1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 8 30 #define DRV_VERSION_BUILD 20 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 50 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 51 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 52 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 53 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 54 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 55 static int i40e_get_capabilities(struct i40e_pf *pf, 56 enum i40e_admin_queue_opc list_type); 57 58 59 /* i40e_pci_tbl - PCI Device ID Table 60 * 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id i40e_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 91 /* required last entry */ 92 {0, } 93 }; 94 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 95 96 #define I40E_MAX_VF_COUNT 128 97 static int debug = -1; 98 module_param(debug, uint, 0); 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 100 101 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 103 MODULE_LICENSE("GPL v2"); 104 MODULE_VERSION(DRV_VERSION); 105 106 static struct workqueue_struct *i40e_wq; 107 108 /** 109 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 110 * @hw: pointer to the HW structure 111 * @mem: ptr to mem struct to fill out 112 * @size: size of memory requested 113 * @alignment: what to align the allocation to 114 **/ 115 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 116 u64 size, u32 alignment) 117 { 118 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 119 120 mem->size = ALIGN(size, alignment); 121 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 122 GFP_KERNEL); 123 if (!mem->va) 124 return -ENOMEM; 125 126 return 0; 127 } 128 129 /** 130 * i40e_free_dma_mem_d - OS specific memory free for shared code 131 * @hw: pointer to the HW structure 132 * @mem: ptr to mem struct to free 133 **/ 134 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 135 { 136 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 137 138 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 139 mem->va = NULL; 140 mem->pa = 0; 141 mem->size = 0; 142 143 return 0; 144 } 145 146 /** 147 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 148 * @hw: pointer to the HW structure 149 * @mem: ptr to mem struct to fill out 150 * @size: size of memory requested 151 **/ 152 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 153 u32 size) 154 { 155 mem->size = size; 156 mem->va = kzalloc(size, GFP_KERNEL); 157 158 if (!mem->va) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 /** 165 * i40e_free_virt_mem_d - OS specific memory free for shared code 166 * @hw: pointer to the HW structure 167 * @mem: ptr to mem struct to free 168 **/ 169 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 170 { 171 /* it's ok to kfree a NULL pointer */ 172 kfree(mem->va); 173 mem->va = NULL; 174 mem->size = 0; 175 176 return 0; 177 } 178 179 /** 180 * i40e_get_lump - find a lump of free generic resource 181 * @pf: board private structure 182 * @pile: the pile of resource to search 183 * @needed: the number of items needed 184 * @id: an owner id to stick on the items assigned 185 * 186 * Returns the base item index of the lump, or negative for error 187 * 188 * The search_hint trick and lack of advanced fit-finding only work 189 * because we're highly likely to have all the same size lump requests. 190 * Linear search time and any fragmentation should be minimal. 191 **/ 192 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 193 u16 needed, u16 id) 194 { 195 int ret = -ENOMEM; 196 int i, j; 197 198 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 199 dev_info(&pf->pdev->dev, 200 "param err: pile=%s needed=%d id=0x%04x\n", 201 pile ? "<valid>" : "<null>", needed, id); 202 return -EINVAL; 203 } 204 205 /* start the linear search with an imperfect hint */ 206 i = pile->search_hint; 207 while (i < pile->num_entries) { 208 /* skip already allocated entries */ 209 if (pile->list[i] & I40E_PILE_VALID_BIT) { 210 i++; 211 continue; 212 } 213 214 /* do we have enough in this lump? */ 215 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 216 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 217 break; 218 } 219 220 if (j == needed) { 221 /* there was enough, so assign it to the requestor */ 222 for (j = 0; j < needed; j++) 223 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 224 ret = i; 225 pile->search_hint = i + j; 226 break; 227 } 228 229 /* not enough, so skip over it and continue looking */ 230 i += j; 231 } 232 233 return ret; 234 } 235 236 /** 237 * i40e_put_lump - return a lump of generic resource 238 * @pile: the pile of resource to search 239 * @index: the base item index 240 * @id: the owner id of the items assigned 241 * 242 * Returns the count of items in the lump 243 **/ 244 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 245 { 246 int valid_id = (id | I40E_PILE_VALID_BIT); 247 int count = 0; 248 int i; 249 250 if (!pile || index >= pile->num_entries) 251 return -EINVAL; 252 253 for (i = index; 254 i < pile->num_entries && pile->list[i] == valid_id; 255 i++) { 256 pile->list[i] = 0; 257 count++; 258 } 259 260 if (count && index < pile->search_hint) 261 pile->search_hint = index; 262 263 return count; 264 } 265 266 /** 267 * i40e_find_vsi_from_id - searches for the vsi with the given id 268 * @pf: the pf structure to search for the vsi 269 * @id: id of the vsi it is searching for 270 **/ 271 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 272 { 273 int i; 274 275 for (i = 0; i < pf->num_alloc_vsi; i++) 276 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 277 return pf->vsi[i]; 278 279 return NULL; 280 } 281 282 /** 283 * i40e_service_event_schedule - Schedule the service task to wake up 284 * @pf: board private structure 285 * 286 * If not already scheduled, this puts the task into the work queue 287 **/ 288 void i40e_service_event_schedule(struct i40e_pf *pf) 289 { 290 if ((!test_bit(__I40E_DOWN, pf->state) && 291 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 292 test_bit(__I40E_RECOVERY_MODE, pf->state)) 293 queue_work(i40e_wq, &pf->service_task); 294 } 295 296 /** 297 * i40e_tx_timeout - Respond to a Tx Hang 298 * @netdev: network interface device structure 299 * 300 * If any port has noticed a Tx timeout, it is likely that the whole 301 * device is munged, not just the one netdev port, so go for the full 302 * reset. 303 **/ 304 static void i40e_tx_timeout(struct net_device *netdev) 305 { 306 struct i40e_netdev_priv *np = netdev_priv(netdev); 307 struct i40e_vsi *vsi = np->vsi; 308 struct i40e_pf *pf = vsi->back; 309 struct i40e_ring *tx_ring = NULL; 310 unsigned int i, hung_queue = 0; 311 u32 head, val; 312 313 pf->tx_timeout_count++; 314 315 /* find the stopped queue the same way the stack does */ 316 for (i = 0; i < netdev->num_tx_queues; i++) { 317 struct netdev_queue *q; 318 unsigned long trans_start; 319 320 q = netdev_get_tx_queue(netdev, i); 321 trans_start = q->trans_start; 322 if (netif_xmit_stopped(q) && 323 time_after(jiffies, 324 (trans_start + netdev->watchdog_timeo))) { 325 hung_queue = i; 326 break; 327 } 328 } 329 330 if (i == netdev->num_tx_queues) { 331 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 332 } else { 333 /* now that we have an index, find the tx_ring struct */ 334 for (i = 0; i < vsi->num_queue_pairs; i++) { 335 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 336 if (hung_queue == 337 vsi->tx_rings[i]->queue_index) { 338 tx_ring = vsi->tx_rings[i]; 339 break; 340 } 341 } 342 } 343 } 344 345 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 346 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 347 else if (time_before(jiffies, 348 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 349 return; /* don't do any new action before the next timeout */ 350 351 /* don't kick off another recovery if one is already pending */ 352 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 353 return; 354 355 if (tx_ring) { 356 head = i40e_get_head(tx_ring); 357 /* Read interrupt register */ 358 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 359 val = rd32(&pf->hw, 360 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 361 tx_ring->vsi->base_vector - 1)); 362 else 363 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 364 365 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 366 vsi->seid, hung_queue, tx_ring->next_to_clean, 367 head, tx_ring->next_to_use, 368 readl(tx_ring->tail), val); 369 } 370 371 pf->tx_timeout_last_recovery = jiffies; 372 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 373 pf->tx_timeout_recovery_level, hung_queue); 374 375 switch (pf->tx_timeout_recovery_level) { 376 case 1: 377 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 378 break; 379 case 2: 380 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 381 break; 382 case 3: 383 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 384 break; 385 default: 386 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 387 break; 388 } 389 390 i40e_service_event_schedule(pf); 391 pf->tx_timeout_recovery_level++; 392 } 393 394 /** 395 * i40e_get_vsi_stats_struct - Get System Network Statistics 396 * @vsi: the VSI we care about 397 * 398 * Returns the address of the device statistics structure. 399 * The statistics are actually updated from the service task. 400 **/ 401 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 402 { 403 return &vsi->net_stats; 404 } 405 406 /** 407 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 408 * @ring: Tx ring to get statistics from 409 * @stats: statistics entry to be updated 410 **/ 411 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 412 struct rtnl_link_stats64 *stats) 413 { 414 u64 bytes, packets; 415 unsigned int start; 416 417 do { 418 start = u64_stats_fetch_begin_irq(&ring->syncp); 419 packets = ring->stats.packets; 420 bytes = ring->stats.bytes; 421 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 422 423 stats->tx_packets += packets; 424 stats->tx_bytes += bytes; 425 } 426 427 /** 428 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 429 * @netdev: network interface device structure 430 * @stats: data structure to store statistics 431 * 432 * Returns the address of the device statistics structure. 433 * The statistics are actually updated from the service task. 434 **/ 435 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 436 struct rtnl_link_stats64 *stats) 437 { 438 struct i40e_netdev_priv *np = netdev_priv(netdev); 439 struct i40e_vsi *vsi = np->vsi; 440 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 441 struct i40e_ring *ring; 442 int i; 443 444 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 445 return; 446 447 if (!vsi->tx_rings) 448 return; 449 450 rcu_read_lock(); 451 for (i = 0; i < vsi->num_queue_pairs; i++) { 452 u64 bytes, packets; 453 unsigned int start; 454 455 ring = READ_ONCE(vsi->tx_rings[i]); 456 if (!ring) 457 continue; 458 i40e_get_netdev_stats_struct_tx(ring, stats); 459 460 if (i40e_enabled_xdp_vsi(vsi)) { 461 ring++; 462 i40e_get_netdev_stats_struct_tx(ring, stats); 463 } 464 465 ring++; 466 do { 467 start = u64_stats_fetch_begin_irq(&ring->syncp); 468 packets = ring->stats.packets; 469 bytes = ring->stats.bytes; 470 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 471 472 stats->rx_packets += packets; 473 stats->rx_bytes += bytes; 474 475 } 476 rcu_read_unlock(); 477 478 /* following stats updated by i40e_watchdog_subtask() */ 479 stats->multicast = vsi_stats->multicast; 480 stats->tx_errors = vsi_stats->tx_errors; 481 stats->tx_dropped = vsi_stats->tx_dropped; 482 stats->rx_errors = vsi_stats->rx_errors; 483 stats->rx_dropped = vsi_stats->rx_dropped; 484 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 485 stats->rx_length_errors = vsi_stats->rx_length_errors; 486 } 487 488 /** 489 * i40e_vsi_reset_stats - Resets all stats of the given vsi 490 * @vsi: the VSI to have its stats reset 491 **/ 492 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 493 { 494 struct rtnl_link_stats64 *ns; 495 int i; 496 497 if (!vsi) 498 return; 499 500 ns = i40e_get_vsi_stats_struct(vsi); 501 memset(ns, 0, sizeof(*ns)); 502 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 503 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 504 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 505 if (vsi->rx_rings && vsi->rx_rings[0]) { 506 for (i = 0; i < vsi->num_queue_pairs; i++) { 507 memset(&vsi->rx_rings[i]->stats, 0, 508 sizeof(vsi->rx_rings[i]->stats)); 509 memset(&vsi->rx_rings[i]->rx_stats, 0, 510 sizeof(vsi->rx_rings[i]->rx_stats)); 511 memset(&vsi->tx_rings[i]->stats, 0, 512 sizeof(vsi->tx_rings[i]->stats)); 513 memset(&vsi->tx_rings[i]->tx_stats, 0, 514 sizeof(vsi->tx_rings[i]->tx_stats)); 515 } 516 } 517 vsi->stat_offsets_loaded = false; 518 } 519 520 /** 521 * i40e_pf_reset_stats - Reset all of the stats for the given PF 522 * @pf: the PF to be reset 523 **/ 524 void i40e_pf_reset_stats(struct i40e_pf *pf) 525 { 526 int i; 527 528 memset(&pf->stats, 0, sizeof(pf->stats)); 529 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 530 pf->stat_offsets_loaded = false; 531 532 for (i = 0; i < I40E_MAX_VEB; i++) { 533 if (pf->veb[i]) { 534 memset(&pf->veb[i]->stats, 0, 535 sizeof(pf->veb[i]->stats)); 536 memset(&pf->veb[i]->stats_offsets, 0, 537 sizeof(pf->veb[i]->stats_offsets)); 538 memset(&pf->veb[i]->tc_stats, 0, 539 sizeof(pf->veb[i]->tc_stats)); 540 memset(&pf->veb[i]->tc_stats_offsets, 0, 541 sizeof(pf->veb[i]->tc_stats_offsets)); 542 pf->veb[i]->stat_offsets_loaded = false; 543 } 544 } 545 pf->hw_csum_rx_error = 0; 546 } 547 548 /** 549 * i40e_stat_update48 - read and update a 48 bit stat from the chip 550 * @hw: ptr to the hardware info 551 * @hireg: the high 32 bit reg to read 552 * @loreg: the low 32 bit reg to read 553 * @offset_loaded: has the initial offset been loaded yet 554 * @offset: ptr to current offset value 555 * @stat: ptr to the stat 556 * 557 * Since the device stats are not reset at PFReset, they likely will not 558 * be zeroed when the driver starts. We'll save the first values read 559 * and use them as offsets to be subtracted from the raw values in order 560 * to report stats that count from zero. In the process, we also manage 561 * the potential roll-over. 562 **/ 563 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 564 bool offset_loaded, u64 *offset, u64 *stat) 565 { 566 u64 new_data; 567 568 if (hw->device_id == I40E_DEV_ID_QEMU) { 569 new_data = rd32(hw, loreg); 570 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 571 } else { 572 new_data = rd64(hw, loreg); 573 } 574 if (!offset_loaded) 575 *offset = new_data; 576 if (likely(new_data >= *offset)) 577 *stat = new_data - *offset; 578 else 579 *stat = (new_data + BIT_ULL(48)) - *offset; 580 *stat &= 0xFFFFFFFFFFFFULL; 581 } 582 583 /** 584 * i40e_stat_update32 - read and update a 32 bit stat from the chip 585 * @hw: ptr to the hardware info 586 * @reg: the hw reg to read 587 * @offset_loaded: has the initial offset been loaded yet 588 * @offset: ptr to current offset value 589 * @stat: ptr to the stat 590 **/ 591 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 592 bool offset_loaded, u64 *offset, u64 *stat) 593 { 594 u32 new_data; 595 596 new_data = rd32(hw, reg); 597 if (!offset_loaded) 598 *offset = new_data; 599 if (likely(new_data >= *offset)) 600 *stat = (u32)(new_data - *offset); 601 else 602 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 603 } 604 605 /** 606 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 607 * @hw: ptr to the hardware info 608 * @reg: the hw reg to read and clear 609 * @stat: ptr to the stat 610 **/ 611 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 612 { 613 u32 new_data = rd32(hw, reg); 614 615 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 616 *stat += new_data; 617 } 618 619 /** 620 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 621 * @vsi: the VSI to be updated 622 **/ 623 void i40e_update_eth_stats(struct i40e_vsi *vsi) 624 { 625 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 626 struct i40e_pf *pf = vsi->back; 627 struct i40e_hw *hw = &pf->hw; 628 struct i40e_eth_stats *oes; 629 struct i40e_eth_stats *es; /* device's eth stats */ 630 631 es = &vsi->eth_stats; 632 oes = &vsi->eth_stats_offsets; 633 634 /* Gather up the stats that the hw collects */ 635 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->tx_errors, &es->tx_errors); 638 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 639 vsi->stat_offsets_loaded, 640 &oes->rx_discards, &es->rx_discards); 641 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 642 vsi->stat_offsets_loaded, 643 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 644 645 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 646 I40E_GLV_GORCL(stat_idx), 647 vsi->stat_offsets_loaded, 648 &oes->rx_bytes, &es->rx_bytes); 649 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 650 I40E_GLV_UPRCL(stat_idx), 651 vsi->stat_offsets_loaded, 652 &oes->rx_unicast, &es->rx_unicast); 653 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 654 I40E_GLV_MPRCL(stat_idx), 655 vsi->stat_offsets_loaded, 656 &oes->rx_multicast, &es->rx_multicast); 657 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 658 I40E_GLV_BPRCL(stat_idx), 659 vsi->stat_offsets_loaded, 660 &oes->rx_broadcast, &es->rx_broadcast); 661 662 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 663 I40E_GLV_GOTCL(stat_idx), 664 vsi->stat_offsets_loaded, 665 &oes->tx_bytes, &es->tx_bytes); 666 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 667 I40E_GLV_UPTCL(stat_idx), 668 vsi->stat_offsets_loaded, 669 &oes->tx_unicast, &es->tx_unicast); 670 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 671 I40E_GLV_MPTCL(stat_idx), 672 vsi->stat_offsets_loaded, 673 &oes->tx_multicast, &es->tx_multicast); 674 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 675 I40E_GLV_BPTCL(stat_idx), 676 vsi->stat_offsets_loaded, 677 &oes->tx_broadcast, &es->tx_broadcast); 678 vsi->stat_offsets_loaded = true; 679 } 680 681 /** 682 * i40e_update_veb_stats - Update Switch component statistics 683 * @veb: the VEB being updated 684 **/ 685 void i40e_update_veb_stats(struct i40e_veb *veb) 686 { 687 struct i40e_pf *pf = veb->pf; 688 struct i40e_hw *hw = &pf->hw; 689 struct i40e_eth_stats *oes; 690 struct i40e_eth_stats *es; /* device's eth stats */ 691 struct i40e_veb_tc_stats *veb_oes; 692 struct i40e_veb_tc_stats *veb_es; 693 int i, idx = 0; 694 695 idx = veb->stats_idx; 696 es = &veb->stats; 697 oes = &veb->stats_offsets; 698 veb_es = &veb->tc_stats; 699 veb_oes = &veb->tc_stats_offsets; 700 701 /* Gather up the stats that the hw collects */ 702 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 703 veb->stat_offsets_loaded, 704 &oes->tx_discards, &es->tx_discards); 705 if (hw->revision_id > 0) 706 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 707 veb->stat_offsets_loaded, 708 &oes->rx_unknown_protocol, 709 &es->rx_unknown_protocol); 710 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 711 veb->stat_offsets_loaded, 712 &oes->rx_bytes, &es->rx_bytes); 713 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 714 veb->stat_offsets_loaded, 715 &oes->rx_unicast, &es->rx_unicast); 716 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 717 veb->stat_offsets_loaded, 718 &oes->rx_multicast, &es->rx_multicast); 719 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 720 veb->stat_offsets_loaded, 721 &oes->rx_broadcast, &es->rx_broadcast); 722 723 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 724 veb->stat_offsets_loaded, 725 &oes->tx_bytes, &es->tx_bytes); 726 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 727 veb->stat_offsets_loaded, 728 &oes->tx_unicast, &es->tx_unicast); 729 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 730 veb->stat_offsets_loaded, 731 &oes->tx_multicast, &es->tx_multicast); 732 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 733 veb->stat_offsets_loaded, 734 &oes->tx_broadcast, &es->tx_broadcast); 735 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 736 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 737 I40E_GLVEBTC_RPCL(i, idx), 738 veb->stat_offsets_loaded, 739 &veb_oes->tc_rx_packets[i], 740 &veb_es->tc_rx_packets[i]); 741 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 742 I40E_GLVEBTC_RBCL(i, idx), 743 veb->stat_offsets_loaded, 744 &veb_oes->tc_rx_bytes[i], 745 &veb_es->tc_rx_bytes[i]); 746 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 747 I40E_GLVEBTC_TPCL(i, idx), 748 veb->stat_offsets_loaded, 749 &veb_oes->tc_tx_packets[i], 750 &veb_es->tc_tx_packets[i]); 751 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 752 I40E_GLVEBTC_TBCL(i, idx), 753 veb->stat_offsets_loaded, 754 &veb_oes->tc_tx_bytes[i], 755 &veb_es->tc_tx_bytes[i]); 756 } 757 veb->stat_offsets_loaded = true; 758 } 759 760 /** 761 * i40e_update_vsi_stats - Update the vsi statistics counters. 762 * @vsi: the VSI to be updated 763 * 764 * There are a few instances where we store the same stat in a 765 * couple of different structs. This is partly because we have 766 * the netdev stats that need to be filled out, which is slightly 767 * different from the "eth_stats" defined by the chip and used in 768 * VF communications. We sort it out here. 769 **/ 770 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 771 { 772 struct i40e_pf *pf = vsi->back; 773 struct rtnl_link_stats64 *ons; 774 struct rtnl_link_stats64 *ns; /* netdev stats */ 775 struct i40e_eth_stats *oes; 776 struct i40e_eth_stats *es; /* device's eth stats */ 777 u32 tx_restart, tx_busy; 778 struct i40e_ring *p; 779 u32 rx_page, rx_buf; 780 u64 bytes, packets; 781 unsigned int start; 782 u64 tx_linearize; 783 u64 tx_force_wb; 784 u64 rx_p, rx_b; 785 u64 tx_p, tx_b; 786 u16 q; 787 788 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 789 test_bit(__I40E_CONFIG_BUSY, pf->state)) 790 return; 791 792 ns = i40e_get_vsi_stats_struct(vsi); 793 ons = &vsi->net_stats_offsets; 794 es = &vsi->eth_stats; 795 oes = &vsi->eth_stats_offsets; 796 797 /* Gather up the netdev and vsi stats that the driver collects 798 * on the fly during packet processing 799 */ 800 rx_b = rx_p = 0; 801 tx_b = tx_p = 0; 802 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 803 rx_page = 0; 804 rx_buf = 0; 805 rcu_read_lock(); 806 for (q = 0; q < vsi->num_queue_pairs; q++) { 807 /* locate Tx ring */ 808 p = READ_ONCE(vsi->tx_rings[q]); 809 810 do { 811 start = u64_stats_fetch_begin_irq(&p->syncp); 812 packets = p->stats.packets; 813 bytes = p->stats.bytes; 814 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 815 tx_b += bytes; 816 tx_p += packets; 817 tx_restart += p->tx_stats.restart_queue; 818 tx_busy += p->tx_stats.tx_busy; 819 tx_linearize += p->tx_stats.tx_linearize; 820 tx_force_wb += p->tx_stats.tx_force_wb; 821 822 /* Rx queue is part of the same block as Tx queue */ 823 p = &p[1]; 824 do { 825 start = u64_stats_fetch_begin_irq(&p->syncp); 826 packets = p->stats.packets; 827 bytes = p->stats.bytes; 828 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 829 rx_b += bytes; 830 rx_p += packets; 831 rx_buf += p->rx_stats.alloc_buff_failed; 832 rx_page += p->rx_stats.alloc_page_failed; 833 } 834 rcu_read_unlock(); 835 vsi->tx_restart = tx_restart; 836 vsi->tx_busy = tx_busy; 837 vsi->tx_linearize = tx_linearize; 838 vsi->tx_force_wb = tx_force_wb; 839 vsi->rx_page_failed = rx_page; 840 vsi->rx_buf_failed = rx_buf; 841 842 ns->rx_packets = rx_p; 843 ns->rx_bytes = rx_b; 844 ns->tx_packets = tx_p; 845 ns->tx_bytes = tx_b; 846 847 /* update netdev stats from eth stats */ 848 i40e_update_eth_stats(vsi); 849 ons->tx_errors = oes->tx_errors; 850 ns->tx_errors = es->tx_errors; 851 ons->multicast = oes->rx_multicast; 852 ns->multicast = es->rx_multicast; 853 ons->rx_dropped = oes->rx_discards; 854 ns->rx_dropped = es->rx_discards; 855 ons->tx_dropped = oes->tx_discards; 856 ns->tx_dropped = es->tx_discards; 857 858 /* pull in a couple PF stats if this is the main vsi */ 859 if (vsi == pf->vsi[pf->lan_vsi]) { 860 ns->rx_crc_errors = pf->stats.crc_errors; 861 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 862 ns->rx_length_errors = pf->stats.rx_length_errors; 863 } 864 } 865 866 /** 867 * i40e_update_pf_stats - Update the PF statistics counters. 868 * @pf: the PF to be updated 869 **/ 870 static void i40e_update_pf_stats(struct i40e_pf *pf) 871 { 872 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 873 struct i40e_hw_port_stats *nsd = &pf->stats; 874 struct i40e_hw *hw = &pf->hw; 875 u32 val; 876 int i; 877 878 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 879 I40E_GLPRT_GORCL(hw->port), 880 pf->stat_offsets_loaded, 881 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 882 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 883 I40E_GLPRT_GOTCL(hw->port), 884 pf->stat_offsets_loaded, 885 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 886 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 887 pf->stat_offsets_loaded, 888 &osd->eth.rx_discards, 889 &nsd->eth.rx_discards); 890 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 891 I40E_GLPRT_UPRCL(hw->port), 892 pf->stat_offsets_loaded, 893 &osd->eth.rx_unicast, 894 &nsd->eth.rx_unicast); 895 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 896 I40E_GLPRT_MPRCL(hw->port), 897 pf->stat_offsets_loaded, 898 &osd->eth.rx_multicast, 899 &nsd->eth.rx_multicast); 900 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 901 I40E_GLPRT_BPRCL(hw->port), 902 pf->stat_offsets_loaded, 903 &osd->eth.rx_broadcast, 904 &nsd->eth.rx_broadcast); 905 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 906 I40E_GLPRT_UPTCL(hw->port), 907 pf->stat_offsets_loaded, 908 &osd->eth.tx_unicast, 909 &nsd->eth.tx_unicast); 910 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 911 I40E_GLPRT_MPTCL(hw->port), 912 pf->stat_offsets_loaded, 913 &osd->eth.tx_multicast, 914 &nsd->eth.tx_multicast); 915 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 916 I40E_GLPRT_BPTCL(hw->port), 917 pf->stat_offsets_loaded, 918 &osd->eth.tx_broadcast, 919 &nsd->eth.tx_broadcast); 920 921 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 922 pf->stat_offsets_loaded, 923 &osd->tx_dropped_link_down, 924 &nsd->tx_dropped_link_down); 925 926 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 927 pf->stat_offsets_loaded, 928 &osd->crc_errors, &nsd->crc_errors); 929 930 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 931 pf->stat_offsets_loaded, 932 &osd->illegal_bytes, &nsd->illegal_bytes); 933 934 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 935 pf->stat_offsets_loaded, 936 &osd->mac_local_faults, 937 &nsd->mac_local_faults); 938 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 939 pf->stat_offsets_loaded, 940 &osd->mac_remote_faults, 941 &nsd->mac_remote_faults); 942 943 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->rx_length_errors, 946 &nsd->rx_length_errors); 947 948 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 949 pf->stat_offsets_loaded, 950 &osd->link_xon_rx, &nsd->link_xon_rx); 951 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 952 pf->stat_offsets_loaded, 953 &osd->link_xon_tx, &nsd->link_xon_tx); 954 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 955 pf->stat_offsets_loaded, 956 &osd->link_xoff_rx, &nsd->link_xoff_rx); 957 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 958 pf->stat_offsets_loaded, 959 &osd->link_xoff_tx, &nsd->link_xoff_tx); 960 961 for (i = 0; i < 8; i++) { 962 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 963 pf->stat_offsets_loaded, 964 &osd->priority_xoff_rx[i], 965 &nsd->priority_xoff_rx[i]); 966 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 967 pf->stat_offsets_loaded, 968 &osd->priority_xon_rx[i], 969 &nsd->priority_xon_rx[i]); 970 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 971 pf->stat_offsets_loaded, 972 &osd->priority_xon_tx[i], 973 &nsd->priority_xon_tx[i]); 974 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 975 pf->stat_offsets_loaded, 976 &osd->priority_xoff_tx[i], 977 &nsd->priority_xoff_tx[i]); 978 i40e_stat_update32(hw, 979 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 980 pf->stat_offsets_loaded, 981 &osd->priority_xon_2_xoff[i], 982 &nsd->priority_xon_2_xoff[i]); 983 } 984 985 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 986 I40E_GLPRT_PRC64L(hw->port), 987 pf->stat_offsets_loaded, 988 &osd->rx_size_64, &nsd->rx_size_64); 989 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 990 I40E_GLPRT_PRC127L(hw->port), 991 pf->stat_offsets_loaded, 992 &osd->rx_size_127, &nsd->rx_size_127); 993 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 994 I40E_GLPRT_PRC255L(hw->port), 995 pf->stat_offsets_loaded, 996 &osd->rx_size_255, &nsd->rx_size_255); 997 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 998 I40E_GLPRT_PRC511L(hw->port), 999 pf->stat_offsets_loaded, 1000 &osd->rx_size_511, &nsd->rx_size_511); 1001 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1002 I40E_GLPRT_PRC1023L(hw->port), 1003 pf->stat_offsets_loaded, 1004 &osd->rx_size_1023, &nsd->rx_size_1023); 1005 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1006 I40E_GLPRT_PRC1522L(hw->port), 1007 pf->stat_offsets_loaded, 1008 &osd->rx_size_1522, &nsd->rx_size_1522); 1009 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1010 I40E_GLPRT_PRC9522L(hw->port), 1011 pf->stat_offsets_loaded, 1012 &osd->rx_size_big, &nsd->rx_size_big); 1013 1014 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1015 I40E_GLPRT_PTC64L(hw->port), 1016 pf->stat_offsets_loaded, 1017 &osd->tx_size_64, &nsd->tx_size_64); 1018 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1019 I40E_GLPRT_PTC127L(hw->port), 1020 pf->stat_offsets_loaded, 1021 &osd->tx_size_127, &nsd->tx_size_127); 1022 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1023 I40E_GLPRT_PTC255L(hw->port), 1024 pf->stat_offsets_loaded, 1025 &osd->tx_size_255, &nsd->tx_size_255); 1026 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1027 I40E_GLPRT_PTC511L(hw->port), 1028 pf->stat_offsets_loaded, 1029 &osd->tx_size_511, &nsd->tx_size_511); 1030 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1031 I40E_GLPRT_PTC1023L(hw->port), 1032 pf->stat_offsets_loaded, 1033 &osd->tx_size_1023, &nsd->tx_size_1023); 1034 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1035 I40E_GLPRT_PTC1522L(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->tx_size_1522, &nsd->tx_size_1522); 1038 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1039 I40E_GLPRT_PTC9522L(hw->port), 1040 pf->stat_offsets_loaded, 1041 &osd->tx_size_big, &nsd->tx_size_big); 1042 1043 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1044 pf->stat_offsets_loaded, 1045 &osd->rx_undersize, &nsd->rx_undersize); 1046 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1047 pf->stat_offsets_loaded, 1048 &osd->rx_fragments, &nsd->rx_fragments); 1049 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->rx_oversize, &nsd->rx_oversize); 1052 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->rx_jabber, &nsd->rx_jabber); 1055 1056 /* FDIR stats */ 1057 i40e_stat_update_and_clear32(hw, 1058 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1059 &nsd->fd_atr_match); 1060 i40e_stat_update_and_clear32(hw, 1061 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1062 &nsd->fd_sb_match); 1063 i40e_stat_update_and_clear32(hw, 1064 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1065 &nsd->fd_atr_tunnel_match); 1066 1067 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1068 nsd->tx_lpi_status = 1069 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1070 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1071 nsd->rx_lpi_status = 1072 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1073 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1074 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1075 pf->stat_offsets_loaded, 1076 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1077 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1078 pf->stat_offsets_loaded, 1079 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1080 1081 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1082 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1083 nsd->fd_sb_status = true; 1084 else 1085 nsd->fd_sb_status = false; 1086 1087 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1088 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1089 nsd->fd_atr_status = true; 1090 else 1091 nsd->fd_atr_status = false; 1092 1093 pf->stat_offsets_loaded = true; 1094 } 1095 1096 /** 1097 * i40e_update_stats - Update the various statistics counters. 1098 * @vsi: the VSI to be updated 1099 * 1100 * Update the various stats for this VSI and its related entities. 1101 **/ 1102 void i40e_update_stats(struct i40e_vsi *vsi) 1103 { 1104 struct i40e_pf *pf = vsi->back; 1105 1106 if (vsi == pf->vsi[pf->lan_vsi]) 1107 i40e_update_pf_stats(pf); 1108 1109 i40e_update_vsi_stats(vsi); 1110 } 1111 1112 /** 1113 * i40e_count_filters - counts VSI mac filters 1114 * @vsi: the VSI to be searched 1115 * 1116 * Returns count of mac filters 1117 **/ 1118 int i40e_count_filters(struct i40e_vsi *vsi) 1119 { 1120 struct i40e_mac_filter *f; 1121 struct hlist_node *h; 1122 int bkt; 1123 int cnt = 0; 1124 1125 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1126 ++cnt; 1127 1128 return cnt; 1129 } 1130 1131 /** 1132 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1133 * @vsi: the VSI to be searched 1134 * @macaddr: the MAC address 1135 * @vlan: the vlan 1136 * 1137 * Returns ptr to the filter object or NULL 1138 **/ 1139 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1140 const u8 *macaddr, s16 vlan) 1141 { 1142 struct i40e_mac_filter *f; 1143 u64 key; 1144 1145 if (!vsi || !macaddr) 1146 return NULL; 1147 1148 key = i40e_addr_to_hkey(macaddr); 1149 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1150 if ((ether_addr_equal(macaddr, f->macaddr)) && 1151 (vlan == f->vlan)) 1152 return f; 1153 } 1154 return NULL; 1155 } 1156 1157 /** 1158 * i40e_find_mac - Find a mac addr in the macvlan filters list 1159 * @vsi: the VSI to be searched 1160 * @macaddr: the MAC address we are searching for 1161 * 1162 * Returns the first filter with the provided MAC address or NULL if 1163 * MAC address was not found 1164 **/ 1165 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1166 { 1167 struct i40e_mac_filter *f; 1168 u64 key; 1169 1170 if (!vsi || !macaddr) 1171 return NULL; 1172 1173 key = i40e_addr_to_hkey(macaddr); 1174 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1175 if ((ether_addr_equal(macaddr, f->macaddr))) 1176 return f; 1177 } 1178 return NULL; 1179 } 1180 1181 /** 1182 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1183 * @vsi: the VSI to be searched 1184 * 1185 * Returns true if VSI is in vlan mode or false otherwise 1186 **/ 1187 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1188 { 1189 /* If we have a PVID, always operate in VLAN mode */ 1190 if (vsi->info.pvid) 1191 return true; 1192 1193 /* We need to operate in VLAN mode whenever we have any filters with 1194 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1195 * time, incurring search cost repeatedly. However, we can notice two 1196 * things: 1197 * 1198 * 1) the only place where we can gain a VLAN filter is in 1199 * i40e_add_filter. 1200 * 1201 * 2) the only place where filters are actually removed is in 1202 * i40e_sync_filters_subtask. 1203 * 1204 * Thus, we can simply use a boolean value, has_vlan_filters which we 1205 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1206 * we have to perform the full search after deleting filters in 1207 * i40e_sync_filters_subtask, but we already have to search 1208 * filters here and can perform the check at the same time. This 1209 * results in avoiding embedding a loop for VLAN mode inside another 1210 * loop over all the filters, and should maintain correctness as noted 1211 * above. 1212 */ 1213 return vsi->has_vlan_filter; 1214 } 1215 1216 /** 1217 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1218 * @vsi: the VSI to configure 1219 * @tmp_add_list: list of filters ready to be added 1220 * @tmp_del_list: list of filters ready to be deleted 1221 * @vlan_filters: the number of active VLAN filters 1222 * 1223 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1224 * behave as expected. If we have any active VLAN filters remaining or about 1225 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1226 * so that they only match against untagged traffic. If we no longer have any 1227 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1228 * so that they match against both tagged and untagged traffic. In this way, 1229 * we ensure that we correctly receive the desired traffic. This ensures that 1230 * when we have an active VLAN we will receive only untagged traffic and 1231 * traffic matching active VLANs. If we have no active VLANs then we will 1232 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1233 * 1234 * Finally, in a similar fashion, this function also corrects filters when 1235 * there is an active PVID assigned to this VSI. 1236 * 1237 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1238 * 1239 * This function is only expected to be called from within 1240 * i40e_sync_vsi_filters. 1241 * 1242 * NOTE: This function expects to be called while under the 1243 * mac_filter_hash_lock 1244 */ 1245 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1246 struct hlist_head *tmp_add_list, 1247 struct hlist_head *tmp_del_list, 1248 int vlan_filters) 1249 { 1250 s16 pvid = le16_to_cpu(vsi->info.pvid); 1251 struct i40e_mac_filter *f, *add_head; 1252 struct i40e_new_mac_filter *new; 1253 struct hlist_node *h; 1254 int bkt, new_vlan; 1255 1256 /* To determine if a particular filter needs to be replaced we 1257 * have the three following conditions: 1258 * 1259 * a) if we have a PVID assigned, then all filters which are 1260 * not marked as VLAN=PVID must be replaced with filters that 1261 * are. 1262 * b) otherwise, if we have any active VLANS, all filters 1263 * which are marked as VLAN=-1 must be replaced with 1264 * filters marked as VLAN=0 1265 * c) finally, if we do not have any active VLANS, all filters 1266 * which are marked as VLAN=0 must be replaced with filters 1267 * marked as VLAN=-1 1268 */ 1269 1270 /* Update the filters about to be added in place */ 1271 hlist_for_each_entry(new, tmp_add_list, hlist) { 1272 if (pvid && new->f->vlan != pvid) 1273 new->f->vlan = pvid; 1274 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1275 new->f->vlan = 0; 1276 else if (!vlan_filters && new->f->vlan == 0) 1277 new->f->vlan = I40E_VLAN_ANY; 1278 } 1279 1280 /* Update the remaining active filters */ 1281 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1282 /* Combine the checks for whether a filter needs to be changed 1283 * and then determine the new VLAN inside the if block, in 1284 * order to avoid duplicating code for adding the new filter 1285 * then deleting the old filter. 1286 */ 1287 if ((pvid && f->vlan != pvid) || 1288 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1289 (!vlan_filters && f->vlan == 0)) { 1290 /* Determine the new vlan we will be adding */ 1291 if (pvid) 1292 new_vlan = pvid; 1293 else if (vlan_filters) 1294 new_vlan = 0; 1295 else 1296 new_vlan = I40E_VLAN_ANY; 1297 1298 /* Create the new filter */ 1299 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1300 if (!add_head) 1301 return -ENOMEM; 1302 1303 /* Create a temporary i40e_new_mac_filter */ 1304 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1305 if (!new) 1306 return -ENOMEM; 1307 1308 new->f = add_head; 1309 new->state = add_head->state; 1310 1311 /* Add the new filter to the tmp list */ 1312 hlist_add_head(&new->hlist, tmp_add_list); 1313 1314 /* Put the original filter into the delete list */ 1315 f->state = I40E_FILTER_REMOVE; 1316 hash_del(&f->hlist); 1317 hlist_add_head(&f->hlist, tmp_del_list); 1318 } 1319 } 1320 1321 vsi->has_vlan_filter = !!vlan_filters; 1322 1323 return 0; 1324 } 1325 1326 /** 1327 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1328 * @vsi: the PF Main VSI - inappropriate for any other VSI 1329 * @macaddr: the MAC address 1330 * 1331 * Remove whatever filter the firmware set up so the driver can manage 1332 * its own filtering intelligently. 1333 **/ 1334 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1335 { 1336 struct i40e_aqc_remove_macvlan_element_data element; 1337 struct i40e_pf *pf = vsi->back; 1338 1339 /* Only appropriate for the PF main VSI */ 1340 if (vsi->type != I40E_VSI_MAIN) 1341 return; 1342 1343 memset(&element, 0, sizeof(element)); 1344 ether_addr_copy(element.mac_addr, macaddr); 1345 element.vlan_tag = 0; 1346 /* Ignore error returns, some firmware does it this way... */ 1347 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1348 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1349 1350 memset(&element, 0, sizeof(element)); 1351 ether_addr_copy(element.mac_addr, macaddr); 1352 element.vlan_tag = 0; 1353 /* ...and some firmware does it this way. */ 1354 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1355 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1356 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1357 } 1358 1359 /** 1360 * i40e_add_filter - Add a mac/vlan filter to the VSI 1361 * @vsi: the VSI to be searched 1362 * @macaddr: the MAC address 1363 * @vlan: the vlan 1364 * 1365 * Returns ptr to the filter object or NULL when no memory available. 1366 * 1367 * NOTE: This function is expected to be called with mac_filter_hash_lock 1368 * being held. 1369 **/ 1370 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1371 const u8 *macaddr, s16 vlan) 1372 { 1373 struct i40e_mac_filter *f; 1374 u64 key; 1375 1376 if (!vsi || !macaddr) 1377 return NULL; 1378 1379 f = i40e_find_filter(vsi, macaddr, vlan); 1380 if (!f) { 1381 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1382 if (!f) 1383 return NULL; 1384 1385 /* Update the boolean indicating if we need to function in 1386 * VLAN mode. 1387 */ 1388 if (vlan >= 0) 1389 vsi->has_vlan_filter = true; 1390 1391 ether_addr_copy(f->macaddr, macaddr); 1392 f->vlan = vlan; 1393 f->state = I40E_FILTER_NEW; 1394 INIT_HLIST_NODE(&f->hlist); 1395 1396 key = i40e_addr_to_hkey(macaddr); 1397 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1398 1399 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1400 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1401 } 1402 1403 /* If we're asked to add a filter that has been marked for removal, it 1404 * is safe to simply restore it to active state. __i40e_del_filter 1405 * will have simply deleted any filters which were previously marked 1406 * NEW or FAILED, so if it is currently marked REMOVE it must have 1407 * previously been ACTIVE. Since we haven't yet run the sync filters 1408 * task, just restore this filter to the ACTIVE state so that the 1409 * sync task leaves it in place 1410 */ 1411 if (f->state == I40E_FILTER_REMOVE) 1412 f->state = I40E_FILTER_ACTIVE; 1413 1414 return f; 1415 } 1416 1417 /** 1418 * __i40e_del_filter - Remove a specific filter from the VSI 1419 * @vsi: VSI to remove from 1420 * @f: the filter to remove from the list 1421 * 1422 * This function should be called instead of i40e_del_filter only if you know 1423 * the exact filter you will remove already, such as via i40e_find_filter or 1424 * i40e_find_mac. 1425 * 1426 * NOTE: This function is expected to be called with mac_filter_hash_lock 1427 * being held. 1428 * ANOTHER NOTE: This function MUST be called from within the context of 1429 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1430 * instead of list_for_each_entry(). 1431 **/ 1432 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1433 { 1434 if (!f) 1435 return; 1436 1437 /* If the filter was never added to firmware then we can just delete it 1438 * directly and we don't want to set the status to remove or else an 1439 * admin queue command will unnecessarily fire. 1440 */ 1441 if ((f->state == I40E_FILTER_FAILED) || 1442 (f->state == I40E_FILTER_NEW)) { 1443 hash_del(&f->hlist); 1444 kfree(f); 1445 } else { 1446 f->state = I40E_FILTER_REMOVE; 1447 } 1448 1449 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1450 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1451 } 1452 1453 /** 1454 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1455 * @vsi: the VSI to be searched 1456 * @macaddr: the MAC address 1457 * @vlan: the VLAN 1458 * 1459 * NOTE: This function is expected to be called with mac_filter_hash_lock 1460 * being held. 1461 * ANOTHER NOTE: This function MUST be called from within the context of 1462 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1463 * instead of list_for_each_entry(). 1464 **/ 1465 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1466 { 1467 struct i40e_mac_filter *f; 1468 1469 if (!vsi || !macaddr) 1470 return; 1471 1472 f = i40e_find_filter(vsi, macaddr, vlan); 1473 __i40e_del_filter(vsi, f); 1474 } 1475 1476 /** 1477 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1478 * @vsi: the VSI to be searched 1479 * @macaddr: the mac address to be filtered 1480 * 1481 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1482 * go through all the macvlan filters and add a macvlan filter for each 1483 * unique vlan that already exists. If a PVID has been assigned, instead only 1484 * add the macaddr to that VLAN. 1485 * 1486 * Returns last filter added on success, else NULL 1487 **/ 1488 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1489 const u8 *macaddr) 1490 { 1491 struct i40e_mac_filter *f, *add = NULL; 1492 struct hlist_node *h; 1493 int bkt; 1494 1495 if (vsi->info.pvid) 1496 return i40e_add_filter(vsi, macaddr, 1497 le16_to_cpu(vsi->info.pvid)); 1498 1499 if (!i40e_is_vsi_in_vlan(vsi)) 1500 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1501 1502 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1503 if (f->state == I40E_FILTER_REMOVE) 1504 continue; 1505 add = i40e_add_filter(vsi, macaddr, f->vlan); 1506 if (!add) 1507 return NULL; 1508 } 1509 1510 return add; 1511 } 1512 1513 /** 1514 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1515 * @vsi: the VSI to be searched 1516 * @macaddr: the mac address to be removed 1517 * 1518 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1519 * associated with. 1520 * 1521 * Returns 0 for success, or error 1522 **/ 1523 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1524 { 1525 struct i40e_mac_filter *f; 1526 struct hlist_node *h; 1527 bool found = false; 1528 int bkt; 1529 1530 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1531 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1532 if (ether_addr_equal(macaddr, f->macaddr)) { 1533 __i40e_del_filter(vsi, f); 1534 found = true; 1535 } 1536 } 1537 1538 if (found) 1539 return 0; 1540 else 1541 return -ENOENT; 1542 } 1543 1544 /** 1545 * i40e_set_mac - NDO callback to set mac address 1546 * @netdev: network interface device structure 1547 * @p: pointer to an address structure 1548 * 1549 * Returns 0 on success, negative on failure 1550 **/ 1551 static int i40e_set_mac(struct net_device *netdev, void *p) 1552 { 1553 struct i40e_netdev_priv *np = netdev_priv(netdev); 1554 struct i40e_vsi *vsi = np->vsi; 1555 struct i40e_pf *pf = vsi->back; 1556 struct i40e_hw *hw = &pf->hw; 1557 struct sockaddr *addr = p; 1558 1559 if (!is_valid_ether_addr(addr->sa_data)) 1560 return -EADDRNOTAVAIL; 1561 1562 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1563 netdev_info(netdev, "already using mac address %pM\n", 1564 addr->sa_data); 1565 return 0; 1566 } 1567 1568 if (test_bit(__I40E_DOWN, pf->state) || 1569 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1570 return -EADDRNOTAVAIL; 1571 1572 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1573 netdev_info(netdev, "returning to hw mac address %pM\n", 1574 hw->mac.addr); 1575 else 1576 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1577 1578 /* Copy the address first, so that we avoid a possible race with 1579 * .set_rx_mode(). 1580 * - Remove old address from MAC filter 1581 * - Copy new address 1582 * - Add new address to MAC filter 1583 */ 1584 spin_lock_bh(&vsi->mac_filter_hash_lock); 1585 i40e_del_mac_filter(vsi, netdev->dev_addr); 1586 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1587 i40e_add_mac_filter(vsi, netdev->dev_addr); 1588 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1589 1590 if (vsi->type == I40E_VSI_MAIN) { 1591 i40e_status ret; 1592 1593 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1594 addr->sa_data, NULL); 1595 if (ret) 1596 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1597 i40e_stat_str(hw, ret), 1598 i40e_aq_str(hw, hw->aq.asq_last_status)); 1599 } 1600 1601 /* schedule our worker thread which will take care of 1602 * applying the new filter changes 1603 */ 1604 i40e_service_event_schedule(pf); 1605 return 0; 1606 } 1607 1608 /** 1609 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1610 * @vsi: vsi structure 1611 * @seed: RSS hash seed 1612 **/ 1613 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1614 u8 *lut, u16 lut_size) 1615 { 1616 struct i40e_pf *pf = vsi->back; 1617 struct i40e_hw *hw = &pf->hw; 1618 int ret = 0; 1619 1620 if (seed) { 1621 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1622 (struct i40e_aqc_get_set_rss_key_data *)seed; 1623 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1624 if (ret) { 1625 dev_info(&pf->pdev->dev, 1626 "Cannot set RSS key, err %s aq_err %s\n", 1627 i40e_stat_str(hw, ret), 1628 i40e_aq_str(hw, hw->aq.asq_last_status)); 1629 return ret; 1630 } 1631 } 1632 if (lut) { 1633 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1634 1635 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1636 if (ret) { 1637 dev_info(&pf->pdev->dev, 1638 "Cannot set RSS lut, err %s aq_err %s\n", 1639 i40e_stat_str(hw, ret), 1640 i40e_aq_str(hw, hw->aq.asq_last_status)); 1641 return ret; 1642 } 1643 } 1644 return ret; 1645 } 1646 1647 /** 1648 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1649 * @vsi: VSI structure 1650 **/ 1651 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1652 { 1653 struct i40e_pf *pf = vsi->back; 1654 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1655 u8 *lut; 1656 int ret; 1657 1658 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1659 return 0; 1660 if (!vsi->rss_size) 1661 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1662 vsi->num_queue_pairs); 1663 if (!vsi->rss_size) 1664 return -EINVAL; 1665 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1666 if (!lut) 1667 return -ENOMEM; 1668 1669 /* Use the user configured hash keys and lookup table if there is one, 1670 * otherwise use default 1671 */ 1672 if (vsi->rss_lut_user) 1673 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1674 else 1675 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1676 if (vsi->rss_hkey_user) 1677 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1678 else 1679 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1680 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1681 kfree(lut); 1682 return ret; 1683 } 1684 1685 /** 1686 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1687 * @vsi: the VSI being configured, 1688 * @ctxt: VSI context structure 1689 * @enabled_tc: number of traffic classes to enable 1690 * 1691 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1692 **/ 1693 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1694 struct i40e_vsi_context *ctxt, 1695 u8 enabled_tc) 1696 { 1697 u16 qcount = 0, max_qcount, qmap, sections = 0; 1698 int i, override_q, pow, num_qps, ret; 1699 u8 netdev_tc = 0, offset = 0; 1700 1701 if (vsi->type != I40E_VSI_MAIN) 1702 return -EINVAL; 1703 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1704 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1705 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1706 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1707 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1708 1709 /* find the next higher power-of-2 of num queue pairs */ 1710 pow = ilog2(num_qps); 1711 if (!is_power_of_2(num_qps)) 1712 pow++; 1713 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1714 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1715 1716 /* Setup queue offset/count for all TCs for given VSI */ 1717 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1718 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1719 /* See if the given TC is enabled for the given VSI */ 1720 if (vsi->tc_config.enabled_tc & BIT(i)) { 1721 offset = vsi->mqprio_qopt.qopt.offset[i]; 1722 qcount = vsi->mqprio_qopt.qopt.count[i]; 1723 if (qcount > max_qcount) 1724 max_qcount = qcount; 1725 vsi->tc_config.tc_info[i].qoffset = offset; 1726 vsi->tc_config.tc_info[i].qcount = qcount; 1727 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1728 } else { 1729 /* TC is not enabled so set the offset to 1730 * default queue and allocate one queue 1731 * for the given TC. 1732 */ 1733 vsi->tc_config.tc_info[i].qoffset = 0; 1734 vsi->tc_config.tc_info[i].qcount = 1; 1735 vsi->tc_config.tc_info[i].netdev_tc = 0; 1736 } 1737 } 1738 1739 /* Set actual Tx/Rx queue pairs */ 1740 vsi->num_queue_pairs = offset + qcount; 1741 1742 /* Setup queue TC[0].qmap for given VSI context */ 1743 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1744 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1745 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1746 ctxt->info.valid_sections |= cpu_to_le16(sections); 1747 1748 /* Reconfigure RSS for main VSI with max queue count */ 1749 vsi->rss_size = max_qcount; 1750 ret = i40e_vsi_config_rss(vsi); 1751 if (ret) { 1752 dev_info(&vsi->back->pdev->dev, 1753 "Failed to reconfig rss for num_queues (%u)\n", 1754 max_qcount); 1755 return ret; 1756 } 1757 vsi->reconfig_rss = true; 1758 dev_dbg(&vsi->back->pdev->dev, 1759 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1760 1761 /* Find queue count available for channel VSIs and starting offset 1762 * for channel VSIs 1763 */ 1764 override_q = vsi->mqprio_qopt.qopt.count[0]; 1765 if (override_q && override_q < vsi->num_queue_pairs) { 1766 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1767 vsi->next_base_queue = override_q; 1768 } 1769 return 0; 1770 } 1771 1772 /** 1773 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1774 * @vsi: the VSI being setup 1775 * @ctxt: VSI context structure 1776 * @enabled_tc: Enabled TCs bitmap 1777 * @is_add: True if called before Add VSI 1778 * 1779 * Setup VSI queue mapping for enabled traffic classes. 1780 **/ 1781 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1782 struct i40e_vsi_context *ctxt, 1783 u8 enabled_tc, 1784 bool is_add) 1785 { 1786 struct i40e_pf *pf = vsi->back; 1787 u16 sections = 0; 1788 u8 netdev_tc = 0; 1789 u16 numtc = 1; 1790 u16 qcount; 1791 u8 offset; 1792 u16 qmap; 1793 int i; 1794 u16 num_tc_qps = 0; 1795 1796 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1797 offset = 0; 1798 1799 /* Number of queues per enabled TC */ 1800 num_tc_qps = vsi->alloc_queue_pairs; 1801 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1802 /* Find numtc from enabled TC bitmap */ 1803 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1804 if (enabled_tc & BIT(i)) /* TC is enabled */ 1805 numtc++; 1806 } 1807 if (!numtc) { 1808 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1809 numtc = 1; 1810 } 1811 num_tc_qps = num_tc_qps / numtc; 1812 num_tc_qps = min_t(int, num_tc_qps, 1813 i40e_pf_get_max_q_per_tc(pf)); 1814 } 1815 1816 vsi->tc_config.numtc = numtc; 1817 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1818 1819 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1820 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1821 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1822 1823 /* Setup queue offset/count for all TCs for given VSI */ 1824 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1825 /* See if the given TC is enabled for the given VSI */ 1826 if (vsi->tc_config.enabled_tc & BIT(i)) { 1827 /* TC is enabled */ 1828 int pow, num_qps; 1829 1830 switch (vsi->type) { 1831 case I40E_VSI_MAIN: 1832 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1833 I40E_FLAG_FD_ATR_ENABLED)) || 1834 vsi->tc_config.enabled_tc != 1) { 1835 qcount = min_t(int, pf->alloc_rss_size, 1836 num_tc_qps); 1837 break; 1838 } 1839 /* fall through */ 1840 case I40E_VSI_FDIR: 1841 case I40E_VSI_SRIOV: 1842 case I40E_VSI_VMDQ2: 1843 default: 1844 qcount = num_tc_qps; 1845 WARN_ON(i != 0); 1846 break; 1847 } 1848 vsi->tc_config.tc_info[i].qoffset = offset; 1849 vsi->tc_config.tc_info[i].qcount = qcount; 1850 1851 /* find the next higher power-of-2 of num queue pairs */ 1852 num_qps = qcount; 1853 pow = 0; 1854 while (num_qps && (BIT_ULL(pow) < qcount)) { 1855 pow++; 1856 num_qps >>= 1; 1857 } 1858 1859 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1860 qmap = 1861 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1862 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1863 1864 offset += qcount; 1865 } else { 1866 /* TC is not enabled so set the offset to 1867 * default queue and allocate one queue 1868 * for the given TC. 1869 */ 1870 vsi->tc_config.tc_info[i].qoffset = 0; 1871 vsi->tc_config.tc_info[i].qcount = 1; 1872 vsi->tc_config.tc_info[i].netdev_tc = 0; 1873 1874 qmap = 0; 1875 } 1876 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1877 } 1878 1879 /* Set actual Tx/Rx queue pairs */ 1880 vsi->num_queue_pairs = offset; 1881 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1882 if (vsi->req_queue_pairs > 0) 1883 vsi->num_queue_pairs = vsi->req_queue_pairs; 1884 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1885 vsi->num_queue_pairs = pf->num_lan_msix; 1886 } 1887 1888 /* Scheduler section valid can only be set for ADD VSI */ 1889 if (is_add) { 1890 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1891 1892 ctxt->info.up_enable_bits = enabled_tc; 1893 } 1894 if (vsi->type == I40E_VSI_SRIOV) { 1895 ctxt->info.mapping_flags |= 1896 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1897 for (i = 0; i < vsi->num_queue_pairs; i++) 1898 ctxt->info.queue_mapping[i] = 1899 cpu_to_le16(vsi->base_queue + i); 1900 } else { 1901 ctxt->info.mapping_flags |= 1902 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1903 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1904 } 1905 ctxt->info.valid_sections |= cpu_to_le16(sections); 1906 } 1907 1908 /** 1909 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1910 * @netdev: the netdevice 1911 * @addr: address to add 1912 * 1913 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1914 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1915 */ 1916 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1917 { 1918 struct i40e_netdev_priv *np = netdev_priv(netdev); 1919 struct i40e_vsi *vsi = np->vsi; 1920 1921 if (i40e_add_mac_filter(vsi, addr)) 1922 return 0; 1923 else 1924 return -ENOMEM; 1925 } 1926 1927 /** 1928 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1929 * @netdev: the netdevice 1930 * @addr: address to add 1931 * 1932 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1933 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1934 */ 1935 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1936 { 1937 struct i40e_netdev_priv *np = netdev_priv(netdev); 1938 struct i40e_vsi *vsi = np->vsi; 1939 1940 /* Under some circumstances, we might receive a request to delete 1941 * our own device address from our uc list. Because we store the 1942 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1943 * such requests and not delete our device address from this list. 1944 */ 1945 if (ether_addr_equal(addr, netdev->dev_addr)) 1946 return 0; 1947 1948 i40e_del_mac_filter(vsi, addr); 1949 1950 return 0; 1951 } 1952 1953 /** 1954 * i40e_set_rx_mode - NDO callback to set the netdev filters 1955 * @netdev: network interface device structure 1956 **/ 1957 static void i40e_set_rx_mode(struct net_device *netdev) 1958 { 1959 struct i40e_netdev_priv *np = netdev_priv(netdev); 1960 struct i40e_vsi *vsi = np->vsi; 1961 1962 spin_lock_bh(&vsi->mac_filter_hash_lock); 1963 1964 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1965 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1966 1967 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1968 1969 /* check for other flag changes */ 1970 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1971 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1972 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1973 } 1974 } 1975 1976 /** 1977 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1978 * @vsi: Pointer to VSI struct 1979 * @from: Pointer to list which contains MAC filter entries - changes to 1980 * those entries needs to be undone. 1981 * 1982 * MAC filter entries from this list were slated for deletion. 1983 **/ 1984 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1985 struct hlist_head *from) 1986 { 1987 struct i40e_mac_filter *f; 1988 struct hlist_node *h; 1989 1990 hlist_for_each_entry_safe(f, h, from, hlist) { 1991 u64 key = i40e_addr_to_hkey(f->macaddr); 1992 1993 /* Move the element back into MAC filter list*/ 1994 hlist_del(&f->hlist); 1995 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1996 } 1997 } 1998 1999 /** 2000 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2001 * @vsi: Pointer to vsi struct 2002 * @from: Pointer to list which contains MAC filter entries - changes to 2003 * those entries needs to be undone. 2004 * 2005 * MAC filter entries from this list were slated for addition. 