num_queue_pairs); 6101 6102 /* configure VSI for BW limit */ 6103 if (ch->max_tx_rate) { 6104 u64 credits = ch->max_tx_rate; 6105 6106 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6107 return -EINVAL; 6108 6109 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6110 dev_dbg(&pf->pdev->dev, 6111 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6112 ch->max_tx_rate, 6113 credits, 6114 ch->seid); 6115 } 6116 6117 /* in case of VF, this will be main SRIOV VSI */ 6118 ch->parent_vsi = vsi; 6119 6120 /* and update main_vsi's count for queue_available to use */ 6121 vsi->cnt_q_avail -= ch->num_queue_pairs; 6122 6123 return 0; 6124 } 6125 6126 /** 6127 * i40e_configure_queue_channels - Add queue channel for the given TCs 6128 * @vsi: VSI to be configured 6129 * 6130 * Configures queue channel mapping to the given TCs 6131 **/ 6132 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6133 { 6134 struct i40e_channel *ch; 6135 u64 max_rate = 0; 6136 int ret = 0, i; 6137 6138 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6139 vsi->tc_seid_map[0] = vsi->seid; 6140 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6141 if (vsi->tc_config.enabled_tc & BIT(i)) { 6142 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6143 if (!ch) { 6144 ret = -ENOMEM; 6145 goto err_free; 6146 } 6147 6148 INIT_LIST_HEAD(&ch->list); 6149 ch->num_queue_pairs = 6150 vsi->tc_config.tc_info[i].qcount; 6151 ch->base_queue = 6152 vsi->tc_config.tc_info[i].qoffset; 6153 6154 /* Bandwidth limit through tc interface is in bytes/s, 6155 * change to Mbit/s 6156 */ 6157 max_rate = vsi->mqprio_qopt.max_rate[i]; 6158 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6159 ch->max_tx_rate = max_rate; 6160 6161 list_add_tail(&ch->list, &vsi->ch_list); 6162 6163 ret = i40e_create_queue_channel(vsi, ch); 6164 if (ret) { 6165 dev_err(&vsi->back->pdev->dev, 6166 "Failed creating queue channel with TC%d: queues %d\n", 6167 i, ch->num_queue_pairs); 6168 goto err_free; 6169 } 6170 vsi->tc_seid_map[i] = ch->seid; 6171 } 6172 } 6173 return ret; 6174 6175 err_free: 6176 i40e_remove_queue_channels(vsi); 6177 return ret; 6178 } 6179 6180 /** 6181 * i40e_veb_config_tc - Configure TCs for given VEB 6182 * @veb: given VEB 6183 * @enabled_tc: TC bitmap 6184 * 6185 * Configures given TC bitmap for VEB (switching) element 6186 **/ 6187 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6188 { 6189 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6190 struct i40e_pf *pf = veb->pf; 6191 int ret = 0; 6192 int i; 6193 6194 /* No TCs or already enabled TCs just return */ 6195 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6196 return ret; 6197 6198 bw_data.tc_valid_bits = enabled_tc; 6199 /* bw_data.absolute_credits is not set (relative) */ 6200 6201 /* Enable ETS TCs with equal BW Share for now */ 6202 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6203 if (enabled_tc & BIT(i)) 6204 bw_data.tc_bw_share_credits[i] = 1; 6205 } 6206 6207 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6208 &bw_data, NULL); 6209 if (ret) { 6210 dev_info(&pf->pdev->dev, 6211 "VEB bw config failed, err %s aq_err %s\n", 6212 i40e_stat_str(&pf->hw, ret), 6213 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6214 goto out; 6215 } 6216 6217 /* Update the BW information */ 6218 ret = i40e_veb_get_bw_info(veb); 6219 if (ret) { 6220 dev_info(&pf->pdev->dev, 6221 "Failed getting veb bw config, err %s aq_err %s\n", 6222 i40e_stat_str(&pf->hw, ret), 6223 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6224 } 6225 6226 out: 6227 return ret; 6228 } 6229 6230 #ifdef CONFIG_I40E_DCB 6231 /** 6232 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6233 * @pf: PF struct 6234 * 6235 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6236 * the caller would've quiesce all the VSIs before calling 6237 * this function 6238 **/ 6239 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6240 { 6241 u8 tc_map = 0; 6242 int ret; 6243 u8 v; 6244 6245 /* Enable the TCs available on PF to all VEBs */ 6246 tc_map = i40e_pf_get_tc_map(pf); 6247 for (v = 0; v < I40E_MAX_VEB; v++) { 6248 if (!pf->veb[v]) 6249 continue; 6250 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6251 if (ret) { 6252 dev_info(&pf->pdev->dev, 6253 "Failed configuring TC for VEB seid=%d\n", 6254 pf->veb[v]->seid); 6255 /* Will try to configure as many components */ 6256 } 6257 } 6258 6259 /* Update each VSI */ 6260 for (v = 0; v < pf->num_alloc_vsi; v++) { 6261 if (!pf->vsi[v]) 6262 continue; 6263 6264 /* - Enable all TCs for the LAN VSI 6265 * - For all others keep them at TC0 for now 6266 */ 6267 if (v == pf->lan_vsi) 6268 tc_map = i40e_pf_get_tc_map(pf); 6269 else 6270 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6271 6272 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6273 if (ret) { 6274 dev_info(&pf->pdev->dev, 6275 "Failed configuring TC for VSI seid=%d\n", 6276 pf->vsi[v]->seid); 6277 /* Will try to configure as many components */ 6278 } else { 6279 /* Re-configure VSI vectors based on updated TC map */ 6280 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6281 if (pf->vsi[v]->netdev) 6282 i40e_dcbnl_set_all(pf->vsi[v]); 6283 } 6284 } 6285 } 6286 6287 /** 6288 * i40e_resume_port_tx - Resume port Tx 6289 * @pf: PF struct 6290 * 6291 * Resume a port's Tx and issue a PF reset in case of failure to 6292 * resume. 6293 **/ 6294 static int i40e_resume_port_tx(struct i40e_pf *pf) 6295 { 6296 struct i40e_hw *hw = &pf->hw; 6297 int ret; 6298 6299 ret = i40e_aq_resume_port_tx(hw, NULL); 6300 if (ret) { 6301 dev_info(&pf->pdev->dev, 6302 "Resume Port Tx failed, err %s aq_err %s\n", 6303 i40e_stat_str(&pf->hw, ret), 6304 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6305 /* Schedule PF reset to recover */ 6306 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6307 i40e_service_event_schedule(pf); 6308 } 6309 6310 return ret; 6311 } 6312 6313 /** 6314 * i40e_init_pf_dcb - Initialize DCB configuration 6315 * @pf: PF being configured 6316 * 6317 * Query the current DCB configuration and cache it 6318 * in the hardware structure 6319 **/ 6320 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6321 { 6322 struct i40e_hw *hw = &pf->hw; 6323 int err = 0; 6324 6325 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6326 * Also do not enable DCBx if FW LLDP agent is disabled 6327 */ 6328 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6329 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6330 goto out; 6331 6332 /* Get the initial DCB configuration */ 6333 err = i40e_init_dcb(hw); 6334 if (!err) { 6335 /* Device/Function is not DCBX capable */ 6336 if ((!hw->func_caps.dcb) || 6337 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6338 dev_info(&pf->pdev->dev, 6339 "DCBX offload is not supported or is disabled for this PF.\n"); 6340 } else { 6341 /* When status is not DISABLED then DCBX in FW */ 6342 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6343 DCB_CAP_DCBX_VER_IEEE; 6344 6345 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6346 /* Enable DCB tagging only when more than one TC 6347 * or explicitly disable if only one TC 6348 */ 6349 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6350 pf->flags |= I40E_FLAG_DCB_ENABLED; 6351 else 6352 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6353 dev_dbg(&pf->pdev->dev, 6354 "DCBX offload is supported for this PF.\n"); 6355 } 6356 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6357 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6358 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6359 } else { 6360 dev_info(&pf->pdev->dev, 6361 "Query for DCB configuration failed, err %s aq_err %s\n", 6362 i40e_stat_str(&pf->hw, err), 6363 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6364 } 6365 6366 out: 6367 return err; 6368 } 6369 #endif /* CONFIG_I40E_DCB */ 6370 #define SPEED_SIZE 14 6371 #define FC_SIZE 8 6372 /** 6373 * i40e_print_link_message - print link up or down 6374 * @vsi: the VSI for which link needs a message 6375 * @isup: true of link is up, false otherwise 6376 */ 6377 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6378 { 6379 enum i40e_aq_link_speed new_speed; 6380 struct i40e_pf *pf = vsi->back; 6381 char *speed = "Unknown"; 6382 char *fc = "Unknown"; 6383 char *fec = ""; 6384 char *req_fec = ""; 6385 char *an = ""; 6386 6387 new_speed = pf->hw.phy.link_info.link_speed; 6388 6389 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6390 return; 6391 vsi->current_isup = isup; 6392 vsi->current_speed = new_speed; 6393 if (!isup) { 6394 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6395 return; 6396 } 6397 6398 /* Warn user if link speed on NPAR enabled partition is not at 6399 * least 10GB 6400 */ 6401 if (pf->hw.func_caps.npar_enable && 6402 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6403 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6404 netdev_warn(vsi->netdev, 6405 "The partition detected link speed that is less than 10Gbps\n"); 6406 6407 switch (pf->hw.phy.link_info.link_speed) { 6408 case I40E_LINK_SPEED_40GB: 6409 speed = "40 G"; 6410 break; 6411 case I40E_LINK_SPEED_20GB: 6412 speed = "20 G"; 6413 break; 6414 case I40E_LINK_SPEED_25GB: 6415 speed = "25 G"; 6416 break; 6417 case I40E_LINK_SPEED_10GB: 6418 speed = "10 G"; 6419 break; 6420 case I40E_LINK_SPEED_1GB: 6421 speed = "1000 M"; 6422 break; 6423 case I40E_LINK_SPEED_100MB: 6424 speed = "100 M"; 6425 break; 6426 default: 6427 break; 6428 } 6429 6430 switch (pf->hw.fc.current_mode) { 6431 case I40E_FC_FULL: 6432 fc = "RX/TX"; 6433 break; 6434 case I40E_FC_TX_PAUSE: 6435 fc = "TX"; 6436 break; 6437 case I40E_FC_RX_PAUSE: 6438 fc = "RX"; 6439 break; 6440 default: 6441 fc = "None"; 6442 break; 6443 } 6444 6445 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6446 req_fec = ", Requested FEC: None"; 6447 fec = ", FEC: None"; 6448 an = ", Autoneg: False"; 6449 6450 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6451 an = ", Autoneg: True"; 6452 6453 if (pf->hw.phy.link_info.fec_info & 6454 I40E_AQ_CONFIG_FEC_KR_ENA) 6455 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6456 else if (pf->hw.phy.link_info.fec_info & 6457 I40E_AQ_CONFIG_FEC_RS_ENA) 6458 fec = ", FEC: CL108 RS-FEC"; 6459 6460 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6461 * both RS and FC are requested 6462 */ 6463 if (vsi->back->hw.phy.link_info.req_fec_info & 6464 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6465 if (vsi->back->hw.phy.link_info.req_fec_info & 6466 I40E_AQ_REQUEST_FEC_RS) 6467 req_fec = ", Requested FEC: CL108 RS-FEC"; 6468 else 6469 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6470 } 6471 } 6472 6473 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6474 speed, req_fec, fec, an, fc); 6475 } 6476 6477 /** 6478 * i40e_up_complete - Finish the last steps of bringing up a connection 6479 * @vsi: the VSI being configured 6480 **/ 6481 static int i40e_up_complete(struct i40e_vsi *vsi) 6482 { 6483 struct i40e_pf *pf = vsi->back; 6484 int err; 6485 6486 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6487 i40e_vsi_configure_msix(vsi); 6488 else 6489 i40e_configure_msi_and_legacy(vsi); 6490 6491 /* start rings */ 6492 err = i40e_vsi_start_rings(vsi); 6493 if (err) 6494 return err; 6495 6496 clear_bit(__I40E_VSI_DOWN, vsi->state); 6497 i40e_napi_enable_all(vsi); 6498 i40e_vsi_enable_irq(vsi); 6499 6500 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6501 (vsi->netdev)) { 6502 i40e_print_link_message(vsi, true); 6503 netif_tx_start_all_queues(vsi->netdev); 6504 netif_carrier_on(vsi->netdev); 6505 } 6506 6507 /* replay FDIR SB filters */ 6508 if (vsi->type == I40E_VSI_FDIR) { 6509 /* reset fd counters */ 6510 pf->fd_add_err = 0; 6511 pf->fd_atr_cnt = 0; 6512 i40e_fdir_filter_restore(vsi); 6513 } 6514 6515 /* On the next run of the service_task, notify any clients of the new 6516 * opened netdev 6517 */ 6518 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6519 i40e_service_event_schedule(pf); 6520 6521 return 0; 6522 } 6523 6524 /** 6525 * i40e_vsi_reinit_locked - Reset the VSI 6526 * @vsi: the VSI being configured 6527 * 6528 * Rebuild the ring structs after some configuration 6529 * has changed, e.g. MTU size. 6530 **/ 6531 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6532 { 6533 struct i40e_pf *pf = vsi->back; 6534 6535 WARN_ON(in_interrupt()); 6536 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6537 usleep_range(1000, 2000); 6538 i40e_down(vsi); 6539 6540 i40e_up(vsi); 6541 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6542 } 6543 6544 /** 6545 * i40e_up - Bring the connection back up after being down 6546 * @vsi: the VSI being configured 6547 **/ 6548 int i40e_up(struct i40e_vsi *vsi) 6549 { 6550 int err; 6551 6552 err = i40e_vsi_configure(vsi); 6553 if (!err) 6554 err = i40e_up_complete(vsi); 6555 6556 return err; 6557 } 6558 6559 /** 6560 * i40e_force_link_state - Force the link status 6561 * @pf: board private structure 6562 * @is_up: whether the link state should be forced up or down 6563 **/ 6564 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6565 { 6566 struct i40e_aq_get_phy_abilities_resp abilities; 6567 struct i40e_aq_set_phy_config config = {0}; 6568 struct i40e_hw *hw = &pf->hw; 6569 i40e_status err; 6570 u64 mask; 6571 6572 /* Get the current phy config */ 6573 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6574 NULL); 6575 if (err) { 6576 dev_err(&pf->pdev->dev, 6577 "failed to get phy cap., ret = %s last_status = %s\n", 6578 i40e_stat_str(hw, err), 6579 i40e_aq_str(hw, hw->aq.asq_last_status)); 6580 return err; 6581 } 6582 6583 /* If link needs to go up, but was not forced to go down, 6584 * no need for a flap 6585 */ 6586 if (is_up && abilities.phy_type != 0) 6587 return I40E_SUCCESS; 6588 6589 /* To force link we need to set bits for all supported PHY types, 6590 * but there are now more than 32, so we need to split the bitmap 6591 * across two fields. 6592 */ 6593 mask = I40E_PHY_TYPES_BITMASK; 6594 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6595 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6596 /* Copy the old settings, except of phy_type */ 6597 config.abilities = abilities.abilities; 6598 config.link_speed = abilities.link_speed; 6599 config.eee_capability = abilities.eee_capability; 6600 config.eeer = abilities.eeer_val; 6601 config.low_power_ctrl = abilities.d3_lpan; 6602 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6603 I40E_AQ_PHY_FEC_CONFIG_MASK; 6604 err = i40e_aq_set_phy_config(hw, &config, NULL); 6605 6606 if (err) { 6607 dev_err(&pf->pdev->dev, 6608 "set phy config ret = %s last_status = %s\n", 6609 i40e_stat_str(&pf->hw, err), 6610 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6611 return err; 6612 } 6613 6614 /* Update the link info */ 6615 err = i40e_update_link_info(hw); 6616 if (err) { 6617 /* Wait a little bit (on 40G cards it sometimes takes a really 6618 * long time for link to come back from the atomic reset) 6619 * and try once more 6620 */ 6621 msleep(1000); 6622 i40e_update_link_info(hw); 6623 } 6624 6625 i40e_aq_set_link_restart_an(hw, true, NULL); 6626 6627 return I40E_SUCCESS; 6628 } 6629 6630 /** 6631 * i40e_down - Shutdown the connection processing 6632 * @vsi: the VSI being stopped 6633 **/ 6634 void i40e_down(struct i40e_vsi *vsi) 6635 { 6636 int i; 6637 6638 /* It is assumed that the caller of this function 6639 * sets the vsi->state __I40E_VSI_DOWN bit. 6640 */ 6641 if (vsi->netdev) { 6642 netif_carrier_off(vsi->netdev); 6643 netif_tx_disable(vsi->netdev); 6644 } 6645 i40e_vsi_disable_irq(vsi); 6646 i40e_vsi_stop_rings(vsi); 6647 if (vsi->type == I40E_VSI_MAIN && 6648 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6649 i40e_force_link_state(vsi->back, false); 6650 i40e_napi_disable_all(vsi); 6651 6652 for (i = 0; i < vsi->num_queue_pairs; i++) { 6653 i40e_clean_tx_ring(vsi->tx_rings[i]); 6654 if (i40e_enabled_xdp_vsi(vsi)) 6655 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6656 i40e_clean_rx_ring(vsi->rx_rings[i]); 6657 } 6658 6659 } 6660 6661 /** 6662 * i40e_validate_mqprio_qopt- validate queue mapping info 6663 * @vsi: the VSI being configured 6664 * @mqprio_qopt: queue parametrs 6665 **/ 6666 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6667 struct tc_mqprio_qopt_offload *mqprio_qopt) 6668 { 6669 u64 sum_max_rate = 0; 6670 u64 max_rate = 0; 6671 int i; 6672 6673 if (mqprio_qopt->qopt.offset[0] != 0 || 6674 mqprio_qopt->qopt.num_tc < 1 || 6675 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6676 return -EINVAL; 6677 for (i = 0; ; i++) { 6678 if (!mqprio_qopt->qopt.count[i]) 6679 return -EINVAL; 6680 if (mqprio_qopt->min_rate[i]) { 6681 dev_err(&vsi->back->pdev->dev, 6682 "Invalid min tx rate (greater than 0) specified\n"); 6683 return -EINVAL; 6684 } 6685 max_rate = mqprio_qopt->max_rate[i]; 6686 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6687 sum_max_rate += max_rate; 6688 6689 if (i >= mqprio_qopt->qopt.num_tc - 1) 6690 break; 6691 if (mqprio_qopt->qopt.offset[i + 1] != 6692 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6693 return -EINVAL; 6694 } 6695 if (vsi->num_queue_pairs < 6696 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6697 return -EINVAL; 6698 } 6699 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6700 dev_err(&vsi->back->pdev->dev, 6701 "Invalid max tx rate specified\n"); 6702 return -EINVAL; 6703 } 6704 return 0; 6705 } 6706 6707 /** 6708 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6709 * @vsi: the VSI being configured 6710 **/ 6711 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6712 { 6713 u16 qcount; 6714 int i; 6715 6716 /* Only TC0 is enabled */ 6717 vsi->tc_config.numtc = 1; 6718 vsi->tc_config.enabled_tc = 1; 6719 qcount = min_t(int, vsi->alloc_queue_pairs, 6720 i40e_pf_get_max_q_per_tc(vsi->back)); 6721 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6722 /* For the TC that is not enabled set the offset to to default 6723 * queue and allocate one queue for the given TC. 6724 */ 6725 vsi->tc_config.tc_info[i].qoffset = 0; 6726 if (i == 0) 6727 vsi->tc_config.tc_info[i].qcount = qcount; 6728 else 6729 vsi->tc_config.tc_info[i].qcount = 1; 6730 vsi->tc_config.tc_info[i].netdev_tc = 0; 6731 } 6732 } 6733 6734 /** 6735 * i40e_setup_tc - configure multiple traffic classes 6736 * @netdev: net device to configure 6737 * @type_data: tc offload data 6738 **/ 6739 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6740 { 6741 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6742 struct i40e_netdev_priv *np = netdev_priv(netdev); 6743 struct i40e_vsi *vsi = np->vsi; 6744 struct i40e_pf *pf = vsi->back; 6745 u8 enabled_tc = 0, num_tc, hw; 6746 bool need_reset = false; 6747 int ret = -EINVAL; 6748 u16 mode; 6749 int i; 6750 6751 num_tc = mqprio_qopt->qopt.num_tc; 6752 hw = mqprio_qopt->qopt.hw; 6753 mode = mqprio_qopt->mode; 6754 if (!hw) { 6755 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6756 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6757 goto config_tc; 6758 } 6759 6760 /* Check if MFP enabled */ 6761 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6762 netdev_info(netdev, 6763 "Configuring TC not supported in MFP mode\n"); 6764 return ret; 6765 } 6766 switch (mode) { 6767 case TC_MQPRIO_MODE_DCB: 6768 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6769 6770 /* Check if DCB enabled to continue */ 6771 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6772 netdev_info(netdev, 6773 "DCB is not enabled for adapter\n"); 6774 return ret; 6775 } 6776 6777 /* Check whether tc count is within enabled limit */ 6778 if (num_tc > i40e_pf_get_num_tc(pf)) { 6779 netdev_info(netdev, 6780 "TC count greater than enabled on link for adapter\n"); 6781 return ret; 6782 } 6783 break; 6784 case TC_MQPRIO_MODE_CHANNEL: 6785 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6786 netdev_info(netdev, 6787 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6788 return ret; 6789 } 6790 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6791 return ret; 6792 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6793 if (ret) 6794 return ret; 6795 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6796 sizeof(*mqprio_qopt)); 6797 pf->flags |= I40E_FLAG_TC_MQPRIO; 6798 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6799 break; 6800 default: 6801 return -EINVAL; 6802 } 6803 6804 config_tc: 6805 /* Generate TC map for number of tc requested */ 6806 for (i = 0; i < num_tc; i++) 6807 enabled_tc |= BIT(i); 6808 6809 /* Requesting same TC configuration as already enabled */ 6810 if (enabled_tc == vsi->tc_config.enabled_tc && 6811 mode != TC_MQPRIO_MODE_CHANNEL) 6812 return 0; 6813 6814 /* Quiesce VSI queues */ 6815 i40e_quiesce_vsi(vsi); 6816 6817 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6818 i40e_remove_queue_channels(vsi); 6819 6820 /* Configure VSI for enabled TCs */ 6821 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6822 if (ret) { 6823 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6824 vsi->seid); 6825 need_reset = true; 6826 goto exit; 6827 } 6828 6829 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6830 if (vsi->mqprio_qopt.max_rate[0]) { 6831 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6832 6833 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6834 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6835 if (!ret) { 6836 u64 credits = max_tx_rate; 6837 6838 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6839 dev_dbg(&vsi->back->pdev->dev, 6840 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6841 max_tx_rate, 6842 credits, 6843 vsi->seid); 6844 } else { 6845 need_reset = true; 6846 goto exit; 6847 } 6848 } 6849 ret = i40e_configure_queue_channels(vsi); 6850 if (ret) { 6851 netdev_info(netdev, 6852 "Failed configuring queue channels\n"); 6853 need_reset = true; 6854 goto exit; 6855 } 6856 } 6857 6858 exit: 6859 /* Reset the configuration data to defaults, only TC0 is enabled */ 6860 if (need_reset) { 6861 i40e_vsi_set_default_tc_config(vsi); 6862 need_reset = false; 6863 } 6864 6865 /* Unquiesce VSI */ 6866 i40e_unquiesce_vsi(vsi); 6867 return ret; 6868 } 6869 6870 /** 6871 * i40e_set_cld_element - sets cloud filter element data 6872 * @filter: cloud filter rule 6873 * @cld: ptr to cloud filter element data 6874 * 6875 * This is helper function to copy data into cloud filter element 6876 **/ 6877 static inline void 6878 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6879 struct i40e_aqc_cloud_filters_element_data *cld) 6880 { 6881 int i, j; 6882 u32 ipa; 6883 6884 memset(cld, 0, sizeof(*cld)); 6885 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6886 ether_addr_copy(cld->inner_mac, filter->src_mac); 6887 6888 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6889 return; 6890 6891 if (filter->n_proto == ETH_P_IPV6) { 6892 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6893 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6894 i++, j += 2) { 6895 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6896 ipa = cpu_to_le32(ipa); 6897 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6898 } 6899 } else { 6900 ipa = be32_to_cpu(filter->dst_ipv4); 6901 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6902 } 6903 6904 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6905 6906 /* tenant_id is not supported by FW now, once the support is enabled 6907 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6908 */ 6909 if (filter->tenant_id) 6910 return; 6911 } 6912 6913 /** 6914 * i40e_add_del_cloud_filter - Add/del cloud filter 6915 * @vsi: pointer to VSI 6916 * @filter: cloud filter rule 6917 * @add: if true, add, if false, delete 6918 * 6919 * Add or delete a cloud filter for a specific flow spec. 6920 * Returns 0 if the filter were successfully added. 6921 **/ 6922 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 6923 struct i40e_cloud_filter *filter, bool add) 6924 { 6925 struct i40e_aqc_cloud_filters_element_data cld_filter; 6926 struct i40e_pf *pf = vsi->back; 6927 int ret; 6928 static const u16 flag_table[128] = { 6929 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 6930 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 6931 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 6932 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 6933 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 6934 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 6935 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 6936 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 6937 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 6938 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 6939 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 6940 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 6941 [I40E_CLOUD_FILTER_FLAGS_IIP] = 6942 I40E_AQC_ADD_CLOUD_FILTER_IIP, 6943 }; 6944 6945 if (filter->flags >= ARRAY_SIZE(flag_table)) 6946 return I40E_ERR_CONFIG; 6947 6948 /* copy element needed to add cloud filter from filter */ 6949 i40e_set_cld_element(filter, &cld_filter); 6950 6951 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 6952 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 6953 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 6954 6955 if (filter->n_proto == ETH_P_IPV6) 6956 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6957 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 6958 else 6959 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 6960 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 6961 6962 if (add) 6963 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 6964 &cld_filter, 1); 6965 else 6966 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 6967 &cld_filter, 1); 6968 if (ret) 6969 dev_dbg(&pf->pdev->dev, 6970 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 6971 add ? "add" : "delete", filter->dst_port, ret, 6972 pf->hw.aq.asq_last_status); 6973 else 6974 dev_info(&pf->pdev->dev, 6975 "%s cloud filter for VSI: %d\n", 6976 add ? "Added" : "Deleted", filter->seid); 6977 return ret; 6978 } 6979 6980 /** 6981 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 6982 * @vsi: pointer to VSI 6983 * @filter: cloud filter rule 6984 * @add: if true, add, if false, delete 6985 * 6986 * Add or delete a cloud filter for a specific flow spec using big buffer. 6987 * Returns 0 if the filter were successfully added. 6988 **/ 6989 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 6990 struct i40e_cloud_filter *filter, 6991 bool add) 6992 { 6993 struct i40e_aqc_cloud_filters_element_bb cld_filter; 6994 struct i40e_pf *pf = vsi->back; 6995 int ret; 6996 6997 /* Both (src/dst) valid mac_addr are not supported */ 6998 if ((is_valid_ether_addr(filter->dst_mac) && 6999 is_valid_ether_addr(filter->src_mac)) || 7000 (is_multicast_ether_addr(filter->dst_mac) && 7001 is_multicast_ether_addr(filter->src_mac))) 7002 return -EOPNOTSUPP; 7003 7004 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7005 * ports are not supported via big buffer now. 7006 */ 7007 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7008 return -EOPNOTSUPP; 7009 7010 /* adding filter using src_port/src_ip is not supported at this stage */ 7011 if (filter->src_port || filter->src_ipv4 || 7012 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7013 return -EOPNOTSUPP; 7014 7015 /* copy element needed to add cloud filter from filter */ 7016 i40e_set_cld_element(filter, &cld_filter.element); 7017 7018 if (is_valid_ether_addr(filter->dst_mac) || 7019 is_valid_ether_addr(filter->src_mac) || 7020 is_multicast_ether_addr(filter->dst_mac) || 7021 is_multicast_ether_addr(filter->src_mac)) { 7022 /* MAC + IP : unsupported mode */ 7023 if (filter->dst_ipv4) 7024 return -EOPNOTSUPP; 7025 7026 /* since we validated that L4 port must be valid before 7027 * we get here, start with respective "flags" value 7028 * and update if vlan is present or not 7029 */ 7030 cld_filter.element.flags = 7031 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7032 7033 if (filter->vlan_id) { 7034 cld_filter.element.flags = 7035 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7036 } 7037 7038 } else if (filter->dst_ipv4 || 7039 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7040 cld_filter.element.flags = 7041 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7042 if (filter->n_proto == ETH_P_IPV6) 7043 cld_filter.element.flags |= 7044 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7045 else 7046 cld_filter.element.flags |= 7047 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7048 } else { 7049 dev_err(&pf->pdev->dev, 7050 "either mac or ip has to be valid for cloud filter\n"); 7051 return -EINVAL; 7052 } 7053 7054 /* Now copy L4 port in Byte 6..7 in general fields */ 7055 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7056 be16_to_cpu(filter->dst_port); 7057 7058 if (add) { 7059 /* Validate current device switch mode, change if necessary */ 7060 ret = i40e_validate_and_set_switch_mode(vsi); 7061 if (ret) { 7062 dev_err(&pf->pdev->dev, 7063 "failed to set switch mode, ret %d\n", 7064 ret); 7065 return ret; 7066 } 7067 7068 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7069 &cld_filter, 1); 7070 } else { 7071 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7072 &cld_filter, 1); 7073 } 7074 7075 if (ret) 7076 dev_dbg(&pf->pdev->dev, 7077 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7078 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7079 else 7080 dev_info(&pf->pdev->dev, 7081 "%s cloud filter for VSI: %d, L4 port: %d\n", 7082 add ? "add" : "delete", filter->seid, 7083 ntohs(filter->dst_port)); 7084 return ret; 7085 } 7086 7087 /** 7088 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7089 * @vsi: Pointer to VSI 7090 * @cls_flower: Pointer to struct tc_cls_flower_offload 7091 * @filter: Pointer to cloud filter structure 7092 * 7093 **/ 7094 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7095 struct tc_cls_flower_offload *f, 7096 struct i40e_cloud_filter *filter) 7097 { 7098 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7099 struct i40e_pf *pf = vsi->back; 7100 u8 field_flags = 0; 7101 7102 if (f->dissector->used_keys & 7103 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7104 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7105 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7106 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7107 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7108 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7109 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7110 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7111 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7112 f->dissector->used_keys); 7113 return -EOPNOTSUPP; 7114 } 7115 7116 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7117 struct flow_dissector_key_keyid *key = 7118 skb_flow_dissector_target(f->dissector, 7119 FLOW_DISSECTOR_KEY_ENC_KEYID, 7120 f->key); 7121 7122 struct flow_dissector_key_keyid *mask = 7123 skb_flow_dissector_target(f->dissector, 7124 FLOW_DISSECTOR_KEY_ENC_KEYID, 7125 f->mask); 7126 7127 if (mask->keyid != 0) 7128 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7129 7130 filter->tenant_id = be32_to_cpu(key->keyid); 7131 } 7132 7133 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7134 struct flow_dissector_key_basic *key = 7135 skb_flow_dissector_target(f->dissector, 7136 FLOW_DISSECTOR_KEY_BASIC, 7137 f->key); 7138 7139 struct flow_dissector_key_basic *mask = 7140 skb_flow_dissector_target(f->dissector, 7141 FLOW_DISSECTOR_KEY_BASIC, 7142 f->mask); 7143 7144 n_proto_key = ntohs(key->n_proto); 7145 n_proto_mask = ntohs(mask->n_proto); 7146 7147 if (n_proto_key == ETH_P_ALL) { 7148 n_proto_key = 0; 7149 n_proto_mask = 0; 7150 } 7151 filter->n_proto = n_proto_key & n_proto_mask; 7152 filter->ip_proto = key->ip_proto; 7153 } 7154 7155 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7156 struct flow_dissector_key_eth_addrs *key = 7157 skb_flow_dissector_target(f->dissector, 7158 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7159 f->key); 7160 7161 struct flow_dissector_key_eth_addrs *mask = 7162 skb_flow_dissector_target(f->dissector, 7163 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7164 f->mask); 7165 7166 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7167 if (!is_zero_ether_addr(mask->dst)) { 7168 if (is_broadcast_ether_addr(mask->dst)) { 7169 field_flags |= I40E_CLOUD_FIELD_OMAC; 7170 } else { 7171 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7172 mask->dst); 7173 return I40E_ERR_CONFIG; 7174 } 7175 } 7176 7177 if (!is_zero_ether_addr(mask->src)) { 7178 if (is_broadcast_ether_addr(mask->src)) { 7179 field_flags |= I40E_CLOUD_FIELD_IMAC; 7180 } else { 7181 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7182 mask->src); 7183 return I40E_ERR_CONFIG; 7184 } 7185 } 7186 ether_addr_copy(filter->dst_mac, key->dst); 7187 ether_addr_copy(filter->src_mac, key->src); 7188 } 7189 7190 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7191 struct flow_dissector_key_vlan *key = 7192 skb_flow_dissector_target(f->dissector, 7193 FLOW_DISSECTOR_KEY_VLAN, 7194 f->key); 7195 struct flow_dissector_key_vlan *mask = 7196 skb_flow_dissector_target(f->dissector, 7197 FLOW_DISSECTOR_KEY_VLAN, 7198 f->mask); 7199 7200 if (mask->vlan_id) { 7201 if (mask->vlan_id == VLAN_VID_MASK) { 7202 