1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2021 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 #include <generated/utsrelease.h> 9 10 /* Local includes */ 11 #include "i40e.h" 12 #include "i40e_diag.h" 13 #include "i40e_xsk.h" 14 #include <net/udp_tunnel.h> 15 #include <net/xdp_sock_drv.h> 16 /* All i40e tracepoints are defined by the include below, which 17 * must be included exactly once across the whole kernel with 18 * CREATE_TRACE_POINTS defined 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "i40e_trace.h" 22 23 const char i40e_driver_name[] = "i40e"; 24 static const char i40e_driver_string[] = 25 "Intel(R) Ethernet Connection XL710 Network Driver"; 26 27 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation."; 28 29 /* a bit of forward declarations */ 30 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 31 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 32 static int i40e_add_vsi(struct i40e_vsi *vsi); 33 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 34 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 35 static int i40e_setup_misc_vector(struct i40e_pf *pf); 36 static void i40e_determine_queue_usage(struct i40e_pf *pf); 37 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 38 static void i40e_prep_for_reset(struct i40e_pf *pf); 39 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 40 bool lock_acquired); 41 static int i40e_reset(struct i40e_pf *pf); 42 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 43 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf); 44 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf); 45 static bool i40e_check_recovery_mode(struct i40e_pf *pf); 46 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw); 47 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 48 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 49 static int i40e_get_capabilities(struct i40e_pf *pf, 50 enum i40e_admin_queue_opc list_type); 51 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf); 52 53 /* i40e_pci_tbl - PCI Device ID Table 54 * 55 * Last entry must be all 0s 56 * 57 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 58 * Class, Class Mask, private data (not used) } 59 */ 60 static const struct pci_device_id i40e_pci_tbl[] = { 61 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 62 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0}, 82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0}, 83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 85 /* required last entry */ 86 {0, } 87 }; 88 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 89 90 #define I40E_MAX_VF_COUNT 128 91 static int debug = -1; 92 module_param(debug, uint, 0); 93 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 94 95 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 96 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 97 MODULE_LICENSE("GPL v2"); 98 99 static struct workqueue_struct *i40e_wq; 100 101 /** 102 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 103 * @hw: pointer to the HW structure 104 * @mem: ptr to mem struct to fill out 105 * @size: size of memory requested 106 * @alignment: what to align the allocation to 107 **/ 108 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 109 u64 size, u32 alignment) 110 { 111 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 112 113 mem->size = ALIGN(size, alignment); 114 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 115 GFP_KERNEL); 116 if (!mem->va) 117 return -ENOMEM; 118 119 return 0; 120 } 121 122 /** 123 * i40e_free_dma_mem_d - OS specific memory free for shared code 124 * @hw: pointer to the HW structure 125 * @mem: ptr to mem struct to free 126 **/ 127 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 128 { 129 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 130 131 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 132 mem->va = NULL; 133 mem->pa = 0; 134 mem->size = 0; 135 136 return 0; 137 } 138 139 /** 140 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 141 * @hw: pointer