2006 **/ 2007 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2008 struct hlist_head *from) 2009 { 2010 struct i40e_new_mac_filter *new; 2011 struct hlist_node *h; 2012 2013 hlist_for_each_entry_safe(new, h, from, hlist) { 2014 /* We can simply free the wrapper structure */ 2015 hlist_del(&new->hlist); 2016 kfree(new); 2017 } 2018 } 2019 2020 /** 2021 * i40e_next_entry - Get the next non-broadcast filter from a list 2022 * @next: pointer to filter in list 2023 * 2024 * Returns the next non-broadcast filter in the list. Required so that we 2025 * ignore broadcast filters within the list, since these are not handled via 2026 * the normal firmware update path. 2027 */ 2028 static 2029 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2030 { 2031 hlist_for_each_entry_continue(next, hlist) { 2032 if (!is_broadcast_ether_addr(next->f->macaddr)) 2033 return next; 2034 } 2035 2036 return NULL; 2037 } 2038 2039 /** 2040 * i40e_update_filter_state - Update filter state based on return data 2041 * from firmware 2042 * @count: Number of filters added 2043 * @add_list: return data from fw 2044 * @add_head: pointer to first filter in current batch 2045 * 2046 * MAC filter entries from list were slated to be added to device. Returns 2047 * number of successful filters. Note that 0 does NOT mean success! 2048 **/ 2049 static int 2050 i40e_update_filter_state(int count, 2051 struct i40e_aqc_add_macvlan_element_data *add_list, 2052 struct i40e_new_mac_filter *add_head) 2053 { 2054 int retval = 0; 2055 int i; 2056 2057 for (i = 0; i < count; i++) { 2058 /* Always check status of each filter. We don't need to check 2059 * the firmware return status because we pre-set the filter 2060 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2061 * request to the adminq. Thus, if it no longer matches then 2062 * we know the filter is active. 2063 */ 2064 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2065 add_head->state = I40E_FILTER_FAILED; 2066 } else { 2067 add_head->state = I40E_FILTER_ACTIVE; 2068 retval++; 2069 } 2070 2071 add_head = i40e_next_filter(add_head); 2072 if (!add_head) 2073 break; 2074 } 2075 2076 return retval; 2077 } 2078 2079 /** 2080 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2081 * @vsi: ptr to the VSI 2082 * @vsi_name: name to display in messages 2083 * @list: the list of filters to send to firmware 2084 * @num_del: the number of filters to delete 2085 * @retval: Set to -EIO on failure to delete 2086 * 2087 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2088 * *retval instead of a return value so that success does not force ret_val to 2089 * be set to 0. This ensures that a sequence of calls to this function 2090 * preserve the previous value of *retval on successful delete. 2091 */ 2092 static 2093 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2094 struct i40e_aqc_remove_macvlan_element_data *list, 2095 int num_del, int *retval) 2096 { 2097 struct i40e_hw *hw = &vsi->back->hw; 2098 i40e_status aq_ret; 2099 int aq_err; 2100 2101 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2102 aq_err = hw->aq.asq_last_status; 2103 2104 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2105 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2106 *retval = -EIO; 2107 dev_info(&vsi->back->pdev->dev, 2108 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2109 vsi_name, i40e_stat_str(hw, aq_ret), 2110 i40e_aq_str(hw, aq_err)); 2111 } 2112 } 2113 2114 /** 2115 * i40e_aqc_add_filters - Request firmware to add a set of filters 2116 * @vsi: ptr to the VSI 2117 * @vsi_name: name to display in messages 2118 * @list: the list of filters to send to firmware 2119 * @add_head: Position in the add hlist 2120 * @num_add: the number of filters to add 2121 * 2122 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2123 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2124 * space for more filters. 2125 */ 2126 static 2127 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2128 struct i40e_aqc_add_macvlan_element_data *list, 2129 struct i40e_new_mac_filter *add_head, 2130 int num_add) 2131 { 2132 struct i40e_hw *hw = &vsi->back->hw; 2133 int aq_err, fcnt; 2134 2135 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2136 aq_err = hw->aq.asq_last_status; 2137 fcnt = i40e_update_filter_state(num_add, list, add_head); 2138 2139 if (fcnt != num_add) { 2140 if (vsi->type == I40E_VSI_MAIN) { 2141 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2142 dev_warn(&vsi->back->pdev->dev, 2143 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2144 i40e_aq_str(hw, aq_err), vsi_name); 2145 } else if (vsi->type == I40E_VSI_SRIOV || 2146 vsi->type == I40E_VSI_VMDQ1 || 2147 vsi->type == I40E_VSI_VMDQ2) { 2148 dev_warn(&vsi->back->pdev->dev, 2149 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2150 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2151 } else { 2152 dev_warn(&vsi->back->pdev->dev, 2153 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2154 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2155 } 2156 } 2157 } 2158 2159 /** 2160 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2161 * @vsi: pointer to the VSI 2162 * @vsi_name: the VSI name 2163 * @f: filter data 2164 * 2165 * This function sets or clears the promiscuous broadcast flags for VLAN 2166 * filters in order to properly receive broadcast frames. Assumes that only 2167 * broadcast filters are passed. 2168 * 2169 * Returns status indicating success or failure; 2170 **/ 2171 static i40e_status 2172 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2173 struct i40e_mac_filter *f) 2174 { 2175 bool enable = f->state == I40E_FILTER_NEW; 2176 struct i40e_hw *hw = &vsi->back->hw; 2177 i40e_status aq_ret; 2178 2179 if (f->vlan == I40E_VLAN_ANY) { 2180 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2181 vsi->seid, 2182 enable, 2183 NULL); 2184 } else { 2185 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2186 vsi->seid, 2187 enable, 2188 f->vlan, 2189 NULL); 2190 } 2191 2192 if (aq_ret) { 2193 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2194 dev_warn(&vsi->back->pdev->dev, 2195 "Error %s, forcing overflow promiscuous on %s\n", 2196 i40e_aq_str(hw, hw->aq.asq_last_status), 2197 vsi_name); 2198 } 2199 2200 return aq_ret; 2201 } 2202 2203 /** 2204 * i40e_set_promiscuous - set promiscuous mode 2205 * @pf: board private structure 2206 * @promisc: promisc on or off 2207 * 2208 * There are different ways of setting promiscuous mode on a PF depending on 2209 * what state/environment we're in. This identifies and sets it appropriately. 2210 * Returns 0 on success. 2211 **/ 2212 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2213 { 2214 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2215 struct i40e_hw *hw = &pf->hw; 2216 i40e_status aq_ret; 2217 2218 if (vsi->type == I40E_VSI_MAIN && 2219 pf->lan_veb != I40E_NO_VEB && 2220 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2221 /* set defport ON for Main VSI instead of true promisc 2222 * this way we will get all unicast/multicast and VLAN 2223 * promisc behavior but will not get VF or VMDq traffic 2224 * replicated on the Main VSI. 2225 */ 2226 if (promisc) 2227 aq_ret = i40e_aq_set_default_vsi(hw, 2228 vsi->seid, 2229 NULL); 2230 else 2231 aq_ret = i40e_aq_clear_default_vsi(hw, 2232 vsi->seid, 2233 NULL); 2234 if (aq_ret) { 2235 dev_info(&pf->pdev->dev, 2236 "Set default VSI failed, err %s, aq_err %s\n", 2237 i40e_stat_str(hw, aq_ret), 2238 i40e_aq_str(hw, hw->aq.asq_last_status)); 2239 } 2240 } else { 2241 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2242 hw, 2243 vsi->seid, 2244 promisc, NULL, 2245 true); 2246 if (aq_ret) { 2247 dev_info(&pf->pdev->dev, 2248 "set unicast promisc failed, err %s, aq_err %s\n", 2249 i40e_stat_str(hw, aq_ret), 2250 i40e_aq_str(hw, hw->aq.asq_last_status)); 2251 } 2252 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2253 hw, 2254 vsi->seid, 2255 promisc, NULL); 2256 if (aq_ret) { 2257 dev_info(&pf->pdev->dev, 2258 "set multicast promisc failed, err %s, aq_err %s\n", 2259 i40e_stat_str(hw, aq_ret), 2260 i40e_aq_str(hw, hw->aq.asq_last_status)); 2261 } 2262 } 2263 2264 if (!aq_ret) 2265 pf->cur_promisc = promisc; 2266 2267 return aq_ret; 2268 } 2269 2270 /** 2271 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2272 * @vsi: ptr to the VSI 2273 * 2274 * Push any outstanding VSI filter changes through the AdminQ. 2275 * 2276 * Returns 0 or error value 2277 **/ 2278 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2279 { 2280 struct hlist_head tmp_add_list, tmp_del_list; 2281 struct i40e_mac_filter *f; 2282 struct i40e_new_mac_filter *new, *add_head = NULL; 2283 struct i40e_hw *hw = &vsi->back->hw; 2284 bool old_overflow, new_overflow; 2285 unsigned int failed_filters = 0; 2286 unsigned int vlan_filters = 0; 2287 char vsi_name[16] = "PF"; 2288 int filter_list_len = 0; 2289 i40e_status aq_ret = 0; 2290 u32 changed_flags = 0; 2291 struct hlist_node *h; 2292 struct i40e_pf *pf; 2293 int num_add = 0; 2294 int num_del = 0; 2295 int retval = 0; 2296 u16 cmd_flags; 2297 int list_size; 2298 int bkt; 2299 2300 /* empty array typed pointers, kcalloc later */ 2301 struct i40e_aqc_add_macvlan_element_data *add_list; 2302 struct i40e_aqc_remove_macvlan_element_data *del_list; 2303 2304 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2305 usleep_range(1000, 2000); 2306 pf = vsi->back; 2307 2308 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2309 2310 if (vsi->netdev) { 2311 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2312 vsi->current_netdev_flags = vsi->netdev->flags; 2313 } 2314 2315 INIT_HLIST_HEAD(&tmp_add_list); 2316 INIT_HLIST_HEAD(&tmp_del_list); 2317 2318 if (vsi->type == I40E_VSI_SRIOV) 2319 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2320 else if (vsi->type != I40E_VSI_MAIN) 2321 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2322 2323 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2324 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2325 2326 spin_lock_bh(&vsi->mac_filter_hash_lock); 2327 /* Create a list of filters to delete. */ 2328 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2329 if (f->state == I40E_FILTER_REMOVE) { 2330 /* Move the element into temporary del_list */ 2331 hash_del(&f->hlist); 2332 hlist_add_head(&f->hlist, &tmp_del_list); 2333 2334 /* Avoid counting removed filters */ 2335 continue; 2336 } 2337 if (f->state == I40E_FILTER_NEW) { 2338 /* Create a temporary i40e_new_mac_filter */ 2339 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2340 if (!new) 2341 goto err_no_memory_locked; 2342 2343 /* Store pointer to the real filter */ 2344 new->f = f; 2345 new->state = f->state; 2346 2347 /* Add it to the hash list */ 2348 hlist_add_head(&new->hlist, &tmp_add_list); 2349 } 2350 2351 /* Count the number of active (current and new) VLAN 2352 * filters we have now. Does not count filters which 2353 * are marked for deletion. 2354 */ 2355 if (f->vlan > 0) 2356 vlan_filters++; 2357 } 2358 2359 retval = i40e_correct_mac_vlan_filters(vsi, 2360 &tmp_add_list, 2361 &tmp_del_list, 2362 vlan_filters); 2363 if (retval) 2364 goto err_no_memory_locked; 2365 2366 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2367 } 2368 2369 /* Now process 'del_list' outside the lock */ 2370 if (!hlist_empty(&tmp_del_list)) { 2371 filter_list_len = hw->aq.asq_buf_size / 2372 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2373 list_size = filter_list_len * 2374 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2375 del_list = kzalloc(list_size, GFP_ATOMIC); 2376 if (!del_list) 2377 goto err_no_memory; 2378 2379 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2380 cmd_flags = 0; 2381 2382 /* handle broadcast filters by updating the broadcast 2383 * promiscuous flag and release filter list. 2384 */ 2385 if (is_broadcast_ether_addr(f->macaddr)) { 2386 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2387 2388 hlist_del(&f->hlist); 2389 kfree(f); 2390 continue; 2391 } 2392 2393 /* add to delete list */ 2394 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2395 if (f->vlan == I40E_VLAN_ANY) { 2396 del_list[num_del].vlan_tag = 0; 2397 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2398 } else { 2399 del_list[num_del].vlan_tag = 2400 cpu_to_le16((u16)(f->vlan)); 2401 } 2402 2403 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2404 del_list[num_del].flags = cmd_flags; 2405 num_del++; 2406 2407 /* flush a full buffer */ 2408 if (num_del == filter_list_len) { 2409 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2410 num_del, &retval); 2411 memset(del_list, 0, list_size); 2412 num_del = 0; 2413 } 2414 /* Release memory for MAC filter entries which were 2415 * synced up with HW. 2416 */ 2417 hlist_del(&f->hlist); 2418 kfree(f); 2419 } 2420 2421 if (num_del) { 2422 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2423 num_del, &retval); 2424 } 2425 2426 kfree(del_list); 2427 del_list = NULL; 2428 } 2429 2430 if (!hlist_empty(&tmp_add_list)) { 2431 /* Do all the adds now. */ 2432 filter_list_len = hw->aq.asq_buf_size / 2433 sizeof(struct i40e_aqc_add_macvlan_element_data); 2434 list_size = filter_list_len * 2435 sizeof(struct i40e_aqc_add_macvlan_element_data); 2436 add_list = kzalloc(list_size, GFP_ATOMIC); 2437 if (!add_list) 2438 goto err_no_memory; 2439 2440 num_add = 0; 2441 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2442 /* handle broadcast filters by updating the broadcast 2443 * promiscuous flag instead of adding a MAC filter. 2444 */ 2445 if (is_broadcast_ether_addr(new->f->macaddr)) { 2446 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2447 new->f)) 2448 new->state = I40E_FILTER_FAILED; 2449 else 2450 new->state = I40E_FILTER_ACTIVE; 2451 continue; 2452 } 2453 2454 /* add to add array */ 2455 if (num_add == 0) 2456 add_head = new; 2457 cmd_flags = 0; 2458 ether_addr_copy(add_list[num_add].mac_addr, 2459 new->f->macaddr); 2460 if (new->f->vlan == I40E_VLAN_ANY) { 2461 add_list[num_add].vlan_tag = 0; 2462 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2463 } else { 2464 add_list[num_add].vlan_tag = 2465 cpu_to_le16((u16)(new->f->vlan)); 2466 } 2467 add_list[num_add].queue_number = 0; 2468 /* set invalid match method for later detection */ 2469 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2470 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2471 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2472 num_add++; 2473 2474 /* flush a full buffer */ 2475 if (num_add == filter_list_len) { 2476 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2477 add_head, num_add); 2478 memset(add_list, 0, list_size); 2479 num_add = 0; 2480 } 2481 } 2482 if (num_add) { 2483 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2484 num_add); 2485 } 2486 /* Now move all of the filters from the temp add list back to 2487 * the VSI's list. 2488 */ 2489 spin_lock_bh(&vsi->mac_filter_hash_lock); 2490 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2491 /* Only update the state if we're still NEW */ 2492 if (new->f->state == I40E_FILTER_NEW) 2493 new->f->state = new->state; 2494 hlist_del(&new->hlist); 2495 kfree(new); 2496 } 2497 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2498 kfree(add_list); 2499 add_list = NULL; 2500 } 2501 2502 /* Determine the number of active and failed filters. */ 2503 spin_lock_bh(&vsi->mac_filter_hash_lock); 2504 vsi->active_filters = 0; 2505 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2506 if (f->state == I40E_FILTER_ACTIVE) 2507 vsi->active_filters++; 2508 else if (f->state == I40E_FILTER_FAILED) 2509 failed_filters++; 2510 } 2511 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2512 2513 /* Check if we are able to exit overflow promiscuous mode. We can 2514 * safely exit if we didn't just enter, we no longer have any failed 2515 * filters, and we have reduced filters below the threshold value. 2516 */ 2517 if (old_overflow && !failed_filters && 2518 vsi->active_filters < vsi->promisc_threshold) { 2519 dev_info(&pf->pdev->dev, 2520 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2521 vsi_name); 2522 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2523 vsi->promisc_threshold = 0; 2524 } 2525 2526 /* if the VF is not trusted do not do promisc */ 2527 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2528 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2529 goto out; 2530 } 2531 2532 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2533 2534 /* If we are entering overflow promiscuous, we need to calculate a new 2535 * threshold for when we are safe to exit 2536 */ 2537 if (!old_overflow && new_overflow) 2538 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2539 2540 /* check for changes in promiscuous modes */ 2541 if (changed_flags & IFF_ALLMULTI) { 2542 bool cur_multipromisc; 2543 2544 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2545 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2546 vsi->seid, 2547 cur_multipromisc, 2548 NULL); 2549 if (aq_ret) { 2550 retval = i40e_aq_rc_to_posix(aq_ret, 2551 hw->aq.asq_last_status); 2552 dev_info(&pf->pdev->dev, 2553 "set multi promisc failed on %s, err %s aq_err %s\n", 2554 vsi_name, 2555 i40e_stat_str(hw, aq_ret), 2556 i40e_aq_str(hw, hw->aq.asq_last_status)); 2557 } else { 2558 dev_info(&pf->pdev->dev, "%s is %s allmulti mode.\n", 2559 vsi->netdev->name, 2560 cur_multipromisc ? "entering" : "leaving"); 2561 } 2562 } 2563 2564 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2565 bool cur_promisc; 2566 2567 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2568 new_overflow); 2569 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2570 if (aq_ret) { 2571 retval = i40e_aq_rc_to_posix(aq_ret, 2572 hw->aq.asq_last_status); 2573 dev_info(&pf->pdev->dev, 2574 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2575 cur_promisc ? "on" : "off", 2576 vsi_name, 2577 i40e_stat_str(hw, aq_ret), 2578 i40e_aq_str(hw, hw->aq.asq_last_status)); 2579 } 2580 } 2581 out: 2582 /* if something went wrong then set the changed flag so we try again */ 2583 if (retval) 2584 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2585 2586 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2587 return retval; 2588 2589 err_no_memory: 2590 /* Restore elements on the temporary add and delete lists */ 2591 spin_lock_bh(&vsi->mac_filter_hash_lock); 2592 err_no_memory_locked: 2593 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2594 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2595 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2596 2597 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2598 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2599 return -ENOMEM; 2600 } 2601 2602 /** 2603 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2604 * @pf: board private structure 2605 **/ 2606 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2607 { 2608 int v; 2609 2610 if (!pf) 2611 return; 2612 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2613 return; 2614 if (test_and_set_bit(__I40E_VF_DISABLE, pf->state)) { 2615 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2616 return; 2617 } 2618 2619 for (v = 0; v < pf->num_alloc_vsi; v++) { 2620 if (pf->vsi[v] && 2621 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2622 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2623 2624 if (ret) { 2625 /* come back and try again later */ 2626 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2627 pf->state); 2628 break; 2629 } 2630 } 2631 } 2632 clear_bit(__I40E_VF_DISABLE, pf->state); 2633 } 2634 2635 /** 2636 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2637 * @vsi: the vsi 2638 **/ 2639 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2640 { 2641 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2642 return I40E_RXBUFFER_2048; 2643 else 2644 return I40E_RXBUFFER_3072; 2645 } 2646 2647 /** 2648 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2649 * @netdev: network interface device structure 2650 * @new_mtu: new value for maximum frame size 2651 * 2652 * Returns 0 on success, negative on failure 2653 **/ 2654 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2655 { 2656 struct i40e_netdev_priv *np = netdev_priv(netdev); 2657 struct i40e_vsi *vsi = np->vsi; 2658 struct i40e_pf *pf = vsi->back; 2659 2660 if (i40e_enabled_xdp_vsi(vsi)) { 2661 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2662 2663 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2664 return -EINVAL; 2665 } 2666 2667 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2668 netdev->mtu, new_mtu); 2669 netdev->mtu = new_mtu; 2670 if (netif_running(netdev)) 2671 i40e_vsi_reinit_locked(vsi); 2672 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2673 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2674 return 0; 2675 } 2676 2677 /** 2678 * i40e_ioctl - Access the hwtstamp interface 2679 * @netdev: network interface device structure 2680 * @ifr: interface request data 2681 * @cmd: ioctl command 2682 **/ 2683 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2684 { 2685 struct i40e_netdev_priv *np = netdev_priv(netdev); 2686 struct i40e_pf *pf = np->vsi->back; 2687 2688 switch (cmd) { 2689 case SIOCGHWTSTAMP: 2690 return i40e_ptp_get_ts_config(pf, ifr); 2691 case SIOCSHWTSTAMP: 2692 return i40e_ptp_set_ts_config(pf, ifr); 2693 default: 2694 return -EOPNOTSUPP; 2695 } 2696 } 2697 2698 /** 2699 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2700 * @vsi: the vsi being adjusted 2701 **/ 2702 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2703 { 2704 struct i40e_vsi_context ctxt; 2705 i40e_status ret; 2706 2707 /* Don't modify stripping options if a port VLAN is active */ 2708 if (vsi->info.pvid) 2709 return; 2710 2711 if ((vsi->info.valid_sections & 2712 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2713 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2714 return; /* already enabled */ 2715 2716 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2717 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2718 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2719 2720 ctxt.seid = vsi->seid; 2721 ctxt.info = vsi->info; 2722 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2723 if (ret) { 2724 dev_info(&vsi->back->pdev->dev, 2725 "update vlan stripping failed, err %s aq_err %s\n", 2726 i40e_stat_str(&vsi->back->hw, ret), 2727 i40e_aq_str(&vsi->back->hw, 2728 vsi->back->hw.aq.asq_last_status)); 2729 } 2730 } 2731 2732 /** 2733 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2734 * @vsi: the vsi being adjusted 2735 **/ 2736 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2737 { 2738 struct i40e_vsi_context ctxt; 2739 i40e_status ret; 2740 2741 /* Don't modify stripping options if a port VLAN is active */ 2742 if (vsi->info.pvid) 2743 return; 2744 2745 if ((vsi->info.valid_sections & 2746 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2747 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2748 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2749 return; /* already disabled */ 2750 2751 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2752 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2753 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2754 2755 ctxt.seid = vsi->seid; 2756 ctxt.info = vsi->info; 2757 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2758 if (ret) { 2759 dev_info(&vsi->back->pdev->dev, 2760 "update vlan stripping failed, err %s aq_err %s\n", 2761 i40e_stat_str(&vsi->back->hw, ret), 2762 i40e_aq_str(&vsi->back->hw, 2763 vsi->back->hw.aq.asq_last_status)); 2764 } 2765 } 2766 2767 /** 2768 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2769 * @vsi: the vsi being configured 2770 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2771 * 2772 * This is a helper function for adding a new MAC/VLAN filter with the 2773 * specified VLAN for each existing MAC address already in the hash table. 2774 * This function does *not* perform any accounting to update filters based on 2775 * VLAN mode. 2776 * 2777 * NOTE: this function expects to be called while under the 2778 * mac_filter_hash_lock 2779 **/ 2780 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2781 { 2782 struct i40e_mac_filter *f, *add_f; 2783 struct hlist_node *h; 2784 int bkt; 2785 2786 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2787 if (f->state == I40E_FILTER_REMOVE) 2788 continue; 2789 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2790 if (!add_f) { 2791 dev_info(&vsi->back->pdev->dev, 2792 "Could not add vlan filter %d for %pM\n", 2793 vid, f->macaddr); 2794 return -ENOMEM; 2795 } 2796 } 2797 2798 return 0; 2799 } 2800 2801 /** 2802 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2803 * @vsi: the VSI being configured 2804 * @vid: VLAN id to be added 2805 **/ 2806 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2807 { 2808 int err; 2809 2810 if (vsi->info.pvid) 2811 return -EINVAL; 2812 2813 /* The network stack will attempt to add VID=0, with the intention to 2814 * receive priority tagged packets with a VLAN of 0. Our HW receives 2815 * these packets by default when configured to receive untagged 2816 * packets, so we don't need to add a filter for this case. 2817 * Additionally, HW interprets adding a VID=0 filter as meaning to 2818 * receive *only* tagged traffic and stops receiving untagged traffic. 2819 * Thus, we do not want to actually add a filter for VID=0 2820 */ 2821 if (!vid) 2822 return 0; 2823 2824 /* Locked once because all functions invoked below iterates list*/ 2825 spin_lock_bh(&vsi->mac_filter_hash_lock); 2826 err = i40e_add_vlan_all_mac(vsi, vid); 2827 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2828 if (err) 2829 return err; 2830 2831 /* schedule our worker thread which will take care of 2832 * applying the new filter changes 2833 */ 2834 i40e_service_event_schedule(vsi->back); 2835 return 0; 2836 } 2837 2838 /** 2839 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2840 * @vsi: the vsi being configured 2841 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2842 * 2843 * This function should be used to remove all VLAN filters which match the 2844 * given VID. It does not schedule the service event and does not take the 2845 * mac_filter_hash_lock so it may be combined with other operations under 2846 * a single invocation of the mac_filter_hash_lock. 2847 * 2848 * NOTE: this function expects to be called while under the 2849 * mac_filter_hash_lock 2850 */ 2851 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2852 { 2853 struct i40e_mac_filter *f; 2854 struct hlist_node *h; 2855 int bkt; 2856 2857 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2858 if (f->vlan == vid) 2859 __i40e_del_filter(vsi, f); 2860 } 2861 } 2862 2863 /** 2864 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2865 * @vsi: the VSI being configured 2866 * @vid: VLAN id to be removed 2867 **/ 2868 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2869 { 2870 if (!vid || vsi->info.pvid) 2871 return; 2872 2873 spin_lock_bh(&vsi->mac_filter_hash_lock); 2874 i40e_rm_vlan_all_mac(vsi, vid); 2875 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2876 2877 /* schedule our worker thread which will take care of 2878 * applying the new filter changes 2879 */ 2880 i40e_service_event_schedule(vsi->back); 2881 } 2882 2883 /** 2884 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2885 * @netdev: network interface to be adjusted 2886 * @proto: unused protocol value 2887 * @vid: vlan id to be added 2888 * 2889 * net_device_ops implementation for adding vlan ids 2890 **/ 2891 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2892 __always_unused __be16 proto, u16 vid) 2893 { 2894 struct i40e_netdev_priv *np = netdev_priv(netdev); 2895 struct i40e_vsi *vsi = np->vsi; 2896 int ret = 0; 2897 2898 if (vid >= VLAN_N_VID) 2899 return -EINVAL; 2900 2901 ret = i40e_vsi_add_vlan(vsi, vid); 2902 if (!ret) 2903 set_bit(vid, vsi->active_vlans); 2904 2905 return ret; 2906 } 2907 2908 /** 2909 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2910 * @netdev: network interface to be adjusted 2911 * @proto: unused protocol value 2912 * @vid: vlan id to be added 2913 **/ 2914 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2915 __always_unused __be16 proto, u16 vid) 2916 { 2917 struct i40e_netdev_priv *np = netdev_priv(netdev); 2918 struct i40e_vsi *vsi = np->vsi; 2919 2920 if (vid >= VLAN_N_VID) 2921 return; 2922 set_bit(vid, vsi->active_vlans); 2923 } 2924 2925 /** 2926 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2927 * @netdev: network interface to be adjusted 2928 * @proto: unused protocol value 2929 * @vid: vlan id to be removed 2930 * 2931 * net_device_ops implementation for removing vlan ids 2932 **/ 2933 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2934 __always_unused __be16 proto, u16 vid) 2935 { 2936 struct i40e_netdev_priv *np = netdev_priv(netdev); 2937 struct i40e_vsi *vsi = np->vsi; 2938 2939 /* return code is ignored as there is nothing a user 2940 * can do about failure to remove and a log message was 2941 * already printed from the other function 2942 */ 2943 i40e_vsi_kill_vlan(vsi, vid); 2944 2945 clear_bit(vid, vsi->active_vlans); 2946 2947 return 0; 2948 } 2949 2950 /** 2951 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2952 * @vsi: the vsi being brought back up 2953 **/ 2954 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2955 { 2956 u16 vid; 2957 2958 if (!vsi->netdev) 2959 return; 2960 2961 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2962 i40e_vlan_stripping_enable(vsi); 2963 else 2964 i40e_vlan_stripping_disable(vsi); 2965 2966 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2967 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2968 vid); 2969 } 2970 2971 /** 2972 * i40e_vsi_add_pvid - Add pvid for the VSI 2973 * @vsi: the vsi being adjusted 2974 * @vid: the vlan id to set as a PVID 2975 **/ 2976 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2977 { 2978 struct i40e_vsi_context ctxt; 2979 i40e_status ret; 2980 2981 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2982 vsi->info.pvid = cpu_to_le16(vid); 2983 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2984 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2985 I40E_AQ_VSI_PVLAN_EMOD_STR; 2986 2987 ctxt.seid = vsi->seid; 2988 ctxt.info = vsi->info; 2989 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2990 if (ret) { 2991 dev_info(&vsi->back->pdev->dev, 2992 "add pvid failed, err %s aq_err %s\n", 2993 i40e_stat_str(&vsi->back->hw, ret), 2994 i40e_aq_str(&vsi->back->hw, 2995 vsi->back->hw.aq.asq_last_status)); 2996 return -ENOENT; 2997 } 2998 2999 return 0; 3000 } 3001 3002 /** 3003 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3004 * @vsi: the vsi being adjusted 3005 * 3006 * Just use the vlan_rx_register() service to put it back to normal 3007 **/ 3008 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3009 { 3010 vsi->info.pvid = 0; 3011 3012 i40e_vlan_stripping_disable(vsi); 3013 } 3014 3015 /** 3016 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3017 * @vsi: ptr to the VSI 3018 * 3019 * If this function returns with an error, then it's possible one or 3020 * more of the rings is populated (while the rest are not). It is the 3021 * callers duty to clean those orphaned rings. 3022 * 3023 * Return 0 on success, negative on failure 3024 **/ 3025 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3026 { 3027 int i, err = 0; 3028 3029 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3030 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3031 3032 if (!i40e_enabled_xdp_vsi(vsi)) 3033 return err; 3034 3035 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3036 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3037 3038 return err; 3039 } 3040 3041 /** 3042 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3043 * @vsi: ptr to the VSI 3044 * 3045 * Free VSI's transmit software resources 3046 **/ 3047 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3048 { 3049 int i; 3050 3051 if (vsi->tx_rings) { 3052 for (i = 0; i < vsi->num_queue_pairs; i++) 3053 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3054 i40e_free_tx_resources(vsi->tx_rings[i]); 3055 } 3056 3057 if (vsi->xdp_rings) { 3058 for (i = 0; i < vsi->num_queue_pairs; i++) 3059 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3060 i40e_free_tx_resources(vsi->xdp_rings[i]); 3061 } 3062 } 3063 3064 /** 3065 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3066 * @vsi: ptr to the VSI 3067 * 3068 * If this function returns with an error, then it's possible one or 3069 * more of the rings is populated (while the rest are not). It is the 3070 * callers duty to clean those orphaned rings. 3071 * 3072 * Return 0 on success, negative on failure 3073 **/ 3074 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3075 { 3076 int i, err = 0; 3077 3078 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3079 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3080 return err; 3081 } 3082 3083 /** 3084 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3085 * @vsi: ptr to the VSI 3086 * 3087 * Free all receive software resources 3088 **/ 3089 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3090 { 3091 int i; 3092 3093 if (!vsi->rx_rings) 3094 return; 3095 3096 for (i = 0; i < vsi->num_queue_pairs; i++) 3097 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3098 i40e_free_rx_resources(vsi->rx_rings[i]); 3099 } 3100 3101 /** 3102 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3103 * @ring: The Tx ring to configure 3104 * 3105 * This enables/disables XPS for a given Tx descriptor ring 3106 * based on the TCs enabled for the VSI that ring belongs to. 3107 **/ 3108 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3109 { 3110 int cpu; 3111 3112 if (!ring->q_vector || !ring->netdev || ring->ch) 3113 return; 3114 3115 /* We only initialize XPS once, so as not to overwrite user settings */ 3116 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3117 return; 3118 3119 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3120 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3121 ring->queue_index); 3122 } 3123 3124 /** 3125 * i40e_xsk_umem - Retrieve the AF_XDP ZC if XDP and ZC is enabled 3126 * @ring: The Tx or Rx ring 3127 * 3128 * Returns the UMEM or NULL. 3129 **/ 3130 static struct xdp_umem *i40e_xsk_umem(struct i40e_ring *ring) 3131 { 3132 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3133 int qid = ring->queue_index; 3134 3135 if (ring_is_xdp(ring)) 3136 qid -= ring->vsi->alloc_queue_pairs; 3137 3138 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3139 return NULL; 3140 3141 return xdp_get_umem_from_qid(ring->vsi->netdev, qid); 3142 } 3143 3144 /** 3145 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3146 * @ring: The Tx ring to configure 3147 * 3148 * Configure the Tx descriptor ring in the HMC context. 3149 **/ 3150 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3151 { 3152 struct i40e_vsi *vsi = ring->vsi; 3153 u16 pf_q = vsi->base_queue + ring->queue_index; 3154 struct i40e_hw *hw = &vsi->back->hw; 3155 struct i40e_hmc_obj_txq tx_ctx; 3156 i40e_status err = 0; 3157 u32 qtx_ctl = 0; 3158 3159 if (ring_is_xdp(ring)) 3160 ring->xsk_umem = i40e_xsk_umem(ring); 3161 3162 /* some ATR related tx ring init */ 3163 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3164 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3165 ring->atr_count = 0; 3166 } else { 3167 ring->atr_sample_rate = 0; 3168 } 3169 3170 /* configure XPS */ 3171 i40e_config_xps_tx_ring(ring); 3172 3173 /* clear the context structure first */ 3174 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3175 3176 tx_ctx.new_context = 1; 3177 tx_ctx.base = (ring->dma / 128); 3178 tx_ctx.qlen = ring->count; 3179 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3180 I40E_FLAG_FD_ATR_ENABLED)); 3181 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3182 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3183 if (vsi->type != I40E_VSI_FDIR) 3184 tx_ctx.head_wb_ena = 1; 3185 tx_ctx.head_wb_addr = ring->dma + 3186 (ring->count * sizeof(struct i40e_tx_desc)); 3187 3188 /* As part of VSI creation/update, FW allocates certain 3189 * Tx arbitration queue sets for each TC enabled for 3190 * the VSI. The FW returns the handles to these queue 3191 * sets as part of the response buffer to Add VSI, 3192 * Update VSI, etc. AQ commands. It is expected that 3193 * these queue set handles be associated with the Tx 3194 * queues by the driver as part of the TX queue context 3195 * initialization. This has to be done regardless of 3196 * DCB as by default everything is mapped to TC0. 3197 */ 3198 3199 if (ring->ch) 3200 tx_ctx.rdylist = 3201 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3202 3203 else 3204 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3205 3206 tx_ctx.rdylist_act = 0; 3207 3208 /* clear the context in the HMC */ 3209 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3210 if (err) { 3211 dev_info(&vsi->back->pdev->dev, 3212 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3213 ring->queue_index, pf_q, err); 3214 return -ENOMEM; 3215 } 3216 3217 /* set the context in the HMC */ 3218 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3219 if (err) { 3220 dev_info(&vsi->back->pdev->dev, 3221 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3222 ring->queue_index, pf_q, err); 3223 return -ENOMEM; 3224 } 3225 3226 /* Now associate this queue with this PCI function */ 3227 if (ring->ch) { 3228 if (ring->ch->type == I40E_VSI_VMDQ2) 3229 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3230 else 3231 return -EINVAL; 3232 3233 qtx_ctl |= (ring->ch->vsi_number << 3234 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3235 I40E_QTX_CTL_VFVM_INDX_MASK; 3236 } else { 3237 if (vsi->type == I40E_VSI_VMDQ2) { 3238 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3239 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3240 I40E_QTX_CTL_VFVM_INDX_MASK; 3241 } else { 3242 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3243 } 3244 } 3245 3246 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3247 I40E_QTX_CTL_PF_INDX_MASK); 3248 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3249 i40e_flush(hw); 3250 3251 /* cache tail off for easier writes later */ 3252 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * i40e_configure_rx_ring - Configure a receive ring context 3259 * @ring: The Rx ring to configure 3260 * 3261 * Configure the Rx descriptor ring in the HMC context. 3262 **/ 3263 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3264 { 3265 struct i40e_vsi *vsi = ring->vsi; 3266 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3267 u16 pf_q = vsi->base_queue + ring->queue_index; 3268 struct i40e_hw *hw = &vsi->back->hw; 3269 struct i40e_hmc_obj_rxq rx_ctx; 3270 i40e_status err = 0; 3271 bool ok; 3272 int ret; 3273 3274 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3275 3276 /* clear the context structure first */ 3277 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3278 3279 if (ring->vsi->type == I40E_VSI_MAIN) 3280 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3281 3282 ring->xsk_umem = i40e_xsk_umem(ring); 3283 if (ring->xsk_umem) { 3284 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3285 XDP_PACKET_HEADROOM; 3286 /* For AF_XDP ZC, we disallow packets to span on 3287 * multiple buffers, thus letting us skip that 3288 * handling in the fast-path. 3289 */ 3290 chain_len = 1; 3291 ring->zca.free = i40e_zca_free; 3292 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3293 MEM_TYPE_ZERO_COPY, 3294 &ring->zca); 3295 if (ret) 3296 return ret; 3297 dev_info(&vsi->back->pdev->dev, 3298 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3299 ring->queue_index); 3300 3301 } else { 3302 ring->rx_buf_len = vsi->rx_buf_len; 3303 if (ring->vsi->type == I40E_VSI_MAIN) { 3304 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3305 MEM_TYPE_PAGE_SHARED, 3306 NULL); 3307 if (ret) 3308 return ret; 3309 } 3310 } 3311 3312 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3313 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3314 3315 rx_ctx.base = (ring->dma / 128); 3316 rx_ctx.qlen = ring->count; 3317 3318 /* use 32 byte descriptors */ 3319 rx_ctx.dsize = 1; 3320 3321 /* descriptor type is always zero 3322 * rx_ctx.dtype = 0; 3323 */ 3324 rx_ctx.hsplit_0 = 0; 3325 3326 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3327 if (hw->revision_id == 0) 3328 rx_ctx.lrxqthresh = 0; 3329 else 3330 rx_ctx.lrxqthresh = 1; 3331 rx_ctx.crcstrip = 1; 3332 rx_ctx.l2tsel = 1; 3333 /* this controls whether VLAN is stripped from inner headers */ 3334 rx_ctx.showiv = 0; 3335 /* set the prefena field to 1 because the manual says to */ 3336 rx_ctx.prefena = 1; 3337 3338 /* clear the context in the HMC */ 3339 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3340 if (err) { 3341 dev_info(&vsi->back->pdev->dev, 3342 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3343 ring->queue_index, pf_q, err); 3344 return -ENOMEM; 3345 } 3346 3347 /* set the context in the HMC */ 3348 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3349 if (err) { 3350 dev_info(&vsi->back->pdev->dev, 3351 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3352 ring->queue_index, pf_q, err); 3353 return -ENOMEM; 3354 } 3355 3356 /* configure Rx buffer alignment */ 3357 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3358 clear_ring_build_skb_enabled(ring); 3359 else 3360 set_ring_build_skb_enabled(ring); 3361 3362 /* cache tail for quicker writes, and clear the reg before use */ 3363 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3364 writel(0, ring->tail); 3365 3366 ok = ring->xsk_umem ? 3367 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3368 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3369 if (!ok) { 3370 /* Log this in case the user has forgotten to give the kernel 3371 * any buffers, even later in the application. 3372 */ 3373 dev_info(&vsi->back->pdev->dev, 3374 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3375 ring->xsk_umem ? "UMEM enabled " : "", 3376 ring->queue_index, pf_q); 3377 } 3378 3379 return 0; 3380 } 3381 3382 /** 3383 * i40e_vsi_configure_tx - Configure the VSI for Tx 3384 * @vsi: VSI structure describing this set of rings and resources 3385 * 3386 * Configure the Tx VSI for operation. 3387 **/ 3388 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3389 { 3390 int err = 0; 3391 u16 i; 3392 3393 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3394 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3395 3396 if (err || !i40e_enabled_xdp_vsi(vsi)) 3397 return err; 3398 3399 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3400 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3401 3402 return err; 3403 } 3404 3405 /** 3406 * i40e_vsi_configure_rx - Configure the VSI for Rx 3407 * @vsi: the VSI being configured 3408 * 3409 * Configure the Rx VSI for operation. 3410 **/ 3411 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3412 { 3413 int err = 0; 3414 u16 i; 3415 3416 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3417 vsi->max_frame = I40E_MAX_RXBUFFER; 3418 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3419 #if (PAGE_SIZE < 8192) 3420 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3421 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3422 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3423 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3424 #endif 3425 } else { 3426 vsi->max_frame = I40E_MAX_RXBUFFER; 3427 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3428 I40E_RXBUFFER_2048; 3429 } 3430 3431 /* set up individual rings */ 3432 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3433 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3434 3435 return err; 3436 } 3437 3438 /** 3439 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3440 * @vsi: ptr to the VSI 3441 **/ 3442 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3443 { 3444 struct i40e_ring *tx_ring, *rx_ring; 3445 u16 qoffset, qcount; 3446 int i, n; 3447 3448 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3449 /* Reset the TC information */ 3450 for (i = 0; i < vsi->num_queue_pairs; i++) { 3451 rx_ring = vsi->rx_rings[i]; 3452 tx_ring = vsi->tx_rings[i]; 3453 rx_ring->dcb_tc = 0; 3454 tx_ring->dcb_tc = 0; 3455 } 3456 return; 3457 } 3458 3459 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3460 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3461 continue; 3462 3463 qoffset = vsi->tc_config.tc_info[n].qoffset; 3464 qcount = vsi->tc_config.tc_info[n].qcount; 3465 for (i = qoffset; i < (qoffset + qcount); i++) { 3466 rx_ring = vsi->rx_rings[i]; 3467 tx_ring = vsi->tx_rings[i]; 3468 rx_ring->dcb_tc = n; 3469 tx_ring->dcb_tc = n; 3470 } 3471 } 3472 } 3473 3474 /** 3475 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3476 * @vsi: ptr to the VSI 3477 **/ 3478 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3479 { 3480 if (vsi->netdev) 3481 i40e_set_rx_mode(vsi->netdev); 3482 } 3483 3484 /** 3485 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3486 * @vsi: Pointer to the targeted VSI 3487 * 3488 * This function replays the hlist on the hw where all the SB Flow Director 3489 * filters were saved. 3490 **/ 3491 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3492 { 3493 struct i40e_fdir_filter *filter; 3494 struct i40e_pf *pf = vsi->back; 3495 struct hlist_node *node; 3496 3497 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3498 return; 3499 3500 /* Reset FDir counters as we're replaying all existing filters */ 3501 pf->fd_tcp4_filter_cnt = 0; 3502 pf->fd_udp4_filter_cnt = 0; 3503 pf->fd_sctp4_filter_cnt = 0; 3504 pf->fd_ip4_filter_cnt = 0; 3505 3506 hlist_for_each_entry_safe(filter, node, 3507 &pf->fdir_filter_list, fdir_node) { 3508 i40e_add_del_fdir(vsi, filter, true); 3509 } 3510 } 3511 3512 /** 3513 * i40e_vsi_configure - Set up the VSI for action 3514 * @vsi: the VSI being configured 3515 **/ 3516 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3517 { 3518 int err; 3519 3520 i40e_set_vsi_rx_mode(vsi); 3521 i40e_restore_vlan(vsi); 3522 i40e_vsi_config_dcb_rings(vsi); 3523 err = i40e_vsi_configure_tx(vsi); 3524 if (!err) 3525 err = i40e_vsi_configure_rx(vsi); 3526 3527 return err; 3528 } 3529 3530 /** 3531 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3532 * @vsi: the VSI being configured 3533 **/ 3534 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3535 { 3536 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3537 struct i40e_pf *pf = vsi->back; 3538 struct i40e_hw *hw = &pf->hw; 3539 u16 vector; 3540 int i, q; 3541 u32 qp; 3542 3543 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3544 * and PFINT_LNKLSTn registers, e.g.: 3545 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3546 */ 3547 qp = vsi->base_queue; 3548 vector = vsi->base_vector; 3549 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3550 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3551 3552 q_vector->rx.next_update = jiffies + 1; 3553 q_vector->rx.target_itr = 3554 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3555 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3556 q_vector->rx.target_itr >> 1); 3557 q_vector->rx.current_itr = q_vector->rx.target_itr; 3558 3559 q_vector->tx.next_update = jiffies + 1; 3560 q_vector->tx.target_itr = 3561 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3562 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3563 q_vector->tx.target_itr >> 1); 3564 q_vector->tx.current_itr = q_vector->tx.target_itr; 3565 3566 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3567 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3568 3569 /* Linked list for the queuepairs assigned to this vector */ 3570 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3571 for (q = 0; q < q_vector->num_ringpairs; q++) { 3572 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3573 u32 val; 3574 3575 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3576 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3577 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3578 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3579 (I40E_QUEUE_TYPE_TX << 3580 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3581 3582 wr32(hw, I40E_QINT_RQCTL(qp), val); 3583 3584 if (has_xdp) { 3585 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3586 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3587 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3588 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3589 (I40E_QUEUE_TYPE_TX << 3590 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3591 3592 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3593 } 3594 3595 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3596 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3597 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3598 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3599 (I40E_QUEUE_TYPE_RX << 3600 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3601 3602 /* Terminate the linked list */ 3603 if (q == (q_vector->num_ringpairs - 1)) 3604 val |= (I40E_QUEUE_END_OF_LIST << 3605 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3606 3607 wr32(hw, I40E_QINT_TQCTL(qp), val); 3608 qp++; 3609 } 3610 } 3611 3612 i40e_flush(hw); 3613 } 3614 3615 /** 3616 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3617 * @pf: pointer to private device data structure 3618 **/ 3619 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3620 { 3621 struct i40e_hw *hw = &pf->hw; 3622 u32 val; 3623 3624 /* clear things first */ 3625 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3626 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3627 3628 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3629 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3630 I40E_PFINT_ICR0_ENA_GRST_MASK | 3631 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3632 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3633 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3634 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3635 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3636 3637 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3638 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3639 3640 if (pf->flags & I40E_FLAG_PTP) 3641 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3642 3643 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3644 3645 /* SW_ITR_IDX = 0, but don't change INTENA */ 3646 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3647 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3648 3649 /* OTHER_ITR_IDX = 0 */ 3650 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3651 } 3652 3653 /** 3654 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3655 * @vsi: the VSI being configured 3656 **/ 3657 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3658 { 3659 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3660 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3661 struct i40e_pf *pf = vsi->back; 3662 struct i40e_hw *hw = &pf->hw; 3663 u32 val; 3664 3665 /* set the ITR configuration */ 3666 q_vector->rx.next_update = jiffies + 1; 3667 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3668 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3669 q_vector->rx.current_itr = q_vector->rx.target_itr; 3670 q_vector->tx.next_update = jiffies + 1; 3671 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3672 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3673 q_vector->tx.current_itr = q_vector->tx.target_itr; 3674 3675 i40e_enable_misc_int_causes(pf); 3676 3677 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3678 wr32(hw, I40E_PFINT_LNKLST0, 0); 3679 3680 /* Associate the queue pair to the vector and enable the queue int */ 3681 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3682 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3683 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3684 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3685 3686 wr32(hw, I40E_QINT_RQCTL(0), val); 3687 3688 if (i40e_enabled_xdp_vsi(vsi)) { 3689 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3690 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3691 (I40E_QUEUE_TYPE_TX 3692 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3693 3694 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3695 } 3696 3697 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3698 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3699 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3700 3701 wr32(hw, I40E_QINT_TQCTL(0), val); 3702 i40e_flush(hw); 3703 } 3704 3705 /** 3706 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3707 * @pf: board private structure 3708 **/ 3709 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3710 { 3711 struct i40e_hw *hw = &pf->hw; 3712 3713 wr32(hw, I40E_PFINT_DYN_CTL0, 3714 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3715 i40e_flush(hw); 3716 } 3717 3718 /** 3719 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3720 * @pf: board private structure 3721 **/ 3722 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3723 { 3724 struct i40e_hw *hw = &pf->hw; 3725 u32 val; 3726 3727 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3728 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3729 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3730 3731 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3732 i40e_flush(hw); 3733 } 3734 3735 /** 3736 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3737 * @irq: interrupt number 3738 * @data: pointer to a q_vector 3739 **/ 3740 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3741 { 3742 struct i40e_q_vector *q_vector = data; 3743 3744 if (!q_vector->tx.ring && !q_vector->rx.ring) 3745 return IRQ_HANDLED; 3746 3747 napi_schedule_irqoff(&q_vector->napi); 3748 3749 return IRQ_HANDLED; 3750 } 3751 3752 /** 3753 * i40e_irq_affinity_notify - Callback for affinity changes 3754 * @notify: context as to what irq was changed 3755 * @mask: the new affinity mask 3756 * 3757 * This is a callback function used by the irq_set_affinity_notifier function 3758 * so that we may register to receive changes to the irq affinity masks. 3759 **/ 3760 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3761 const cpumask_t *mask) 3762 { 3763 struct i40e_q_vector *q_vector = 3764 container_of(notify, struct i40e_q_vector, affinity_notify); 3765 3766 cpumask_copy(&q_vector->affinity_mask, mask); 3767 } 3768 3769 /** 3770 * i40e_irq_affinity_release - Callback for affinity notifier release 3771 * @ref: internal core kernel usage 3772 * 3773 * This is a callback function used by the irq_set_affinity_notifier function 3774 * to inform the current notification subscriber that they will no longer 3775 * receive notifications. 3776 **/ 3777 static void i40e_irq_affinity_release(struct kref *ref) {} 3778 3779 /** 3780 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3781 * @vsi: the VSI being configured 3782 * @basename: name for the vector 3783 * 3784 * Allocates MSI-X vectors and requests interrupts from the kernel. 3785 **/ 3786 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3787 { 3788 int q_vectors = vsi->num_q_vectors; 3789 struct i40e_pf *pf = vsi->back; 3790 int base = vsi->base_vector; 3791 int rx_int_idx = 0; 3792 int tx_int_idx = 0; 3793 int vector, err; 3794 int irq_num; 3795 int cpu; 3796 3797 for (vector = 0; vector < q_vectors; vector++) { 3798 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3799 3800 irq_num = pf->msix_entries[base + vector].vector; 3801 3802 if (q_vector->tx.ring && q_vector->rx.ring) { 3803 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3804 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3805 tx_int_idx++; 3806 } else if (q_vector->rx.ring) { 3807 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3808 "%s-%s-%d", basename, "rx", rx_int_idx++); 3809 } else if (q_vector->tx.ring) { 3810 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3811 "%s-%s-%d", basename, "tx", tx_int_idx++); 3812 } else { 3813 /* skip this unused q_vector */ 3814 continue; 3815 } 3816 err = request_irq(irq_num, 3817 vsi->irq_handler, 3818 0, 3819 q_vector->name, 3820 q_vector); 3821 if (err) { 3822 dev_info(&pf->pdev->dev, 3823 "MSIX request_irq failed, error: %d\n", err); 3824 goto free_queue_irqs; 3825 } 3826 3827 /* register for affinity change notifications */ 3828 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3829 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3830 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3831 /* Spread affinity hints out across online CPUs. 3832 * 3833 * get_cpu_mask returns a static constant mask with 3834 * a permanent lifetime so it's ok to pass to 3835 * irq_set_affinity_hint without making a copy. 3836 */ 3837 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3838 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3839 } 3840 3841 vsi->irqs_ready = true; 3842 return 0; 3843 3844 free_queue_irqs: 3845 while (vector) { 3846 vector--; 3847 irq_num = pf->msix_entries[base + vector].vector; 3848 irq_set_affinity_notifier(irq_num, NULL); 3849 irq_set_affinity_hint(irq_num, NULL); 3850 free_irq(irq_num, &vsi->q_vectors[vector]); 3851 } 3852 return err; 3853 } 3854 3855 /** 3856 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3857 * @vsi: the VSI being un-configured 3858 **/ 3859 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3860 { 3861 struct i40e_pf *pf = vsi->back; 3862 struct i40e_hw *hw = &pf->hw; 3863 int base = vsi->base_vector; 3864 int i; 3865 3866 /* disable interrupt causation from each queue */ 3867 for (i = 0; i < vsi->num_queue_pairs; i++) { 3868 u32 val; 3869 3870 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3871 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3872 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3873 3874 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3875 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3876 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3877 3878 if (!i40e_enabled_xdp_vsi(vsi)) 3879 continue; 3880 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3881 } 3882 3883 /* disable each interrupt */ 3884 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3885 for (i = vsi->base_vector; 3886 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3887 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3888 3889 i40e_flush(hw); 3890 for (i = 0; i < vsi->num_q_vectors; i++) 3891 synchronize_irq(pf->msix_entries[i + base].vector); 3892 } else { 3893 /* Legacy and MSI mode - this stops all interrupt handling */ 3894 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3895 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3896 i40e_flush(hw); 3897 synchronize_irq(pf->pdev->irq); 3898 } 3899 } 3900 3901 /** 3902 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3903 * @vsi: the VSI being configured 3904 **/ 3905 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3906 { 3907 struct i40e_pf *pf = vsi->back; 3908 int i; 3909 3910 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3911 for (i = 0; i < vsi->num_q_vectors; i++) 3912 i40e_irq_dynamic_enable(vsi, i); 3913 } else { 3914 i40e_irq_dynamic_enable_icr0(pf); 3915 } 3916 3917 i40e_flush(&pf->hw); 3918 return 0; 3919 } 3920 3921 /** 3922 * i40e_free_misc_vector - Free the vector that handles non-queue events 3923 * @pf: board private structure 3924 **/ 3925 static void i40e_free_misc_vector(struct i40e_pf *pf) 3926 { 3927 /* Disable ICR 0 */ 3928 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3929 i40e_flush(&pf->hw); 3930 3931 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3932 synchronize_irq(pf->msix_entries[0].vector); 3933 free_irq(pf->msix_entries[0].vector, pf); 3934 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3935 } 3936 } 3937 3938 /** 3939 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3940 * @irq: interrupt number 3941 * @data: pointer to a q_vector 3942 * 3943 * This is the handler used for all MSI/Legacy interrupts, and deals 3944 * with both queue and non-queue interrupts. This is also used in 3945 * MSIX mode to handle the non-queue interrupts. 3946 **/ 3947 static irqreturn_t i40e_intr(int irq, void *data) 3948 { 3949 struct i40e_pf *pf = (struct i40e_pf *)data; 3950 struct i40e_hw *hw = &pf->hw; 3951 irqreturn_t ret = IRQ_NONE; 3952 u32 icr0, icr0_remaining; 3953 u32 val, ena_mask; 3954 3955 icr0 = rd32(hw, I40E_PFINT_ICR0); 3956 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3957 3958 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3959 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3960 goto enable_intr; 3961 3962 /* if interrupt but no bits showing, must be SWINT */ 3963 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3964 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3965 pf->sw_int_count++; 3966 3967 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3968 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3969 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3970 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3971 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3972 } 3973 3974 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3975 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3976 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3977 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3978 3979 /* We do not have a way to disarm Queue causes while leaving 3980 * interrupt enabled for all other causes, ideally 3981 * interrupt should be disabled while we are in NAPI but 3982 * this is not a performance path and napi_schedule() 3983 * can deal with rescheduling. 