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7203 7204 } else { 7205 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7206 mask->vlan_id); 7207 return I40E_ERR_CONFIG; 7208 } 7209 } 7210 7211 filter->vlan_id = cpu_to_be16(key->vlan_id); 7212 } 7213 7214 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7215 struct flow_dissector_key_control *key = 7216 skb_flow_dissector_target(f->dissector, 7217 FLOW_DISSECTOR_KEY_CONTROL, 7218 f->key); 7219 7220 addr_type = key->addr_type; 7221 } 7222 7223 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7224 struct flow_dissector_key_ipv4_addrs *key = 7225 skb_flow_dissector_target(f->dissector, 7226 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7227 f->key); 7228 struct flow_dissector_key_ipv4_addrs *mask = 7229 skb_flow_dissector_target(f->dissector, 7230 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7231 f->mask); 7232 7233 if (mask->dst) { 7234 if (mask->dst == cpu_to_be32(0xffffffff)) { 7235 field_flags |= I40E_CLOUD_FIELD_IIP; 7236 } else { 7237 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7238 &mask->dst); 7239 return I40E_ERR_CONFIG; 7240 } 7241 } 7242 7243 if (mask->src) { 7244 if (mask->src == cpu_to_be32(0xffffffff)) { 7245 field_flags |= I40E_CLOUD_FIELD_IIP; 7246 } else { 7247 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7248 &mask->src); 7249 return I40E_ERR_CONFIG; 7250 } 7251 } 7252 7253 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7254 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7255 return I40E_ERR_CONFIG; 7256 } 7257 filter->dst_ipv4 = key->dst; 7258 filter->src_ipv4 = key->src; 7259 } 7260 7261 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7262 struct flow_dissector_key_ipv6_addrs *key = 7263 skb_flow_dissector_target(f->dissector, 7264 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7265 f->key); 7266 struct flow_dissector_key_ipv6_addrs *mask = 7267 skb_flow_dissector_target(f->dissector, 7268 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7269 f->mask); 7270 7271 /* src and dest IPV6 address should not be LOOPBACK 7272 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7273 */ 7274 if (ipv6_addr_loopback(&key->dst) || 7275 ipv6_addr_loopback(&key->src)) { 7276 dev_err(&pf->pdev->dev, 7277 "Bad ipv6, addr is LOOPBACK\n"); 7278 return I40E_ERR_CONFIG; 7279 } 7280 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7281 field_flags |= I40E_CLOUD_FIELD_IIP; 7282 7283 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7284 sizeof(filter->src_ipv6)); 7285 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7286 sizeof(filter->dst_ipv6)); 7287 } 7288 7289 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7290 struct flow_dissector_key_ports *key = 7291 skb_flow_dissector_target(f->dissector, 7292 FLOW_DISSECTOR_KEY_PORTS, 7293 f->key); 7294 struct flow_dissector_key_ports *mask = 7295 skb_flow_dissector_target(f->dissector, 7296 FLOW_DISSECTOR_KEY_PORTS, 7297 f->mask); 7298 7299 if (mask->src) { 7300 if (mask->src == cpu_to_be16(0xffff)) { 7301 field_flags |= I40E_CLOUD_FIELD_IIP; 7302 } else { 7303 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7304 be16_to_cpu(mask->src)); 7305 return I40E_ERR_CONFIG; 7306 } 7307 } 7308 7309 if (mask->dst) { 7310 if (mask->dst == cpu_to_be16(0xffff)) { 7311 field_flags |= I40E_CLOUD_FIELD_IIP; 7312 } else { 7313 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7314 be16_to_cpu(mask->dst)); 7315 return I40E_ERR_CONFIG; 7316 } 7317 } 7318 7319 filter->dst_port = key->dst; 7320 filter->src_port = key->src; 7321 7322 switch (filter->ip_proto) { 7323 case IPPROTO_TCP: 7324 case IPPROTO_UDP: 7325 break; 7326 default: 7327 dev_err(&pf->pdev->dev, 7328 "Only UDP and TCP transport are supported\n"); 7329 return -EINVAL; 7330 } 7331 } 7332 filter->flags = field_flags; 7333 return 0; 7334 } 7335 7336 /** 7337 * i40e_handle_tclass: Forward to a traffic class on the device 7338 * @vsi: Pointer to VSI 7339 * @tc: traffic class index on the device 7340 * @filter: Pointer to cloud filter structure 7341 * 7342 **/ 7343 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7344 struct i40e_cloud_filter *filter) 7345 { 7346 struct i40e_channel *ch, *ch_tmp; 7347 7348 /* direct to a traffic class on the same device */ 7349 if (tc == 0) { 7350 filter->seid = vsi->seid; 7351 return 0; 7352 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7353 if (!filter->dst_port) { 7354 dev_err(&vsi->back->pdev->dev, 7355 "Specify destination port to direct to traffic class that is not default\n"); 7356 return -EINVAL; 7357 } 7358 if (list_empty(&vsi->ch_list)) 7359 return -EINVAL; 7360 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7361 list) { 7362 if (ch->seid == vsi->tc_seid_map[tc]) 7363 filter->seid = ch->seid; 7364 } 7365 return 0; 7366 } 7367 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7368 return -EINVAL; 7369 } 7370 7371 /** 7372 * i40e_configure_clsflower - Configure tc flower filters 7373 * @vsi: Pointer to VSI 7374 * @cls_flower: Pointer to struct tc_cls_flower_offload 7375 * 7376 **/ 7377 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7378 struct tc_cls_flower_offload *cls_flower) 7379 { 7380 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7381 struct i40e_cloud_filter *filter = NULL; 7382 struct i40e_pf *pf = vsi->back; 7383 int err = 0; 7384 7385 if (tc < 0) { 7386 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7387 return -EOPNOTSUPP; 7388 } 7389 7390 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7391 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7392 return -EBUSY; 7393 7394 if (pf->fdir_pf_active_filters || 7395 (!hlist_empty(&pf->fdir_filter_list))) { 7396 dev_err(&vsi->back->pdev->dev, 7397 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7398 return -EINVAL; 7399 } 7400 7401 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7402 dev_err(&vsi->back->pdev->dev, 7403 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7404 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7405 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7406 } 7407 7408 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7409 if (!filter) 7410 return -ENOMEM; 7411 7412 filter->cookie = cls_flower->cookie; 7413 7414 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7415 if (err < 0) 7416 goto err; 7417 7418 err = i40e_handle_tclass(vsi, tc, filter); 7419 if (err < 0) 7420 goto err; 7421 7422 /* Add cloud filter */ 7423 if (filter->dst_port) 7424 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7425 else 7426 err = i40e_add_del_cloud_filter(vsi, filter, true); 7427 7428 if (err) { 7429 dev_err(&pf->pdev->dev, 7430 "Failed to add cloud filter, err %s\n", 7431 i40e_stat_str(&pf->hw, err)); 7432 goto err; 7433 } 7434 7435 /* add filter to the ordered list */ 7436 INIT_HLIST_NODE(&filter->cloud_node); 7437 7438 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7439 7440 pf->num_cloud_filters++; 7441 7442 return err; 7443 err: 7444 kfree(filter); 7445 return err; 7446 } 7447 7448 /** 7449 * i40e_find_cloud_filter - Find the could filter in the list 7450 * @vsi: Pointer to VSI 7451 * @cookie: filter specific cookie 7452 * 7453 **/ 7454 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7455 unsigned long *cookie) 7456 { 7457 struct i40e_cloud_filter *filter = NULL; 7458 struct hlist_node *node2; 7459 7460 hlist_for_each_entry_safe(filter, node2, 7461 &vsi->back->cloud_filter_list, cloud_node) 7462 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7463 return filter; 7464 return NULL; 7465 } 7466 7467 /** 7468 * i40e_delete_clsflower - Remove tc flower filters 7469 * @vsi: Pointer to VSI 7470 * @cls_flower: Pointer to struct tc_cls_flower_offload 7471 * 7472 **/ 7473 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7474 struct tc_cls_flower_offload *cls_flower) 7475 { 7476 struct i40e_cloud_filter *filter = NULL; 7477 struct i40e_pf *pf = vsi->back; 7478 int err = 0; 7479 7480 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7481 7482 if (!filter) 7483 return -EINVAL; 7484 7485 hash_del(&filter->cloud_node); 7486 7487 if (filter->dst_port) 7488 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7489 else 7490 err = i40e_add_del_cloud_filter(vsi, filter, false); 7491 7492 kfree(filter); 7493 if (err) { 7494 dev_err(&pf->pdev->dev, 7495 "Failed to delete cloud filter, err %s\n", 7496 i40e_stat_str(&pf->hw, err)); 7497 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7498 } 7499 7500 pf->num_cloud_filters--; 7501 if (!pf->num_cloud_filters) 7502 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7503 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7504 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7505 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7506 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7507 } 7508 return 0; 7509 } 7510 7511 /** 7512 * i40e_setup_tc_cls_flower - flower classifier offloads 7513 * @netdev: net device to configure 7514 * @type_data: offload data 7515 **/ 7516 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7517 struct tc_cls_flower_offload *cls_flower) 7518 { 7519 struct i40e_vsi *vsi = np->vsi; 7520 7521 switch (cls_flower->command) { 7522 case TC_CLSFLOWER_REPLACE: 7523 return i40e_configure_clsflower(vsi, cls_flower); 7524 case TC_CLSFLOWER_DESTROY: 7525 return i40e_delete_clsflower(vsi, cls_flower); 7526 case TC_CLSFLOWER_STATS: 7527 return -EOPNOTSUPP; 7528 default: 7529 return -EOPNOTSUPP; 7530 } 7531 } 7532 7533 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7534 void *cb_priv) 7535 { 7536 struct i40e_netdev_priv *np = cb_priv; 7537 7538 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7539 return -EOPNOTSUPP; 7540 7541 switch (type) { 7542 case TC_SETUP_CLSFLOWER: 7543 return i40e_setup_tc_cls_flower(np, type_data); 7544 7545 default: 7546 return -EOPNOTSUPP; 7547 } 7548 } 7549 7550 static int i40e_setup_tc_block(struct net_device *dev, 7551 struct tc_block_offload *f) 7552 { 7553 struct i40e_netdev_priv *np = netdev_priv(dev); 7554 7555 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7556 return -EOPNOTSUPP; 7557 7558 switch (f->command) { 7559 case TC_BLOCK_BIND: 7560 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7561 np, np, f->extack); 7562 case TC_BLOCK_UNBIND: 7563 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7564 return 0; 7565 default: 7566 return -EOPNOTSUPP; 7567 } 7568 } 7569 7570 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7571 void *type_data) 7572 { 7573 switch (type) { 7574 case TC_SETUP_QDISC_MQPRIO: 7575 return i40e_setup_tc(netdev, type_data); 7576 case TC_SETUP_BLOCK: 7577 return i40e_setup_tc_block(netdev, type_data); 7578 default: 7579 return -EOPNOTSUPP; 7580 } 7581 } 7582 7583 /** 7584 * i40e_open - Called when a network interface is made active 7585 * @netdev: network interface device structure 7586 * 7587 * The open entry point is called when a network interface is made 7588 * active by the system (IFF_UP). At this point all resources needed 7589 * for transmit and receive operations are allocated, the interrupt 7590 * handler is registered with the OS, the netdev watchdog subtask is 7591 * enabled, and the stack is notified that the interface is ready. 7592 * 7593 * Returns 0 on success, negative value on failure 7594 **/ 7595 int i40e_open(struct net_device *netdev) 7596 { 7597 struct i40e_netdev_priv *np = netdev_priv(netdev); 7598 struct i40e_vsi *vsi = np->vsi; 7599 struct i40e_pf *pf = vsi->back; 7600 int err; 7601 7602 /* disallow open during test or if eeprom is broken */ 7603 if (test_bit(__I40E_TESTING, pf->state) || 7604 test_bit(__I40E_BAD_EEPROM, pf->state)) 7605 return -EBUSY; 7606 7607 netif_carrier_off(netdev); 7608 7609 if (i40e_force_link_state(pf, true)) 7610 return -EAGAIN; 7611 7612 err = i40e_vsi_open(vsi); 7613 if (err) 7614 return err; 7615 7616 /* configure global TSO hardware offload settings */ 7617 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7618 TCP_FLAG_FIN) >> 16); 7619 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7620 TCP_FLAG_FIN | 7621 TCP_FLAG_CWR) >> 16); 7622 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7623 7624 udp_tunnel_get_rx_info(netdev); 7625 7626 return 0; 7627 } 7628 7629 /** 7630 * i40e_vsi_open - 7631 * @vsi: the VSI to open 7632 * 7633 * Finish initialization of the VSI. 7634 * 7635 * Returns 0 on success, negative value on failure 7636 * 7637 * Note: expects to be called while under rtnl_lock() 7638 **/ 7639 int i40e_vsi_open(struct i40e_vsi *vsi) 7640 { 7641 struct i40e_pf *pf = vsi->back; 7642 char int_name[I40E_INT_NAME_STR_LEN]; 7643 int err; 7644 7645 /* allocate descriptors */ 7646 err = i40e_vsi_setup_tx_resources(vsi); 7647 if (err) 7648 goto err_setup_tx; 7649 err = i40e_vsi_setup_rx_resources(vsi); 7650 if (err) 7651 goto err_setup_rx; 7652 7653 err = i40e_vsi_configure(vsi); 7654 if (err) 7655 goto err_setup_rx; 7656 7657 if (vsi->netdev) { 7658 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7659 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7660 err = i40e_vsi_request_irq(vsi, int_name); 7661 if (err) 7662 goto err_setup_rx; 7663 7664 /* Notify the stack of the actual queue counts. */ 7665 err = netif_set_real_num_tx_queues(vsi->netdev, 7666 vsi->num_queue_pairs); 7667 if (err) 7668 goto err_set_queues; 7669 7670 err = netif_set_real_num_rx_queues(vsi->netdev, 7671 vsi->num_queue_pairs); 7672 if (err) 7673 goto err_set_queues; 7674 7675 } else if (vsi->type == I40E_VSI_FDIR) { 7676 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7677 dev_driver_string(&pf->pdev->dev), 7678 dev_name(&pf->pdev->dev)); 7679 err = i40e_vsi_request_irq(vsi, int_name); 7680 7681 } else { 7682 err = -EINVAL; 7683 goto err_setup_rx; 7684 } 7685 7686 err = i40e_up_complete(vsi); 7687 if (err) 7688 goto err_up_complete; 7689 7690 return 0; 7691 7692 err_up_complete: 7693 i40e_down(vsi); 7694 err_set_queues: 7695 i40e_vsi_free_irq(vsi); 7696 err_setup_rx: 7697 i40e_vsi_free_rx_resources(vsi); 7698 err_setup_tx: 7699 i40e_vsi_free_tx_resources(vsi); 7700 if (vsi == pf->vsi[pf->lan_vsi]) 7701 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7702 7703 return err; 7704 } 7705 7706 /** 7707 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7708 * @pf: Pointer to PF 7709 * 7710 * This function destroys the hlist where all the Flow Director 7711 * filters were saved. 7712 **/ 7713 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7714 { 7715 struct i40e_fdir_filter *filter; 7716 struct i40e_flex_pit *pit_entry, *tmp; 7717 struct hlist_node *node2; 7718 7719 hlist_for_each_entry_safe(filter, node2, 7720 &pf->fdir_filter_list, fdir_node) { 7721 hlist_del(&filter->fdir_node); 7722 kfree(filter); 7723 } 7724 7725 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7726 list_del(&pit_entry->list); 7727 kfree(pit_entry); 7728 } 7729 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7730 7731 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7732 list_del(&pit_entry->list); 7733 kfree(pit_entry); 7734 } 7735 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7736 7737 pf->fdir_pf_active_filters = 0; 7738 pf->fd_tcp4_filter_cnt = 0; 7739 pf->fd_udp4_filter_cnt = 0; 7740 pf->fd_sctp4_filter_cnt = 0; 7741 pf->fd_ip4_filter_cnt = 0; 7742 7743 /* Reprogram the default input set for TCP/IPv4 */ 7744 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7745 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7746 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7747 7748 /* Reprogram the default input set for UDP/IPv4 */ 7749 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7750 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7751 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7752 7753 /* Reprogram the default input set for SCTP/IPv4 */ 7754 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7755 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7756 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7757 7758 /* Reprogram the default input set for Other/IPv4 */ 7759 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7760 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7761 7762 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7763 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7764 } 7765 7766 /** 7767 * i40e_cloud_filter_exit - Cleans up the cloud filters 7768 * @pf: Pointer to PF 7769 * 7770 * This function destroys the hlist where all the cloud filters 7771 * were saved. 7772 **/ 7773 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7774 { 7775 struct i40e_cloud_filter *cfilter; 7776 struct hlist_node *node; 7777 7778 hlist_for_each_entry_safe(cfilter, node, 7779 &pf->cloud_filter_list, cloud_node) { 7780 hlist_del(&cfilter->cloud_node); 7781 kfree(cfilter); 7782 } 7783 pf->num_cloud_filters = 0; 7784 7785 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7786 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7787 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7788 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7789 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7790 } 7791 } 7792 7793 /** 7794 * i40e_close - Disables a network interface 7795 * @netdev: network interface device structure 7796 * 7797 * The close entry point is called when an interface is de-activated 7798 * by the OS. The hardware is still under the driver's control, but 7799 * this netdev interface is disabled. 7800 * 7801 * Returns 0, this is not allowed to fail 7802 **/ 7803 int i40e_close(struct net_device *netdev) 7804 { 7805 struct i40e_netdev_priv *np = netdev_priv(netdev); 7806 struct i40e_vsi *vsi = np->vsi; 7807 7808 i40e_vsi_close(vsi); 7809 7810 return 0; 7811 } 7812 7813 /** 7814 * i40e_do_reset - Start a PF or Core Reset sequence 7815 * @pf: board private structure 7816 * @reset_flags: which reset is requested 7817 * @lock_acquired: indicates whether or not the lock has been acquired 7818 * before this function was called. 7819 * 7820 * The essential difference in resets is that the PF Reset 7821 * doesn't clear the packet buffers, doesn't reset the PE 7822 * firmware, and doesn't bother the other PFs on the chip. 7823 **/ 7824 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7825 { 7826 u32 val; 7827 7828 WARN_ON(in_interrupt()); 7829 7830 7831 /* do the biggest reset indicated */ 7832 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7833 7834 /* Request a Global Reset 7835 * 7836 * This will start the chip's countdown to the actual full 7837 * chip reset event, and a warning interrupt to be sent 7838 * to all PFs, including the requestor. Our handler 7839 * for the warning interrupt will deal with the shutdown 7840 * and recovery of the switch setup. 7841 */ 7842 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7843 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7844 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7845 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7846 7847 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7848 7849 /* Request a Core Reset 7850 * 7851 * Same as Global Reset, except does *not* include the MAC/PHY 7852 */ 7853 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7854 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7855 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7856 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7857 i40e_flush(&pf->hw); 7858 7859 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7860 7861 /* Request a PF Reset 7862 * 7863 * Resets only the PF-specific registers 7864 * 7865 * This goes directly to the tear-down and rebuild of 7866 * the switch, since we need to do all the recovery as 7867 * for the Core Reset. 7868 */ 7869 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7870 i40e_handle_reset_warning(pf, lock_acquired); 7871 7872 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7873 int v; 7874 7875 /* Find the VSI(s) that requested a re-init */ 7876 dev_info(&pf->pdev->dev, 7877 "VSI reinit requested\n"); 7878 for (v = 0; v < pf->num_alloc_vsi; v++) { 7879 struct i40e_vsi *vsi = pf->vsi[v]; 7880 7881 if (vsi != NULL && 7882 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7883 vsi->state)) 7884 i40e_vsi_reinit_locked(pf->vsi[v]); 7885 } 7886 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7887 int v; 7888 7889 /* Find the VSI(s) that needs to be brought down */ 7890 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7891 for (v = 0; v < pf->num_alloc_vsi; v++) { 7892 struct i40e_vsi *vsi = pf->vsi[v]; 7893 7894 if (vsi != NULL && 7895 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7896 vsi->state)) { 7897 set_bit(__I40E_VSI_DOWN, vsi->state); 7898 i40e_down(vsi); 7899 } 7900 } 7901 } else { 7902 dev_info(&pf->pdev->dev, 7903 "bad reset request 0x%08x\n", reset_flags); 7904 } 7905 } 7906 7907 #ifdef CONFIG_I40E_DCB 7908 /** 7909 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7910 * @pf: board private structure 7911 * @old_cfg: current DCB config 7912 * @new_cfg: new DCB config 7913 **/ 7914 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7915 struct i40e_dcbx_config *old_cfg, 7916 struct i40e_dcbx_config *new_cfg) 7917 { 7918 bool need_reconfig = false; 7919 7920 /* Check if ETS configuration has changed */ 7921 if (memcmp(&new_cfg->etscfg, 7922 &old_cfg->etscfg, 7923 sizeof(new_cfg->etscfg))) { 7924 /* If Priority Table has changed reconfig is needed */ 7925 if (memcmp(&new_cfg->etscfg.prioritytable, 7926 &old_cfg->etscfg.prioritytable, 7927 sizeof(new_cfg->etscfg.prioritytable))) { 7928 need_reconfig = true; 7929 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 7930 } 7931 7932 if (memcmp(&new_cfg->etscfg.tcbwtable, 7933 &old_cfg->etscfg.tcbwtable, 7934 sizeof(new_cfg->etscfg.tcbwtable))) 7935 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 7936 7937 if (memcmp(&new_cfg->etscfg.tsatable, 7938 &old_cfg->etscfg.tsatable, 7939 sizeof(new_cfg->etscfg.tsatable))) 7940 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 7941 } 7942 7943 /* Check if PFC configuration has changed */ 7944 if (memcmp(&new_cfg->pfc, 7945 &old_cfg->pfc, 7946 sizeof(new_cfg->pfc))) { 7947 need_reconfig = true; 7948 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 7949 } 7950 7951 /* Check if APP Table has changed */ 7952 if (memcmp(&new_cfg->app, 7953 &old_cfg->app, 7954 sizeof(new_cfg->app))) { 7955 need_reconfig = true; 7956 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 7957 } 7958 7959 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 7960 return need_reconfig; 7961 } 7962 7963 /** 7964 * i40e_handle_lldp_event - Handle LLDP Change MIB event 7965 * @pf: board private structure 7966 * @e: event info posted on ARQ 7967 **/ 7968 static int i40e_handle_lldp_event(struct i40e_pf *pf, 7969 struct i40e_arq_event_info *e) 7970 { 7971 struct i40e_aqc_lldp_get_mib *mib = 7972 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 7973 struct i40e_hw *hw = &pf->hw; 7974 struct i40e_dcbx_config tmp_dcbx_cfg; 7975 bool need_reconfig = false; 7976 int ret = 0; 7977 u8 type; 7978 7979 /* Not DCB capable or capability disabled */ 7980 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 7981 return ret; 7982 7983 /* Ignore if event is not for Nearest Bridge */ 7984 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 7985 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 7986 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 7987 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 7988 return ret; 7989 7990 /* Check MIB Type and return if event for Remote MIB update */ 7991 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 7992 dev_dbg(&pf->pdev->dev, 7993 "LLDP event mib type %s\n", type ? "remote" : "local"); 7994 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 7995 /* Update the remote cached instance and return */ 7996 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 7997 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 7998 &hw->remote_dcbx_config); 7999 goto exit; 8000 } 8001 8002 /* Store the old configuration */ 8003 tmp_dcbx_cfg = hw->local_dcbx_config; 8004 8005 /* Reset the old DCBx configuration data */ 8006 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8007 /* Get updated DCBX data from firmware */ 8008 ret = i40e_get_dcb_config(&pf->hw); 8009 if (ret) { 8010 dev_info(&pf->pdev->dev, 8011 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8012 i40e_stat_str(&pf->hw, ret), 8013 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8014 goto exit; 8015 } 8016 8017 /* No change detected in DCBX configs */ 8018 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8019 sizeof(tmp_dcbx_cfg))) { 8020 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8021 goto exit; 8022 } 8023 8024 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8025 &hw->local_dcbx_config); 8026 8027 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8028 8029 if (!need_reconfig) 8030 goto exit; 8031 8032 /* Enable DCB tagging only when more than one TC */ 8033 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8034 pf->flags |= I40E_FLAG_DCB_ENABLED; 8035 else 8036 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8037 8038 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8039 /* Reconfiguration needed quiesce all VSIs */ 8040 i40e_pf_quiesce_all_vsi(pf); 8041 8042 /* Changes in configuration update VEB/VSI */ 8043 i40e_dcb_reconfigure(pf); 8044 8045 ret = i40e_resume_port_tx(pf); 8046 8047 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8048 /* In case of error no point in resuming VSIs */ 8049 if (ret) 8050 goto exit; 8051 8052 /* Wait for the PF's queues to be disabled */ 8053 ret = i40e_pf_wait_queues_disabled(pf); 8054 if (ret) { 8055 /* Schedule PF reset to recover */ 8056 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8057 i40e_service_event_schedule(pf); 8058 } else { 8059 i40e_pf_unquiesce_all_vsi(pf); 8060 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8061 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8062 } 8063 8064 exit: 8065 return ret; 8066 } 8067 #endif /* CONFIG_I40E_DCB */ 8068 8069 /** 8070 * i40e_do_reset_safe - Protected reset path for userland calls. 8071 * @pf: board private structure 8072 * @reset_flags: which reset is requested 8073 * 8074 **/ 8075 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8076 { 8077 rtnl_lock(); 8078 i40e_do_reset(pf, reset_flags, true); 8079 rtnl_unlock(); 8080 } 8081 8082 /** 8083 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8084 * @pf: board private structure 8085 * @e: event info posted on ARQ 8086 * 8087 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8088 * and VF queues 8089 **/ 8090 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8091 struct i40e_arq_event_info *e) 8092 { 8093 struct i40e_aqc_lan_overflow *data = 8094 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8095 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8096 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8097 struct i40e_hw *hw = &pf->hw; 8098 struct i40e_vf *vf; 8099 u16 vf_id; 8100 8101 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8102 queue, qtx_ctl); 8103 8104 /* Queue belongs to VF, find the VF and issue VF reset */ 8105 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8106 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8107 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8108 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8109 vf_id -= hw->func_caps.vf_base_id; 8110 vf = &pf->vf[vf_id]; 8111 i40e_vc_notify_vf_reset(vf); 8112 /* Allow VF to process pending reset notification */ 8113 msleep(20); 8114 i40e_reset_vf(vf, false); 8115 } 8116 } 8117 8118 /** 8119 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8120 * @pf: board private structure 8121 **/ 8122 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8123 { 8124 u32 val, fcnt_prog; 8125 8126 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8127 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8128 return fcnt_prog; 8129 } 8130 8131 /** 8132 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8133 * @pf: board private structure 8134 **/ 8135 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8136 { 8137 u32 val, fcnt_prog; 8138 8139 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8140 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8141 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8142 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8143 return fcnt_prog; 8144 } 8145 8146 /** 8147 * i40e_get_global_fd_count - Get total FD filters programmed on device 8148 * @pf: board private structure 8149 **/ 8150 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8151 { 8152 u32 val, fcnt_prog; 8153 8154 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8155 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8156 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8157 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8158 return fcnt_prog; 8159 } 8160 8161 /** 8162 * i40e_reenable_fdir_sb - Restore FDir SB capability 8163 * @pf: board private structure 8164 **/ 8165 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8166 { 8167 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8168 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8169 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8170 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8171 } 8172 8173 /** 8174 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8175 * @pf: board private structure 8176 **/ 8177 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8178 { 8179 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8180 /* ATR uses the same filtering logic as SB rules. It only 8181 * functions properly if the input set mask is at the default 8182 * settings. It is safe to restore the default input set 8183 * because there are no active TCPv4 filter rules. 8184 */ 8185 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8186 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8187 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8188 8189 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8190 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8191 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8192 } 8193 } 8194 8195 /** 8196 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8197 * @pf: board private structure 8198 * @filter: FDir filter to remove 8199 */ 8200 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8201 struct i40e_fdir_filter *filter) 8202 { 8203 /* Update counters */ 8204 pf->fdir_pf_active_filters--; 8205 pf->fd_inv = 0; 8206 8207 switch (filter->flow_type) { 8208 case TCP_V4_FLOW: 8209 pf->fd_tcp4_filter_cnt--; 8210 break; 8211 case UDP_V4_FLOW: 8212 pf->fd_udp4_filter_cnt--; 8213 break; 8214 case SCTP_V4_FLOW: 8215 pf->fd_sctp4_filter_cnt--; 8216 break; 8217 case IP_USER_FLOW: 8218 switch (filter->ip4_proto) { 8219 case IPPROTO_TCP: 8220 pf->fd_tcp4_filter_cnt--; 8221 break; 8222 case IPPROTO_UDP: 8223 pf->fd_udp4_filter_cnt--; 8224 break; 8225 case IPPROTO_SCTP: 8226 pf->fd_sctp4_filter_cnt--; 8227 break; 8228 case IPPROTO_IP: 8229 pf->fd_ip4_filter_cnt--; 8230 break; 8231 } 8232 break; 8233 } 8234 8235 /* Remove the filter from the list and free memory */ 8236 hlist_del(&filter->fdir_node); 8237 kfree(filter); 8238 } 8239 8240 /** 8241 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8242 * @pf: board private structure 8243 **/ 8244 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8245 { 8246 struct i40e_fdir_filter *filter; 8247 u32 fcnt_prog, fcnt_avail; 8248 struct hlist_node *node; 8249 8250 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8251 return; 8252 8253 /* Check if we have enough room to re-enable FDir SB capability. */ 8254 fcnt_prog = i40e_get_global_fd_count(pf); 8255 fcnt_avail = pf->fdir_pf_filter_count; 8256 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8257 (pf->fd_add_err == 0) || 8258 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8259 i40e_reenable_fdir_sb(pf); 8260 8261 /* We should wait for even more space before re-enabling ATR. 8262 * Additionally, we cannot enable ATR as long as we still have TCP SB 8263 * rules active. 8264 */ 8265 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8266 (pf->fd_tcp4_filter_cnt == 0)) 8267 i40e_reenable_fdir_atr(pf); 8268 8269 /* if hw had a problem adding a filter, delete it */ 8270 if (pf->fd_inv > 0) { 8271 hlist_for_each_entry_safe(filter, node, 8272 &pf->fdir_filter_list, fdir_node) 8273 if (filter->fd_id == pf->fd_inv) 8274 i40e_delete_invalid_filter(pf, filter); 8275 } 8276 } 8277 8278 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8279 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8280 /** 8281 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8282 * @pf: board private structure 8283 **/ 8284 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8285 { 8286 unsigned long min_flush_time; 8287 int flush_wait_retry = 50; 8288 bool disable_atr = false; 8289 int fd_room; 8290 int reg; 8291 8292 if (!time_after(jiffies, pf->fd_flush_timestamp + 8293 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8294 return; 8295 8296 /* If the flush is happening too quick and we have mostly SB rules we 8297 * should not re-enable ATR for some time. 8298 */ 8299 min_flush_time = pf->fd_flush_timestamp + 8300 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8301 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8302 8303 if (!