to the HW structure 142 * @mem: ptr to mem struct to fill out 143 * @size: size of memory requested 144 **/ 145 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 146 u32 size) 147 { 148 mem->size = size; 149 mem->va = kzalloc(size, GFP_KERNEL); 150 151 if (!mem->va) 152 return -ENOMEM; 153 154 return 0; 155 } 156 157 /** 158 * i40e_free_virt_mem_d - OS specific memory free for shared code 159 * @hw: pointer to the HW structure 160 * @mem: ptr to mem struct to free 161 **/ 162 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 163 { 164 /* it's ok to kfree a NULL pointer */ 165 kfree(mem->va); 166 mem->va = NULL; 167 mem->size = 0; 168 169 return 0; 170 } 171 172 /** 173 * i40e_get_lump - find a lump of free generic resource 174 * @pf: board private structure 175 * @pile: the pile of resource to search 176 * @needed: the number of items needed 177 * @id: an owner id to stick on the items assigned 178 * 179 * Returns the base item index of the lump, or negative for error 180 * 181 * The search_hint trick and lack of advanced fit-finding only work 182 * because we're highly likely to have all the same size lump requests. 183 * Linear search time and any fragmentation should be minimal. 184 **/ 185 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 186 u16 needed, u16 id) 187 { 188 int ret = -ENOMEM; 189 int i, j; 190 191 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 192 dev_info(&pf->pdev->dev, 193 "param err: pile=%s needed=%d id=0x%04x\n", 194 pile ? "<valid>" : "<null>", needed, id); 195 return -EINVAL; 196 } 197 198 /* start the linear search with an imperfect hint */ 199 i = pile->search_hint; 200 while (i < pile->num_entries) { 201 /* skip already allocated entries */ 202 if (pile->list[i] & I40E_PILE_VALID_BIT) { 203 i++; 204 continue; 205 } 206 207 /* do we have enough in this lump? */ 208 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 209 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 210 break; 211 } 212 213 if (j == needed) { 214 /* there was enough, so assign it to the requestor */ 215 for (j = 0; j < needed; j++) 216 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 217 ret = i; 218 pile->search_hint = i + j; 219 break; 220 } 221 222 /* not enough, so skip over it and continue looking */ 223 i += j; 224 } 225 226 return ret; 227 } 228 229 /** 230 * i40e_put_lump - return a lump of generic resource 231 * @pile: the pile of resource to search 232 * @index: the base item index 233 * @id: the owner id of the items assigned 234 * 235 * Returns the count of items in the lump 236 **/ 237 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 238 { 239 int valid_id = (id | I40E_PILE_VALID_BIT); 240 int count = 0; 241 int i; 242 243 if (!pile || index >= pile->num_entries) 244 return -EINVAL; 245 246 for (i = index; 247 i < pile->num_entries && pile->list[i] == valid_id; 248 i++) { 249 pile->list[i] = 0; 250 count++; 251 } 252 253 if (count && index < pile->search_hint) 254 pile->search_hint = index; 255 256 return count; 257 } 258 259 /** 260 * i40e_find_vsi_from_id - searches for the vsi with the given id 261 * @pf: the pf structure to search for the vsi 262 * @id: id of the vsi it is searching for 263 **/ 264 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 265 { 266 int i; 267 268 for (i = 0; i < pf->num_alloc_vsi; i++) 269 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 270 return pf->vsi[i]; 271 272 return NULL; 273 } 274 275 /** 276 * i40e_service_event_schedule - Schedule the service task to wake up 277 * @pf: board private structure 278 * 279 * If not already scheduled, this puts the task into the work queue 280 **/ 281 void i40e_service_event_schedule(struct i40e_pf *pf) 282 { 283 if ((!test_bit(__I40E_DOWN, pf->state) && 284 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) || 285 test_bit(__I40E_RECOVERY_MODE, pf->state)) 286 queue_work(i40e_wq, &pf->service_task); 287 } 288 289 /** 290 * i40e_tx_timeout - Respond to a Tx Hang 291 * @netdev: network interface device structure 292 * @txqueue: queue number timing out 293 * 294 * If any port has noticed a Tx timeout, it is likely that the whole 295 * device is munged, not just the one netdev port, so go for the full 296 * reset. 