3984 */ 3985 if (!test_bit(__I40E_DOWN, pf->state)) 3986 napi_schedule_irqoff(&q_vector->napi); 3987 } 3988 3989 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3990 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3991 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3992 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3993 } 3994 3995 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3996 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3997 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3998 } 3999 4000 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4001 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4002 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4003 } 4004 4005 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4006 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4007 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4008 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4009 val = rd32(hw, I40E_GLGEN_RSTAT); 4010 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4011 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4012 if (val == I40E_RESET_CORER) { 4013 pf->corer_count++; 4014 } else if (val == I40E_RESET_GLOBR) { 4015 pf->globr_count++; 4016 } else if (val == I40E_RESET_EMPR) { 4017 pf->empr_count++; 4018 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4019 } 4020 } 4021 4022 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4023 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4024 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4025 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4026 rd32(hw, I40E_PFHMC_ERRORINFO), 4027 rd32(hw, I40E_PFHMC_ERRORDATA)); 4028 } 4029 4030 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4031 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4032 4033 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4034 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4035 i40e_ptp_tx_hwtstamp(pf); 4036 } 4037 } 4038 4039 /* If a critical error is pending we have no choice but to reset the 4040 * device. 4041 * Report and mask out any remaining unexpected interrupts. 4042 */ 4043 icr0_remaining = icr0 & ena_mask; 4044 if (icr0_remaining) { 4045 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4046 icr0_remaining); 4047 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4048 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4049 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4050 dev_info(&pf->pdev->dev, "device will be reset\n"); 4051 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4052 i40e_service_event_schedule(pf); 4053 } 4054 ena_mask &= ~icr0_remaining; 4055 } 4056 ret = IRQ_HANDLED; 4057 4058 enable_intr: 4059 /* re-enable interrupt causes */ 4060 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4061 if (!test_bit(__I40E_DOWN, pf->state) || 4062 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4063 i40e_service_event_schedule(pf); 4064 i40e_irq_dynamic_enable_icr0(pf); 4065 } 4066 4067 return ret; 4068 } 4069 4070 /** 4071 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4072 * @tx_ring: tx ring to clean 4073 * @budget: how many cleans we're allowed 4074 * 4075 * Returns true if there's any budget left (e.g. the clean is finished) 4076 **/ 4077 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4078 { 4079 struct i40e_vsi *vsi = tx_ring->vsi; 4080 u16 i = tx_ring->next_to_clean; 4081 struct i40e_tx_buffer *tx_buf; 4082 struct i40e_tx_desc *tx_desc; 4083 4084 tx_buf = &tx_ring->tx_bi[i]; 4085 tx_desc = I40E_TX_DESC(tx_ring, i); 4086 i -= tx_ring->count; 4087 4088 do { 4089 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4090 4091 /* if next_to_watch is not set then there is no work pending */ 4092 if (!eop_desc) 4093 break; 4094 4095 /* prevent any other reads prior to eop_desc */ 4096 smp_rmb(); 4097 4098 /* if the descriptor isn't done, no work yet to do */ 4099 if (!(eop_desc->cmd_type_offset_bsz & 4100 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4101 break; 4102 4103 /* clear next_to_watch to prevent false hangs */ 4104 tx_buf->next_to_watch = NULL; 4105 4106 tx_desc->buffer_addr = 0; 4107 tx_desc->cmd_type_offset_bsz = 0; 4108 /* move past filter desc */ 4109 tx_buf++; 4110 tx_desc++; 4111 i++; 4112 if (unlikely(!i)) { 4113 i -= tx_ring->count; 4114 tx_buf = tx_ring->tx_bi; 4115 tx_desc = I40E_TX_DESC(tx_ring, 0); 4116 } 4117 /* unmap skb header data */ 4118 dma_unmap_single(tx_ring->dev, 4119 dma_unmap_addr(tx_buf, dma), 4120 dma_unmap_len(tx_buf, len), 4121 DMA_TO_DEVICE); 4122 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4123 kfree(tx_buf->raw_buf); 4124 4125 tx_buf->raw_buf = NULL; 4126 tx_buf->tx_flags = 0; 4127 tx_buf->next_to_watch = NULL; 4128 dma_unmap_len_set(tx_buf, len, 0); 4129 tx_desc->buffer_addr = 0; 4130 tx_desc->cmd_type_offset_bsz = 0; 4131 4132 /* move us past the eop_desc for start of next FD desc */ 4133 tx_buf++; 4134 tx_desc++; 4135 i++; 4136 if (unlikely(!i)) { 4137 i -= tx_ring->count; 4138 tx_buf = tx_ring->tx_bi; 4139 tx_desc = I40E_TX_DESC(tx_ring, 0); 4140 } 4141 4142 /* update budget accounting */ 4143 budget--; 4144 } while (likely(budget)); 4145 4146 i += tx_ring->count; 4147 tx_ring->next_to_clean = i; 4148 4149 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4150 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4151 4152 return budget > 0; 4153 } 4154 4155 /** 4156 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4157 * @irq: interrupt number 4158 * @data: pointer to a q_vector 4159 **/ 4160 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4161 { 4162 struct i40e_q_vector *q_vector = data; 4163 struct i40e_vsi *vsi; 4164 4165 if (!q_vector->tx.ring) 4166 return IRQ_HANDLED; 4167 4168 vsi = q_vector->tx.ring->vsi; 4169 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4170 4171 return IRQ_HANDLED; 4172 } 4173 4174 /** 4175 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4176 * @vsi: the VSI being configured 4177 * @v_idx: vector index 4178 * @qp_idx: queue pair index 4179 **/ 4180 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4181 { 4182 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4183 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4184 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4185 4186 tx_ring->q_vector = q_vector; 4187 tx_ring->next = q_vector->tx.ring; 4188 q_vector->tx.ring = tx_ring; 4189 q_vector->tx.count++; 4190 4191 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4192 if (i40e_enabled_xdp_vsi(vsi)) { 4193 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4194 4195 xdp_ring->q_vector = q_vector; 4196 xdp_ring->next = q_vector->tx.ring; 4197 q_vector->tx.ring = xdp_ring; 4198 q_vector->tx.count++; 4199 } 4200 4201 rx_ring->q_vector = q_vector; 4202 rx_ring->next = q_vector->rx.ring; 4203 q_vector->rx.ring = rx_ring; 4204 q_vector->rx.count++; 4205 } 4206 4207 /** 4208 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4209 * @vsi: the VSI being configured 4210 * 4211 * This function maps descriptor rings to the queue-specific vectors 4212 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4213 * one vector per queue pair, but on a constrained vector budget, we 4214 * group the queue pairs as "efficiently" as possible. 4215 **/ 4216 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4217 { 4218 int qp_remaining = vsi->num_queue_pairs; 4219 int q_vectors = vsi->num_q_vectors; 4220 int num_ringpairs; 4221 int v_start = 0; 4222 int qp_idx = 0; 4223 4224 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4225 * group them so there are multiple queues per vector. 4226 * It is also important to go through all the vectors available to be 4227 * sure that if we don't use all the vectors, that the remaining vectors 4228 * are cleared. This is especially important when decreasing the 4229 * number of queues in use. 4230 */ 4231 for (; v_start < q_vectors; v_start++) { 4232 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4233 4234 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4235 4236 q_vector->num_ringpairs = num_ringpairs; 4237 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4238 4239 q_vector->rx.count = 0; 4240 q_vector->tx.count = 0; 4241 q_vector->rx.ring = NULL; 4242 q_vector->tx.ring = NULL; 4243 4244 while (num_ringpairs--) { 4245 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4246 qp_idx++; 4247 qp_remaining--; 4248 } 4249 } 4250 } 4251 4252 /** 4253 * i40e_vsi_request_irq - Request IRQ from the OS 4254 * @vsi: the VSI being configured 4255 * @basename: name for the vector 4256 **/ 4257 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4258 { 4259 struct i40e_pf *pf = vsi->back; 4260 int err; 4261 4262 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4263 err = i40e_vsi_request_irq_msix(vsi, basename); 4264 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4265 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4266 pf->int_name, pf); 4267 else 4268 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4269 pf->int_name, pf); 4270 4271 if (err) 4272 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4273 4274 return err; 4275 } 4276 4277 #ifdef CONFIG_NET_POLL_CONTROLLER 4278 /** 4279 * i40e_netpoll - A Polling 'interrupt' handler 4280 * @netdev: network interface device structure 4281 * 4282 * This is used by netconsole to send skbs without having to re-enable 4283 * interrupts. It's not called while the normal interrupt routine is executing. 4284 **/ 4285 static void i40e_netpoll(struct net_device *netdev) 4286 { 4287 struct i40e_netdev_priv *np = netdev_priv(netdev); 4288 struct i40e_vsi *vsi = np->vsi; 4289 struct i40e_pf *pf = vsi->back; 4290 int i; 4291 4292 /* if interface is down do nothing */ 4293 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4294 return; 4295 4296 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4297 for (i = 0; i < vsi->num_q_vectors; i++) 4298 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4299 } else { 4300 i40e_intr(pf->pdev->irq, netdev); 4301 } 4302 } 4303 #endif 4304 4305 #define I40E_QTX_ENA_WAIT_COUNT 50 4306 4307 /** 4308 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4309 * @pf: the PF being configured 4310 * @pf_q: the PF queue 4311 * @enable: enable or disable state of the queue 4312 * 4313 * This routine will wait for the given Tx queue of the PF to reach the 4314 * enabled or disabled state. 4315 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4316 * multiple retries; else will return 0 in case of success. 4317 **/ 4318 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4319 { 4320 int i; 4321 u32 tx_reg; 4322 4323 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4324 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4325 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4326 break; 4327 4328 usleep_range(10, 20); 4329 } 4330 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4331 return -ETIMEDOUT; 4332 4333 return 0; 4334 } 4335 4336 /** 4337 * i40e_control_tx_q - Start or stop a particular Tx queue 4338 * @pf: the PF structure 4339 * @pf_q: the PF queue to configure 4340 * @enable: start or stop the queue 4341 * 4342 * This function enables or disables a single queue. Note that any delay 4343 * required after the operation is expected to be handled by the caller of 4344 * this function. 4345 **/ 4346 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4347 { 4348 struct i40e_hw *hw = &pf->hw; 4349 u32 tx_reg; 4350 int i; 4351 4352 /* warn the TX unit of coming changes */ 4353 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4354 if (!enable) 4355 usleep_range(10, 20); 4356 4357 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4358 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4359 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4360 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4361 break; 4362 usleep_range(1000, 2000); 4363 } 4364 4365 /* Skip if the queue is already in the requested state */ 4366 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4367 return; 4368 4369 /* turn on/off the queue */ 4370 if (enable) { 4371 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4372 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4373 } else { 4374 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4375 } 4376 4377 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4378 } 4379 4380 /** 4381 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4382 * @seid: VSI SEID 4383 * @pf: the PF structure 4384 * @pf_q: the PF queue to configure 4385 * @is_xdp: true if the queue is used for XDP 4386 * @enable: start or stop the queue 4387 **/ 4388 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4389 bool is_xdp, bool enable) 4390 { 4391 int ret; 4392 4393 i40e_control_tx_q(pf, pf_q, enable); 4394 4395 /* wait for the change to finish */ 4396 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4397 if (ret) { 4398 dev_info(&pf->pdev->dev, 4399 "VSI seid %d %sTx ring %d %sable timeout\n", 4400 seid, (is_xdp ? "XDP " : ""), pf_q, 4401 (enable ? "en" : "dis")); 4402 } 4403 4404 return ret; 4405 } 4406 4407 /** 4408 * i40e_vsi_control_tx - Start or stop a VSI's rings 4409 * @vsi: the VSI being configured 4410 * @enable: start or stop the rings 4411 **/ 4412 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4413 { 4414 struct i40e_pf *pf = vsi->back; 4415 int i, pf_q, ret = 0; 4416 4417 pf_q = vsi->base_queue; 4418 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4419 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4420 pf_q, 4421 false /*is xdp*/, enable); 4422 if (ret) 4423 break; 4424 4425 if (!i40e_enabled_xdp_vsi(vsi)) 4426 continue; 4427 4428 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4429 pf_q + vsi->alloc_queue_pairs, 4430 true /*is xdp*/, enable); 4431 if (ret) 4432 break; 4433 } 4434 return ret; 4435 } 4436 4437 /** 4438 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4439 * @pf: the PF being configured 4440 * @pf_q: the PF queue 4441 * @enable: enable or disable state of the queue 4442 * 4443 * This routine will wait for the given Rx queue of the PF to reach the 4444 * enabled or disabled state. 4445 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4446 * multiple retries; else will return 0 in case of success. 4447 **/ 4448 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4449 { 4450 int i; 4451 u32 rx_reg; 4452 4453 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4454 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4455 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4456 break; 4457 4458 usleep_range(10, 20); 4459 } 4460 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4461 return -ETIMEDOUT; 4462 4463 return 0; 4464 } 4465 4466 /** 4467 * i40e_control_rx_q - Start or stop a particular Rx queue 4468 * @pf: the PF structure 4469 * @pf_q: the PF queue to configure 4470 * @enable: start or stop the queue 4471 * 4472 * This function enables or disables a single queue. Note that 4473 * any delay required after the operation is expected to be 4474 * handled by the caller of this function. 4475 **/ 4476 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4477 { 4478 struct i40e_hw *hw = &pf->hw; 4479 u32 rx_reg; 4480 int i; 4481 4482 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4483 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4484 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4485 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4486 break; 4487 usleep_range(1000, 2000); 4488 } 4489 4490 /* Skip if the queue is already in the requested state */ 4491 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4492 return; 4493 4494 /* turn on/off the queue */ 4495 if (enable) 4496 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4497 else 4498 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4499 4500 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4501 } 4502 4503 /** 4504 * i40e_control_wait_rx_q 4505 * @pf: the PF structure 4506 * @pf_q: queue being configured 4507 * @enable: start or stop the rings 4508 * 4509 * This function enables or disables a single queue along with waiting 4510 * for the change to finish. The caller of this function should handle 4511 * the delays needed in the case of disabling queues. 4512 **/ 4513 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4514 { 4515 int ret = 0; 4516 4517 i40e_control_rx_q(pf, pf_q, enable); 4518 4519 /* wait for the change to finish */ 4520 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4521 if (ret) 4522 return ret; 4523 4524 return ret; 4525 } 4526 4527 /** 4528 * i40e_vsi_control_rx - Start or stop a VSI's rings 4529 * @vsi: the VSI being configured 4530 * @enable: start or stop the rings 4531 **/ 4532 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4533 { 4534 struct i40e_pf *pf = vsi->back; 4535 int i, pf_q, ret = 0; 4536 4537 pf_q = vsi->base_queue; 4538 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4539 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4540 if (ret) { 4541 dev_info(&pf->pdev->dev, 4542 "VSI seid %d Rx ring %d %sable timeout\n", 4543 vsi->seid, pf_q, (enable ? "en" : "dis")); 4544 break; 4545 } 4546 } 4547 4548 /* Due to HW errata, on Rx disable only, the register can indicate done 4549 * before it really is. Needs 50ms to be sure 4550 */ 4551 if (!enable) 4552 mdelay(50); 4553 4554 return ret; 4555 } 4556 4557 /** 4558 * i40e_vsi_start_rings - Start a VSI's rings 4559 * @vsi: the VSI being configured 4560 **/ 4561 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4562 { 4563 int ret = 0; 4564 4565 /* do rx first for enable and last for disable */ 4566 ret = i40e_vsi_control_rx(vsi, true); 4567 if (ret) 4568 return ret; 4569 ret = i40e_vsi_control_tx(vsi, true); 4570 4571 return ret; 4572 } 4573 4574 /** 4575 * i40e_vsi_stop_rings - Stop a VSI's rings 4576 * @vsi: the VSI being configured 4577 **/ 4578 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4579 { 4580 /* When port TX is suspended, don't wait */ 4581 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4582 return i40e_vsi_stop_rings_no_wait(vsi); 4583 4584 /* do rx first for enable and last for disable 4585 * Ignore return value, we need to shutdown whatever we can 4586 */ 4587 i40e_vsi_control_tx(vsi, false); 4588 i40e_vsi_control_rx(vsi, false); 4589 } 4590 4591 /** 4592 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4593 * @vsi: the VSI being shutdown 4594 * 4595 * This function stops all the rings for a VSI but does not delay to verify 4596 * that rings have been disabled. It is expected that the caller is shutting 4597 * down multiple VSIs at once and will delay together for all the VSIs after 4598 * initiating the shutdown. This is particularly useful for shutting down lots 4599 * of VFs together. Otherwise, a large delay can be incurred while configuring 4600 * each VSI in serial. 4601 **/ 4602 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4603 { 4604 struct i40e_pf *pf = vsi->back; 4605 int i, pf_q; 4606 4607 pf_q = vsi->base_queue; 4608 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4609 i40e_control_tx_q(pf, pf_q, false); 4610 i40e_control_rx_q(pf, pf_q, false); 4611 } 4612 } 4613 4614 /** 4615 * i40e_vsi_free_irq - Free the irq association with the OS 4616 * @vsi: the VSI being configured 4617 **/ 4618 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4619 { 4620 struct i40e_pf *pf = vsi->back; 4621 struct i40e_hw *hw = &pf->hw; 4622 int base = vsi->base_vector; 4623 u32 val, qp; 4624 int i; 4625 4626 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4627 if (!vsi->q_vectors) 4628 return; 4629 4630 if (!vsi->irqs_ready) 4631 return; 4632 4633 vsi->irqs_ready = false; 4634 for (i = 0; i < vsi->num_q_vectors; i++) { 4635 int irq_num; 4636 u16 vector; 4637 4638 vector = i + base; 4639 irq_num = pf->msix_entries[vector].vector; 4640 4641 /* free only the irqs that were actually requested */ 4642 if (!vsi->q_vectors[i] || 4643 !vsi->q_vectors[i]->num_ringpairs) 4644 continue; 4645 4646 /* clear the affinity notifier in the IRQ descriptor */ 4647 irq_set_affinity_notifier(irq_num, NULL); 4648 /* remove our suggested affinity mask for this IRQ */ 4649 irq_set_affinity_hint(irq_num, NULL); 4650 synchronize_irq(irq_num); 4651 free_irq(irq_num, vsi->q_vectors[i]); 4652 4653 /* Tear down the interrupt queue link list 4654 * 4655 * We know that they come in pairs and always 4656 * the Rx first, then the Tx. To clear the 4657 * link list, stick the EOL value into the 4658 * next_q field of the registers. 4659 */ 4660 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4661 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4662 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4663 val |= I40E_QUEUE_END_OF_LIST 4664 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4665 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4666 4667 while (qp != I40E_QUEUE_END_OF_LIST) { 4668 u32 next; 4669 4670 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4671 4672 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4673 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4674 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4675 I40E_QINT_RQCTL_INTEVENT_MASK); 4676 4677 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4678 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4679 4680 wr32(hw, I40E_QINT_RQCTL(qp), val); 4681 4682 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4683 4684 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4685 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4686 4687 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4688 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4689 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4690 I40E_QINT_TQCTL_INTEVENT_MASK); 4691 4692 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4693 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4694 4695 wr32(hw, I40E_QINT_TQCTL(qp), val); 4696 qp = next; 4697 } 4698 } 4699 } else { 4700 free_irq(pf->pdev->irq, pf); 4701 4702 val = rd32(hw, I40E_PFINT_LNKLST0); 4703 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4704 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4705 val |= I40E_QUEUE_END_OF_LIST 4706 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4707 wr32(hw, I40E_PFINT_LNKLST0, val); 4708 4709 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4710 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4711 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4712 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4713 I40E_QINT_RQCTL_INTEVENT_MASK); 4714 4715 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4716 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4717 4718 wr32(hw, I40E_QINT_RQCTL(qp), val); 4719 4720 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4721 4722 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4723 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4724 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4725 I40E_QINT_TQCTL_INTEVENT_MASK); 4726 4727 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4728 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4729 4730 wr32(hw, I40E_QINT_TQCTL(qp), val); 4731 } 4732 } 4733 4734 /** 4735 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4736 * @vsi: the VSI being configured 4737 * @v_idx: Index of vector to be freed 4738 * 4739 * This function frees the memory allocated to the q_vector. In addition if 4740 * NAPI is enabled it will delete any references to the NAPI struct prior 4741 * to freeing the q_vector. 4742 **/ 4743 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4744 { 4745 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4746 struct i40e_ring *ring; 4747 4748 if (!q_vector) 4749 return; 4750 4751 /* disassociate q_vector from rings */ 4752 i40e_for_each_ring(ring, q_vector->tx) 4753 ring->q_vector = NULL; 4754 4755 i40e_for_each_ring(ring, q_vector->rx) 4756 ring->q_vector = NULL; 4757 4758 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4759 if (vsi->netdev) 4760 netif_napi_del(&q_vector->napi); 4761 4762 vsi->q_vectors[v_idx] = NULL; 4763 4764 kfree_rcu(q_vector, rcu); 4765 } 4766 4767 /** 4768 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4769 * @vsi: the VSI being un-configured 4770 * 4771 * This frees the memory allocated to the q_vectors and 4772 * deletes references to the NAPI struct. 4773 **/ 4774 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4775 { 4776 int v_idx; 4777 4778 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4779 i40e_free_q_vector(vsi, v_idx); 4780 } 4781 4782 /** 4783 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4784 * @pf: board private structure 4785 **/ 4786 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4787 { 4788 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4789 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4790 pci_disable_msix(pf->pdev); 4791 kfree(pf->msix_entries); 4792 pf->msix_entries = NULL; 4793 kfree(pf->irq_pile); 4794 pf->irq_pile = NULL; 4795 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4796 pci_disable_msi(pf->pdev); 4797 } 4798 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4799 } 4800 4801 /** 4802 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4803 * @pf: board private structure 4804 * 4805 * We go through and clear interrupt specific resources and reset the structure 4806 * to pre-load conditions 4807 **/ 4808 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4809 { 4810 int i; 4811 4812 i40e_free_misc_vector(pf); 4813 4814 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4815 I40E_IWARP_IRQ_PILE_ID); 4816 4817 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4818 for (i = 0; i < pf->num_alloc_vsi; i++) 4819 if (pf->vsi[i]) 4820 i40e_vsi_free_q_vectors(pf->vsi[i]); 4821 i40e_reset_interrupt_capability(pf); 4822 } 4823 4824 /** 4825 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4826 * @vsi: the VSI being configured 4827 **/ 4828 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4829 { 4830 int q_idx; 4831 4832 if (!vsi->netdev) 4833 return; 4834 4835 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4836 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4837 4838 if (q_vector->rx.ring || q_vector->tx.ring) 4839 napi_enable(&q_vector->napi); 4840 } 4841 } 4842 4843 /** 4844 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4845 * @vsi: the VSI being configured 4846 **/ 4847 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4848 { 4849 int q_idx; 4850 4851 if (!vsi->netdev) 4852 return; 4853 4854 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4855 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4856 4857 if (q_vector->rx.ring || q_vector->tx.ring) 4858 napi_disable(&q_vector->napi); 4859 } 4860 } 4861 4862 /** 4863 * i40e_vsi_close - Shut down a VSI 4864 * @vsi: the vsi to be quelled 4865 **/ 4866 static void i40e_vsi_close(struct i40e_vsi *vsi) 4867 { 4868 struct i40e_pf *pf = vsi->back; 4869 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4870 i40e_down(vsi); 4871 i40e_vsi_free_irq(vsi); 4872 i40e_vsi_free_tx_resources(vsi); 4873 i40e_vsi_free_rx_resources(vsi); 4874 vsi->current_netdev_flags = 0; 4875 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4876 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4877 set_bit(__I40E_CLIENT_RESET, pf->state); 4878 } 4879 4880 /** 4881 * i40e_quiesce_vsi - Pause a given VSI 4882 * @vsi: the VSI being paused 4883 **/ 4884 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4885 { 4886 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4887 return; 4888 4889 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4890 if (vsi->netdev && netif_running(vsi->netdev)) 4891 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4892 else 4893 i40e_vsi_close(vsi); 4894 } 4895 4896 /** 4897 * i40e_unquiesce_vsi - Resume a given VSI 4898 * @vsi: the VSI being resumed 4899 **/ 4900 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4901 { 4902 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4903 return; 4904 4905 if (vsi->netdev && netif_running(vsi->netdev)) 4906 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4907 else 4908 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4909 } 4910 4911 /** 4912 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4913 * @pf: the PF 4914 **/ 4915 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4916 { 4917 int v; 4918 4919 for (v = 0; v < pf->num_alloc_vsi; v++) { 4920 if (pf->vsi[v]) 4921 i40e_quiesce_vsi(pf->vsi[v]); 4922 } 4923 } 4924 4925 /** 4926 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4927 * @pf: the PF 4928 **/ 4929 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4930 { 4931 int v; 4932 4933 for (v = 0; v < pf->num_alloc_vsi; v++) { 4934 if (pf->vsi[v]) 4935 i40e_unquiesce_vsi(pf->vsi[v]); 4936 } 4937 } 4938 4939 /** 4940 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4941 * @vsi: the VSI being configured 4942 * 4943 * Wait until all queues on a given VSI have been disabled. 4944 **/ 4945 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4946 { 4947 struct i40e_pf *pf = vsi->back; 4948 int i, pf_q, ret; 4949 4950 pf_q = vsi->base_queue; 4951 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4952 /* Check and wait for the Tx queue */ 4953 ret = i40e_pf_txq_wait(pf, pf_q, false); 4954 if (ret) { 4955 dev_info(&pf->pdev->dev, 4956 "VSI seid %d Tx ring %d disable timeout\n", 4957 vsi->seid, pf_q); 4958 return ret; 4959 } 4960 4961 if (!i40e_enabled_xdp_vsi(vsi)) 4962 goto wait_rx; 4963 4964 /* Check and wait for the XDP Tx queue */ 4965 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4966 false); 4967 if (ret) { 4968 dev_info(&pf->pdev->dev, 4969 "VSI seid %d XDP Tx ring %d disable timeout\n", 4970 vsi->seid, pf_q); 4971 return ret; 4972 } 4973 wait_rx: 4974 /* Check and wait for the Rx queue */ 4975 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4976 if (ret) { 4977 dev_info(&pf->pdev->dev, 4978 "VSI seid %d Rx ring %d disable timeout\n", 4979 vsi->seid, pf_q); 4980 return ret; 4981 } 4982 } 4983 4984 return 0; 4985 } 4986 4987 #ifdef CONFIG_I40E_DCB 4988 /** 4989 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4990 * @pf: the PF 4991 * 4992 * This function waits for the queues to be in disabled state for all the 4993 * VSIs that are managed by this PF. 4994 **/ 4995 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4996 { 4997 int v, ret = 0; 4998 4999 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5000 if (pf->vsi[v]) { 5001 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5002 if (ret) 5003 break; 5004 } 5005 } 5006 5007 return ret; 5008 } 5009 5010 #endif 5011 5012 /** 5013 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5014 * @pf: pointer to PF 5015 * 5016 * Get TC map for ISCSI PF type that will include iSCSI TC 5017 * and LAN TC. 5018 **/ 5019 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5020 { 5021 struct i40e_dcb_app_priority_table app; 5022 struct i40e_hw *hw = &pf->hw; 5023 u8 enabled_tc = 1; /* TC0 is always enabled */ 5024 u8 tc, i; 5025 /* Get the iSCSI APP TLV */ 5026 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5027 5028 for (i = 0; i < dcbcfg->numapps; i++) { 5029 app = dcbcfg->app[i]; 5030 if (app.selector == I40E_APP_SEL_TCPIP && 5031 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5032 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5033 enabled_tc |= BIT(tc); 5034 break; 5035 } 5036 } 5037 5038 return enabled_tc; 5039 } 5040 5041 /** 5042 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5043 * @dcbcfg: the corresponding DCBx configuration structure 5044 * 5045 * Return the number of TCs from given DCBx configuration 5046 **/ 5047 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5048 { 5049 int i, tc_unused = 0; 5050 u8 num_tc = 0; 5051 u8 ret = 0; 5052 5053 /* Scan the ETS Config Priority Table to find 5054 * traffic class enabled for a given priority 5055 * and create a bitmask of enabled TCs 5056 */ 5057 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5058 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5059 5060 /* Now scan the bitmask to check for 5061 * contiguous TCs starting with TC0 5062 */ 5063 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5064 if (num_tc & BIT(i)) { 5065 if (!tc_unused) { 5066 ret++; 5067 } else { 5068 pr_err("Non-contiguous TC - Disabling DCB\n"); 5069 return 1; 5070 } 5071 } else { 5072 tc_unused = 1; 5073 } 5074 } 5075 5076 /* There is always at least TC0 */ 5077 if (!ret) 5078 ret = 1; 5079 5080 return ret; 5081 } 5082 5083 /** 5084 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5085 * @dcbcfg: the corresponding DCBx configuration structure 5086 * 5087 * Query the current DCB configuration and return the number of 5088 * traffic classes enabled from the given DCBX config 5089 **/ 5090 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5091 { 5092 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5093 u8 enabled_tc = 1; 5094 u8 i; 5095 5096 for (i = 0; i < num_tc; i++) 5097 enabled_tc |= BIT(i); 5098 5099 return enabled_tc; 5100 } 5101 5102 /** 5103 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5104 * @pf: PF being queried 5105 * 5106 * Query the current MQPRIO configuration and return the number of 5107 * traffic classes enabled. 5108 **/ 5109 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5110 { 5111 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5112 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5113 u8 enabled_tc = 1, i; 5114 5115 for (i = 1; i < num_tc; i++) 5116 enabled_tc |= BIT(i); 5117 return enabled_tc; 5118 } 5119 5120 /** 5121 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5122 * @pf: PF being queried 5123 * 5124 * Return number of traffic classes enabled for the given PF 5125 **/ 5126 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5127 { 5128 struct i40e_hw *hw = &pf->hw; 5129 u8 i, enabled_tc = 1; 5130 u8 num_tc = 0; 5131 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5132 5133 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5134 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5135 5136 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5137 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5138 return 1; 5139 5140 /* SFP mode will be enabled for all TCs on port */ 5141 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5142 return i40e_dcb_get_num_tc(dcbcfg); 5143 5144 /* MFP mode return count of enabled TCs for this PF */ 5145 if (pf->hw.func_caps.iscsi) 5146 enabled_tc = i40e_get_iscsi_tc_map(pf); 5147 else 5148 return 1; /* Only TC0 */ 5149 5150 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5151 if (enabled_tc & BIT(i)) 5152 num_tc++; 5153 } 5154 return num_tc; 5155 } 5156 5157 /** 5158 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5159 * @pf: PF being queried 5160 * 5161 * Return a bitmap for enabled traffic classes for this PF. 5162 **/ 5163 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5164 { 5165 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5166 return i40e_mqprio_get_enabled_tc(pf); 5167 5168 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5169 * default TC 5170 */ 5171 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5172 return I40E_DEFAULT_TRAFFIC_CLASS; 5173 5174 /* SFP mode we want PF to be enabled for all TCs */ 5175 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5176 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5177 5178 /* MFP enabled and iSCSI PF type */ 5179 if (pf->hw.func_caps.iscsi) 5180 return i40e_get_iscsi_tc_map(pf); 5181 else 5182 return I40E_DEFAULT_TRAFFIC_CLASS; 5183 } 5184 5185 /** 5186 * i40e_vsi_get_bw_info - Query VSI BW Information 5187 * @vsi: the VSI being queried 5188 * 5189 * Returns 0 on success, negative value on failure 5190 **/ 5191 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5192 { 5193 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5194 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5195 struct i40e_pf *pf = vsi->back; 5196 struct i40e_hw *hw = &pf->hw; 5197 i40e_status ret; 5198 u32 tc_bw_max; 5199 int i; 5200 5201 /* Get the VSI level BW configuration */ 5202 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5203 if (ret) { 5204 dev_info(&pf->pdev->dev, 5205 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5206 i40e_stat_str(&pf->hw, ret), 5207 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5208 return -EINVAL; 5209 } 5210 5211 /* Get the VSI level BW configuration per TC */ 5212 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5213 NULL); 5214 if (ret) { 5215 dev_info(&pf->pdev->dev, 5216 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5217 i40e_stat_str(&pf->hw, ret), 5218 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5219 return -EINVAL; 5220 } 5221 5222 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5223 dev_info(&pf->pdev->dev, 5224 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5225 bw_config.tc_valid_bits, 5226 bw_ets_config.tc_valid_bits); 5227 /* Still continuing */ 5228 } 5229 5230 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5231 vsi->bw_max_quanta = bw_config.max_bw; 5232 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5233 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5234 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5235 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5236 vsi->bw_ets_limit_credits[i] = 5237 le16_to_cpu(bw_ets_config.credits[i]); 5238 /* 3 bits out of 4 for each TC */ 5239 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5240 } 5241 5242 return 0; 5243 } 5244 5245 /** 5246 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5247 * @vsi: the VSI being configured 5248 * @enabled_tc: TC bitmap 5249 * @bw_share: BW shared credits per TC 5250 * 5251 * Returns 0 on success, negative value on failure 5252 **/ 5253 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5254 u8 *bw_share) 5255 { 5256 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5257 struct i40e_pf *pf = vsi->back; 5258 i40e_status ret; 5259 int i; 5260 5261 /* There is no need to reset BW when mqprio mode is on. */ 5262 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5263 return 0; 5264 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5265 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5266 if (ret) 5267 dev_info(&pf->pdev->dev, 5268 "Failed to reset tx rate for vsi->seid %u\n", 5269 vsi->seid); 5270 return ret; 5271 } 5272 bw_data.tc_valid_bits = enabled_tc; 5273 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5274 bw_data.tc_bw_credits[i] = bw_share[i]; 5275 5276 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5277 if (ret) { 5278 dev_info(&pf->pdev->dev, 5279 "AQ command Config VSI BW allocation per TC failed = %d\n", 5280 pf->hw.aq.asq_last_status); 5281 return -EINVAL; 5282 } 5283 5284 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5285 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5286 5287 return 0; 5288 } 5289 5290 /** 5291 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5292 * @vsi: the VSI being configured 5293 * @enabled_tc: TC map to be enabled 5294 * 5295 **/ 5296 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5297 { 5298 struct net_device *netdev = vsi->netdev; 5299 struct i40e_pf *pf = vsi->back; 5300 struct i40e_hw *hw = &pf->hw; 5301 u8 netdev_tc = 0; 5302 int i; 5303 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5304 5305 if (!netdev) 5306 return; 5307 5308 if (!enabled_tc) { 5309 netdev_reset_tc(netdev); 5310 return; 5311 } 5312 5313 /* Set up actual enabled TCs on the VSI */ 5314 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5315 return; 5316 5317 /* set per TC queues for the VSI */ 5318 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5319 /* Only set TC queues for enabled tcs 5320 * 5321 * e.g. For a VSI that has TC0 and TC3 enabled the 5322 * enabled_tc bitmap would be 0x00001001; the driver 5323 * will set the numtc for netdev as 2 that will be 5324 * referenced by the netdev layer as TC 0 and 1. 5325 */ 5326 if (vsi->tc_config.enabled_tc & BIT(i)) 5327 netdev_set_tc_queue(netdev, 5328 vsi->tc_config.tc_info[i].netdev_tc, 5329 vsi->tc_config.tc_info[i].qcount, 5330 vsi->tc_config.tc_info[i].qoffset); 5331 } 5332 5333 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5334 return; 5335 5336 /* Assign UP2TC map for the VSI */ 5337 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5338 /* Get the actual TC# for the UP */ 5339 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5340 /* Get the mapped netdev TC# for the UP */ 5341 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5342 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5343 } 5344 } 5345 5346 /** 5347 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5348 * @vsi: the VSI being configured 5349 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5350 **/ 5351 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5352 struct i40e_vsi_context *ctxt) 5353 { 5354 /* copy just the sections touched not the entire info 5355 * since not all sections are valid as returned by 5356 * update vsi params 5357 */ 5358 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5359 memcpy(&vsi->info.queue_mapping, 5360 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5361 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5362 sizeof(vsi->info.tc_mapping)); 5363 } 5364 5365 /** 5366 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5367 * @vsi: VSI to be configured 5368 * @enabled_tc: TC bitmap 5369 * 5370 * This configures a particular VSI for TCs that are mapped to the 5371 * given TC bitmap. It uses default bandwidth share for TCs across 5372 * VSIs to configure TC for a particular VSI. 5373 * 5374 * NOTE: 5375 * It is expected that the VSI queues have been quisced before calling 5376 * this function. 5377 **/ 5378 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5379 { 5380 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5381 struct i40e_pf *pf = vsi->back; 5382 struct i40e_hw *hw = &pf->hw; 5383 struct i40e_vsi_context ctxt; 5384 int ret = 0; 5385 int i; 5386 5387 /* Check if enabled_tc is same as existing or new TCs */ 5388 if (vsi->tc_config.enabled_tc == enabled_tc && 5389 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5390 return ret; 5391 5392 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5393 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5394 if (enabled_tc & BIT(i)) 5395 bw_share[i] = 1; 5396 } 5397 5398 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5399 if (ret) { 5400 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5401 5402 dev_info(&pf->pdev->dev, 5403 "Failed configuring TC map %d for VSI %d\n", 5404 enabled_tc, vsi->seid); 5405 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5406 &bw_config, NULL); 5407 if (ret) { 5408 dev_info(&pf->pdev->dev, 5409 "Failed querying vsi bw info, err %s aq_err %s\n", 5410 i40e_stat_str(hw, ret), 5411 i40e_aq_str(hw, hw->aq.asq_last_status)); 5412 goto out; 5413 } 5414 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5415 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5416 5417 if (!valid_tc) 5418 valid_tc = bw_config.tc_valid_bits; 5419 /* Always enable TC0, no matter what */ 5420 valid_tc |= 1; 5421 dev_info(&pf->pdev->dev, 5422 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5423 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5424 enabled_tc = valid_tc; 5425 } 5426 5427 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5428 if (ret) { 5429 dev_err(&pf->pdev->dev, 5430 "Unable to configure TC map %d for VSI %d\n", 5431 enabled_tc, vsi->seid); 5432 goto out; 5433 } 5434 } 5435 5436 /* Update Queue Pairs Mapping for currently enabled UPs */ 5437 ctxt.seid = vsi->seid; 5438 ctxt.pf_num = vsi->back->hw.pf_id; 5439 ctxt.vf_num = 0; 5440 ctxt.uplink_seid = vsi->uplink_seid; 5441 ctxt.info = vsi->info; 5442 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5443 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5444 if (ret) 5445 goto out; 5446 } else { 5447 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5448 } 5449 5450 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5451 * queues changed. 5452 */ 5453 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5454 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5455 vsi->num_queue_pairs); 5456 ret = i40e_vsi_config_rss(vsi); 5457 if (ret) { 5458 dev_info(&vsi->back->pdev->dev, 5459 "Failed to reconfig rss for num_queues\n"); 5460 return ret; 5461 } 5462 vsi->reconfig_rss = false; 5463 } 5464 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5465 ctxt.info.valid_sections |= 5466 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5467 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5468 } 5469 5470 /* Update the VSI after updating the VSI queue-mapping 5471 * information 5472 */ 5473 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5474 if (ret) { 5475 dev_info(&pf->pdev->dev, 5476 "Update vsi tc config failed, err %s aq_err %s\n", 5477 i40e_stat_str(hw, ret), 5478 i40e_aq_str(hw, hw->aq.asq_last_status)); 5479 goto out; 5480 } 5481 /* update the local VSI info with updated queue map */ 5482 i40e_vsi_update_queue_map(vsi, &ctxt); 5483 vsi->info.valid_sections = 0; 5484 5485 /* Update current VSI BW information */ 5486 ret = i40e_vsi_get_bw_info(vsi); 5487 if (ret) { 5488 dev_info(&pf->pdev->dev, 5489 "Failed updating vsi bw info, err %s aq_err %s\n", 5490 i40e_stat_str(hw, ret), 5491 i40e_aq_str(hw, hw->aq.asq_last_status)); 5492 goto out; 5493 } 5494 5495 /* Update the netdev TC setup */ 5496 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5497 out: 5498 return ret; 5499 } 5500 5501 /** 5502 * i40e_get_link_speed - Returns link speed for the interface 5503 * @vsi: VSI to be configured 5504 * 5505 **/ 5506 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5507 { 5508 struct i40e_pf *pf = vsi->back; 5509 5510 switch (pf->hw.phy.link_info.link_speed) { 5511 case I40E_LINK_SPEED_40GB: 5512 return 40000; 5513 case I40E_LINK_SPEED_25GB: 5514 return 25000; 5515 case I40E_LINK_SPEED_20GB: 5516 return 20000; 5517 case I40E_LINK_SPEED_10GB: 5518 return 10000; 5519 case I40E_LINK_SPEED_1GB: 5520 return 1000; 5521 default: 5522 return -EINVAL; 5523 } 5524 } 5525 5526 /** 5527 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5528 * @vsi: VSI to be configured 5529 * @seid: seid of the channel/VSI 5530 * @max_tx_rate: max TX rate to be configured as BW limit 5531 * 5532 * Helper function to set BW limit for a given VSI 5533 **/ 5534 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5535 { 5536 struct i40e_pf *pf = vsi->back; 5537 u64 credits = 0; 5538 int speed = 0; 5539 int ret = 0; 5540 5541 speed = i40e_get_link_speed(vsi); 5542 if (max_tx_rate > speed) { 5543 dev_err(&pf->pdev->dev, 5544 "Invalid max tx rate %llu specified for VSI seid %d.", 5545 max_tx_rate, seid); 5546 return -EINVAL; 5547 } 5548 if (max_tx_rate && max_tx_rate < 50) { 5549 dev_warn(&pf->pdev->dev, 5550 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5551 max_tx_rate = 50; 5552 } 5553 5554 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5555 credits = max_tx_rate; 5556 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5557 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5558 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5559 if (ret) 5560 dev_err(&pf->pdev->dev, 5561 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5562 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5563 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5564 return ret; 5565 } 5566 5567 /** 5568 * i40e_remove_queue_channels - Remove queue channels for the TCs 5569 * @vsi: VSI to be configured 5570 * 5571 * Remove queue channels for the TCs 5572 **/ 5573 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5574 { 5575 enum i40e_admin_queue_err last_aq_status; 5576 struct i40e_cloud_filter *cfilter; 5577 struct i40e_channel *ch, *ch_tmp; 5578 struct i40e_pf *pf = vsi->back; 5579 struct hlist_node *node; 5580 int ret, i; 5581 5582 /* Reset rss size that was stored when reconfiguring rss for 5583 * channel VSIs with non-power-of-2 queue count. 5584 */ 5585 vsi->current_rss_size = 0; 5586 5587 /* perform cleanup for channels if they exist */ 5588 if (list_empty(&vsi->ch_list)) 5589 return; 5590 5591 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5592 struct i40e_vsi *p_vsi; 5593 5594 list_del(&ch->list); 5595 p_vsi = ch->parent_vsi; 5596 if (!p_vsi || !ch->initialized) { 5597 kfree(ch); 5598 continue; 5599 } 5600 /* Reset queue contexts */ 5601 for (i = 0; i < ch->num_queue_pairs; i++) { 5602 struct i40e_ring *tx_ring, *rx_ring; 5603 u16 pf_q; 5604 5605 pf_q = ch->base_queue + i; 5606 tx_ring = vsi->tx_rings[pf_q]; 5607 tx_ring->ch = NULL; 5608 5609 rx_ring = vsi->rx_rings[pf_q]; 5610 rx_ring->ch = NULL; 5611 } 5612 5613 /* Reset BW configured for this VSI via mqprio */ 5614 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5615 if (ret) 5616 dev_info(&vsi->back->pdev->dev, 5617 "Failed to reset tx rate for ch->seid %u\n", 5618 ch->seid); 5619 5620 /* delete cloud filters associated with this channel */ 5621 hlist_for_each_entry_safe(cfilter, node, 5622 &pf->cloud_filter_list, cloud_node) { 5623 if (cfilter->seid != ch->seid) 5624 continue; 5625 5626 hash_del(&cfilter->cloud_node); 5627 if (cfilter->dst_port) 5628 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5629 cfilter, 5630 false); 5631 else 5632 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5633 false); 5634 last_aq_status = pf->hw.aq.asq_last_status; 5635 if (ret) 5636 dev_info(&pf->pdev->dev, 5637 "Failed to delete cloud filter, err %s aq_err %s\n", 5638 i40e_stat_str(&pf->hw, ret), 5639 i40e_aq_str(&pf->hw, last_aq_status)); 5640 kfree(cfilter); 5641 } 5642 5643 /* delete VSI from FW */ 5644 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5645 NULL); 5646 if (ret) 5647 dev_err(&vsi->back->pdev->dev, 5648 "unable to remove channel (%d) for parent VSI(%d)\n", 5649 ch->seid, p_vsi->seid); 5650 kfree(ch); 5651 } 5652 INIT_LIST_HEAD(&vsi->ch_list); 5653 } 5654 5655 /** 5656 * i40e_is_any_channel - channel exist or not 5657 * @vsi: ptr to VSI to which channels are associated with 5658 * 5659 * Returns true or false if channel(s) exist for associated VSI or not 5660 **/ 5661 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5662 { 5663 struct i40e_channel *ch, *ch_tmp; 5664 5665 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5666 if (ch->initialized) 5667 return true; 5668 } 5669 5670 return false; 5671 } 5672 5673 /** 5674 * i40e_get_max_queues_for_channel 5675 * @vsi: ptr to VSI to which channels are associated with 5676 * 5677 * Helper function which returns max value among the queue counts set on the 5678 * channels/TCs created. 5679 **/ 5680 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5681 { 5682 struct i40e_channel *ch, *ch_tmp; 5683 int max = 0; 5684 5685 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5686 if (!ch->initialized) 5687 continue; 5688 if (ch->num_queue_pairs > max) 5689 max = ch->num_queue_pairs; 5690 } 5691 5692 return max; 5693 } 5694 5695 /** 5696 * i40e_validate_num_queues - validate num_queues w.r.t channel 5697 * @pf: ptr to PF device 5698 * @num_queues: number of queues 5699 * @vsi: the parent VSI 5700 * @reconfig_rss: indicates should the RSS be reconfigured or not 5701 * 5702 * This function validates number of queues in the context of new channel 5703 * which is being established and determines if RSS should be reconfigured 5704 * or not for parent VSI. 5705 **/ 5706 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5707 struct i40e_vsi *vsi, bool *reconfig_rss) 5708 { 5709 int max_ch_queues; 5710 5711 if (!reconfig_rss) 5712 return -EINVAL; 5713 5714 *reconfig_rss = false; 5715 if (vsi->current_rss_size) { 5716 if (num_queues > vsi->current_rss_size) { 5717 dev_dbg(&pf->pdev->dev, 5718 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5719 num_queues, vsi->current_rss_size); 5720 return -EINVAL; 5721 } else if ((num_queues < vsi->current_rss_size) && 5722 (!is_power_of_2(num_queues))) { 5723 dev_dbg(&pf->pdev->dev, 5724 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5725 num_queues, vsi->current_rss_size); 5726 return -EINVAL; 5727 } 5728 } 5729 5730 if (!is_power_of_2(num_queues)) { 5731 /* Find the max num_queues configured for channel if channel 5732 * exist. 5733 * if channel exist, then enforce 'num_queues' to be more than 5734 * max ever queues configured for channel. 5735 */ 5736 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5737 if (num_queues < max_ch_queues) { 5738 dev_dbg(&pf->pdev->dev, 5739 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5740 num_queues, max_ch_queues); 5741 return -EINVAL; 5742 } 5743 *reconfig_rss = true; 5744 } 5745 5746 return 0; 5747 } 5748 5749 /** 5750 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5751 * @vsi: the VSI being setup 5752 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5753 * 5754 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5755 **/ 5756 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5757 { 5758 struct i40e_pf *pf = vsi->back; 5759 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5760 struct i40e_hw *hw = &pf->hw; 5761 int local_rss_size; 5762 u8 *lut; 5763 int ret; 5764 5765 if (!vsi->rss_size) 5766 return -EINVAL; 5767 5768 if (rss_size > vsi->rss_size) 5769 return -EINVAL; 5770 5771 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5772 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5773 if (!lut) 5774 return -ENOMEM; 5775 5776 /* Ignoring user configured lut if there is one */ 5777 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5778 5779 /* Use user configured hash key if there is one, otherwise 5780 * use default. 5781 */ 5782 if (vsi->rss_hkey_user) 5783 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5784 else 5785 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5786 5787 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5788 if (ret) { 5789 dev_info(&pf->pdev->dev, 5790 "Cannot set RSS lut, err %s aq_err %s\n", 5791 i40e_stat_str(hw, ret), 5792 i40e_aq_str(hw, hw->aq.asq_last_status)); 5793 kfree(lut); 5794 return ret; 5795 } 5796 kfree(lut); 5797 5798 /* Do the update w.r.t. storing rss_size */ 5799 if (!vsi->orig_rss_size) 5800 vsi->orig_rss_size = vsi->rss_size; 5801 vsi->current_rss_size = local_rss_size; 5802 5803 return ret; 5804 } 5805 5806 /** 5807 * i40e_channel_setup_queue_map - Setup a channel queue map 5808 * @pf: ptr to PF device 5809 * @vsi: the VSI being setup 5810 * @ctxt: VSI context structure 5811 * @ch: ptr to channel structure 5812 * 5813 * Setup queue map for a specific channel 5814 **/ 5815 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5816 struct i40e_vsi_context *ctxt, 5817 struct i40e_channel *ch) 5818 { 5819 u16 qcount, qmap, sections = 0; 5820 u8 offset = 0; 5821 int pow; 5822 5823 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5824 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5825 5826 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5827 ch->num_queue_pairs = qcount; 5828 5829 /* find the next higher power-of-2 of num queue pairs */ 5830 pow = ilog2(qcount); 5831 if (!is_power_of_2(qcount)) 5832 pow++; 5833 5834 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5835 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5836 5837 /* Setup queue TC[0].qmap for given VSI context */ 5838 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5839 5840 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5841 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5842 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5843 ctxt->info.valid_sections |= cpu_to_le16(sections); 5844 } 5845 5846 /** 5847 * i40e_add_channel - add a channel by adding VSI 5848 * @pf: ptr to PF device 5849 * @uplink_seid: underlying HW switching element (VEB) ID 5850 * @ch: ptr to channel structure 5851 * 5852 * Add a channel (VSI) using add_vsi and queue_map 5853 **/ 5854 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5855 struct i40e_channel *ch) 5856 { 5857 struct i40e_hw *hw = &pf->hw; 5858 struct i40e_vsi_context ctxt; 5859 u8 enabled_tc = 0x1; /* TC0 enabled */ 5860 int ret; 5861 5862 if (ch->type != I40E_VSI_VMDQ2) { 5863 dev_info(&pf->pdev->dev, 5864 "add new vsi failed, ch->type %d\n", ch->type); 5865 return -EINVAL; 5866 } 5867 5868 memset(&ctxt, 0, sizeof(ctxt)); 5869 ctxt.pf_num = hw->pf_id; 5870 ctxt.vf_num = 0; 5871 ctxt.uplink_seid = uplink_seid; 5872 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5873 if (ch->type == I40E_VSI_VMDQ2) 5874 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5875 5876 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5877 ctxt.info.valid_sections |= 5878 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5879 ctxt.info.switch_id = 5880 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5881 } 5882 5883 /* Set queue map for a given VSI context */ 5884 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5885 5886 /* Now time to create VSI */ 5887 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5888 if (ret) { 5889 dev_info(&pf->pdev->dev, 5890 "add new vsi failed, err %s aq_err %s\n", 5891 i40e_stat_str(&pf->hw, ret), 5892 i40e_aq_str(&pf->hw, 5893 pf->hw.aq.asq_last_status)); 5894 return -ENOENT; 5895 } 5896 5897 /* Success, update channel, set enabled_tc only if the channel 5898 * is not a macvlan 5899 */ 5900 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5901 ch->seid = ctxt.seid; 5902 ch->vsi_number = ctxt.vsi_number; 5903 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5904 5905 /* copy just the sections touched not the entire info 5906 * since not all sections are valid as returned by 5907 * update vsi params 5908 */ 5909 ch->info.mapping_flags = ctxt.info.mapping_flags; 5910 memcpy(&ch->info.queue_mapping, 5911 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5912 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5913 sizeof(ctxt.info.tc_mapping)); 5914 5915 return 0; 5916 } 5917 5918 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5919 u8 *bw_share) 5920 { 5921 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5922 i40e_status ret; 5923 int i; 5924 5925 bw_data.tc_valid_bits = ch->enabled_tc; 5926 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5927 bw_data.tc_bw_credits[i] = bw_share[i]; 5928 5929 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5930 &bw_data, NULL); 5931 if (ret) { 5932 dev_info(&vsi->back->pdev->dev, 5933 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5934 vsi->back->hw.aq.asq_last_status, ch->seid); 5935 return -EINVAL; 5936 } 5937 5938 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5939 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5940 5941 return 0; 5942 } 5943 5944 /** 5945 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5946 * @pf: ptr to PF device 5947 * @vsi: the VSI being setup 5948 * @ch: ptr to channel structure 5949 * 5950 * Configure TX rings associated with channel (VSI) since queues are being 5951 * from parent VSI. 5952 **/ 5953 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5954 struct i40e_vsi *vsi, 5955 struct i40e_channel *ch) 5956 { 5957 i40e_status ret; 5958 int i; 5959 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5960 5961 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5962 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5963 if (ch->enabled_tc & BIT(i)) 5964 bw_share[i] = 1; 5965 } 5966 5967 /* configure BW for new VSI */ 5968 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5969 if (ret) { 5970 dev_info(&vsi->back->pdev->dev, 5971 "Failed configuring TC map %d for channel (seid %u)\n", 5972 ch->enabled_tc, ch->seid); 5973 return ret; 5974 } 5975 5976 for (i = 0; i < ch->num_queue_pairs; i++) { 5977 struct i40e_ring *tx_ring, *rx_ring; 5978 u16 pf_q; 5979 5980 pf_q = ch->base_queue + i; 5981 5982 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5983 * context 5984 */ 5985 tx_ring = vsi->tx_rings[pf_q]; 5986 tx_ring->ch = ch; 5987 5988 /* Get the RX ring ptr */ 5989 rx_ring = vsi->rx_rings[pf_q]; 5990 rx_ring->ch = ch; 5991 } 5992 5993 return 0; 5994 } 5995 5996 /** 5997 * i40e_setup_hw_channel - setup new channel 5998 * @pf: ptr to PF device 5999 * @vsi: the VSI being setup 6000 * @ch: ptr to channel structure 6001 * @uplink_seid: underlying HW switching element (VEB) ID 6002 * @type: type of channel to be created (VMDq2/VF) 6003 * 6004 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6005 * and configures TX rings accordingly 6006 **/ 6007 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6008 struct i40e_vsi *vsi, 6009 struct i40e_channel *ch, 6010 u16 uplink_seid, u8 type) 6011 { 6012 int ret; 6013 6014 ch->initialized = false; 6015 ch->base_queue = vsi->next_base_queue; 6016 ch->type = type; 6017 6018 /* Proceed with creation of channel (VMDq2) VSI */ 6019 ret = i40e_add_channel(pf, uplink_seid, ch); 6020 if (ret) { 6021 dev_info(&pf->pdev->dev, 6022 "failed to add_channel using uplink_seid %u\n", 6023 uplink_seid); 6024 return ret; 6025 } 6026 6027 /* Mark the successful creation of channel */ 6028 ch->initialized = true; 6029 6030 /* Reconfigure TX queues using QTX_CTL register */ 6031 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6032 if (ret) { 6033 dev_info(&pf->pdev->dev, 6034 "failed to configure TX rings for channel %u\n", 6035 ch->seid); 6036 return ret; 6037 } 6038 6039 /* update 'next_base_queue' */ 6040 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6041 dev_dbg(&pf->pdev->dev, 6042 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6043 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6044 ch->num_queue_pairs, 6045 vsi->next_base_queue); 6046 return ret; 6047 } 6048 6049 /** 6050 * i40e_setup_channel - setup new channel using uplink element 6051 * @pf: ptr to PF device 6052 * @type: type of channel to be created (VMDq2/VF) 6053 * @uplink_seid: underlying HW switching element (VEB) ID 6054 * @ch: ptr to channel structure 6055 * 6056 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6057 * and uplink switching element (uplink_seid) 6058 **/ 6059 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6060 struct i40e_channel *ch) 6061 { 6062 u8 vsi_type; 6063 u16 seid; 6064 int ret; 6065 6066 if (vsi->type == I40E_VSI_MAIN) { 6067 vsi_type = I40E_VSI_VMDQ2; 6068 } else { 6069 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6070 vsi->type); 6071 return false; 6072 } 6073 6074 /* underlying switching element */ 6075 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6076 6077 /* create channel (VSI), configure TX rings */ 6078 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6079 if (ret) { 6080 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6081 return false; 6082 } 6083 6084 return ch->initialized ? true : false; 6085 } 6086 6087 /** 6088 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6089 * @vsi: ptr to VSI which has PF backing 6090 * 6091 * Sets up switch mode correctly if it needs to be changed and perform 6092 * what are allowed modes. 