(time_after(jiffies, min_flush_time)) && 8304 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8305 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8306 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8307 disable_atr = true; 8308 } 8309 8310 pf->fd_flush_timestamp = jiffies; 8311 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8312 /* flush all filters */ 8313 wr32(&pf->hw, I40E_PFQF_CTL_1, 8314 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8315 i40e_flush(&pf->hw); 8316 pf->fd_flush_cnt++; 8317 pf->fd_add_err = 0; 8318 do { 8319 /* Check FD flush status every 5-6msec */ 8320 usleep_range(5000, 6000); 8321 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8322 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8323 break; 8324 } while (flush_wait_retry--); 8325 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8326 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8327 } else { 8328 /* replay sideband filters */ 8329 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8330 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8331 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8332 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8333 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8334 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8335 } 8336 } 8337 8338 /** 8339 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8340 * @pf: board private structure 8341 **/ 8342 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8343 { 8344 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8345 } 8346 8347 /* We can see up to 256 filter programming desc in transit if the filters are 8348 * being applied really fast; before we see the first 8349 * filter miss error on Rx queue 0. Accumulating enough error messages before 8350 * reacting will make sure we don't cause flush too often. 8351 */ 8352 #define I40E_MAX_FD_PROGRAM_ERROR 256 8353 8354 /** 8355 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8356 * @pf: board private structure 8357 **/ 8358 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8359 { 8360 8361 /* if interface is down do nothing */ 8362 if (test_bit(__I40E_DOWN, pf->state)) 8363 return; 8364 8365 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8366 i40e_fdir_flush_and_replay(pf); 8367 8368 i40e_fdir_check_and_reenable(pf); 8369 8370 } 8371 8372 /** 8373 * i40e_vsi_link_event - notify VSI of a link event 8374 * @vsi: vsi to be notified 8375 * @link_up: link up or down 8376 **/ 8377 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8378 { 8379 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8380 return; 8381 8382 switch (vsi->type) { 8383 case I40E_VSI_MAIN: 8384 if (!vsi->netdev || !vsi->netdev_registered) 8385 break; 8386 8387 if (link_up) { 8388 netif_carrier_on(vsi->netdev); 8389 netif_tx_wake_all_queues(vsi->netdev); 8390 } else { 8391 netif_carrier_off(vsi->netdev); 8392 netif_tx_stop_all_queues(vsi->netdev); 8393 } 8394 break; 8395 8396 case I40E_VSI_SRIOV: 8397 case I40E_VSI_VMDQ2: 8398 case I40E_VSI_CTRL: 8399 case I40E_VSI_IWARP: 8400 case I40E_VSI_MIRROR: 8401 default: 8402 /* there is no notification for other VSIs */ 8403 break; 8404 } 8405 } 8406 8407 /** 8408 * i40e_veb_link_event - notify elements on the veb of a link event 8409 * @veb: veb to be notified 8410 * @link_up: link up or down 8411 **/ 8412 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8413 { 8414 struct i40e_pf *pf; 8415 int i; 8416 8417 if (!veb || !veb->pf) 8418 return; 8419 pf = veb->pf; 8420 8421 /* depth first... */ 8422 for (i = 0; i < I40E_MAX_VEB; i++) 8423 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8424 i40e_veb_link_event(pf->veb[i], link_up); 8425 8426 /* ... now the local VSIs */ 8427 for (i = 0; i < pf->num_alloc_vsi; i++) 8428 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8429 i40e_vsi_link_event(pf->vsi[i], link_up); 8430 } 8431 8432 /** 8433 * i40e_link_event - Update netif_carrier status 8434 * @pf: board private structure 8435 **/ 8436 static void i40e_link_event(struct i40e_pf *pf) 8437 { 8438 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8439 u8 new_link_speed, old_link_speed; 8440 i40e_status status; 8441 bool new_link, old_link; 8442 8443 /* save off old link status information */ 8444 pf->hw.phy.link_info_old = pf->hw.phy.link_info; 8445 8446 /* set this to force the get_link_status call to refresh state */ 8447 pf->hw.phy.get_link_info = true; 8448 8449 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8450 8451 status = i40e_get_link_status(&pf->hw, &new_link); 8452 8453 /* On success, disable temp link polling */ 8454 if (status == I40E_SUCCESS) { 8455 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8456 } else { 8457 /* Enable link polling temporarily until i40e_get_link_status 8458 * returns I40E_SUCCESS 8459 */ 8460 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8461 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8462 status); 8463 return; 8464 } 8465 8466 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8467 new_link_speed = pf->hw.phy.link_info.link_speed; 8468 8469 if (new_link == old_link && 8470 new_link_speed == old_link_speed && 8471 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8472 new_link == netif_carrier_ok(vsi->netdev))) 8473 return; 8474 8475 i40e_print_link_message(vsi, new_link); 8476 8477 /* Notify the base of the switch tree connected to 8478 * the link. Floating VEBs are not notified. 8479 */ 8480 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8481 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8482 else 8483 i40e_vsi_link_event(vsi, new_link); 8484 8485 if (pf->vf) 8486 i40e_vc_notify_link_state(pf); 8487 8488 if (pf->flags & I40E_FLAG_PTP) 8489 i40e_ptp_set_increment(pf); 8490 } 8491 8492 /** 8493 * i40e_watchdog_subtask - periodic checks not using event driven response 8494 * @pf: board private structure 8495 **/ 8496 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8497 { 8498 int i; 8499 8500 /* if interface is down do nothing */ 8501 if (test_bit(__I40E_DOWN, pf->state) || 8502 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8503 return; 8504 8505 /* make sure we don't do these things too often */ 8506 if (time_before(jiffies, (pf->service_timer_previous + 8507 pf->service_timer_period))) 8508 return; 8509 pf->service_timer_previous = jiffies; 8510 8511 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8512 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8513 i40e_link_event(pf); 8514 8515 /* Update the stats for active netdevs so the network stack 8516 * can look at updated numbers whenever it cares to 8517 */ 8518 for (i = 0; i < pf->num_alloc_vsi; i++) 8519 if (pf->vsi[i] && pf->vsi[i]->netdev) 8520 i40e_update_stats(pf->vsi[i]); 8521 8522 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8523 /* Update the stats for the active switching components */ 8524 for (i = 0; i < I40E_MAX_VEB; i++) 8525 if (pf->veb[i]) 8526 i40e_update_veb_stats(pf->veb[i]); 8527 } 8528 8529 i40e_ptp_rx_hang(pf); 8530 i40e_ptp_tx_hang(pf); 8531 } 8532 8533 /** 8534 * i40e_reset_subtask - Set up for resetting the device and driver 8535 * @pf: board private structure 8536 **/ 8537 static void i40e_reset_subtask(struct i40e_pf *pf) 8538 { 8539 u32 reset_flags = 0; 8540 8541 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8542 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8543 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8544 } 8545 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8546 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8547 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8548 } 8549 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8550 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8551 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8552 } 8553 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8554 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8555 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8556 } 8557 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8558 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8559 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8560 } 8561 8562 /* If there's a recovery already waiting, it takes 8563 * precedence before starting a new reset sequence. 8564 */ 8565 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8566 i40e_prep_for_reset(pf, false); 8567 i40e_reset(pf); 8568 i40e_rebuild(pf, false, false); 8569 } 8570 8571 /* If we're already down or resetting, just bail */ 8572 if (reset_flags && 8573 !test_bit(__I40E_DOWN, pf->state) && 8574 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8575 i40e_do_reset(pf, reset_flags, false); 8576 } 8577 } 8578 8579 /** 8580 * i40e_handle_link_event - Handle link event 8581 * @pf: board private structure 8582 * @e: event info posted on ARQ 8583 **/ 8584 static void i40e_handle_link_event(struct i40e_pf *pf, 8585 struct i40e_arq_event_info *e) 8586 { 8587 struct i40e_aqc_get_link_status *status = 8588 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8589 8590 /* Do a new status request to re-enable LSE reporting 8591 * and load new status information into the hw struct 8592 * This completely ignores any state information 8593 * in the ARQ event info, instead choosing to always 8594 * issue the AQ update link status command. 8595 */ 8596 i40e_link_event(pf); 8597 8598 /* Check if module meets thermal requirements */ 8599 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8600 dev_err(&pf->pdev->dev, 8601 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8602 dev_err(&pf->pdev->dev, 8603 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8604 } else { 8605 /* check for unqualified module, if link is down, suppress 8606 * the message if link was forced to be down. 8607 */ 8608 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8609 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8610 (!(status->link_info & I40E_AQ_LINK_UP)) && 8611 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8612 dev_err(&pf->pdev->dev, 8613 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8614 dev_err(&pf->pdev->dev, 8615 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8616 } 8617 } 8618 } 8619 8620 /** 8621 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8622 * @pf: board private structure 8623 **/ 8624 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8625 { 8626 struct i40e_arq_event_info event; 8627 struct i40e_hw *hw = &pf->hw; 8628 u16 pending, i = 0; 8629 i40e_status ret; 8630 u16 opcode; 8631 u32 oldval; 8632 u32 val; 8633 8634 /* Do not run clean AQ when PF reset fails */ 8635 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8636 return; 8637 8638 /* check for error indications */ 8639 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8640 oldval = val; 8641 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8642 if (hw->debug_mask & I40E_DEBUG_AQ) 8643 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8644 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8645 } 8646 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8647 if (hw->debug_mask & I40E_DEBUG_AQ) 8648 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8649 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8650 pf->arq_overflows++; 8651 } 8652 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8653 if (hw->debug_mask & I40E_DEBUG_AQ) 8654 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8655 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8656 } 8657 if (oldval != val) 8658 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8659 8660 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8661 oldval = val; 8662 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8663 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8664 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8665 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8666 } 8667 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8668 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8669 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8670 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8671 } 8672 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8673 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8674 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8675 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8676 } 8677 if (oldval != val) 8678 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8679 8680 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8681 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8682 if (!event.msg_buf) 8683 return; 8684 8685 do { 8686 ret = i40e_clean_arq_element(hw, &event, &pending); 8687 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8688 break; 8689 else if (ret) { 8690 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8691 break; 8692 } 8693 8694 opcode = le16_to_cpu(event.desc.opcode); 8695 switch (opcode) { 8696 8697 case i40e_aqc_opc_get_link_status: 8698 i40e_handle_link_event(pf, &event); 8699 break; 8700 case i40e_aqc_opc_send_msg_to_pf: 8701 ret = i40e_vc_process_vf_msg(pf, 8702 le16_to_cpu(event.desc.retval), 8703 le32_to_cpu(event.desc.cookie_high), 8704 le32_to_cpu(event.desc.cookie_low), 8705 event.msg_buf, 8706 event.msg_len); 8707 break; 8708 case i40e_aqc_opc_lldp_update_mib: 8709 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8710 #ifdef CONFIG_I40E_DCB 8711 rtnl_lock(); 8712 ret = i40e_handle_lldp_event(pf, &event); 8713 rtnl_unlock(); 8714 #endif /* CONFIG_I40E_DCB */ 8715 break; 8716 case i40e_aqc_opc_event_lan_overflow: 8717 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8718 i40e_handle_lan_overflow_event(pf, &event); 8719 break; 8720 case i40e_aqc_opc_send_msg_to_peer: 8721 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8722 break; 8723 case i40e_aqc_opc_nvm_erase: 8724 case i40e_aqc_opc_nvm_update: 8725 case i40e_aqc_opc_oem_post_update: 8726 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8727 "ARQ NVM operation 0x%04x completed\n", 8728 opcode); 8729 break; 8730 default: 8731 dev_info(&pf->pdev->dev, 8732 "ARQ: Unknown event 0x%04x ignored\n", 8733 opcode); 8734 break; 8735 } 8736 } while (i++ < pf->adminq_work_limit); 8737 8738 if (i < pf->adminq_work_limit) 8739 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8740 8741 /* re-enable Admin queue interrupt cause */ 8742 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8743 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8744 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8745 i40e_flush(hw); 8746 8747 kfree(event.msg_buf); 8748 } 8749 8750 /** 8751 * i40e_verify_eeprom - make sure eeprom is good to use 8752 * @pf: board private structure 8753 **/ 8754 static void i40e_verify_eeprom(struct i40e_pf *pf) 8755 { 8756 int err; 8757 8758 err = i40e_diag_eeprom_test(&pf->hw); 8759 if (err) { 8760 /* retry in case of garbage read */ 8761 err = i40e_diag_eeprom_test(&pf->hw); 8762 if (err) { 8763 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8764 err); 8765 set_bit(__I40E_BAD_EEPROM, pf->state); 8766 } 8767 } 8768 8769 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8770 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8771 clear_bit(__I40E_BAD_EEPROM, pf->state); 8772 } 8773 } 8774 8775 /** 8776 * i40e_enable_pf_switch_lb 8777 * @pf: pointer to the PF structure 8778 * 8779 * enable switch loop back or die - no point in a return value 8780 **/ 8781 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8782 { 8783 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8784 struct i40e_vsi_context ctxt; 8785 int ret; 8786 8787 ctxt.seid = pf->main_vsi_seid; 8788 ctxt.pf_num = pf->hw.pf_id; 8789 ctxt.vf_num = 0; 8790 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8791 if (ret) { 8792 dev_info(&pf->pdev->dev, 8793 "couldn't get PF vsi config, err %s aq_err %s\n", 8794 i40e_stat_str(&pf->hw, ret), 8795 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8796 return; 8797 } 8798 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8799 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8800 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8801 8802 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8803 if (ret) { 8804 dev_info(&pf->pdev->dev, 8805 "update vsi switch failed, err %s aq_err %s\n", 8806 i40e_stat_str(&pf->hw, ret), 8807 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8808 } 8809 } 8810 8811 /** 8812 * i40e_disable_pf_switch_lb 8813 * @pf: pointer to the PF structure 8814 * 8815 * disable switch loop back or die - no point in a return value 8816 **/ 8817 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8818 { 8819 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8820 struct i40e_vsi_context ctxt; 8821 int ret; 8822 8823 ctxt.seid = pf->main_vsi_seid; 8824 ctxt.pf_num = pf->hw.pf_id; 8825 ctxt.vf_num = 0; 8826 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8827 if (ret) { 8828 dev_info(&pf->pdev->dev, 8829 "couldn't get PF vsi config, err %s aq_err %s\n", 8830 i40e_stat_str(&pf->hw, ret), 8831 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8832 return; 8833 } 8834 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8835 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8836 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8837 8838 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8839 if (ret) { 8840 dev_info(&pf->pdev->dev, 8841 "update vsi switch failed, err %s aq_err %s\n", 8842 i40e_stat_str(&pf->hw, ret), 8843 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8844 } 8845 } 8846 8847 /** 8848 * i40e_config_bridge_mode - Configure the HW bridge mode 8849 * @veb: pointer to the bridge instance 8850 * 8851 * Configure the loop back mode for the LAN VSI that is downlink to the 8852 * specified HW bridge instance. It is expected this function is called 8853 * when a new HW bridge is instantiated. 8854 **/ 8855 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8856 { 8857 struct i40e_pf *pf = veb->pf; 8858 8859 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8860 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8861 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8862 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8863 i40e_disable_pf_switch_lb(pf); 8864 else 8865 i40e_enable_pf_switch_lb(pf); 8866 } 8867 8868 /** 8869 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8870 * @veb: pointer to the VEB instance 8871 * 8872 * This is a recursive function that first builds the attached VSIs then 8873 * recurses in to build the next layer of VEB. We track the connections 8874 * through our own index numbers because the seid's from the HW could 8875 * change across the reset. 8876 **/ 8877 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8878 { 8879 struct i40e_vsi *ctl_vsi = NULL; 8880 struct i40e_pf *pf = veb->pf; 8881 int v, veb_idx; 8882 int ret; 8883 8884 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8885 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8886 if (pf->vsi[v] && 8887 pf->vsi[v]->veb_idx == veb->idx && 8888 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8889 ctl_vsi = pf->vsi[v]; 8890 break; 8891 } 8892 } 8893 if (!ctl_vsi) { 8894 dev_info(&pf->pdev->dev, 8895 "missing owner VSI for veb_idx %d\n", veb->idx); 8896 ret = -ENOENT; 8897 goto end_reconstitute; 8898 } 8899 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8900 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8901 ret = i40e_add_vsi(ctl_vsi); 8902 if (ret) { 8903 dev_info(&pf->pdev->dev, 8904 "rebuild of veb_idx %d owner VSI failed: %d\n", 8905 veb->idx, ret); 8906 goto end_reconstitute; 8907 } 8908 i40e_vsi_reset_stats(ctl_vsi); 8909 8910 /* create the VEB in the switch and move the VSI onto the VEB */ 8911 ret = i40e_add_veb(veb, ctl_vsi); 8912 if (ret) 8913 goto end_reconstitute; 8914 8915 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8916 veb->bridge_mode = BRIDGE_MODE_VEB; 8917 else 8918 veb->bridge_mode = BRIDGE_MODE_VEPA; 8919 i40e_config_bridge_mode(veb); 8920 8921 /* create the remaining VSIs attached to this VEB */ 8922 for (v = 0; v < pf->num_alloc_vsi; v++) { 8923 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 8924 continue; 8925 8926 if (pf->vsi[v]->veb_idx == veb->idx) { 8927 struct i40e_vsi *vsi = pf->vsi[v]; 8928 8929 vsi->uplink_seid = veb->seid; 8930 ret = i40e_add_vsi(vsi); 8931 if (ret) { 8932 dev_info(&pf->pdev->dev, 8933 "rebuild of vsi_idx %d failed: %d\n", 8934 v, ret); 8935 goto end_reconstitute; 8936 } 8937 i40e_vsi_reset_stats(vsi); 8938 } 8939 } 8940 8941 /* create any VEBs attached to this VEB - RECURSION */ 8942 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 8943 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 8944 pf->veb[veb_idx]->uplink_seid = veb->seid; 8945 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 8946 if (ret) 8947 break; 8948 } 8949 } 8950 8951 end_reconstitute: 8952 return ret; 8953 } 8954 8955 /** 8956 * i40e_get_capabilities - get info about the HW 8957 * @pf: the PF struct 8958 **/ 8959 static int i40e_get_capabilities(struct i40e_pf *pf, 8960 enum i40e_admin_queue_opc list_type) 8961 { 8962 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 8963 u16 data_size; 8964 int buf_len; 8965 int err; 8966 8967 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 8968 do { 8969 cap_buf = kzalloc(buf_len, GFP_KERNEL); 8970 if (!cap_buf) 8971 return -ENOMEM; 8972 8973 /* this loads the data into the hw struct for us */ 8974 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 8975 &data_size, list_type, 8976 NULL); 8977 /* data loaded, buffer no longer needed */ 8978 kfree(cap_buf); 8979 8980 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 8981 /* retry with a larger buffer */ 8982 buf_len = data_size; 8983 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 8984 dev_info(&pf->pdev->dev, 8985 "capability discovery failed, err %s aq_err %s\n", 8986 i40e_stat_str(&pf->hw, err), 8987 i40e_aq_str(&pf->hw, 8988 pf->hw.aq.asq_last_status)); 8989 return -ENODEV; 8990 } 8991 } while (err); 8992 8993 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 8994 if (list_type == i40e_aqc_opc_list_func_capabilities) { 8995 dev_info(&pf->pdev->dev, 8996 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 8997 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 8998 pf->hw.func_caps.num_msix_vectors, 8999 pf->hw.func_caps.num_msix_vectors_vf, 9000 pf->hw.func_caps.fd_filters_guaranteed, 9001 pf->hw.func_caps.fd_filters_best_effort, 9002 pf->hw.func_caps.num_tx_qp, 9003 pf->hw.func_caps.num_vsis); 9004 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9005 dev_info(&pf->pdev->dev, 9006 "switch_mode=0x%04x, function_valid=0x%08x\n", 9007 pf->hw.dev_caps.switch_mode, 9008 pf->hw.dev_caps.valid_functions); 9009 dev_info(&pf->pdev->dev, 9010 "SR-IOV=%d, num_vfs for all function=%u\n", 9011 pf->hw.dev_caps.sr_iov_1_1, 9012 pf->hw.dev_caps.num_vfs); 9013 dev_info(&pf->pdev->dev, 9014 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9015 pf->hw.dev_caps.num_vsis, 9016 pf->hw.dev_caps.num_rx_qp, 9017 pf->hw.dev_caps.num_tx_qp); 9018 } 9019 } 9020 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9021 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9022 + pf->hw.func_caps.num_vfs) 9023 if (pf->hw.revision_id == 0 && 9024 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9025 dev_info(&pf->pdev->dev, 9026 "got num_vsis %d, setting num_vsis to %d\n", 9027 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9028 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9029 } 9030 } 9031 return 0; 9032 } 9033 9034 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9035 9036 /** 9037 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9038 * @pf: board private structure 9039 **/ 9040 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9041 { 9042 struct i40e_vsi *vsi; 9043 9044 /* quick workaround for an NVM issue that leaves a critical register 9045 * uninitialized 9046 */ 9047 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9048 static const u32 hkey[] = { 9049 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9050 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9051 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9052 0x95b3a76d}; 9053 int i; 9054 9055 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9056 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9057 } 9058 9059 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9060 return; 9061 9062 /* find existing VSI and see if it needs configuring */ 9063 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9064 9065 /* create a new VSI if none exists */ 9066 if (!vsi) { 9067 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9068 pf->vsi[pf->lan_vsi]->seid, 0); 9069 if (!vsi) { 9070 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9071 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9072 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9073 return; 9074 } 9075 } 9076 9077 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9078 } 9079 9080 /** 9081 * i40e_fdir_teardown - release the Flow Director resources 9082 * @pf: board private structure 9083 **/ 9084 static void i40e_fdir_teardown(struct i40e_pf *pf) 9085 { 9086 struct i40e_vsi *vsi; 9087 9088 i40e_fdir_filter_exit(pf); 9089 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9090 if (vsi) 9091 i40e_vsi_release(vsi); 9092 } 9093 9094 /** 9095 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9096 * @vsi: PF main vsi 9097 * @seid: seid of main or channel VSIs 9098 * 9099 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9100 * existed before reset 9101 **/ 9102 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9103 { 9104 struct i40e_cloud_filter *cfilter; 9105 struct i40e_pf *pf = vsi->back; 9106 struct hlist_node *node; 9107 i40e_status ret; 9108 9109 /* Add cloud filters back if they exist */ 9110 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9111 cloud_node) { 9112 if (cfilter->seid != seid) 9113 continue; 9114 9115 if (cfilter->dst_port) 9116 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9117 true); 9118 else 9119 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9120 9121 if (ret) { 9122 dev_dbg(&pf->pdev->dev, 9123 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9124 i40e_stat_str(&pf->hw, ret), 9125 i40e_aq_str(&pf->hw, 9126 pf->hw.aq.asq_last_status)); 9127 return ret; 9128 } 9129 } 9130 return 0; 9131 } 9132 9133 /** 9134 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9135 * @vsi: PF main vsi 9136 * 9137 * Rebuilds channel VSIs if they existed before reset 9138 **/ 9139 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9140 { 9141 struct i40e_channel *ch, *ch_tmp; 9142 i40e_status ret; 9143 9144 if (list_empty(&vsi->ch_list)) 9145 return 0; 9146 9147 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9148 if (!ch->initialized) 9149 break; 9150 /* Proceed with creation of channel (VMDq2) VSI */ 9151 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9152 if (ret) { 9153 dev_info(&vsi->back->pdev->dev, 9154 "failed to rebuild channels using uplink_seid %u\n", 9155 vsi->uplink_seid); 9156 return ret; 9157 } 9158 /* Reconfigure TX queues using QTX_CTL register */ 9159 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9160 if (ret) { 9161 dev_info(&vsi->back->pdev->dev, 9162 "failed to configure TX rings for channel %u\n", 9163 ch->seid); 9164 return ret; 9165 } 9166 /* update 'next_base_queue' */ 9167 vsi->next_base_queue = vsi->next_base_queue + 9168 ch->num_queue_pairs; 9169 if (ch->max_tx_rate) { 9170 u64 credits = ch->max_tx_rate; 9171 9172 if (i40e_set_bw_limit(vsi, ch->seid, 9173 ch->max_tx_rate)) 9174 return -EINVAL; 9175 9176 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9177 dev_dbg(&vsi->back->pdev->dev, 9178 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9179 ch->max_tx_rate, 9180 credits, 9181 ch->seid); 9182 } 9183 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9184 if (ret) { 9185 dev_dbg(&vsi->back->pdev->dev, 9186 "Failed to rebuild cloud filters for channel VSI %u\n", 9187 ch->seid); 9188 return ret; 9189 } 9190 } 9191 return 0; 9192 } 9193 9194 /** 9195 * i40e_prep_for_reset - prep for the core to reset 9196 * @pf: board private structure 9197 * @lock_acquired: indicates whether or not the lock has been acquired 9198 * before this function was called. 9199 * 9200 * Close up the VFs and other things in prep for PF Reset. 9201 **/ 9202 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9203 { 9204 struct i40e_hw *hw = &pf->hw; 9205 i40e_status ret = 0; 9206 u32 v; 9207 9208 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9209 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9210 return; 9211 if (i40e_check_asq_alive(&pf->hw)) 9212 i40e_vc_notify_reset(pf); 9213 9214 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9215 9216 /* quiesce the VSIs and their queues that are not already DOWN */ 9217 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9218 if (!lock_acquired) 9219 rtnl_lock(); 9220 i40e_pf_quiesce_all_vsi(pf); 9221 if (!lock_acquired) 9222 rtnl_unlock(); 9223 9224 for (v = 0; v < pf->num_alloc_vsi; v++) { 9225 if (pf->vsi[v]) 9226 pf->vsi[v]->seid = 0; 9227 } 9228 9229 i40e_shutdown_adminq(&pf->hw); 9230 9231 /* call shutdown HMC */ 9232 if (hw->hmc.hmc_obj) { 9233 ret = i40e_shutdown_lan_hmc(hw); 9234 if (ret) 9235 dev_warn(&pf->pdev->dev, 9236 "shutdown_lan_hmc failed: %d\n", ret); 9237 } 9238 } 9239 9240 /** 9241 * i40e_send_version - update firmware with driver version 9242 * @pf: PF struct 9243 */ 9244 static void i40e_send_version(struct i40e_pf *pf) 9245 { 9246 struct i40e_driver_version dv; 9247 9248 dv.major_version = DRV_VERSION_MAJOR; 9249 dv.minor_version = DRV_VERSION_MINOR; 9250 dv.build_version = DRV_VERSION_BUILD; 9251 dv.subbuild_version = 0; 9252 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9253 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9254 } 9255 9256 /** 9257 * i40e_get_oem_version - get OEM specific version information 9258 * @hw: pointer to the hardware structure 9259 **/ 9260 static void i40e_get_oem_version(struct i40e_hw *hw) 9261 { 9262 u16 block_offset = 0xffff; 9263 u16 block_length = 0; 9264 u16 capabilities = 0; 9265 u16 gen_snap = 0; 9266 u16 release = 0; 9267 9268 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9269 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9270 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9271 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9272 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9273 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9274 #define I40E_NVM_OEM_LENGTH 3 9275 9276 /* Check if pointer to OEM version block is valid. */ 9277 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9278 if (block_offset == 0xffff) 9279 return; 9280 9281 /* Check if OEM version block has correct length. */ 9282 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9283 &block_length); 9284 if (block_length < I40E_NVM_OEM_LENGTH) 9285 return; 9286 9287 /* Check if OEM version format is as expected. */ 9288 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9289 &capabilities); 9290 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9291 return; 9292 9293 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9294 &gen_snap); 9295 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9296 &release); 9297 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9298 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9299 } 9300 9301 /** 9302 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9303 * @pf: board private structure 9304 **/ 9305 static int i40e_reset(struct i40e_pf *pf) 9306 { 9307 struct i40e_hw *hw = &pf->hw; 9308 i40e_status ret; 9309 9310 ret = i40e_pf_reset(hw); 9311 if (ret) { 9312 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9313 set_bit(__I40E_RESET_FAILED, pf->state); 9314 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9315 } else { 9316 pf->pfr_count++; 9317 } 9318 return ret; 9319 } 9320 9321 /** 9322 * i40e_rebuild - rebuild using a saved config 9323 * @pf: board private structure 9324 * @reinit: if the Main VSI needs to re-initialized. 9325 * @lock_acquired: indicates whether or not the lock has been acquired 9326 * before this function was called. 9327 **/ 9328 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9329 { 9330 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9331 struct i40e_hw *hw = &pf->hw; 9332 u8 set_fc_aq_fail = 0; 9333 i40e_status ret; 9334 u32 val; 9335 int v; 9336 9337 if (test_bit(__I40E_DOWN, pf->state)) 9338 goto clear_recovery; 9339 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9340 9341 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9342 ret = i40e_init_adminq(&pf->hw); 9343 if (ret) { 9344 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9345 i40e_stat_str(&pf->hw, ret), 9346 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9347 goto clear_recovery; 9348 } 9349 i40e_get_oem_version(&pf->hw); 9350 9351 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9352 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9353 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9354 /* The following delay is necessary for 4.33 firmware and older 9355 * to recover after EMP reset. 