297 **/ 298 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue) 299 { 300 struct i40e_netdev_priv *np = netdev_priv(netdev); 301 struct i40e_vsi *vsi = np->vsi; 302 struct i40e_pf *pf = vsi->back; 303 struct i40e_ring *tx_ring = NULL; 304 unsigned int i; 305 u32 head, val; 306 307 pf->tx_timeout_count++; 308 309 /* with txqueue index, find the tx_ring struct */ 310 for (i = 0; i < vsi->num_queue_pairs; i++) { 311 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 312 if (txqueue == 313 vsi->tx_rings[i]->queue_index) { 314 tx_ring = vsi->tx_rings[i]; 315 break; 316 } 317 } 318 } 319 320 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 321 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 322 else if (time_before(jiffies, 323 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 324 return; /* don't do any new action before the next timeout */ 325 326 /* don't kick off another recovery if one is already pending */ 327 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 328 return; 329 330 if (tx_ring) { 331 head = i40e_get_head(tx_ring); 332 /* Read interrupt register */ 333 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 334 val = rd32(&pf->hw, 335 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 336 tx_ring->vsi->base_vector - 1)); 337 else 338 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 339 340 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 341 vsi->seid, txqueue, tx_ring->next_to_clean, 342 head, tx_ring->next_to_use, 343 readl(tx_ring->tail), val); 344 } 345 346 pf->tx_timeout_last_recovery = jiffies; 347 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n", 348 pf->tx_timeout_recovery_level, txqueue); 349 350 switch (pf->tx_timeout_recovery_level) { 351 case 1: 352 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 353 break; 354 case 2: 355 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 356 break; 357 case 3: 358 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 359 break; 360 default: 361 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 362 break; 363 } 364 365 i40e_service_event_schedule(pf); 366 pf->tx_timeout_recovery_level++; 367 } 368 369 /** 370 * i40e_get_vsi_stats_struct - Get System Network Statistics 371 * @vsi: the VSI we care about 372 * 373 * Returns the address of the device statistics structure. 374 * The statistics are actually updated from the service task. 375 **/ 376 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 377 { 378 return &vsi->net_stats; 379 } 380 381 /** 382 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 383 * @ring: Tx ring to get statistics from 384 * @stats: statistics entry to be updated 385 **/ 386 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 387 struct rtnl_link_stats64 *stats) 388 { 389 u64 bytes, packets; 390 unsigned int start; 391 392 do { 393 start = u64_stats_fetch_begin_irq(&ring->syncp); 394 packets = ring->stats.packets; 395 bytes = ring->stats.bytes; 396 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 397 398 stats->tx_packets += packets; 399 stats->tx_bytes += bytes; 400 } 401 402 /** 403 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 404 * @netdev: network interface device structure 405 * @stats: data structure to store statistics 406 * 407 * Returns the address of the device statistics structure. 