6093 **/ 6094 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6095 { 6096 u8 mode; 6097 struct i40e_pf *pf = vsi->back; 6098 struct i40e_hw *hw = &pf->hw; 6099 int ret; 6100 6101 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6102 if (ret) 6103 return -EINVAL; 6104 6105 if (hw->dev_caps.switch_mode) { 6106 /* if switch mode is set, support mode2 (non-tunneled for 6107 * cloud filter) for now 6108 */ 6109 u32 switch_mode = hw->dev_caps.switch_mode & 6110 I40E_SWITCH_MODE_MASK; 6111 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6112 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6113 return 0; 6114 dev_err(&pf->pdev->dev, 6115 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6116 hw->dev_caps.switch_mode); 6117 return -EINVAL; 6118 } 6119 } 6120 6121 /* Set Bit 7 to be valid */ 6122 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6123 6124 /* Set L4type for TCP support */ 6125 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6126 6127 /* Set cloud filter mode */ 6128 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6129 6130 /* Prep mode field for set_switch_config */ 6131 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6132 pf->last_sw_conf_valid_flags, 6133 mode, NULL); 6134 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6135 dev_err(&pf->pdev->dev, 6136 "couldn't set switch config bits, err %s aq_err %s\n", 6137 i40e_stat_str(hw, ret), 6138 i40e_aq_str(hw, 6139 hw->aq.asq_last_status)); 6140 6141 return ret; 6142 } 6143 6144 /** 6145 * i40e_create_queue_channel - function to create channel 6146 * @vsi: VSI to be configured 6147 * @ch: ptr to channel (it contains channel specific params) 6148 * 6149 * This function creates channel (VSI) using num_queues specified by user, 6150 * reconfigs RSS if needed. 6151 **/ 6152 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6153 struct i40e_channel *ch) 6154 { 6155 struct i40e_pf *pf = vsi->back; 6156 bool reconfig_rss; 6157 int err; 6158 6159 if (!ch) 6160 return -EINVAL; 6161 6162 if (!ch->num_queue_pairs) { 6163 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6164 ch->num_queue_pairs); 6165 return -EINVAL; 6166 } 6167 6168 /* validate user requested num_queues for channel */ 6169 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6170 &reconfig_rss); 6171 if (err) { 6172 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6173 ch->num_queue_pairs); 6174 return -EINVAL; 6175 } 6176 6177 /* By default we are in VEPA mode, if this is the first VF/VMDq 6178 * VSI to be added switch to VEB mode. 6179 */ 6180 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6181 (!i40e_is_any_channel(vsi))) { 6182 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6183 dev_dbg(&pf->pdev->dev, 6184 "Failed to create channel. Override queues (%u) not power of 2\n", 6185 vsi->tc_config.tc_info[0].qcount); 6186 return -EINVAL; 6187 } 6188 6189 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6190 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6191 6192 if (vsi->type == I40E_VSI_MAIN) { 6193 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6194 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6195 true); 6196 else 6197 i40e_do_reset_safe(pf, 6198 I40E_PF_RESET_FLAG); 6199 } 6200 } 6201 /* now onwards for main VSI, number of queues will be value 6202 * of TC0's queue count 6203 */ 6204 } 6205 6206 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6207 * it should be more than num_queues 6208 */ 6209 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6210 dev_dbg(&pf->pdev->dev, 6211 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6212 vsi->cnt_q_avail, ch->num_queue_pairs); 6213 return -EINVAL; 6214 } 6215 6216 /* reconfig_rss only if vsi type is MAIN_VSI */ 6217 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6218 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6219 if (err) { 6220 dev_info(&pf->pdev->dev, 6221 "Error: unable to reconfig rss for num_queues (%u)\n", 6222 ch->num_queue_pairs); 6223 return -EINVAL; 6224 } 6225 } 6226 6227 if (!i40e_setup_channel(pf, vsi, ch)) { 6228 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6229 return -EINVAL; 6230 } 6231 6232 dev_info(&pf->pdev->dev, 6233 "Setup channel (id:%u) utilizing num_queues %d\n", 6234 ch->seid, ch->num_queue_pairs); 6235 6236 /* configure VSI for BW limit */ 6237 if (ch->max_tx_rate) { 6238 u64 credits = ch->max_tx_rate; 6239 6240 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6241 return -EINVAL; 6242 6243 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6244 dev_dbg(&pf->pdev->dev, 6245 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6246 ch->max_tx_rate, 6247 credits, 6248 ch->seid); 6249 } 6250 6251 /* in case of VF, this will be main SRIOV VSI */ 6252 ch->parent_vsi = vsi; 6253 6254 /* and update main_vsi's count for queue_available to use */ 6255 vsi->cnt_q_avail -= ch->num_queue_pairs; 6256 6257 return 0; 6258 } 6259 6260 /** 6261 * i40e_configure_queue_channels - Add queue channel for the given TCs 6262 * @vsi: VSI to be configured 6263 * 6264 * Configures queue channel mapping to the given TCs 6265 **/ 6266 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6267 { 6268 struct i40e_channel *ch; 6269 u64 max_rate = 0; 6270 int ret = 0, i; 6271 6272 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6273 vsi->tc_seid_map[0] = vsi->seid; 6274 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6275 if (vsi->tc_config.enabled_tc & BIT(i)) { 6276 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6277 if (!ch) { 6278 ret = -ENOMEM; 6279 goto err_free; 6280 } 6281 6282 INIT_LIST_HEAD(&ch->list); 6283 ch->num_queue_pairs = 6284 vsi->tc_config.tc_info[i].qcount; 6285 ch->base_queue = 6286 vsi->tc_config.tc_info[i].qoffset; 6287 6288 /* Bandwidth limit through tc interface is in bytes/s, 6289 * change to Mbit/s 6290 */ 6291 max_rate = vsi->mqprio_qopt.max_rate[i]; 6292 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6293 ch->max_tx_rate = max_rate; 6294 6295 list_add_tail(&ch->list, &vsi->ch_list); 6296 6297 ret = i40e_create_queue_channel(vsi, ch); 6298 if (ret) { 6299 dev_err(&vsi->back->pdev->dev, 6300 "Failed creating queue channel with TC%d: queues %d\n", 6301 i, ch->num_queue_pairs); 6302 goto err_free; 6303 } 6304 vsi->tc_seid_map[i] = ch->seid; 6305 } 6306 } 6307 return ret; 6308 6309 err_free: 6310 i40e_remove_queue_channels(vsi); 6311 return ret; 6312 } 6313 6314 /** 6315 * i40e_veb_config_tc - Configure TCs for given VEB 6316 * @veb: given VEB 6317 * @enabled_tc: TC bitmap 6318 * 6319 * Configures given TC bitmap for VEB (switching) element 6320 **/ 6321 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6322 { 6323 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6324 struct i40e_pf *pf = veb->pf; 6325 int ret = 0; 6326 int i; 6327 6328 /* No TCs or already enabled TCs just return */ 6329 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6330 return ret; 6331 6332 bw_data.tc_valid_bits = enabled_tc; 6333 /* bw_data.absolute_credits is not set (relative) */ 6334 6335 /* Enable ETS TCs with equal BW Share for now */ 6336 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6337 if (enabled_tc & BIT(i)) 6338 bw_data.tc_bw_share_credits[i] = 1; 6339 } 6340 6341 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6342 &bw_data, NULL); 6343 if (ret) { 6344 dev_info(&pf->pdev->dev, 6345 "VEB bw config failed, err %s aq_err %s\n", 6346 i40e_stat_str(&pf->hw, ret), 6347 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6348 goto out; 6349 } 6350 6351 /* Update the BW information */ 6352 ret = i40e_veb_get_bw_info(veb); 6353 if (ret) { 6354 dev_info(&pf->pdev->dev, 6355 "Failed getting veb bw config, err %s aq_err %s\n", 6356 i40e_stat_str(&pf->hw, ret), 6357 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6358 } 6359 6360 out: 6361 return ret; 6362 } 6363 6364 #ifdef CONFIG_I40E_DCB 6365 /** 6366 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6367 * @pf: PF struct 6368 * 6369 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6370 * the caller would've quiesce all the VSIs before calling 6371 * this function 6372 **/ 6373 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6374 { 6375 u8 tc_map = 0; 6376 int ret; 6377 u8 v; 6378 6379 /* Enable the TCs available on PF to all VEBs */ 6380 tc_map = i40e_pf_get_tc_map(pf); 6381 for (v = 0; v < I40E_MAX_VEB; v++) { 6382 if (!pf->veb[v]) 6383 continue; 6384 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6385 if (ret) { 6386 dev_info(&pf->pdev->dev, 6387 "Failed configuring TC for VEB seid=%d\n", 6388 pf->veb[v]->seid); 6389 /* Will try to configure as many components */ 6390 } 6391 } 6392 6393 /* Update each VSI */ 6394 for (v = 0; v < pf->num_alloc_vsi; v++) { 6395 if (!pf->vsi[v]) 6396 continue; 6397 6398 /* - Enable all TCs for the LAN VSI 6399 * - For all others keep them at TC0 for now 6400 */ 6401 if (v == pf->lan_vsi) 6402 tc_map = i40e_pf_get_tc_map(pf); 6403 else 6404 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6405 6406 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6407 if (ret) { 6408 dev_info(&pf->pdev->dev, 6409 "Failed configuring TC for VSI seid=%d\n", 6410 pf->vsi[v]->seid); 6411 /* Will try to configure as many components */ 6412 } else { 6413 /* Re-configure VSI vectors based on updated TC map */ 6414 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6415 if (pf->vsi[v]->netdev) 6416 i40e_dcbnl_set_all(pf->vsi[v]); 6417 } 6418 } 6419 } 6420 6421 /** 6422 * i40e_resume_port_tx - Resume port Tx 6423 * @pf: PF struct 6424 * 6425 * Resume a port's Tx and issue a PF reset in case of failure to 6426 * resume. 6427 **/ 6428 static int i40e_resume_port_tx(struct i40e_pf *pf) 6429 { 6430 struct i40e_hw *hw = &pf->hw; 6431 int ret; 6432 6433 ret = i40e_aq_resume_port_tx(hw, NULL); 6434 if (ret) { 6435 dev_info(&pf->pdev->dev, 6436 "Resume Port Tx failed, err %s aq_err %s\n", 6437 i40e_stat_str(&pf->hw, ret), 6438 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6439 /* Schedule PF reset to recover */ 6440 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6441 i40e_service_event_schedule(pf); 6442 } 6443 6444 return ret; 6445 } 6446 6447 /** 6448 * i40e_init_pf_dcb - Initialize DCB configuration 6449 * @pf: PF being configured 6450 * 6451 * Query the current DCB configuration and cache it 6452 * in the hardware structure 6453 **/ 6454 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6455 { 6456 struct i40e_hw *hw = &pf->hw; 6457 int err = 0; 6458 6459 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6460 * Also do not enable DCBx if FW LLDP agent is disabled 6461 */ 6462 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6463 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) { 6464 dev_info(&pf->pdev->dev, "DCB is not supported or FW LLDP is disabled\n"); 6465 err = I40E_NOT_SUPPORTED; 6466 goto out; 6467 } 6468 6469 err = i40e_init_dcb(hw, true); 6470 if (!err) { 6471 /* Device/Function is not DCBX capable */ 6472 if ((!hw->func_caps.dcb) || 6473 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6474 dev_info(&pf->pdev->dev, 6475 "DCBX offload is not supported or is disabled for this PF.\n"); 6476 } else { 6477 /* When status is not DISABLED then DCBX in FW */ 6478 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6479 DCB_CAP_DCBX_VER_IEEE; 6480 6481 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6482 /* Enable DCB tagging only when more than one TC 6483 * or explicitly disable if only one TC 6484 */ 6485 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6486 pf->flags |= I40E_FLAG_DCB_ENABLED; 6487 else 6488 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6489 dev_dbg(&pf->pdev->dev, 6490 "DCBX offload is supported for this PF.\n"); 6491 } 6492 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6493 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6494 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6495 } else { 6496 dev_info(&pf->pdev->dev, 6497 "Query for DCB configuration failed, err %s aq_err %s\n", 6498 i40e_stat_str(&pf->hw, err), 6499 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6500 } 6501 6502 out: 6503 return err; 6504 } 6505 #endif /* CONFIG_I40E_DCB */ 6506 #define SPEED_SIZE 14 6507 #define FC_SIZE 8 6508 /** 6509 * i40e_print_link_message - print link up or down 6510 * @vsi: the VSI for which link needs a message 6511 * @isup: true of link is up, false otherwise 6512 */ 6513 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6514 { 6515 enum i40e_aq_link_speed new_speed; 6516 struct i40e_pf *pf = vsi->back; 6517 char *speed = "Unknown"; 6518 char *fc = "Unknown"; 6519 char *fec = ""; 6520 char *req_fec = ""; 6521 char *an = ""; 6522 6523 if (isup) 6524 new_speed = pf->hw.phy.link_info.link_speed; 6525 else 6526 new_speed = I40E_LINK_SPEED_UNKNOWN; 6527 6528 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6529 return; 6530 vsi->current_isup = isup; 6531 vsi->current_speed = new_speed; 6532 if (!isup) { 6533 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6534 return; 6535 } 6536 6537 /* Warn user if link speed on NPAR enabled partition is not at 6538 * least 10GB 6539 */ 6540 if (pf->hw.func_caps.npar_enable && 6541 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6542 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6543 netdev_warn(vsi->netdev, 6544 "The partition detected link speed that is less than 10Gbps\n"); 6545 6546 switch (pf->hw.phy.link_info.link_speed) { 6547 case I40E_LINK_SPEED_40GB: 6548 speed = "40 G"; 6549 break; 6550 case I40E_LINK_SPEED_20GB: 6551 speed = "20 G"; 6552 break; 6553 case I40E_LINK_SPEED_25GB: 6554 speed = "25 G"; 6555 break; 6556 case I40E_LINK_SPEED_10GB: 6557 speed = "10 G"; 6558 break; 6559 case I40E_LINK_SPEED_5GB: 6560 speed = "5 G"; 6561 break; 6562 case I40E_LINK_SPEED_2_5GB: 6563 speed = "2.5 G"; 6564 break; 6565 case I40E_LINK_SPEED_1GB: 6566 speed = "1000 M"; 6567 break; 6568 case I40E_LINK_SPEED_100MB: 6569 speed = "100 M"; 6570 break; 6571 default: 6572 break; 6573 } 6574 6575 switch (pf->hw.fc.current_mode) { 6576 case I40E_FC_FULL: 6577 fc = "RX/TX"; 6578 break; 6579 case I40E_FC_TX_PAUSE: 6580 fc = "TX"; 6581 break; 6582 case I40E_FC_RX_PAUSE: 6583 fc = "RX"; 6584 break; 6585 default: 6586 fc = "None"; 6587 break; 6588 } 6589 6590 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6591 req_fec = "None"; 6592 fec = "None"; 6593 an = "False"; 6594 6595 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6596 an = "True"; 6597 6598 if (pf->hw.phy.link_info.fec_info & 6599 I40E_AQ_CONFIG_FEC_KR_ENA) 6600 fec = "CL74 FC-FEC/BASE-R"; 6601 else if (pf->hw.phy.link_info.fec_info & 6602 I40E_AQ_CONFIG_FEC_RS_ENA) 6603 fec = "CL108 RS-FEC"; 6604 6605 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6606 * both RS and FC are requested 6607 */ 6608 if (vsi->back->hw.phy.link_info.req_fec_info & 6609 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6610 if (vsi->back->hw.phy.link_info.req_fec_info & 6611 I40E_AQ_REQUEST_FEC_RS) 6612 req_fec = "CL108 RS-FEC"; 6613 else 6614 req_fec = "CL74 FC-FEC/BASE-R"; 6615 } 6616 netdev_info(vsi->netdev, 6617 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 6618 speed, req_fec, fec, an, fc); 6619 } else { 6620 netdev_info(vsi->netdev, 6621 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 6622 speed, fc); 6623 } 6624 6625 } 6626 6627 /** 6628 * i40e_up_complete - Finish the last steps of bringing up a connection 6629 * @vsi: the VSI being configured 6630 **/ 6631 static int i40e_up_complete(struct i40e_vsi *vsi) 6632 { 6633 struct i40e_pf *pf = vsi->back; 6634 int err; 6635 6636 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6637 i40e_vsi_configure_msix(vsi); 6638 else 6639 i40e_configure_msi_and_legacy(vsi); 6640 6641 /* start rings */ 6642 err = i40e_vsi_start_rings(vsi); 6643 if (err) 6644 return err; 6645 6646 clear_bit(__I40E_VSI_DOWN, vsi->state); 6647 i40e_napi_enable_all(vsi); 6648 i40e_vsi_enable_irq(vsi); 6649 6650 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6651 (vsi->netdev)) { 6652 i40e_print_link_message(vsi, true); 6653 netif_tx_start_all_queues(vsi->netdev); 6654 netif_carrier_on(vsi->netdev); 6655 } 6656 6657 /* replay FDIR SB filters */ 6658 if (vsi->type == I40E_VSI_FDIR) { 6659 /* reset fd counters */ 6660 pf->fd_add_err = 0; 6661 pf->fd_atr_cnt = 0; 6662 i40e_fdir_filter_restore(vsi); 6663 } 6664 6665 /* On the next run of the service_task, notify any clients of the new 6666 * opened netdev 6667 */ 6668 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6669 i40e_service_event_schedule(pf); 6670 6671 return 0; 6672 } 6673 6674 /** 6675 * i40e_vsi_reinit_locked - Reset the VSI 6676 * @vsi: the VSI being configured 6677 * 6678 * Rebuild the ring structs after some configuration 6679 * has changed, e.g. MTU size. 6680 **/ 6681 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6682 { 6683 struct i40e_pf *pf = vsi->back; 6684 6685 WARN_ON(in_interrupt()); 6686 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6687 usleep_range(1000, 2000); 6688 i40e_down(vsi); 6689 6690 i40e_up(vsi); 6691 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6692 } 6693 6694 /** 6695 * i40e_up - Bring the connection back up after being down 6696 * @vsi: the VSI being configured 6697 **/ 6698 int i40e_up(struct i40e_vsi *vsi) 6699 { 6700 int err; 6701 6702 err = i40e_vsi_configure(vsi); 6703 if (!err) 6704 err = i40e_up_complete(vsi); 6705 6706 return err; 6707 } 6708 6709 /** 6710 * i40e_force_link_state - Force the link status 6711 * @pf: board private structure 6712 * @is_up: whether the link state should be forced up or down 6713 **/ 6714 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6715 { 6716 struct i40e_aq_get_phy_abilities_resp abilities; 6717 struct i40e_aq_set_phy_config config = {0}; 6718 struct i40e_hw *hw = &pf->hw; 6719 i40e_status err; 6720 u64 mask; 6721 u8 speed; 6722 6723 /* Card might've been put in an unstable state by other drivers 6724 * and applications, which causes incorrect speed values being 6725 * set on startup. In order to clear speed registers, we call 6726 * get_phy_capabilities twice, once to get initial state of 6727 * available speeds, and once to get current PHY config. 6728 */ 6729 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6730 NULL); 6731 if (err) { 6732 dev_err(&pf->pdev->dev, 6733 "failed to get phy cap., ret = %s last_status = %s\n", 6734 i40e_stat_str(hw, err), 6735 i40e_aq_str(hw, hw->aq.asq_last_status)); 6736 return err; 6737 } 6738 speed = abilities.link_speed; 6739 6740 /* Get the current phy config */ 6741 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6742 NULL); 6743 if (err) { 6744 dev_err(&pf->pdev->dev, 6745 "failed to get phy cap., ret = %s last_status = %s\n", 6746 i40e_stat_str(hw, err), 6747 i40e_aq_str(hw, hw->aq.asq_last_status)); 6748 return err; 6749 } 6750 6751 /* If link needs to go up, but was not forced to go down, 6752 * and its speed values are OK, no need for a flap 6753 */ 6754 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6755 return I40E_SUCCESS; 6756 6757 /* To force link we need to set bits for all supported PHY types, 6758 * but there are now more than 32, so we need to split the bitmap 6759 * across two fields. 6760 */ 6761 mask = I40E_PHY_TYPES_BITMASK; 6762 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6763 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6764 /* Copy the old settings, except of phy_type */ 6765 config.abilities = abilities.abilities; 6766 if (abilities.link_speed != 0) 6767 config.link_speed = abilities.link_speed; 6768 else 6769 config.link_speed = speed; 6770 config.eee_capability = abilities.eee_capability; 6771 config.eeer = abilities.eeer_val; 6772 config.low_power_ctrl = abilities.d3_lpan; 6773 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6774 I40E_AQ_PHY_FEC_CONFIG_MASK; 6775 err = i40e_aq_set_phy_config(hw, &config, NULL); 6776 6777 if (err) { 6778 dev_err(&pf->pdev->dev, 6779 "set phy config ret = %s last_status = %s\n", 6780 i40e_stat_str(&pf->hw, err), 6781 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6782 return err; 6783 } 6784 6785 /* Update the link info */ 6786 err = i40e_update_link_info(hw); 6787 if (err) { 6788 /* Wait a little bit (on 40G cards it sometimes takes a really 6789 * long time for link to come back from the atomic reset) 6790 * and try once more 6791 */ 6792 msleep(1000); 6793 i40e_update_link_info(hw); 6794 } 6795 6796 i40e_aq_set_link_restart_an(hw, true, NULL); 6797 6798 return I40E_SUCCESS; 6799 } 6800 6801 /** 6802 * i40e_down - Shutdown the connection processing 6803 * @vsi: the VSI being stopped 6804 **/ 6805 void i40e_down(struct i40e_vsi *vsi) 6806 { 6807 int i; 6808 6809 /* It is assumed that the caller of this function 6810 * sets the vsi->state __I40E_VSI_DOWN bit. 6811 */ 6812 if (vsi->netdev) { 6813 netif_carrier_off(vsi->netdev); 6814 netif_tx_disable(vsi->netdev); 6815 } 6816 i40e_vsi_disable_irq(vsi); 6817 i40e_vsi_stop_rings(vsi); 6818 if (vsi->type == I40E_VSI_MAIN && 6819 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6820 i40e_force_link_state(vsi->back, false); 6821 i40e_napi_disable_all(vsi); 6822 6823 for (i = 0; i < vsi->num_queue_pairs; i++) { 6824 i40e_clean_tx_ring(vsi->tx_rings[i]); 6825 if (i40e_enabled_xdp_vsi(vsi)) { 6826 /* Make sure that in-progress ndo_xdp_xmit and 6827 * ndo_xsk_wakeup calls are completed. 6828 */ 6829 synchronize_rcu(); 6830 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6831 } 6832 i40e_clean_rx_ring(vsi->rx_rings[i]); 6833 } 6834 6835 } 6836 6837 /** 6838 * i40e_validate_mqprio_qopt- validate queue mapping info 6839 * @vsi: the VSI being configured 6840 * @mqprio_qopt: queue parametrs 6841 **/ 6842 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6843 struct tc_mqprio_qopt_offload *mqprio_qopt) 6844 { 6845 u64 sum_max_rate = 0; 6846 u64 max_rate = 0; 6847 int i; 6848 6849 if (mqprio_qopt->qopt.offset[0] != 0 || 6850 mqprio_qopt->qopt.num_tc < 1 || 6851 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6852 return -EINVAL; 6853 for (i = 0; ; i++) { 6854 if (!mqprio_qopt->qopt.count[i]) 6855 return -EINVAL; 6856 if (mqprio_qopt->min_rate[i]) { 6857 dev_err(&vsi->back->pdev->dev, 6858 "Invalid min tx rate (greater than 0) specified\n"); 6859 return -EINVAL; 6860 } 6861 max_rate = mqprio_qopt->max_rate[i]; 6862 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6863 sum_max_rate += max_rate; 6864 6865 if (i >= mqprio_qopt->qopt.num_tc - 1) 6866 break; 6867 if (mqprio_qopt->qopt.offset[i + 1] != 6868 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6869 return -EINVAL; 6870 } 6871 if (vsi->num_queue_pairs < 6872 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6873 return -EINVAL; 6874 } 6875 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6876 dev_err(&vsi->back->pdev->dev, 6877 "Invalid max tx rate specified\n"); 6878 return -EINVAL; 6879 } 6880 return 0; 6881 } 6882 6883 /** 6884 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6885 * @vsi: the VSI being configured 6886 **/ 6887 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6888 { 6889 u16 qcount; 6890 int i; 6891 6892 /* Only TC0 is enabled */ 6893 vsi->tc_config.numtc = 1; 6894 vsi->tc_config.enabled_tc = 1; 6895 qcount = min_t(int, vsi->alloc_queue_pairs, 6896 i40e_pf_get_max_q_per_tc(vsi->back)); 6897 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6898 /* For the TC that is not enabled set the offset to to default 6899 * queue and allocate one queue for the given TC. 6900 */ 6901 vsi->tc_config.tc_info[i].qoffset = 0; 6902 if (i == 0) 6903 vsi->tc_config.tc_info[i].qcount = qcount; 6904 else 6905 vsi->tc_config.tc_info[i].qcount = 1; 6906 vsi->tc_config.tc_info[i].netdev_tc = 0; 6907 } 6908 } 6909 6910 /** 6911 * i40e_del_macvlan_filter 6912 * @hw: pointer to the HW structure 6913 * @seid: seid of the channel VSI 6914 * @macaddr: the mac address to apply as a filter 6915 * @aq_err: store the admin Q error 6916 * 6917 * This function deletes a mac filter on the channel VSI which serves as the 6918 * macvlan. Returns 0 on success. 6919 **/ 6920 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 6921 const u8 *macaddr, int *aq_err) 6922 { 6923 struct i40e_aqc_remove_macvlan_element_data element; 6924 i40e_status status; 6925 6926 memset(&element, 0, sizeof(element)); 6927 ether_addr_copy(element.mac_addr, macaddr); 6928 element.vlan_tag = 0; 6929 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 6930 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 6931 *aq_err = hw->aq.asq_last_status; 6932 6933 return status; 6934 } 6935 6936 /** 6937 * i40e_add_macvlan_filter 6938 * @hw: pointer to the HW structure 6939 * @seid: seid of the channel VSI 6940 * @macaddr: the mac address to apply as a filter 6941 * @aq_err: store the admin Q error 6942 * 6943 * This function adds a mac filter on the channel VSI which serves as the 6944 * macvlan. Returns 0 on success. 6945 **/ 6946 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 6947 const u8 *macaddr, int *aq_err) 6948 { 6949 struct i40e_aqc_add_macvlan_element_data element; 6950 i40e_status status; 6951 u16 cmd_flags = 0; 6952 6953 ether_addr_copy(element.mac_addr, macaddr); 6954 element.vlan_tag = 0; 6955 element.queue_number = 0; 6956 element.match_method = I40E_AQC_MM_ERR_NO_RES; 6957 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 6958 element.flags = cpu_to_le16(cmd_flags); 6959 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 6960 *aq_err = hw->aq.asq_last_status; 6961 6962 return status; 6963 } 6964 6965 /** 6966 * i40e_reset_ch_rings - Reset the queue contexts in a channel 6967 * @vsi: the VSI we want to access 6968 * @ch: the channel we want to access 6969 */ 6970 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 6971 { 6972 struct i40e_ring *tx_ring, *rx_ring; 6973 u16 pf_q; 6974 int i; 6975 6976 for (i = 0; i < ch->num_queue_pairs; i++) { 6977 pf_q = ch->base_queue + i; 6978 tx_ring = vsi->tx_rings[pf_q]; 6979 tx_ring->ch = NULL; 6980 rx_ring = vsi->rx_rings[pf_q]; 6981 rx_ring->ch = NULL; 6982 } 6983 } 6984 6985 /** 6986 * i40e_free_macvlan_channels 6987 * @vsi: the VSI we want to access 6988 * 6989 * This function frees the Qs of the channel VSI from 6990 * the stack and also deletes the channel VSIs which 6991 * serve as macvlans. 6992 */ 6993 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 6994 { 6995 struct i40e_channel *ch, *ch_tmp; 6996 int ret; 6997 6998 if (list_empty(&vsi->macvlan_list)) 6999 return; 7000 7001 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7002 struct i40e_vsi *parent_vsi; 7003 7004 if (i40e_is_channel_macvlan(ch)) { 7005 i40e_reset_ch_rings(vsi, ch); 7006 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7007 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7008 netdev_set_sb_channel(ch->fwd->netdev, 0); 7009 kfree(ch->fwd); 7010 ch->fwd = NULL; 7011 } 7012 7013 list_del(&ch->list); 7014 parent_vsi = ch->parent_vsi; 7015 if (!parent_vsi || !ch->initialized) { 7016 kfree(ch); 7017 continue; 7018 } 7019 7020 /* remove the VSI */ 7021 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7022 NULL); 7023 if (ret) 7024 dev_err(&vsi->back->pdev->dev, 7025 "unable to remove channel (%d) for parent VSI(%d)\n", 7026 ch->seid, parent_vsi->seid); 7027 kfree(ch); 7028 } 7029 vsi->macvlan_cnt = 0; 7030 } 7031 7032 /** 7033 * i40e_fwd_ring_up - bring the macvlan device up 7034 * @vsi: the VSI we want to access 7035 * @vdev: macvlan netdevice 7036 * @fwd: the private fwd structure 7037 */ 7038 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7039 struct i40e_fwd_adapter *fwd) 7040 { 7041 int ret = 0, num_tc = 1, i, aq_err; 7042 struct i40e_channel *ch, *ch_tmp; 7043 struct i40e_pf *pf = vsi->back; 7044 struct i40e_hw *hw = &pf->hw; 7045 7046 if (list_empty(&vsi->macvlan_list)) 7047 return -EINVAL; 7048 7049 /* Go through the list and find an available channel */ 7050 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7051 if (!i40e_is_channel_macvlan(ch)) { 7052 ch->fwd = fwd; 7053 /* record configuration for macvlan interface in vdev */ 7054 for (i = 0; i < num_tc; i++) 7055 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7056 i, 7057 ch->num_queue_pairs, 7058 ch->base_queue); 7059 for (i = 0; i < ch->num_queue_pairs; i++) { 7060 struct i40e_ring *tx_ring, *rx_ring; 7061 u16 pf_q; 7062 7063 pf_q = ch->base_queue + i; 7064 7065 /* Get to TX ring ptr */ 7066 tx_ring = vsi->tx_rings[pf_q]; 7067 tx_ring->ch = ch; 7068 7069 /* Get the RX ring ptr */ 7070 rx_ring = vsi->rx_rings[pf_q]; 7071 rx_ring->ch = ch; 7072 } 7073 break; 7074 } 7075 } 7076 7077 /* Guarantee all rings are updated before we update the 7078 * MAC address filter. 7079 */ 7080 wmb(); 7081 7082 /* Add a mac filter */ 7083 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7084 if (ret) { 7085 /* if we cannot add the MAC rule then disable the offload */ 7086 macvlan_release_l2fw_offload(vdev); 7087 for (i = 0; i < ch->num_queue_pairs; i++) { 7088 struct i40e_ring *rx_ring; 7089 u16 pf_q; 7090 7091 pf_q = ch->base_queue + i; 7092 rx_ring = vsi->rx_rings[pf_q]; 7093 rx_ring->netdev = NULL; 7094 } 7095 dev_info(&pf->pdev->dev, 7096 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7097 i40e_stat_str(hw, ret), 7098 i40e_aq_str(hw, aq_err)); 7099 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7100 } 7101 7102 return ret; 7103 } 7104 7105 /** 7106 * i40e_setup_macvlans - create the channels which will be macvlans 7107 * @vsi: the VSI we want to access 7108 * @macvlan_cnt: no. of macvlans to be setup 7109 * @qcnt: no. of Qs per macvlan 7110 * @vdev: macvlan netdevice 7111 */ 7112 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7113 struct net_device *vdev) 7114 { 7115 struct i40e_pf *pf = vsi->back; 7116 struct i40e_hw *hw = &pf->hw; 7117 struct i40e_vsi_context ctxt; 7118 u16 sections, qmap, num_qps; 7119 struct i40e_channel *ch; 7120 int i, pow, ret = 0; 7121 u8 offset = 0; 7122 7123 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7124 return -EINVAL; 7125 7126 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7127 7128 /* find the next higher power-of-2 of num queue pairs */ 7129 pow = fls(roundup_pow_of_two(num_qps) - 1); 7130 7131 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7132 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7133 7134 /* Setup context bits for the main VSI */ 7135 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7136 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7137 memset(&ctxt, 0, sizeof(ctxt)); 7138 ctxt.seid = vsi->seid; 7139 ctxt.pf_num = vsi->back->hw.pf_id; 7140 ctxt.vf_num = 0; 7141 ctxt.uplink_seid = vsi->uplink_seid; 7142 ctxt.info = vsi->info; 7143 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7144 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7145 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7146 ctxt.info.valid_sections |= cpu_to_le16(sections); 7147 7148 /* Reconfigure RSS for main VSI with new max queue count */ 7149 vsi->rss_size = max_t(u16, num_qps, qcnt); 7150 ret = i40e_vsi_config_rss(vsi); 7151 if (ret) { 7152 dev_info(&pf->pdev->dev, 7153 "Failed to reconfig RSS for num_queues (%u)\n", 7154 vsi->rss_size); 7155 return ret; 7156 } 7157 vsi->reconfig_rss = true; 7158 dev_dbg(&vsi->back->pdev->dev, 7159 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7160 vsi->next_base_queue = num_qps; 7161 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7162 7163 /* Update the VSI after updating the VSI queue-mapping 7164 * information 7165 */ 7166 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7167 if (ret) { 7168 dev_info(&pf->pdev->dev, 7169 "Update vsi tc config failed, err %s aq_err %s\n", 7170 i40e_stat_str(hw, ret), 7171 i40e_aq_str(hw, hw->aq.asq_last_status)); 7172 return ret; 7173 } 7174 /* update the local VSI info with updated queue map */ 7175 i40e_vsi_update_queue_map(vsi, &ctxt); 7176 vsi->info.valid_sections = 0; 7177 7178 /* Create channels for macvlans */ 7179 INIT_LIST_HEAD(&vsi->macvlan_list); 7180 for (i = 0; i < macvlan_cnt; i++) { 7181 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7182 if (!ch) { 7183 ret = -ENOMEM; 7184 goto err_free; 7185 } 7186 INIT_LIST_HEAD(&ch->list); 7187 ch->num_queue_pairs = qcnt; 7188 if (!i40e_setup_channel(pf, vsi, ch)) { 7189 ret = -EINVAL; 7190 kfree(ch); 7191 goto err_free; 7192 } 7193 ch->parent_vsi = vsi; 7194 vsi->cnt_q_avail -= ch->num_queue_pairs; 7195 vsi->macvlan_cnt++; 7196 list_add_tail(&ch->list, &vsi->macvlan_list); 7197 } 7198 7199 return ret; 7200 7201 err_free: 7202 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7203 i40e_free_macvlan_channels(vsi); 7204 7205 return ret; 7206 } 7207 7208 /** 7209 * i40e_fwd_add - configure macvlans 7210 * @netdev: net device to configure 7211 * @vdev: macvlan netdevice 7212 **/ 7213 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7214 { 7215 struct i40e_netdev_priv *np = netdev_priv(netdev); 7216 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7217 struct i40e_vsi *vsi = np->vsi; 7218 struct i40e_pf *pf = vsi->back; 7219 struct i40e_fwd_adapter *fwd; 7220 int avail_macvlan, ret; 7221 7222 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7223 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7224 return ERR_PTR(-EINVAL); 7225 } 7226 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7227 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7228 return ERR_PTR(-EINVAL); 7229 } 7230 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7231 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7232 return ERR_PTR(-EINVAL); 7233 } 7234 7235 /* The macvlan device has to be a single Q device so that the 7236 * tc_to_txq field can be reused to pick the tx queue. 7237 */ 7238 if (netif_is_multiqueue(vdev)) 7239 return ERR_PTR(-ERANGE); 7240 7241 if (!vsi->macvlan_cnt) { 7242 /* reserve bit 0 for the pf device */ 7243 set_bit(0, vsi->fwd_bitmask); 7244 7245 /* Try to reserve as many queues as possible for macvlans. First 7246 * reserve 3/4th of max vectors, then half, then quarter and 7247 * calculate Qs per macvlan as you go 7248 */ 7249 vectors = pf->num_lan_msix; 7250 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7251 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7252 q_per_macvlan = 4; 7253 macvlan_cnt = (vectors - 32) / 4; 7254 } else if (vectors <= 64 && vectors > 32) { 7255 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7256 q_per_macvlan = 2; 7257 macvlan_cnt = (vectors - 16) / 2; 7258 } else if (vectors <= 32 && vectors > 16) { 7259 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7260 q_per_macvlan = 1; 7261 macvlan_cnt = vectors - 16; 7262 } else if (vectors <= 16 && vectors > 8) { 7263 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7264 q_per_macvlan = 1; 7265 macvlan_cnt = vectors - 8; 7266 } else { 7267 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7268 q_per_macvlan = 1; 7269 macvlan_cnt = vectors - 1; 7270 } 7271 7272 if (macvlan_cnt == 0) 7273 return ERR_PTR(-EBUSY); 7274 7275 /* Quiesce VSI queues */ 7276 i40e_quiesce_vsi(vsi); 7277 7278 /* sets up the macvlans but does not "enable" them */ 7279 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7280 vdev); 7281 if (ret) 7282 return ERR_PTR(ret); 7283 7284 /* Unquiesce VSI */ 7285 i40e_unquiesce_vsi(vsi); 7286 } 7287 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7288 vsi->macvlan_cnt); 7289 if (avail_macvlan >= I40E_MAX_MACVLANS) 7290 return ERR_PTR(-EBUSY); 7291 7292 /* create the fwd struct */ 7293 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7294 if (!fwd) 7295 return ERR_PTR(-ENOMEM); 7296 7297 set_bit(avail_macvlan, vsi->fwd_bitmask); 7298 fwd->bit_no = avail_macvlan; 7299 netdev_set_sb_channel(vdev, avail_macvlan); 7300 fwd->netdev = vdev; 7301 7302 if (!netif_running(netdev)) 7303 return fwd; 7304 7305 /* Set fwd ring up */ 7306 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7307 if (ret) { 7308 /* unbind the queues and drop the subordinate channel config */ 7309 netdev_unbind_sb_channel(netdev, vdev); 7310 netdev_set_sb_channel(vdev, 0); 7311 7312 kfree(fwd); 7313 return ERR_PTR(-EINVAL); 7314 } 7315 7316 return fwd; 7317 } 7318 7319 /** 7320 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7321 * @vsi: the VSI we want to access 7322 */ 7323 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7324 { 7325 struct i40e_channel *ch, *ch_tmp; 7326 struct i40e_pf *pf = vsi->back; 7327 struct i40e_hw *hw = &pf->hw; 7328 int aq_err, ret = 0; 7329 7330 if (list_empty(&vsi->macvlan_list)) 7331 return; 7332 7333 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7334 if (i40e_is_channel_macvlan(ch)) { 7335 ret = i40e_del_macvlan_filter(hw, ch->seid, 7336 i40e_channel_mac(ch), 7337 &aq_err); 7338 if (!ret) { 7339 /* Reset queue contexts */ 7340 i40e_reset_ch_rings(vsi, ch); 7341 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7342 netdev_unbind_sb_channel(vsi->netdev, 7343 ch->fwd->netdev); 7344 netdev_set_sb_channel(ch->fwd->netdev, 0); 7345 kfree(ch->fwd); 7346 ch->fwd = NULL; 7347 } 7348 } 7349 } 7350 } 7351 7352 /** 7353 * i40e_fwd_del - delete macvlan interfaces 7354 * @netdev: net device to configure 7355 * @vdev: macvlan netdevice 7356 */ 7357 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7358 { 7359 struct i40e_netdev_priv *np = netdev_priv(netdev); 7360 struct i40e_fwd_adapter *fwd = vdev; 7361 struct i40e_channel *ch, *ch_tmp; 7362 struct i40e_vsi *vsi = np->vsi; 7363 struct i40e_pf *pf = vsi->back; 7364 struct i40e_hw *hw = &pf->hw; 7365 int aq_err, ret = 0; 7366 7367 /* Find the channel associated with the macvlan and del mac filter */ 7368 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7369 if (i40e_is_channel_macvlan(ch) && 7370 ether_addr_equal(i40e_channel_mac(ch), 7371 fwd->netdev->dev_addr)) { 7372 ret = i40e_del_macvlan_filter(hw, ch->seid, 7373 i40e_channel_mac(ch), 7374 &aq_err); 7375 if (!ret) { 7376 /* Reset queue contexts */ 7377 i40e_reset_ch_rings(vsi, ch); 7378 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7379 netdev_unbind_sb_channel(netdev, fwd->netdev); 7380 netdev_set_sb_channel(fwd->netdev, 0); 7381 kfree(ch->fwd); 7382 ch->fwd = NULL; 7383 } else { 7384 dev_info(&pf->pdev->dev, 7385 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7386 i40e_stat_str(hw, ret), 7387 i40e_aq_str(hw, aq_err)); 7388 } 7389 break; 7390 } 7391 } 7392 } 7393 7394 /** 7395 * i40e_setup_tc - configure multiple traffic classes 7396 * @netdev: net device to configure 7397 * @type_data: tc offload data 7398 **/ 7399 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7400 { 7401 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7402 struct i40e_netdev_priv *np = netdev_priv(netdev); 7403 struct i40e_vsi *vsi = np->vsi; 7404 struct i40e_pf *pf = vsi->back; 7405 u8 enabled_tc = 0, num_tc, hw; 7406 bool need_reset = false; 7407 int old_queue_pairs; 7408 int ret = -EINVAL; 7409 u16 mode; 7410 int i; 7411 7412 old_queue_pairs = vsi->num_queue_pairs; 7413 num_tc = mqprio_qopt->qopt.num_tc; 7414 hw = mqprio_qopt->qopt.hw; 7415 mode = mqprio_qopt->mode; 7416 if (!hw) { 7417 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7418 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7419 goto config_tc; 7420 } 7421 7422 /* Check if MFP enabled */ 7423 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7424 netdev_info(netdev, 7425 "Configuring TC not supported in MFP mode\n"); 7426 return ret; 7427 } 7428 switch (mode) { 7429 case TC_MQPRIO_MODE_DCB: 7430 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7431 7432 /* Check if DCB enabled to continue */ 7433 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7434 netdev_info(netdev, 7435 "DCB is not enabled for adapter\n"); 7436 return ret; 7437 } 7438 7439 /* Check whether tc count is within enabled limit */ 7440 if (num_tc > i40e_pf_get_num_tc(pf)) { 7441 netdev_info(netdev, 7442 "TC count greater than enabled on link for adapter\n"); 7443 return ret; 7444 } 7445 break; 7446 case TC_MQPRIO_MODE_CHANNEL: 7447 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7448 netdev_info(netdev, 7449 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7450 return ret; 7451 } 7452 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7453 return ret; 7454 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7455 if (ret) 7456 return ret; 7457 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7458 sizeof(*mqprio_qopt)); 7459 pf->flags |= I40E_FLAG_TC_MQPRIO; 7460 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7461 break; 7462 default: 7463 return -EINVAL; 7464 } 7465 7466 config_tc: 7467 /* Generate TC map for number of tc requested */ 7468 for (i = 0; i < num_tc; i++) 7469 enabled_tc |= BIT(i); 7470 7471 /* Requesting same TC configuration as already enabled */ 7472 if (enabled_tc == vsi->tc_config.enabled_tc && 7473 mode != TC_MQPRIO_MODE_CHANNEL) 7474 return 0; 7475 7476 /* Quiesce VSI queues */ 7477 i40e_quiesce_vsi(vsi); 7478 7479 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7480 i40e_remove_queue_channels(vsi); 7481 7482 /* Configure VSI for enabled TCs */ 7483 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7484 if (ret) { 7485 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7486 vsi->seid); 7487 need_reset = true; 7488 goto exit; 7489 } else { 7490 dev_info(&vsi->back->pdev->dev, 7491 "Setup channel (id:%u) utilizing num_queues %d\n", 7492 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7493 } 7494 7495 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7496 if (vsi->mqprio_qopt.max_rate[0]) { 7497 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7498 7499 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7500 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7501 if (!ret) { 7502 u64 credits = max_tx_rate; 7503 7504 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7505 dev_dbg(&vsi->back->pdev->dev, 7506 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7507 max_tx_rate, 7508 credits, 7509 vsi->seid); 7510 } else { 7511 need_reset = true; 7512 goto exit; 7513 } 7514 } 7515 ret = i40e_configure_queue_channels(vsi); 7516 if (ret) { 7517 vsi->num_queue_pairs = old_queue_pairs; 7518 netdev_info(netdev, 7519 "Failed configuring queue channels\n"); 7520 need_reset = true; 7521 goto exit; 7522 } 7523 } 7524 7525 exit: 7526 /* Reset the configuration data to defaults, only TC0 is enabled */ 7527 if (need_reset) { 7528 i40e_vsi_set_default_tc_config(vsi); 7529 need_reset = false; 7530 } 7531 7532 /* Unquiesce VSI */ 7533 i40e_unquiesce_vsi(vsi); 7534 return ret; 7535 } 7536 7537 /** 7538 * i40e_set_cld_element - sets cloud filter element data 7539 * @filter: cloud filter rule 7540 * @cld: ptr to cloud filter element data 7541 * 7542 * This is helper function to copy data into cloud filter element 7543 **/ 7544 static inline void 7545 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7546 struct i40e_aqc_cloud_filters_element_data *cld) 7547 { 7548 int i, j; 7549 u32 ipa; 7550 7551 memset(cld, 0, sizeof(*cld)); 7552 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7553 ether_addr_copy(cld->inner_mac, filter->src_mac); 7554 7555 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 7556 return; 7557 7558 if (filter->n_proto == ETH_P_IPV6) { 7559 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 7560 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 7561 i++, j += 2) { 7562 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 7563 ipa = cpu_to_le32(ipa); 7564 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 7565 } 7566 } else { 7567 ipa = be32_to_cpu(filter->dst_ipv4); 7568 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 7569 } 7570 7571 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 7572 7573 /* tenant_id is not supported by FW now, once the support is enabled 7574 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 7575 */ 7576 if (filter->tenant_id) 7577 return; 7578 } 7579 7580 /** 7581 * i40e_add_del_cloud_filter - Add/del cloud filter 7582 * @vsi: pointer to VSI 7583 * @filter: cloud filter rule 7584 * @add: if true, add, if false, delete 7585 * 7586 * Add or delete a cloud filter for a specific flow spec. 7587 * Returns 0 if the filter were successfully added. 7588 **/ 7589 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7590 struct i40e_cloud_filter *filter, bool add) 7591 { 7592 struct i40e_aqc_cloud_filters_element_data cld_filter; 7593 struct i40e_pf *pf = vsi->back; 7594 int ret; 7595 static const u16 flag_table[128] = { 7596 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7597 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7598 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7599 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7600 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7601 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7602 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7603 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7604 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7605 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7606 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7607 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7608 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7609 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7610 }; 7611 7612 if (filter->flags >= ARRAY_SIZE(flag_table)) 7613 return I40E_ERR_CONFIG; 7614 7615 /* copy element needed to add cloud filter from filter */ 7616 i40e_set_cld_element(filter, &cld_filter); 7617 7618 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7619 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7620 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7621 7622 if (filter->n_proto == ETH_P_IPV6) 7623 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7624 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7625 else 7626 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7627 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7628 7629 if (add) 7630 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7631 &cld_filter, 1); 7632 else 7633 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7634 &cld_filter, 1); 7635 if (ret) 7636 dev_dbg(&pf->pdev->dev, 7637 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7638 add ? "add" : "delete", filter->dst_port, ret, 7639 pf->hw.aq.asq_last_status); 7640 else 7641 dev_info(&pf->pdev->dev, 7642 "%s cloud filter for VSI: %d\n", 7643 add ? "Added" : "Deleted", filter->seid); 7644 return ret; 7645 } 7646 7647 /** 7648 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7649 * @vsi: pointer to VSI 7650 * @filter: cloud filter rule 7651 * @add: if true, add, if false, delete 7652 * 7653 * Add or delete a cloud filter for a specific flow spec using big buffer. 7654 * Returns 0 if the filter were successfully added. 7655 **/ 7656 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7657 struct i40e_cloud_filter *filter, 7658 bool add) 7659 { 7660 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7661 struct i40e_pf *pf = vsi->back; 7662 int ret; 7663 7664 /* Both (src/dst) valid mac_addr are not supported */ 7665 if ((is_valid_ether_addr(filter->dst_mac) && 7666 is_valid_ether_addr(filter->src_mac)) || 7667 (is_multicast_ether_addr(filter->dst_mac) && 7668 is_multicast_ether_addr(filter->src_mac))) 7669 return -EOPNOTSUPP; 7670 7671 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7672 * ports are not supported via big buffer now. 7673 */ 7674 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7675 return -EOPNOTSUPP; 7676 7677 /* adding filter using src_port/src_ip is not supported at this stage */ 7678 if (filter->src_port || filter->src_ipv4 || 7679 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7680 return -EOPNOTSUPP; 7681 7682 /* copy element needed to add cloud filter from filter */ 7683 i40e_set_cld_element(filter, &cld_filter.element); 7684 7685 if (is_valid_ether_addr(filter->dst_mac) || 7686 is_valid_ether_addr(filter->src_mac) || 7687 is_multicast_ether_addr(filter->dst_mac) || 7688 is_multicast_ether_addr(filter->src_mac)) { 7689 /* MAC + IP : unsupported mode */ 7690 if (filter->dst_ipv4) 7691 return -EOPNOTSUPP; 7692 7693 /* since we validated that L4 port must be valid before 7694 * we get here, start with respective "flags" value 7695 * and update if vlan is present or not 7696 */ 7697 cld_filter.element.flags = 7698 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7699 7700 if (filter->vlan_id) { 7701 cld_filter.element.flags = 7702 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7703 } 7704 7705 } else if (filter->dst_ipv4 || 7706 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7707 cld_filter.element.flags = 7708 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7709 if (filter->n_proto == ETH_P_IPV6) 7710 cld_filter.element.flags |= 7711 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7712 else 7713 cld_filter.element.flags |= 7714 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7715 } else { 7716 dev_err(&pf->pdev->dev, 7717 "either mac or ip has to be valid for cloud filter\n"); 7718 return -EINVAL; 7719 } 7720 7721 /* Now copy L4 port in Byte 6..7 in general fields */ 7722 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7723 be16_to_cpu(filter->dst_port); 7724 7725 if (add) { 7726 /* Validate current device switch mode, change if necessary */ 7727 ret = i40e_validate_and_set_switch_mode(vsi); 7728 if (ret) { 7729 dev_err(&pf->pdev->dev, 7730 "failed to set switch mode, ret %d\n", 7731 ret); 7732 return ret; 7733 } 7734 7735 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7736 &cld_filter, 1); 7737 } else { 7738 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7739 &cld_filter, 1); 7740 } 7741 7742 if (ret) 7743 dev_dbg(&pf->pdev->dev, 7744 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7745 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7746 else 7747 dev_info(&pf->pdev->dev, 7748 "%s cloud filter for VSI: %d, L4 port: %d\n", 7749 add ? "add" : "delete", filter->seid, 7750 ntohs(filter->dst_port)); 7751 return ret; 7752 } 7753 7754 /** 7755 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7756 * @vsi: Pointer to VSI 7757 * @cls_flower: Pointer to struct flow_cls_offload 7758 * @filter: Pointer to cloud filter structure 7759 * 7760 **/ 7761 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7762 struct flow_cls_offload *f, 7763 struct i40e_cloud_filter *filter) 7764 { 7765 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 7766 struct flow_dissector *dissector = rule->match.dissector; 7767 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7768 struct i40e_pf *pf = vsi->back; 7769 u8 field_flags = 0; 7770 7771 if (dissector->used_keys & 7772 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7773 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7774 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7775 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7776 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7777 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7778 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7779 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7780 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7781 dissector->used_keys); 7782 return -EOPNOTSUPP; 7783 } 7784 7785 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7786 struct flow_match_enc_keyid match; 7787 7788 flow_rule_match_enc_keyid(rule, &match); 7789 if (match.mask->keyid != 0) 7790 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7791 7792 filter->tenant_id = be32_to_cpu(match.key->keyid); 7793 } 7794 7795 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 7796 struct flow_match_basic match; 7797 7798 flow_rule_match_basic(rule, &match); 7799 n_proto_key = ntohs(match.key->n_proto); 7800 n_proto_mask = ntohs(match.mask->n_proto); 7801 7802 if (n_proto_key == ETH_P_ALL) { 7803 n_proto_key = 0; 7804 n_proto_mask = 0; 7805 } 7806 filter->n_proto = n_proto_key & n_proto_mask; 7807 filter->ip_proto = match.key->ip_proto; 7808 } 7809 7810 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7811 struct flow_match_eth_addrs match; 7812 7813 flow_rule_match_eth_addrs(rule, &match); 7814 7815 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7816 if (!is_zero_ether_addr(match.mask->dst)) { 7817 if (is_broadcast_ether_addr(match.mask->dst)) { 7818 field_flags |= I40E_CLOUD_FIELD_OMAC; 7819 } else { 7820 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7821 match.mask->dst); 7822 return I40E_ERR_CONFIG; 7823 } 7824 } 7825 7826 if (!is_zero_ether_addr(match.mask->src)) { 7827 if (is_broadcast_ether_addr(match.mask->src)) { 7828 field_flags |= I40E_CLOUD_FIELD_IMAC; 7829 } else { 7830 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7831 match.mask->src); 7832 return I40E_ERR_CONFIG; 7833 } 7834 } 7835 ether_addr_copy(filter->dst_mac, match.key->dst); 7836 ether_addr_copy(filter->src_mac, match.key->src); 7837 } 7838 7839 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 7840 struct flow_match_vlan match; 7841 7842 flow_rule_match_vlan(rule, &match); 7843 if (match.mask->vlan_id) { 7844 if (match.mask->vlan_id == VLAN_VID_MASK) { 7845 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7846 7847 } else { 7848 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7849 match.mask->vlan_id); 7850 return I40E_ERR_CONFIG; 7851 } 7852 } 7853 7854 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 7855 } 7856 7857 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 7858 struct flow_match_control match; 7859 7860 flow_rule_match_control(rule, &match); 7861 addr_type = match.key->addr_type; 7862 } 7863 7864 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7865 struct flow_match_ipv4_addrs match; 7866 7867 flow_rule_match_ipv4_addrs(rule, &match); 7868 if (match.mask->dst) { 7869 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 7870 field_flags |= I40E_CLOUD_FIELD_IIP; 7871 } else { 7872 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7873 &match.mask->dst); 7874 return I40E_ERR_CONFIG; 7875 } 7876 } 7877 7878 if (match.mask->src) { 7879 if (match.mask->src == cpu_to_be32(0xffffffff)) { 7880 field_flags |= I40E_CLOUD_FIELD_IIP; 7881 } else { 7882 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7883 &match.mask->src); 7884 return I40E_ERR_CONFIG; 7885 } 7886 } 7887 7888 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7889 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7890 return I40E_ERR_CONFIG; 7891 } 7892 filter->dst_ipv4 = match.key->dst; 7893 filter->src_ipv4 = match.key->src; 7894 } 7895 7896 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7897 struct flow_match_ipv6_addrs match; 7898 7899 flow_rule_match_ipv6_addrs(rule, &match); 7900 7901 /* src and dest IPV6 address should not be LOOPBACK 7902 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7903 */ 7904 if (ipv6_addr_loopback(&match.key->dst) || 7905 ipv6_addr_loopback(&match.key->src)) { 7906 dev_err(&pf->pdev->dev, 7907 "Bad ipv6, addr is LOOPBACK\n"); 7908 return I40E_ERR_CONFIG; 7909 } 7910 if (!ipv6_addr_any(&match.mask->dst) || 7911 !ipv6_addr_any(&match.mask->src)) 7912 field_flags |= I40E_CLOUD_FIELD_IIP; 7913 7914 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 7915 sizeof(filter->src_ipv6)); 7916 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 7917 sizeof(filter->dst_ipv6)); 7918 } 7919 7920 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 7921 struct flow_match_ports match; 7922 7923 flow_rule_match_ports(rule, &match); 7924 if (match.mask->src) { 7925 if (match.mask->src == cpu_to_be16(0xffff)) { 7926 field_flags |= I40E_CLOUD_FIELD_IIP; 7927 } else { 7928 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7929 be16_to_cpu(match.mask->src)); 7930 return I40E_ERR_CONFIG; 7931 } 7932 } 7933 7934 if (match.mask->dst) { 7935 if (match.mask->dst == cpu_to_be16(0xffff)) { 7936 field_flags |= I40E_CLOUD_FIELD_IIP; 7937 } else { 7938 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7939 be16_to_cpu(match.mask->dst)); 7940 return I40E_ERR_CONFIG; 7941 } 7942 } 7943 7944 filter->dst_port = match.key->dst; 7945 filter->src_port = match.key->src; 7946 7947 switch (filter->ip_proto) { 7948 case IPPROTO_TCP: 7949 case IPPROTO_UDP: 7950 break; 7951 default: 7952 dev_err(&pf->pdev->dev, 7953 "Only UDP and TCP transport are supported\n"); 7954 return -EINVAL; 7955 } 7956 } 7957 filter->flags = field_flags; 7958 return 0; 7959 } 7960 7961 /** 7962 * i40e_handle_tclass: Forward to a traffic class on the device 7963 * @vsi: Pointer to VSI 7964 * @tc: traffic class index on the device 7965 * @filter: Pointer to cloud filter structure 7966 * 7967 **/ 7968 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7969 struct i40e_cloud_filter *filter) 7970 { 7971 struct i40e_channel *ch, *ch_tmp; 7972 7973 /* direct to a traffic class on the same device */ 7974 if (tc == 0) { 7975 filter->seid = vsi->seid; 7976 return 0; 7977 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7978 if (!filter->dst_port) { 7979 dev_err(&vsi->back->pdev->dev, 7980 "Specify destination port to direct to traffic class that is not default\n"); 7981 return -EINVAL; 7982 } 7983 if (list_empty(&vsi->ch_list)) 7984 return -EINVAL; 7985 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7986 list) { 7987 if (ch->seid == vsi->tc_seid_map[tc]) 7988 filter->seid = ch->seid; 7989 } 7990 return 0; 7991 } 7992 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7993 return -EINVAL; 7994 } 7995 7996 /** 7997 * i40e_configure_clsflower - Configure tc flower filters 7998 * @vsi: Pointer to VSI 7999 * @cls_flower: Pointer to struct flow_cls_offload 8000 * 8001 **/ 8002 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8003 struct flow_cls_offload *cls_flower) 8004 { 8005 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8006 struct i40e_cloud_filter *filter = NULL; 8007 struct i40e_pf *pf = vsi->back; 8008 int err = 0; 8009 8010 if (tc < 0) { 8011 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8012 return -EOPNOTSUPP; 8013 } 8014 8015 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8016 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8017 return -EBUSY; 8018 8019 if (pf->fdir_pf_active_filters || 8020 (!hlist_empty(&pf->fdir_filter_list))) { 8021 dev_err(&vsi->back->pdev->dev, 8022 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8023 return -EINVAL; 8024 } 8025 8026 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8027 dev_err(&vsi->back->pdev->dev, 8028 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8029 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8030 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8031 } 8032 8033 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8034 if (!filter) 8035 return -ENOMEM; 8036 8037 filter->cookie = cls_flower->cookie; 8038 8039 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8040 if (err < 0) 8041 goto err; 8042 8043 err = i40e_handle_tclass(vsi, tc, filter); 8044 if (err < 0) 8045 goto err; 8046 8047 /* Add cloud filter */ 8048 if (filter->dst_port) 8049 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8050 else 8051 err = i40e_add_del_cloud_filter(vsi, filter, true); 8052 8053 if (err) { 8054 dev_err(&pf->pdev->dev, 8055 "Failed to add cloud filter, err %s\n", 8056 i40e_stat_str(&pf->hw, err)); 8057 goto err; 8058 } 8059 8060 /* add filter to the ordered list */ 8061 INIT_HLIST_NODE(&filter->cloud_node); 8062 8063 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8064 8065 pf->num_cloud_filters++; 8066 8067 return err; 8068 err: 8069 kfree(filter); 8070 return err; 8071 } 8072 8073 /** 8074 * i40e_find_cloud_filter - Find the could filter in the list 8075 * @vsi: Pointer to VSI 8076 * @cookie: filter specific cookie 8077 * 8078 **/ 8079 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8080 unsigned long *cookie) 8081 { 8082 struct i40e_cloud_filter *filter = NULL; 8083 struct hlist_node *node2; 8084 8085 hlist_for_each_entry_safe(filter, node2, 8086 &vsi->back->cloud_filter_list, cloud_node) 8087 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8088 return filter; 8089 return NULL; 8090 } 8091 8092 /** 8093 * i40e_delete_clsflower - Remove tc flower filters 8094 * @vsi: Pointer to VSI 8095 * @cls_flower: Pointer to struct flow_cls_offload 8096 * 8097 **/ 8098 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8099 struct flow_cls_offload *cls_flower) 8100 { 8101 struct i40e_cloud_filter *filter = NULL; 8102 struct i40e_pf *pf = vsi->back; 8103 int err = 0; 8104 8105 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8106 8107 if (!filter) 8108 return -EINVAL; 8109 8110 hash_del(&filter->cloud_node); 8111 8112 if (filter->dst_port) 8113 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8114 else 8115 err = i40e_add_del_cloud_filter(vsi, filter, false); 8116 8117 kfree(filter); 8118 if (err) { 8119 dev_err(&pf->pdev->dev, 8120 "Failed to delete cloud filter, err %s\n", 8121 i40e_stat_str(&pf->hw, err)); 8122 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8123 } 8124 8125 pf->num_cloud_filters--; 8126 if (!pf->num_cloud_filters) 8127 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8128 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8129 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8130 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8131 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8132 } 8133 return 0; 8134 } 8135 8136 /** 8137 * i40e_setup_tc_cls_flower - flower classifier offloads 8138 * @netdev: net device to configure 8139 * @type_data: offload data 8140 **/ 8141 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8142 struct flow_cls_offload *cls_flower) 8143 { 8144 struct i40e_vsi *vsi = np->vsi; 8145 8146 switch (cls_flower->command) { 8147 case FLOW_CLS_REPLACE: 8148 return i40e_configure_clsflower(vsi, cls_flower); 8149 case FLOW_CLS_DESTROY: 8150 return i40e_delete_clsflower(vsi, cls_flower); 8151 case FLOW_CLS_STATS: 8152 return -EOPNOTSUPP; 8153 default: 8154 return -EOPNOTSUPP; 8155 } 8156 } 8157 8158 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8159 void *cb_priv) 8160 { 8161 struct i40e_netdev_priv *np = cb_priv; 8162 8163 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8164 return -EOPNOTSUPP; 8165 8166 switch (type) { 8167 case TC_SETUP_CLSFLOWER: 8168 return i40e_setup_tc_cls_flower(np, type_data); 8169 8170 default: 8171 return -EOPNOTSUPP; 8172 } 8173 } 8174 8175 static LIST_HEAD(i40e_block_cb_list); 8176 8177 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8178 void *type_data) 8179 { 8180 struct i40e_netdev_priv *np = netdev_priv(netdev); 8181 8182 switch (type) { 8183 case TC_SETUP_QDISC_MQPRIO: 8184 return i40e_setup_tc(netdev, type_data); 8185 case TC_SETUP_BLOCK: 8186 return flow_block_cb_setup_simple(type_data, 8187 &i40e_block_cb_list, 8188 i40e_setup_tc_block_cb, 8189 np, np, true); 8190 default: 8191 return -EOPNOTSUPP; 8192 } 8193 } 8194 8195 /** 8196 * i40e_open - Called when a network interface is made active 8197 * @netdev: network interface device structure 8198 * 8199 * The open entry point is called when a network interface is made 8200 * active by the system (IFF_UP). At this point all resources needed 8201 * for transmit and receive operations are allocated, the interrupt 8202 * handler is registered with the OS, the netdev watchdog subtask is 8203 * enabled, and the stack is notified that the interface is ready. 