200 ms should suffice but we 9356 * put here 300 ms to be sure that FW is ready to operate 9357 * after reset. 9358 */ 9359 mdelay(300); 9360 } 9361 9362 /* re-verify the eeprom if we just had an EMP reset */ 9363 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9364 i40e_verify_eeprom(pf); 9365 9366 i40e_clear_pxe_mode(hw); 9367 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9368 if (ret) 9369 goto end_core_reset; 9370 9371 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9372 hw->func_caps.num_rx_qp, 0, 0); 9373 if (ret) { 9374 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9375 goto end_core_reset; 9376 } 9377 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9378 if (ret) { 9379 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9380 goto end_core_reset; 9381 } 9382 9383 /* Enable FW to write a default DCB config on link-up */ 9384 i40e_aq_set_dcb_parameters(hw, true, NULL); 9385 9386 #ifdef CONFIG_I40E_DCB 9387 ret = i40e_init_pf_dcb(pf); 9388 if (ret) { 9389 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9390 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9391 /* Continue without DCB enabled */ 9392 } 9393 #endif /* CONFIG_I40E_DCB */ 9394 /* do basic switch setup */ 9395 if (!lock_acquired) 9396 rtnl_lock(); 9397 ret = i40e_setup_pf_switch(pf, reinit); 9398 if (ret) 9399 goto end_unlock; 9400 9401 /* The driver only wants link up/down and module qualification 9402 * reports from firmware. Note the negative logic. 9403 */ 9404 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9405 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9406 I40E_AQ_EVENT_MEDIA_NA | 9407 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9408 if (ret) 9409 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9410 i40e_stat_str(&pf->hw, ret), 9411 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9412 9413 /* make sure our flow control settings are restored */ 9414 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9415 if (ret) 9416 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9417 i40e_stat_str(&pf->hw, ret), 9418 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9419 9420 /* Rebuild the VSIs and VEBs that existed before reset. 9421 * They are still in our local switch element arrays, so only 9422 * need to rebuild the switch model in the HW. 9423 * 9424 * If there were VEBs but the reconstitution failed, we'll try 9425 * try to recover minimal use by getting the basic PF VSI working. 9426 */ 9427 if (vsi->uplink_seid != pf->mac_seid) { 9428 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9429 /* find the one VEB connected to the MAC, and find orphans */ 9430 for (v = 0; v < I40E_MAX_VEB; v++) { 9431 if (!pf->veb[v]) 9432 continue; 9433 9434 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9435 pf->veb[v]->uplink_seid == 0) { 9436 ret = i40e_reconstitute_veb(pf->veb[v]); 9437 9438 if (!ret) 9439 continue; 9440 9441 /* If Main VEB failed, we're in deep doodoo, 9442 * so give up rebuilding the switch and set up 9443 * for minimal rebuild of PF VSI. 9444 * If orphan failed, we'll report the error 9445 * but try to keep going. 9446 */ 9447 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9448 dev_info(&pf->pdev->dev, 9449 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9450 ret); 9451 vsi->uplink_seid = pf->mac_seid; 9452 break; 9453 } else if (pf->veb[v]->uplink_seid == 0) { 9454 dev_info(&pf->pdev->dev, 9455 "rebuild of orphan VEB failed: %d\n", 9456 ret); 9457 } 9458 } 9459 } 9460 } 9461 9462 if (vsi->uplink_seid == pf->mac_seid) { 9463 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9464 /* no VEB, so rebuild only the Main VSI */ 9465 ret = i40e_add_vsi(vsi); 9466 if (ret) { 9467 dev_info(&pf->pdev->dev, 9468 "rebuild of Main VSI failed: %d\n", ret); 9469 goto end_unlock; 9470 } 9471 } 9472 9473 if (vsi->mqprio_qopt.max_rate[0]) { 9474 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9475 u64 credits = 0; 9476 9477 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9478 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9479 if (ret) 9480 goto end_unlock; 9481 9482 credits = max_tx_rate; 9483 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9484 dev_dbg(&vsi->back->pdev->dev, 9485 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9486 max_tx_rate, 9487 credits, 9488 vsi->seid); 9489 } 9490 9491 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9492 if (ret) 9493 goto end_unlock; 9494 9495 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9496 * for this main VSI if they exist 9497 */ 9498 ret = i40e_rebuild_channels(vsi); 9499 if (ret) 9500 goto end_unlock; 9501 9502 /* Reconfigure hardware for allowing smaller MSS in the case 9503 * of TSO, so that we avoid the MDD being fired and causing 9504 * a reset in the case of small MSS+TSO. 9505 */ 9506 #define I40E_REG_MSS 0x000E64DC 9507 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9508 #define I40E_64BYTE_MSS 0x400000 9509 val = rd32(hw, I40E_REG_MSS); 9510 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9511 val &= ~I40E_REG_MSS_MIN_MASK; 9512 val |= I40E_64BYTE_MSS; 9513 wr32(hw, I40E_REG_MSS, val); 9514 } 9515 9516 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9517 msleep(75); 9518 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9519 if (ret) 9520 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9521 i40e_stat_str(&pf->hw, ret), 9522 i40e_aq_str(&pf->hw, 9523 pf->hw.aq.asq_last_status)); 9524 } 9525 /* reinit the misc interrupt */ 9526 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9527 ret = i40e_setup_misc_vector(pf); 9528 9529 /* Add a filter to drop all Flow control frames from any VSI from being 9530 * transmitted. By doing so we stop a malicious VF from sending out 9531 * PAUSE or PFC frames and potentially controlling traffic for other 9532 * PF/VF VSIs. 9533 * The FW can still send Flow control frames if enabled. 9534 */ 9535 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9536 pf->main_vsi_seid); 9537 9538 /* restart the VSIs that were rebuilt and running before the reset */ 9539 i40e_pf_unquiesce_all_vsi(pf); 9540 9541 /* Release the RTNL lock before we start resetting VFs */ 9542 if (!lock_acquired) 9543 rtnl_unlock(); 9544 9545 /* Restore promiscuous settings */ 9546 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9547 if (ret) 9548 dev_warn(&pf->pdev->dev, 9549 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9550 pf->cur_promisc ? "on" : "off", 9551 i40e_stat_str(&pf->hw, ret), 9552 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9553 9554 i40e_reset_all_vfs(pf, true); 9555 9556 /* tell the firmware that we're starting */ 9557 i40e_send_version(pf); 9558 9559 /* We've already released the lock, so don't do it again */ 9560 goto end_core_reset; 9561 9562 end_unlock: 9563 if (!lock_acquired) 9564 rtnl_unlock(); 9565 end_core_reset: 9566 clear_bit(__I40E_RESET_FAILED, pf->state); 9567 clear_recovery: 9568 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9569 } 9570 9571 /** 9572 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9573 * @pf: board private structure 9574 * @reinit: if the Main VSI needs to re-initialized. 9575 * @lock_acquired: indicates whether or not the lock has been acquired 9576 * before this function was called. 9577 **/ 9578 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9579 bool lock_acquired) 9580 { 9581 int ret; 9582 /* Now we wait for GRST to settle out. 9583 * We don't have to delete the VEBs or VSIs from the hw switch 9584 * because the reset will make them disappear. 9585 */ 9586 ret = i40e_reset(pf); 9587 if (!ret) 9588 i40e_rebuild(pf, reinit, lock_acquired); 9589 } 9590 9591 /** 9592 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9593 * @pf: board private structure 9594 * 9595 * Close up the VFs and other things in prep for a Core Reset, 9596 * then get ready to rebuild the world. 9597 * @lock_acquired: indicates whether or not the lock has been acquired 9598 * before this function was called. 9599 **/ 9600 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9601 { 9602 i40e_prep_for_reset(pf, lock_acquired); 9603 i40e_reset_and_rebuild(pf, false, lock_acquired); 9604 } 9605 9606 /** 9607 * i40e_handle_mdd_event 9608 * @pf: pointer to the PF structure 9609 * 9610 * Called from the MDD irq handler to identify possibly malicious vfs 9611 **/ 9612 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9613 { 9614 struct i40e_hw *hw = &pf->hw; 9615 bool mdd_detected = false; 9616 bool pf_mdd_detected = false; 9617 struct i40e_vf *vf; 9618 u32 reg; 9619 int i; 9620 9621 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9622 return; 9623 9624 /* find what triggered the MDD event */ 9625 reg = rd32(hw, I40E_GL_MDET_TX); 9626 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9627 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9628 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9629 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9630 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9631 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9632 I40E_GL_MDET_TX_EVENT_SHIFT; 9633 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9634 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9635 pf->hw.func_caps.base_queue; 9636 if (netif_msg_tx_err(pf)) 9637 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9638 event, queue, pf_num, vf_num); 9639 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9640 mdd_detected = true; 9641 } 9642 reg = rd32(hw, I40E_GL_MDET_RX); 9643 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9644 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9645 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9646 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9647 I40E_GL_MDET_RX_EVENT_SHIFT; 9648 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9649 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9650 pf->hw.func_caps.base_queue; 9651 if (netif_msg_rx_err(pf)) 9652 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9653 event, queue, func); 9654 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9655 mdd_detected = true; 9656 } 9657 9658 if (mdd_detected) { 9659 reg = rd32(hw, I40E_PF_MDET_TX); 9660 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9661 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9662 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9663 pf_mdd_detected = true; 9664 } 9665 reg = rd32(hw, I40E_PF_MDET_RX); 9666 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9667 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9668 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9669 pf_mdd_detected = true; 9670 } 9671 /* Queue belongs to the PF, initiate a reset */ 9672 if (pf_mdd_detected) { 9673 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9674 i40e_service_event_schedule(pf); 9675 } 9676 } 9677 9678 /* see if one of the VFs needs its hand slapped */ 9679 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9680 vf = &(pf->vf[i]); 9681 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9682 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9683 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9684 vf->num_mdd_events++; 9685 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9686 i); 9687 } 9688 9689 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9690 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9691 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9692 vf->num_mdd_events++; 9693 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9694 i); 9695 } 9696 9697 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9698 dev_info(&pf->pdev->dev, 9699 "Too many MDD events on VF %d, disabled\n", i); 9700 dev_info(&pf->pdev->dev, 9701 "Use PF Control I/F to re-enable the VF\n"); 9702 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9703 } 9704 } 9705 9706 /* re-enable mdd interrupt cause */ 9707 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9708 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9709 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9710 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9711 i40e_flush(hw); 9712 } 9713 9714 static const char *i40e_tunnel_name(u8 type) 9715 { 9716 switch (type) { 9717 case UDP_TUNNEL_TYPE_VXLAN: 9718 return "vxlan"; 9719 case UDP_TUNNEL_TYPE_GENEVE: 9720 return "geneve"; 9721 default: 9722 return "unknown"; 9723 } 9724 } 9725 9726 /** 9727 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9728 * @pf: board private structure 9729 **/ 9730 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9731 { 9732 int i; 9733 9734 /* loop through and set pending bit for all active UDP filters */ 9735 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9736 if (pf->udp_ports[i].port) 9737 pf->pending_udp_bitmap |= BIT_ULL(i); 9738 } 9739 9740 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9741 } 9742 9743 /** 9744 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9745 * @pf: board private structure 9746 **/ 9747 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9748 { 9749 struct i40e_hw *hw = &pf->hw; 9750 u8 filter_index, type; 9751 u16 port; 9752 int i; 9753 9754 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9755 return; 9756 9757 /* acquire RTNL to maintain state of flags and port requests */ 9758 rtnl_lock(); 9759 9760 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9761 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9762 struct i40e_udp_port_config *udp_port; 9763 i40e_status ret = 0; 9764 9765 udp_port = &pf->udp_ports[i]; 9766 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9767 9768 port = READ_ONCE(udp_port->port); 9769 type = READ_ONCE(udp_port->type); 9770 filter_index = READ_ONCE(udp_port->filter_index); 9771 9772 /* release RTNL while we wait on AQ command */ 9773 rtnl_unlock(); 9774 9775 if (port) 9776 ret = i40e_aq_add_udp_tunnel(hw, port, 9777 type, 9778 &filter_index, 9779 NULL); 9780 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9781 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9782 NULL); 9783 9784 /* reacquire RTNL so we can update filter_index */ 9785 rtnl_lock(); 9786 9787 if (ret) { 9788 dev_info(&pf->pdev->dev, 9789 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9790 i40e_tunnel_name(type), 9791 port ? "add" : "delete", 9792 port, 9793 filter_index, 9794 i40e_stat_str(&pf->hw, ret), 9795 i40e_aq_str(&pf->hw, 9796 pf->hw.aq.asq_last_status)); 9797 if (port) { 9798 /* failed to add, just reset port, 9799 * drop pending bit for any deletion 9800 */ 9801 udp_port->port = 0; 9802 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9803 } 9804 } else if (port) { 9805 /* record filter index on success */ 9806 udp_port->filter_index = filter_index; 9807 } 9808 } 9809 } 9810 9811 rtnl_unlock(); 9812 } 9813 9814 /** 9815 * i40e_service_task - Run the driver's async subtasks 9816 * @work: pointer to work_struct containing our data 9817 **/ 9818 static void i40e_service_task(struct work_struct *work) 9819 { 9820 struct i40e_pf *pf = container_of(work, 9821 struct i40e_pf, 9822 service_task); 9823 unsigned long start_time = jiffies; 9824 9825 /* don't bother with service tasks if a reset is in progress */ 9826 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9827 return; 9828 9829 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9830 return; 9831 9832 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9833 i40e_sync_filters_subtask(pf); 9834 i40e_reset_subtask(pf); 9835 i40e_handle_mdd_event(pf); 9836 i40e_vc_process_vflr_event(pf); 9837 i40e_watchdog_subtask(pf); 9838 i40e_fdir_reinit_subtask(pf); 9839 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9840 /* Client subtask will reopen next time through. */ 9841 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9842 } else { 9843 i40e_client_subtask(pf); 9844 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9845 pf->state)) 9846 i40e_notify_client_of_l2_param_changes( 9847 pf->vsi[pf->lan_vsi]); 9848 } 9849 i40e_sync_filters_subtask(pf); 9850 i40e_sync_udp_filters_subtask(pf); 9851 i40e_clean_adminq_subtask(pf); 9852 9853 /* flush memory to make sure state is correct before next watchdog */ 9854 smp_mb__before_atomic(); 9855 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9856 9857 /* If the tasks have taken longer than one timer cycle or there 9858 * is more work to be done, reschedule the service task now 9859 * rather than wait for the timer to tick again. 9860 */ 9861 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9862 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9863 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9864 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9865 i40e_service_event_schedule(pf); 9866 } 9867 9868 /** 9869 * i40e_service_timer - timer callback 9870 * @data: pointer to PF struct 9871 **/ 9872 static void i40e_service_timer(struct timer_list *t) 9873 { 9874 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9875 9876 mod_timer(&pf->service_timer, 9877 round_jiffies(jiffies + pf->service_timer_period)); 9878 i40e_service_event_schedule(pf); 9879 } 9880 9881 /** 9882 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9883 * @vsi: the VSI being configured 9884 **/ 9885 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9886 { 9887 struct i40e_pf *pf = vsi->back; 9888 9889 switch (vsi->type) { 9890 case I40E_VSI_MAIN: 9891 vsi->alloc_queue_pairs = pf->num_lan_qps; 9892 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9893 I40E_REQ_DESCRIPTOR_MULTIPLE); 9894 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9895 vsi->num_q_vectors = pf->num_lan_msix; 9896 else 9897 vsi->num_q_vectors = 1; 9898 9899 break; 9900 9901 case I40E_VSI_FDIR: 9902 vsi->alloc_queue_pairs = 1; 9903 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9904 I40E_REQ_DESCRIPTOR_MULTIPLE); 9905 vsi->num_q_vectors = pf->num_fdsb_msix; 9906 break; 9907 9908 case I40E_VSI_VMDQ2: 9909 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9910 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9911 I40E_REQ_DESCRIPTOR_MULTIPLE); 9912 vsi->num_q_vectors = pf->num_vmdq_msix; 9913 break; 9914 9915 case I40E_VSI_SRIOV: 9916 vsi->alloc_queue_pairs = pf->num_vf_qps; 9917 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9918 I40E_REQ_DESCRIPTOR_MULTIPLE); 9919 break; 9920 9921 default: 9922 WARN_ON(1); 9923 return -ENODATA; 9924 } 9925 9926 return 0; 9927 } 9928 9929 /** 9930 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 9931 * @vsi: VSI pointer 9932 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 9933 * 9934 * On error: returns error code (negative) 9935 * On success: returns 0 9936 **/ 9937 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 9938 { 9939 struct i40e_ring **next_rings; 9940 int size; 9941 int ret = 0; 9942 9943 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 9944 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 9945 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 9946 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 9947 if (!vsi->tx_rings) 9948 return -ENOMEM; 9949 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 9950 if (i40e_enabled_xdp_vsi(vsi)) { 9951 vsi->xdp_rings = next_rings; 9952 next_rings += vsi->alloc_queue_pairs; 9953 } 9954 vsi->rx_rings = next_rings; 9955 9956 if (alloc_qvectors) { 9957 /* allocate memory for q_vector pointers */ 9958 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 9959 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 9960 if (!vsi->q_vectors) { 9961 ret = -ENOMEM; 9962 goto err_vectors; 9963 } 9964 } 9965 return ret; 9966 9967 err_vectors: 9968 kfree(vsi->tx_rings); 9969 return ret; 9970 } 9971 9972 /** 9973 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 9974 * @pf: board private structure 9975 * @type: type of VSI 9976 * 9977 * On error: returns error code (negative) 9978 * On success: returns vsi index in PF (positive) 9979 **/ 9980 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 9981 { 9982 int ret = -ENODEV; 9983 struct i40e_vsi *vsi; 9984 int vsi_idx; 9985 int i; 9986 9987 /* Need to protect the allocation of the VSIs at the PF level */ 9988 mutex_lock(&pf->switch_mutex); 9989 9990 /* VSI list may be fragmented if VSI creation/destruction has 9991 * been happening. We can afford to do a quick scan to look 9992 * for any free VSIs in the list. 9993 * 9994 * find next empty vsi slot, looping back around if necessary 9995 */ 9996 i = pf->next_vsi; 9997 while (i < pf->num_alloc_vsi && pf->vsi[i]) 9998 i++; 9999 if (i >= pf->num_alloc_vsi) { 10000 i = 0; 10001 while (i < pf->next_vsi && pf->vsi[i]) 10002 i++; 10003 } 10004 10005 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10006 vsi_idx = i; /* Found one! */ 10007 } else { 10008 ret = -ENODEV; 10009 goto unlock_pf; /* out of VSI slots! */ 10010 } 10011 pf->next_vsi = ++i; 10012 10013 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10014 if (!vsi) { 10015 ret = -ENOMEM; 10016 goto unlock_pf; 10017 } 10018 vsi->type = type; 10019 vsi->back = pf; 10020 set_bit(__I40E_VSI_DOWN, vsi->state); 10021 vsi->flags = 0; 10022 vsi->idx = vsi_idx; 10023 vsi->int_rate_limit = 0; 10024 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10025 pf->rss_table_size : 64; 10026 vsi->netdev_registered = false; 10027 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10028 hash_init(vsi->mac_filter_hash); 10029 vsi->irqs_ready = false; 10030 10031 ret = i40e_set_num_rings_in_vsi(vsi); 10032 if (ret) 10033 goto err_rings; 10034 10035 ret = i40e_vsi_alloc_arrays(vsi, true); 10036 if (ret) 10037 goto err_rings; 10038 10039 /* Setup default MSIX irq handler for VSI */ 10040 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10041 10042 /* Initialize VSI lock */ 10043 spin_lock_init(&vsi->mac_filter_hash_lock); 10044 pf->vsi[vsi_idx] = vsi; 10045 ret = vsi_idx; 10046 goto unlock_pf; 10047 10048 err_rings: 10049 pf->next_vsi = i - 1; 10050 kfree(vsi); 10051 unlock_pf: 10052 mutex_unlock(&pf->switch_mutex); 10053 return ret; 10054 } 10055 10056 /** 10057 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10058 * @vsi: VSI pointer 10059 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10060 * 10061 * On error: returns error code (negative) 10062 * On success: returns 0 10063 **/ 10064 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10065 { 10066 /* free the ring and vector containers */ 10067 if (free_qvectors) { 10068 kfree(vsi->q_vectors); 10069 vsi->q_vectors = NULL; 10070 } 10071 kfree(vsi->tx_rings); 10072 vsi->tx_rings = NULL; 10073 vsi->rx_rings = NULL; 10074 vsi->xdp_rings = NULL; 10075 } 10076 10077 /** 10078 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10079 * and lookup table 10080 * @vsi: Pointer to VSI structure 10081 */ 10082 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10083 { 10084 if (!vsi) 10085 return; 10086 10087 kfree(vsi->rss_hkey_user); 10088 vsi->rss_hkey_user = NULL; 10089 10090 kfree(vsi->rss_lut_user); 10091 vsi->rss_lut_user = NULL; 10092 } 10093 10094 /** 10095 * i40e_vsi_clear - Deallocate the VSI provided 10096 * @vsi: the VSI being un-configured 10097 **/ 10098 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10099 { 10100 struct i40e_pf *pf; 10101 10102 if (!vsi) 10103 return 0; 10104 10105 if (!vsi->back) 10106 goto free_vsi; 10107 pf = vsi->back; 10108 10109 mutex_lock(&pf->switch_mutex); 10110 if (!pf->vsi[vsi->idx]) { 10111 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10112 vsi->idx, vsi->idx, vsi->type); 10113 goto unlock_vsi; 10114 } 10115 10116 if (pf->vsi[vsi->idx] != vsi) { 10117 dev_err(&pf->pdev->dev, 10118 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10119 pf->vsi[vsi->idx]->idx, 10120 pf->vsi[vsi->idx]->type, 10121 vsi->idx, vsi->type); 10122 goto unlock_vsi; 10123 } 10124 10125 /* updates the PF for this cleared vsi */ 10126 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10127 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10128 10129 i40e_vsi_free_arrays(vsi, true); 10130 i40e_clear_rss_config_user(vsi); 10131 10132 pf->vsi[vsi->idx] = NULL; 10133 if (vsi->idx < pf->next_vsi) 10134 pf->next_vsi = vsi->idx; 10135 10136 unlock_vsi: 10137 mutex_unlock(&pf->switch_mutex); 10138 free_vsi: 10139 kfree(vsi); 10140 10141 return 0; 10142 } 10143 10144 /** 10145 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10146 * @vsi: the VSI being cleaned 10147 **/ 10148 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10149 { 10150 int i; 10151 10152 if (vsi->tx_rings && vsi->tx_rings[0]) { 10153 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10154 kfree_rcu(vsi->tx_rings[i], rcu); 10155 vsi->tx_rings[i] = NULL; 10156 vsi->rx_rings[i] = NULL; 10157 if (vsi->xdp_rings) 10158 vsi->xdp_rings[i] = NULL; 10159 } 10160 } 10161 } 10162 10163 /** 10164 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10165 * @vsi: the VSI being configured 10166 **/ 10167 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10168 { 10169 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10170 struct i40e_pf *pf = vsi->back; 10171 struct i40e_ring *ring; 10172 10173 /* Set basic values in the rings to be used later during open() */ 10174 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10175 /* allocate space for both Tx and Rx in one shot */ 10176 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10177 if (!ring) 10178 goto err_out; 10179 10180 ring->queue_index = i; 10181 ring->reg_idx = vsi->base_queue + i; 10182 ring->ring_active = false; 10183 ring->vsi = vsi; 10184 ring->netdev = vsi->netdev; 10185 ring->dev = &pf->pdev->dev; 10186 ring->count = vsi->num_desc; 10187 ring->size = 0; 10188 ring->dcb_tc = 0; 10189 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10190 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10191 ring->itr_setting = pf->tx_itr_default; 10192 vsi->tx_rings[i] = ring++; 10193 10194 if (!i40e_enabled_xdp_vsi(vsi)) 10195 goto setup_rx; 10196 10197 ring->queue_index = vsi->alloc_queue_pairs + i; 10198 ring->reg_idx = vsi->base_queue + ring->queue_index; 10199 ring->ring_active = false; 10200 ring->vsi = vsi; 10201 ring->netdev = NULL; 10202 ring->dev = &pf->pdev->dev; 10203 ring->count = vsi->num_desc; 10204 ring->size = 0; 10205 ring->dcb_tc = 0; 10206 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10207 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10208 set_ring_xdp(ring); 10209 ring->itr_setting = pf->tx_itr_default; 10210 vsi->xdp_rings[i] = ring++; 10211 10212 setup_rx: 10213 ring->queue_index = i; 10214 ring->reg_idx = vsi->base_queue + i; 10215 ring->ring_active = false; 10216 ring->vsi = vsi; 10217 ring->netdev = vsi->netdev; 10218 ring->dev = &pf->pdev->dev; 10219 ring->count = vsi->num_desc; 10220 ring->size = 0; 10221 ring->dcb_tc = 0; 10222 ring->itr_setting = pf->rx_itr_default; 10223 vsi->rx_rings[i] = ring; 10224 } 10225 10226 return 0; 10227 10228 err_out: 10229 i40e_vsi_clear_rings(vsi); 10230 return -ENOMEM; 10231 } 10232 10233 /** 10234 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10235 * @pf: board private structure 10236 * @vectors: the number of MSI-X vectors to request 10237 * 10238 * Returns the number of vectors reserved, or error 10239 **/ 10240 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10241 { 10242 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10243 I40E_MIN_MSIX, vectors); 10244 if (vectors < 0) { 10245 dev_info(&pf->pdev->dev, 10246 "MSI-X vector reservation failed: %d\n", vectors); 10247 vectors = 0; 10248 } 10249 10250 return vectors; 10251 } 10252 10253 /** 10254 * i40e_init_msix - Setup the MSIX capability 10255 * @pf: board private structure 10256 * 10257 * Work with the OS to set up the MSIX vectors needed. 10258 * 10259 * Returns the number of vectors reserved or negative on failure 10260 **/ 10261 static int i40e_init_msix(struct i40e_pf *pf) 10262 { 10263 struct i40e_hw *hw = &pf->hw; 10264 int cpus, extra_vectors; 10265 int vectors_left; 10266 int v_budget, i; 10267 int v_actual; 10268 int iwarp_requested = 0; 10269 10270 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10271 return -ENODEV; 10272 10273 /* The number of vectors we'll request will be comprised of: 10274 * - Add 1 for "other" cause for Admin Queue events, etc. 10275 * - The number of LAN queue pairs 10276 * - Queues being used for RSS. 10277 * We don't need as many as max_rss_size vectors. 10278 * use rss_size instead in the calculation since that 10279 * is governed by number of cpus in the system. 10280 * - assumes symmetric Tx/Rx pairing 10281 * - The number of VMDq pairs 10282 * - The CPU count within the NUMA node if iWARP is enabled 10283 * Once we count this up, try the request. 10284 * 10285 * If we can't get what we want, we'll simplify to nearly nothing 10286 * and try again. If that still fails, we punt. 10287 */ 10288 vectors_left = hw->func_caps.num_msix_vectors; 10289 v_budget = 0; 10290 10291 /* reserve one vector for miscellaneous handler */ 10292 if (vectors_left) { 10293 v_budget++; 10294 vectors_left--; 10295 } 10296 10297 /* reserve some vectors for the main PF traffic queues. Initially we 10298 * only reserve at most 50% of the available vectors, in the case that 10299 * the number of online CPUs is large. This ensures that we can enable 10300 * extra features as well. Once we've enabled the other features, we 10301 * will use any remaining vectors to reach as close as we can to the 10302 * number of online CPUs. 10303 */ 10304 cpus = num_online_cpus(); 10305 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10306 vectors_left -= pf->num_lan_msix; 10307 10308 /* reserve one vector for sideband flow director */ 10309 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10310 if (vectors_left) { 10311 pf->num_fdsb_msix = 1; 10312 v_budget++; 10313 vectors_left--; 10314 } else { 10315 pf->num_fdsb_msix = 0; 10316 } 10317 } 10318 10319 /* can we reserve enough for iWARP? */ 10320 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10321 iwarp_requested = pf->num_iwarp_msix; 10322 10323 if (!vectors_left) 10324 pf->num_iwarp_msix = 0; 10325 else if (vectors_left < pf->num_iwarp_msix) 10326 pf->num_iwarp_msix = 1; 10327 v_budget += pf->num_iwarp_msix; 10328 vectors_left -= pf->num_iwarp_msix; 10329 } 10330 10331 /* any vectors left over go for VMDq support */ 10332 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10333 if (!vectors_left) { 10334 pf->num_vmdq_msix = 0; 10335 pf->num_vmdq_qps = 0; 10336 } else { 10337 int vmdq_vecs_wanted = 10338 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10339 int vmdq_vecs = 10340 min_t(int, vectors_left, vmdq_vecs_wanted); 10341 10342 /* if we're short on vectors for what's desired, we limit 10343 * the queues per vmdq. If this is still more than are 10344 * available, the user will need to change the number of 10345 * queues/vectors used by the PF later with the ethtool 10346 * channels command 10347 */ 10348 if (vectors_left < vmdq_vecs_wanted) { 10349 pf->num_vmdq_qps = 1; 10350 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10351 vmdq_vecs = min_t(int, 10352 vectors_left, 10353 vmdq_vecs_wanted); 10354 } 10355 pf->num_vmdq_msix = pf->num_vmdq_qps; 10356 10357 v_budget += vmdq_vecs; 10358 vectors_left -= vmdq_vecs; 10359 } 10360 } 10361 10362 /* On systems with a large number of SMP cores, we previously limited 10363 * the number of vectors for num_lan_msix to be at most 50% of the 10364 * available vectors, to allow for other features. Now, we add back 10365 * the remaining vectors. However, we ensure that the total 10366 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10367 * calculate the number of vectors we can add without going over the 10368 * cap of CPUs. For systems with a small number of CPUs this will be 10369 * zero. 10370 */ 10371 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10372 pf->num_lan_msix += extra_vectors; 10373 vectors_left -= extra_vectors; 10374 10375 WARN(vectors_left < 0, 10376 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10377 10378 v_budget += pf->num_lan_msix; 10379 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10380 GFP_KERNEL); 10381 if (!pf->msix_entries) 10382 return -ENOMEM; 10383 10384 for (i = 0; i < v_budget; i++) 10385 pf->msix_entries[i].entry = i; 10386 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10387 10388 if (v_actual < I40E_MIN_MSIX) { 10389 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10390 kfree(pf->msix_entries); 10391 pf->msix_entries = NULL; 10392 pci_disable_msix(pf->pdev); 10393 return -ENODEV; 10394 10395 } else if (v_actual == I40E_MIN_MSIX) { 10396 /* Adjust for minimal MSIX use */ 10397 pf->num_vmdq_vsis = 0; 10398 pf->num_vmdq_qps = 0; 10399 pf->num_lan_qps = 1; 10400 pf->num_lan_msix = 1; 10401 10402 } else if (v_actual != v_budget) { 10403 /* If we have limited resources, we will start with no vectors 10404 * for the special features and then allocate vectors to some 10405 * of these features based on the policy and at the end disable 10406 * the features that did not get any vectors. 