408 * The statistics are actually updated from the service task. 409 **/ 410 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 411 struct rtnl_link_stats64 *stats) 412 { 413 struct i40e_netdev_priv *np = netdev_priv(netdev); 414 struct i40e_vsi *vsi = np->vsi; 415 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 416 struct i40e_ring *ring; 417 int i; 418 419 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 420 return; 421 422 if (!vsi->tx_rings) 423 return; 424 425 rcu_read_lock(); 426 for (i = 0; i < vsi->num_queue_pairs; i++) { 427 u64 bytes, packets; 428 unsigned int start; 429 430 ring = READ_ONCE(vsi->tx_rings[i]); 431 if (!ring) 432 continue; 433 i40e_get_netdev_stats_struct_tx(ring, stats); 434 435 if (i40e_enabled_xdp_vsi(vsi)) { 436 ring = READ_ONCE(vsi->xdp_rings[i]); 437 if (!ring) 438 continue; 439 i40e_get_netdev_stats_struct_tx(ring, stats); 440 } 441 442 ring = READ_ONCE(vsi->rx_rings[i]); 443 if (!ring) 444 continue; 445 do { 446 start = u64_stats_fetch_begin_irq(&ring->syncp); 447 packets = ring->stats.packets; 448 bytes = ring->stats.bytes; 449 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 450 451 stats->rx_packets += packets; 452 stats->rx_bytes += bytes; 453 454 } 455 rcu_read_unlock(); 456 457 /* following stats updated by i40e_watchdog_subtask() */ 458 stats->multicast = vsi_stats->multicast; 459 stats->tx_errors = vsi_stats->tx_errors; 460 stats->tx_dropped = vsi_stats->tx_dropped; 461 stats->rx_errors = vsi_stats->rx_errors; 462 stats->rx_dropped = vsi_stats->rx_dropped; 463 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 464 stats->rx_length_errors = vsi_stats->rx_length_errors; 465 } 466 467 /** 468 * i40e_vsi_reset_stats - Resets all stats of the given vsi 469 * @vsi: the VSI to have its stats reset 470 **/ 471 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 472 { 473 struct rtnl_link_stats64 *ns; 474 int i; 475 476 if (!vsi) 477 return; 478 479 ns = i40e_get_vsi_stats_struct(vsi); 480 memset(ns, 0, sizeof(*ns)); 481 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 482 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 483 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 484 if (vsi->rx_rings && vsi->rx_rings[0]) { 485 for (i = 0; i < vsi->num_queue_pairs; i++) { 486 memset(&vsi->rx_rings[i]->stats, 0, 487 sizeof(vsi->rx_rings[i]->stats)); 488 memset(&vsi->rx_rings[i]->rx_stats, 0, 489 sizeof(vsi->rx_rings[i]->rx_stats)); 490 memset(&vsi->tx_rings[i]->stats, 0, 491 sizeof(vsi->tx_rings[i]->stats)); 492 memset(&vsi->tx_rings[i]->tx_stats, 0, 493 sizeof(vsi->tx_rings[i]->tx_stats)); 494 } 495 } 496 vsi->stat_offsets_loaded = false; 497 } 498 499 /** 500 * i40e_pf_reset_stats - Reset all of the stats for the given PF 501 * @pf: the PF to be reset 502 **/ 503 void i40e_pf_reset_stats(struct i40e_pf *pf) 504 { 505 int i; 506 507 memset(&pf->stats, 0, sizeof(pf->stats)); 508 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 509 pf->stat_offsets_loaded = false; 510 511 for (i = 0; i < I40E_MAX_VEB; i++) { 512 if (pf->veb[i]) { 513 memset(&pf->veb[i]->stats, 0, 514 sizeof(pf->veb[i]->stats)); 515 memset(&pf->veb[i]->stats_offsets, 0, 516 sizeof(pf->veb[i]->stats_offsets)); 517 memset(&pf->veb[i]->tc_stats, 0, 518 sizeof(pf->veb[i]->tc_stats)); 519 memset(&pf->veb[i]->tc_stats_offsets, 0, 520 sizeof(pf->veb[i]->tc_stats_offsets)); 521 pf->veb[i]->stat_offsets_loaded = false; 522 } 523 } 524 pf->hw_csum_rx_error = 0; 525 } 526 527 /** 528 * i40e_stat_update48 - read and update a 48 bit stat from the chip 529 * @hw: ptr to the hardware info 530 * @hireg: the high 32 bit reg to read 531 * @loreg: the low 32 bit reg to read 532 * @offset_loaded: has the initial offset been loaded yet 533 * @offset: ptr to current offset value 534 * @stat: ptr to the stat 535 * 536 * Since the device stats are not reset at PFReset, they likely will not 537 * be zeroed when the driver starts. We'll save the first values read 538 * and use them as offsets to be subtracted from the raw values in order 539 * to report stats that count from zero. In the process, we also manage 540 * the potential roll-over. 541 **/ 542 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 543 bool offset_loaded, u64 *offset, u64 *stat) 544 { 545 u64 new_data; 546 547 if (hw->device_id == I40E_DEV_ID_QEMU) { 548 new_data = rd32(hw, loreg); 549 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 550 } else { 551 new_data = rd64(hw, loreg); 552 } 553 if (!offset_loaded) 554 *offset = new_data; 555 if (likely(new_data >= *offset)) 556 *stat = new_data - *offset; 