8204 * 8205 * Returns 0 on success, negative value on failure 8206 **/ 8207 int i40e_open(struct net_device *netdev) 8208 { 8209 struct i40e_netdev_priv *np = netdev_priv(netdev); 8210 struct i40e_vsi *vsi = np->vsi; 8211 struct i40e_pf *pf = vsi->back; 8212 int err; 8213 8214 /* disallow open during test or if eeprom is broken */ 8215 if (test_bit(__I40E_TESTING, pf->state) || 8216 test_bit(__I40E_BAD_EEPROM, pf->state)) 8217 return -EBUSY; 8218 8219 netif_carrier_off(netdev); 8220 8221 if (i40e_force_link_state(pf, true)) 8222 return -EAGAIN; 8223 8224 err = i40e_vsi_open(vsi); 8225 if (err) 8226 return err; 8227 8228 /* configure global TSO hardware offload settings */ 8229 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8230 TCP_FLAG_FIN) >> 16); 8231 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8232 TCP_FLAG_FIN | 8233 TCP_FLAG_CWR) >> 16); 8234 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8235 8236 udp_tunnel_get_rx_info(netdev); 8237 8238 return 0; 8239 } 8240 8241 /** 8242 * i40e_vsi_open - 8243 * @vsi: the VSI to open 8244 * 8245 * Finish initialization of the VSI. 8246 * 8247 * Returns 0 on success, negative value on failure 8248 * 8249 * Note: expects to be called while under rtnl_lock() 8250 **/ 8251 int i40e_vsi_open(struct i40e_vsi *vsi) 8252 { 8253 struct i40e_pf *pf = vsi->back; 8254 char int_name[I40E_INT_NAME_STR_LEN]; 8255 int err; 8256 8257 /* allocate descriptors */ 8258 err = i40e_vsi_setup_tx_resources(vsi); 8259 if (err) 8260 goto err_setup_tx; 8261 err = i40e_vsi_setup_rx_resources(vsi); 8262 if (err) 8263 goto err_setup_rx; 8264 8265 err = i40e_vsi_configure(vsi); 8266 if (err) 8267 goto err_setup_rx; 8268 8269 if (vsi->netdev) { 8270 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8271 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8272 err = i40e_vsi_request_irq(vsi, int_name); 8273 if (err) 8274 goto err_setup_rx; 8275 8276 /* Notify the stack of the actual queue counts. */ 8277 err = netif_set_real_num_tx_queues(vsi->netdev, 8278 vsi->num_queue_pairs); 8279 if (err) 8280 goto err_set_queues; 8281 8282 err = netif_set_real_num_rx_queues(vsi->netdev, 8283 vsi->num_queue_pairs); 8284 if (err) 8285 goto err_set_queues; 8286 8287 } else if (vsi->type == I40E_VSI_FDIR) { 8288 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8289 dev_driver_string(&pf->pdev->dev), 8290 dev_name(&pf->pdev->dev)); 8291 err = i40e_vsi_request_irq(vsi, int_name); 8292 8293 } else { 8294 err = -EINVAL; 8295 goto err_setup_rx; 8296 } 8297 8298 err = i40e_up_complete(vsi); 8299 if (err) 8300 goto err_up_complete; 8301 8302 return 0; 8303 8304 err_up_complete: 8305 i40e_down(vsi); 8306 err_set_queues: 8307 i40e_vsi_free_irq(vsi); 8308 err_setup_rx: 8309 i40e_vsi_free_rx_resources(vsi); 8310 err_setup_tx: 8311 i40e_vsi_free_tx_resources(vsi); 8312 if (vsi == pf->vsi[pf->lan_vsi]) 8313 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8314 8315 return err; 8316 } 8317 8318 /** 8319 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8320 * @pf: Pointer to PF 8321 * 8322 * This function destroys the hlist where all the Flow Director 8323 * filters were saved. 8324 **/ 8325 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8326 { 8327 struct i40e_fdir_filter *filter; 8328 struct i40e_flex_pit *pit_entry, *tmp; 8329 struct hlist_node *node2; 8330 8331 hlist_for_each_entry_safe(filter, node2, 8332 &pf->fdir_filter_list, fdir_node) { 8333 hlist_del(&filter->fdir_node); 8334 kfree(filter); 8335 } 8336 8337 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8338 list_del(&pit_entry->list); 8339 kfree(pit_entry); 8340 } 8341 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8342 8343 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8344 list_del(&pit_entry->list); 8345 kfree(pit_entry); 8346 } 8347 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8348 8349 pf->fdir_pf_active_filters = 0; 8350 pf->fd_tcp4_filter_cnt = 0; 8351 pf->fd_udp4_filter_cnt = 0; 8352 pf->fd_sctp4_filter_cnt = 0; 8353 pf->fd_ip4_filter_cnt = 0; 8354 8355 /* Reprogram the default input set for TCP/IPv4 */ 8356 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8357 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8358 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8359 8360 /* Reprogram the default input set for UDP/IPv4 */ 8361 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8362 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8363 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8364 8365 /* Reprogram the default input set for SCTP/IPv4 */ 8366 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8367 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8368 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8369 8370 /* Reprogram the default input set for Other/IPv4 */ 8371 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8372 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8373 8374 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8375 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8376 } 8377 8378 /** 8379 * i40e_cloud_filter_exit - Cleans up the cloud filters 8380 * @pf: Pointer to PF 8381 * 8382 * This function destroys the hlist where all the cloud filters 8383 * were saved. 8384 **/ 8385 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8386 { 8387 struct i40e_cloud_filter *cfilter; 8388 struct hlist_node *node; 8389 8390 hlist_for_each_entry_safe(cfilter, node, 8391 &pf->cloud_filter_list, cloud_node) { 8392 hlist_del(&cfilter->cloud_node); 8393 kfree(cfilter); 8394 } 8395 pf->num_cloud_filters = 0; 8396 8397 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8398 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8399 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8400 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8401 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8402 } 8403 } 8404 8405 /** 8406 * i40e_close - Disables a network interface 8407 * @netdev: network interface device structure 8408 * 8409 * The close entry point is called when an interface is de-activated 8410 * by the OS. The hardware is still under the driver's control, but 8411 * this netdev interface is disabled. 8412 * 8413 * Returns 0, this is not allowed to fail 8414 **/ 8415 int i40e_close(struct net_device *netdev) 8416 { 8417 struct i40e_netdev_priv *np = netdev_priv(netdev); 8418 struct i40e_vsi *vsi = np->vsi; 8419 8420 i40e_vsi_close(vsi); 8421 8422 return 0; 8423 } 8424 8425 /** 8426 * i40e_do_reset - Start a PF or Core Reset sequence 8427 * @pf: board private structure 8428 * @reset_flags: which reset is requested 8429 * @lock_acquired: indicates whether or not the lock has been acquired 8430 * before this function was called. 8431 * 8432 * The essential difference in resets is that the PF Reset 8433 * doesn't clear the packet buffers, doesn't reset the PE 8434 * firmware, and doesn't bother the other PFs on the chip. 8435 **/ 8436 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8437 { 8438 u32 val; 8439 8440 WARN_ON(in_interrupt()); 8441 8442 8443 /* do the biggest reset indicated */ 8444 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8445 8446 /* Request a Global Reset 8447 * 8448 * This will start the chip's countdown to the actual full 8449 * chip reset event, and a warning interrupt to be sent 8450 * to all PFs, including the requestor. Our handler 8451 * for the warning interrupt will deal with the shutdown 8452 * and recovery of the switch setup. 8453 */ 8454 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8455 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8456 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8457 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8458 8459 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8460 8461 /* Request a Core Reset 8462 * 8463 * Same as Global Reset, except does *not* include the MAC/PHY 8464 */ 8465 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8466 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8467 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8468 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8469 i40e_flush(&pf->hw); 8470 8471 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8472 8473 /* Request a PF Reset 8474 * 8475 * Resets only the PF-specific registers 8476 * 8477 * This goes directly to the tear-down and rebuild of 8478 * the switch, since we need to do all the recovery as 8479 * for the Core Reset. 8480 */ 8481 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8482 i40e_handle_reset_warning(pf, lock_acquired); 8483 8484 dev_info(&pf->pdev->dev, 8485 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8486 "FW LLDP is disabled\n" : 8487 "FW LLDP is enabled\n"); 8488 8489 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8490 int v; 8491 8492 /* Find the VSI(s) that requested a re-init */ 8493 dev_info(&pf->pdev->dev, 8494 "VSI reinit requested\n"); 8495 for (v = 0; v < pf->num_alloc_vsi; v++) { 8496 struct i40e_vsi *vsi = pf->vsi[v]; 8497 8498 if (vsi != NULL && 8499 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8500 vsi->state)) 8501 i40e_vsi_reinit_locked(pf->vsi[v]); 8502 } 8503 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8504 int v; 8505 8506 /* Find the VSI(s) that needs to be brought down */ 8507 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8508 for (v = 0; v < pf->num_alloc_vsi; v++) { 8509 struct i40e_vsi *vsi = pf->vsi[v]; 8510 8511 if (vsi != NULL && 8512 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8513 vsi->state)) { 8514 set_bit(__I40E_VSI_DOWN, vsi->state); 8515 i40e_down(vsi); 8516 } 8517 } 8518 } else { 8519 dev_info(&pf->pdev->dev, 8520 "bad reset request 0x%08x\n", reset_flags); 8521 } 8522 } 8523 8524 #ifdef CONFIG_I40E_DCB 8525 /** 8526 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8527 * @pf: board private structure 8528 * @old_cfg: current DCB config 8529 * @new_cfg: new DCB config 8530 **/ 8531 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 8532 struct i40e_dcbx_config *old_cfg, 8533 struct i40e_dcbx_config *new_cfg) 8534 { 8535 bool need_reconfig = false; 8536 8537 /* Check if ETS configuration has changed */ 8538 if (memcmp(&new_cfg->etscfg, 8539 &old_cfg->etscfg, 8540 sizeof(new_cfg->etscfg))) { 8541 /* If Priority Table has changed reconfig is needed */ 8542 if (memcmp(&new_cfg->etscfg.prioritytable, 8543 &old_cfg->etscfg.prioritytable, 8544 sizeof(new_cfg->etscfg.prioritytable))) { 8545 need_reconfig = true; 8546 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8547 } 8548 8549 if (memcmp(&new_cfg->etscfg.tcbwtable, 8550 &old_cfg->etscfg.tcbwtable, 8551 sizeof(new_cfg->etscfg.tcbwtable))) 8552 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8553 8554 if (memcmp(&new_cfg->etscfg.tsatable, 8555 &old_cfg->etscfg.tsatable, 8556 sizeof(new_cfg->etscfg.tsatable))) 8557 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8558 } 8559 8560 /* Check if PFC configuration has changed */ 8561 if (memcmp(&new_cfg->pfc, 8562 &old_cfg->pfc, 8563 sizeof(new_cfg->pfc))) { 8564 need_reconfig = true; 8565 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8566 } 8567 8568 /* Check if APP Table has changed */ 8569 if (memcmp(&new_cfg->app, 8570 &old_cfg->app, 8571 sizeof(new_cfg->app))) { 8572 need_reconfig = true; 8573 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8574 } 8575 8576 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8577 return need_reconfig; 8578 } 8579 8580 /** 8581 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8582 * @pf: board private structure 8583 * @e: event info posted on ARQ 8584 **/ 8585 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8586 struct i40e_arq_event_info *e) 8587 { 8588 struct i40e_aqc_lldp_get_mib *mib = 8589 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8590 struct i40e_hw *hw = &pf->hw; 8591 struct i40e_dcbx_config tmp_dcbx_cfg; 8592 bool need_reconfig = false; 8593 int ret = 0; 8594 u8 type; 8595 8596 /* Not DCB capable or capability disabled */ 8597 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8598 return ret; 8599 8600 /* Ignore if event is not for Nearest Bridge */ 8601 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8602 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8603 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8604 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8605 return ret; 8606 8607 /* Check MIB Type and return if event for Remote MIB update */ 8608 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8609 dev_dbg(&pf->pdev->dev, 8610 "LLDP event mib type %s\n", type ? "remote" : "local"); 8611 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8612 /* Update the remote cached instance and return */ 8613 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8614 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8615 &hw->remote_dcbx_config); 8616 goto exit; 8617 } 8618 8619 /* Store the old configuration */ 8620 tmp_dcbx_cfg = hw->local_dcbx_config; 8621 8622 /* Reset the old DCBx configuration data */ 8623 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8624 /* Get updated DCBX data from firmware */ 8625 ret = i40e_get_dcb_config(&pf->hw); 8626 if (ret) { 8627 dev_info(&pf->pdev->dev, 8628 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8629 i40e_stat_str(&pf->hw, ret), 8630 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8631 goto exit; 8632 } 8633 8634 /* No change detected in DCBX configs */ 8635 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8636 sizeof(tmp_dcbx_cfg))) { 8637 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8638 goto exit; 8639 } 8640 8641 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8642 &hw->local_dcbx_config); 8643 8644 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8645 8646 if (!need_reconfig) 8647 goto exit; 8648 8649 /* Enable DCB tagging only when more than one TC */ 8650 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8651 pf->flags |= I40E_FLAG_DCB_ENABLED; 8652 else 8653 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8654 8655 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8656 /* Reconfiguration needed quiesce all VSIs */ 8657 i40e_pf_quiesce_all_vsi(pf); 8658 8659 /* Changes in configuration update VEB/VSI */ 8660 i40e_dcb_reconfigure(pf); 8661 8662 ret = i40e_resume_port_tx(pf); 8663 8664 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8665 /* In case of error no point in resuming VSIs */ 8666 if (ret) 8667 goto exit; 8668 8669 /* Wait for the PF's queues to be disabled */ 8670 ret = i40e_pf_wait_queues_disabled(pf); 8671 if (ret) { 8672 /* Schedule PF reset to recover */ 8673 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8674 i40e_service_event_schedule(pf); 8675 } else { 8676 i40e_pf_unquiesce_all_vsi(pf); 8677 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8678 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8679 } 8680 8681 exit: 8682 return ret; 8683 } 8684 #endif /* CONFIG_I40E_DCB */ 8685 8686 /** 8687 * i40e_do_reset_safe - Protected reset path for userland calls. 8688 * @pf: board private structure 8689 * @reset_flags: which reset is requested 8690 * 8691 **/ 8692 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8693 { 8694 rtnl_lock(); 8695 i40e_do_reset(pf, reset_flags, true); 8696 rtnl_unlock(); 8697 } 8698 8699 /** 8700 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8701 * @pf: board private structure 8702 * @e: event info posted on ARQ 8703 * 8704 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8705 * and VF queues 8706 **/ 8707 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8708 struct i40e_arq_event_info *e) 8709 { 8710 struct i40e_aqc_lan_overflow *data = 8711 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8712 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8713 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8714 struct i40e_hw *hw = &pf->hw; 8715 struct i40e_vf *vf; 8716 u16 vf_id; 8717 8718 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8719 queue, qtx_ctl); 8720 8721 /* Queue belongs to VF, find the VF and issue VF reset */ 8722 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8723 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8724 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8725 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8726 vf_id -= hw->func_caps.vf_base_id; 8727 vf = &pf->vf[vf_id]; 8728 i40e_vc_notify_vf_reset(vf); 8729 /* Allow VF to process pending reset notification */ 8730 msleep(20); 8731 i40e_reset_vf(vf, false); 8732 } 8733 } 8734 8735 /** 8736 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8737 * @pf: board private structure 8738 **/ 8739 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8740 { 8741 u32 val, fcnt_prog; 8742 8743 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8744 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8745 return fcnt_prog; 8746 } 8747 8748 /** 8749 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8750 * @pf: board private structure 8751 **/ 8752 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8753 { 8754 u32 val, fcnt_prog; 8755 8756 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8757 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8758 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8759 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8760 return fcnt_prog; 8761 } 8762 8763 /** 8764 * i40e_get_global_fd_count - Get total FD filters programmed on device 8765 * @pf: board private structure 8766 **/ 8767 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8768 { 8769 u32 val, fcnt_prog; 8770 8771 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8772 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8773 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8774 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8775 return fcnt_prog; 8776 } 8777 8778 /** 8779 * i40e_reenable_fdir_sb - Restore FDir SB capability 8780 * @pf: board private structure 8781 **/ 8782 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8783 { 8784 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8785 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8786 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8787 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8788 } 8789 8790 /** 8791 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8792 * @pf: board private structure 8793 **/ 8794 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8795 { 8796 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8797 /* ATR uses the same filtering logic as SB rules. It only 8798 * functions properly if the input set mask is at the default 8799 * settings. It is safe to restore the default input set 8800 * because there are no active TCPv4 filter rules. 8801 */ 8802 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8803 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8804 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8805 8806 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8807 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8808 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8809 } 8810 } 8811 8812 /** 8813 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8814 * @pf: board private structure 8815 * @filter: FDir filter to remove 8816 */ 8817 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8818 struct i40e_fdir_filter *filter) 8819 { 8820 /* Update counters */ 8821 pf->fdir_pf_active_filters--; 8822 pf->fd_inv = 0; 8823 8824 switch (filter->flow_type) { 8825 case TCP_V4_FLOW: 8826 pf->fd_tcp4_filter_cnt--; 8827 break; 8828 case UDP_V4_FLOW: 8829 pf->fd_udp4_filter_cnt--; 8830 break; 8831 case SCTP_V4_FLOW: 8832 pf->fd_sctp4_filter_cnt--; 8833 break; 8834 case IP_USER_FLOW: 8835 switch (filter->ip4_proto) { 8836 case IPPROTO_TCP: 8837 pf->fd_tcp4_filter_cnt--; 8838 break; 8839 case IPPROTO_UDP: 8840 pf->fd_udp4_filter_cnt--; 8841 break; 8842 case IPPROTO_SCTP: 8843 pf->fd_sctp4_filter_cnt--; 8844 break; 8845 case IPPROTO_IP: 8846 pf->fd_ip4_filter_cnt--; 8847 break; 8848 } 8849 break; 8850 } 8851 8852 /* Remove the filter from the list and free memory */ 8853 hlist_del(&filter->fdir_node); 8854 kfree(filter); 8855 } 8856 8857 /** 8858 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8859 * @pf: board private structure 8860 **/ 8861 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8862 { 8863 struct i40e_fdir_filter *filter; 8864 u32 fcnt_prog, fcnt_avail; 8865 struct hlist_node *node; 8866 8867 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8868 return; 8869 8870 /* Check if we have enough room to re-enable FDir SB capability. */ 8871 fcnt_prog = i40e_get_global_fd_count(pf); 8872 fcnt_avail = pf->fdir_pf_filter_count; 8873 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8874 (pf->fd_add_err == 0) || 8875 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8876 i40e_reenable_fdir_sb(pf); 8877 8878 /* We should wait for even more space before re-enabling ATR. 8879 * Additionally, we cannot enable ATR as long as we still have TCP SB 8880 * rules active. 8881 */ 8882 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8883 (pf->fd_tcp4_filter_cnt == 0)) 8884 i40e_reenable_fdir_atr(pf); 8885 8886 /* if hw had a problem adding a filter, delete it */ 8887 if (pf->fd_inv > 0) { 8888 hlist_for_each_entry_safe(filter, node, 8889 &pf->fdir_filter_list, fdir_node) 8890 if (filter->fd_id == pf->fd_inv) 8891 i40e_delete_invalid_filter(pf, filter); 8892 } 8893 } 8894 8895 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8896 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8897 /** 8898 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8899 * @pf: board private structure 8900 **/ 8901 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8902 { 8903 unsigned long min_flush_time; 8904 int flush_wait_retry = 50; 8905 bool disable_atr = false; 8906 int fd_room; 8907 int reg; 8908 8909 if (!time_after(jiffies, pf->fd_flush_timestamp + 8910 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8911 return; 8912 8913 /* If the flush is happening too quick and we have mostly SB rules we 8914 * should not re-enable ATR for some time. 8915 */ 8916 min_flush_time = pf->fd_flush_timestamp + 8917 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8918 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8919 8920 if (!(time_after(jiffies, min_flush_time)) && 8921 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8922 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8923 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8924 disable_atr = true; 8925 } 8926 8927 pf->fd_flush_timestamp = jiffies; 8928 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8929 /* flush all filters */ 8930 wr32(&pf->hw, I40E_PFQF_CTL_1, 8931 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8932 i40e_flush(&pf->hw); 8933 pf->fd_flush_cnt++; 8934 pf->fd_add_err = 0; 8935 do { 8936 /* Check FD flush status every 5-6msec */ 8937 usleep_range(5000, 6000); 8938 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8939 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8940 break; 8941 } while (flush_wait_retry--); 8942 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8943 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8944 } else { 8945 /* replay sideband filters */ 8946 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8947 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8948 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8949 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8950 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8951 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8952 } 8953 } 8954 8955 /** 8956 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8957 * @pf: board private structure 8958 **/ 8959 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8960 { 8961 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8962 } 8963 8964 /* We can see up to 256 filter programming desc in transit if the filters are 8965 * being applied really fast; before we see the first 8966 * filter miss error on Rx queue 0. Accumulating enough error messages before 8967 * reacting will make sure we don't cause flush too often. 8968 */ 8969 #define I40E_MAX_FD_PROGRAM_ERROR 256 8970 8971 /** 8972 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8973 * @pf: board private structure 8974 **/ 8975 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8976 { 8977 8978 /* if interface is down do nothing */ 8979 if (test_bit(__I40E_DOWN, pf->state)) 8980 return; 8981 8982 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8983 i40e_fdir_flush_and_replay(pf); 8984 8985 i40e_fdir_check_and_reenable(pf); 8986 8987 } 8988 8989 /** 8990 * i40e_vsi_link_event - notify VSI of a link event 8991 * @vsi: vsi to be notified 8992 * @link_up: link up or down 8993 **/ 8994 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8995 { 8996 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8997 return; 8998 8999 switch (vsi->type) { 9000 case I40E_VSI_MAIN: 9001 if (!vsi->netdev || !vsi->netdev_registered) 9002 break; 9003 9004 if (link_up) { 9005 netif_carrier_on(vsi->netdev); 9006 netif_tx_wake_all_queues(vsi->netdev); 9007 } else { 9008 netif_carrier_off(vsi->netdev); 9009 netif_tx_stop_all_queues(vsi->netdev); 9010 } 9011 break; 9012 9013 case I40E_VSI_SRIOV: 9014 case I40E_VSI_VMDQ2: 9015 case I40E_VSI_CTRL: 9016 case I40E_VSI_IWARP: 9017 case I40E_VSI_MIRROR: 9018 default: 9019 /* there is no notification for other VSIs */ 9020 break; 9021 } 9022 } 9023 9024 /** 9025 * i40e_veb_link_event - notify elements on the veb of a link event 9026 * @veb: veb to be notified 9027 * @link_up: link up or down 9028 **/ 9029 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9030 { 9031 struct i40e_pf *pf; 9032 int i; 9033 9034 if (!veb || !veb->pf) 9035 return; 9036 pf = veb->pf; 9037 9038 /* depth first... */ 9039 for (i = 0; i < I40E_MAX_VEB; i++) 9040 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9041 i40e_veb_link_event(pf->veb[i], link_up); 9042 9043 /* ... now the local VSIs */ 9044 for (i = 0; i < pf->num_alloc_vsi; i++) 9045 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9046 i40e_vsi_link_event(pf->vsi[i], link_up); 9047 } 9048 9049 /** 9050 * i40e_link_event - Update netif_carrier status 9051 * @pf: board private structure 9052 **/ 9053 static void i40e_link_event(struct i40e_pf *pf) 9054 { 9055 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9056 u8 new_link_speed, old_link_speed; 9057 i40e_status status; 9058 bool new_link, old_link; 9059 9060 /* set this to force the get_link_status call to refresh state */ 9061 pf->hw.phy.get_link_info = true; 9062 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9063 status = i40e_get_link_status(&pf->hw, &new_link); 9064 9065 /* On success, disable temp link polling */ 9066 if (status == I40E_SUCCESS) { 9067 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9068 } else { 9069 /* Enable link polling temporarily until i40e_get_link_status 9070 * returns I40E_SUCCESS 9071 */ 9072 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9073 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9074 status); 9075 return; 9076 } 9077 9078 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9079 new_link_speed = pf->hw.phy.link_info.link_speed; 9080 9081 if (new_link == old_link && 9082 new_link_speed == old_link_speed && 9083 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9084 new_link == netif_carrier_ok(vsi->netdev))) 9085 return; 9086 9087 i40e_print_link_message(vsi, new_link); 9088 9089 /* Notify the base of the switch tree connected to 9090 * the link. Floating VEBs are not notified. 9091 */ 9092 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9093 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9094 else 9095 i40e_vsi_link_event(vsi, new_link); 9096 9097 if (pf->vf) 9098 i40e_vc_notify_link_state(pf); 9099 9100 if (pf->flags & I40E_FLAG_PTP) 9101 i40e_ptp_set_increment(pf); 9102 } 9103 9104 /** 9105 * i40e_watchdog_subtask - periodic checks not using event driven response 9106 * @pf: board private structure 9107 **/ 9108 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9109 { 9110 int i; 9111 9112 /* if interface is down do nothing */ 9113 if (test_bit(__I40E_DOWN, pf->state) || 9114 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9115 return; 9116 9117 /* make sure we don't do these things too often */ 9118 if (time_before(jiffies, (pf->service_timer_previous + 9119 pf->service_timer_period))) 9120 return; 9121 pf->service_timer_previous = jiffies; 9122 9123 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9124 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9125 i40e_link_event(pf); 9126 9127 /* Update the stats for active netdevs so the network stack 9128 * can look at updated numbers whenever it cares to 9129 */ 9130 for (i = 0; i < pf->num_alloc_vsi; i++) 9131 if (pf->vsi[i] && pf->vsi[i]->netdev) 9132 i40e_update_stats(pf->vsi[i]); 9133 9134 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9135 /* Update the stats for the active switching components */ 9136 for (i = 0; i < I40E_MAX_VEB; i++) 9137 if (pf->veb[i]) 9138 i40e_update_veb_stats(pf->veb[i]); 9139 } 9140 9141 i40e_ptp_rx_hang(pf); 9142 i40e_ptp_tx_hang(pf); 9143 } 9144 9145 /** 9146 * i40e_reset_subtask - Set up for resetting the device and driver 9147 * @pf: board private structure 9148 **/ 9149 static void i40e_reset_subtask(struct i40e_pf *pf) 9150 { 9151 u32 reset_flags = 0; 9152 9153 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9154 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9155 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9156 } 9157 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9158 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9159 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9160 } 9161 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9162 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9163 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9164 } 9165 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9166 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9167 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9168 } 9169 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9170 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9171 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9172 } 9173 9174 /* If there's a recovery already waiting, it takes 9175 * precedence before starting a new reset sequence. 9176 */ 9177 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9178 i40e_prep_for_reset(pf, false); 9179 i40e_reset(pf); 9180 i40e_rebuild(pf, false, false); 9181 } 9182 9183 /* If we're already down or resetting, just bail */ 9184 if (reset_flags && 9185 !test_bit(__I40E_DOWN, pf->state) && 9186 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9187 i40e_do_reset(pf, reset_flags, false); 9188 } 9189 } 9190 9191 /** 9192 * i40e_handle_link_event - Handle link event 9193 * @pf: board private structure 9194 * @e: event info posted on ARQ 9195 **/ 9196 static void i40e_handle_link_event(struct i40e_pf *pf, 9197 struct i40e_arq_event_info *e) 9198 { 9199 struct i40e_aqc_get_link_status *status = 9200 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9201 9202 /* Do a new status request to re-enable LSE reporting 9203 * and load new status information into the hw struct 9204 * This completely ignores any state information 9205 * in the ARQ event info, instead choosing to always 9206 * issue the AQ update link status command. 9207 */ 9208 i40e_link_event(pf); 9209 9210 /* Check if module meets thermal requirements */ 9211 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9212 dev_err(&pf->pdev->dev, 9213 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9214 dev_err(&pf->pdev->dev, 9215 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9216 } else { 9217 /* check for unqualified module, if link is down, suppress 9218 * the message if link was forced to be down. 9219 */ 9220 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9221 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9222 (!(status->link_info & I40E_AQ_LINK_UP)) && 9223 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9224 dev_err(&pf->pdev->dev, 9225 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9226 dev_err(&pf->pdev->dev, 9227 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9228 } 9229 } 9230 } 9231 9232 /** 9233 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9234 * @pf: board private structure 9235 **/ 9236 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9237 { 9238 struct i40e_arq_event_info event; 9239 struct i40e_hw *hw = &pf->hw; 9240 u16 pending, i = 0; 9241 i40e_status ret; 9242 u16 opcode; 9243 u32 oldval; 9244 u32 val; 9245 9246 /* Do not run clean AQ when PF reset fails */ 9247 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9248 return; 9249 9250 /* check for error indications */ 9251 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9252 oldval = val; 9253 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9254 if (hw->debug_mask & I40E_DEBUG_AQ) 9255 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9256 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9257 } 9258 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9259 if (hw->debug_mask & I40E_DEBUG_AQ) 9260 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9261 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9262 pf->arq_overflows++; 9263 } 9264 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9265 if (hw->debug_mask & I40E_DEBUG_AQ) 9266 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9267 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9268 } 9269 if (oldval != val) 9270 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9271 9272 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9273 oldval = val; 9274 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9275 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9276 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9277 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9278 } 9279 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9280 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9281 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9282 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9283 } 9284 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9285 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9286 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9287 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9288 } 9289 if (oldval != val) 9290 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9291 9292 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9293 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9294 if (!event.msg_buf) 9295 return; 9296 9297 do { 9298 ret = i40e_clean_arq_element(hw, &event, &pending); 9299 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9300 break; 9301 else if (ret) { 9302 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9303 break; 9304 } 9305 9306 opcode = le16_to_cpu(event.desc.opcode); 9307 switch (opcode) { 9308 9309 case i40e_aqc_opc_get_link_status: 9310 i40e_handle_link_event(pf, &event); 9311 break; 9312 case i40e_aqc_opc_send_msg_to_pf: 9313 ret = i40e_vc_process_vf_msg(pf, 9314 le16_to_cpu(event.desc.retval), 9315 le32_to_cpu(event.desc.cookie_high), 9316 le32_to_cpu(event.desc.cookie_low), 9317 event.msg_buf, 9318 event.msg_len); 9319 break; 9320 case i40e_aqc_opc_lldp_update_mib: 9321 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9322 #ifdef CONFIG_I40E_DCB 9323 rtnl_lock(); 9324 ret = i40e_handle_lldp_event(pf, &event); 9325 rtnl_unlock(); 9326 #endif /* CONFIG_I40E_DCB */ 9327 break; 9328 case i40e_aqc_opc_event_lan_overflow: 9329 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9330 i40e_handle_lan_overflow_event(pf, &event); 9331 break; 9332 case i40e_aqc_opc_send_msg_to_peer: 9333 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9334 break; 9335 case i40e_aqc_opc_nvm_erase: 9336 case i40e_aqc_opc_nvm_update: 9337 case i40e_aqc_opc_oem_post_update: 9338 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9339 "ARQ NVM operation 0x%04x completed\n", 9340 opcode); 9341 break; 9342 default: 9343 dev_info(&pf->pdev->dev, 9344 "ARQ: Unknown event 0x%04x ignored\n", 9345 opcode); 9346 break; 9347 } 9348 } while (i++ < pf->adminq_work_limit); 9349 9350 if (i < pf->adminq_work_limit) 9351 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9352 9353 /* re-enable Admin queue interrupt cause */ 9354 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9355 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9356 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9357 i40e_flush(hw); 9358 9359 kfree(event.msg_buf); 9360 } 9361 9362 /** 9363 * i40e_verify_eeprom - make sure eeprom is good to use 9364 * @pf: board private structure 9365 **/ 9366 static void i40e_verify_eeprom(struct i40e_pf *pf) 9367 { 9368 int err; 9369 9370 err = i40e_diag_eeprom_test(&pf->hw); 9371 if (err) { 9372 /* retry in case of garbage read */ 9373 err = i40e_diag_eeprom_test(&pf->hw); 9374 if (err) { 9375 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9376 err); 9377 set_bit(__I40E_BAD_EEPROM, pf->state); 9378 } 9379 } 9380 9381 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9382 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9383 clear_bit(__I40E_BAD_EEPROM, pf->state); 9384 } 9385 } 9386 9387 /** 9388 * i40e_enable_pf_switch_lb 9389 * @pf: pointer to the PF structure 9390 * 9391 * enable switch loop back or die - no point in a return value 9392 **/ 9393 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9394 { 9395 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9396 struct i40e_vsi_context ctxt; 9397 int ret; 9398 9399 ctxt.seid = pf->main_vsi_seid; 9400 ctxt.pf_num = pf->hw.pf_id; 9401 ctxt.vf_num = 0; 9402 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9403 if (ret) { 9404 dev_info(&pf->pdev->dev, 9405 "couldn't get PF vsi config, err %s aq_err %s\n", 9406 i40e_stat_str(&pf->hw, ret), 9407 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9408 return; 9409 } 9410 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9411 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9412 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9413 9414 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9415 if (ret) { 9416 dev_info(&pf->pdev->dev, 9417 "update vsi switch failed, err %s aq_err %s\n", 9418 i40e_stat_str(&pf->hw, ret), 9419 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9420 } 9421 } 9422 9423 /** 9424 * i40e_disable_pf_switch_lb 9425 * @pf: pointer to the PF structure 9426 * 9427 * disable switch loop back or die - no point in a return value 9428 **/ 9429 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9430 { 9431 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9432 struct i40e_vsi_context ctxt; 9433 int ret; 9434 9435 ctxt.seid = pf->main_vsi_seid; 9436 ctxt.pf_num = pf->hw.pf_id; 9437 ctxt.vf_num = 0; 9438 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9439 if (ret) { 9440 dev_info(&pf->pdev->dev, 9441 "couldn't get PF vsi config, err %s aq_err %s\n", 9442 i40e_stat_str(&pf->hw, ret), 9443 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9444 return; 9445 } 9446 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9447 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9448 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9449 9450 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9451 if (ret) { 9452 dev_info(&pf->pdev->dev, 9453 "update vsi switch failed, err %s aq_err %s\n", 9454 i40e_stat_str(&pf->hw, ret), 9455 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9456 } 9457 } 9458 9459 /** 9460 * i40e_config_bridge_mode - Configure the HW bridge mode 9461 * @veb: pointer to the bridge instance 9462 * 9463 * Configure the loop back mode for the LAN VSI that is downlink to the 9464 * specified HW bridge instance. It is expected this function is called 9465 * when a new HW bridge is instantiated. 9466 **/ 9467 static void i40e_config_bridge_mode(struct i40e_veb *veb) 9468 { 9469 struct i40e_pf *pf = veb->pf; 9470 9471 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 9472 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 9473 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 9474 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 9475 i40e_disable_pf_switch_lb(pf); 9476 else 9477 i40e_enable_pf_switch_lb(pf); 9478 } 9479 9480 /** 9481 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 9482 * @veb: pointer to the VEB instance 9483 * 9484 * This is a recursive function that first builds the attached VSIs then 9485 * recurses in to build the next layer of VEB. We track the connections 9486 * through our own index numbers because the seid's from the HW could 9487 * change across the reset. 9488 **/ 9489 static int i40e_reconstitute_veb(struct i40e_veb *veb) 9490 { 9491 struct i40e_vsi *ctl_vsi = NULL; 9492 struct i40e_pf *pf = veb->pf; 9493 int v, veb_idx; 9494 int ret; 9495 9496 /* build VSI that owns this VEB, temporarily attached to base VEB */ 9497 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 9498 if (pf->vsi[v] && 9499 pf->vsi[v]->veb_idx == veb->idx && 9500 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 9501 ctl_vsi = pf->vsi[v]; 9502 break; 9503 } 9504 } 9505 if (!ctl_vsi) { 9506 dev_info(&pf->pdev->dev, 9507 "missing owner VSI for veb_idx %d\n", veb->idx); 9508 ret = -ENOENT; 9509 goto end_reconstitute; 9510 } 9511 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 9512 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 9513 ret = i40e_add_vsi(ctl_vsi); 9514 if (ret) { 9515 dev_info(&pf->pdev->dev, 9516 "rebuild of veb_idx %d owner VSI failed: %d\n", 9517 veb->idx, ret); 9518 goto end_reconstitute; 9519 } 9520 i40e_vsi_reset_stats(ctl_vsi); 9521 9522 /* create the VEB in the switch and move the VSI onto the VEB */ 9523 ret = i40e_add_veb(veb, ctl_vsi); 9524 if (ret) 9525 goto end_reconstitute; 9526 9527 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 9528 veb->bridge_mode = BRIDGE_MODE_VEB; 9529 else 9530 veb->bridge_mode = BRIDGE_MODE_VEPA; 9531 i40e_config_bridge_mode(veb); 9532 9533 /* create the remaining VSIs attached to this VEB */ 9534 for (v = 0; v < pf->num_alloc_vsi; v++) { 9535 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9536 continue; 9537 9538 if (pf->vsi[v]->veb_idx == veb->idx) { 9539 struct i40e_vsi *vsi = pf->vsi[v]; 9540 9541 vsi->uplink_seid = veb->seid; 9542 ret = i40e_add_vsi(vsi); 9543 if (ret) { 9544 dev_info(&pf->pdev->dev, 9545 "rebuild of vsi_idx %d failed: %d\n", 9546 v, ret); 9547 goto end_reconstitute; 9548 } 9549 i40e_vsi_reset_stats(vsi); 9550 } 9551 } 9552 9553 /* create any VEBs attached to this VEB - RECURSION */ 9554 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9555 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9556 pf->veb[veb_idx]->uplink_seid = veb->seid; 9557 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9558 if (ret) 9559 break; 9560 } 9561 } 9562 9563 end_reconstitute: 9564 return ret; 9565 } 9566 9567 /** 9568 * i40e_get_capabilities - get info about the HW 9569 * @pf: the PF struct 9570 **/ 9571 static int i40e_get_capabilities(struct i40e_pf *pf, 9572 enum i40e_admin_queue_opc list_type) 9573 { 9574 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9575 u16 data_size; 9576 int buf_len; 9577 int err; 9578 9579 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9580 do { 9581 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9582 if (!cap_buf) 9583 return -ENOMEM; 9584 9585 /* this loads the data into the hw struct for us */ 9586 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9587 &data_size, list_type, 9588 NULL); 9589 /* data loaded, buffer no longer needed */ 9590 kfree(cap_buf); 9591 9592 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9593 /* retry with a larger buffer */ 9594 buf_len = data_size; 9595 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9596 dev_info(&pf->pdev->dev, 9597 "capability discovery failed, err %s aq_err %s\n", 9598 i40e_stat_str(&pf->hw, err), 9599 i40e_aq_str(&pf->hw, 9600 pf->hw.aq.asq_last_status)); 9601 return -ENODEV; 9602 } 9603 } while (err); 9604 9605 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9606 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9607 dev_info(&pf->pdev->dev, 9608 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9609 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9610 pf->hw.func_caps.num_msix_vectors, 9611 pf->hw.func_caps.num_msix_vectors_vf, 9612 pf->hw.func_caps.fd_filters_guaranteed, 9613 pf->hw.func_caps.fd_filters_best_effort, 9614 pf->hw.func_caps.num_tx_qp, 9615 pf->hw.func_caps.num_vsis); 9616 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9617 dev_info(&pf->pdev->dev, 9618 "switch_mode=0x%04x, function_valid=0x%08x\n", 9619 pf->hw.dev_caps.switch_mode, 9620 pf->hw.dev_caps.valid_functions); 9621 dev_info(&pf->pdev->dev, 9622 "SR-IOV=%d, num_vfs for all function=%u\n", 9623 pf->hw.dev_caps.sr_iov_1_1, 9624 pf->hw.dev_caps.num_vfs); 9625 dev_info(&pf->pdev->dev, 9626 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9627 pf->hw.dev_caps.num_vsis, 9628 pf->hw.dev_caps.num_rx_qp, 9629 pf->hw.dev_caps.num_tx_qp); 9630 } 9631 } 9632 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9633 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9634 + pf->hw.func_caps.num_vfs) 9635 if (pf->hw.revision_id == 0 && 9636 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9637 dev_info(&pf->pdev->dev, 9638 "got num_vsis %d, setting num_vsis to %d\n", 9639 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9640 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9641 } 9642 } 9643 return 0; 9644 } 9645 9646 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9647 9648 /** 9649 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9650 * @pf: board private structure 9651 **/ 9652 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9653 { 9654 struct i40e_vsi *vsi; 9655 9656 /* quick workaround for an NVM issue that leaves a critical register 9657 * uninitialized 9658 */ 9659 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9660 static const u32 hkey[] = { 9661 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9662 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9663 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9664 0x95b3a76d}; 9665 int i; 9666 9667 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9668 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9669 } 9670 9671 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9672 return; 9673 9674 /* find existing VSI and see if it needs configuring */ 9675 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9676 9677 /* create a new VSI if none exists */ 9678 if (!vsi) { 9679 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9680 pf->vsi[pf->lan_vsi]->seid, 0); 9681 if (!vsi) { 9682 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9683 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9684 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9685 return; 9686 } 9687 } 9688 9689 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9690 } 9691 9692 /** 9693 * i40e_fdir_teardown - release the Flow Director resources 9694 * @pf: board private structure 9695 **/ 9696 static void i40e_fdir_teardown(struct i40e_pf *pf) 9697 { 9698 struct i40e_vsi *vsi; 9699 9700 i40e_fdir_filter_exit(pf); 9701 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9702 if (vsi) 9703 i40e_vsi_release(vsi); 9704 } 9705 9706 /** 9707 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9708 * @vsi: PF main vsi 9709 * @seid: seid of main or channel VSIs 9710 * 9711 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9712 * existed before reset 9713 **/ 9714 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9715 { 9716 struct i40e_cloud_filter *cfilter; 9717 struct i40e_pf *pf = vsi->back; 9718 struct hlist_node *node; 9719 i40e_status ret; 9720 9721 /* Add cloud filters back if they exist */ 9722 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9723 cloud_node) { 9724 if (cfilter->seid != seid) 9725 continue; 9726 9727 if (cfilter->dst_port) 9728 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9729 true); 9730 else 9731 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9732 9733 if (ret) { 9734 dev_dbg(&pf->pdev->dev, 9735 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9736 i40e_stat_str(&pf->hw, ret), 9737 i40e_aq_str(&pf->hw, 9738 pf->hw.aq.asq_last_status)); 9739 return ret; 9740 } 9741 } 9742 return 0; 9743 } 9744 9745 /** 9746 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9747 * @vsi: PF main vsi 9748 * 9749 * Rebuilds channel VSIs if they existed before reset 9750 **/ 9751 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9752 { 9753 struct i40e_channel *ch, *ch_tmp; 9754 i40e_status ret; 9755 9756 if (list_empty(&vsi->ch_list)) 9757 return 0; 9758 9759 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9760 if (!ch->initialized) 9761 break; 9762 /* Proceed with creation of channel (VMDq2) VSI */ 9763 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9764 if (ret) { 9765 dev_info(&vsi->back->pdev->dev, 9766 "failed to rebuild channels using uplink_seid %u\n", 9767 vsi->uplink_seid); 9768 return ret; 9769 } 9770 /* Reconfigure TX queues using QTX_CTL register */ 9771 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9772 if (ret) { 9773 dev_info(&vsi->back->pdev->dev, 9774 "failed to configure TX rings for channel %u\n", 9775 ch->seid); 9776 return ret; 9777 } 9778 /* update 'next_base_queue' */ 9779 vsi->next_base_queue = vsi->next_base_queue + 9780 ch->num_queue_pairs; 9781 if (ch->max_tx_rate) { 9782 u64 credits = ch->max_tx_rate; 9783 9784 if (i40e_set_bw_limit(vsi, ch->seid, 9785 ch->max_tx_rate)) 9786 return -EINVAL; 9787 9788 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9789 dev_dbg(&vsi->back->pdev->dev, 9790 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9791 ch->max_tx_rate, 9792 credits, 9793 ch->seid); 9794 } 9795 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9796 if (ret) { 9797 dev_dbg(&vsi->back->pdev->dev, 9798 "Failed to rebuild cloud filters for channel VSI %u\n", 9799 ch->seid); 9800 return ret; 9801 } 9802 } 9803 return 0; 9804 } 9805 9806 /** 9807 * i40e_prep_for_reset - prep for the core to reset 9808 * @pf: board private structure 9809 * @lock_acquired: indicates whether or not the lock has been acquired 9810 * before this function was called. 9811 * 9812 * Close up the VFs and other things in prep for PF Reset. 9813 **/ 9814 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9815 { 9816 struct i40e_hw *hw = &pf->hw; 9817 i40e_status ret = 0; 9818 u32 v; 9819 9820 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9821 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9822 return; 9823 if (i40e_check_asq_alive(&pf->hw)) 9824 i40e_vc_notify_reset(pf); 9825 9826 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9827 9828 /* quiesce the VSIs and their queues that are not already DOWN */ 9829 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9830 if (!lock_acquired) 9831 rtnl_lock(); 9832 i40e_pf_quiesce_all_vsi(pf); 9833 if (!lock_acquired) 9834 rtnl_unlock(); 9835 9836 for (v = 0; v < pf->num_alloc_vsi; v++) { 9837 if (pf->vsi[v]) 9838 pf->vsi[v]->seid = 0; 9839 } 9840 9841 i40e_shutdown_adminq(&pf->hw); 9842 9843 /* call shutdown HMC */ 9844 if (hw->hmc.hmc_obj) { 9845 ret = i40e_shutdown_lan_hmc(hw); 9846 if (ret) 9847 dev_warn(&pf->pdev->dev, 9848 "shutdown_lan_hmc failed: %d\n", ret); 9849 } 9850 9851 /* Save the current PTP time so that we can restore the time after the 9852 * reset completes. 9853 */ 9854 i40e_ptp_save_hw_time(pf); 9855 } 9856 9857 /** 9858 * i40e_send_version - update firmware with driver version 9859 * @pf: PF struct 9860 */ 9861 static void i40e_send_version(struct i40e_pf *pf) 9862 { 9863 struct i40e_driver_version dv; 9864 9865 dv.major_version = DRV_VERSION_MAJOR; 9866 dv.minor_version = DRV_VERSION_MINOR; 9867 dv.build_version = DRV_VERSION_BUILD; 9868 dv.subbuild_version = 0; 9869 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9870 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9871 } 9872 9873 /** 9874 * i40e_get_oem_version - get OEM specific version information 9875 * @hw: pointer to the hardware structure 9876 **/ 9877 static void i40e_get_oem_version(struct i40e_hw *hw) 9878 { 9879 u16 block_offset = 0xffff; 9880 u16 block_length = 0; 9881 u16 capabilities = 0; 9882 u16 gen_snap = 0; 9883 u16 release = 0; 9884 9885 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9886 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9887 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9888 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9889 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9890 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9891 #define I40E_NVM_OEM_LENGTH 3 9892 9893 /* Check if pointer to OEM version block is valid. */ 9894 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9895 if (block_offset == 0xffff) 9896 return; 9897 9898 /* Check if OEM version block has correct length. */ 9899 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9900 &block_length); 9901 if (block_length < I40E_NVM_OEM_LENGTH) 9902 return; 9903 9904 /* Check if OEM version format is as expected. */ 9905 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9906 &capabilities); 9907 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9908 return; 9909 9910 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9911 &gen_snap); 9912 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9913 &release); 9914 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9915 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9916 } 9917 9918 /** 9919 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9920 * @pf: board private structure 9921 **/ 9922 static int i40e_reset(struct i40e_pf *pf) 9923 { 9924 struct i40e_hw *hw = &pf->hw; 9925 i40e_status ret; 9926 9927 ret = i40e_pf_reset(hw); 9928 if (ret) { 9929 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9930 set_bit(__I40E_RESET_FAILED, pf->state); 9931 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9932 } else { 9933 pf->pfr_count++; 9934 } 9935 return ret; 9936 } 9937 9938 /** 9939 * i40e_rebuild - rebuild using a saved config 9940 * @pf: board private structure 9941 * @reinit: if the Main VSI needs to re-initialized. 9942 * @lock_acquired: indicates whether or not the lock has been acquired 9943 * before this function was called. 9944 **/ 9945 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9946 { 9947 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 9948 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9949 struct i40e_hw *hw = &pf->hw; 9950 u8 set_fc_aq_fail = 0; 9951 i40e_status ret; 9952 u32 val; 9953 int v; 9954 9955 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9956 i40e_check_recovery_mode(pf)) { 9957 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 9958 } 9959 9960 if (test_bit(__I40E_DOWN, pf->state) && 9961 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 9962 !old_recovery_mode_bit) 9963 goto clear_recovery; 9964 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9965 9966 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9967 ret = i40e_init_adminq(&pf->hw); 9968 if (ret) { 9969 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9970 i40e_stat_str(&pf->hw, ret), 9971 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9972 goto clear_recovery; 9973 } 9974 i40e_get_oem_version(&pf->hw); 9975 9976 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9977 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9978 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9979 /* The following delay is necessary for 4.33 firmware and older 9980 * to recover after EMP reset. 200 ms should suffice but we 9981 * put here 300 ms to be sure that FW is ready to operate 9982 * after reset. 9983 */ 9984 mdelay(300); 9985 } 9986 9987 /* re-verify the eeprom if we just had an EMP reset */ 9988 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9989 i40e_verify_eeprom(pf); 9990 9991 /* if we are going out of or into recovery mode we have to act 9992 * accordingly with regard to resources initialization 9993 * and deinitialization 9994 */ 9995 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 9996 old_recovery_mode_bit) { 9997 if (i40e_get_capabilities(pf, 9998 i40e_aqc_opc_list_func_capabilities)) 9999 goto end_unlock; 10000 10001 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10002 /* we're staying in recovery mode so we'll reinitialize 10003 * misc vector here 10004 */ 10005 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10006 goto end_unlock; 10007 } else { 10008 if (!lock_acquired) 10009 rtnl_lock(); 10010 /* we're going out of recovery mode so we'll free 10011 * the IRQ allocated specifically for recovery mode 10012 * and restore the interrupt scheme 10013 */ 10014 free_irq(pf->pdev->irq, pf); 10015 i40e_clear_interrupt_scheme(pf); 10016 if (i40e_restore_interrupt_scheme(pf)) 10017 goto end_unlock; 10018 } 10019 10020 /* tell the firmware that we're starting */ 10021 i40e_send_version(pf); 10022 10023 /* bail out in case recovery mode was detected, as there is 10024 * no need for further configuration. 10025 */ 10026 goto end_unlock; 10027 } 10028 10029 i40e_clear_pxe_mode(hw); 10030 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10031 if (ret) 10032 goto end_core_reset; 10033 10034 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10035 hw->func_caps.num_rx_qp, 0, 0); 10036 if (ret) { 10037 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10038 goto end_core_reset; 10039 } 10040 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10041 if (ret) { 10042 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10043 goto end_core_reset; 10044 } 10045 10046 /* Enable FW to write a default DCB config on link-up */ 10047 i40e_aq_set_dcb_parameters(hw, true, NULL); 10048 10049 #ifdef CONFIG_I40E_DCB 10050 ret = i40e_init_pf_dcb(pf); 10051 if (ret) { 10052 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 10053 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10054 /* Continue without DCB enabled */ 10055 } 10056 #endif /* CONFIG_I40E_DCB */ 10057 /* do basic switch setup */ 10058 if (!lock_acquired) 10059 rtnl_lock(); 10060 ret = i40e_setup_pf_switch(pf, reinit); 10061 if (ret) 10062 goto end_unlock; 10063 10064 /* The driver only wants link up/down and module qualification 10065 * reports from firmware. Note the negative logic. 10066 */ 10067 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10068 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10069 I40E_AQ_EVENT_MEDIA_NA | 10070 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10071 if (ret) 10072 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10073 i40e_stat_str(&pf->hw, ret), 10074 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10075 10076 /* make sure our flow control settings are restored */ 10077 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 10078 if (ret) 10079 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 10080 i40e_stat_str(&pf->hw, ret), 10081 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10082 10083 /* Rebuild the VSIs and VEBs that existed before reset. 