10407 */ 10408 int vec; 10409 10410 dev_info(&pf->pdev->dev, 10411 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10412 v_actual, v_budget); 10413 /* reserve the misc vector */ 10414 vec = v_actual - 1; 10415 10416 /* Scale vector usage down */ 10417 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10418 pf->num_vmdq_vsis = 1; 10419 pf->num_vmdq_qps = 1; 10420 10421 /* partition out the remaining vectors */ 10422 switch (vec) { 10423 case 2: 10424 pf->num_lan_msix = 1; 10425 break; 10426 case 3: 10427 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10428 pf->num_lan_msix = 1; 10429 pf->num_iwarp_msix = 1; 10430 } else { 10431 pf->num_lan_msix = 2; 10432 } 10433 break; 10434 default: 10435 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10436 pf->num_iwarp_msix = min_t(int, (vec / 3), 10437 iwarp_requested); 10438 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10439 I40E_DEFAULT_NUM_VMDQ_VSI); 10440 } else { 10441 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10442 I40E_DEFAULT_NUM_VMDQ_VSI); 10443 } 10444 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10445 pf->num_fdsb_msix = 1; 10446 vec--; 10447 } 10448 pf->num_lan_msix = min_t(int, 10449 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10450 pf->num_lan_msix); 10451 pf->num_lan_qps = pf->num_lan_msix; 10452 break; 10453 } 10454 } 10455 10456 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10457 (pf->num_fdsb_msix == 0)) { 10458 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10459 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10460 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10461 } 10462 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10463 (pf->num_vmdq_msix == 0)) { 10464 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10465 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10466 } 10467 10468 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10469 (pf->num_iwarp_msix == 0)) { 10470 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10471 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10472 } 10473 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10474 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10475 pf->num_lan_msix, 10476 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10477 pf->num_fdsb_msix, 10478 pf->num_iwarp_msix); 10479 10480 return v_actual; 10481 } 10482 10483 /** 10484 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10485 * @vsi: the VSI being configured 10486 * @v_idx: index of the vector in the vsi struct 10487 * @cpu: cpu to be used on affinity_mask 10488 * 10489 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10490 **/ 10491 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10492 { 10493 struct i40e_q_vector *q_vector; 10494 10495 /* allocate q_vector */ 10496 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10497 if (!q_vector) 10498 return -ENOMEM; 10499 10500 q_vector->vsi = vsi; 10501 q_vector->v_idx = v_idx; 10502 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10503 10504 if (vsi->netdev) 10505 netif_napi_add(vsi->netdev, &q_vector->napi, 10506 i40e_napi_poll, NAPI_POLL_WEIGHT); 10507 10508 /* tie q_vector and vsi together */ 10509 vsi->q_vectors[v_idx] = q_vector; 10510 10511 return 0; 10512 } 10513 10514 /** 10515 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10516 * @vsi: the VSI being configured 10517 * 10518 * We allocate one q_vector per queue interrupt. If allocation fails we 10519 * return -ENOMEM. 10520 **/ 10521 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10522 { 10523 struct i40e_pf *pf = vsi->back; 10524 int err, v_idx, num_q_vectors, current_cpu; 10525 10526 /* if not MSIX, give the one vector only to the LAN VSI */ 10527 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10528 num_q_vectors = vsi->num_q_vectors; 10529 else if (vsi == pf->vsi[pf->lan_vsi]) 10530 num_q_vectors = 1; 10531 else 10532 return -EINVAL; 10533 10534 current_cpu = cpumask_first(cpu_online_mask); 10535 10536 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10537 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10538 if (err) 10539 goto err_out; 10540 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10541 if (unlikely(current_cpu >= nr_cpu_ids)) 10542 current_cpu = cpumask_first(cpu_online_mask); 10543 } 10544 10545 return 0; 10546 10547 err_out: 10548 while (v_idx--) 10549 i40e_free_q_vector(vsi, v_idx); 10550 10551 return err; 10552 } 10553 10554 /** 10555 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10556 * @pf: board private structure to initialize 10557 **/ 10558 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10559 { 10560 int vectors = 0; 10561 ssize_t size; 10562 10563 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10564 vectors = i40e_init_msix(pf); 10565 if (vectors < 0) { 10566 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10567 I40E_FLAG_IWARP_ENABLED | 10568 I40E_FLAG_RSS_ENABLED | 10569 I40E_FLAG_DCB_CAPABLE | 10570 I40E_FLAG_DCB_ENABLED | 10571 I40E_FLAG_SRIOV_ENABLED | 10572 I40E_FLAG_FD_SB_ENABLED | 10573 I40E_FLAG_FD_ATR_ENABLED | 10574 I40E_FLAG_VMDQ_ENABLED); 10575 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10576 10577 /* rework the queue expectations without MSIX */ 10578 i40e_determine_queue_usage(pf); 10579 } 10580 } 10581 10582 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10583 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10584 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10585 vectors = pci_enable_msi(pf->pdev); 10586 if (vectors < 0) { 10587 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10588 vectors); 10589 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10590 } 10591 vectors = 1; /* one MSI or Legacy vector */ 10592 } 10593 10594 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10595 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10596 10597 /* set up vector assignment tracking */ 10598 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10599 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10600 if (!pf->irq_pile) 10601 return -ENOMEM; 10602 10603 pf->irq_pile->num_entries = vectors; 10604 pf->irq_pile->search_hint = 0; 10605 10606 /* track first vector for misc interrupts, ignore return */ 10607 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10608 10609 return 0; 10610 } 10611 10612 /** 10613 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10614 * @pf: private board data structure 10615 * 10616 * Restore the interrupt scheme that was cleared when we suspended the 10617 * device. This should be called during resume to re-allocate the q_vectors 10618 * and reacquire IRQs. 10619 */ 10620 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10621 { 10622 int err, i; 10623 10624 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10625 * scheme. We need to re-enabled them here in order to attempt to 10626 * re-acquire the MSI or MSI-X vectors 10627 */ 10628 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10629 10630 err = i40e_init_interrupt_scheme(pf); 10631 if (err) 10632 return err; 10633 10634 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10635 * rings together again. 10636 */ 10637 for (i = 0; i < pf->num_alloc_vsi; i++) { 10638 if (pf->vsi[i]) { 10639 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10640 if (err) 10641 goto err_unwind; 10642 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10643 } 10644 } 10645 10646 err = i40e_setup_misc_vector(pf); 10647 if (err) 10648 goto err_unwind; 10649 10650 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10651 i40e_client_update_msix_info(pf); 10652 10653 return 0; 10654 10655 err_unwind: 10656 while (i--) { 10657 if (pf->vsi[i]) 10658 i40e_vsi_free_q_vectors(pf->vsi[i]); 10659 } 10660 10661 return err; 10662 } 10663 10664 /** 10665 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10666 * @pf: board private structure 10667 * 10668 * This sets up the handler for MSIX 0, which is used to manage the 10669 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10670 * when in MSI or Legacy interrupt mode. 10671 **/ 10672 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10673 { 10674 struct i40e_hw *hw = &pf->hw; 10675 int err = 0; 10676 10677 /* Only request the IRQ once, the first time through. */ 10678 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10679 err = request_irq(pf->msix_entries[0].vector, 10680 i40e_intr, 0, pf->int_name, pf); 10681 if (err) { 10682 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10683 dev_info(&pf->pdev->dev, 10684 "request_irq for %s failed: %d\n", 10685 pf->int_name, err); 10686 return -EFAULT; 10687 } 10688 } 10689 10690 i40e_enable_misc_int_causes(pf); 10691 10692 /* associate no queues to the misc vector */ 10693 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10694 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10695 10696 i40e_flush(hw); 10697 10698 i40e_irq_dynamic_enable_icr0(pf); 10699 10700 return err; 10701 } 10702 10703 /** 10704 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10705 * @vsi: Pointer to vsi structure 10706 * @seed: Buffter to store the hash keys 10707 * @lut: Buffer to store the lookup table entries 10708 * @lut_size: Size of buffer to store the lookup table entries 10709 * 10710 * Return 0 on success, negative on failure 10711 */ 10712 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10713 u8 *lut, u16 lut_size) 10714 { 10715 struct i40e_pf *pf = vsi->back; 10716 struct i40e_hw *hw = &pf->hw; 10717 int ret = 0; 10718 10719 if (seed) { 10720 ret = i40e_aq_get_rss_key(hw, vsi->id, 10721 (struct i40e_aqc_get_set_rss_key_data *)seed); 10722 if (ret) { 10723 dev_info(&pf->pdev->dev, 10724 "Cannot get RSS key, err %s aq_err %s\n", 10725 i40e_stat_str(&pf->hw, ret), 10726 i40e_aq_str(&pf->hw, 10727 pf->hw.aq.asq_last_status)); 10728 return ret; 10729 } 10730 } 10731 10732 if (lut) { 10733 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10734 10735 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10736 if (ret) { 10737 dev_info(&pf->pdev->dev, 10738 "Cannot get RSS lut, err %s aq_err %s\n", 10739 i40e_stat_str(&pf->hw, ret), 10740 i40e_aq_str(&pf->hw, 10741 pf->hw.aq.asq_last_status)); 10742 return ret; 10743 } 10744 } 10745 10746 return ret; 10747 } 10748 10749 /** 10750 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10751 * @vsi: Pointer to vsi structure 10752 * @seed: RSS hash seed 10753 * @lut: Lookup table 10754 * @lut_size: Lookup table size 10755 * 10756 * Returns 0 on success, negative on failure 10757 **/ 10758 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10759 const u8 *lut, u16 lut_size) 10760 { 10761 struct i40e_pf *pf = vsi->back; 10762 struct i40e_hw *hw = &pf->hw; 10763 u16 vf_id = vsi->vf_id; 10764 u8 i; 10765 10766 /* Fill out hash function seed */ 10767 if (seed) { 10768 u32 *seed_dw = (u32 *)seed; 10769 10770 if (vsi->type == I40E_VSI_MAIN) { 10771 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10772 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10773 } else if (vsi->type == I40E_VSI_SRIOV) { 10774 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10775 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10776 } else { 10777 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10778 } 10779 } 10780 10781 if (lut) { 10782 u32 *lut_dw = (u32 *)lut; 10783 10784 if (vsi->type == I40E_VSI_MAIN) { 10785 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10786 return -EINVAL; 10787 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10788 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10789 } else if (vsi->type == I40E_VSI_SRIOV) { 10790 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10791 return -EINVAL; 10792 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10793 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10794 } else { 10795 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10796 } 10797 } 10798 i40e_flush(hw); 10799 10800 return 0; 10801 } 10802 10803 /** 10804 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10805 * @vsi: Pointer to VSI structure 10806 * @seed: Buffer to store the keys 10807 * @lut: Buffer to store the lookup table entries 10808 * @lut_size: Size of buffer to store the lookup table entries 10809 * 10810 * Returns 0 on success, negative on failure 10811 */ 10812 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10813 u8 *lut, u16 lut_size) 10814 { 10815 struct i40e_pf *pf = vsi->back; 10816 struct i40e_hw *hw = &pf->hw; 10817 u16 i; 10818 10819 if (seed) { 10820 u32 *seed_dw = (u32 *)seed; 10821 10822 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10823 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10824 } 10825 if (lut) { 10826 u32 *lut_dw = (u32 *)lut; 10827 10828 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10829 return -EINVAL; 10830 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10831 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10832 } 10833 10834 return 0; 10835 } 10836 10837 /** 10838 * i40e_config_rss - Configure RSS keys and lut 10839 * @vsi: Pointer to VSI structure 10840 * @seed: RSS hash seed 10841 * @lut: Lookup table 10842 * @lut_size: Lookup table size 10843 * 10844 * Returns 0 on success, negative on failure 10845 */ 10846 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10847 { 10848 struct i40e_pf *pf = vsi->back; 10849 10850 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10851 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10852 else 10853 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10854 } 10855 10856 /** 10857 * i40e_get_rss - Get RSS keys and lut 10858 * @vsi: Pointer to VSI structure 10859 * @seed: Buffer to store the keys 10860 * @lut: Buffer to store the lookup table entries 10861 * @lut_size: Size of buffer to store the lookup table entries 10862 * 10863 * Returns 0 on success, negative on failure 10864 */ 10865 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10866 { 10867 struct i40e_pf *pf = vsi->back; 10868 10869 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10870 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10871 else 10872 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10873 } 10874 10875 /** 10876 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10877 * @pf: Pointer to board private structure 10878 * @lut: Lookup table 10879 * @rss_table_size: Lookup table size 10880 * @rss_size: Range of queue number for hashing 10881 */ 10882 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10883 u16 rss_table_size, u16 rss_size) 10884 { 10885 u16 i; 10886 10887 for (i = 0; i < rss_table_size; i++) 10888 lut[i] = i % rss_size; 10889 } 10890 10891 /** 10892 * i40e_pf_config_rss - Prepare for RSS if used 10893 * @pf: board private structure 10894 **/ 10895 static int i40e_pf_config_rss(struct i40e_pf *pf) 10896 { 10897 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10898 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10899 u8 *lut; 10900 struct i40e_hw *hw = &pf->hw; 10901 u32 reg_val; 10902 u64 hena; 10903 int ret; 10904 10905 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10906 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10907 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10908 hena |= i40e_pf_get_default_rss_hena(pf); 10909 10910 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10911 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10912 10913 /* Determine the RSS table size based on the hardware capabilities */ 10914 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10915 reg_val = (pf->rss_table_size == 512) ? 10916 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10917 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10918 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10919 10920 /* Determine the RSS size of the VSI */ 10921 if (!vsi->rss_size) { 10922 u16 qcount; 10923 /* If the firmware does something weird during VSI init, we 10924 * could end up with zero TCs. Check for that to avoid 10925 * divide-by-zero. It probably won't pass traffic, but it also 10926 * won't panic. 10927 */ 10928 qcount = vsi->num_queue_pairs / 10929 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 10930 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10931 } 10932 if (!vsi->rss_size) 10933 return -EINVAL; 10934 10935 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 10936 if (!lut) 10937 return -ENOMEM; 10938 10939 /* Use user configured lut if there is one, otherwise use default */ 10940 if (vsi->rss_lut_user) 10941 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 10942 else 10943 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 10944 10945 /* Use user configured hash key if there is one, otherwise 10946 * use default. 10947 */ 10948 if (vsi->rss_hkey_user) 10949 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 10950 else 10951 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 10952 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 10953 kfree(lut); 10954 10955 return ret; 10956 } 10957 10958 /** 10959 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 10960 * @pf: board private structure 10961 * @queue_count: the requested queue count for rss. 10962 * 10963 * returns 0 if rss is not enabled, if enabled returns the final rss queue 10964 * count which may be different from the requested queue count. 10965 * Note: expects to be called while under rtnl_lock() 10966 **/ 10967 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 10968 { 10969 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10970 int new_rss_size; 10971 10972 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 10973 return 0; 10974 10975 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 10976 10977 if (queue_count != vsi->num_queue_pairs) { 10978 u16 qcount; 10979 10980 vsi->req_queue_pairs = queue_count; 10981 i40e_prep_for_reset(pf, true); 10982 10983 pf->alloc_rss_size = new_rss_size; 10984 10985 i40e_reset_and_rebuild(pf, true, true); 10986 10987 /* Discard the user configured hash keys and lut, if less 10988 * queues are enabled. 10989 */ 10990 if (queue_count < vsi->rss_size) { 10991 i40e_clear_rss_config_user(vsi); 10992 dev_dbg(&pf->pdev->dev, 10993 "discard user configured hash keys and lut\n"); 10994 } 10995 10996 /* Reset vsi->rss_size, as number of enabled queues changed */ 10997 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 10998 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 10999 11000 i40e_pf_config_rss(pf); 11001 } 11002 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11003 vsi->req_queue_pairs, pf->rss_size_max); 11004 return pf->alloc_rss_size; 11005 } 11006 11007 /** 11008 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11009 * @pf: board private structure 11010 **/ 11011 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11012 { 11013 i40e_status status; 11014 bool min_valid, max_valid; 11015 u32 max_bw, min_bw; 11016 11017 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11018 &min_valid, &max_valid); 11019 11020 if (!status) { 11021 if (min_valid) 11022 pf->min_bw = min_bw; 11023 if (max_valid) 11024 pf->max_bw = max_bw; 11025 } 11026 11027 return status; 11028 } 11029 11030 /** 11031 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11032 * @pf: board private structure 11033 **/ 11034 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11035 { 11036 struct i40e_aqc_configure_partition_bw_data bw_data; 11037 i40e_status status; 11038 11039 /* Set the valid bit for this PF */ 11040 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11041 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11042 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11043 11044 /* Set the new bandwidths */ 11045 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11046 11047 return status; 11048 } 11049 11050 /** 11051 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11052 * @pf: board private structure 11053 **/ 11054 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11055 { 11056 /* Commit temporary BW setting to permanent NVM image */ 11057 enum i40e_admin_queue_err last_aq_status; 11058 i40e_status ret; 11059 u16 nvm_word; 11060 11061 if (pf->hw.partition_id != 1) { 11062 dev_info(&pf->pdev->dev, 11063 "Commit BW only works on partition 1! This is partition %d", 11064 pf->hw.partition_id); 11065 ret = I40E_NOT_SUPPORTED; 11066 goto bw_commit_out; 11067 } 11068 11069 /* Acquire NVM for read access */ 11070 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11071 last_aq_status = pf->hw.aq.asq_last_status; 11072 if (ret) { 11073 dev_info(&pf->pdev->dev, 11074 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11075 i40e_stat_str(&pf->hw, ret), 11076 i40e_aq_str(&pf->hw, last_aq_status)); 11077 goto bw_commit_out; 11078 } 11079 11080 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11081 ret = i40e_aq_read_nvm(&pf->hw, 11082 I40E_SR_NVM_CONTROL_WORD, 11083 0x10, sizeof(nvm_word), &nvm_word, 11084 false, NULL); 11085 /* Save off last admin queue command status before releasing 11086 * the NVM 11087 */ 11088 last_aq_status = pf->hw.aq.asq_last_status; 11089 i40e_release_nvm(&pf->hw); 11090 if (ret) { 11091 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11092 i40e_stat_str(&pf->hw, ret), 11093 i40e_aq_str(&pf->hw, last_aq_status)); 11094 goto bw_commit_out; 11095 } 11096 11097 /* Wait a bit for NVM release to complete */ 11098 msleep(50); 11099 11100 /* Acquire NVM for write access */ 11101 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11102 last_aq_status = pf->hw.aq.asq_last_status; 11103 if (ret) { 11104 dev_info(&pf->pdev->dev, 11105 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11106 i40e_stat_str(&pf->hw, ret), 11107 i40e_aq_str(&pf->hw, last_aq_status)); 11108 goto bw_commit_out; 11109 } 11110 /* Write it back out unchanged to initiate update NVM, 11111 * which will force a write of the shadow (alt) RAM to 11112 * the NVM - thus storing the bandwidth values permanently. 11113 */ 11114 ret = i40e_aq_update_nvm(&pf->hw, 11115 I40E_SR_NVM_CONTROL_WORD, 11116 0x10, sizeof(nvm_word), 11117 &nvm_word, true, 0, NULL); 11118 /* Save off last admin queue command status before releasing 11119 * the NVM 11120 */ 11121 last_aq_status = pf->hw.aq.asq_last_status; 11122 i40e_release_nvm(&pf->hw); 11123 if (ret) 11124 dev_info(&pf->pdev->dev, 11125 "BW settings NOT SAVED, err %s aq_err %s\n", 11126 i40e_stat_str(&pf->hw, ret), 11127 i40e_aq_str(&pf->hw, last_aq_status)); 11128 bw_commit_out: 11129 11130 return ret; 11131 } 11132 11133 /** 11134 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11135 * @pf: board private structure to initialize 11136 * 11137 * i40e_sw_init initializes the Adapter private data structure. 11138 * Fields are initialized based on PCI device information and 11139 * OS network device settings (MTU size). 11140 **/ 11141 static int i40e_sw_init(struct i40e_pf *pf) 11142 { 11143 int err = 0; 11144 int size; 11145 11146 /* Set default capability flags */ 11147 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11148 I40E_FLAG_MSI_ENABLED | 11149 I40E_FLAG_MSIX_ENABLED; 11150 11151 /* Set default ITR */ 11152 pf->rx_itr_default = I40E_ITR_RX_DEF; 11153 pf->tx_itr_default = I40E_ITR_TX_DEF; 11154 11155 /* Depending on PF configurations, it is possible that the RSS 11156 * maximum might end up larger than the available queues 11157 */ 11158 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11159 pf->alloc_rss_size = 1; 11160 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11161 pf->rss_size_max = min_t(int, pf->rss_size_max, 11162 pf->hw.func_caps.num_tx_qp); 11163 if (pf->hw.func_caps.rss) { 11164 pf->flags |= I40E_FLAG_RSS_ENABLED; 11165 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11166 num_online_cpus()); 11167 } 11168 11169 /* MFP mode enabled */ 11170 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11171 pf->flags |= I40E_FLAG_MFP_ENABLED; 11172 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11173 if (i40e_get_partition_bw_setting(pf)) { 11174 dev_warn(&pf->pdev->dev, 11175 "Could not get partition bw settings\n"); 11176 } else { 11177 dev_info(&pf->pdev->dev, 11178 "Partition BW Min = %8.8x, Max = %8.8x\n", 11179 pf->min_bw, pf->max_bw); 11180 11181 /* nudge the Tx scheduler */ 11182 i40e_set_partition_bw_setting(pf); 11183 } 11184 } 11185 11186 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11187 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11188 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11189 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11190 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11191 pf->hw.num_partitions > 1) 11192 dev_info(&pf->pdev->dev, 11193 "Flow Director Sideband mode Disabled in MFP mode\n"); 11194 else 11195 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11196 pf->fdir_pf_filter_count = 11197 pf->hw.func_caps.fd_filters_guaranteed; 11198 pf->hw.fdir_shared_filter_count = 11199 pf->hw.func_caps.fd_filters_best_effort; 11200 } 11201 11202 if (pf->hw.mac.type == I40E_MAC_X722) { 11203 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11204 I40E_HW_128_QP_RSS_CAPABLE | 11205 I40E_HW_ATR_EVICT_CAPABLE | 11206 I40E_HW_WB_ON_ITR_CAPABLE | 11207 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11208 I40E_HW_NO_PCI_LINK_CHECK | 11209 I40E_HW_USE_SET_LLDP_MIB | 11210 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11211 I40E_HW_PTP_L4_CAPABLE | 11212 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11213 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11214 11215 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11216 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11217 I40E_FDEVICT_PCTYPE_DEFAULT) { 11218 dev_warn(&pf->pdev->dev, 11219 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11220 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11221 } 11222 } else if ((pf->hw.aq.api_maj_ver > 1) || 11223 ((pf->hw.aq.api_maj_ver == 1) && 11224 (pf->hw.aq.api_min_ver > 4))) { 11225 /* Supported in FW API version higher than 1.4 */ 11226 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11227 } 11228 11229 /* Enable HW ATR eviction if possible */ 11230 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11231 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11232 11233 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11234 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11235 (pf->hw.aq.fw_maj_ver < 4))) { 11236 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11237 /* No DCB support for FW < v4.33 */ 11238 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11239 } 11240 11241 /* Disable FW LLDP if FW < v4.3 */ 11242 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11243 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11244 (pf->hw.aq.fw_maj_ver < 4))) 11245 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11246 11247 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11248 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11249 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11250 (pf->hw.aq.fw_maj_ver >= 5))) 11251 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11252 11253 /* Enable PTP L4 if FW > v6.0 */ 11254 if (pf->hw.mac.type == I40E_MAC_XL710 && 11255 pf->hw.aq.fw_maj_ver >= 6) 11256 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11257 11258 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11259 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11260 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11261 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11262 } 11263 11264 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11265 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11266 /* IWARP needs one extra vector for CQP just like MISC.*/ 11267 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11268 } 11269 /* Stopping the FW LLDP engine is only supported on the 11270 * XL710 with a FW ver >= 1.7. Also, stopping FW LLDP 11271 * engine is not supported if NPAR is functioning on this 11272 * part 11273 */ 11274 if (pf->hw.mac.type == I40E_MAC_XL710 && 11275 !pf->hw.func_caps.npar_enable && 11276 (pf->hw.aq.api_maj_ver > 1 || 11277 (pf->hw.aq.api_maj_ver == 1 && pf->hw.aq.api_min_ver > 6))) 11278 pf->hw_features |= I40E_HW_STOPPABLE_FW_LLDP; 11279 11280 #ifdef CONFIG_PCI_IOV 11281 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11282 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11283 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11284 pf->num_req_vfs = min_t(int, 11285 pf->hw.func_caps.num_vfs, 11286 I40E_MAX_VF_COUNT); 11287 } 11288 #endif /* CONFIG_PCI_IOV */ 11289 pf->eeprom_version = 0xDEAD; 11290 pf->lan_veb = I40E_NO_VEB; 11291 pf->lan_vsi = I40E_NO_VSI; 11292 11293 /* By default FW has this off for performance reasons */ 11294 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11295 11296 /* set up queue assignment tracking */ 11297 size = sizeof(struct i40e_lump_tracking) 11298 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11299 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11300 if (!pf->qp_pile) { 11301 err = -ENOMEM; 11302 goto sw_init_done; 11303 } 11304 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11305 pf->qp_pile->search_hint = 0; 11306 11307 pf->tx_timeout_recovery_level = 1; 11308 11309 mutex_init(&pf->switch_mutex); 11310 11311 sw_init_done: 11312 return err; 11313 } 11314 11315 /** 11316 * i40e_set_ntuple - set the ntuple feature flag and take action 11317 * @pf: board private structure to initialize 11318 * @features: the feature set that the stack is suggesting 11319 * 11320 * returns a bool to indicate if reset needs to happen 11321 **/ 11322 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11323 { 11324 bool need_reset = false; 11325 11326 /* Check if Flow Director n-tuple support was enabled or disabled. If 11327 * the state changed, we need to reset. 11328 */ 11329 if (features & NETIF_F_NTUPLE) { 11330 /* Enable filters and mark for reset */ 11331 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11332 need_reset = true; 11333 /* enable FD_SB only if there is MSI-X vector and no cloud 11334 * filters exist 11335 */ 11336 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11337 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11338 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11339 } 11340 } else { 11341 /* turn off filters, mark for reset and clear SW filter list */ 11342 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11343 need_reset = true; 11344 i40e_fdir_filter_exit(pf); 11345 } 11346 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11347 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11348 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11349 11350 /* reset fd counters */ 11351 pf->fd_add_err = 0; 11352 pf->fd_atr_cnt = 0; 11353 /* if ATR was auto disabled it can be re-enabled. */ 11354 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11355 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11356 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11357 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11358 } 11359 return need_reset; 11360 } 11361 11362 /** 11363 * i40e_clear_rss_lut - clear the rx hash lookup table 11364 * @vsi: the VSI being configured 11365 **/ 11366 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11367 { 11368 struct i40e_pf *pf = vsi->back; 11369 struct i40e_hw *hw = &pf->hw; 11370 u16 vf_id = vsi->vf_id; 11371 u8 i; 11372 11373 if (vsi->type == I40E_VSI_MAIN) { 11374 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11375 wr32(hw, I40E_PFQF_HLUT(i), 0); 11376 } else if (vsi->type == I40E_VSI_SRIOV) { 11377 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11378 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11379 } else { 11380 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11381 } 11382 } 11383 11384 /** 11385 * i40e_set_features - set the netdev feature flags 11386 * @netdev: ptr to the netdev being adjusted 11387 * @features: the feature set that the stack is suggesting 11388 * Note: expects to be called while under rtnl_lock() 11389 **/ 11390 static int i40e_set_features(struct net_device *netdev, 11391 netdev_features_t features) 11392 { 11393 struct i40e_netdev_priv *np = netdev_priv(netdev); 11394 struct i40e_vsi *vsi = np->vsi; 11395 struct i40e_pf *pf = vsi->back; 11396 bool need_reset; 11397 11398 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11399 i40e_pf_config_rss(pf); 11400 else if (!(features & NETIF_F_RXHASH) && 11401 netdev->features & NETIF_F_RXHASH) 11402 i40e_clear_rss_lut(vsi); 11403 11404 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11405 i40e_vlan_stripping_enable(vsi); 11406 else 11407 i40e_vlan_stripping_disable(vsi); 11408 11409 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11410 dev_err(&pf->pdev->dev, 11411 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11412 return -EINVAL; 11413 } 11414 11415 need_reset = i40e_set_ntuple(pf, features); 11416 11417 if (need_reset) 11418 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11419 11420 return 0; 11421 } 11422 11423 /** 11424 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11425 * @pf: board private structure 11426 * @port: The UDP port to look up 11427 * 11428 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11429 **/ 11430 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11431 { 11432 u8 i; 11433 11434 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11435 /* Do not report ports with pending deletions as 11436 * being available. 