557 else 558 *stat = (new_data + BIT_ULL(48)) - *offset; 559 *stat &= 0xFFFFFFFFFFFFULL; 560 } 561 562 /** 563 * i40e_stat_update32 - read and update a 32 bit stat from the chip 564 * @hw: ptr to the hardware info 565 * @reg: the hw reg to read 566 * @offset_loaded: has the initial offset been loaded yet 567 * @offset: ptr to current offset value 568 * @stat: ptr to the stat 569 **/ 570 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 571 bool offset_loaded, u64 *offset, u64 *stat) 572 { 573 u32 new_data; 574 575 new_data = rd32(hw, reg); 576 if (!offset_loaded) 577 *offset = new_data; 578 if (likely(new_data >= *offset)) 579 *stat = (u32)(new_data - *offset); 580 else 581 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 582 } 583 584 /** 585 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 586 * @hw: ptr to the hardware info 587 * @reg: the hw reg to read and clear 588 * @stat: ptr to the stat 589 **/ 590 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 591 { 592 u32 new_data = rd32(hw, reg); 593 594 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 595 *stat += new_data; 596 } 597 598 /** 599 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 600 * @vsi: the VSI to be updated 601 **/ 602 void i40e_update_eth_stats(struct i40e_vsi *vsi) 603 { 604 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 605 struct i40e_pf *pf = vsi->back; 606 struct i40e_hw *hw = &pf->hw; 607 struct i40e_eth_stats *oes; 608 struct i40e_eth_stats *es; /* device's eth stats */ 609 610 es = &vsi->eth_stats; 611 oes = &vsi->eth_stats_offsets; 612 613 /* Gather up the stats that the hw collects */ 614 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 615 vsi->stat_offsets_loaded, 616 &oes->tx_errors, &es->tx_errors); 617 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 618 vsi->stat_offsets_loaded, 619 &oes->rx_discards, &es->rx_discards); 620 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 621 vsi->stat_offsets_loaded, 622 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 623 624 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 625 I40E_GLV_GORCL(stat_idx), 626 vsi->stat_offsets_loaded, 627 &oes->rx_bytes, &es->rx_bytes); 628 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 629 I40E_GLV_UPRCL(stat_idx), 630 vsi->stat_offsets_loaded, 631 &oes->rx_unicast, &es->rx_unicast); 632 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 633 I40E_GLV_MPRCL(stat_idx), 634 vsi->stat_offsets_loaded, 635 &oes->rx_multicast, &es->rx_multicast); 636 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 637 I40E_GLV_BPRCL(stat_idx), 638 vsi->stat_offsets_loaded, 639 &oes->rx_broadcast, &es->rx_broadcast); 640 641 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 642 I40E_GLV_GOTCL(stat_idx), 643 vsi->stat_offsets_loaded, 644 &oes->tx_bytes, &es->tx_bytes); 645 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 646 I40E_GLV_UPTCL(stat_idx), 647 vsi->stat_offsets_loaded, 648 &oes->tx_unicast, &es->tx_unicast); 649 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 650 I40E_GLV_MPTCL(stat_idx), 651 vsi->stat_offsets_loaded, 652 &oes->tx_multicast, &es->tx_multicast); 653 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 654 I40E_GLV_BPTCL(stat_idx), 655 vsi->stat_offsets_loaded, 656 &oes->tx_broadcast, &es->tx_broadcast); 657 vsi->stat_offsets_loaded = true; 658 } 659 660 /** 661 * i40e_update_veb_stats - Update Switch component statistics 662 * @veb: the VEB being updated 663 **/ 664 void i40e_update_veb_stats(struct i40e_veb *veb) 665 { 666 struct i40e_pf *pf = veb->pf; 667 struct i40e_hw *hw = &pf->hw; 668 struct i40e_eth_stats *oes; 669 struct i40e_eth_stats *es; /* device's eth stats */ 670 struct i40e_veb_tc_stats *veb_oes; 671 struct i40e_veb_tc_stats *veb_es; 672 int i, idx = 0; 673 674 idx = veb->stats_idx; 675 es = &veb->stats; 676 oes = &veb->stats_offsets; 677 veb_es = &veb->tc_stats; 678 veb_oes = &veb->tc_stats_offsets; 679 680 /* Gather up the stats that the hw collects */ 681 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 