10084 * They are still in our local switch element arrays, so only 10085 * need to rebuild the switch model in the HW. 10086 * 10087 * If there were VEBs but the reconstitution failed, we'll try 10088 * try to recover minimal use by getting the basic PF VSI working. 10089 */ 10090 if (vsi->uplink_seid != pf->mac_seid) { 10091 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10092 /* find the one VEB connected to the MAC, and find orphans */ 10093 for (v = 0; v < I40E_MAX_VEB; v++) { 10094 if (!pf->veb[v]) 10095 continue; 10096 10097 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10098 pf->veb[v]->uplink_seid == 0) { 10099 ret = i40e_reconstitute_veb(pf->veb[v]); 10100 10101 if (!ret) 10102 continue; 10103 10104 /* If Main VEB failed, we're in deep doodoo, 10105 * so give up rebuilding the switch and set up 10106 * for minimal rebuild of PF VSI. 10107 * If orphan failed, we'll report the error 10108 * but try to keep going. 10109 */ 10110 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10111 dev_info(&pf->pdev->dev, 10112 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10113 ret); 10114 vsi->uplink_seid = pf->mac_seid; 10115 break; 10116 } else if (pf->veb[v]->uplink_seid == 0) { 10117 dev_info(&pf->pdev->dev, 10118 "rebuild of orphan VEB failed: %d\n", 10119 ret); 10120 } 10121 } 10122 } 10123 } 10124 10125 if (vsi->uplink_seid == pf->mac_seid) { 10126 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10127 /* no VEB, so rebuild only the Main VSI */ 10128 ret = i40e_add_vsi(vsi); 10129 if (ret) { 10130 dev_info(&pf->pdev->dev, 10131 "rebuild of Main VSI failed: %d\n", ret); 10132 goto end_unlock; 10133 } 10134 } 10135 10136 if (vsi->mqprio_qopt.max_rate[0]) { 10137 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10138 u64 credits = 0; 10139 10140 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10141 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10142 if (ret) 10143 goto end_unlock; 10144 10145 credits = max_tx_rate; 10146 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10147 dev_dbg(&vsi->back->pdev->dev, 10148 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10149 max_tx_rate, 10150 credits, 10151 vsi->seid); 10152 } 10153 10154 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10155 if (ret) 10156 goto end_unlock; 10157 10158 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10159 * for this main VSI if they exist 10160 */ 10161 ret = i40e_rebuild_channels(vsi); 10162 if (ret) 10163 goto end_unlock; 10164 10165 /* Reconfigure hardware for allowing smaller MSS in the case 10166 * of TSO, so that we avoid the MDD being fired and causing 10167 * a reset in the case of small MSS+TSO. 10168 */ 10169 #define I40E_REG_MSS 0x000E64DC 10170 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10171 #define I40E_64BYTE_MSS 0x400000 10172 val = rd32(hw, I40E_REG_MSS); 10173 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10174 val &= ~I40E_REG_MSS_MIN_MASK; 10175 val |= I40E_64BYTE_MSS; 10176 wr32(hw, I40E_REG_MSS, val); 10177 } 10178 10179 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10180 msleep(75); 10181 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10182 if (ret) 10183 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10184 i40e_stat_str(&pf->hw, ret), 10185 i40e_aq_str(&pf->hw, 10186 pf->hw.aq.asq_last_status)); 10187 } 10188 /* reinit the misc interrupt */ 10189 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10190 ret = i40e_setup_misc_vector(pf); 10191 10192 /* Add a filter to drop all Flow control frames from any VSI from being 10193 * transmitted. By doing so we stop a malicious VF from sending out 10194 * PAUSE or PFC frames and potentially controlling traffic for other 10195 * PF/VF VSIs. 10196 * The FW can still send Flow control frames if enabled. 10197 */ 10198 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10199 pf->main_vsi_seid); 10200 10201 /* restart the VSIs that were rebuilt and running before the reset */ 10202 i40e_pf_unquiesce_all_vsi(pf); 10203 10204 /* Release the RTNL lock before we start resetting VFs */ 10205 if (!lock_acquired) 10206 rtnl_unlock(); 10207 10208 /* Restore promiscuous settings */ 10209 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10210 if (ret) 10211 dev_warn(&pf->pdev->dev, 10212 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10213 pf->cur_promisc ? "on" : "off", 10214 i40e_stat_str(&pf->hw, ret), 10215 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10216 10217 i40e_reset_all_vfs(pf, true); 10218 10219 /* tell the firmware that we're starting */ 10220 i40e_send_version(pf); 10221 10222 /* We've already released the lock, so don't do it again */ 10223 goto end_core_reset; 10224 10225 end_unlock: 10226 if (!lock_acquired) 10227 rtnl_unlock(); 10228 end_core_reset: 10229 clear_bit(__I40E_RESET_FAILED, pf->state); 10230 clear_recovery: 10231 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10232 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10233 } 10234 10235 /** 10236 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10237 * @pf: board private structure 10238 * @reinit: if the Main VSI needs to re-initialized. 10239 * @lock_acquired: indicates whether or not the lock has been acquired 10240 * before this function was called. 10241 **/ 10242 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10243 bool lock_acquired) 10244 { 10245 int ret; 10246 /* Now we wait for GRST to settle out. 10247 * We don't have to delete the VEBs or VSIs from the hw switch 10248 * because the reset will make them disappear. 10249 */ 10250 ret = i40e_reset(pf); 10251 if (!ret) 10252 i40e_rebuild(pf, reinit, lock_acquired); 10253 } 10254 10255 /** 10256 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10257 * @pf: board private structure 10258 * 10259 * Close up the VFs and other things in prep for a Core Reset, 10260 * then get ready to rebuild the world. 10261 * @lock_acquired: indicates whether or not the lock has been acquired 10262 * before this function was called. 10263 **/ 10264 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10265 { 10266 i40e_prep_for_reset(pf, lock_acquired); 10267 i40e_reset_and_rebuild(pf, false, lock_acquired); 10268 } 10269 10270 /** 10271 * i40e_handle_mdd_event 10272 * @pf: pointer to the PF structure 10273 * 10274 * Called from the MDD irq handler to identify possibly malicious vfs 10275 **/ 10276 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10277 { 10278 struct i40e_hw *hw = &pf->hw; 10279 bool mdd_detected = false; 10280 struct i40e_vf *vf; 10281 u32 reg; 10282 int i; 10283 10284 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10285 return; 10286 10287 /* find what triggered the MDD event */ 10288 reg = rd32(hw, I40E_GL_MDET_TX); 10289 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10290 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10291 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10292 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10293 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10294 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10295 I40E_GL_MDET_TX_EVENT_SHIFT; 10296 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10297 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10298 pf->hw.func_caps.base_queue; 10299 if (netif_msg_tx_err(pf)) 10300 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10301 event, queue, pf_num, vf_num); 10302 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10303 mdd_detected = true; 10304 } 10305 reg = rd32(hw, I40E_GL_MDET_RX); 10306 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10307 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10308 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10309 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10310 I40E_GL_MDET_RX_EVENT_SHIFT; 10311 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10312 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10313 pf->hw.func_caps.base_queue; 10314 if (netif_msg_rx_err(pf)) 10315 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10316 event, queue, func); 10317 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10318 mdd_detected = true; 10319 } 10320 10321 if (mdd_detected) { 10322 reg = rd32(hw, I40E_PF_MDET_TX); 10323 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10324 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10325 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10326 } 10327 reg = rd32(hw, I40E_PF_MDET_RX); 10328 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10329 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10330 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10331 } 10332 } 10333 10334 /* see if one of the VFs needs its hand slapped */ 10335 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10336 vf = &(pf->vf[i]); 10337 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10338 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10339 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10340 vf->num_mdd_events++; 10341 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10342 i); 10343 dev_info(&pf->pdev->dev, 10344 "Use PF Control I/F to re-enable the VF\n"); 10345 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10346 } 10347 10348 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10349 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10350 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10351 vf->num_mdd_events++; 10352 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10353 i); 10354 dev_info(&pf->pdev->dev, 10355 "Use PF Control I/F to re-enable the VF\n"); 10356 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10357 } 10358 } 10359 10360 /* re-enable mdd interrupt cause */ 10361 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10362 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10363 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10364 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10365 i40e_flush(hw); 10366 } 10367 10368 static const char *i40e_tunnel_name(u8 type) 10369 { 10370 switch (type) { 10371 case UDP_TUNNEL_TYPE_VXLAN: 10372 return "vxlan"; 10373 case UDP_TUNNEL_TYPE_GENEVE: 10374 return "geneve"; 10375 default: 10376 return "unknown"; 10377 } 10378 } 10379 10380 /** 10381 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 10382 * @pf: board private structure 10383 **/ 10384 static void i40e_sync_udp_filters(struct i40e_pf *pf) 10385 { 10386 int i; 10387 10388 /* loop through and set pending bit for all active UDP filters */ 10389 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10390 if (pf->udp_ports[i].port) 10391 pf->pending_udp_bitmap |= BIT_ULL(i); 10392 } 10393 10394 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 10395 } 10396 10397 /** 10398 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 10399 * @pf: board private structure 10400 **/ 10401 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 10402 { 10403 struct i40e_hw *hw = &pf->hw; 10404 u8 filter_index, type; 10405 u16 port; 10406 int i; 10407 10408 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 10409 return; 10410 10411 /* acquire RTNL to maintain state of flags and port requests */ 10412 rtnl_lock(); 10413 10414 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 10415 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 10416 struct i40e_udp_port_config *udp_port; 10417 i40e_status ret = 0; 10418 10419 udp_port = &pf->udp_ports[i]; 10420 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10421 10422 port = READ_ONCE(udp_port->port); 10423 type = READ_ONCE(udp_port->type); 10424 filter_index = READ_ONCE(udp_port->filter_index); 10425 10426 /* release RTNL while we wait on AQ command */ 10427 rtnl_unlock(); 10428 10429 if (port) 10430 ret = i40e_aq_add_udp_tunnel(hw, port, 10431 type, 10432 &filter_index, 10433 NULL); 10434 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 10435 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 10436 NULL); 10437 10438 /* reacquire RTNL so we can update filter_index */ 10439 rtnl_lock(); 10440 10441 if (ret) { 10442 dev_info(&pf->pdev->dev, 10443 "%s %s port %d, index %d failed, err %s aq_err %s\n", 10444 i40e_tunnel_name(type), 10445 port ? "add" : "delete", 10446 port, 10447 filter_index, 10448 i40e_stat_str(&pf->hw, ret), 10449 i40e_aq_str(&pf->hw, 10450 pf->hw.aq.asq_last_status)); 10451 if (port) { 10452 /* failed to add, just reset port, 10453 * drop pending bit for any deletion 10454 */ 10455 udp_port->port = 0; 10456 pf->pending_udp_bitmap &= ~BIT_ULL(i); 10457 } 10458 } else if (port) { 10459 /* record filter index on success */ 10460 udp_port->filter_index = filter_index; 10461 } 10462 } 10463 } 10464 10465 rtnl_unlock(); 10466 } 10467 10468 /** 10469 * i40e_service_task - Run the driver's async subtasks 10470 * @work: pointer to work_struct containing our data 10471 **/ 10472 static void i40e_service_task(struct work_struct *work) 10473 { 10474 struct i40e_pf *pf = container_of(work, 10475 struct i40e_pf, 10476 service_task); 10477 unsigned long start_time = jiffies; 10478 10479 /* don't bother with service tasks if a reset is in progress */ 10480 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10481 test_bit(__I40E_SUSPENDED, pf->state)) 10482 return; 10483 10484 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10485 return; 10486 10487 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10488 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10489 i40e_sync_filters_subtask(pf); 10490 i40e_reset_subtask(pf); 10491 i40e_handle_mdd_event(pf); 10492 i40e_vc_process_vflr_event(pf); 10493 i40e_watchdog_subtask(pf); 10494 i40e_fdir_reinit_subtask(pf); 10495 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10496 /* Client subtask will reopen next time through. */ 10497 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10498 true); 10499 } else { 10500 i40e_client_subtask(pf); 10501 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10502 pf->state)) 10503 i40e_notify_client_of_l2_param_changes( 10504 pf->vsi[pf->lan_vsi]); 10505 } 10506 i40e_sync_filters_subtask(pf); 10507 i40e_sync_udp_filters_subtask(pf); 10508 } else { 10509 i40e_reset_subtask(pf); 10510 } 10511 10512 i40e_clean_adminq_subtask(pf); 10513 10514 /* flush memory to make sure state is correct before next watchdog */ 10515 smp_mb__before_atomic(); 10516 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10517 10518 /* If the tasks have taken longer than one timer cycle or there 10519 * is more work to be done, reschedule the service task now 10520 * rather than wait for the timer to tick again. 10521 */ 10522 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10523 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10524 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10525 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10526 i40e_service_event_schedule(pf); 10527 } 10528 10529 /** 10530 * i40e_service_timer - timer callback 10531 * @data: pointer to PF struct 10532 **/ 10533 static void i40e_service_timer(struct timer_list *t) 10534 { 10535 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10536 10537 mod_timer(&pf->service_timer, 10538 round_jiffies(jiffies + pf->service_timer_period)); 10539 i40e_service_event_schedule(pf); 10540 } 10541 10542 /** 10543 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10544 * @vsi: the VSI being configured 10545 **/ 10546 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10547 { 10548 struct i40e_pf *pf = vsi->back; 10549 10550 switch (vsi->type) { 10551 case I40E_VSI_MAIN: 10552 vsi->alloc_queue_pairs = pf->num_lan_qps; 10553 if (!vsi->num_tx_desc) 10554 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10555 I40E_REQ_DESCRIPTOR_MULTIPLE); 10556 if (!vsi->num_rx_desc) 10557 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10558 I40E_REQ_DESCRIPTOR_MULTIPLE); 10559 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10560 vsi->num_q_vectors = pf->num_lan_msix; 10561 else 10562 vsi->num_q_vectors = 1; 10563 10564 break; 10565 10566 case I40E_VSI_FDIR: 10567 vsi->alloc_queue_pairs = 1; 10568 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10569 I40E_REQ_DESCRIPTOR_MULTIPLE); 10570 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 10571 I40E_REQ_DESCRIPTOR_MULTIPLE); 10572 vsi->num_q_vectors = pf->num_fdsb_msix; 10573 break; 10574 10575 case I40E_VSI_VMDQ2: 10576 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 10577 if (!vsi->num_tx_desc) 10578 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10579 I40E_REQ_DESCRIPTOR_MULTIPLE); 10580 if (!vsi->num_rx_desc) 10581 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10582 I40E_REQ_DESCRIPTOR_MULTIPLE); 10583 vsi->num_q_vectors = pf->num_vmdq_msix; 10584 break; 10585 10586 case I40E_VSI_SRIOV: 10587 vsi->alloc_queue_pairs = pf->num_vf_qps; 10588 if (!vsi->num_tx_desc) 10589 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10590 I40E_REQ_DESCRIPTOR_MULTIPLE); 10591 if (!vsi->num_rx_desc) 10592 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10593 I40E_REQ_DESCRIPTOR_MULTIPLE); 10594 break; 10595 10596 default: 10597 WARN_ON(1); 10598 return -ENODATA; 10599 } 10600 10601 return 0; 10602 } 10603 10604 /** 10605 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10606 * @vsi: VSI pointer 10607 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10608 * 10609 * On error: returns error code (negative) 10610 * On success: returns 0 10611 **/ 10612 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10613 { 10614 struct i40e_ring **next_rings; 10615 int size; 10616 int ret = 0; 10617 10618 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10619 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10620 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10621 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10622 if (!vsi->tx_rings) 10623 return -ENOMEM; 10624 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10625 if (i40e_enabled_xdp_vsi(vsi)) { 10626 vsi->xdp_rings = next_rings; 10627 next_rings += vsi->alloc_queue_pairs; 10628 } 10629 vsi->rx_rings = next_rings; 10630 10631 if (alloc_qvectors) { 10632 /* allocate memory for q_vector pointers */ 10633 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10634 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10635 if (!vsi->q_vectors) { 10636 ret = -ENOMEM; 10637 goto err_vectors; 10638 } 10639 } 10640 return ret; 10641 10642 err_vectors: 10643 kfree(vsi->tx_rings); 10644 return ret; 10645 } 10646 10647 /** 10648 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10649 * @pf: board private structure 10650 * @type: type of VSI 10651 * 10652 * On error: returns error code (negative) 10653 * On success: returns vsi index in PF (positive) 10654 **/ 10655 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10656 { 10657 int ret = -ENODEV; 10658 struct i40e_vsi *vsi; 10659 int vsi_idx; 10660 int i; 10661 10662 /* Need to protect the allocation of the VSIs at the PF level */ 10663 mutex_lock(&pf->switch_mutex); 10664 10665 /* VSI list may be fragmented if VSI creation/destruction has 10666 * been happening. We can afford to do a quick scan to look 10667 * for any free VSIs in the list. 10668 * 10669 * find next empty vsi slot, looping back around if necessary 10670 */ 10671 i = pf->next_vsi; 10672 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10673 i++; 10674 if (i >= pf->num_alloc_vsi) { 10675 i = 0; 10676 while (i < pf->next_vsi && pf->vsi[i]) 10677 i++; 10678 } 10679 10680 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10681 vsi_idx = i; /* Found one! */ 10682 } else { 10683 ret = -ENODEV; 10684 goto unlock_pf; /* out of VSI slots! */ 10685 } 10686 pf->next_vsi = ++i; 10687 10688 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10689 if (!vsi) { 10690 ret = -ENOMEM; 10691 goto unlock_pf; 10692 } 10693 vsi->type = type; 10694 vsi->back = pf; 10695 set_bit(__I40E_VSI_DOWN, vsi->state); 10696 vsi->flags = 0; 10697 vsi->idx = vsi_idx; 10698 vsi->int_rate_limit = 0; 10699 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10700 pf->rss_table_size : 64; 10701 vsi->netdev_registered = false; 10702 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10703 hash_init(vsi->mac_filter_hash); 10704 vsi->irqs_ready = false; 10705 10706 if (type == I40E_VSI_MAIN) { 10707 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 10708 if (!vsi->af_xdp_zc_qps) 10709 goto err_rings; 10710 } 10711 10712 ret = i40e_set_num_rings_in_vsi(vsi); 10713 if (ret) 10714 goto err_rings; 10715 10716 ret = i40e_vsi_alloc_arrays(vsi, true); 10717 if (ret) 10718 goto err_rings; 10719 10720 /* Setup default MSIX irq handler for VSI */ 10721 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10722 10723 /* Initialize VSI lock */ 10724 spin_lock_init(&vsi->mac_filter_hash_lock); 10725 pf->vsi[vsi_idx] = vsi; 10726 ret = vsi_idx; 10727 goto unlock_pf; 10728 10729 err_rings: 10730 bitmap_free(vsi->af_xdp_zc_qps); 10731 pf->next_vsi = i - 1; 10732 kfree(vsi); 10733 unlock_pf: 10734 mutex_unlock(&pf->switch_mutex); 10735 return ret; 10736 } 10737 10738 /** 10739 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10740 * @vsi: VSI pointer 10741 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10742 * 10743 * On error: returns error code (negative) 10744 * On success: returns 0 10745 **/ 10746 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10747 { 10748 /* free the ring and vector containers */ 10749 if (free_qvectors) { 10750 kfree(vsi->q_vectors); 10751 vsi->q_vectors = NULL; 10752 } 10753 kfree(vsi->tx_rings); 10754 vsi->tx_rings = NULL; 10755 vsi->rx_rings = NULL; 10756 vsi->xdp_rings = NULL; 10757 } 10758 10759 /** 10760 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10761 * and lookup table 10762 * @vsi: Pointer to VSI structure 10763 */ 10764 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10765 { 10766 if (!vsi) 10767 return; 10768 10769 kfree(vsi->rss_hkey_user); 10770 vsi->rss_hkey_user = NULL; 10771 10772 kfree(vsi->rss_lut_user); 10773 vsi->rss_lut_user = NULL; 10774 } 10775 10776 /** 10777 * i40e_vsi_clear - Deallocate the VSI provided 10778 * @vsi: the VSI being un-configured 10779 **/ 10780 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10781 { 10782 struct i40e_pf *pf; 10783 10784 if (!vsi) 10785 return 0; 10786 10787 if (!vsi->back) 10788 goto free_vsi; 10789 pf = vsi->back; 10790 10791 mutex_lock(&pf->switch_mutex); 10792 if (!pf->vsi[vsi->idx]) { 10793 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10794 vsi->idx, vsi->idx, vsi->type); 10795 goto unlock_vsi; 10796 } 10797 10798 if (pf->vsi[vsi->idx] != vsi) { 10799 dev_err(&pf->pdev->dev, 10800 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10801 pf->vsi[vsi->idx]->idx, 10802 pf->vsi[vsi->idx]->type, 10803 vsi->idx, vsi->type); 10804 goto unlock_vsi; 10805 } 10806 10807 /* updates the PF for this cleared vsi */ 10808 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10809 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10810 10811 bitmap_free(vsi->af_xdp_zc_qps); 10812 i40e_vsi_free_arrays(vsi, true); 10813 i40e_clear_rss_config_user(vsi); 10814 10815 pf->vsi[vsi->idx] = NULL; 10816 if (vsi->idx < pf->next_vsi) 10817 pf->next_vsi = vsi->idx; 10818 10819 unlock_vsi: 10820 mutex_unlock(&pf->switch_mutex); 10821 free_vsi: 10822 kfree(vsi); 10823 10824 return 0; 10825 } 10826 10827 /** 10828 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10829 * @vsi: the VSI being cleaned 10830 **/ 10831 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10832 { 10833 int i; 10834 10835 if (vsi->tx_rings && vsi->tx_rings[0]) { 10836 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10837 kfree_rcu(vsi->tx_rings[i], rcu); 10838 vsi->tx_rings[i] = NULL; 10839 vsi->rx_rings[i] = NULL; 10840 if (vsi->xdp_rings) 10841 vsi->xdp_rings[i] = NULL; 10842 } 10843 } 10844 } 10845 10846 /** 10847 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10848 * @vsi: the VSI being configured 10849 **/ 10850 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10851 { 10852 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10853 struct i40e_pf *pf = vsi->back; 10854 struct i40e_ring *ring; 10855 10856 /* Set basic values in the rings to be used later during open() */ 10857 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10858 /* allocate space for both Tx and Rx in one shot */ 10859 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10860 if (!ring) 10861 goto err_out; 10862 10863 ring->queue_index = i; 10864 ring->reg_idx = vsi->base_queue + i; 10865 ring->ring_active = false; 10866 ring->vsi = vsi; 10867 ring->netdev = vsi->netdev; 10868 ring->dev = &pf->pdev->dev; 10869 ring->count = vsi->num_tx_desc; 10870 ring->size = 0; 10871 ring->dcb_tc = 0; 10872 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10873 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10874 ring->itr_setting = pf->tx_itr_default; 10875 vsi->tx_rings[i] = ring++; 10876 10877 if (!i40e_enabled_xdp_vsi(vsi)) 10878 goto setup_rx; 10879 10880 ring->queue_index = vsi->alloc_queue_pairs + i; 10881 ring->reg_idx = vsi->base_queue + ring->queue_index; 10882 ring->ring_active = false; 10883 ring->vsi = vsi; 10884 ring->netdev = NULL; 10885 ring->dev = &pf->pdev->dev; 10886 ring->count = vsi->num_tx_desc; 10887 ring->size = 0; 10888 ring->dcb_tc = 0; 10889 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10890 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10891 set_ring_xdp(ring); 10892 ring->itr_setting = pf->tx_itr_default; 10893 vsi->xdp_rings[i] = ring++; 10894 10895 setup_rx: 10896 ring->queue_index = i; 10897 ring->reg_idx = vsi->base_queue + i; 10898 ring->ring_active = false; 10899 ring->vsi = vsi; 10900 ring->netdev = vsi->netdev; 10901 ring->dev = &pf->pdev->dev; 10902 ring->count = vsi->num_rx_desc; 10903 ring->size = 0; 10904 ring->dcb_tc = 0; 10905 ring->itr_setting = pf->rx_itr_default; 10906 vsi->rx_rings[i] = ring; 10907 } 10908 10909 return 0; 10910 10911 err_out: 10912 i40e_vsi_clear_rings(vsi); 10913 return -ENOMEM; 10914 } 10915 10916 /** 10917 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10918 * @pf: board private structure 10919 * @vectors: the number of MSI-X vectors to request 10920 * 10921 * Returns the number of vectors reserved, or error 10922 **/ 10923 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10924 { 10925 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10926 I40E_MIN_MSIX, vectors); 10927 if (vectors < 0) { 10928 dev_info(&pf->pdev->dev, 10929 "MSI-X vector reservation failed: %d\n", vectors); 10930 vectors = 0; 10931 } 10932 10933 return vectors; 10934 } 10935 10936 /** 10937 * i40e_init_msix - Setup the MSIX capability 10938 * @pf: board private structure 10939 * 10940 * Work with the OS to set up the MSIX vectors needed. 10941 * 10942 * Returns the number of vectors reserved or negative on failure 10943 **/ 10944 static int i40e_init_msix(struct i40e_pf *pf) 10945 { 10946 struct i40e_hw *hw = &pf->hw; 10947 int cpus, extra_vectors; 10948 int vectors_left; 10949 int v_budget, i; 10950 int v_actual; 10951 int iwarp_requested = 0; 10952 10953 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10954 return -ENODEV; 10955 10956 /* The number of vectors we'll request will be comprised of: 10957 * - Add 1 for "other" cause for Admin Queue events, etc. 10958 * - The number of LAN queue pairs 10959 * - Queues being used for RSS. 10960 * We don't need as many as max_rss_size vectors. 10961 * use rss_size instead in the calculation since that 10962 * is governed by number of cpus in the system. 10963 * - assumes symmetric Tx/Rx pairing 10964 * - The number of VMDq pairs 10965 * - The CPU count within the NUMA node if iWARP is enabled 10966 * Once we count this up, try the request. 10967 * 10968 * If we can't get what we want, we'll simplify to nearly nothing 10969 * and try again. If that still fails, we punt. 10970 */ 10971 vectors_left = hw->func_caps.num_msix_vectors; 10972 v_budget = 0; 10973 10974 /* reserve one vector for miscellaneous handler */ 10975 if (vectors_left) { 10976 v_budget++; 10977 vectors_left--; 10978 } 10979 10980 /* reserve some vectors for the main PF traffic queues. Initially we 10981 * only reserve at most 50% of the available vectors, in the case that 10982 * the number of online CPUs is large. This ensures that we can enable 10983 * extra features as well. Once we've enabled the other features, we 10984 * will use any remaining vectors to reach as close as we can to the 10985 * number of online CPUs. 10986 */ 10987 cpus = num_online_cpus(); 10988 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10989 vectors_left -= pf->num_lan_msix; 10990 10991 /* reserve one vector for sideband flow director */ 10992 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10993 if (vectors_left) { 10994 pf->num_fdsb_msix = 1; 10995 v_budget++; 10996 vectors_left--; 10997 } else { 10998 pf->num_fdsb_msix = 0; 10999 } 11000 } 11001 11002 /* can we reserve enough for iWARP? */ 11003 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11004 iwarp_requested = pf->num_iwarp_msix; 11005 11006 if (!vectors_left) 11007 pf->num_iwarp_msix = 0; 11008 else if (vectors_left < pf->num_iwarp_msix) 11009 pf->num_iwarp_msix = 1; 11010 v_budget += pf->num_iwarp_msix; 11011 vectors_left -= pf->num_iwarp_msix; 11012 } 11013 11014 /* any vectors left over go for VMDq support */ 11015 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11016 if (!vectors_left) { 11017 pf->num_vmdq_msix = 0; 11018 pf->num_vmdq_qps = 0; 11019 } else { 11020 int vmdq_vecs_wanted = 11021 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11022 int vmdq_vecs = 11023 min_t(int, vectors_left, vmdq_vecs_wanted); 11024 11025 /* if we're short on vectors for what's desired, we limit 11026 * the queues per vmdq. If this is still more than are 11027 * available, the user will need to change the number of 11028 * queues/vectors used by the PF later with the ethtool 11029 * channels command 11030 */ 11031 if (vectors_left < vmdq_vecs_wanted) { 11032 pf->num_vmdq_qps = 1; 11033 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11034 vmdq_vecs = min_t(int, 11035 vectors_left, 11036 vmdq_vecs_wanted); 11037 } 11038 pf->num_vmdq_msix = pf->num_vmdq_qps; 11039 11040 v_budget += vmdq_vecs; 11041 vectors_left -= vmdq_vecs; 11042 } 11043 } 11044 11045 /* On systems with a large number of SMP cores, we previously limited 11046 * the number of vectors for num_lan_msix to be at most 50% of the 11047 * available vectors, to allow for other features. Now, we add back 11048 * the remaining vectors. However, we ensure that the total 11049 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11050 * calculate the number of vectors we can add without going over the 11051 * cap of CPUs. For systems with a small number of CPUs this will be 11052 * zero. 11053 */ 11054 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11055 pf->num_lan_msix += extra_vectors; 11056 vectors_left -= extra_vectors; 11057 11058 WARN(vectors_left < 0, 11059 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11060 11061 v_budget += pf->num_lan_msix; 11062 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11063 GFP_KERNEL); 11064 if (!pf->msix_entries) 11065 return -ENOMEM; 11066 11067 for (i = 0; i < v_budget; i++) 11068 pf->msix_entries[i].entry = i; 11069 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11070 11071 if (v_actual < I40E_MIN_MSIX) { 11072 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11073 kfree(pf->msix_entries); 11074 pf->msix_entries = NULL; 11075 pci_disable_msix(pf->pdev); 11076 return -ENODEV; 11077 11078 } else if (v_actual == I40E_MIN_MSIX) { 11079 /* Adjust for minimal MSIX use */ 11080 pf->num_vmdq_vsis = 0; 11081 pf->num_vmdq_qps = 0; 11082 pf->num_lan_qps = 1; 11083 pf->num_lan_msix = 1; 11084 11085 } else if (v_actual != v_budget) { 11086 /* If we have limited resources, we will start with no vectors 11087 * for the special features and then allocate vectors to some 11088 * of these features based on the policy and at the end disable 11089 * the features that did not get any vectors. 11090 */ 11091 int vec; 11092 11093 dev_info(&pf->pdev->dev, 11094 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11095 v_actual, v_budget); 11096 /* reserve the misc vector */ 11097 vec = v_actual - 1; 11098 11099 /* Scale vector usage down */ 11100 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11101 pf->num_vmdq_vsis = 1; 11102 pf->num_vmdq_qps = 1; 11103 11104 /* partition out the remaining vectors */ 11105 switch (vec) { 11106 case 2: 11107 pf->num_lan_msix = 1; 11108 break; 11109 case 3: 11110 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11111 pf->num_lan_msix = 1; 11112 pf->num_iwarp_msix = 1; 11113 } else { 11114 pf->num_lan_msix = 2; 11115 } 11116 break; 11117 default: 11118 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11119 pf->num_iwarp_msix = min_t(int, (vec / 3), 11120 iwarp_requested); 11121 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11122 I40E_DEFAULT_NUM_VMDQ_VSI); 11123 } else { 11124 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11125 I40E_DEFAULT_NUM_VMDQ_VSI); 11126 } 11127 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11128 pf->num_fdsb_msix = 1; 11129 vec--; 11130 } 11131 pf->num_lan_msix = min_t(int, 11132 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11133 pf->num_lan_msix); 11134 pf->num_lan_qps = pf->num_lan_msix; 11135 break; 11136 } 11137 } 11138 11139 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11140 (pf->num_fdsb_msix == 0)) { 11141 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11142 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11143 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11144 } 11145 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11146 (pf->num_vmdq_msix == 0)) { 11147 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11148 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11149 } 11150 11151 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11152 (pf->num_iwarp_msix == 0)) { 11153 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11154 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11155 } 11156 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11157 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11158 pf->num_lan_msix, 11159 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11160 pf->num_fdsb_msix, 11161 pf->num_iwarp_msix); 11162 11163 return v_actual; 11164 } 11165 11166 /** 11167 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11168 * @vsi: the VSI being configured 11169 * @v_idx: index of the vector in the vsi struct 11170 * @cpu: cpu to be used on affinity_mask 11171 * 11172 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11173 **/ 11174 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 11175 { 11176 struct i40e_q_vector *q_vector; 11177 11178 /* allocate q_vector */ 11179 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11180 if (!q_vector) 11181 return -ENOMEM; 11182 11183 q_vector->vsi = vsi; 11184 q_vector->v_idx = v_idx; 11185 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11186 11187 if (vsi->netdev) 11188 netif_napi_add(vsi->netdev, &q_vector->napi, 11189 i40e_napi_poll, NAPI_POLL_WEIGHT); 11190 11191 /* tie q_vector and vsi together */ 11192 vsi->q_vectors[v_idx] = q_vector; 11193 11194 return 0; 11195 } 11196 11197 /** 11198 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11199 * @vsi: the VSI being configured 11200 * 11201 * We allocate one q_vector per queue interrupt. If allocation fails we 11202 * return -ENOMEM. 11203 **/ 11204 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11205 { 11206 struct i40e_pf *pf = vsi->back; 11207 int err, v_idx, num_q_vectors, current_cpu; 11208 11209 /* if not MSIX, give the one vector only to the LAN VSI */ 11210 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11211 num_q_vectors = vsi->num_q_vectors; 11212 else if (vsi == pf->vsi[pf->lan_vsi]) 11213 num_q_vectors = 1; 11214 else 11215 return -EINVAL; 11216 11217 current_cpu = cpumask_first(cpu_online_mask); 11218 11219 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11220 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 11221 if (err) 11222 goto err_out; 11223 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 11224 if (unlikely(current_cpu >= nr_cpu_ids)) 11225 current_cpu = cpumask_first(cpu_online_mask); 11226 } 11227 11228 return 0; 11229 11230 err_out: 11231 while (v_idx--) 11232 i40e_free_q_vector(vsi, v_idx); 11233 11234 return err; 11235 } 11236 11237 /** 11238 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11239 * @pf: board private structure to initialize 11240 **/ 11241 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11242 { 11243 int vectors = 0; 11244 ssize_t size; 11245 11246 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11247 vectors = i40e_init_msix(pf); 11248 if (vectors < 0) { 11249 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11250 I40E_FLAG_IWARP_ENABLED | 11251 I40E_FLAG_RSS_ENABLED | 11252 I40E_FLAG_DCB_CAPABLE | 11253 I40E_FLAG_DCB_ENABLED | 11254 I40E_FLAG_SRIOV_ENABLED | 11255 I40E_FLAG_FD_SB_ENABLED | 11256 I40E_FLAG_FD_ATR_ENABLED | 11257 I40E_FLAG_VMDQ_ENABLED); 11258 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11259 11260 /* rework the queue expectations without MSIX */ 11261 i40e_determine_queue_usage(pf); 11262 } 11263 } 11264 11265 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11266 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11267 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11268 vectors = pci_enable_msi(pf->pdev); 11269 if (vectors < 0) { 11270 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11271 vectors); 11272 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11273 } 11274 vectors = 1; /* one MSI or Legacy vector */ 11275 } 11276 11277 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11278 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11279 11280 /* set up vector assignment tracking */ 11281 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11282 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11283 if (!pf->irq_pile) 11284 return -ENOMEM; 11285 11286 pf->irq_pile->num_entries = vectors; 11287 pf->irq_pile->search_hint = 0; 11288 11289 /* track first vector for misc interrupts, ignore return */ 11290 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11291 11292 return 0; 11293 } 11294 11295 /** 11296 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11297 * @pf: private board data structure 11298 * 11299 * Restore the interrupt scheme that was cleared when we suspended the 11300 * device. This should be called during resume to re-allocate the q_vectors 11301 * and reacquire IRQs. 11302 */ 11303 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11304 { 11305 int err, i; 11306 11307 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11308 * scheme. We need to re-enabled them here in order to attempt to 11309 * re-acquire the MSI or MSI-X vectors 11310 */ 11311 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11312 11313 err = i40e_init_interrupt_scheme(pf); 11314 if (err) 11315 return err; 11316 11317 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11318 * rings together again. 11319 */ 11320 for (i = 0; i < pf->num_alloc_vsi; i++) { 11321 if (pf->vsi[i]) { 11322 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11323 if (err) 11324 goto err_unwind; 11325 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11326 } 11327 } 11328 11329 err = i40e_setup_misc_vector(pf); 11330 if (err) 11331 goto err_unwind; 11332 11333 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11334 i40e_client_update_msix_info(pf); 11335 11336 return 0; 11337 11338 err_unwind: 11339 while (i--) { 11340 if (pf->vsi[i]) 11341 i40e_vsi_free_q_vectors(pf->vsi[i]); 11342 } 11343 11344 return err; 11345 } 11346 11347 /** 11348 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11349 * non queue events in recovery mode 11350 * @pf: board private structure 11351 * 11352 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11353 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11354 * This is handled differently than in recovery mode since no Tx/Rx resources 11355 * are being allocated. 11356 **/ 11357 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11358 { 11359 int err; 11360 11361 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11362 err = i40e_setup_misc_vector(pf); 11363 11364 if (err) { 11365 dev_info(&pf->pdev->dev, 11366 "MSI-X misc vector request failed, error %d\n", 11367 err); 11368 return err; 11369 } 11370 } else { 11371 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11372 11373 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11374 pf->int_name, pf); 11375 11376 if (err) { 11377 dev_info(&pf->pdev->dev, 11378 "MSI/legacy misc vector request failed, error %d\n", 11379 err); 11380 return err; 11381 } 11382 i40e_enable_misc_int_causes(pf); 11383 i40e_irq_dynamic_enable_icr0(pf); 11384 } 11385 11386 return 0; 11387 } 11388 11389 /** 11390 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11391 * @pf: board private structure 11392 * 11393 * This sets up the handler for MSIX 0, which is used to manage the 11394 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11395 * when in MSI or Legacy interrupt mode. 11396 **/ 11397 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11398 { 11399 struct i40e_hw *hw = &pf->hw; 11400 int err = 0; 11401 11402 /* Only request the IRQ once, the first time through. */ 11403 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11404 err = request_irq(pf->msix_entries[0].vector, 11405 i40e_intr, 0, pf->int_name, pf); 11406 if (err) { 11407 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11408 dev_info(&pf->pdev->dev, 11409 "request_irq for %s failed: %d\n", 11410 pf->int_name, err); 11411 return -EFAULT; 11412 } 11413 } 11414 11415 i40e_enable_misc_int_causes(pf); 11416 11417 /* associate no queues to the misc vector */ 11418 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11419 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11420 11421 i40e_flush(hw); 11422 11423 i40e_irq_dynamic_enable_icr0(pf); 11424 11425 return err; 11426 } 11427 11428 /** 11429 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11430 * @vsi: Pointer to vsi structure 11431 * @seed: Buffter to store the hash keys 11432 * @lut: Buffer to store the lookup table entries 11433 * @lut_size: Size of buffer to store the lookup table entries 11434 * 11435 * Return 0 on success, negative on failure 11436 */ 11437 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11438 u8 *lut, u16 lut_size) 11439 { 11440 struct i40e_pf *pf = vsi->back; 11441 struct i40e_hw *hw = &pf->hw; 11442 int ret = 0; 11443 11444 if (seed) { 11445 ret = i40e_aq_get_rss_key(hw, vsi->id, 11446 (struct i40e_aqc_get_set_rss_key_data *)seed); 11447 if (ret) { 11448 dev_info(&pf->pdev->dev, 11449 "Cannot get RSS key, err %s aq_err %s\n", 11450 i40e_stat_str(&pf->hw, ret), 11451 i40e_aq_str(&pf->hw, 11452 pf->hw.aq.asq_last_status)); 11453 return ret; 11454 } 11455 } 11456 11457 if (lut) { 11458 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 11459 11460 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11461 if (ret) { 11462 dev_info(&pf->pdev->dev, 11463 "Cannot get RSS lut, err %s aq_err %s\n", 11464 i40e_stat_str(&pf->hw, ret), 11465 i40e_aq_str(&pf->hw, 11466 pf->hw.aq.asq_last_status)); 11467 return ret; 11468 } 11469 } 11470 11471 return ret; 11472 } 11473 11474 /** 11475 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11476 * @vsi: Pointer to vsi structure 11477 * @seed: RSS hash seed 11478 * @lut: Lookup table 11479 * @lut_size: Lookup table size 11480 * 11481 * Returns 0 on success, negative on failure 11482 **/ 11483 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11484 const u8 *lut, u16 lut_size) 11485 { 11486 struct i40e_pf *pf = vsi->back; 11487 struct i40e_hw *hw = &pf->hw; 11488 u16 vf_id = vsi->vf_id; 11489 u8 i; 11490 11491 /* Fill out hash function seed */ 11492 if (seed) { 11493 u32 *seed_dw = (u32 *)seed; 11494 11495 if (vsi->type == I40E_VSI_MAIN) { 11496 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11497 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11498 } else if (vsi->type == I40E_VSI_SRIOV) { 11499 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11500 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11501 } else { 11502 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11503 } 11504 } 11505 11506 if (lut) { 11507 u32 *lut_dw = (u32 *)lut; 11508 11509 if (vsi->type == I40E_VSI_MAIN) { 11510 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11511 return -EINVAL; 11512 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11513 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11514 } else if (vsi->type == I40E_VSI_SRIOV) { 11515 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11516 return -EINVAL; 11517 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11518 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11519 } else { 11520 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11521 } 11522 } 11523 i40e_flush(hw); 11524 11525 return 0; 11526 } 11527 11528 /** 11529 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11530 * @vsi: Pointer to VSI structure 11531 * @seed: Buffer to store the keys 11532 * @lut: Buffer to store the lookup table entries 11533 * @lut_size: Size of buffer to store the lookup table entries 11534 * 11535 * Returns 0 on success, negative on failure 11536 */ 11537 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11538 u8 *lut, u16 lut_size) 11539 { 11540 struct i40e_pf *pf = vsi->back; 11541 struct i40e_hw *hw = &pf->hw; 11542 u16 i; 11543 11544 if (seed) { 11545 u32 *seed_dw = (u32 *)seed; 11546 11547 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11548 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11549 } 11550 if (lut) { 11551 u32 *lut_dw = (u32 *)lut; 11552 11553 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11554 return -EINVAL; 11555 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11556 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11557 } 11558 11559 return 0; 11560 } 11561 11562 /** 11563 * i40e_config_rss - Configure RSS keys and lut 11564 * @vsi: Pointer to VSI structure 11565 * @seed: RSS hash seed 11566 * @lut: Lookup table 11567 * @lut_size: Lookup table size 11568 * 11569 * Returns 0 on success, negative on failure 11570 */ 11571 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11572 { 11573 struct i40e_pf *pf = vsi->back; 11574 11575 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11576 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 11577 else 11578 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 11579 } 11580 11581 /** 11582 * i40e_get_rss - Get RSS keys and lut 11583 * @vsi: Pointer to VSI structure 11584 * @seed: Buffer to store the keys 11585 * @lut: Buffer to store the lookup table entries 11586 * @lut_size: Size of buffer to store the lookup table entries 11587 * 11588 * Returns 0 on success, negative on failure 11589 */ 11590 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 11591 { 11592 struct i40e_pf *pf = vsi->back; 11593 11594 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 11595 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 11596 else 11597 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 11598 } 11599 11600 /** 11601 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 11602 * @pf: Pointer to board private structure 11603 * @lut: Lookup table 11604 * @rss_table_size: Lookup table size 11605 * @rss_size: Range of queue number for hashing 11606 */ 11607 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 11608 u16 rss_table_size, u16 rss_size) 11609 { 11610 u16 i; 11611 11612 for (i = 0; i < rss_table_size; i++) 11613 lut[i] = i % rss_size; 11614 } 11615 11616 /** 11617 * i40e_pf_config_rss - Prepare for RSS if used 11618 * @pf: board private structure 11619 **/ 11620 static int i40e_pf_config_rss(struct i40e_pf *pf) 11621 { 11622 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11623 u8 seed[I40E_HKEY_ARRAY_SIZE]; 11624 u8 *lut; 11625 struct i40e_hw *hw = &pf->hw; 11626 u32 reg_val; 11627 u64 hena; 11628 int ret; 11629 11630 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 11631 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 11632 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 11633 hena |= i40e_pf_get_default_rss_hena(pf); 11634 11635 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 11636 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 11637 11638 /* Determine the RSS table size based on the hardware capabilities */ 11639 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 11640 reg_val = (pf->rss_table_size == 512) ? 11641 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 11642 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 11643 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 11644 11645 /* Determine the RSS size of the VSI */ 11646 if (!vsi->rss_size) { 11647 u16 qcount; 11648 /* If the firmware does something weird during VSI init, we 11649 * could end up with zero TCs. Check for that to avoid 11650 * divide-by-zero. It probably won't pass traffic, but it also 11651 * won't panic. 11652 */ 11653 qcount = vsi->num_queue_pairs / 11654 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11655 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11656 } 11657 if (!vsi->rss_size) 11658 return -EINVAL; 11659 11660 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11661 if (!lut) 11662 return -ENOMEM; 11663 11664 /* Use user configured lut if there is one, otherwise use default */ 11665 if (vsi->rss_lut_user) 11666 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11667 else 11668 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11669 11670 /* Use user configured hash key if there is one, otherwise 11671 * use default. 11672 */ 11673 if (vsi->rss_hkey_user) 11674 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11675 else 11676 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11677 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11678 kfree(lut); 11679 11680 return ret; 11681 } 11682 11683 /** 11684 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11685 * @pf: board private structure 11686 * @queue_count: the requested queue count for rss. 11687 * 11688 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11689 * count which may be different from the requested queue count. 11690 * Note: expects to be called while under rtnl_lock() 11691 **/ 11692 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11693 { 11694 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11695 int new_rss_size; 11696 11697 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11698 return 0; 11699 11700 queue_count = min_t(int, queue_count, num_online_cpus()); 11701 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11702 11703 if (queue_count != vsi->num_queue_pairs) { 11704 u16 qcount; 11705 11706 vsi->req_queue_pairs = queue_count; 11707 i40e_prep_for_reset(pf, true); 11708 11709 pf->alloc_rss_size = new_rss_size; 11710 11711 i40e_reset_and_rebuild(pf, true, true); 11712 11713 /* Discard the user configured hash keys and lut, if less 11714 * queues are enabled. 11715 */ 11716 if (queue_count < vsi->rss_size) { 11717 i40e_clear_rss_config_user(vsi); 11718 dev_dbg(&pf->pdev->dev, 11719 "discard user configured hash keys and lut\n"); 11720 } 11721 11722 /* Reset vsi->rss_size, as number of enabled queues changed */ 11723 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11724 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11725 11726 i40e_pf_config_rss(pf); 11727 } 11728 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11729 vsi->req_queue_pairs, pf->rss_size_max); 11730 return pf->alloc_rss_size; 11731 } 11732 11733 /** 11734 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11735 * @pf: board private structure 11736 **/ 11737 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11738 { 11739 i40e_status status; 11740 bool min_valid, max_valid; 11741 u32 max_bw, min_bw; 11742 11743 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11744 &min_valid, &max_valid); 11745 11746 if (!status) { 11747 if (min_valid) 11748 pf->min_bw = min_bw; 11749 if (max_valid) 11750 pf->max_bw = max_bw; 11751 } 11752 11753 return status; 11754 } 11755 11756 /** 11757 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11758 * @pf: board private structure 11759 **/ 11760 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11761 { 11762 struct i40e_aqc_configure_partition_bw_data bw_data; 11763 i40e_status status; 11764 11765 /* Set the valid bit for this PF */ 11766 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11767 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11768 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11769 11770 /* Set the new bandwidths */ 11771 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11772 11773 return status; 11774 } 11775 11776 /** 11777 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11778 * @pf: board private structure 11779 **/ 11780 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11781 { 11782 /* Commit temporary BW setting to permanent NVM image */ 11783 enum i40e_admin_queue_err last_aq_status; 11784 i40e_status ret; 11785 u16 nvm_word; 11786 11787 if (pf->hw.partition_id != 1) { 11788 dev_info(&pf->pdev->dev, 11789 "Commit BW only works on partition 1! This is partition %d", 11790 pf->hw.partition_id); 11791 ret = I40E_NOT_SUPPORTED; 11792 goto bw_commit_out; 11793 } 11794 11795 /* Acquire NVM for read access */ 11796 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11797 last_aq_status = pf->hw.aq.asq_last_status; 11798 if (ret) { 11799 dev_info(&pf->pdev->dev, 11800 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11801 i40e_stat_str(&pf->hw, ret), 11802 i40e_aq_str(&pf->hw, last_aq_status)); 11803 goto bw_commit_out; 11804 } 11805 11806 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11807 ret = i40e_aq_read_nvm(&pf->hw, 11808 I40E_SR_NVM_CONTROL_WORD, 11809 0x10, sizeof(nvm_word), &nvm_word, 11810 false, NULL); 11811 /* Save off last admin queue command status before releasing 11812 * the NVM 11813 */ 11814 last_aq_status = pf->hw.aq.asq_last_status; 11815 i40e_release_nvm(&pf->hw); 11816 if (ret) { 11817 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11818 i40e_stat_str(&pf->hw, ret), 11819 i40e_aq_str(&pf->hw, last_aq_status)); 11820 goto bw_commit_out; 11821 } 11822 11823 /* Wait a bit for NVM release to complete */ 11824 msleep(50); 11825 11826 /* Acquire NVM for write access */ 11827 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11828 last_aq_status = pf->hw.aq.asq_last_status; 11829 if (ret) { 11830 dev_info(&pf->pdev->dev, 11831 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11832 i40e_stat_str(&pf->hw, ret), 11833 i40e_aq_str(&pf->hw, last_aq_status)); 11834 goto bw_commit_out; 11835 } 11836 /* Write it back out unchanged to initiate update NVM, 11837 * which will force a write of the shadow (alt) RAM to 11838 * the NVM - thus storing the bandwidth values permanently. 11839 */ 11840 ret = i40e_aq_update_nvm(&pf->hw, 11841 I40E_SR_NVM_CONTROL_WORD, 11842 0x10, sizeof(nvm_word), 11843 &nvm_word, true, 0, NULL); 11844 /* Save off last admin queue command status before releasing 11845 * the NVM 11846 */ 11847 last_aq_status = pf->hw.aq.asq_last_status; 11848 i40e_release_nvm(&pf->hw); 11849 if (ret) 11850 dev_info(&pf->pdev->dev, 11851 "BW settings NOT SAVED, err %s aq_err %s\n", 11852 i40e_stat_str(&pf->hw, ret), 11853 i40e_aq_str(&pf->hw, last_aq_status)); 11854 bw_commit_out: 11855 11856 return ret; 11857 } 11858 11859 /** 11860 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11861 * @pf: board private structure to initialize 11862 * 11863 * i40e_sw_init initializes the Adapter private data structure. 11864 * Fields are initialized based on PCI device information and 11865 * OS network device settings (MTU size). 11866 **/ 11867 static int i40e_sw_init(struct i40e_pf *pf) 11868 { 11869 int err = 0; 11870 int size; 11871 11872 /* Set default capability flags */ 11873 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11874 I40E_FLAG_MSI_ENABLED | 11875 I40E_FLAG_MSIX_ENABLED; 11876 11877 /* Set default ITR */ 11878 pf->rx_itr_default = I40E_ITR_RX_DEF; 11879 pf->tx_itr_default = I40E_ITR_TX_DEF; 11880 11881 /* Depending on PF configurations, it is possible that the RSS 11882 * maximum might end up larger than the available queues 11883 */ 11884 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11885 pf->alloc_rss_size = 1; 11886 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11887 pf->rss_size_max = min_t(int, pf->rss_size_max, 11888 pf->hw.func_caps.num_tx_qp); 11889 if (pf->hw.func_caps.rss) { 11890 pf->flags |= I40E_FLAG_RSS_ENABLED; 11891 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11892 num_online_cpus()); 11893 } 11894 11895 /* MFP mode enabled */ 11896 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11897 pf->flags |= I40E_FLAG_MFP_ENABLED; 11898 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11899 if (i40e_get_partition_bw_setting(pf)) { 11900 dev_warn(&pf->pdev->dev, 11901 "Could not get partition bw settings\n"); 11902 } else { 11903 dev_info(&pf->pdev->dev, 11904 "Partition BW Min = %8.8x, Max = %8.8x\n", 11905 pf->min_bw, pf->max_bw); 11906 11907 /* nudge the Tx scheduler */ 11908 i40e_set_partition_bw_setting(pf); 11909 } 11910 } 11911 11912 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11913 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11914 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11915 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11916 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11917 pf->hw.num_partitions > 1) 11918 dev_info(&pf->pdev->dev, 11919 "Flow Director Sideband mode Disabled in MFP mode\n"); 11920 else 11921 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11922 pf->fdir_pf_filter_count = 11923 pf->hw.func_caps.fd_filters_guaranteed; 11924 pf->hw.fdir_shared_filter_count = 11925 pf->hw.func_caps.fd_filters_best_effort; 11926 } 11927 11928 if (pf->hw.mac.type == I40E_MAC_X722) { 11929 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11930 I40E_HW_128_QP_RSS_CAPABLE | 11931 I40E_HW_ATR_EVICT_CAPABLE | 11932 I40E_HW_WB_ON_ITR_CAPABLE | 11933 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11934 I40E_HW_NO_PCI_LINK_CHECK | 11935 I40E_HW_USE_SET_LLDP_MIB | 11936 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11937 I40E_HW_PTP_L4_CAPABLE | 11938 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11939 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11940 11941 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11942 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11943 I40E_FDEVICT_PCTYPE_DEFAULT) { 11944 dev_warn(&pf->pdev->dev, 11945 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11946 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11947 } 11948 } else if ((pf->hw.aq.api_maj_ver > 1) || 11949 ((pf->hw.aq.api_maj_ver == 1) && 11950 (pf->hw.aq.api_min_ver > 4))) { 11951 /* Supported in FW API version higher than 1.4 */ 11952 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11953 } 11954 11955 /* Enable HW ATR eviction if possible */ 11956 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11957 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11958 11959 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11960 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11961 (pf->hw.aq.fw_maj_ver < 4))) { 11962 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11963 /* No DCB support for FW < v4.33 */ 11964 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11965 } 11966 11967 /* Disable FW LLDP if FW < v4.3 */ 11968 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11969 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11970 (pf->hw.aq.fw_maj_ver < 4))) 11971 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11972 11973 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11974 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11975 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11976 (pf->hw.aq.fw_maj_ver >= 5))) 11977 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11978 11979 /* Enable PTP L4 if FW > v6.0 */ 11980 if (pf->hw.mac.type == I40E_MAC_XL710 && 11981 pf->hw.aq.fw_maj_ver >= 6) 11982 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11983 11984 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11985 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11986 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11987 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11988 } 11989 11990 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11991 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11992 /* IWARP needs one extra vector for CQP just like MISC.*/ 11993 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11994 } 11995 /* Stopping FW LLDP engine is supported on XL710 and X722 11996 * starting from FW versions determined in i40e_init_adminq. 