11437 */ 11438 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11439 continue; 11440 if (pf->udp_ports[i].port == port) 11441 return i; 11442 } 11443 11444 return i; 11445 } 11446 11447 /** 11448 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11449 * @netdev: This physical port's netdev 11450 * @ti: Tunnel endpoint information 11451 **/ 11452 static void i40e_udp_tunnel_add(struct net_device *netdev, 11453 struct udp_tunnel_info *ti) 11454 { 11455 struct i40e_netdev_priv *np = netdev_priv(netdev); 11456 struct i40e_vsi *vsi = np->vsi; 11457 struct i40e_pf *pf = vsi->back; 11458 u16 port = ntohs(ti->port); 11459 u8 next_idx; 11460 u8 idx; 11461 11462 idx = i40e_get_udp_port_idx(pf, port); 11463 11464 /* Check if port already exists */ 11465 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11466 netdev_info(netdev, "port %d already offloaded\n", port); 11467 return; 11468 } 11469 11470 /* Now check if there is space to add the new port */ 11471 next_idx = i40e_get_udp_port_idx(pf, 0); 11472 11473 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11474 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11475 port); 11476 return; 11477 } 11478 11479 switch (ti->type) { 11480 case UDP_TUNNEL_TYPE_VXLAN: 11481 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11482 break; 11483 case UDP_TUNNEL_TYPE_GENEVE: 11484 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11485 return; 11486 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11487 break; 11488 default: 11489 return; 11490 } 11491 11492 /* New port: add it and mark its index in the bitmap */ 11493 pf->udp_ports[next_idx].port = port; 11494 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11495 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11496 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11497 } 11498 11499 /** 11500 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11501 * @netdev: This physical port's netdev 11502 * @ti: Tunnel endpoint information 11503 **/ 11504 static void i40e_udp_tunnel_del(struct net_device *netdev, 11505 struct udp_tunnel_info *ti) 11506 { 11507 struct i40e_netdev_priv *np = netdev_priv(netdev); 11508 struct i40e_vsi *vsi = np->vsi; 11509 struct i40e_pf *pf = vsi->back; 11510 u16 port = ntohs(ti->port); 11511 u8 idx; 11512 11513 idx = i40e_get_udp_port_idx(pf, port); 11514 11515 /* Check if port already exists */ 11516 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11517 goto not_found; 11518 11519 switch (ti->type) { 11520 case UDP_TUNNEL_TYPE_VXLAN: 11521 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11522 goto not_found; 11523 break; 11524 case UDP_TUNNEL_TYPE_GENEVE: 11525 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11526 goto not_found; 11527 break; 11528 default: 11529 goto not_found; 11530 } 11531 11532 /* if port exists, set it to 0 (mark for deletion) 11533 * and make it pending 11534 */ 11535 pf->udp_ports[idx].port = 0; 11536 11537 /* Toggle pending bit instead of setting it. This way if we are 11538 * deleting a port that has yet to be added we just clear the pending 11539 * bit and don't have to worry about it. 11540 */ 11541 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11542 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11543 11544 return; 11545 not_found: 11546 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11547 port); 11548 } 11549 11550 static int i40e_get_phys_port_id(struct net_device *netdev, 11551 struct netdev_phys_item_id *ppid) 11552 { 11553 struct i40e_netdev_priv *np = netdev_priv(netdev); 11554 struct i40e_pf *pf = np->vsi->back; 11555 struct i40e_hw *hw = &pf->hw; 11556 11557 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11558 return -EOPNOTSUPP; 11559 11560 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11561 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11562 11563 return 0; 11564 } 11565 11566 /** 11567 * i40e_ndo_fdb_add - add an entry to the hardware database 11568 * @ndm: the input from the stack 11569 * @tb: pointer to array of nladdr (unused) 11570 * @dev: the net device pointer 11571 * @addr: the MAC address entry being added 11572 * @vid: VLAN ID 11573 * @flags: instructions from stack about fdb operation 11574 */ 11575 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11576 struct net_device *dev, 11577 const unsigned char *addr, u16 vid, 11578 u16 flags) 11579 { 11580 struct i40e_netdev_priv *np = netdev_priv(dev); 11581 struct i40e_pf *pf = np->vsi->back; 11582 int err = 0; 11583 11584 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11585 return -EOPNOTSUPP; 11586 11587 if (vid) { 11588 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11589 return -EINVAL; 11590 } 11591 11592 /* Hardware does not support aging addresses so if a 11593 * ndm_state is given only allow permanent addresses 11594 */ 11595 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11596 netdev_info(dev, "FDB only supports static addresses\n"); 11597 return -EINVAL; 11598 } 11599 11600 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11601 err = dev_uc_add_excl(dev, addr); 11602 else if (is_multicast_ether_addr(addr)) 11603 err = dev_mc_add_excl(dev, addr); 11604 else 11605 err = -EINVAL; 11606 11607 /* Only return duplicate errors if NLM_F_EXCL is set */ 11608 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11609 err = 0; 11610 11611 return err; 11612 } 11613 11614 /** 11615 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11616 * @dev: the netdev being configured 11617 * @nlh: RTNL message 11618 * @flags: bridge flags 11619 * 11620 * Inserts a new hardware bridge if not already created and 11621 * enables the bridging mode requested (VEB or VEPA). If the 11622 * hardware bridge has already been inserted and the request 11623 * is to change the mode then that requires a PF reset to 11624 * allow rebuild of the components with required hardware 11625 * bridge mode enabled. 11626 * 11627 * Note: expects to be called while under rtnl_lock() 11628 **/ 11629 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11630 struct nlmsghdr *nlh, 11631 u16 flags) 11632 { 11633 struct i40e_netdev_priv *np = netdev_priv(dev); 11634 struct i40e_vsi *vsi = np->vsi; 11635 struct i40e_pf *pf = vsi->back; 11636 struct i40e_veb *veb = NULL; 11637 struct nlattr *attr, *br_spec; 11638 int i, rem; 11639 11640 /* Only for PF VSI for now */ 11641 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11642 return -EOPNOTSUPP; 11643 11644 /* Find the HW bridge for PF VSI */ 11645 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11646 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11647 veb = pf->veb[i]; 11648 } 11649 11650 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11651 11652 nla_for_each_nested(attr, br_spec, rem) { 11653 __u16 mode; 11654 11655 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11656 continue; 11657 11658 mode = nla_get_u16(attr); 11659 if ((mode != BRIDGE_MODE_VEPA) && 11660 (mode != BRIDGE_MODE_VEB)) 11661 return -EINVAL; 11662 11663 /* Insert a new HW bridge */ 11664 if (!veb) { 11665 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11666 vsi->tc_config.enabled_tc); 11667 if (veb) { 11668 veb->bridge_mode = mode; 11669 i40e_config_bridge_mode(veb); 11670 } else { 11671 /* No Bridge HW offload available */ 11672 return -ENOENT; 11673 } 11674 break; 11675 } else if (mode != veb->bridge_mode) { 11676 /* Existing HW bridge but different mode needs reset */ 11677 veb->bridge_mode = mode; 11678 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11679 if (mode == BRIDGE_MODE_VEB) 11680 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11681 else 11682 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11683 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11684 break; 11685 } 11686 } 11687 11688 return 0; 11689 } 11690 11691 /** 11692 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11693 * @skb: skb buff 11694 * @pid: process id 11695 * @seq: RTNL message seq # 11696 * @dev: the netdev being configured 11697 * @filter_mask: unused 11698 * @nlflags: netlink flags passed in 11699 * 11700 * Return the mode in which the hardware bridge is operating in 11701 * i.e VEB or VEPA. 11702 **/ 11703 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11704 struct net_device *dev, 11705 u32 __always_unused filter_mask, 11706 int nlflags) 11707 { 11708 struct i40e_netdev_priv *np = netdev_priv(dev); 11709 struct i40e_vsi *vsi = np->vsi; 11710 struct i40e_pf *pf = vsi->back; 11711 struct i40e_veb *veb = NULL; 11712 int i; 11713 11714 /* Only for PF VSI for now */ 11715 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11716 return -EOPNOTSUPP; 11717 11718 /* Find the HW bridge for the PF VSI */ 11719 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11720 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11721 veb = pf->veb[i]; 11722 } 11723 11724 if (!veb) 11725 return 0; 11726 11727 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11728 0, 0, nlflags, filter_mask, NULL); 11729 } 11730 11731 /** 11732 * i40e_features_check - Validate encapsulated packet conforms to limits 11733 * @skb: skb buff 11734 * @dev: This physical port's netdev 11735 * @features: Offload features that the stack believes apply 11736 **/ 11737 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11738 struct net_device *dev, 11739 netdev_features_t features) 11740 { 11741 size_t len; 11742 11743 /* No point in doing any of this if neither checksum nor GSO are 11744 * being requested for this frame. We can rule out both by just 11745 * checking for CHECKSUM_PARTIAL 11746 */ 11747 if (skb->ip_summed != CHECKSUM_PARTIAL) 11748 return features; 11749 11750 /* We cannot support GSO if the MSS is going to be less than 11751 * 64 bytes. If it is then we need to drop support for GSO. 11752 */ 11753 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11754 features &= ~NETIF_F_GSO_MASK; 11755 11756 /* MACLEN can support at most 63 words */ 11757 len = skb_network_header(skb) - skb->data; 11758 if (len & ~(63 * 2)) 11759 goto out_err; 11760 11761 /* IPLEN and EIPLEN can support at most 127 dwords */ 11762 len = skb_transport_header(skb) - skb_network_header(skb); 11763 if (len & ~(127 * 4)) 11764 goto out_err; 11765 11766 if (skb->encapsulation) { 11767 /* L4TUNLEN can support 127 words */ 11768 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11769 if (len & ~(127 * 2)) 11770 goto out_err; 11771 11772 /* IPLEN can support at most 127 dwords */ 11773 len = skb_inner_transport_header(skb) - 11774 skb_inner_network_header(skb); 11775 if (len & ~(127 * 4)) 11776 goto out_err; 11777 } 11778 11779 /* No need to validate L4LEN as TCP is the only protocol with a 11780 * a flexible value and we support all possible values supported 11781 * by TCP, which is at most 15 dwords 11782 */ 11783 11784 return features; 11785 out_err: 11786 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11787 } 11788 11789 /** 11790 * i40e_xdp_setup - add/remove an XDP program 11791 * @vsi: VSI to changed 11792 * @prog: XDP program 11793 **/ 11794 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11795 struct bpf_prog *prog) 11796 { 11797 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11798 struct i40e_pf *pf = vsi->back; 11799 struct bpf_prog *old_prog; 11800 bool need_reset; 11801 int i; 11802 11803 /* Don't allow frames that span over multiple buffers */ 11804 if (frame_size > vsi->rx_buf_len) 11805 return -EINVAL; 11806 11807 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11808 return 0; 11809 11810 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11811 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11812 11813 if (need_reset) 11814 i40e_prep_for_reset(pf, true); 11815 11816 old_prog = xchg(&vsi->xdp_prog, prog); 11817 11818 if (need_reset) 11819 i40e_reset_and_rebuild(pf, true, true); 11820 11821 for (i = 0; i < vsi->num_queue_pairs; i++) 11822 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11823 11824 if (old_prog) 11825 bpf_prog_put(old_prog); 11826 11827 return 0; 11828 } 11829 11830 /** 11831 * i40e_xdp - implements ndo_bpf for i40e 11832 * @dev: netdevice 11833 * @xdp: XDP command 11834 **/ 11835 static int i40e_xdp(struct net_device *dev, 11836 struct netdev_bpf *xdp) 11837 { 11838 struct i40e_netdev_priv *np = netdev_priv(dev); 11839 struct i40e_vsi *vsi = np->vsi; 11840 11841 if (vsi->type != I40E_VSI_MAIN) 11842 return -EINVAL; 11843 11844 switch (xdp->command) { 11845 case XDP_SETUP_PROG: 11846 return i40e_xdp_setup(vsi, xdp->prog); 11847 case XDP_QUERY_PROG: 11848 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 11849 return 0; 11850 default: 11851 return -EINVAL; 11852 } 11853 } 11854 11855 static const struct net_device_ops i40e_netdev_ops = { 11856 .ndo_open = i40e_open, 11857 .ndo_stop = i40e_close, 11858 .ndo_start_xmit = i40e_lan_xmit_frame, 11859 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 11860 .ndo_set_rx_mode = i40e_set_rx_mode, 11861 .ndo_validate_addr = eth_validate_addr, 11862 .ndo_set_mac_address = i40e_set_mac, 11863 .ndo_change_mtu = i40e_change_mtu, 11864 .ndo_do_ioctl = i40e_ioctl, 11865 .ndo_tx_timeout = i40e_tx_timeout, 11866 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 11867 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 11868 #ifdef CONFIG_NET_POLL_CONTROLLER 11869 .ndo_poll_controller = i40e_netpoll, 11870 #endif 11871 .ndo_setup_tc = __i40e_setup_tc, 11872 .ndo_set_features = i40e_set_features, 11873 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 11874 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 11875 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 11876 .ndo_get_vf_config = i40e_ndo_get_vf_config, 11877 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 11878 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 11879 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 11880 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 11881 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 11882 .ndo_get_phys_port_id = i40e_get_phys_port_id, 11883 .ndo_fdb_add = i40e_ndo_fdb_add, 11884 .ndo_features_check = i40e_features_check, 11885 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 11886 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 11887 .ndo_bpf = i40e_xdp, 11888 .ndo_xdp_xmit = i40e_xdp_xmit, 11889 }; 11890 11891 /** 11892 * i40e_config_netdev - Setup the netdev flags 11893 * @vsi: the VSI being configured 11894 * 11895 * Returns 0 on success, negative value on failure 11896 **/ 11897 static int i40e_config_netdev(struct i40e_vsi *vsi) 11898 { 11899 struct i40e_pf *pf = vsi->back; 11900 struct i40e_hw *hw = &pf->hw; 11901 struct i40e_netdev_priv *np; 11902 struct net_device *netdev; 11903 u8 broadcast[ETH_ALEN]; 11904 u8 mac_addr[ETH_ALEN]; 11905 int etherdev_size; 11906 netdev_features_t hw_enc_features; 11907 netdev_features_t hw_features; 11908 11909 etherdev_size = sizeof(struct i40e_netdev_priv); 11910 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 11911 if (!netdev) 11912 return -ENOMEM; 11913 11914 vsi->netdev = netdev; 11915 np = netdev_priv(netdev); 11916 np->vsi = vsi; 11917 11918 hw_enc_features = NETIF_F_SG | 11919 NETIF_F_IP_CSUM | 11920 NETIF_F_IPV6_CSUM | 11921 NETIF_F_HIGHDMA | 11922 NETIF_F_SOFT_FEATURES | 11923 NETIF_F_TSO | 11924 NETIF_F_TSO_ECN | 11925 NETIF_F_TSO6 | 11926 NETIF_F_GSO_GRE | 11927 NETIF_F_GSO_GRE_CSUM | 11928 NETIF_F_GSO_PARTIAL | 11929 NETIF_F_GSO_UDP_TUNNEL | 11930 NETIF_F_GSO_UDP_TUNNEL_CSUM | 11931 NETIF_F_SCTP_CRC | 11932 NETIF_F_RXHASH | 11933 NETIF_F_RXCSUM | 11934 0; 11935 11936 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 11937 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 11938 11939 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 11940 11941 netdev->hw_enc_features |= hw_enc_features; 11942 11943 /* record features VLANs can make use of */ 11944 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 11945 11946 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 11947 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 11948 11949 hw_features = hw_enc_features | 11950 NETIF_F_HW_VLAN_CTAG_TX | 11951 NETIF_F_HW_VLAN_CTAG_RX; 11952 11953 netdev->hw_features |= hw_features; 11954 11955 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 11956 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11957 11958 if (vsi->type == I40E_VSI_MAIN) { 11959 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 11960 ether_addr_copy(mac_addr, hw->mac.perm_addr); 11961 /* The following steps are necessary for two reasons. First, 11962 * some older NVM configurations load a default MAC-VLAN 11963 * filter that will accept any tagged packet, and we want to 11964 * replace this with a normal filter. Additionally, it is 11965 * possible our MAC address was provided by the platform using 11966 * Open Firmware or similar. 11967 * 11968 * Thus, we need to remove the default filter and install one 11969 * specific to the MAC address. 11970 */ 11971 i40e_rm_default_mac_filter(vsi, mac_addr); 11972 spin_lock_bh(&vsi->mac_filter_hash_lock); 11973 i40e_add_mac_filter(vsi, mac_addr); 11974 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11975 } else { 11976 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 11977 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 11978 * the end, which is 4 bytes long, so force truncation of the 11979 * original name by IFNAMSIZ - 4 11980 */ 11981 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 11982 IFNAMSIZ - 4, 11983 pf->vsi[pf->lan_vsi]->netdev->name); 11984 eth_random_addr(mac_addr); 11985 11986 spin_lock_bh(&vsi->mac_filter_hash_lock); 11987 i40e_add_mac_filter(vsi, mac_addr); 11988 spin_unlock_bh(&vsi->mac_filter_hash_lock); 11989 } 11990 11991 /* Add the broadcast filter so that we initially will receive 11992 * broadcast packets. Note that when a new VLAN is first added the 11993 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 11994 * specific filters as part of transitioning into "vlan" operation. 11995 * When more VLANs are added, the driver will copy each existing MAC 11996 * filter and add it for the new VLAN. 11997 * 11998 * Broadcast filters are handled specially by 11999 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12000 * promiscuous bit instead of adding this directly as a MAC/VLAN 12001 * filter. The subtask will update the correct broadcast promiscuous 12002 * bits as VLANs become active or inactive. 12003 */ 12004 eth_broadcast_addr(broadcast); 12005 spin_lock_bh(&vsi->mac_filter_hash_lock); 12006 i40e_add_mac_filter(vsi, broadcast); 12007 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12008 12009 ether_addr_copy(netdev->dev_addr, mac_addr); 12010 ether_addr_copy(netdev->perm_addr, mac_addr); 12011 12012 netdev->priv_flags |= IFF_UNICAST_FLT; 12013 netdev->priv_flags |= IFF_SUPP_NOFCS; 12014 /* Setup netdev TC information */ 12015 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12016 12017 netdev->netdev_ops = &i40e_netdev_ops; 12018 netdev->watchdog_timeo = 5 * HZ; 12019 i40e_set_ethtool_ops(netdev); 12020 12021 /* MTU range: 68 - 9706 */ 12022 netdev->min_mtu = ETH_MIN_MTU; 12023 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12024 12025 return 0; 12026 } 12027 12028 /** 12029 * i40e_vsi_delete - Delete a VSI from the switch 12030 * @vsi: the VSI being removed 12031 * 12032 * Returns 0 on success, negative value on failure 12033 **/ 12034 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12035 { 12036 /* remove default VSI is not allowed */ 12037 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12038 return; 12039 12040 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12041 } 12042 12043 /** 12044 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12045 * @vsi: the VSI being queried 12046 * 12047 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12048 **/ 12049 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12050 { 12051 struct i40e_veb *veb; 12052 struct i40e_pf *pf = vsi->back; 12053 12054 /* Uplink is not a bridge so default to VEB */ 12055 if (vsi->veb_idx == I40E_NO_VEB) 12056 return 1; 12057 12058 veb = pf->veb[vsi->veb_idx]; 12059 if (!veb) { 12060 dev_info(&pf->pdev->dev, 12061 "There is no veb associated with the bridge\n"); 12062 return -ENOENT; 12063 } 12064 12065 /* Uplink is a bridge in VEPA mode */ 12066 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12067 return 0; 12068 } else { 12069 /* Uplink is a bridge in VEB mode */ 12070 return 1; 12071 } 12072 12073 /* VEPA is now default bridge, so return 0 */ 12074 return 0; 12075 } 12076 12077 /** 12078 * i40e_add_vsi - Add a VSI to the switch 12079 * @vsi: the VSI being configured 12080 * 12081 * This initializes a VSI context depending on the VSI type to be added and 12082 * passes it down to the add_vsi aq command. 12083 **/ 12084 static int i40e_add_vsi(struct i40e_vsi *vsi) 12085 { 12086 int ret = -ENODEV; 12087 struct i40e_pf *pf = vsi->back; 12088 struct i40e_hw *hw = &pf->hw; 12089 struct i40e_vsi_context ctxt; 12090 struct i40e_mac_filter *f; 12091 struct hlist_node *h; 12092 int bkt; 12093 12094 u8 enabled_tc = 0x1; /* TC0 enabled */ 12095 int f_count = 0; 12096 12097 memset(&ctxt, 0, sizeof(ctxt)); 12098 switch (vsi->type) { 12099 case I40E_VSI_MAIN: 12100 /* The PF's main VSI is already setup as part of the 12101 * device initialization, so we'll not bother with 12102 * the add_vsi call, but we will retrieve the current 12103 * VSI context. 12104 */ 12105 ctxt.seid = pf->main_vsi_seid; 12106 ctxt.pf_num = pf->hw.pf_id; 12107 ctxt.vf_num = 0; 12108 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12109 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12110 if (ret) { 12111 dev_info(&pf->pdev->dev, 12112 "couldn't get PF vsi config, err %s aq_err %s\n", 12113 i40e_stat_str(&pf->hw, ret), 12114 i40e_aq_str(&pf->hw, 12115 pf->hw.aq.asq_last_status)); 12116 return -ENOENT; 12117 } 12118 vsi->info = ctxt.info; 12119 vsi->info.valid_sections = 0; 12120 12121 vsi->seid = ctxt.seid; 12122 vsi->id = ctxt.vsi_number; 12123 12124 enabled_tc = i40e_pf_get_tc_map(pf); 12125 12126 /* Source pruning is enabled by default, so the flag is 12127 * negative logic - if it's set, we need to fiddle with 12128 * the VSI to disable source pruning. 12129 */ 12130 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12131 memset(&ctxt, 0, sizeof(ctxt)); 12132 ctxt.seid = pf->main_vsi_seid; 12133 ctxt.pf_num = pf->hw.pf_id; 12134 ctxt.vf_num = 0; 12135 ctxt.info.valid_sections |= 12136 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12137 ctxt.info.switch_id = 12138 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12139 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12140 if (ret) { 12141 dev_info(&pf->pdev->dev, 12142 "update vsi failed, err %s aq_err %s\n", 12143 i40e_stat_str(&pf->hw, ret), 12144 i40e_aq_str(&pf->hw, 12145 pf->hw.aq.asq_last_status)); 12146 ret = -ENOENT; 12147 goto err; 12148 } 12149 } 12150 12151 /* MFP mode setup queue map and update VSI */ 12152 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12153 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12154 memset(&ctxt, 0, sizeof(ctxt)); 12155 ctxt.seid = pf->main_vsi_seid; 12156 ctxt.pf_num = pf->hw.pf_id; 12157 ctxt.vf_num = 0; 12158 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12159 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12160 if (ret) { 12161 dev_info(&pf->pdev->dev, 12162 "update vsi failed, err %s aq_err %s\n", 12163 i40e_stat_str(&pf->hw, ret), 12164 i40e_aq_str(&pf->hw, 12165 pf->hw.aq.asq_last_status)); 12166 ret = -ENOENT; 12167 goto err; 12168 } 12169 /* update the local VSI info queue map */ 12170 i40e_vsi_update_queue_map(vsi, &ctxt); 12171 vsi->info.valid_sections = 0; 12172 } else { 12173 /* Default/Main VSI is only enabled for TC0 12174 * reconfigure it to enable all TCs that are 12175 * available on the port in SFP mode. 12176 * For MFP case the iSCSI PF would use this 12177 * flow to enable LAN+iSCSI TC. 12178 */ 12179 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12180 if (ret) { 12181 /* Single TC condition is not fatal, 12182 * message and continue 12183 */ 12184 dev_info(&pf->pdev->dev, 12185 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12186 enabled_tc, 12187 i40e_stat_str(&pf->hw, ret), 12188 i40e_aq_str(&pf->hw, 12189 pf->hw.aq.asq_last_status)); 12190 } 12191 } 12192 break; 12193 12194 case I40E_VSI_FDIR: 12195 ctxt.pf_num = hw->pf_id; 12196 ctxt.vf_num = 0; 12197 ctxt.uplink_seid = vsi->uplink_seid; 12198 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12199 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12200 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12201 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12202 ctxt.info.valid_sections |= 12203 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12204 ctxt.info.switch_id = 12205 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12206 } 12207 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12208 break; 12209 12210 case I40E_VSI_VMDQ2: 12211 ctxt.pf_num = hw->pf_id; 12212 ctxt.vf_num = 0; 12213 ctxt.uplink_seid = vsi->uplink_seid; 12214 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12215 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12216 12217 /* This VSI is connected to VEB so the switch_id 12218 * should be set to zero by default. 12219 */ 12220 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12221 ctxt.info.valid_sections |= 12222 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12223 ctxt.info.switch_id = 12224 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12225 } 12226 12227 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12228 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12229 break; 12230 12231 case I40E_VSI_SRIOV: 12232 ctxt.pf_num = hw->pf_id; 12233 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12234 ctxt.uplink_seid = vsi->uplink_seid; 12235 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12236 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12237 12238 /* This VSI is connected to VEB so the switch_id 12239 * should be set to zero by default. 12240 */ 12241 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12242 ctxt.info.valid_sections |= 12243 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12244 ctxt.info.switch_id = 12245 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12246 } 12247 12248 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12249 ctxt.info.valid_sections |= 12250 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12251 ctxt.info.queueing_opt_flags |= 12252 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12253 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12254 } 12255 12256 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12257 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12258 if (pf->vf[vsi->vf_id].spoofchk) { 12259 ctxt.info.valid_sections |= 12260 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12261 ctxt.info.sec_flags |= 12262 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12263 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12264 } 12265 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12266 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12267 break; 12268 12269 case I40E_VSI_IWARP: 12270 /* send down message to iWARP */ 12271 break; 12272 12273 default: 12274 return -ENODEV; 12275 } 12276 12277 if (vsi->type != I40E_VSI_MAIN) { 12278 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12279 if (ret) { 12280 dev_info(&vsi->back->pdev->dev, 12281 "add vsi failed, err %s aq_err %s\n", 12282 i40e_stat_str(&pf->hw, ret), 12283 i40e_aq_str(&pf->hw, 12284 pf->hw.aq.asq_last_status)); 12285 ret = -ENOENT; 12286 goto err; 12287 } 12288 vsi->info = ctxt.info; 12289 vsi->info.valid_sections = 0; 12290 vsi->seid = ctxt.seid; 12291 vsi->id = ctxt.vsi_number; 12292 } 12293 12294 vsi->active_filters = 0; 12295 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12296 spin_lock_bh(&vsi->mac_filter_hash_lock); 12297 /* If macvlan filters already exist, force them to get loaded */ 12298 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12299 f->state = I40E_FILTER_NEW; 12300 f_count++; 12301 } 12302 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12303 12304 if (f_count) { 12305 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12306 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12307 } 12308 12309 /* Update VSI BW information */ 12310 ret = i40e_vsi_get_bw_info(vsi); 12311 if (ret) { 12312 dev_info(&pf->pdev->dev, 12313 "couldn't get vsi bw info, err %s aq_err %s\n", 12314 i40e_stat_str(&pf->hw, ret), 12315 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12316 /* VSI is already added so not tearing that up */ 12317 ret = 0; 12318 } 12319 12320 err: 12321 return ret; 12322 } 12323 12324 /** 12325 * i40e_vsi_release - Delete a VSI and free its resources 12326 * @vsi: the VSI being removed 12327 * 12328 * Returns 0 on success or < 0 on error 12329 **/ 12330 int i40e_vsi_release(struct i40e_vsi *vsi) 12331 { 12332 struct i40e_mac_filter *f; 12333 struct hlist_node *h; 12334 struct i40e_veb *veb = NULL; 12335 struct i40e_pf *pf; 12336 u16 uplink_seid; 12337 int i, n, bkt; 12338 12339 pf = vsi->back; 12340 12341 /* release of a VEB-owner or last VSI is not allowed */ 12342 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12343 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12344 vsi->seid, vsi->uplink_seid); 12345 return -ENODEV; 12346 } 12347 if (vsi == pf->vsi[pf->lan_vsi] && 12348 !test_bit(__I40E_DOWN, pf->state)) { 12349 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12350 return -ENODEV; 12351 } 12352 12353 uplink_seid = vsi->uplink_seid; 12354 if (vsi->type != I40E_VSI_SRIOV) { 12355 if (vsi->netdev_registered) { 12356 vsi->netdev_registered = false; 12357 if (vsi->netdev) { 12358 /* results in a call to i40e_close() */ 12359 unregister_netdev(vsi->netdev); 12360 } 12361 } else { 12362 i40e_vsi_close(vsi); 12363 } 12364 i40e_vsi_disable_irq(vsi); 12365 } 12366 12367 spin_lock_bh(&vsi->mac_filter_hash_lock); 12368 12369 /* clear the sync flag on all filters */ 12370 if (vsi->netdev) { 12371 __dev_uc_unsync(vsi->netdev, NULL); 12372 __dev_mc_unsync(vsi->netdev, NULL); 12373 } 12374 12375 /* make sure any remaining filters are marked for deletion */ 12376 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12377 __i40e_del_filter(vsi, f); 12378 12379 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12380 12381 i40e_sync_vsi_filters(vsi); 12382 12383 i40e_vsi_delete(vsi); 12384 i40e_vsi_free_q_vectors(vsi); 12385 if (vsi->netdev) { 12386 free_netdev(vsi->netdev); 12387 vsi->netdev = NULL; 12388 } 12389 i40e_vsi_clear_rings(vsi); 12390 i40e_vsi_clear(vsi); 12391 12392 /* If this was the last thing on the VEB, except for the 12393 * controlling VSI, remove the VEB, which puts the controlling 12394 * VSI onto the next level down in the switch. 12395 * 12396 * Well, okay, there's one more exception here: don't remove 12397 * the orphan VEBs yet. We'll wait for an explicit remove request 12398 * from up the network stack. 12399 */ 12400 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12401 if (pf->vsi[i] && 12402 pf->vsi[i]->uplink_seid == uplink_seid && 12403 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12404 n++; /* count the VSIs */ 12405 } 12406 } 12407 for (i = 0; i < I40E_MAX_VEB; i++) { 12408 if (!pf->veb[i]) 12409 continue; 12410 if (pf->veb[i]->uplink_seid == uplink_seid) 12411 n++; /* count the VEBs */ 12412 if (pf->veb[i]->seid == uplink_seid) 12413 veb = pf->veb[i]; 12414 } 12415 if (n == 0 && veb && veb->uplink_seid != 0) 12416 i40e_veb_release(veb); 12417 12418 return 0; 12419 } 12420 12421 /** 12422 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12423 * @vsi: ptr to the VSI 12424 * 12425 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12426 * corresponding SW VSI structure and initializes num_queue_pairs for the 12427 * newly allocated VSI. 12428 * 12429 * Returns 0 on success or negative on failure 12430 **/ 12431 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12432 { 12433 int ret = -ENOENT; 12434 struct i40e_pf *pf = vsi->back; 12435 12436 if (vsi->q_vectors[0]) { 12437 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12438 vsi->seid); 12439 return -EEXIST; 12440 } 12441 12442 if (vsi->base_vector) { 12443 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12444 vsi->seid, vsi->base_vector); 12445 return -EEXIST; 12446 } 12447 12448 ret = i40e_vsi_alloc_q_vectors(vsi); 12449 if (ret) { 12450 dev_info(&pf->pdev->dev, 12451 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12452 vsi->num_q_vectors, vsi->seid, ret); 12453 vsi->num_q_vectors = 0; 12454 goto vector_setup_out; 12455 } 12456 12457 /* In Legacy mode, we do not have to get any other vector since we 12458 * piggyback on the misc/ICR0 for queue interrupts. 12459 */ 12460 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12461 return ret; 12462 if (vsi->num_q_vectors) 12463 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12464 vsi->num_q_vectors, vsi->idx); 12465 if (vsi->base_vector < 0) { 12466 dev_info(&pf->pdev->dev, 12467 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12468 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12469 i40e_vsi_free_q_vectors(vsi); 12470 ret = -ENOENT; 12471 goto vector_setup_out; 12472 } 12473 12474 vector_setup_out: 12475 return ret; 12476 } 12477 12478 /** 12479 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12480 * @vsi: pointer to the vsi. 12481 * 12482 * This re-allocates a vsi's queue resources. 