11997 * Stopping the FW LLDP engine is not supported on XL710 11998 * if NPAR is functioning so unset this hw flag in this case. 11999 */ 12000 if (pf->hw.mac.type == I40E_MAC_XL710 && 12001 pf->hw.func_caps.npar_enable && 12002 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12003 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12004 12005 #ifdef CONFIG_PCI_IOV 12006 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12007 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12008 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12009 pf->num_req_vfs = min_t(int, 12010 pf->hw.func_caps.num_vfs, 12011 I40E_MAX_VF_COUNT); 12012 } 12013 #endif /* CONFIG_PCI_IOV */ 12014 pf->eeprom_version = 0xDEAD; 12015 pf->lan_veb = I40E_NO_VEB; 12016 pf->lan_vsi = I40E_NO_VSI; 12017 12018 /* By default FW has this off for performance reasons */ 12019 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12020 12021 /* set up queue assignment tracking */ 12022 size = sizeof(struct i40e_lump_tracking) 12023 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12024 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12025 if (!pf->qp_pile) { 12026 err = -ENOMEM; 12027 goto sw_init_done; 12028 } 12029 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12030 pf->qp_pile->search_hint = 0; 12031 12032 pf->tx_timeout_recovery_level = 1; 12033 12034 mutex_init(&pf->switch_mutex); 12035 12036 sw_init_done: 12037 return err; 12038 } 12039 12040 /** 12041 * i40e_set_ntuple - set the ntuple feature flag and take action 12042 * @pf: board private structure to initialize 12043 * @features: the feature set that the stack is suggesting 12044 * 12045 * returns a bool to indicate if reset needs to happen 12046 **/ 12047 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12048 { 12049 bool need_reset = false; 12050 12051 /* Check if Flow Director n-tuple support was enabled or disabled. If 12052 * the state changed, we need to reset. 12053 */ 12054 if (features & NETIF_F_NTUPLE) { 12055 /* Enable filters and mark for reset */ 12056 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12057 need_reset = true; 12058 /* enable FD_SB only if there is MSI-X vector and no cloud 12059 * filters exist 12060 */ 12061 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12062 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12063 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12064 } 12065 } else { 12066 /* turn off filters, mark for reset and clear SW filter list */ 12067 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12068 need_reset = true; 12069 i40e_fdir_filter_exit(pf); 12070 } 12071 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12072 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12073 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12074 12075 /* reset fd counters */ 12076 pf->fd_add_err = 0; 12077 pf->fd_atr_cnt = 0; 12078 /* if ATR was auto disabled it can be re-enabled. */ 12079 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12080 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12081 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12082 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12083 } 12084 return need_reset; 12085 } 12086 12087 /** 12088 * i40e_clear_rss_lut - clear the rx hash lookup table 12089 * @vsi: the VSI being configured 12090 **/ 12091 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12092 { 12093 struct i40e_pf *pf = vsi->back; 12094 struct i40e_hw *hw = &pf->hw; 12095 u16 vf_id = vsi->vf_id; 12096 u8 i; 12097 12098 if (vsi->type == I40E_VSI_MAIN) { 12099 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12100 wr32(hw, I40E_PFQF_HLUT(i), 0); 12101 } else if (vsi->type == I40E_VSI_SRIOV) { 12102 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12103 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12104 } else { 12105 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12106 } 12107 } 12108 12109 /** 12110 * i40e_set_features - set the netdev feature flags 12111 * @netdev: ptr to the netdev being adjusted 12112 * @features: the feature set that the stack is suggesting 12113 * Note: expects to be called while under rtnl_lock() 12114 **/ 12115 static int i40e_set_features(struct net_device *netdev, 12116 netdev_features_t features) 12117 { 12118 struct i40e_netdev_priv *np = netdev_priv(netdev); 12119 struct i40e_vsi *vsi = np->vsi; 12120 struct i40e_pf *pf = vsi->back; 12121 bool need_reset; 12122 12123 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12124 i40e_pf_config_rss(pf); 12125 else if (!(features & NETIF_F_RXHASH) && 12126 netdev->features & NETIF_F_RXHASH) 12127 i40e_clear_rss_lut(vsi); 12128 12129 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12130 i40e_vlan_stripping_enable(vsi); 12131 else 12132 i40e_vlan_stripping_disable(vsi); 12133 12134 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12135 dev_err(&pf->pdev->dev, 12136 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12137 return -EINVAL; 12138 } 12139 12140 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12141 i40e_del_all_macvlans(vsi); 12142 12143 need_reset = i40e_set_ntuple(pf, features); 12144 12145 if (need_reset) 12146 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12147 12148 return 0; 12149 } 12150 12151 /** 12152 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 12153 * @pf: board private structure 12154 * @port: The UDP port to look up 12155 * 12156 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 12157 **/ 12158 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 12159 { 12160 u8 i; 12161 12162 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 12163 /* Do not report ports with pending deletions as 12164 * being available. 12165 */ 12166 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 12167 continue; 12168 if (pf->udp_ports[i].port == port) 12169 return i; 12170 } 12171 12172 return i; 12173 } 12174 12175 /** 12176 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 12177 * @netdev: This physical port's netdev 12178 * @ti: Tunnel endpoint information 12179 **/ 12180 static void i40e_udp_tunnel_add(struct net_device *netdev, 12181 struct udp_tunnel_info *ti) 12182 { 12183 struct i40e_netdev_priv *np = netdev_priv(netdev); 12184 struct i40e_vsi *vsi = np->vsi; 12185 struct i40e_pf *pf = vsi->back; 12186 u16 port = ntohs(ti->port); 12187 u8 next_idx; 12188 u8 idx; 12189 12190 idx = i40e_get_udp_port_idx(pf, port); 12191 12192 /* Check if port already exists */ 12193 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12194 netdev_info(netdev, "port %d already offloaded\n", port); 12195 return; 12196 } 12197 12198 /* Now check if there is space to add the new port */ 12199 next_idx = i40e_get_udp_port_idx(pf, 0); 12200 12201 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 12202 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 12203 port); 12204 return; 12205 } 12206 12207 switch (ti->type) { 12208 case UDP_TUNNEL_TYPE_VXLAN: 12209 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 12210 break; 12211 case UDP_TUNNEL_TYPE_GENEVE: 12212 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 12213 return; 12214 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 12215 break; 12216 default: 12217 return; 12218 } 12219 12220 /* New port: add it and mark its index in the bitmap */ 12221 pf->udp_ports[next_idx].port = port; 12222 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 12223 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 12224 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12225 } 12226 12227 /** 12228 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 12229 * @netdev: This physical port's netdev 12230 * @ti: Tunnel endpoint information 12231 **/ 12232 static void i40e_udp_tunnel_del(struct net_device *netdev, 12233 struct udp_tunnel_info *ti) 12234 { 12235 struct i40e_netdev_priv *np = netdev_priv(netdev); 12236 struct i40e_vsi *vsi = np->vsi; 12237 struct i40e_pf *pf = vsi->back; 12238 u16 port = ntohs(ti->port); 12239 u8 idx; 12240 12241 idx = i40e_get_udp_port_idx(pf, port); 12242 12243 /* Check if port already exists */ 12244 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 12245 goto not_found; 12246 12247 switch (ti->type) { 12248 case UDP_TUNNEL_TYPE_VXLAN: 12249 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 12250 goto not_found; 12251 break; 12252 case UDP_TUNNEL_TYPE_GENEVE: 12253 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 12254 goto not_found; 12255 break; 12256 default: 12257 goto not_found; 12258 } 12259 12260 /* if port exists, set it to 0 (mark for deletion) 12261 * and make it pending 12262 */ 12263 pf->udp_ports[idx].port = 0; 12264 12265 /* Toggle pending bit instead of setting it. This way if we are 12266 * deleting a port that has yet to be added we just clear the pending 12267 * bit and don't have to worry about it. 12268 */ 12269 pf->pending_udp_bitmap ^= BIT_ULL(idx); 12270 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 12271 12272 return; 12273 not_found: 12274 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 12275 port); 12276 } 12277 12278 static int i40e_get_phys_port_id(struct net_device *netdev, 12279 struct netdev_phys_item_id *ppid) 12280 { 12281 struct i40e_netdev_priv *np = netdev_priv(netdev); 12282 struct i40e_pf *pf = np->vsi->back; 12283 struct i40e_hw *hw = &pf->hw; 12284 12285 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12286 return -EOPNOTSUPP; 12287 12288 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12289 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12290 12291 return 0; 12292 } 12293 12294 /** 12295 * i40e_ndo_fdb_add - add an entry to the hardware database 12296 * @ndm: the input from the stack 12297 * @tb: pointer to array of nladdr (unused) 12298 * @dev: the net device pointer 12299 * @addr: the MAC address entry being added 12300 * @vid: VLAN ID 12301 * @flags: instructions from stack about fdb operation 12302 */ 12303 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12304 struct net_device *dev, 12305 const unsigned char *addr, u16 vid, 12306 u16 flags, 12307 struct netlink_ext_ack *extack) 12308 { 12309 struct i40e_netdev_priv *np = netdev_priv(dev); 12310 struct i40e_pf *pf = np->vsi->back; 12311 int err = 0; 12312 12313 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12314 return -EOPNOTSUPP; 12315 12316 if (vid) { 12317 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12318 return -EINVAL; 12319 } 12320 12321 /* Hardware does not support aging addresses so if a 12322 * ndm_state is given only allow permanent addresses 12323 */ 12324 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12325 netdev_info(dev, "FDB only supports static addresses\n"); 12326 return -EINVAL; 12327 } 12328 12329 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12330 err = dev_uc_add_excl(dev, addr); 12331 else if (is_multicast_ether_addr(addr)) 12332 err = dev_mc_add_excl(dev, addr); 12333 else 12334 err = -EINVAL; 12335 12336 /* Only return duplicate errors if NLM_F_EXCL is set */ 12337 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12338 err = 0; 12339 12340 return err; 12341 } 12342 12343 /** 12344 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12345 * @dev: the netdev being configured 12346 * @nlh: RTNL message 12347 * @flags: bridge flags 12348 * @extack: netlink extended ack 12349 * 12350 * Inserts a new hardware bridge if not already created and 12351 * enables the bridging mode requested (VEB or VEPA). If the 12352 * hardware bridge has already been inserted and the request 12353 * is to change the mode then that requires a PF reset to 12354 * allow rebuild of the components with required hardware 12355 * bridge mode enabled. 12356 * 12357 * Note: expects to be called while under rtnl_lock() 12358 **/ 12359 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12360 struct nlmsghdr *nlh, 12361 u16 flags, 12362 struct netlink_ext_ack *extack) 12363 { 12364 struct i40e_netdev_priv *np = netdev_priv(dev); 12365 struct i40e_vsi *vsi = np->vsi; 12366 struct i40e_pf *pf = vsi->back; 12367 struct i40e_veb *veb = NULL; 12368 struct nlattr *attr, *br_spec; 12369 int i, rem; 12370 12371 /* Only for PF VSI for now */ 12372 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12373 return -EOPNOTSUPP; 12374 12375 /* Find the HW bridge for PF VSI */ 12376 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12377 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12378 veb = pf->veb[i]; 12379 } 12380 12381 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12382 12383 nla_for_each_nested(attr, br_spec, rem) { 12384 __u16 mode; 12385 12386 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12387 continue; 12388 12389 mode = nla_get_u16(attr); 12390 if ((mode != BRIDGE_MODE_VEPA) && 12391 (mode != BRIDGE_MODE_VEB)) 12392 return -EINVAL; 12393 12394 /* Insert a new HW bridge */ 12395 if (!veb) { 12396 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12397 vsi->tc_config.enabled_tc); 12398 if (veb) { 12399 veb->bridge_mode = mode; 12400 i40e_config_bridge_mode(veb); 12401 } else { 12402 /* No Bridge HW offload available */ 12403 return -ENOENT; 12404 } 12405 break; 12406 } else if (mode != veb->bridge_mode) { 12407 /* Existing HW bridge but different mode needs reset */ 12408 veb->bridge_mode = mode; 12409 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12410 if (mode == BRIDGE_MODE_VEB) 12411 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12412 else 12413 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12414 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12415 break; 12416 } 12417 } 12418 12419 return 0; 12420 } 12421 12422 /** 12423 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12424 * @skb: skb buff 12425 * @pid: process id 12426 * @seq: RTNL message seq # 12427 * @dev: the netdev being configured 12428 * @filter_mask: unused 12429 * @nlflags: netlink flags passed in 12430 * 12431 * Return the mode in which the hardware bridge is operating in 12432 * i.e VEB or VEPA. 12433 **/ 12434 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12435 struct net_device *dev, 12436 u32 __always_unused filter_mask, 12437 int nlflags) 12438 { 12439 struct i40e_netdev_priv *np = netdev_priv(dev); 12440 struct i40e_vsi *vsi = np->vsi; 12441 struct i40e_pf *pf = vsi->back; 12442 struct i40e_veb *veb = NULL; 12443 int i; 12444 12445 /* Only for PF VSI for now */ 12446 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12447 return -EOPNOTSUPP; 12448 12449 /* Find the HW bridge for the PF VSI */ 12450 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12451 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12452 veb = pf->veb[i]; 12453 } 12454 12455 if (!veb) 12456 return 0; 12457 12458 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12459 0, 0, nlflags, filter_mask, NULL); 12460 } 12461 12462 /** 12463 * i40e_features_check - Validate encapsulated packet conforms to limits 12464 * @skb: skb buff 12465 * @dev: This physical port's netdev 12466 * @features: Offload features that the stack believes apply 12467 **/ 12468 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12469 struct net_device *dev, 12470 netdev_features_t features) 12471 { 12472 size_t len; 12473 12474 /* No point in doing any of this if neither checksum nor GSO are 12475 * being requested for this frame. We can rule out both by just 12476 * checking for CHECKSUM_PARTIAL 12477 */ 12478 if (skb->ip_summed != CHECKSUM_PARTIAL) 12479 return features; 12480 12481 /* We cannot support GSO if the MSS is going to be less than 12482 * 64 bytes. If it is then we need to drop support for GSO. 12483 */ 12484 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12485 features &= ~NETIF_F_GSO_MASK; 12486 12487 /* MACLEN can support at most 63 words */ 12488 len = skb_network_header(skb) - skb->data; 12489 if (len & ~(63 * 2)) 12490 goto out_err; 12491 12492 /* IPLEN and EIPLEN can support at most 127 dwords */ 12493 len = skb_transport_header(skb) - skb_network_header(skb); 12494 if (len & ~(127 * 4)) 12495 goto out_err; 12496 12497 if (skb->encapsulation) { 12498 /* L4TUNLEN can support 127 words */ 12499 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12500 if (len & ~(127 * 2)) 12501 goto out_err; 12502 12503 /* IPLEN can support at most 127 dwords */ 12504 len = skb_inner_transport_header(skb) - 12505 skb_inner_network_header(skb); 12506 if (len & ~(127 * 4)) 12507 goto out_err; 12508 } 12509 12510 /* No need to validate L4LEN as TCP is the only protocol with a 12511 * a flexible value and we support all possible values supported 12512 * by TCP, which is at most 15 dwords 12513 */ 12514 12515 return features; 12516 out_err: 12517 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12518 } 12519 12520 /** 12521 * i40e_xdp_setup - add/remove an XDP program 12522 * @vsi: VSI to changed 12523 * @prog: XDP program 12524 **/ 12525 static int i40e_xdp_setup(struct i40e_vsi *vsi, 12526 struct bpf_prog *prog) 12527 { 12528 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12529 struct i40e_pf *pf = vsi->back; 12530 struct bpf_prog *old_prog; 12531 bool need_reset; 12532 int i; 12533 12534 /* Don't allow frames that span over multiple buffers */ 12535 if (frame_size > vsi->rx_buf_len) 12536 return -EINVAL; 12537 12538 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 12539 return 0; 12540 12541 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12542 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12543 12544 if (need_reset) 12545 i40e_prep_for_reset(pf, true); 12546 12547 old_prog = xchg(&vsi->xdp_prog, prog); 12548 12549 if (need_reset) { 12550 if (!prog) 12551 /* Wait until ndo_xsk_wakeup completes. */ 12552 synchronize_rcu(); 12553 i40e_reset_and_rebuild(pf, true, true); 12554 } 12555 12556 for (i = 0; i < vsi->num_queue_pairs; i++) 12557 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12558 12559 if (old_prog) 12560 bpf_prog_put(old_prog); 12561 12562 /* Kick start the NAPI context if there is an AF_XDP socket open 12563 * on that queue id. This so that receiving will start. 12564 */ 12565 if (need_reset && prog) 12566 for (i = 0; i < vsi->num_queue_pairs; i++) 12567 if (vsi->xdp_rings[i]->xsk_umem) 12568 (void)i40e_xsk_wakeup(vsi->netdev, i, 12569 XDP_WAKEUP_RX); 12570 12571 return 0; 12572 } 12573 12574 /** 12575 * i40e_enter_busy_conf - Enters busy config state 12576 * @vsi: vsi 12577 * 12578 * Returns 0 on success, <0 for failure. 12579 **/ 12580 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 12581 { 12582 struct i40e_pf *pf = vsi->back; 12583 int timeout = 50; 12584 12585 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 12586 timeout--; 12587 if (!timeout) 12588 return -EBUSY; 12589 usleep_range(1000, 2000); 12590 } 12591 12592 return 0; 12593 } 12594 12595 /** 12596 * i40e_exit_busy_conf - Exits busy config state 12597 * @vsi: vsi 12598 **/ 12599 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 12600 { 12601 struct i40e_pf *pf = vsi->back; 12602 12603 clear_bit(__I40E_CONFIG_BUSY, pf->state); 12604 } 12605 12606 /** 12607 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 12608 * @vsi: vsi 12609 * @queue_pair: queue pair 12610 **/ 12611 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 12612 { 12613 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 12614 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 12615 memset(&vsi->tx_rings[queue_pair]->stats, 0, 12616 sizeof(vsi->tx_rings[queue_pair]->stats)); 12617 if (i40e_enabled_xdp_vsi(vsi)) { 12618 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 12619 sizeof(vsi->xdp_rings[queue_pair]->stats)); 12620 } 12621 } 12622 12623 /** 12624 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 12625 * @vsi: vsi 12626 * @queue_pair: queue pair 12627 **/ 12628 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 12629 { 12630 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 12631 if (i40e_enabled_xdp_vsi(vsi)) { 12632 /* Make sure that in-progress ndo_xdp_xmit calls are 12633 * completed. 12634 */ 12635 synchronize_rcu(); 12636 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 12637 } 12638 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 12639 } 12640 12641 /** 12642 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 12643 * @vsi: vsi 12644 * @queue_pair: queue pair 12645 * @enable: true for enable, false for disable 12646 **/ 12647 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 12648 bool enable) 12649 { 12650 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12651 struct i40e_q_vector *q_vector = rxr->q_vector; 12652 12653 if (!vsi->netdev) 12654 return; 12655 12656 /* All rings in a qp belong to the same qvector. */ 12657 if (q_vector->rx.ring || q_vector->tx.ring) { 12658 if (enable) 12659 napi_enable(&q_vector->napi); 12660 else 12661 napi_disable(&q_vector->napi); 12662 } 12663 } 12664 12665 /** 12666 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12667 * @vsi: vsi 12668 * @queue_pair: queue pair 12669 * @enable: true for enable, false for disable 12670 * 12671 * Returns 0 on success, <0 on failure. 12672 **/ 12673 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12674 bool enable) 12675 { 12676 struct i40e_pf *pf = vsi->back; 12677 int pf_q, ret = 0; 12678 12679 pf_q = vsi->base_queue + queue_pair; 12680 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12681 false /*is xdp*/, enable); 12682 if (ret) { 12683 dev_info(&pf->pdev->dev, 12684 "VSI seid %d Tx ring %d %sable timeout\n", 12685 vsi->seid, pf_q, (enable ? "en" : "dis")); 12686 return ret; 12687 } 12688 12689 i40e_control_rx_q(pf, pf_q, enable); 12690 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12691 if (ret) { 12692 dev_info(&pf->pdev->dev, 12693 "VSI seid %d Rx ring %d %sable timeout\n", 12694 vsi->seid, pf_q, (enable ? "en" : "dis")); 12695 return ret; 12696 } 12697 12698 /* Due to HW errata, on Rx disable only, the register can 12699 * indicate done before it really is. Needs 50ms to be sure 12700 */ 12701 if (!enable) 12702 mdelay(50); 12703 12704 if (!i40e_enabled_xdp_vsi(vsi)) 12705 return ret; 12706 12707 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12708 pf_q + vsi->alloc_queue_pairs, 12709 true /*is xdp*/, enable); 12710 if (ret) { 12711 dev_info(&pf->pdev->dev, 12712 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12713 vsi->seid, pf_q, (enable ? "en" : "dis")); 12714 } 12715 12716 return ret; 12717 } 12718 12719 /** 12720 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12721 * @vsi: vsi 12722 * @queue_pair: queue_pair 12723 **/ 12724 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12725 { 12726 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12727 struct i40e_pf *pf = vsi->back; 12728 struct i40e_hw *hw = &pf->hw; 12729 12730 /* All rings in a qp belong to the same qvector. */ 12731 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12732 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12733 else 12734 i40e_irq_dynamic_enable_icr0(pf); 12735 12736 i40e_flush(hw); 12737 } 12738 12739 /** 12740 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12741 * @vsi: vsi 12742 * @queue_pair: queue_pair 12743 **/ 12744 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12745 { 12746 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12747 struct i40e_pf *pf = vsi->back; 12748 struct i40e_hw *hw = &pf->hw; 12749 12750 /* For simplicity, instead of removing the qp interrupt causes 12751 * from the interrupt linked list, we simply disable the interrupt, and 12752 * leave the list intact. 12753 * 12754 * All rings in a qp belong to the same qvector. 12755 */ 12756 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12757 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12758 12759 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12760 i40e_flush(hw); 12761 synchronize_irq(pf->msix_entries[intpf].vector); 12762 } else { 12763 /* Legacy and MSI mode - this stops all interrupt handling */ 12764 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12765 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12766 i40e_flush(hw); 12767 synchronize_irq(pf->pdev->irq); 12768 } 12769 } 12770 12771 /** 12772 * i40e_queue_pair_disable - Disables a queue pair 12773 * @vsi: vsi 12774 * @queue_pair: queue pair 12775 * 12776 * Returns 0 on success, <0 on failure. 12777 **/ 12778 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12779 { 12780 int err; 12781 12782 err = i40e_enter_busy_conf(vsi); 12783 if (err) 12784 return err; 12785 12786 i40e_queue_pair_disable_irq(vsi, queue_pair); 12787 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12788 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12789 i40e_queue_pair_clean_rings(vsi, queue_pair); 12790 i40e_queue_pair_reset_stats(vsi, queue_pair); 12791 12792 return err; 12793 } 12794 12795 /** 12796 * i40e_queue_pair_enable - Enables a queue pair 12797 * @vsi: vsi 12798 * @queue_pair: queue pair 12799 * 12800 * Returns 0 on success, <0 on failure. 12801 **/ 12802 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12803 { 12804 int err; 12805 12806 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12807 if (err) 12808 return err; 12809 12810 if (i40e_enabled_xdp_vsi(vsi)) { 12811 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12812 if (err) 12813 return err; 12814 } 12815 12816 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12817 if (err) 12818 return err; 12819 12820 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12821 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12822 i40e_queue_pair_enable_irq(vsi, queue_pair); 12823 12824 i40e_exit_busy_conf(vsi); 12825 12826 return err; 12827 } 12828 12829 /** 12830 * i40e_xdp - implements ndo_bpf for i40e 12831 * @dev: netdevice 12832 * @xdp: XDP command 12833 **/ 12834 static int i40e_xdp(struct net_device *dev, 12835 struct netdev_bpf *xdp) 12836 { 12837 struct i40e_netdev_priv *np = netdev_priv(dev); 12838 struct i40e_vsi *vsi = np->vsi; 12839 12840 if (vsi->type != I40E_VSI_MAIN) 12841 return -EINVAL; 12842 12843 switch (xdp->command) { 12844 case XDP_SETUP_PROG: 12845 return i40e_xdp_setup(vsi, xdp->prog); 12846 case XDP_QUERY_PROG: 12847 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12848 return 0; 12849 case XDP_SETUP_XSK_UMEM: 12850 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12851 xdp->xsk.queue_id); 12852 default: 12853 return -EINVAL; 12854 } 12855 } 12856 12857 static const struct net_device_ops i40e_netdev_ops = { 12858 .ndo_open = i40e_open, 12859 .ndo_stop = i40e_close, 12860 .ndo_start_xmit = i40e_lan_xmit_frame, 12861 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12862 .ndo_set_rx_mode = i40e_set_rx_mode, 12863 .ndo_validate_addr = eth_validate_addr, 12864 .ndo_set_mac_address = i40e_set_mac, 12865 .ndo_change_mtu = i40e_change_mtu, 12866 .ndo_do_ioctl = i40e_ioctl, 12867 .ndo_tx_timeout = i40e_tx_timeout, 12868 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12869 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12870 #ifdef CONFIG_NET_POLL_CONTROLLER 12871 .ndo_poll_controller = i40e_netpoll, 12872 #endif 12873 .ndo_setup_tc = __i40e_setup_tc, 12874 .ndo_set_features = i40e_set_features, 12875 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12876 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12877 .ndo_get_vf_stats = i40e_get_vf_stats, 12878 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12879 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12880 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12881 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12882 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12883 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12884 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12885 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12886 .ndo_fdb_add = i40e_ndo_fdb_add, 12887 .ndo_features_check = i40e_features_check, 12888 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12889 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12890 .ndo_bpf = i40e_xdp, 12891 .ndo_xdp_xmit = i40e_xdp_xmit, 12892 .ndo_xsk_wakeup = i40e_xsk_wakeup, 12893 .ndo_dfwd_add_station = i40e_fwd_add, 12894 .ndo_dfwd_del_station = i40e_fwd_del, 12895 }; 12896 12897 /** 12898 * i40e_config_netdev - Setup the netdev flags 12899 * @vsi: the VSI being configured 12900 * 12901 * Returns 0 on success, negative value on failure 12902 **/ 12903 static int i40e_config_netdev(struct i40e_vsi *vsi) 12904 { 12905 struct i40e_pf *pf = vsi->back; 12906 struct i40e_hw *hw = &pf->hw; 12907 struct i40e_netdev_priv *np; 12908 struct net_device *netdev; 12909 u8 broadcast[ETH_ALEN]; 12910 u8 mac_addr[ETH_ALEN]; 12911 int etherdev_size; 12912 netdev_features_t hw_enc_features; 12913 netdev_features_t hw_features; 12914 12915 etherdev_size = sizeof(struct i40e_netdev_priv); 12916 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12917 if (!netdev) 12918 return -ENOMEM; 12919 12920 vsi->netdev = netdev; 12921 np = netdev_priv(netdev); 12922 np->vsi = vsi; 12923 12924 hw_enc_features = NETIF_F_SG | 12925 NETIF_F_IP_CSUM | 12926 NETIF_F_IPV6_CSUM | 12927 NETIF_F_HIGHDMA | 12928 NETIF_F_SOFT_FEATURES | 12929 NETIF_F_TSO | 12930 NETIF_F_TSO_ECN | 12931 NETIF_F_TSO6 | 12932 NETIF_F_GSO_GRE | 12933 NETIF_F_GSO_GRE_CSUM | 12934 NETIF_F_GSO_PARTIAL | 12935 NETIF_F_GSO_IPXIP4 | 12936 NETIF_F_GSO_IPXIP6 | 12937 NETIF_F_GSO_UDP_TUNNEL | 12938 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12939 NETIF_F_GSO_UDP_L4 | 12940 NETIF_F_SCTP_CRC | 12941 NETIF_F_RXHASH | 12942 NETIF_F_RXCSUM | 12943 0; 12944 12945 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12946 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12947 12948 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12949 12950 netdev->hw_enc_features |= hw_enc_features; 12951 12952 /* record features VLANs can make use of */ 12953 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12954 12955 /* enable macvlan offloads */ 12956 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 12957 12958 hw_features = hw_enc_features | 12959 NETIF_F_HW_VLAN_CTAG_TX | 12960 NETIF_F_HW_VLAN_CTAG_RX; 12961 12962 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12963 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12964 12965 netdev->hw_features |= hw_features; 12966 12967 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12968 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12969 12970 if (vsi->type == I40E_VSI_MAIN) { 12971 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12972 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12973 /* The following steps are necessary for two reasons. First, 12974 * some older NVM configurations load a default MAC-VLAN 12975 * filter that will accept any tagged packet, and we want to 12976 * replace this with a normal filter. Additionally, it is 12977 * possible our MAC address was provided by the platform using 12978 * Open Firmware or similar. 12979 * 12980 * Thus, we need to remove the default filter and install one 12981 * specific to the MAC address. 12982 */ 12983 i40e_rm_default_mac_filter(vsi, mac_addr); 12984 spin_lock_bh(&vsi->mac_filter_hash_lock); 12985 i40e_add_mac_filter(vsi, mac_addr); 12986 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12987 } else { 12988 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12989 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12990 * the end, which is 4 bytes long, so force truncation of the 12991 * original name by IFNAMSIZ - 4 12992 */ 12993 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12994 IFNAMSIZ - 4, 12995 pf->vsi[pf->lan_vsi]->netdev->name); 12996 eth_random_addr(mac_addr); 12997 12998 spin_lock_bh(&vsi->mac_filter_hash_lock); 12999 i40e_add_mac_filter(vsi, mac_addr); 13000 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13001 } 13002 13003 /* Add the broadcast filter so that we initially will receive 13004 * broadcast packets. Note that when a new VLAN is first added the 13005 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13006 * specific filters as part of transitioning into "vlan" operation. 13007 * When more VLANs are added, the driver will copy each existing MAC 13008 * filter and add it for the new VLAN. 13009 * 13010 * Broadcast filters are handled specially by 13011 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13012 * promiscuous bit instead of adding this directly as a MAC/VLAN 13013 * filter. The subtask will update the correct broadcast promiscuous 13014 * bits as VLANs become active or inactive. 13015 */ 13016 eth_broadcast_addr(broadcast); 13017 spin_lock_bh(&vsi->mac_filter_hash_lock); 13018 i40e_add_mac_filter(vsi, broadcast); 13019 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13020 13021 ether_addr_copy(netdev->dev_addr, mac_addr); 13022 ether_addr_copy(netdev->perm_addr, mac_addr); 13023 13024 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13025 netdev->neigh_priv_len = sizeof(u32) * 4; 13026 13027 netdev->priv_flags |= IFF_UNICAST_FLT; 13028 netdev->priv_flags |= IFF_SUPP_NOFCS; 13029 /* Setup netdev TC information */ 13030 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13031 13032 netdev->netdev_ops = &i40e_netdev_ops; 13033 netdev->watchdog_timeo = 5 * HZ; 13034 i40e_set_ethtool_ops(netdev); 13035 13036 /* MTU range: 68 - 9706 */ 13037 netdev->min_mtu = ETH_MIN_MTU; 13038 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13039 13040 return 0; 13041 } 13042 13043 /** 13044 * i40e_vsi_delete - Delete a VSI from the switch 13045 * @vsi: the VSI being removed 13046 * 13047 * Returns 0 on success, negative value on failure 13048 **/ 13049 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13050 { 13051 /* remove default VSI is not allowed */ 13052 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13053 return; 13054 13055 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13056 } 13057 13058 /** 13059 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13060 * @vsi: the VSI being queried 13061 * 13062 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13063 **/ 13064 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13065 { 13066 struct i40e_veb *veb; 13067 struct i40e_pf *pf = vsi->back; 13068 13069 /* Uplink is not a bridge so default to VEB */ 13070 if (vsi->veb_idx >= I40E_MAX_VEB) 13071 return 1; 13072 13073 veb = pf->veb[vsi->veb_idx]; 13074 if (!veb) { 13075 dev_info(&pf->pdev->dev, 13076 "There is no veb associated with the bridge\n"); 13077 return -ENOENT; 13078 } 13079 13080 /* Uplink is a bridge in VEPA mode */ 13081 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13082 return 0; 13083 } else { 13084 /* Uplink is a bridge in VEB mode */ 13085 return 1; 13086 } 13087 13088 /* VEPA is now default bridge, so return 0 */ 13089 return 0; 13090 } 13091 13092 /** 13093 * i40e_add_vsi - Add a VSI to the switch 13094 * @vsi: the VSI being configured 13095 * 13096 * This initializes a VSI context depending on the VSI type to be added and 13097 * passes it down to the add_vsi aq command. 13098 **/ 13099 static int i40e_add_vsi(struct i40e_vsi *vsi) 13100 { 13101 int ret = -ENODEV; 13102 struct i40e_pf *pf = vsi->back; 13103 struct i40e_hw *hw = &pf->hw; 13104 struct i40e_vsi_context ctxt; 13105 struct i40e_mac_filter *f; 13106 struct hlist_node *h; 13107 int bkt; 13108 13109 u8 enabled_tc = 0x1; /* TC0 enabled */ 13110 int f_count = 0; 13111 13112 memset(&ctxt, 0, sizeof(ctxt)); 13113 switch (vsi->type) { 13114 case I40E_VSI_MAIN: 13115 /* The PF's main VSI is already setup as part of the 13116 * device initialization, so we'll not bother with 13117 * the add_vsi call, but we will retrieve the current 13118 * VSI context. 13119 */ 13120 ctxt.seid = pf->main_vsi_seid; 13121 ctxt.pf_num = pf->hw.pf_id; 13122 ctxt.vf_num = 0; 13123 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13124 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13125 if (ret) { 13126 dev_info(&pf->pdev->dev, 13127 "couldn't get PF vsi config, err %s aq_err %s\n", 13128 i40e_stat_str(&pf->hw, ret), 13129 i40e_aq_str(&pf->hw, 13130 pf->hw.aq.asq_last_status)); 13131 return -ENOENT; 13132 } 13133 vsi->info = ctxt.info; 13134 vsi->info.valid_sections = 0; 13135 13136 vsi->seid = ctxt.seid; 13137 vsi->id = ctxt.vsi_number; 13138 13139 enabled_tc = i40e_pf_get_tc_map(pf); 13140 13141 /* Source pruning is enabled by default, so the flag is 13142 * negative logic - if it's set, we need to fiddle with 13143 * the VSI to disable source pruning. 13144 */ 13145 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13146 memset(&ctxt, 0, sizeof(ctxt)); 13147 ctxt.seid = pf->main_vsi_seid; 13148 ctxt.pf_num = pf->hw.pf_id; 13149 ctxt.vf_num = 0; 13150 ctxt.info.valid_sections |= 13151 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13152 ctxt.info.switch_id = 13153 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13154 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13155 if (ret) { 13156 dev_info(&pf->pdev->dev, 13157 "update vsi failed, err %s aq_err %s\n", 13158 i40e_stat_str(&pf->hw, ret), 13159 i40e_aq_str(&pf->hw, 13160 pf->hw.aq.asq_last_status)); 13161 ret = -ENOENT; 13162 goto err; 13163 } 13164 } 13165 13166 /* MFP mode setup queue map and update VSI */ 13167 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13168 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13169 memset(&ctxt, 0, sizeof(ctxt)); 13170 ctxt.seid = pf->main_vsi_seid; 13171 ctxt.pf_num = pf->hw.pf_id; 13172 ctxt.vf_num = 0; 13173 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13174 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13175 if (ret) { 13176 dev_info(&pf->pdev->dev, 13177 "update vsi failed, err %s aq_err %s\n", 13178 i40e_stat_str(&pf->hw, ret), 13179 i40e_aq_str(&pf->hw, 13180 pf->hw.aq.asq_last_status)); 13181 ret = -ENOENT; 13182 goto err; 13183 } 13184 /* update the local VSI info queue map */ 13185 i40e_vsi_update_queue_map(vsi, &ctxt); 13186 vsi->info.valid_sections = 0; 13187 } else { 13188 /* Default/Main VSI is only enabled for TC0 13189 * reconfigure it to enable all TCs that are 13190 * available on the port in SFP mode. 13191 * For MFP case the iSCSI PF would use this 13192 * flow to enable LAN+iSCSI TC. 13193 */ 13194 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13195 if (ret) { 13196 /* Single TC condition is not fatal, 13197 * message and continue 13198 */ 13199 dev_info(&pf->pdev->dev, 13200 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13201 enabled_tc, 13202 i40e_stat_str(&pf->hw, ret), 13203 i40e_aq_str(&pf->hw, 13204 pf->hw.aq.asq_last_status)); 13205 } 13206 } 13207 break; 13208 13209 case I40E_VSI_FDIR: 13210 ctxt.pf_num = hw->pf_id; 13211 ctxt.vf_num = 0; 13212 ctxt.uplink_seid = vsi->uplink_seid; 13213 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13214 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13215 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13216 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13217 ctxt.info.valid_sections |= 13218 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13219 ctxt.info.switch_id = 13220 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13221 } 13222 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13223 break; 13224 13225 case I40E_VSI_VMDQ2: 13226 ctxt.pf_num = hw->pf_id; 13227 ctxt.vf_num = 0; 13228 ctxt.uplink_seid = vsi->uplink_seid; 13229 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13230 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13231 13232 /* This VSI is connected to VEB so the switch_id 13233 * should be set to zero by default. 13234 */ 13235 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13236 ctxt.info.valid_sections |= 13237 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13238 ctxt.info.switch_id = 13239 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13240 } 13241 13242 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13243 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13244 break; 13245 13246 case I40E_VSI_SRIOV: 13247 ctxt.pf_num = hw->pf_id; 13248 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13249 ctxt.uplink_seid = vsi->uplink_seid; 13250 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13251 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13252 13253 /* This VSI is connected to VEB so the switch_id 13254 * should be set to zero by default. 13255 */ 13256 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13257 ctxt.info.valid_sections |= 13258 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13259 ctxt.info.switch_id = 13260 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13261 } 13262 13263 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13264 ctxt.info.valid_sections |= 13265 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13266 ctxt.info.queueing_opt_flags |= 13267 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13268 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13269 } 13270 13271 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13272 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13273 if (pf->vf[vsi->vf_id].spoofchk) { 13274 ctxt.info.valid_sections |= 13275 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13276 ctxt.info.sec_flags |= 13277 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13278 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13279 } 13280 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13281 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13282 break; 13283 13284 case I40E_VSI_IWARP: 13285 /* send down message to iWARP */ 13286 break; 13287 13288 default: 13289 return -ENODEV; 13290 } 13291 13292 if (vsi->type != I40E_VSI_MAIN) { 13293 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13294 if (ret) { 13295 dev_info(&vsi->back->pdev->dev, 13296 "add vsi failed, err %s aq_err %s\n", 13297 i40e_stat_str(&pf->hw, ret), 13298 i40e_aq_str(&pf->hw, 13299 pf->hw.aq.asq_last_status)); 13300 ret = -ENOENT; 13301 goto err; 13302 } 13303 vsi->info = ctxt.info; 13304 vsi->info.valid_sections = 0; 13305 vsi->seid = ctxt.seid; 13306 vsi->id = ctxt.vsi_number; 13307 } 13308 13309 vsi->active_filters = 0; 13310 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13311 spin_lock_bh(&vsi->mac_filter_hash_lock); 13312 /* If macvlan filters already exist, force them to get loaded */ 13313 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13314 f->state = I40E_FILTER_NEW; 13315 f_count++; 13316 } 13317 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13318 13319 if (f_count) { 13320 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13321 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13322 } 13323 13324 /* Update VSI BW information */ 13325 ret = i40e_vsi_get_bw_info(vsi); 13326 if (ret) { 13327 dev_info(&pf->pdev->dev, 13328 "couldn't get vsi bw info, err %s aq_err %s\n", 13329 i40e_stat_str(&pf->hw, ret), 13330 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13331 /* VSI is already added so not tearing that up */ 13332 ret = 0; 13333 } 13334 13335 err: 13336 return ret; 13337 } 13338 13339 /** 13340 * i40e_vsi_release - Delete a VSI and free its resources 13341 * @vsi: the VSI being removed 13342 * 13343 * Returns 0 on success or < 0 on error 13344 **/ 13345 int i40e_vsi_release(struct i40e_vsi *vsi) 13346 { 13347 struct i40e_mac_filter *f; 13348 struct hlist_node *h; 13349 struct i40e_veb *veb = NULL; 13350 struct i40e_pf *pf; 13351 u16 uplink_seid; 13352 int i, n, bkt; 13353 13354 pf = vsi->back; 13355 13356 /* release of a VEB-owner or last VSI is not allowed */ 13357 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13358 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13359 vsi->seid, vsi->uplink_seid); 13360 return -ENODEV; 13361 } 13362 if (vsi == pf->vsi[pf->lan_vsi] && 13363 !test_bit(__I40E_DOWN, pf->state)) { 13364 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13365 return -ENODEV; 13366 } 13367 13368 uplink_seid = vsi->uplink_seid; 13369 if (vsi->type != I40E_VSI_SRIOV) { 13370 if (vsi->netdev_registered) { 13371 vsi->netdev_registered = false; 13372 if (vsi->netdev) { 13373 /* results in a call to i40e_close() */ 13374 unregister_netdev(vsi->netdev); 13375 } 13376 } else { 13377 i40e_vsi_close(vsi); 13378 } 13379 i40e_vsi_disable_irq(vsi); 13380 } 13381 13382 spin_lock_bh(&vsi->mac_filter_hash_lock); 13383 13384 /* clear the sync flag on all filters */ 13385 if (vsi->netdev) { 13386 __dev_uc_unsync(vsi->netdev, NULL); 13387 __dev_mc_unsync(vsi->netdev, NULL); 13388 } 13389 13390 /* make sure any remaining filters are marked for deletion */ 13391 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13392 __i40e_del_filter(vsi, f); 13393 13394 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13395 13396 i40e_sync_vsi_filters(vsi); 13397 13398 i40e_vsi_delete(vsi); 13399 i40e_vsi_free_q_vectors(vsi); 13400 if (vsi->netdev) { 13401 free_netdev(vsi->netdev); 13402 vsi->netdev = NULL; 13403 } 13404 i40e_vsi_clear_rings(vsi); 13405 i40e_vsi_clear(vsi); 13406 13407 /* If this was the last thing on the VEB, except for the 13408 * controlling VSI, remove the VEB, which puts the controlling 13409 * VSI onto the next level down in the switch. 13410 * 13411 * Well, okay, there's one more exception here: don't remove 13412 * the orphan VEBs yet. We'll wait for an explicit remove request 13413 * from up the network stack. 13414 */ 13415 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13416 if (pf->vsi[i] && 13417 pf->vsi[i]->uplink_seid == uplink_seid && 13418 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13419 n++; /* count the VSIs */ 13420 } 13421 } 13422 for (i = 0; i < I40E_MAX_VEB; i++) { 13423 if (!pf->veb[i]) 13424 continue; 13425 if (pf->veb[i]->uplink_seid == uplink_seid) 13426 n++; /* count the VEBs */ 13427 if (pf->veb[i]->seid == uplink_seid) 13428 veb = pf->veb[i]; 13429 } 13430 if (n == 0 && veb && veb->uplink_seid != 0) 13431 i40e_veb_release(veb); 13432 13433 return 0; 13434 } 13435 13436 /** 13437 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13438 * @vsi: ptr to the VSI 13439 * 13440 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13441 * corresponding SW VSI structure and initializes num_queue_pairs for the 13442 * newly allocated VSI. 13443 * 13444 * Returns 0 on success or negative on failure 13445 **/ 13446 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13447 { 13448 int ret = -ENOENT; 13449 struct i40e_pf *pf = vsi->back; 13450 13451 if (vsi->q_vectors[0]) { 13452 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13453 vsi->seid); 13454 return -EEXIST; 13455 } 13456 13457 if (vsi->base_vector) { 13458 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13459 vsi->seid, vsi->base_vector); 13460 return -EEXIST; 13461 } 13462 13463 ret = i40e_vsi_alloc_q_vectors(vsi); 13464 if (ret) { 13465 dev_info(&pf->pdev->dev, 13466 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13467 vsi->num_q_vectors, vsi->seid, ret); 13468 vsi->num_q_vectors = 0; 13469 goto vector_setup_out; 13470 } 13471 13472 /* In Legacy mode, we do not have to get any other vector since we 13473 * piggyback on the misc/ICR0 for queue interrupts. 13474 */ 13475 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13476 return ret; 13477 if (vsi->num_q_vectors) 13478 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13479 vsi->num_q_vectors, vsi->idx); 13480 if (vsi->base_vector < 0) { 13481 dev_info(&pf->pdev->dev, 13482 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13483 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13484 i40e_vsi_free_q_vectors(vsi); 13485 ret = -ENOENT; 13486 goto vector_setup_out; 13487 } 13488 13489 vector_setup_out: 13490 return ret; 13491 } 13492 13493 /** 13494 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13495 * @vsi: pointer to the vsi. 13496 * 13497 * This re-allocates a vsi's queue resources. 13498 * 13499 * Returns pointer to the successfully allocated and configured VSI sw struct 13500 * on success, otherwise returns NULL on failure. 13501 **/ 13502 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13503 { 13504 u16 alloc_queue_pairs; 13505 struct i40e_pf *pf; 13506 u8 enabled_tc; 13507 int ret; 13508 13509 if (!vsi) 13510 return NULL; 13511 13512 pf = vsi->back; 13513 13514 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13515 i40e_vsi_clear_rings(vsi); 13516 13517 i40e_vsi_free_arrays(vsi, false); 13518 i40e_set_num_rings_in_vsi(vsi); 13519 ret = i40e_vsi_alloc_arrays(vsi, false); 13520 if (ret) 13521 goto err_vsi; 13522 13523 alloc_queue_pairs = vsi->alloc_queue_pairs * 13524 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13525 13526 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13527 if (ret < 0) { 13528 dev_info(&pf->pdev->dev, 13529 "failed to get tracking for %d queues for VSI %d err %d\n", 13530 alloc_queue_pairs, vsi->seid, ret); 13531 goto err_vsi; 13532 } 13533 vsi->base_queue = ret; 13534 13535 /* Update the FW view of the VSI. Force a reset of TC and queue 13536 * layout configurations. 13537 */ 13538 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13539 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13540 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13541 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13542 if (vsi->type == I40E_VSI_MAIN) 13543 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13544 13545 /* assign it some queues */ 13546 ret = i40e_alloc_rings(vsi); 13547 if (ret) 13548 goto err_rings; 13549 13550 /* map all of the rings to the q_vectors */ 13551 i40e_vsi_map_rings_to_vectors(vsi); 13552 return vsi; 13553 13554 err_rings: 13555 i40e_vsi_free_q_vectors(vsi); 13556 if (vsi->netdev_registered) { 13557 vsi->netdev_registered = false; 13558 unregister_netdev(vsi->netdev); 13559 free_netdev(vsi->netdev); 13560 vsi->netdev = NULL; 13561 } 13562 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13563 err_vsi: 13564 i40e_vsi_clear(vsi); 13565 return NULL; 13566 } 13567 13568 /** 13569 * i40e_vsi_setup - Set up a VSI by a given type 13570 * @pf: board private structure 13571 * @type: VSI type 13572 * @uplink_seid: the switch element to link to 13573 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13574 * 13575 * This allocates the sw VSI structure and its queue resources, then add a VSI 13576 * to the identified VEB. 13577 * 13578 * Returns pointer to the successfully allocated and configure VSI sw struct on 13579 * success, otherwise returns NULL on failure. 13580 **/ 13581 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13582 u16 uplink_seid, u32 param1) 13583 { 13584 struct i40e_vsi *vsi = NULL; 13585 struct i40e_veb *veb = NULL; 13586 u16 alloc_queue_pairs; 13587 int ret, i; 13588 int v_idx; 13589 13590 /* The requested uplink_seid must be either 13591 * - the PF's port seid 13592 * no VEB is needed because this is the PF 13593 * or this is a Flow Director special case VSI 13594 * - seid of an existing VEB 13595 * - seid of a VSI that owns an existing VEB 13596 * - seid of a VSI that doesn't own a VEB 13597 * a new VEB is created and the VSI becomes the owner 13598 * - seid of the PF VSI, which is what creates the first VEB 13599 * this is a special case of the previous 13600 * 13601 * Find which uplink_seid we were given and create a new VEB if needed 13602 */ 13603 for (i = 0; i < I40E_MAX_VEB; i++) { 13604 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 13605 veb = pf->veb[i]; 13606 break; 13607 } 13608 } 13609 13610 if (!veb && uplink_seid != pf->mac_seid) { 13611 13612 for (i = 0; i < pf->num_alloc_vsi; i++) { 13613 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 13614 vsi = pf->vsi[i]; 13615 break; 13616 } 13617 } 13618 if (!vsi) { 13619 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 13620 uplink_seid); 13621 return NULL; 13622 } 13623 13624 if (vsi->uplink_seid == pf->mac_seid) 13625 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 13626 vsi->tc_config.enabled_tc); 13627 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 13628 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 13629 vsi->tc_config.enabled_tc); 13630 if (veb) { 13631 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 13632 dev_info(&vsi->back->pdev->dev, 13633 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 13634 return NULL; 13635 } 13636 /* We come up by default in VEPA mode if SRIOV is not 13637 * already enabled, in which case we can't force VEPA 13638 * mode. 13639 */ 13640 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 13641 veb->bridge_mode = BRIDGE_MODE_VEPA; 13642 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 13643 } 13644 i40e_config_bridge_mode(veb); 13645 } 13646 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 13647 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 13648 veb = pf->veb[i]; 13649 } 13650 if (!veb) { 13651 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 13652 return NULL; 13653 } 13654 13655 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13656 uplink_seid = veb->seid; 13657 } 13658 13659 /* get vsi sw struct */ 13660 v_idx = i40e_vsi_mem_alloc(pf, type); 13661 if (v_idx < 0) 13662 goto err_alloc; 13663 vsi = pf->vsi[v_idx]; 13664 if (!vsi) 13665 goto err_alloc; 13666 vsi->type = type; 13667 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13668 13669 if (type == I40E_VSI_MAIN) 13670 pf->lan_vsi = v_idx; 13671 else if (type == I40E_VSI_SRIOV) 13672 vsi->vf_id = param1; 13673 /* assign it some queues */ 13674 alloc_queue_pairs = vsi->alloc_queue_pairs * 13675 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13676 13677 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13678 if (ret < 0) { 13679 dev_info(&pf->pdev->dev, 13680 "failed to get tracking for %d queues for VSI %d err=%d\n", 13681 alloc_queue_pairs, vsi->seid, ret); 13682 goto err_vsi; 13683 } 13684 vsi->base_queue = ret; 13685 13686 /* get a VSI from the hardware */ 13687 vsi->uplink_seid = uplink_seid; 13688 ret = i40e_add_vsi(vsi); 13689 if (ret) 13690 goto err_vsi; 13691 13692 switch (vsi->type) { 13693 /* setup the netdev if needed */ 13694 case I40E_VSI_MAIN: 13695 case I40E_VSI_VMDQ2: 13696 ret = i40e_config_netdev(vsi); 13697 if (ret) 13698 goto err_netdev; 13699 ret = register_netdev(vsi->netdev); 13700 if (ret) 13701 goto err_netdev; 13702 vsi->netdev_registered = true; 13703 netif_carrier_off(vsi->netdev); 13704 #ifdef CONFIG_I40E_DCB 13705 /* Setup DCB netlink interface */ 13706 i40e_dcbnl_setup(vsi); 13707 #endif /* CONFIG_I40E_DCB */ 13708 /* fall through */ 13709 13710 case I40E_VSI_FDIR: 13711 /* set up vectors and rings if needed */ 13712 ret = i40e_vsi_setup_vectors(vsi); 13713 if (ret) 13714 goto err_msix; 13715 13716 ret = i40e_alloc_rings(vsi); 13717 if (ret) 13718 goto err_rings; 13719 13720 /* map all of the rings to the q_vectors */ 13721 i40e_vsi_map_rings_to_vectors(vsi); 13722 13723 i40e_vsi_reset_stats(vsi); 13724 break; 13725 13726 default: 13727 /* no netdev or rings for the other VSI types */ 13728 break; 13729 } 13730 13731 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13732 (vsi->type == I40E_VSI_VMDQ2)) { 13733 ret = i40e_vsi_config_rss(vsi); 13734 } 13735 return vsi; 13736 13737 err_rings: 13738 i40e_vsi_free_q_vectors(vsi); 13739 err_msix: 13740 if (vsi->netdev_registered) { 13741 vsi->netdev_registered = false; 13742 unregister_netdev(vsi->netdev); 13743 free_netdev(vsi->netdev); 13744 vsi->netdev = NULL; 13745 } 13746 err_netdev: 13747 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13748 err_vsi: 13749 i40e_vsi_clear(vsi); 13750 err_alloc: 13751 return NULL; 13752 } 13753 13754 /** 13755 * i40e_veb_get_bw_info - Query VEB BW information 13756 * @veb: the veb to query 13757 * 13758 * Query the Tx scheduler BW configuration data for given VEB 13759 **/ 13760 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13761 { 13762 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13763 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13764 struct i40e_pf *pf = veb->pf; 13765 struct i40e_hw *hw = &pf->hw; 13766 u32 tc_bw_max; 13767 int ret = 0; 13768 int i; 13769 13770 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13771 &bw_data, NULL); 13772 if (ret) { 13773 dev_info(&pf->pdev->dev, 13774 "query veb bw config failed, err %s aq_err %s\n", 13775 i40e_stat_str(&pf->hw, ret), 13776 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13777 goto out; 13778 } 13779 13780 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13781 &ets_data, NULL); 13782 if (ret) { 13783 dev_info(&pf->pdev->dev, 13784 "query veb bw ets config failed, err %s aq_err %s\n", 13785 i40e_stat_str(&pf->hw, ret), 13786 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13787 goto out; 13788 } 13789 13790 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13791 veb->bw_max_quanta = ets_data.tc_bw_max; 13792 veb->is_abs_credits = bw_data.absolute_credits_enable; 13793 veb->enabled_tc = ets_data.tc_valid_bits; 13794 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13795 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13796 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13797 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13798 veb->bw_tc_limit_credits[i] = 13799 le16_to_cpu(bw_data.tc_bw_limits[i]); 13800 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13801 } 13802 13803 out: 13804 return ret; 13805 } 13806 13807 /** 13808 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13809 * @pf: board private structure 13810 * 13811 * On error: returns error code (negative) 13812 * On success: returns vsi index in PF (positive) 13813 **/ 13814 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13815 { 13816 int ret = -ENOENT; 13817 struct i40e_veb *veb; 13818 int i; 13819 13820 /* Need to protect the allocation of switch elements at the PF level */ 13821 mutex_lock(&pf->switch_mutex); 13822 13823 /* VEB list may be fragmented if VEB creation/destruction has 13824 * been happening. We can afford to do a quick scan to look 13825 * for any free slots in the list. 13826 * 13827 * find next empty veb slot, looping back around if necessary 13828 */ 13829 i = 0; 13830 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13831 i++; 13832 if (i >= I40E_MAX_VEB) { 13833 ret = -ENOMEM; 13834 goto err_alloc_veb; /* out of VEB slots! */ 13835 } 13836 13837 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13838 if (!veb) { 13839 ret = -ENOMEM; 13840 goto err_alloc_veb; 13841 } 13842 veb->pf = pf; 13843 veb->idx = i; 13844 veb->enabled_tc = 1; 13845 13846 pf->veb[i] = veb; 13847 ret = i; 13848 err_alloc_veb: 13849 mutex_unlock(&pf->switch_mutex); 13850 return ret; 13851 } 13852 13853 /** 13854 * i40e_switch_branch_release - Delete a branch of the switch tree 13855 * @branch: where to start deleting 13856 * 13857 * This uses recursion to find the tips of the branch to be 13858 * removed, deleting until we get back to and can delete this VEB. 13859 **/ 13860 static void i40e_switch_branch_release(struct i40e_veb *branch) 13861 { 13862 struct i40e_pf *pf = branch->pf; 13863 u16 branch_seid = branch->seid; 13864 u16 veb_idx = branch->idx; 13865 int i; 13866 13867 /* release any VEBs on this VEB - RECURSION */ 13868 for (i = 0; i < I40E_MAX_VEB; i++) { 13869 if (!pf->veb[i]) 13870 continue; 13871 if (pf->veb[i]->uplink_seid == branch->seid) 13872 i40e_switch_branch_release(pf->veb[i]); 13873 } 13874 13875 /* Release the VSIs on this VEB, but not the owner VSI. 13876 * 13877 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13878 * the VEB itself, so don't use (*branch) after this loop. 13879 */ 13880 for (i = 0; i < pf->num_alloc_vsi; i++) { 13881 if (!pf->vsi[i]) 13882 continue; 13883 if (pf->vsi[i]->uplink_seid == branch_seid && 13884 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13885 i40e_vsi_release(pf->vsi[i]); 13886 } 13887 } 13888 13889 /* There's one corner case where the VEB might not have been 13890 * removed, so double check it here and remove it if needed. 13891 * This case happens if the veb was created from the debugfs 13892 * commands and no VSIs were added to it. 13893 */ 13894 if (pf->veb[veb_idx]) 13895 i40e_veb_release(pf->veb[veb_idx]); 13896 } 13897 13898 /** 13899 * i40e_veb_clear - remove veb struct 13900 * @veb: the veb to remove 13901 **/ 13902 static void i40e_veb_clear(struct i40e_veb *veb) 13903 { 13904 if (!veb) 13905 return; 13906 13907 if (veb->pf) { 13908 struct i40e_pf *pf = veb->pf; 13909 13910 mutex_lock(&pf->switch_mutex); 13911 if (pf->veb[veb->idx] == veb) 13912 pf->veb[veb->idx] = NULL; 13913 mutex_unlock(&pf->switch_mutex); 13914 } 13915 13916 kfree(veb); 13917 } 13918 13919 /** 13920 * i40e_veb_release - Delete a VEB and free its resources 13921 * @veb: the VEB being removed 13922 **/ 13923 void i40e_veb_release(struct i40e_veb *veb) 13924 { 13925 struct i40e_vsi *vsi = NULL; 13926 struct i40e_pf *pf; 13927 int i, n = 0; 13928 13929 pf = veb->pf; 13930 13931 /* find the remaining VSI and check for extras */ 13932 for (i = 0; i < pf->num_alloc_vsi; i++) { 13933 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13934 n++; 13935 vsi = pf->vsi[i]; 13936 } 13937 } 13938 if (n != 1) { 13939 dev_info(&pf->pdev->dev, 13940 "can't remove VEB %d with %d VSIs left\n", 13941 veb->seid, n); 13942 return; 13943 } 13944 13945 /* move the remaining VSI to uplink veb */ 13946 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13947 if (veb->uplink_seid) { 13948 vsi->uplink_seid = veb->uplink_seid; 13949 if (veb->uplink_seid == pf->mac_seid) 13950 vsi->veb_idx = I40E_NO_VEB; 13951 else 13952 vsi->veb_idx = veb->veb_idx; 13953 } else { 13954 /* floating VEB */ 13955 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13956 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13957 } 13958 13959 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13960 i40e_veb_clear(veb); 13961 } 13962 13963 /** 13964 * i40e_add_veb - create the VEB in the switch 13965 * @veb: the VEB to be instantiated 13966 * @vsi: the controlling VSI 13967 **/ 13968 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13969 { 13970 struct i40e_pf *pf = veb->pf; 13971 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13972 int ret; 13973 13974 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13975 veb->enabled_tc, false, 13976 &veb->seid, enable_stats, NULL); 13977 13978 /* get a VEB from the hardware */ 13979 if (ret) { 13980 dev_info(&pf->pdev->dev, 13981 "couldn't add VEB, err %s aq_err %s\n", 13982 i40e_stat_str(&pf->hw, ret), 13983 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13984 return -EPERM; 13985 } 13986 13987 /* get statistics counter */ 13988 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13989 &veb->stats_idx, NULL, NULL, NULL); 13990 if (ret) { 13991 dev_info(&pf->pdev->dev, 13992 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13993 i40e_stat_str(&pf->hw, ret), 13994 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13995 return -EPERM; 13996 } 13997 ret = i40e_veb_get_bw_info(veb); 13998 if (ret) { 13999 dev_info(&pf->pdev->dev, 14000 "couldn't get VEB bw info, err %s aq_err %s\n", 14001 i40e_stat_str(&pf->hw, ret), 14002 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14003 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14004 return -ENOENT; 14005 } 14006 14007 vsi->uplink_seid = veb->seid; 14008 vsi->veb_idx = veb->idx; 14009 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14010 14011 return 0; 14012 } 14013 14014 /** 14015 * i40e_veb_setup - Set up a VEB 14016 * @pf: board private structure 14017 * @flags: VEB setup flags 14018 * @uplink_seid: the switch element to link to 14019 * @vsi_seid: the initial VSI seid 14020 * @enabled_tc: Enabled TC bit-map 14021 * 14022 * This allocates the sw VEB structure and links it into the switch 14023 * It is possible and legal for this to be a duplicate of an already 14024 * existing VEB. It is also possible for both uplink and vsi seids 14025 * to be zero, in order to create a floating VEB. 14026 * 14027 * Returns pointer to the successfully allocated VEB sw struct on 14028 * success, otherwise returns NULL on failure. 