12483 * 12484 * Returns pointer to the successfully allocated and configured VSI sw struct 12485 * on success, otherwise returns NULL on failure. 12486 **/ 12487 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12488 { 12489 u16 alloc_queue_pairs; 12490 struct i40e_pf *pf; 12491 u8 enabled_tc; 12492 int ret; 12493 12494 if (!vsi) 12495 return NULL; 12496 12497 pf = vsi->back; 12498 12499 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12500 i40e_vsi_clear_rings(vsi); 12501 12502 i40e_vsi_free_arrays(vsi, false); 12503 i40e_set_num_rings_in_vsi(vsi); 12504 ret = i40e_vsi_alloc_arrays(vsi, false); 12505 if (ret) 12506 goto err_vsi; 12507 12508 alloc_queue_pairs = vsi->alloc_queue_pairs * 12509 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12510 12511 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12512 if (ret < 0) { 12513 dev_info(&pf->pdev->dev, 12514 "failed to get tracking for %d queues for VSI %d err %d\n", 12515 alloc_queue_pairs, vsi->seid, ret); 12516 goto err_vsi; 12517 } 12518 vsi->base_queue = ret; 12519 12520 /* Update the FW view of the VSI. Force a reset of TC and queue 12521 * layout configurations. 12522 */ 12523 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12524 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12525 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12526 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12527 if (vsi->type == I40E_VSI_MAIN) 12528 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12529 12530 /* assign it some queues */ 12531 ret = i40e_alloc_rings(vsi); 12532 if (ret) 12533 goto err_rings; 12534 12535 /* map all of the rings to the q_vectors */ 12536 i40e_vsi_map_rings_to_vectors(vsi); 12537 return vsi; 12538 12539 err_rings: 12540 i40e_vsi_free_q_vectors(vsi); 12541 if (vsi->netdev_registered) { 12542 vsi->netdev_registered = false; 12543 unregister_netdev(vsi->netdev); 12544 free_netdev(vsi->netdev); 12545 vsi->netdev = NULL; 12546 } 12547 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12548 err_vsi: 12549 i40e_vsi_clear(vsi); 12550 return NULL; 12551 } 12552 12553 /** 12554 * i40e_vsi_setup - Set up a VSI by a given type 12555 * @pf: board private structure 12556 * @type: VSI type 12557 * @uplink_seid: the switch element to link to 12558 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12559 * 12560 * This allocates the sw VSI structure and its queue resources, then add a VSI 12561 * to the identified VEB. 12562 * 12563 * Returns pointer to the successfully allocated and configure VSI sw struct on 12564 * success, otherwise returns NULL on failure. 12565 **/ 12566 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12567 u16 uplink_seid, u32 param1) 12568 { 12569 struct i40e_vsi *vsi = NULL; 12570 struct i40e_veb *veb = NULL; 12571 u16 alloc_queue_pairs; 12572 int ret, i; 12573 int v_idx; 12574 12575 /* The requested uplink_seid must be either 12576 * - the PF's port seid 12577 * no VEB is needed because this is the PF 12578 * or this is a Flow Director special case VSI 12579 * - seid of an existing VEB 12580 * - seid of a VSI that owns an existing VEB 12581 * - seid of a VSI that doesn't own a VEB 12582 * a new VEB is created and the VSI becomes the owner 12583 * - seid of the PF VSI, which is what creates the first VEB 12584 * this is a special case of the previous 12585 * 12586 * Find which uplink_seid we were given and create a new VEB if needed 12587 */ 12588 for (i = 0; i < I40E_MAX_VEB; i++) { 12589 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12590 veb = pf->veb[i]; 12591 break; 12592 } 12593 } 12594 12595 if (!veb && uplink_seid != pf->mac_seid) { 12596 12597 for (i = 0; i < pf->num_alloc_vsi; i++) { 12598 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12599 vsi = pf->vsi[i]; 12600 break; 12601 } 12602 } 12603 if (!vsi) { 12604 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12605 uplink_seid); 12606 return NULL; 12607 } 12608 12609 if (vsi->uplink_seid == pf->mac_seid) 12610 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12611 vsi->tc_config.enabled_tc); 12612 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12613 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12614 vsi->tc_config.enabled_tc); 12615 if (veb) { 12616 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12617 dev_info(&vsi->back->pdev->dev, 12618 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12619 return NULL; 12620 } 12621 /* We come up by default in VEPA mode if SRIOV is not 12622 * already enabled, in which case we can't force VEPA 12623 * mode. 12624 */ 12625 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12626 veb->bridge_mode = BRIDGE_MODE_VEPA; 12627 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12628 } 12629 i40e_config_bridge_mode(veb); 12630 } 12631 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12632 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12633 veb = pf->veb[i]; 12634 } 12635 if (!veb) { 12636 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12637 return NULL; 12638 } 12639 12640 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12641 uplink_seid = veb->seid; 12642 } 12643 12644 /* get vsi sw struct */ 12645 v_idx = i40e_vsi_mem_alloc(pf, type); 12646 if (v_idx < 0) 12647 goto err_alloc; 12648 vsi = pf->vsi[v_idx]; 12649 if (!vsi) 12650 goto err_alloc; 12651 vsi->type = type; 12652 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 12653 12654 if (type == I40E_VSI_MAIN) 12655 pf->lan_vsi = v_idx; 12656 else if (type == I40E_VSI_SRIOV) 12657 vsi->vf_id = param1; 12658 /* assign it some queues */ 12659 alloc_queue_pairs = vsi->alloc_queue_pairs * 12660 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12661 12662 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12663 if (ret < 0) { 12664 dev_info(&pf->pdev->dev, 12665 "failed to get tracking for %d queues for VSI %d err=%d\n", 12666 alloc_queue_pairs, vsi->seid, ret); 12667 goto err_vsi; 12668 } 12669 vsi->base_queue = ret; 12670 12671 /* get a VSI from the hardware */ 12672 vsi->uplink_seid = uplink_seid; 12673 ret = i40e_add_vsi(vsi); 12674 if (ret) 12675 goto err_vsi; 12676 12677 switch (vsi->type) { 12678 /* setup the netdev if needed */ 12679 case I40E_VSI_MAIN: 12680 case I40E_VSI_VMDQ2: 12681 ret = i40e_config_netdev(vsi); 12682 if (ret) 12683 goto err_netdev; 12684 ret = register_netdev(vsi->netdev); 12685 if (ret) 12686 goto err_netdev; 12687 vsi->netdev_registered = true; 12688 netif_carrier_off(vsi->netdev); 12689 #ifdef CONFIG_I40E_DCB 12690 /* Setup DCB netlink interface */ 12691 i40e_dcbnl_setup(vsi); 12692 #endif /* CONFIG_I40E_DCB */ 12693 /* fall through */ 12694 12695 case I40E_VSI_FDIR: 12696 /* set up vectors and rings if needed */ 12697 ret = i40e_vsi_setup_vectors(vsi); 12698 if (ret) 12699 goto err_msix; 12700 12701 ret = i40e_alloc_rings(vsi); 12702 if (ret) 12703 goto err_rings; 12704 12705 /* map all of the rings to the q_vectors */ 12706 i40e_vsi_map_rings_to_vectors(vsi); 12707 12708 i40e_vsi_reset_stats(vsi); 12709 break; 12710 12711 default: 12712 /* no netdev or rings for the other VSI types */ 12713 break; 12714 } 12715 12716 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 12717 (vsi->type == I40E_VSI_VMDQ2)) { 12718 ret = i40e_vsi_config_rss(vsi); 12719 } 12720 return vsi; 12721 12722 err_rings: 12723 i40e_vsi_free_q_vectors(vsi); 12724 err_msix: 12725 if (vsi->netdev_registered) { 12726 vsi->netdev_registered = false; 12727 unregister_netdev(vsi->netdev); 12728 free_netdev(vsi->netdev); 12729 vsi->netdev = NULL; 12730 } 12731 err_netdev: 12732 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12733 err_vsi: 12734 i40e_vsi_clear(vsi); 12735 err_alloc: 12736 return NULL; 12737 } 12738 12739 /** 12740 * i40e_veb_get_bw_info - Query VEB BW information 12741 * @veb: the veb to query 12742 * 12743 * Query the Tx scheduler BW configuration data for given VEB 12744 **/ 12745 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 12746 { 12747 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 12748 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 12749 struct i40e_pf *pf = veb->pf; 12750 struct i40e_hw *hw = &pf->hw; 12751 u32 tc_bw_max; 12752 int ret = 0; 12753 int i; 12754 12755 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 12756 &bw_data, NULL); 12757 if (ret) { 12758 dev_info(&pf->pdev->dev, 12759 "query veb bw config failed, err %s aq_err %s\n", 12760 i40e_stat_str(&pf->hw, ret), 12761 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12762 goto out; 12763 } 12764 12765 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 12766 &ets_data, NULL); 12767 if (ret) { 12768 dev_info(&pf->pdev->dev, 12769 "query veb bw ets config failed, err %s aq_err %s\n", 12770 i40e_stat_str(&pf->hw, ret), 12771 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 12772 goto out; 12773 } 12774 12775 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 12776 veb->bw_max_quanta = ets_data.tc_bw_max; 12777 veb->is_abs_credits = bw_data.absolute_credits_enable; 12778 veb->enabled_tc = ets_data.tc_valid_bits; 12779 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 12780 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 12781 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 12782 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 12783 veb->bw_tc_limit_credits[i] = 12784 le16_to_cpu(bw_data.tc_bw_limits[i]); 12785 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 12786 } 12787 12788 out: 12789 return ret; 12790 } 12791 12792 /** 12793 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 12794 * @pf: board private structure 12795 * 12796 * On error: returns error code (negative) 12797 * On success: returns vsi index in PF (positive) 12798 **/ 12799 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 12800 { 12801 int ret = -ENOENT; 12802 struct i40e_veb *veb; 12803 int i; 12804 12805 /* Need to protect the allocation of switch elements at the PF level */ 12806 mutex_lock(&pf->switch_mutex); 12807 12808 /* VEB list may be fragmented if VEB creation/destruction has 12809 * been happening. We can afford to do a quick scan to look 12810 * for any free slots in the list. 12811 * 12812 * find next empty veb slot, looping back around if necessary 12813 */ 12814 i = 0; 12815 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 12816 i++; 12817 if (i >= I40E_MAX_VEB) { 12818 ret = -ENOMEM; 12819 goto err_alloc_veb; /* out of VEB slots! */ 12820 } 12821 12822 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 12823 if (!veb) { 12824 ret = -ENOMEM; 12825 goto err_alloc_veb; 12826 } 12827 veb->pf = pf; 12828 veb->idx = i; 12829 veb->enabled_tc = 1; 12830 12831 pf->veb[i] = veb; 12832 ret = i; 12833 err_alloc_veb: 12834 mutex_unlock(&pf->switch_mutex); 12835 return ret; 12836 } 12837 12838 /** 12839 * i40e_switch_branch_release - Delete a branch of the switch tree 12840 * @branch: where to start deleting 12841 * 12842 * This uses recursion to find the tips of the branch to be 12843 * removed, deleting until we get back to and can delete this VEB. 12844 **/ 12845 static void i40e_switch_branch_release(struct i40e_veb *branch) 12846 { 12847 struct i40e_pf *pf = branch->pf; 12848 u16 branch_seid = branch->seid; 12849 u16 veb_idx = branch->idx; 12850 int i; 12851 12852 /* release any VEBs on this VEB - RECURSION */ 12853 for (i = 0; i < I40E_MAX_VEB; i++) { 12854 if (!pf->veb[i]) 12855 continue; 12856 if (pf->veb[i]->uplink_seid == branch->seid) 12857 i40e_switch_branch_release(pf->veb[i]); 12858 } 12859 12860 /* Release the VSIs on this VEB, but not the owner VSI. 12861 * 12862 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 12863 * the VEB itself, so don't use (*branch) after this loop. 12864 */ 12865 for (i = 0; i < pf->num_alloc_vsi; i++) { 12866 if (!pf->vsi[i]) 12867 continue; 12868 if (pf->vsi[i]->uplink_seid == branch_seid && 12869 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12870 i40e_vsi_release(pf->vsi[i]); 12871 } 12872 } 12873 12874 /* There's one corner case where the VEB might not have been 12875 * removed, so double check it here and remove it if needed. 12876 * This case happens if the veb was created from the debugfs 12877 * commands and no VSIs were added to it. 12878 */ 12879 if (pf->veb[veb_idx]) 12880 i40e_veb_release(pf->veb[veb_idx]); 12881 } 12882 12883 /** 12884 * i40e_veb_clear - remove veb struct 12885 * @veb: the veb to remove 12886 **/ 12887 static void i40e_veb_clear(struct i40e_veb *veb) 12888 { 12889 if (!veb) 12890 return; 12891 12892 if (veb->pf) { 12893 struct i40e_pf *pf = veb->pf; 12894 12895 mutex_lock(&pf->switch_mutex); 12896 if (pf->veb[veb->idx] == veb) 12897 pf->veb[veb->idx] = NULL; 12898 mutex_unlock(&pf->switch_mutex); 12899 } 12900 12901 kfree(veb); 12902 } 12903 12904 /** 12905 * i40e_veb_release - Delete a VEB and free its resources 12906 * @veb: the VEB being removed 12907 **/ 12908 void i40e_veb_release(struct i40e_veb *veb) 12909 { 12910 struct i40e_vsi *vsi = NULL; 12911 struct i40e_pf *pf; 12912 int i, n = 0; 12913 12914 pf = veb->pf; 12915 12916 /* find the remaining VSI and check for extras */ 12917 for (i = 0; i < pf->num_alloc_vsi; i++) { 12918 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 12919 n++; 12920 vsi = pf->vsi[i]; 12921 } 12922 } 12923 if (n != 1) { 12924 dev_info(&pf->pdev->dev, 12925 "can't remove VEB %d with %d VSIs left\n", 12926 veb->seid, n); 12927 return; 12928 } 12929 12930 /* move the remaining VSI to uplink veb */ 12931 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 12932 if (veb->uplink_seid) { 12933 vsi->uplink_seid = veb->uplink_seid; 12934 if (veb->uplink_seid == pf->mac_seid) 12935 vsi->veb_idx = I40E_NO_VEB; 12936 else 12937 vsi->veb_idx = veb->veb_idx; 12938 } else { 12939 /* floating VEB */ 12940 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 12941 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 12942 } 12943 12944 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12945 i40e_veb_clear(veb); 12946 } 12947 12948 /** 12949 * i40e_add_veb - create the VEB in the switch 12950 * @veb: the VEB to be instantiated 12951 * @vsi: the controlling VSI 12952 **/ 12953 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 12954 { 12955 struct i40e_pf *pf = veb->pf; 12956 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 12957 int ret; 12958 12959 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 12960 veb->enabled_tc, false, 12961 &veb->seid, enable_stats, NULL); 12962 12963 /* get a VEB from the hardware */ 12964 if (ret) { 12965 dev_info(&pf->pdev->dev, 12966 "couldn't add VEB, err %s aq_err %s\n", 12967 i40e_stat_str(&pf->hw, ret), 12968 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12969 return -EPERM; 12970 } 12971 12972 /* get statistics counter */ 12973 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 12974 &veb->stats_idx, NULL, NULL, NULL); 12975 if (ret) { 12976 dev_info(&pf->pdev->dev, 12977 "couldn't get VEB statistics idx, err %s aq_err %s\n", 12978 i40e_stat_str(&pf->hw, ret), 12979 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12980 return -EPERM; 12981 } 12982 ret = i40e_veb_get_bw_info(veb); 12983 if (ret) { 12984 dev_info(&pf->pdev->dev, 12985 "couldn't get VEB bw info, err %s aq_err %s\n", 12986 i40e_stat_str(&pf->hw, ret), 12987 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12988 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 12989 return -ENOENT; 12990 } 12991 12992 vsi->uplink_seid = veb->seid; 12993 vsi->veb_idx = veb->idx; 12994 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12995 12996 return 0; 12997 } 12998 12999 /** 13000 * i40e_veb_setup - Set up a VEB 13001 * @pf: board private structure 13002 * @flags: VEB setup flags 13003 * @uplink_seid: the switch element to link to 13004 * @vsi_seid: the initial VSI seid 13005 * @enabled_tc: Enabled TC bit-map 13006 * 13007 * This allocates the sw VEB structure and links it into the switch 13008 * It is possible and legal for this to be a duplicate of an already 13009 * existing VEB. It is also possible for both uplink and vsi seids 13010 * to be zero, in order to create a floating VEB. 13011 * 13012 * Returns pointer to the successfully allocated VEB sw struct on 13013 * success, otherwise returns NULL on failure. 13014 **/ 13015 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13016 u16 uplink_seid, u16 vsi_seid, 13017 u8 enabled_tc) 13018 { 13019 struct i40e_veb *veb, *uplink_veb = NULL; 13020 int vsi_idx, veb_idx; 13021 int ret; 13022 13023 /* if one seid is 0, the other must be 0 to create a floating relay */ 13024 if ((uplink_seid == 0 || vsi_seid == 0) && 13025 (uplink_seid + vsi_seid != 0)) { 13026 dev_info(&pf->pdev->dev, 13027 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13028 uplink_seid, vsi_seid); 13029 return NULL; 13030 } 13031 13032 /* make sure there is such a vsi and uplink */ 13033 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13034 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13035 break; 13036 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) { 13037 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13038 vsi_seid); 13039 return NULL; 13040 } 13041 13042 if (uplink_seid && uplink_seid != pf->mac_seid) { 13043 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13044 if (pf->veb[veb_idx] && 13045 pf->veb[veb_idx]->seid == uplink_seid) { 13046 uplink_veb = pf->veb[veb_idx]; 13047 break; 13048 } 13049 } 13050 if (!uplink_veb) { 13051 dev_info(&pf->pdev->dev, 13052 "uplink seid %d not found\n", uplink_seid); 13053 return NULL; 13054 } 13055 } 13056 13057 /* get veb sw struct */ 13058 veb_idx = i40e_veb_mem_alloc(pf); 13059 if (veb_idx < 0) 13060 goto err_alloc; 13061 veb = pf->veb[veb_idx]; 13062 veb->flags = flags; 13063 veb->uplink_seid = uplink_seid; 13064 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13065 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13066 13067 /* create the VEB in the switch */ 13068 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13069 if (ret) 13070 goto err_veb; 13071 if (vsi_idx == pf->lan_vsi) 13072 pf->lan_veb = veb->idx; 13073 13074 return veb; 13075 13076 err_veb: 13077 i40e_veb_clear(veb); 13078 err_alloc: 13079 return NULL; 13080 } 13081 13082 /** 13083 * i40e_setup_pf_switch_element - set PF vars based on switch type 13084 * @pf: board private structure 13085 * @ele: element we are building info from 13086 * @num_reported: total number of elements 13087 * @printconfig: should we print the contents 13088 * 13089 * helper function to assist in extracting a few useful SEID values. 13090 **/ 13091 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13092 struct i40e_aqc_switch_config_element_resp *ele, 13093 u16 num_reported, bool printconfig) 13094 { 13095 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13096 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13097 u8 element_type = ele->element_type; 13098 u16 seid = le16_to_cpu(ele->seid); 13099 13100 if (printconfig) 13101 dev_info(&pf->pdev->dev, 13102 "type=%d seid=%d uplink=%d downlink=%d\n", 13103 element_type, seid, uplink_seid, downlink_seid); 13104 13105 switch (element_type) { 13106 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13107 pf->mac_seid = seid; 13108 break; 13109 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13110 /* Main VEB? */ 13111 if (uplink_seid != pf->mac_seid) 13112 break; 13113 if (pf->lan_veb == I40E_NO_VEB) { 13114 int v; 13115 13116 /* find existing or else empty VEB */ 13117 for (v = 0; v < I40E_MAX_VEB; v++) { 13118 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13119 pf->lan_veb = v; 13120 break; 13121 } 13122 } 13123 if (pf->lan_veb == I40E_NO_VEB) { 13124 v = i40e_veb_mem_alloc(pf); 13125 if (v < 0) 13126 break; 13127 pf->lan_veb = v; 13128 } 13129 } 13130 13131 pf->veb[pf->lan_veb]->seid = seid; 13132 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13133 pf->veb[pf->lan_veb]->pf = pf; 13134 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13135 break; 13136 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13137 if (num_reported != 1) 13138 break; 13139 /* This is immediately after a reset so we can assume this is 13140 * the PF's VSI 13141 */ 13142 pf->mac_seid = uplink_seid; 13143 pf->pf_seid = downlink_seid; 13144 pf->main_vsi_seid = seid; 13145 if (printconfig) 13146 dev_info(&pf->pdev->dev, 13147 "pf_seid=%d main_vsi_seid=%d\n", 13148 pf->pf_seid, pf->main_vsi_seid); 13149 break; 13150 case I40E_SWITCH_ELEMENT_TYPE_PF: 13151 case I40E_SWITCH_ELEMENT_TYPE_VF: 13152 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13153 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13154 case I40E_SWITCH_ELEMENT_TYPE_PE: 13155 case I40E_SWITCH_ELEMENT_TYPE_PA: 13156 /* ignore these for now */ 13157 break; 13158 default: 13159 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13160 element_type, seid); 13161 break; 13162 } 13163 } 13164 13165 /** 13166 * i40e_fetch_switch_configuration - Get switch config from firmware 13167 * @pf: board private structure 13168 * @printconfig: should we print the contents 13169 * 13170 * Get the current switch configuration from the device and 13171 * extract a few useful SEID values. 13172 **/ 13173 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13174 { 13175 struct i40e_aqc_get_switch_config_resp *sw_config; 13176 u16 next_seid = 0; 13177 int ret = 0; 13178 u8 *aq_buf; 13179 int i; 13180 13181 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13182 if (!aq_buf) 13183 return -ENOMEM; 13184 13185 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13186 do { 13187 u16 num_reported, num_total; 13188 13189 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13190 I40E_AQ_LARGE_BUF, 13191 &next_seid, NULL); 13192 if (ret) { 13193 dev_info(&pf->pdev->dev, 13194 "get switch config failed err %s aq_err %s\n", 13195 i40e_stat_str(&pf->hw, ret), 13196 i40e_aq_str(&pf->hw, 13197 pf->hw.aq.asq_last_status)); 13198 kfree(aq_buf); 13199 return -ENOENT; 13200 } 13201 13202 num_reported = le16_to_cpu(sw_config->header.num_reported); 13203 num_total = le16_to_cpu(sw_config->header.num_total); 13204 13205 if (printconfig) 13206 dev_info(&pf->pdev->dev, 13207 "header: %d reported %d total\n", 13208 num_reported, num_total); 13209 13210 for (i = 0; i < num_reported; i++) { 13211 struct i40e_aqc_switch_config_element_resp *ele = 13212 &sw_config->element[i]; 13213 13214 i40e_setup_pf_switch_element(pf, ele, num_reported, 13215 printconfig); 13216 } 13217 } while (next_seid != 0); 13218 13219 kfree(aq_buf); 13220 return ret; 13221 } 13222 13223 /** 13224 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13225 * @pf: board private structure 13226 * @reinit: if the Main VSI needs to re-initialized. 13227 * 13228 * Returns 0 on success, negative value on failure 13229 **/ 13230 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13231 { 13232 u16 flags = 0; 13233 int ret; 13234 13235 /* find out what's out there already */ 13236 ret = i40e_fetch_switch_configuration(pf, false); 13237 if (ret) { 13238 dev_info(&pf->pdev->dev, 13239 "couldn't fetch switch config, err %s aq_err %s\n", 13240 i40e_stat_str(&pf->hw, ret), 13241 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13242 return ret; 13243 } 13244 i40e_pf_reset_stats(pf); 13245 13246 /* set the switch config bit for the whole device to 13247 * support limited promisc or true promisc 13248 * when user requests promisc. The default is limited 13249 * promisc. 13250 */ 13251 13252 if ((pf->hw.pf_id == 0) && 13253 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13254 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13255 pf->last_sw_conf_flags = flags; 13256 } 13257 13258 if (pf->hw.pf_id == 0) { 13259 u16 valid_flags; 13260 13261 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13262 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13263 NULL); 13264 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13265 dev_info(&pf->pdev->dev, 13266 "couldn't set switch config bits, err %s aq_err %s\n", 13267 i40e_stat_str(&pf->hw, ret), 13268 i40e_aq_str(&pf->hw, 13269 pf->hw.aq.asq_last_status)); 13270 /* not a fatal problem, just keep going */ 13271 } 13272 pf->last_sw_conf_valid_flags = valid_flags; 13273 } 13274 13275 /* first time setup */ 13276 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13277 struct i40e_vsi *vsi = NULL; 13278 u16 uplink_seid; 13279 13280 /* Set up the PF VSI associated with the PF's main VSI 13281 * that is already in the HW switch 13282 */ 13283 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13284 uplink_seid = pf->veb[pf->lan_veb]->seid; 13285 else 13286 uplink_seid = pf->mac_seid; 13287 if (pf->lan_vsi == I40E_NO_VSI) 13288 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13289 else if (reinit) 13290 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13291 if (!vsi) { 13292 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13293 i40e_cloud_filter_exit(pf); 13294 i40e_fdir_teardown(pf); 13295 return -EAGAIN; 13296 } 13297 } else { 13298 /* force a reset of TC and queue layout configurations */ 13299 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13300 13301 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13302 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13303 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13304 } 13305 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13306 13307 i40e_fdir_sb_setup(pf); 13308 13309 /* Setup static PF queue filter control settings */ 13310 ret = i40e_setup_pf_filter_control(pf); 13311 if (ret) { 13312 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13313 ret); 13314 /* Failure here should not stop continuing other steps */ 13315 } 13316 13317 /* enable RSS in the HW, even for only one queue, as the stack can use 13318 * the hash 13319 */ 13320 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13321 i40e_pf_config_rss(pf); 13322 13323 /* fill in link information and enable LSE reporting */ 13324 i40e_link_event(pf); 13325 13326 /* Initialize user-specific link properties */ 13327 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13328 I40E_AQ_AN_COMPLETED) ? true : false); 13329 13330 i40e_ptp_init(pf); 13331 13332 /* repopulate tunnel port filters */ 13333 i40e_sync_udp_filters(pf); 13334 13335 return ret; 13336 } 13337 13338 /** 13339 * i40e_determine_queue_usage - Work out queue distribution 13340 * @pf: board private structure 13341 **/ 13342 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13343 { 13344 int queues_left; 13345 int q_max; 13346 13347 pf->num_lan_qps = 0; 13348 13349 /* Find the max queues to be put into basic use. We'll always be 13350 * using TC0, whether or not DCB is running, and TC0 will get the 13351 * big RSS set. 13352 */ 13353 queues_left = pf->hw.func_caps.num_tx_qp; 13354 13355 if ((queues_left == 1) || 13356 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13357 /* one qp for PF, no queues for anything else */ 13358 queues_left = 0; 13359 pf->alloc_rss_size = pf->num_lan_qps = 1; 13360 13361 /* make sure all the fancies are disabled */ 13362 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13363 I40E_FLAG_IWARP_ENABLED | 13364 I40E_FLAG_FD_SB_ENABLED | 13365 I40E_FLAG_FD_ATR_ENABLED | 13366 I40E_FLAG_DCB_CAPABLE | 13367 I40E_FLAG_DCB_ENABLED | 13368 I40E_FLAG_SRIOV_ENABLED | 13369 I40E_FLAG_VMDQ_ENABLED); 13370 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13371 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13372 I40E_FLAG_FD_SB_ENABLED | 13373 I40E_FLAG_FD_ATR_ENABLED | 13374 I40E_FLAG_DCB_CAPABLE))) { 13375 /* one qp for PF */ 13376 pf->alloc_rss_size = pf->num_lan_qps = 1; 13377 queues_left -= pf->num_lan_qps; 13378 13379 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13380 I40E_FLAG_IWARP_ENABLED | 13381 I40E_FLAG_FD_SB_ENABLED | 13382 I40E_FLAG_FD_ATR_ENABLED | 13383 I40E_FLAG_DCB_ENABLED | 13384 I40E_FLAG_VMDQ_ENABLED); 13385 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13386 } else { 13387 /* Not enough queues for all TCs */ 13388 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13389 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13390 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13391 I40E_FLAG_DCB_ENABLED); 13392 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13393 } 13394 13395 /* limit lan qps to the smaller of qps, cpus or msix */ 13396 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13397 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13398 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13399 pf->num_lan_qps = q_max; 13400 13401 queues_left -= pf->num_lan_qps; 13402 } 13403 13404 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13405 if (queues_left > 1) { 13406 queues_left -= 1; /* save 1 queue for FD */ 13407 } else { 13408 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13409 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13410 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13411 } 13412 } 13413 13414 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13415 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13416 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13417 (queues_left / pf->num_vf_qps)); 13418 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13419 } 13420 13421 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13422 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13423 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13424 (queues_left / pf->num_vmdq_qps)); 13425 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13426 } 13427 13428 pf->queues_left = queues_left; 13429 dev_dbg(&pf->pdev->dev, 13430 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13431 pf->hw.func_caps.num_tx_qp, 13432 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13433 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13434 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13435 queues_left); 13436 } 13437 13438 /** 13439 * i40e_setup_pf_filter_control - Setup PF static filter control 13440 * @pf: PF to be setup 13441 * 13442 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13443 * settings. If PE/FCoE are enabled then it will also set the per PF 13444 * based filter sizes required for them. It also enables Flow director, 13445 * ethertype and macvlan type filter settings for the pf. 13446 * 13447 * Returns 0 on success, negative on failure 13448 **/ 13449 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13450 { 13451 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13452 13453 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13454 13455 /* Flow Director is enabled */ 13456 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13457 settings->enable_fdir = true; 13458 13459 /* Ethtype and MACVLAN filters enabled for PF */ 13460 settings->enable_ethtype = true; 13461 settings->enable_macvlan = true; 13462 13463 if (i40e_set_filter_control(&pf->hw, settings)) 13464 return -ENOENT; 13465 13466 return 0; 13467 } 13468 13469 #define INFO_STRING_LEN 255 13470 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13471 static void i40e_print_features(struct i40e_pf *pf) 13472 { 13473 struct i40e_hw *hw = &pf->hw; 13474 char *buf; 13475 int i; 13476 13477 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13478 if (!buf) 13479 return; 13480 13481 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13482 #ifdef CONFIG_PCI_IOV 13483 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13484 #endif 13485 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13486 pf->hw.func_caps.num_vsis, 13487 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13488 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13489 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13490 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13491 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13492 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13493 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13494 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13495 } 13496 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13497 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13498 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13499 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13500 if (pf->flags & I40E_FLAG_PTP) 13501 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13502 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13503 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13504 else 13505 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13506 13507 dev_info(&pf->pdev->dev, "%s\n", buf); 13508 kfree(buf); 13509 WARN_ON(i > INFO_STRING_LEN); 13510 } 13511 13512 /** 13513 * i40e_get_platform_mac_addr - get platform-specific MAC address 13514 * @pdev: PCI device information struct 13515 * @pf: board private structure 13516 * 13517 * Look up the MAC address for the device. First we'll try 13518 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13519 * specific fallback. Otherwise, we'll default to the stored value in 13520 * firmware. 13521 **/ 13522 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13523 { 13524 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13525 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13526 } 13527 13528 /** 13529 * i40e_probe - Device initialization routine 13530 * @pdev: PCI device information struct 13531 * @ent: entry in i40e_pci_tbl 13532 * 13533 * i40e_probe initializes a PF identified by a pci_dev structure. 13534 * The OS initialization, configuring of the PF private structure, 13535 * and a hardware reset occur. 13536 * 13537 * Returns 0 on success, negative on failure 13538 **/ 13539 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13540 { 13541 struct i40e_aq_get_phy_abilities_resp abilities; 13542 struct i40e_pf *pf; 13543 struct i40e_hw *hw; 13544 static u16 pfs_found; 13545 u16 wol_nvm_bits; 13546 u16 link_status; 13547 int err; 13548 u32 val; 13549 u32 i; 13550 u8 set_fc_aq_fail; 13551 13552 err = pci_enable_device_mem(pdev); 13553 if (err) 13554 return err; 13555 13556 /* set up for high or low dma */ 13557 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13558 if (err) { 13559 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13560 if (err) { 13561 dev_err(&pdev->dev, 13562 "DMA configuration failed: 0x%x\n", err); 13563 goto err_dma; 13564 } 13565 } 13566 13567 /* set up pci connections */ 13568 err = pci_request_mem_regions(pdev, i40e_driver_name); 13569 if (err) { 13570 dev_info(&pdev->dev, 13571 "pci_request_selected_regions failed %d\n", err); 13572 goto err_pci_reg; 13573 } 13574 13575 pci_enable_pcie_error_reporting(pdev); 13576 pci_set_master(pdev); 13577 13578 /* Now that we have a PCI connection, we need to do the 13579 * low level device setup. This is primarily setting up 13580 * the Admin Queue structures and then querying for the 13581 * device's current profile information. 13582 */ 13583 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13584 if (!pf) { 13585 err = -ENOMEM; 13586 goto err_pf_alloc; 13587 } 13588 pf->next_vsi = 0; 13589 pf->pdev = pdev; 13590 set_bit(__I40E_DOWN, pf->state); 13591 13592 hw = &pf->hw; 13593 hw->back = pf; 13594 13595 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13596 I40E_MAX_CSR_SPACE); 13597 13598 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13599 if (!hw->hw_addr) { 13600 err = -EIO; 13601 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13602 (unsigned int)pci_resource_start(pdev, 0), 13603 pf->ioremap_len, err); 13604 goto err_ioremap; 13605 } 13606 hw->vendor_id = pdev->vendor; 13607 hw->device_id = pdev->device; 13608 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13609 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13610 hw->subsystem_device_id = pdev->subsystem_device; 13611 hw->bus.device = PCI_SLOT(pdev->devfn); 13612 hw->bus.func = PCI_FUNC(pdev->devfn); 13613 hw->bus.bus_id = pdev->bus->number; 13614 pf->instance = pfs_found; 13615 13616 /* Select something other than the 802.1ad ethertype for the 13617 * switch to use internally and drop on ingress. 13618 */ 13619 hw->switch_tag = 0xffff; 13620 hw->first_tag = ETH_P_8021AD; 13621 hw->second_tag = ETH_P_8021Q; 13622 13623 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13624 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13625 13626 /* set up the locks for the AQ, do this only once in probe 13627 * and destroy them only once in remove 13628 */ 13629 mutex_init(&hw->aq.asq_mutex); 13630 mutex_init(&hw->aq.arq_mutex); 13631 13632 pf->msg_enable = netif_msg_init(debug, 13633 NETIF_MSG_DRV | 13634 NETIF_MSG_PROBE | 13635 NETIF_MSG_LINK); 13636 if (debug < -1) 13637 pf->hw.debug_mask = debug; 13638 13639 /* do a special CORER for clearing PXE mode once at init */ 13640 if (hw->revision_id == 0 && 13641 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13642 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13643 i40e_flush(hw); 13644 msleep(200); 13645 pf->corer_count++; 13646 13647 i40e_clear_pxe_mode(hw); 13648 } 13649 13650 /* Reset here to make sure all is clean and to define PF 'n' */ 13651 i40e_clear_hw(hw); 13652 err = i40e_pf_reset(hw); 13653 if (err) { 13654 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 13655 goto err_pf_reset; 13656 } 13657 pf->pfr_count++; 13658 13659 hw->aq.num_arq_entries = I40E_AQ_LEN; 13660 hw->aq.num_asq_entries = I40E_AQ_LEN; 13661 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13662 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 13663 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 13664 13665 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 13666 "%s-%s:misc", 13667 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 13668 13669 err = i40e_init_shared_code(hw); 13670 if (err) { 13671 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 13672 err); 13673 goto err_pf_reset; 13674 } 13675 13676 /* set up a default setting for link flow control */ 13677 pf->hw.fc.requested_mode = I40E_FC_NONE; 13678 13679 err = i40e_init_adminq(hw); 13680 if (err) { 13681 if (err == I40E_ERR_FIRMWARE_API_VERSION) 13682 dev_info(&pdev->dev, 13683 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 13684 else 13685 dev_info(&pdev->dev, 13686 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 13687 13688 goto err_pf_reset; 13689 } 13690 i40e_get_oem_version(hw); 13691 13692 /* provide nvm, fw, api versions */ 13693 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 13694 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 13695 hw->aq.api_maj_ver, hw->aq.api_min_ver, 13696 i40e_nvm_version_str(hw)); 13697 13698 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 13699 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 13700 dev_info(&pdev->dev, 13701 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 13702 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 13703 dev_info(&pdev->dev, 13704 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 13705 13706 i40e_verify_eeprom(pf); 13707 13708 /* Rev 0 hardware was never productized */ 13709 if (hw->revision_id < 1) 13710 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 13711 13712 i40e_clear_pxe_mode(hw); 13713 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 13714 if (err) 13715 goto err_adminq_setup; 13716 13717 err = i40e_sw_init(pf); 13718 if (err) { 13719 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 13720 goto err_sw_init; 13721 } 13722 13723 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 13724 hw->func_caps.num_rx_qp, 0, 0); 13725 if (err) { 13726 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 13727 goto err_init_lan_hmc; 13728 } 13729 13730 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 13731 if (err) { 13732 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 13733 err = -ENOENT; 13734 goto err_configure_lan_hmc; 13735 } 13736 13737 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 13738 * Ignore error return codes because if it was already disabled via 13739 * hardware settings this will fail 13740 */ 13741 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 13742 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 13743 i40e_aq_stop_lldp(hw, true, NULL); 13744 } 13745 13746 /* allow a platform config to override the HW addr */ 13747 i40e_get_platform_mac_addr(pdev, pf); 13748 13749 if (!is_valid_ether_addr(hw->mac.addr)) { 13750 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 13751 err = -EIO; 13752 goto err_mac_addr; 13753 } 13754 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 13755 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 13756 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 13757 if (is_valid_ether_addr(hw->mac.port_addr)) 13758 pf->hw_features |= I40E_HW_PORT_ID_VALID; 13759 13760 pci_set_drvdata(pdev, pf); 13761 pci_save_state(pdev); 13762 13763 /* Enable FW to write default DCB config on link-up */ 13764 i40e_aq_set_dcb_parameters(hw, true, NULL); 13765 13766 #ifdef CONFIG_I40E_DCB 13767 err = i40e_init_pf_dcb(pf); 13768 if (err) { 13769 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 13770 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 13771 /* Continue without DCB enabled */ 13772 } 13773 #endif /* CONFIG_I40E_DCB */ 13774 13775 /* set up periodic task facility */ 13776 timer_setup(&pf->service_timer, i40e_service_timer, 0); 13777 pf->service_timer_period = HZ; 13778 13779 INIT_WORK(&pf->service_task, i40e_service_task); 13780 clear_bit(__I40E_SERVICE_SCHED, pf->state); 13781 13782 /* NVM bit on means WoL disabled for the port */ 13783 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 13784 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 13785 pf->wol_en = false; 13786 else 13787 pf->wol_en = true; 13788 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 13789 13790 /* set up the main switch operations */ 13791 i40e_determine_queue_usage(pf); 13792 err = i40e_init_interrupt_scheme(pf); 13793 if (err) 13794 goto err_switch_setup; 13795 13796 /* The number of VSIs reported by the FW is the minimum guaranteed 13797 * to us; HW supports far more and we share the remaining pool with 13798 * the other PFs. We allocate space for more than the guarantee with 13799 * the understanding that we might not get them all later. 13800 */ 13801 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 13802 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 13803 else 13804 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 13805 13806 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 13807 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 13808 GFP_KERNEL); 13809 if (!pf->vsi) { 13810 err = -ENOMEM; 13811 goto err_switch_setup; 13812 } 13813 13814 #ifdef CONFIG_PCI_IOV 13815 /* prep for VF support */ 13816 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13817 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13818 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13819 if (pci_num_vf(pdev)) 13820 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 13821 } 13822 #endif 13823 err = i40e_setup_pf_switch(pf, false); 13824 if (err) { 13825 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 13826 goto err_vsis; 13827 } 13828 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 13829 13830 /* Make sure flow control is set according to current settings */ 13831 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 13832 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 13833 dev_dbg(&pf->pdev->dev, 13834 "Set fc with err %s aq_err %s on get_phy_cap\n", 13835 i40e_stat_str(hw, err), 13836 i40e_aq_str(hw, hw->aq.asq_last_status)); 13837 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 13838 dev_dbg(&pf->pdev->dev, 13839 "Set fc with err %s aq_err %s on set_phy_config\n", 13840 i40e_stat_str(hw, err), 13841 i40e_aq_str(hw, hw->aq.asq_last_status)); 13842 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 13843 dev_dbg(&pf->pdev->dev, 13844 "Set fc with err %s aq_err %s on get_link_info\n", 13845 i40e_stat_str(hw, err), 13846 i40e_aq_str(hw, hw->aq.asq_last_status)); 13847 13848 /* if FDIR VSI was set up, start it now */ 13849 for (i = 0; i < pf->num_alloc_vsi; i++) { 13850 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 13851 i40e_vsi_open(pf->vsi[i]); 13852 break; 13853 } 13854 } 13855 13856 /* The driver only wants link up/down and module qualification 13857 * reports from firmware. Note the negative logic. 13858 */ 13859 err = i40e_aq_set_phy_int_mask(&pf->hw, 13860 ~(I40E_AQ_EVENT_LINK_UPDOWN | 13861 I40E_AQ_EVENT_MEDIA_NA | 13862 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 13863 if (err) 13864 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 13865 i40e_stat_str(&pf->hw, err), 13866 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13867 13868 /* Reconfigure hardware for allowing smaller MSS in the case 13869 * of TSO, so that we avoid the MDD being fired and causing 13870 * a reset in the case of small MSS+TSO. 13871 */ 13872 val = rd32(hw, I40E_REG_MSS); 13873 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 13874 val &= ~I40E_REG_MSS_MIN_MASK; 13875 val |= I40E_64BYTE_MSS; 13876 wr32(hw, I40E_REG_MSS, val); 13877 } 13878 13879 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 13880 msleep(75); 13881 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 13882 if (err) 13883 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 13884 i40e_stat_str(&pf->hw, err), 13885 i40e_aq_str(&pf->hw, 13886 pf->hw.aq.asq_last_status)); 13887 } 13888 /* The main driver is (mostly) up and happy. We need to set this state 13889 * before setting up the misc vector or we get a race and the vector 13890 * ends up disabled forever. 13891 */ 13892 clear_bit(__I40E_DOWN, pf->state); 13893 13894 /* In case of MSIX we are going to setup the misc vector right here 13895 * to handle admin queue events etc. In case of legacy and MSI 13896 * the misc functionality and queue processing is combined in 13897 * the same vector and that gets setup at open. 13898 */ 13899 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13900 err = i40e_setup_misc_vector(pf); 13901 if (err) { 13902 dev_info(&pdev->dev, 13903 "setup of misc vector failed: %d\n", err); 13904 goto err_vsis; 13905 } 13906 } 13907 13908 #ifdef CONFIG_PCI_IOV 13909 /* prep for VF support */ 13910 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13911 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 13912 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 13913 /* disable link interrupts for VFs */ 13914 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 13915 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 13916 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 13917 i40e_flush(hw); 13918 13919 if (pci_num_vf(pdev)) { 13920 dev_info(&pdev->dev, 13921 "Active VFs found, allocating resources.\n"); 13922 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 13923 if (err) 13924 dev_info(&pdev->dev, 13925 "Error %d allocating resources for existing VFs\n", 13926 err); 13927 } 13928 } 13929 #endif /* CONFIG_PCI_IOV */ 13930 13931 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13932 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 13933 pf->num_iwarp_msix, 13934 I40E_IWARP_IRQ_PILE_ID); 13935 if (pf->iwarp_base_vector < 0) { 13936 dev_info(&pdev->dev, 13937 "failed to get tracking for %d vectors for IWARP err=%d\n", 13938 pf->num_iwarp_msix, pf->iwarp_base_vector); 13939 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 13940 } 13941 } 13942 13943 i40e_dbg_pf_init(pf); 13944 13945 /* tell the firmware that we're starting */ 13946 i40e_send_version(pf); 13947 13948 /* since everything's happy, start the service_task timer */ 13949 mod_timer(&pf->service_timer, 13950 round_jiffies(jiffies + pf->service_timer_period)); 13951 13952 /* add this PF to client device list and launch a client service task */ 13953 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 13954 err = i40e_lan_add_device(pf); 13955 if (err) 13956 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 13957 err); 13958 } 13959 13960 #define PCI_SPEED_SIZE 8 13961 #define PCI_WIDTH_SIZE 8 13962 /* Devices on the IOSF bus do not have this information 13963 * and will report PCI Gen 1 x 1 by default so don't bother 13964 * checking them. 13965 */ 13966 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 13967 char speed[PCI_SPEED_SIZE] = "Unknown"; 13968 char width[PCI_WIDTH_SIZE] = "Unknown"; 13969 13970 /* Get the negotiated link width and speed from PCI config 13971 * space 13972 */ 13973 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 13974 &link_status); 13975 13976 i40e_set_pci_config_data(hw, link_status); 13977 13978 switch (hw->bus.speed) { 13979 case i40e_bus_speed_8000: 13980 strncpy(speed, "8.0", PCI_SPEED_SIZE); break; 13981 case i40e_bus_speed_5000: 13982 strncpy(speed, "5.0", PCI_SPEED_SIZE); break; 13983 case i40e_bus_speed_2500: 13984 strncpy(speed, "2.5", PCI_SPEED_SIZE); break; 13985 default: 13986 break; 13987 } 13988 switch (hw->bus.width) { 13989 case i40e_bus_width_pcie_x8: 13990 strncpy(width, "8", PCI_WIDTH_SIZE); break; 13991 case i40e_bus_width_pcie_x4: 13992 strncpy(width, "4", PCI_WIDTH_SIZE); break; 13993 case i40e_bus_width_pcie_x2: 13994 strncpy(width, "2", PCI_WIDTH_SIZE); break; 13995 case i40e_bus_width_pcie_x1: 13996 strncpy(width, "1", PCI_WIDTH_SIZE); break; 13997 default: 13998 break; 13999 } 14000 14001 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14002 speed, width); 14003 14004 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14005 hw->bus.speed < i40e_bus_speed_8000) { 14006 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14007 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14008 } 14009 } 14010 14011 /* get the requested speeds from the fw */ 14012 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14013 if (err) 14014 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14015 i40e_stat_str(&pf->hw, err), 14016 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14017 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14018 14019 /* get the supported phy types from the fw */ 14020 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14021 if (err) 14022 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14023 i40e_stat_str(&pf->hw, err), 14024 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14025 14026 /* Add a filter to drop all Flow control frames from any VSI from being 14027 * transmitted. By doing so we stop a malicious VF from sending out 14028 * PAUSE or PFC frames and potentially controlling traffic for other 14029 * PF/VF VSIs. 14030 * The FW can still send Flow control frames if enabled. 14031 */ 14032 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14033 pf->main_vsi_seid); 14034 14035 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14036 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14037 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14038 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14039 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14040 /* print a string summarizing features */ 14041 i40e_print_features(pf); 14042 14043 return 0; 14044 14045 /* Unwind what we've done if something failed in the setup */ 14046 err_vsis: 14047 set_bit(__I40E_DOWN, pf->state); 14048 i40e_clear_interrupt_scheme(pf); 14049 kfree(pf->vsi); 14050 err_switch_setup: 14051 i40e_reset_interrupt_capability(pf); 14052 del_timer_sync(&pf->service_timer); 14053 err_mac_addr: 14054 err_configure_lan_hmc: 14055 (void)i40e_shutdown_lan_hmc(hw); 14056 err_init_lan_hmc: 14057 kfree(pf->qp_pile); 14058 err_sw_init: 14059 err_adminq_setup: 14060 err_pf_reset: 14061 iounmap(hw->hw_addr); 14062 err_ioremap: 14063 kfree(pf); 14064 err_pf_alloc: 14065 pci_disable_pcie_error_reporting(pdev); 14066 pci_release_mem_regions(pdev); 14067 err_pci_reg: 14068 err_dma: 14069 pci_disable_device(pdev); 14070 return err; 14071 } 14072 14073 /** 14074 * i40e_remove - Device removal routine 14075 * @pdev: PCI device information struct 14076 * 14077 * i40e_remove is called by the PCI subsystem to alert the driver 14078 * that is should release a PCI device. This could be caused by a 14079 * Hot-Plug event, or because the driver is going to be removed from 14080 * memory. 14081 **/ 14082 static void i40e_remove(struct pci_dev *pdev) 14083 { 14084 struct i40e_pf *pf = pci_get_drvdata(pdev); 14085 struct i40e_hw *hw = &pf->hw; 14086 i40e_status ret_code; 14087 int i; 14088 14089 i40e_dbg_pf_exit(pf); 14090 14091 i40e_ptp_stop(pf); 14092 14093 /* Disable RSS in hw */ 14094 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14095 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14096 14097 /* no more scheduling of any task */ 14098 set_bit(__I40E_SUSPENDED, pf->state); 14099 set_bit(__I40E_DOWN, pf->state); 14100 if (pf->service_timer.function) 14101 del_timer_sync(&pf->service_timer); 14102 if (pf->service_task.func) 14103 cancel_work_sync(&pf->service_task); 14104 14105 /* Client close must be called explicitly here because the timer 14106 * has been stopped. 14107 */ 14108 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14109 14110 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14111 i40e_free_vfs(pf); 14112 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14113 } 14114 14115 i40e_fdir_teardown(pf); 14116 14117 /* If there is a switch structure or any orphans, remove them. 14118 * This will leave only the PF's VSI remaining. 14119 */ 14120 for (i = 0; i < I40E_MAX_VEB; i++) { 14121 if (!pf->veb[i]) 14122 continue; 14123 14124 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14125 pf->veb[i]->uplink_seid == 0) 14126 i40e_switch_branch_release(pf->veb[i]); 14127 } 14128 14129 /* Now we can shutdown the PF's VSI, just before we kill 14130 * adminq and hmc. 14131 */ 14132 if (pf->vsi[pf->lan_vsi]) 14133 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14134 14135 i40e_cloud_filter_exit(pf); 14136 14137 /* remove attached clients */ 14138 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14139 ret_code = i40e_lan_del_device(pf); 14140 if (ret_code) 14141 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14142 ret_code); 14143 } 14144 14145 /* shutdown and destroy the HMC */ 14146 if (hw->hmc.hmc_obj) { 14147 ret_code = i40e_shutdown_lan_hmc(hw); 14148 if (ret_code) 14149 dev_warn(&pdev->dev, 14150 "Failed to destroy the HMC resources: %d\n", 14151 ret_code); 14152 } 14153 14154 /* shutdown the adminq */ 14155 i40e_shutdown_adminq(hw); 14156 14157 /* destroy the locks only once, here */ 14158 mutex_destroy(&hw->aq.arq_mutex); 14159 mutex_destroy(&hw->aq.asq_mutex); 14160 14161 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14162 i40e_clear_interrupt_scheme(pf); 14163 for (i = 0; i < pf->num_alloc_vsi; i++) { 14164 if (pf->vsi[i]) { 14165 i40e_vsi_clear_rings(pf->vsi[i]); 14166 i40e_vsi_clear(pf->vsi[i]); 14167 pf->vsi[i] = NULL; 14168 } 14169 } 14170 14171 for (i = 0; i < I40E_MAX_VEB; i++) { 14172 kfree(pf->veb[i]); 14173 pf->veb[i] = NULL; 14174 } 14175 14176 kfree(pf->qp_pile); 14177 kfree(pf->vsi); 14178 14179 iounmap(hw->hw_addr); 14180 kfree(pf); 14181 pci_release_mem_regions(pdev); 14182 14183 pci_disable_pcie_error_reporting(pdev); 14184 pci_disable_device(pdev); 14185 } 14186 14187 /** 14188 * i40e_pci_error_detected - warning that something funky happened in PCI land 14189 * @pdev: PCI device information struct 14190 * @error: the type of PCI error 14191 * 14192 * Called to warn that something happened and the error handling steps 14193 * are in progress. Allows the driver to quiesce things, be ready for 14194 * remediation. 14195 **/ 14196 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14197 enum pci_channel_state error) 14198 { 14199 struct i40e_pf *pf = pci_get_drvdata(pdev); 14200 14201 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14202 14203 if (!pf) { 14204 dev_info(&pdev->dev, 14205 "Cannot recover - error happened during device probe\n"); 14206 return PCI_ERS_RESULT_DISCONNECT; 14207 } 14208 14209 /* shutdown all operations */ 14210 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14211 i40e_prep_for_reset(pf, false); 14212 14213 /* Request a slot reset */ 14214 return PCI_ERS_RESULT_NEED_RESET; 14215 } 14216 14217 /** 14218 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14219 * @pdev: PCI device information struct 14220 * 14221 * Called to find if the driver can work with the device now that 14222 * the pci slot has been reset. If a basic connection seems good 14223 * (registers are readable and have sane content) then return a 14224 * happy little PCI_ERS_RESULT_xxx. 14225 **/ 14226 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14227 { 14228 struct i40e_pf *pf = pci_get_drvdata(pdev); 14229 pci_ers_result_t result; 14230 int err; 14231 u32 reg; 14232 14233 dev_dbg(&pdev->dev, "%s\n", __func__); 14234 if (pci_enable_device_mem(pdev)) { 14235 dev_info(&pdev->dev, 14236 "Cannot re-enable PCI device after reset.\n"); 14237 result = PCI_ERS_RESULT_DISCONNECT; 14238 } else { 14239 pci_set_master(pdev); 14240 pci_restore_state(pdev); 14241 pci_save_state(pdev); 14242 pci_wake_from_d3(pdev, false); 14243 14244 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14245 if (reg == 0) 14246 result = PCI_ERS_RESULT_RECOVERED; 14247 else 14248 result = PCI_ERS_RESULT_DISCONNECT; 14249 } 14250 14251 err = pci_cleanup_aer_uncorrect_error_status(pdev); 14252 if (err) { 14253 dev_info(&pdev->dev, 14254 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 14255 err); 14256 /* non-fatal, continue */ 14257 } 14258 14259 return result; 14260 } 14261 14262 /** 14263 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14264 * @pdev: PCI device information struct 14265 */ 14266 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14267 { 14268 struct i40e_pf *pf = pci_get_drvdata(pdev); 14269 14270 i40e_prep_for_reset(pf, false); 14271 } 14272 14273 /** 14274 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14275 * @pdev: PCI device information struct 14276 */ 14277 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14278 { 14279 struct i40e_pf *pf = pci_get_drvdata(pdev); 14280 14281 i40e_reset_and_rebuild(pf, false, false); 14282 } 14283 14284 /** 14285 * i40e_pci_error_resume - restart operations after PCI error recovery 14286 * @pdev: PCI device information struct 14287 * 14288 * Called to allow the driver to bring things back up after PCI error 14289 * and/or reset recovery has finished. 14290 **/ 14291 static void i40e_pci_error_resume(struct pci_dev *pdev) 14292 { 14293 struct i40e_pf *pf = pci_get_drvdata(pdev); 14294 14295 dev_dbg(&pdev->dev, "%s\n", __func__); 14296 if (test_bit(__I40E_SUSPENDED, pf->state)) 14297 return; 14298 14299 i40e_handle_reset_warning(pf, false); 14300 } 14301 14302 /** 14303 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14304 * using the mac_address_write admin q function 14305 * @pf: pointer to i40e_pf struct 14306 **/ 14307 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14308 { 14309 struct i40e_hw *hw = &pf->hw; 14310 i40e_status ret; 14311 u8 mac_addr[6]; 14312 u16 flags = 0; 14313 14314 /* Get current MAC address in case it's an LAA */ 14315 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14316 ether_addr_copy(mac_addr, 14317 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14318 } else { 14319 dev_err(&pf->pdev->dev, 14320 "Failed to retrieve MAC address; using default\n"); 14321 ether_addr_copy(mac_addr, hw->mac.addr); 14322 } 14323 14324 /* The FW expects the mac address write cmd to first be called with 14325 * one of these flags before calling it again with the multicast 14326 * enable flags. 14327 */ 14328 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14329 14330 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14331 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14332 14333 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14334 if (ret) { 14335 dev_err(&pf->pdev->dev, 14336 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14337 return; 14338 } 14339 14340 flags = I40E_AQC_MC_MAG_EN 14341 | I40E_AQC_WOL_PRESERVE_ON_PFR 14342 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14343 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14344 if (ret) 14345 dev_err(&pf->pdev->dev, 14346 "Failed to enable Multicast Magic Packet wake up\n"); 14347 } 14348 14349 /** 14350 * i40e_shutdown - PCI callback for shutting down 14351 * @pdev: PCI device information struct 14352 **/ 14353 static void i40e_shutdown(struct pci_dev *pdev) 14354 { 14355 struct i40e_pf *pf = pci_get_drvdata(pdev); 14356 struct i40e_hw *hw = &pf->hw; 14357 14358 set_bit(__I40E_SUSPENDED, pf->state); 14359 set_bit(__I40E_DOWN, pf->state); 14360 14361 del_timer_sync(&pf->service_timer); 14362 cancel_work_sync(&pf->service_task); 14363 i40e_cloud_filter_exit(pf); 14364 i40e_fdir_teardown(pf); 14365 14366 /* Client close must be called explicitly here because the timer 14367 * has been stopped. 14368 */ 14369 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14370 14371 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14372 i40e_enable_mc_magic_wake(pf); 14373 14374 i40e_prep_for_reset(pf, false); 14375 14376 wr32(hw, I40E_PFPM_APM, 14377 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14378 wr32(hw, I40E_PFPM_WUFC, 14379 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14380 14381 i40e_clear_interrupt_scheme(pf); 14382 14383 if (system_state == SYSTEM_POWER_OFF) { 14384 pci_wake_from_d3(pdev, pf->wol_en); 14385 pci_set_power_state(pdev, PCI_D3hot); 14386 } 14387 } 14388 14389 /** 14390 * i40e_suspend - PM callback for moving to D3 14391 * @dev: generic device information structure 14392 **/ 14393 static int __maybe_unused i40e_suspend(struct device *dev) 14394 { 14395 struct pci_dev *pdev = to_pci_dev(dev); 14396 struct i40e_pf *pf = pci_get_drvdata(pdev); 14397 struct i40e_hw *hw = &pf->hw; 14398 14399 /* If we're already suspended, then there is nothing to do */ 14400 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14401 return 0; 14402 14403 set_bit(__I40E_DOWN, pf->state); 14404 14405 /* Ensure service task will not be running */ 14406 del_timer_sync(&pf->service_timer); 14407 cancel_work_sync(&pf->service_task); 14408 14409 /* Client close must be called explicitly here because the timer 14410 * has been stopped. 14411 */ 14412 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14413 14414 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14415 i40e_enable_mc_magic_wake(pf); 14416 14417 /* Since we're going to destroy queues during the 14418 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14419 * whole section 14420 */ 14421 rtnl_lock(); 14422 14423 i40e_prep_for_reset(pf, true); 14424 14425 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14426 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14427 14428 /* Clear the interrupt scheme and release our IRQs so that the system 14429 * can safely hibernate even when there are a large number of CPUs. 14430 * Otherwise hibernation might fail when mapping all the vectors back 14431 * to CPU0. 14432 */ 14433 i40e_clear_interrupt_scheme(pf); 14434 14435 rtnl_unlock(); 14436 14437 return 0; 14438 } 14439 14440 /** 14441 * i40e_resume - PM callback for waking up from D3 14442 * @dev: generic device information structure 14443 **/ 14444 static int __maybe_unused i40e_resume(struct device *dev) 14445 { 14446 struct pci_dev *pdev = to_pci_dev(dev); 14447 struct i40e_pf *pf = pci_get_drvdata(pdev); 14448 int err; 14449 14450 /* If we're not suspended, then there is nothing to do */ 14451 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14452 return 0; 14453 14454 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 14455 * since we're going to be restoring queues 14456 */ 14457 rtnl_lock(); 14458 14459 /* We cleared the interrupt scheme when we suspended, so we need to 14460 * restore it now to resume device functionality. 14461 */ 14462 err = i40e_restore_interrupt_scheme(pf); 14463 if (err) { 14464 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14465 err); 14466 } 14467 14468 clear_bit(__I40E_DOWN, pf->state); 14469 i40e_reset_and_rebuild(pf, false, true); 14470 14471 rtnl_unlock(); 14472 14473 /* Clear suspended state last after everything is recovered */ 14474 clear_bit(__I40E_SUSPENDED, pf->state); 14475 14476 /* Restart the service task */ 14477 mod_timer(&pf->service_timer, 14478 round_jiffies(jiffies + pf->service_timer_period)); 14479 14480 return 0; 14481 } 14482 14483 static const struct pci_error_handlers i40e_err_handler = { 14484 .error_detected = i40e_pci_error_detected, 14485 .slot_reset = i40e_pci_error_slot_reset, 14486 .reset_prepare = i40e_pci_error_reset_prepare, 14487 .reset_done = i40e_pci_error_reset_done, 14488 .resume = i40e_pci_error_resume, 14489 }; 14490 14491 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14492 14493 static struct pci_driver i40e_driver = { 14494 .name = i40e_driver_name, 14495 .id_table = i40e_pci_tbl, 14496 .probe = i40e_probe, 14497 .remove = i40e_remove, 14498 .driver = { 14499 .pm = &i40e_pm_ops, 14500 }, 14501 .shutdown = i40e_shutdown, 14502 .err_handler = &i40e_err_handler, 14503 .sriov_configure = i40e_pci_sriov_configure, 14504 }; 14505 14506 /** 14507 * i40e_init_module - Driver registration routine 14508 * 14509 * i40e_init_module is the first routine called when the driver is 14510 * loaded. All it does is register with the PCI subsystem. 14511 **/ 14512 static int __init i40e_init_module(void) 14513 { 14514 pr_info("%s: %s - version %s\n", i40e_driver_name, 14515 i40e_driver_string, i40e_driver_version_str); 14516 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14517 14518 /* There is no need to throttle the number of active tasks because 14519 * each device limits its own task using a state bit for scheduling 14520 * the service task, and the device tasks do not interfere with each 14521 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14522 * since we need to be able to guarantee forward progress even under 14523 * memory pressure. 14524 */ 14525 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14526 if (!i40e_wq) { 14527 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14528 return -ENOMEM; 14529 } 14530 14531 i40e_dbg_init(); 14532 return pci_register_driver(&i40e_driver); 14533 } 14534 module_init(i40e_init_module); 14535 14536 /** 14537 * i40e_exit_module - Driver exit cleanup routine 14538 * 14539 * i40e_exit_module is called just before the driver is removed 14540 * from memory. 14541 **/ 14542 static void __exit i40e_exit_module(void) 14543 { 14544 pci_unregister_driver(&i40e_driver); 14545 destroy_workqueue(i40e_wq); 14546 i40e_dbg_exit(); 14547 } 14548 module_exit(i40e_exit_module); 14549