14029 **/ 14030 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14031 u16 uplink_seid, u16 vsi_seid, 14032 u8 enabled_tc) 14033 { 14034 struct i40e_veb *veb, *uplink_veb = NULL; 14035 int vsi_idx, veb_idx; 14036 int ret; 14037 14038 /* if one seid is 0, the other must be 0 to create a floating relay */ 14039 if ((uplink_seid == 0 || vsi_seid == 0) && 14040 (uplink_seid + vsi_seid != 0)) { 14041 dev_info(&pf->pdev->dev, 14042 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14043 uplink_seid, vsi_seid); 14044 return NULL; 14045 } 14046 14047 /* make sure there is such a vsi and uplink */ 14048 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14049 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14050 break; 14051 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14052 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14053 vsi_seid); 14054 return NULL; 14055 } 14056 14057 if (uplink_seid && uplink_seid != pf->mac_seid) { 14058 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14059 if (pf->veb[veb_idx] && 14060 pf->veb[veb_idx]->seid == uplink_seid) { 14061 uplink_veb = pf->veb[veb_idx]; 14062 break; 14063 } 14064 } 14065 if (!uplink_veb) { 14066 dev_info(&pf->pdev->dev, 14067 "uplink seid %d not found\n", uplink_seid); 14068 return NULL; 14069 } 14070 } 14071 14072 /* get veb sw struct */ 14073 veb_idx = i40e_veb_mem_alloc(pf); 14074 if (veb_idx < 0) 14075 goto err_alloc; 14076 veb = pf->veb[veb_idx]; 14077 veb->flags = flags; 14078 veb->uplink_seid = uplink_seid; 14079 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14080 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14081 14082 /* create the VEB in the switch */ 14083 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14084 if (ret) 14085 goto err_veb; 14086 if (vsi_idx == pf->lan_vsi) 14087 pf->lan_veb = veb->idx; 14088 14089 return veb; 14090 14091 err_veb: 14092 i40e_veb_clear(veb); 14093 err_alloc: 14094 return NULL; 14095 } 14096 14097 /** 14098 * i40e_setup_pf_switch_element - set PF vars based on switch type 14099 * @pf: board private structure 14100 * @ele: element we are building info from 14101 * @num_reported: total number of elements 14102 * @printconfig: should we print the contents 14103 * 14104 * helper function to assist in extracting a few useful SEID values. 14105 **/ 14106 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14107 struct i40e_aqc_switch_config_element_resp *ele, 14108 u16 num_reported, bool printconfig) 14109 { 14110 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14111 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14112 u8 element_type = ele->element_type; 14113 u16 seid = le16_to_cpu(ele->seid); 14114 14115 if (printconfig) 14116 dev_info(&pf->pdev->dev, 14117 "type=%d seid=%d uplink=%d downlink=%d\n", 14118 element_type, seid, uplink_seid, downlink_seid); 14119 14120 switch (element_type) { 14121 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14122 pf->mac_seid = seid; 14123 break; 14124 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14125 /* Main VEB? */ 14126 if (uplink_seid != pf->mac_seid) 14127 break; 14128 if (pf->lan_veb >= I40E_MAX_VEB) { 14129 int v; 14130 14131 /* find existing or else empty VEB */ 14132 for (v = 0; v < I40E_MAX_VEB; v++) { 14133 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14134 pf->lan_veb = v; 14135 break; 14136 } 14137 } 14138 if (pf->lan_veb >= I40E_MAX_VEB) { 14139 v = i40e_veb_mem_alloc(pf); 14140 if (v < 0) 14141 break; 14142 pf->lan_veb = v; 14143 } 14144 } 14145 if (pf->lan_veb >= I40E_MAX_VEB) 14146 break; 14147 14148 pf->veb[pf->lan_veb]->seid = seid; 14149 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14150 pf->veb[pf->lan_veb]->pf = pf; 14151 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14152 break; 14153 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14154 if (num_reported != 1) 14155 break; 14156 /* This is immediately after a reset so we can assume this is 14157 * the PF's VSI 14158 */ 14159 pf->mac_seid = uplink_seid; 14160 pf->pf_seid = downlink_seid; 14161 pf->main_vsi_seid = seid; 14162 if (printconfig) 14163 dev_info(&pf->pdev->dev, 14164 "pf_seid=%d main_vsi_seid=%d\n", 14165 pf->pf_seid, pf->main_vsi_seid); 14166 break; 14167 case I40E_SWITCH_ELEMENT_TYPE_PF: 14168 case I40E_SWITCH_ELEMENT_TYPE_VF: 14169 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14170 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14171 case I40E_SWITCH_ELEMENT_TYPE_PE: 14172 case I40E_SWITCH_ELEMENT_TYPE_PA: 14173 /* ignore these for now */ 14174 break; 14175 default: 14176 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14177 element_type, seid); 14178 break; 14179 } 14180 } 14181 14182 /** 14183 * i40e_fetch_switch_configuration - Get switch config from firmware 14184 * @pf: board private structure 14185 * @printconfig: should we print the contents 14186 * 14187 * Get the current switch configuration from the device and 14188 * extract a few useful SEID values. 14189 **/ 14190 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14191 { 14192 struct i40e_aqc_get_switch_config_resp *sw_config; 14193 u16 next_seid = 0; 14194 int ret = 0; 14195 u8 *aq_buf; 14196 int i; 14197 14198 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14199 if (!aq_buf) 14200 return -ENOMEM; 14201 14202 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14203 do { 14204 u16 num_reported, num_total; 14205 14206 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14207 I40E_AQ_LARGE_BUF, 14208 &next_seid, NULL); 14209 if (ret) { 14210 dev_info(&pf->pdev->dev, 14211 "get switch config failed err %s aq_err %s\n", 14212 i40e_stat_str(&pf->hw, ret), 14213 i40e_aq_str(&pf->hw, 14214 pf->hw.aq.asq_last_status)); 14215 kfree(aq_buf); 14216 return -ENOENT; 14217 } 14218 14219 num_reported = le16_to_cpu(sw_config->header.num_reported); 14220 num_total = le16_to_cpu(sw_config->header.num_total); 14221 14222 if (printconfig) 14223 dev_info(&pf->pdev->dev, 14224 "header: %d reported %d total\n", 14225 num_reported, num_total); 14226 14227 for (i = 0; i < num_reported; i++) { 14228 struct i40e_aqc_switch_config_element_resp *ele = 14229 &sw_config->element[i]; 14230 14231 i40e_setup_pf_switch_element(pf, ele, num_reported, 14232 printconfig); 14233 } 14234 } while (next_seid != 0); 14235 14236 kfree(aq_buf); 14237 return ret; 14238 } 14239 14240 /** 14241 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14242 * @pf: board private structure 14243 * @reinit: if the Main VSI needs to re-initialized. 14244 * 14245 * Returns 0 on success, negative value on failure 14246 **/ 14247 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 14248 { 14249 u16 flags = 0; 14250 int ret; 14251 14252 /* find out what's out there already */ 14253 ret = i40e_fetch_switch_configuration(pf, false); 14254 if (ret) { 14255 dev_info(&pf->pdev->dev, 14256 "couldn't fetch switch config, err %s aq_err %s\n", 14257 i40e_stat_str(&pf->hw, ret), 14258 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14259 return ret; 14260 } 14261 i40e_pf_reset_stats(pf); 14262 14263 /* set the switch config bit for the whole device to 14264 * support limited promisc or true promisc 14265 * when user requests promisc. The default is limited 14266 * promisc. 14267 */ 14268 14269 if ((pf->hw.pf_id == 0) && 14270 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14271 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14272 pf->last_sw_conf_flags = flags; 14273 } 14274 14275 if (pf->hw.pf_id == 0) { 14276 u16 valid_flags; 14277 14278 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14279 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14280 NULL); 14281 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14282 dev_info(&pf->pdev->dev, 14283 "couldn't set switch config bits, err %s aq_err %s\n", 14284 i40e_stat_str(&pf->hw, ret), 14285 i40e_aq_str(&pf->hw, 14286 pf->hw.aq.asq_last_status)); 14287 /* not a fatal problem, just keep going */ 14288 } 14289 pf->last_sw_conf_valid_flags = valid_flags; 14290 } 14291 14292 /* first time setup */ 14293 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14294 struct i40e_vsi *vsi = NULL; 14295 u16 uplink_seid; 14296 14297 /* Set up the PF VSI associated with the PF's main VSI 14298 * that is already in the HW switch 14299 */ 14300 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14301 uplink_seid = pf->veb[pf->lan_veb]->seid; 14302 else 14303 uplink_seid = pf->mac_seid; 14304 if (pf->lan_vsi == I40E_NO_VSI) 14305 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14306 else if (reinit) 14307 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14308 if (!vsi) { 14309 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14310 i40e_cloud_filter_exit(pf); 14311 i40e_fdir_teardown(pf); 14312 return -EAGAIN; 14313 } 14314 } else { 14315 /* force a reset of TC and queue layout configurations */ 14316 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14317 14318 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14319 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14320 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14321 } 14322 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14323 14324 i40e_fdir_sb_setup(pf); 14325 14326 /* Setup static PF queue filter control settings */ 14327 ret = i40e_setup_pf_filter_control(pf); 14328 if (ret) { 14329 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14330 ret); 14331 /* Failure here should not stop continuing other steps */ 14332 } 14333 14334 /* enable RSS in the HW, even for only one queue, as the stack can use 14335 * the hash 14336 */ 14337 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14338 i40e_pf_config_rss(pf); 14339 14340 /* fill in link information and enable LSE reporting */ 14341 i40e_link_event(pf); 14342 14343 /* Initialize user-specific link properties */ 14344 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14345 I40E_AQ_AN_COMPLETED) ? true : false); 14346 14347 i40e_ptp_init(pf); 14348 14349 /* repopulate tunnel port filters */ 14350 i40e_sync_udp_filters(pf); 14351 14352 return ret; 14353 } 14354 14355 /** 14356 * i40e_determine_queue_usage - Work out queue distribution 14357 * @pf: board private structure 14358 **/ 14359 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14360 { 14361 int queues_left; 14362 int q_max; 14363 14364 pf->num_lan_qps = 0; 14365 14366 /* Find the max queues to be put into basic use. We'll always be 14367 * using TC0, whether or not DCB is running, and TC0 will get the 14368 * big RSS set. 14369 */ 14370 queues_left = pf->hw.func_caps.num_tx_qp; 14371 14372 if ((queues_left == 1) || 14373 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14374 /* one qp for PF, no queues for anything else */ 14375 queues_left = 0; 14376 pf->alloc_rss_size = pf->num_lan_qps = 1; 14377 14378 /* make sure all the fancies are disabled */ 14379 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14380 I40E_FLAG_IWARP_ENABLED | 14381 I40E_FLAG_FD_SB_ENABLED | 14382 I40E_FLAG_FD_ATR_ENABLED | 14383 I40E_FLAG_DCB_CAPABLE | 14384 I40E_FLAG_DCB_ENABLED | 14385 I40E_FLAG_SRIOV_ENABLED | 14386 I40E_FLAG_VMDQ_ENABLED); 14387 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14388 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14389 I40E_FLAG_FD_SB_ENABLED | 14390 I40E_FLAG_FD_ATR_ENABLED | 14391 I40E_FLAG_DCB_CAPABLE))) { 14392 /* one qp for PF */ 14393 pf->alloc_rss_size = pf->num_lan_qps = 1; 14394 queues_left -= pf->num_lan_qps; 14395 14396 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14397 I40E_FLAG_IWARP_ENABLED | 14398 I40E_FLAG_FD_SB_ENABLED | 14399 I40E_FLAG_FD_ATR_ENABLED | 14400 I40E_FLAG_DCB_ENABLED | 14401 I40E_FLAG_VMDQ_ENABLED); 14402 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14403 } else { 14404 /* Not enough queues for all TCs */ 14405 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14406 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14407 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14408 I40E_FLAG_DCB_ENABLED); 14409 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14410 } 14411 14412 /* limit lan qps to the smaller of qps, cpus or msix */ 14413 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14414 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14415 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14416 pf->num_lan_qps = q_max; 14417 14418 queues_left -= pf->num_lan_qps; 14419 } 14420 14421 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14422 if (queues_left > 1) { 14423 queues_left -= 1; /* save 1 queue for FD */ 14424 } else { 14425 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14426 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14427 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14428 } 14429 } 14430 14431 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14432 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14433 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14434 (queues_left / pf->num_vf_qps)); 14435 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14436 } 14437 14438 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14439 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14440 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14441 (queues_left / pf->num_vmdq_qps)); 14442 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14443 } 14444 14445 pf->queues_left = queues_left; 14446 dev_dbg(&pf->pdev->dev, 14447 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14448 pf->hw.func_caps.num_tx_qp, 14449 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14450 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14451 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14452 queues_left); 14453 } 14454 14455 /** 14456 * i40e_setup_pf_filter_control - Setup PF static filter control 14457 * @pf: PF to be setup 14458 * 14459 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14460 * settings. If PE/FCoE are enabled then it will also set the per PF 14461 * based filter sizes required for them. It also enables Flow director, 14462 * ethertype and macvlan type filter settings for the pf. 14463 * 14464 * Returns 0 on success, negative on failure 14465 **/ 14466 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14467 { 14468 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14469 14470 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14471 14472 /* Flow Director is enabled */ 14473 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14474 settings->enable_fdir = true; 14475 14476 /* Ethtype and MACVLAN filters enabled for PF */ 14477 settings->enable_ethtype = true; 14478 settings->enable_macvlan = true; 14479 14480 if (i40e_set_filter_control(&pf->hw, settings)) 14481 return -ENOENT; 14482 14483 return 0; 14484 } 14485 14486 #define INFO_STRING_LEN 255 14487 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14488 static void i40e_print_features(struct i40e_pf *pf) 14489 { 14490 struct i40e_hw *hw = &pf->hw; 14491 char *buf; 14492 int i; 14493 14494 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14495 if (!buf) 14496 return; 14497 14498 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14499 #ifdef CONFIG_PCI_IOV 14500 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14501 #endif 14502 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14503 pf->hw.func_caps.num_vsis, 14504 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14505 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14506 i += snprintf(&buf[i], REMAIN(i), " RSS"); 14507 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14508 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 14509 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14510 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 14511 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 14512 } 14513 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14514 i += snprintf(&buf[i], REMAIN(i), " DCB"); 14515 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 14516 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 14517 if (pf->flags & I40E_FLAG_PTP) 14518 i += snprintf(&buf[i], REMAIN(i), " PTP"); 14519 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14520 i += snprintf(&buf[i], REMAIN(i), " VEB"); 14521 else 14522 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 14523 14524 dev_info(&pf->pdev->dev, "%s\n", buf); 14525 kfree(buf); 14526 WARN_ON(i > INFO_STRING_LEN); 14527 } 14528 14529 /** 14530 * i40e_get_platform_mac_addr - get platform-specific MAC address 14531 * @pdev: PCI device information struct 14532 * @pf: board private structure 14533 * 14534 * Look up the MAC address for the device. First we'll try 14535 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14536 * specific fallback. Otherwise, we'll default to the stored value in 14537 * firmware. 14538 **/ 14539 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14540 { 14541 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14542 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14543 } 14544 14545 /** 14546 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14547 * @fec_cfg: FEC option to set in flags 14548 * @flags: ptr to flags in which we set FEC option 14549 **/ 14550 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14551 { 14552 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14553 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14554 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14555 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14556 *flags |= I40E_FLAG_RS_FEC; 14557 *flags &= ~I40E_FLAG_BASE_R_FEC; 14558 } 14559 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14560 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14561 *flags |= I40E_FLAG_BASE_R_FEC; 14562 *flags &= ~I40E_FLAG_RS_FEC; 14563 } 14564 if (fec_cfg == 0) 14565 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14566 } 14567 14568 /** 14569 * i40e_check_recovery_mode - check if we are running transition firmware 14570 * @pf: board private structure 14571 * 14572 * Check registers indicating the firmware runs in recovery mode. Sets the 14573 * appropriate driver state. 14574 * 14575 * Returns true if the recovery mode was detected, false otherwise 14576 **/ 14577 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14578 { 14579 u32 val = rd32(&pf->hw, I40E_GL_FWSTS) & I40E_GL_FWSTS_FWS1B_MASK; 14580 bool is_recovery_mode = false; 14581 14582 if (pf->hw.mac.type == I40E_MAC_XL710) 14583 is_recovery_mode = 14584 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14585 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK || 14586 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_TRANSITION_MASK || 14587 val == I40E_XL710_GL_FWSTS_FWS1B_REC_MOD_NVM_MASK; 14588 if (pf->hw.mac.type == I40E_MAC_X722) 14589 is_recovery_mode = 14590 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_CORER_MASK || 14591 val == I40E_X722_GL_FWSTS_FWS1B_REC_MOD_GLOBR_MASK; 14592 if (is_recovery_mode) { 14593 dev_notice(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14594 dev_notice(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14595 set_bit(__I40E_RECOVERY_MODE, pf->state); 14596 14597 return true; 14598 } 14599 if (test_and_clear_bit(__I40E_RECOVERY_MODE, pf->state)) 14600 dev_info(&pf->pdev->dev, "Reinitializing in normal mode with full functionality.\n"); 14601 14602 return false; 14603 } 14604 14605 /** 14606 * i40e_pf_loop_reset - perform reset in a loop. 14607 * @pf: board private structure 14608 * 14609 * This function is useful when a NIC is about to enter recovery mode. 14610 * When a NIC's internal data structures are corrupted the NIC's 14611 * firmware is going to enter recovery mode. 14612 * Right after a POR it takes about 7 minutes for firmware to enter 14613 * recovery mode. Until that time a NIC is in some kind of intermediate 14614 * state. After that time period the NIC almost surely enters 14615 * recovery mode. The only way for a driver to detect intermediate 14616 * state is to issue a series of pf-resets and check a return value. 14617 * If a PF reset returns success then the firmware could be in recovery 14618 * mode so the caller of this code needs to check for recovery mode 14619 * if this function returns success. There is a little chance that 14620 * firmware will hang in intermediate state forever. 14621 * Since waiting 7 minutes is quite a lot of time this function waits 14622 * 10 seconds and then gives up by returning an error. 14623 * 14624 * Return 0 on success, negative on failure. 14625 **/ 14626 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 14627 { 14628 const unsigned short MAX_CNT = 1000; 14629 const unsigned short MSECS = 10; 14630 struct i40e_hw *hw = &pf->hw; 14631 i40e_status ret; 14632 int cnt; 14633 14634 for (cnt = 0; cnt < MAX_CNT; ++cnt) { 14635 ret = i40e_pf_reset(hw); 14636 if (!ret) 14637 break; 14638 msleep(MSECS); 14639 } 14640 14641 if (cnt == MAX_CNT) { 14642 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 14643 return ret; 14644 } 14645 14646 pf->pfr_count++; 14647 return ret; 14648 } 14649 14650 /** 14651 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 14652 * @pf: board private structure 14653 * @hw: ptr to the hardware info 14654 * 14655 * This function does a minimal setup of all subsystems needed for running 14656 * recovery mode. 14657 * 14658 * Returns 0 on success, negative on failure 14659 **/ 14660 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 14661 { 14662 struct i40e_vsi *vsi; 14663 int err; 14664 int v_idx; 14665 14666 pci_save_state(pf->pdev); 14667 14668 /* set up periodic task facility */ 14669 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14670 pf->service_timer_period = HZ; 14671 14672 INIT_WORK(&pf->service_task, i40e_service_task); 14673 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14674 14675 err = i40e_init_interrupt_scheme(pf); 14676 if (err) 14677 goto err_switch_setup; 14678 14679 /* The number of VSIs reported by the FW is the minimum guaranteed 14680 * to us; HW supports far more and we share the remaining pool with 14681 * the other PFs. We allocate space for more than the guarantee with 14682 * the understanding that we might not get them all later. 14683 */ 14684 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14685 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14686 else 14687 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14688 14689 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 14690 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14691 GFP_KERNEL); 14692 if (!pf->vsi) { 14693 err = -ENOMEM; 14694 goto err_switch_setup; 14695 } 14696 14697 /* We allocate one VSI which is needed as absolute minimum 14698 * in order to register the netdev 14699 */ 14700 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 14701 if (v_idx < 0) 14702 goto err_switch_setup; 14703 pf->lan_vsi = v_idx; 14704 vsi = pf->vsi[v_idx]; 14705 if (!vsi) 14706 goto err_switch_setup; 14707 vsi->alloc_queue_pairs = 1; 14708 err = i40e_config_netdev(vsi); 14709 if (err) 14710 goto err_switch_setup; 14711 err = register_netdev(vsi->netdev); 14712 if (err) 14713 goto err_switch_setup; 14714 vsi->netdev_registered = true; 14715 i40e_dbg_pf_init(pf); 14716 14717 err = i40e_setup_misc_vector_for_recovery_mode(pf); 14718 if (err) 14719 goto err_switch_setup; 14720 14721 /* tell the firmware that we're starting */ 14722 i40e_send_version(pf); 14723 14724 /* since everything's happy, start the service_task timer */ 14725 mod_timer(&pf->service_timer, 14726 round_jiffies(jiffies + pf->service_timer_period)); 14727 14728 return 0; 14729 14730 err_switch_setup: 14731 i40e_reset_interrupt_capability(pf); 14732 del_timer_sync(&pf->service_timer); 14733 i40e_shutdown_adminq(hw); 14734 iounmap(hw->hw_addr); 14735 pci_disable_pcie_error_reporting(pf->pdev); 14736 pci_release_mem_regions(pf->pdev); 14737 pci_disable_device(pf->pdev); 14738 kfree(pf); 14739 14740 return err; 14741 } 14742 14743 /** 14744 * i40e_probe - Device initialization routine 14745 * @pdev: PCI device information struct 14746 * @ent: entry in i40e_pci_tbl 14747 * 14748 * i40e_probe initializes a PF identified by a pci_dev structure. 14749 * The OS initialization, configuring of the PF private structure, 14750 * and a hardware reset occur. 14751 * 14752 * Returns 0 on success, negative on failure 14753 **/ 14754 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 14755 { 14756 struct i40e_aq_get_phy_abilities_resp abilities; 14757 struct i40e_pf *pf; 14758 struct i40e_hw *hw; 14759 static u16 pfs_found; 14760 u16 wol_nvm_bits; 14761 u16 link_status; 14762 int err; 14763 u32 val; 14764 u32 i; 14765 u8 set_fc_aq_fail; 14766 14767 err = pci_enable_device_mem(pdev); 14768 if (err) 14769 return err; 14770 14771 /* set up for high or low dma */ 14772 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 14773 if (err) { 14774 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 14775 if (err) { 14776 dev_err(&pdev->dev, 14777 "DMA configuration failed: 0x%x\n", err); 14778 goto err_dma; 14779 } 14780 } 14781 14782 /* set up pci connections */ 14783 err = pci_request_mem_regions(pdev, i40e_driver_name); 14784 if (err) { 14785 dev_info(&pdev->dev, 14786 "pci_request_selected_regions failed %d\n", err); 14787 goto err_pci_reg; 14788 } 14789 14790 pci_enable_pcie_error_reporting(pdev); 14791 pci_set_master(pdev); 14792 14793 /* Now that we have a PCI connection, we need to do the 14794 * low level device setup. This is primarily setting up 14795 * the Admin Queue structures and then querying for the 14796 * device's current profile information. 14797 */ 14798 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 14799 if (!pf) { 14800 err = -ENOMEM; 14801 goto err_pf_alloc; 14802 } 14803 pf->next_vsi = 0; 14804 pf->pdev = pdev; 14805 set_bit(__I40E_DOWN, pf->state); 14806 14807 hw = &pf->hw; 14808 hw->back = pf; 14809 14810 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 14811 I40E_MAX_CSR_SPACE); 14812 /* We believe that the highest register to read is 14813 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 14814 * is not less than that before mapping to prevent a 14815 * kernel panic. 14816 */ 14817 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 14818 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 14819 pf->ioremap_len); 14820 err = -ENOMEM; 14821 goto err_ioremap; 14822 } 14823 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 14824 if (!hw->hw_addr) { 14825 err = -EIO; 14826 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 14827 (unsigned int)pci_resource_start(pdev, 0), 14828 pf->ioremap_len, err); 14829 goto err_ioremap; 14830 } 14831 hw->vendor_id = pdev->vendor; 14832 hw->device_id = pdev->device; 14833 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 14834 hw->subsystem_vendor_id = pdev->subsystem_vendor; 14835 hw->subsystem_device_id = pdev->subsystem_device; 14836 hw->bus.device = PCI_SLOT(pdev->devfn); 14837 hw->bus.func = PCI_FUNC(pdev->devfn); 14838 hw->bus.bus_id = pdev->bus->number; 14839 pf->instance = pfs_found; 14840 14841 /* Select something other than the 802.1ad ethertype for the 14842 * switch to use internally and drop on ingress. 14843 */ 14844 hw->switch_tag = 0xffff; 14845 hw->first_tag = ETH_P_8021AD; 14846 hw->second_tag = ETH_P_8021Q; 14847 14848 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 14849 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 14850 INIT_LIST_HEAD(&pf->ddp_old_prof); 14851 14852 /* set up the locks for the AQ, do this only once in probe 14853 * and destroy them only once in remove 14854 */ 14855 mutex_init(&hw->aq.asq_mutex); 14856 mutex_init(&hw->aq.arq_mutex); 14857 14858 pf->msg_enable = netif_msg_init(debug, 14859 NETIF_MSG_DRV | 14860 NETIF_MSG_PROBE | 14861 NETIF_MSG_LINK); 14862 if (debug < -1) 14863 pf->hw.debug_mask = debug; 14864 14865 /* do a special CORER for clearing PXE mode once at init */ 14866 if (hw->revision_id == 0 && 14867 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 14868 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 14869 i40e_flush(hw); 14870 msleep(200); 14871 pf->corer_count++; 14872 14873 i40e_clear_pxe_mode(hw); 14874 } 14875 14876 /* Reset here to make sure all is clean and to define PF 'n' */ 14877 i40e_clear_hw(hw); 14878 14879 err = i40e_set_mac_type(hw); 14880 if (err) { 14881 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14882 err); 14883 goto err_pf_reset; 14884 } 14885 14886 err = i40e_pf_loop_reset(pf); 14887 if (err) { 14888 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14889 goto err_pf_reset; 14890 } 14891 14892 i40e_check_recovery_mode(pf); 14893 14894 hw->aq.num_arq_entries = I40E_AQ_LEN; 14895 hw->aq.num_asq_entries = I40E_AQ_LEN; 14896 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14897 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14898 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14899 14900 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14901 "%s-%s:misc", 14902 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14903 14904 err = i40e_init_shared_code(hw); 14905 if (err) { 14906 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14907 err); 14908 goto err_pf_reset; 14909 } 14910 14911 /* set up a default setting for link flow control */ 14912 pf->hw.fc.requested_mode = I40E_FC_NONE; 14913 14914 err = i40e_init_adminq(hw); 14915 if (err) { 14916 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14917 dev_info(&pdev->dev, 14918 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 14919 hw->aq.api_maj_ver, 14920 hw->aq.api_min_ver, 14921 I40E_FW_API_VERSION_MAJOR, 14922 I40E_FW_MINOR_VERSION(hw)); 14923 else 14924 dev_info(&pdev->dev, 14925 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14926 14927 goto err_pf_reset; 14928 } 14929 i40e_get_oem_version(hw); 14930 14931 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 14932 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 14933 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14934 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14935 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 14936 hw->subsystem_vendor_id, hw->subsystem_device_id); 14937 14938 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14939 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14940 dev_info(&pdev->dev, 14941 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 14942 hw->aq.api_maj_ver, 14943 hw->aq.api_min_ver, 14944 I40E_FW_API_VERSION_MAJOR, 14945 I40E_FW_MINOR_VERSION(hw)); 14946 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14947 dev_info(&pdev->dev, 14948 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 14949 hw->aq.api_maj_ver, 14950 hw->aq.api_min_ver, 14951 I40E_FW_API_VERSION_MAJOR, 14952 I40E_FW_MINOR_VERSION(hw)); 14953 14954 i40e_verify_eeprom(pf); 14955 14956 /* Rev 0 hardware was never productized */ 14957 if (hw->revision_id < 1) 14958 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14959 14960 i40e_clear_pxe_mode(hw); 14961 14962 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14963 if (err) 14964 goto err_adminq_setup; 14965 14966 err = i40e_sw_init(pf); 14967 if (err) { 14968 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14969 goto err_sw_init; 14970 } 14971 14972 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 14973 return i40e_init_recovery_mode(pf, hw); 14974 14975 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14976 hw->func_caps.num_rx_qp, 0, 0); 14977 if (err) { 14978 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14979 goto err_init_lan_hmc; 14980 } 14981 14982 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14983 if (err) { 14984 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14985 err = -ENOENT; 14986 goto err_configure_lan_hmc; 14987 } 14988 14989 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14990 * Ignore error return codes because if it was already disabled via 14991 * hardware settings this will fail 14992 */ 14993 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14994 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14995 i40e_aq_stop_lldp(hw, true, false, NULL); 14996 } 14997 14998 /* allow a platform config to override the HW addr */ 14999 i40e_get_platform_mac_addr(pdev, pf); 15000 15001 if (!is_valid_ether_addr(hw->mac.addr)) { 15002 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15003 err = -EIO; 15004 goto err_mac_addr; 15005 } 15006 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15007 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15008 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15009 if (is_valid_ether_addr(hw->mac.port_addr)) 15010 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15011 15012 pci_set_drvdata(pdev, pf); 15013 pci_save_state(pdev); 15014 15015 dev_info(&pdev->dev, 15016 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15017 "FW LLDP is disabled\n" : 15018 "FW LLDP is enabled\n"); 15019 15020 /* Enable FW to write default DCB config on link-up */ 15021 i40e_aq_set_dcb_parameters(hw, true, NULL); 15022 15023 #ifdef CONFIG_I40E_DCB 15024 err = i40e_init_pf_dcb(pf); 15025 if (err) { 15026 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15027 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15028 /* Continue without DCB enabled */ 15029 } 15030 #endif /* CONFIG_I40E_DCB */ 15031 15032 /* set up periodic task facility */ 15033 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15034 pf->service_timer_period = HZ; 15035 15036 INIT_WORK(&pf->service_task, i40e_service_task); 15037 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15038 15039 /* NVM bit on means WoL disabled for the port */ 15040 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15041 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15042 pf->wol_en = false; 15043 else 15044 pf->wol_en = true; 15045 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15046 15047 /* set up the main switch operations */ 15048 i40e_determine_queue_usage(pf); 15049 err = i40e_init_interrupt_scheme(pf); 15050 if (err) 15051 goto err_switch_setup; 15052 15053 /* The number of VSIs reported by the FW is the minimum guaranteed 15054 * to us; HW supports far more and we share the remaining pool with 15055 * the other PFs. We allocate space for more than the guarantee with 15056 * the understanding that we might not get them all later. 15057 */ 15058 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15059 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15060 else 15061 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15062 15063 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15064 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15065 GFP_KERNEL); 15066 if (!pf->vsi) { 15067 err = -ENOMEM; 15068 goto err_switch_setup; 15069 } 15070 15071 #ifdef CONFIG_PCI_IOV 15072 /* prep for VF support */ 15073 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15074 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15075 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15076 if (pci_num_vf(pdev)) 15077 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15078 } 15079 #endif 15080 err = i40e_setup_pf_switch(pf, false); 15081 if (err) { 15082 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15083 goto err_vsis; 15084 } 15085 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15086 15087 /* Make sure flow control is set according to current settings */ 15088 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 15089 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 15090 dev_dbg(&pf->pdev->dev, 15091 "Set fc with err %s aq_err %s on get_phy_cap\n", 15092 i40e_stat_str(hw, err), 15093 i40e_aq_str(hw, hw->aq.asq_last_status)); 15094 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 15095 dev_dbg(&pf->pdev->dev, 15096 "Set fc with err %s aq_err %s on set_phy_config\n", 15097 i40e_stat_str(hw, err), 15098 i40e_aq_str(hw, hw->aq.asq_last_status)); 15099 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 15100 dev_dbg(&pf->pdev->dev, 15101 "Set fc with err %s aq_err %s on get_link_info\n", 15102 i40e_stat_str(hw, err), 15103 i40e_aq_str(hw, hw->aq.asq_last_status)); 15104 15105 /* if FDIR VSI was set up, start it now */ 15106 for (i = 0; i < pf->num_alloc_vsi; i++) { 15107 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15108 i40e_vsi_open(pf->vsi[i]); 15109 break; 15110 } 15111 } 15112 15113 /* The driver only wants link up/down and module qualification 15114 * reports from firmware. Note the negative logic. 15115 */ 15116 err = i40e_aq_set_phy_int_mask(&pf->hw, 15117 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15118 I40E_AQ_EVENT_MEDIA_NA | 15119 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15120 if (err) 15121 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15122 i40e_stat_str(&pf->hw, err), 15123 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15124 15125 /* Reconfigure hardware for allowing smaller MSS in the case 15126 * of TSO, so that we avoid the MDD being fired and causing 15127 * a reset in the case of small MSS+TSO. 15128 */ 15129 val = rd32(hw, I40E_REG_MSS); 15130 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15131 val &= ~I40E_REG_MSS_MIN_MASK; 15132 val |= I40E_64BYTE_MSS; 15133 wr32(hw, I40E_REG_MSS, val); 15134 } 15135 15136 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15137 msleep(75); 15138 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15139 if (err) 15140 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15141 i40e_stat_str(&pf->hw, err), 15142 i40e_aq_str(&pf->hw, 15143 pf->hw.aq.asq_last_status)); 15144 } 15145 /* The main driver is (mostly) up and happy. We need to set this state 15146 * before setting up the misc vector or we get a race and the vector 15147 * ends up disabled forever. 15148 */ 15149 clear_bit(__I40E_DOWN, pf->state); 15150 15151 /* In case of MSIX we are going to setup the misc vector right here 15152 * to handle admin queue events etc. In case of legacy and MSI 15153 * the misc functionality and queue processing is combined in 15154 * the same vector and that gets setup at open. 15155 */ 15156 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15157 err = i40e_setup_misc_vector(pf); 15158 if (err) { 15159 dev_info(&pdev->dev, 15160 "setup of misc vector failed: %d\n", err); 15161 goto err_vsis; 15162 } 15163 } 15164 15165 #ifdef CONFIG_PCI_IOV 15166 /* prep for VF support */ 15167 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15168 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15169 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15170 /* disable link interrupts for VFs */ 15171 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15172 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15173 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15174 i40e_flush(hw); 15175 15176 if (pci_num_vf(pdev)) { 15177 dev_info(&pdev->dev, 15178 "Active VFs found, allocating resources.\n"); 15179 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15180 if (err) 15181 dev_info(&pdev->dev, 15182 "Error %d allocating resources for existing VFs\n", 15183 err); 15184 } 15185 } 15186 #endif /* CONFIG_PCI_IOV */ 15187 15188 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15189 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15190 pf->num_iwarp_msix, 15191 I40E_IWARP_IRQ_PILE_ID); 15192 if (pf->iwarp_base_vector < 0) { 15193 dev_info(&pdev->dev, 15194 "failed to get tracking for %d vectors for IWARP err=%d\n", 15195 pf->num_iwarp_msix, pf->iwarp_base_vector); 15196 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15197 } 15198 } 15199 15200 i40e_dbg_pf_init(pf); 15201 15202 /* tell the firmware that we're starting */ 15203 i40e_send_version(pf); 15204 15205 /* since everything's happy, start the service_task timer */ 15206 mod_timer(&pf->service_timer, 15207 round_jiffies(jiffies + pf->service_timer_period)); 15208 15209 /* add this PF to client device list and launch a client service task */ 15210 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15211 err = i40e_lan_add_device(pf); 15212 if (err) 15213 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15214 err); 15215 } 15216 15217 #define PCI_SPEED_SIZE 8 15218 #define PCI_WIDTH_SIZE 8 15219 /* Devices on the IOSF bus do not have this information 15220 * and will report PCI Gen 1 x 1 by default so don't bother 15221 * checking them. 15222 */ 15223 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15224 char speed[PCI_SPEED_SIZE] = "Unknown"; 15225 char width[PCI_WIDTH_SIZE] = "Unknown"; 15226 15227 /* Get the negotiated link width and speed from PCI config 15228 * space 15229 */ 15230 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15231 &link_status); 15232 15233 i40e_set_pci_config_data(hw, link_status); 15234 15235 switch (hw->bus.speed) { 15236 case i40e_bus_speed_8000: 15237 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15238 case i40e_bus_speed_5000: 15239 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15240 case i40e_bus_speed_2500: 15241 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15242 default: 15243 break; 15244 } 15245 switch (hw->bus.width) { 15246 case i40e_bus_width_pcie_x8: 15247 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15248 case i40e_bus_width_pcie_x4: 15249 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15250 case i40e_bus_width_pcie_x2: 15251 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15252 case i40e_bus_width_pcie_x1: 15253 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15254 default: 15255 break; 15256 } 15257 15258 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15259 speed, width); 15260 15261 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15262 hw->bus.speed < i40e_bus_speed_8000) { 15263 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15264 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15265 } 15266 } 15267 15268 /* get the requested speeds from the fw */ 15269 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15270 if (err) 15271 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15272 i40e_stat_str(&pf->hw, err), 15273 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15274 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15275 15276 /* set the FEC config due to the board capabilities */ 15277 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15278 15279 /* get the supported phy types from the fw */ 15280 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15281 if (err) 15282 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15283 i40e_stat_str(&pf->hw, err), 15284 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15285 15286 /* Add a filter to drop all Flow control frames from any VSI from being 15287 * transmitted. By doing so we stop a malicious VF from sending out 15288 * PAUSE or PFC frames and potentially controlling traffic for other 15289 * PF/VF VSIs. 15290 * The FW can still send Flow control frames if enabled. 15291 */ 15292 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15293 pf->main_vsi_seid); 15294 15295 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15296 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15297 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15298 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15299 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15300 /* print a string summarizing features */ 15301 i40e_print_features(pf); 15302 15303 return 0; 15304 15305 /* Unwind what we've done if something failed in the setup */ 15306 err_vsis: 15307 set_bit(__I40E_DOWN, pf->state); 15308 i40e_clear_interrupt_scheme(pf); 15309 kfree(pf->vsi); 15310 err_switch_setup: 15311 i40e_reset_interrupt_capability(pf); 15312 del_timer_sync(&pf->service_timer); 15313 err_mac_addr: 15314 err_configure_lan_hmc: 15315 (void)i40e_shutdown_lan_hmc(hw); 15316 err_init_lan_hmc: 15317 kfree(pf->qp_pile); 15318 err_sw_init: 15319 err_adminq_setup: 15320 err_pf_reset: 15321 iounmap(hw->hw_addr); 15322 err_ioremap: 15323 kfree(pf); 15324 err_pf_alloc: 15325 pci_disable_pcie_error_reporting(pdev); 15326 pci_release_mem_regions(pdev); 15327 err_pci_reg: 15328 err_dma: 15329 pci_disable_device(pdev); 15330 return err; 15331 } 15332 15333 /** 15334 * i40e_remove - Device removal routine 15335 * @pdev: PCI device information struct 15336 * 15337 * i40e_remove is called by the PCI subsystem to alert the driver 15338 * that is should release a PCI device. This could be caused by a 15339 * Hot-Plug event, or because the driver is going to be removed from 15340 * memory. 15341 **/ 15342 static void i40e_remove(struct pci_dev *pdev) 15343 { 15344 struct i40e_pf *pf = pci_get_drvdata(pdev); 15345 struct i40e_hw *hw = &pf->hw; 15346 i40e_status ret_code; 15347 int i; 15348 15349 i40e_dbg_pf_exit(pf); 15350 15351 i40e_ptp_stop(pf); 15352 15353 /* Disable RSS in hw */ 15354 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15355 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15356 15357 /* no more scheduling of any task */ 15358 set_bit(__I40E_SUSPENDED, pf->state); 15359 set_bit(__I40E_DOWN, pf->state); 15360 if (pf->service_timer.function) 15361 del_timer_sync(&pf->service_timer); 15362 if (pf->service_task.func) 15363 cancel_work_sync(&pf->service_task); 15364 15365 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15366 struct i40e_vsi *vsi = pf->vsi[0]; 15367 15368 /* We know that we have allocated only one vsi for this PF, 15369 * it was just for registering netdevice, so the interface 15370 * could be visible in the 'ifconfig' output 15371 */ 15372 unregister_netdev(vsi->netdev); 15373 free_netdev(vsi->netdev); 15374 15375 goto unmap; 15376 } 15377 15378 /* Client close must be called explicitly here because the timer 15379 * has been stopped. 15380 */ 15381 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15382 15383 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15384 i40e_free_vfs(pf); 15385 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15386 } 15387 15388 i40e_fdir_teardown(pf); 15389 15390 /* If there is a switch structure or any orphans, remove them. 15391 * This will leave only the PF's VSI remaining. 15392 */ 15393 for (i = 0; i < I40E_MAX_VEB; i++) { 15394 if (!pf->veb[i]) 15395 continue; 15396 15397 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15398 pf->veb[i]->uplink_seid == 0) 15399 i40e_switch_branch_release(pf->veb[i]); 15400 } 15401 15402 /* Now we can shutdown the PF's VSI, just before we kill 15403 * adminq and hmc. 15404 */ 15405 if (pf->vsi[pf->lan_vsi]) 15406 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15407 15408 i40e_cloud_filter_exit(pf); 15409 15410 /* remove attached clients */ 15411 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15412 ret_code = i40e_lan_del_device(pf); 15413 if (ret_code) 15414 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15415 ret_code); 15416 } 15417 15418 /* shutdown and destroy the HMC */ 15419 if (hw->hmc.hmc_obj) { 15420 ret_code = i40e_shutdown_lan_hmc(hw); 15421 if (ret_code) 15422 dev_warn(&pdev->dev, 15423 "Failed to destroy the HMC resources: %d\n", 15424 ret_code); 15425 } 15426 15427 unmap: 15428 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15429 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15430 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15431 free_irq(pf->pdev->irq, pf); 15432 15433 /* shutdown the adminq */ 15434 i40e_shutdown_adminq(hw); 15435 15436 /* destroy the locks only once, here */ 15437 mutex_destroy(&hw->aq.arq_mutex); 15438 mutex_destroy(&hw->aq.asq_mutex); 15439 15440 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15441 rtnl_lock(); 15442 i40e_clear_interrupt_scheme(pf); 15443 for (i = 0; i < pf->num_alloc_vsi; i++) { 15444 if (pf->vsi[i]) { 15445 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15446 i40e_vsi_clear_rings(pf->vsi[i]); 15447 i40e_vsi_clear(pf->vsi[i]); 15448 pf->vsi[i] = NULL; 15449 } 15450 } 15451 rtnl_unlock(); 15452 15453 for (i = 0; i < I40E_MAX_VEB; i++) { 15454 kfree(pf->veb[i]); 15455 pf->veb[i] = NULL; 15456 } 15457 15458 kfree(pf->qp_pile); 15459 kfree(pf->vsi); 15460 15461 iounmap(hw->hw_addr); 15462 kfree(pf); 15463 pci_release_mem_regions(pdev); 15464 15465 pci_disable_pcie_error_reporting(pdev); 15466 pci_disable_device(pdev); 15467 } 15468 15469 /** 15470 * i40e_pci_error_detected - warning that something funky happened in PCI land 15471 * @pdev: PCI device information struct 15472 * @error: the type of PCI error 15473 * 15474 * Called to warn that something happened and the error handling steps 15475 * are in progress. Allows the driver to quiesce things, be ready for 15476 * remediation. 15477 **/ 15478 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15479 enum pci_channel_state error) 15480 { 15481 struct i40e_pf *pf = pci_get_drvdata(pdev); 15482 15483 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15484 15485 if (!pf) { 15486 dev_info(&pdev->dev, 15487 "Cannot recover - error happened during device probe\n"); 15488 return PCI_ERS_RESULT_DISCONNECT; 15489 } 15490 15491 /* shutdown all operations */ 15492 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15493 i40e_prep_for_reset(pf, false); 15494 15495 /* Request a slot reset */ 15496 return PCI_ERS_RESULT_NEED_RESET; 15497 } 15498 15499 /** 15500 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15501 * @pdev: PCI device information struct 15502 * 15503 * Called to find if the driver can work with the device now that 15504 * the pci slot has been reset. If a basic connection seems good 15505 * (registers are readable and have sane content) then return a 15506 * happy little PCI_ERS_RESULT_xxx. 15507 **/ 15508 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15509 { 15510 struct i40e_pf *pf = pci_get_drvdata(pdev); 15511 pci_ers_result_t result; 15512 u32 reg; 15513 15514 dev_dbg(&pdev->dev, "%s\n", __func__); 15515 if (pci_enable_device_mem(pdev)) { 15516 dev_info(&pdev->dev, 15517 "Cannot re-enable PCI device after reset.\n"); 15518 result = PCI_ERS_RESULT_DISCONNECT; 15519 } else { 15520 pci_set_master(pdev); 15521 pci_restore_state(pdev); 15522 pci_save_state(pdev); 15523 pci_wake_from_d3(pdev, false); 15524 15525 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 15526 if (reg == 0) 15527 result = PCI_ERS_RESULT_RECOVERED; 15528 else 15529 result = PCI_ERS_RESULT_DISCONNECT; 15530 } 15531 15532 return result; 15533 } 15534 15535 /** 15536 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 15537 * @pdev: PCI device information struct 15538 */ 15539 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 15540 { 15541 struct i40e_pf *pf = pci_get_drvdata(pdev); 15542 15543 i40e_prep_for_reset(pf, false); 15544 } 15545 15546 /** 15547 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 15548 * @pdev: PCI device information struct 15549 */ 15550 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 15551 { 15552 struct i40e_pf *pf = pci_get_drvdata(pdev); 15553 15554 i40e_reset_and_rebuild(pf, false, false); 15555 } 15556 15557 /** 15558 * i40e_pci_error_resume - restart operations after PCI error recovery 15559 * @pdev: PCI device information struct 15560 * 15561 * Called to allow the driver to bring things back up after PCI error 15562 * and/or reset recovery has finished. 15563 **/ 15564 static void i40e_pci_error_resume(struct pci_dev *pdev) 15565 { 15566 struct i40e_pf *pf = pci_get_drvdata(pdev); 15567 15568 dev_dbg(&pdev->dev, "%s\n", __func__); 15569 if (test_bit(__I40E_SUSPENDED, pf->state)) 15570 return; 15571 15572 i40e_handle_reset_warning(pf, false); 15573 } 15574 15575 /** 15576 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 15577 * using the mac_address_write admin q function 15578 * @pf: pointer to i40e_pf struct 15579 **/ 15580 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 15581 { 15582 struct i40e_hw *hw = &pf->hw; 15583 i40e_status ret; 15584 u8 mac_addr[6]; 15585 u16 flags = 0; 15586 15587 /* Get current MAC address in case it's an LAA */ 15588 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 15589 ether_addr_copy(mac_addr, 15590 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 15591 } else { 15592 dev_err(&pf->pdev->dev, 15593 "Failed to retrieve MAC address; using default\n"); 15594 ether_addr_copy(mac_addr, hw->mac.addr); 15595 } 15596 15597 /* The FW expects the mac address write cmd to first be called with 15598 * one of these flags before calling it again with the multicast 15599 * enable flags. 15600 */ 15601 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 15602 15603 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 15604 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 15605 15606 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15607 if (ret) { 15608 dev_err(&pf->pdev->dev, 15609 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 15610 return; 15611 } 15612 15613 flags = I40E_AQC_MC_MAG_EN 15614 | I40E_AQC_WOL_PRESERVE_ON_PFR 15615 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 15616 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 15617 if (ret) 15618 dev_err(&pf->pdev->dev, 15619 "Failed to enable Multicast Magic Packet wake up\n"); 15620 } 15621 15622 /** 15623 * i40e_shutdown - PCI callback for shutting down 15624 * @pdev: PCI device information struct 15625 **/ 15626 static void i40e_shutdown(struct pci_dev *pdev) 15627 { 15628 struct i40e_pf *pf = pci_get_drvdata(pdev); 15629 struct i40e_hw *hw = &pf->hw; 15630 15631 set_bit(__I40E_SUSPENDED, pf->state); 15632 set_bit(__I40E_DOWN, pf->state); 15633 15634 del_timer_sync(&pf->service_timer); 15635 cancel_work_sync(&pf->service_task); 15636 i40e_cloud_filter_exit(pf); 15637 i40e_fdir_teardown(pf); 15638 15639 /* Client close must be called explicitly here because the timer 15640 * has been stopped. 15641 */ 15642 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15643 15644 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15645 i40e_enable_mc_magic_wake(pf); 15646 15647 i40e_prep_for_reset(pf, false); 15648 15649 wr32(hw, I40E_PFPM_APM, 15650 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15651 wr32(hw, I40E_PFPM_WUFC, 15652 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15653 15654 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15655 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15656 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15657 free_irq(pf->pdev->irq, pf); 15658 15659 /* Since we're going to destroy queues during the 15660 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15661 * whole section 15662 */ 15663 rtnl_lock(); 15664 i40e_clear_interrupt_scheme(pf); 15665 rtnl_unlock(); 15666 15667 if (system_state == SYSTEM_POWER_OFF) { 15668 pci_wake_from_d3(pdev, pf->wol_en); 15669 pci_set_power_state(pdev, PCI_D3hot); 15670 } 15671 } 15672 15673 /** 15674 * i40e_suspend - PM callback for moving to D3 15675 * @dev: generic device information structure 15676 **/ 15677 static int __maybe_unused i40e_suspend(struct device *dev) 15678 { 15679 struct i40e_pf *pf = dev_get_drvdata(dev); 15680 struct i40e_hw *hw = &pf->hw; 15681 15682 /* If we're already suspended, then there is nothing to do */ 15683 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 15684 return 0; 15685 15686 set_bit(__I40E_DOWN, pf->state); 15687 15688 /* Ensure service task will not be running */ 15689 del_timer_sync(&pf->service_timer); 15690 cancel_work_sync(&pf->service_task); 15691 15692 /* Client close must be called explicitly here because the timer 15693 * has been stopped. 15694 */ 15695 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15696 15697 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 15698 i40e_enable_mc_magic_wake(pf); 15699 15700 /* Since we're going to destroy queues during the 15701 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 15702 * whole section 15703 */ 15704 rtnl_lock(); 15705 15706 i40e_prep_for_reset(pf, true); 15707 15708 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 15709 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 15710 15711 /* Clear the interrupt scheme and release our IRQs so that the system 15712 * can safely hibernate even when there are a large number of CPUs. 15713 * Otherwise hibernation might fail when mapping all the vectors back 15714 * to CPU0. 15715 */ 15716 i40e_clear_interrupt_scheme(pf); 15717 15718 rtnl_unlock(); 15719 15720 return 0; 15721 } 15722 15723 /** 15724 * i40e_resume - PM callback for waking up from D3 15725 * @dev: generic device information structure 15726 **/ 15727 static int __maybe_unused i40e_resume(struct device *dev) 15728 { 15729 struct i40e_pf *pf = dev_get_drvdata(dev); 15730 int err; 15731 15732 /* If we're not suspended, then there is nothing to do */ 15733 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15734 return 0; 15735 15736 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 15737 * since we're going to be restoring queues 15738 */ 15739 rtnl_lock(); 15740 15741 /* We cleared the interrupt scheme when we suspended, so we need to 15742 * restore it now to resume device functionality. 15743 */ 15744 err = i40e_restore_interrupt_scheme(pf); 15745 if (err) { 15746 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 15747 err); 15748 } 15749 15750 clear_bit(__I40E_DOWN, pf->state); 15751 i40e_reset_and_rebuild(pf, false, true); 15752 15753 rtnl_unlock(); 15754 15755 /* Clear suspended state last after everything is recovered */ 15756 clear_bit(__I40E_SUSPENDED, pf->state); 15757 15758 /* Restart the service task */ 15759 mod_timer(&pf->service_timer, 15760 round_jiffies(jiffies + pf->service_timer_period)); 15761 15762 return 0; 15763 } 15764 15765 static const struct pci_error_handlers i40e_err_handler = { 15766 .error_detected = i40e_pci_error_detected, 15767 .slot_reset = i40e_pci_error_slot_reset, 15768 .reset_prepare = i40e_pci_error_reset_prepare, 15769 .reset_done = i40e_pci_error_reset_done, 15770 .resume = i40e_pci_error_resume, 15771 }; 15772 15773 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 15774 15775 static struct pci_driver i40e_driver = { 15776 .name = i40e_driver_name, 15777 .id_table = i40e_pci_tbl, 15778 .probe = i40e_probe, 15779 .remove = i40e_remove, 15780 .driver = { 15781 .pm = &i40e_pm_ops, 15782 }, 15783 .shutdown = i40e_shutdown, 15784 .err_handler = &i40e_err_handler, 15785 .sriov_configure = i40e_pci_sriov_configure, 15786 }; 15787 15788 /** 15789 * i40e_init_module - Driver registration routine 15790 * 15791 * i40e_init_module is the first routine called when the driver is 15792 * loaded. All it does is register with the PCI subsystem. 15793 **/ 15794 static int __init i40e_init_module(void) 15795 { 15796 pr_info("%s: %s - version %s\n", i40e_driver_name, 15797 i40e_driver_string, i40e_driver_version_str); 15798 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 15799 15800 /* There is no need to throttle the number of active tasks because 15801 * each device limits its own task using a state bit for scheduling 15802 * the service task, and the device tasks do not interfere with each 15803 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 15804 * since we need to be able to guarantee forward progress even under 15805 * memory pressure. 15806 */ 15807 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 15808 if (!i40e_wq) { 15809 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 15810 return -ENOMEM; 15811 } 15812 15813 i40e_dbg_init(); 15814 return pci_register_driver(&i40e_driver); 15815 } 15816 module_init(i40e_init_module); 15817 15818 /** 15819 * i40e_exit_module - Driver exit cleanup routine 15820 * 15821 * i40e_exit_module is called just before the driver is removed 15822 * from memory. 15823 **/ 15824 static void __exit i40e_exit_module(void) 15825 { 15826 pci_unregister_driver(&i40e_driver); 15827 destroy_workqueue(i40e_wq); 15828 i40e_dbg_exit(); 15829 } 15830 module_exit(i40e_exit_module); 15831