682 veb->stat_offsets_loaded, 683 &oes->tx_discards, &es->tx_discards); 684 if (hw->revision_id > 0) 685 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 686 veb->stat_offsets_loaded, 687 &oes->rx_unknown_protocol, 688 &es->rx_unknown_protocol); 689 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 690 veb->stat_offsets_loaded, 691 &oes->rx_bytes, &es->rx_bytes); 692 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 693 veb->stat_offsets_loaded, 694 &oes->rx_unicast, &es->rx_unicast); 695 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 696 veb->stat_offsets_loaded, 697 &oes->rx_multicast, &es->rx_multicast); 698 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 699 veb->stat_offsets_loaded, 700 &oes->rx_broadcast, &es->rx_broadcast); 701 702 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 703 veb->stat_offsets_loaded, 704 &oes->tx_bytes, &es->tx_bytes); 705 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 706 veb->stat_offsets_loaded, 707 &oes->tx_unicast, &es->tx_unicast); 708 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->tx_multicast, &es->tx_multicast); 711 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 712 veb->stat_offsets_loaded, 713 &oes->tx_broadcast, &es->tx_broadcast); 714 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 715 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 716 I40E_GLVEBTC_RPCL(i, idx), 717 veb->stat_offsets_loaded, 718 &veb_oes->tc_rx_packets[i], 719 &veb_es->tc_rx_packets[i]); 720 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 721 I40E_GLVEBTC_RBCL(i, idx), 722 veb->stat_offsets_loaded, 723 &veb_oes->tc_rx_bytes[i], 724 &veb_es->tc_rx_bytes[i]); 725 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 726 I40E_GLVEBTC_TPCL(i, idx), 727 veb->stat_offsets_loaded, 728 &veb_oes->tc_tx_packets[i], 729 &veb_es->tc_tx_packets[i]); 730 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 731 I40E_GLVEBTC_TBCL(i, idx), 732 veb->stat_offsets_loaded, 733 &veb_oes->tc_tx_bytes[i], 734 &veb_es->tc_tx_bytes[i]); 735 } 736 veb->stat_offsets_loaded = true; 737 } 738 739 /** 740 * i40e_update_vsi_stats - Update the vsi statistics counters. 741 * @vsi: the VSI to be updated 742 * 743 * There are a few instances where we store the same stat in a 744 * couple of different structs. This is partly because we have 745 * the netdev stats that need to be filled out, which is slightly 746 * different from the "eth_stats" defined by the chip and used in 747 * VF communications. We sort it out here. 748 **/ 749 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 750 { 751 struct i40e_pf *pf = vsi->back; 752 struct rtnl_link_stats64 *ons; 753 struct rtnl_link_stats64 *ns; /* netdev stats */ 754 struct i40e_eth_stats *oes; 755 struct i40e_eth_stats *es; /* device's eth stats */ 756 u32 tx_restart, tx_busy; 757 struct i40e_ring *p; 758 u32 rx_page, rx_buf; 759 u64 bytes, packets; 760 unsigned int start; 761 u64 tx_linearize; 762 u64 tx_force_wb; 763 u64 rx_p, rx_b; 764 u64 tx_p, tx_b; 765 u16 q; 766 767 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 768 test_bit(__I40E_CONFIG_BUSY, pf->state)) 769 return; 770 771 ns = i40e_get_vsi_stats_struct(vsi); 772 ons = &vsi->net_stats_offsets; 773 es = &vsi->eth_stats; 774 oes = &vsi->eth_stats_offsets; 775 776 /* Gather up the netdev and vsi stats that the driver collects 777 * on the fly during packet processing 778 */ 779 rx_b = rx_p = 0; 780 tx_b = tx_p = 0; 781 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 782 rx_page = 0; 783 rx_buf = 0; 784 rcu_read_lock(); 785 for (q = 0; q < vsi->num_queue_pairs; q++) { 786 /* locate Tx ring */ 787 p = READ_ONCE(vsi->tx_rings[q]); 788 if (!p) 789 continue; 790 791 do { 792 start = u64_stats_fetch_begin_irq(&p->syncp); 793 packets = p->stats.packets; 794 bytes = p->stats.bytes; 795 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 796 tx_b += bytes; 797 tx_p += packets; 798 tx_restart += p->tx_stats.restart_queue; 799 tx_busy += p->tx_stats.tx_busy; 800 tx_linearize += p->tx_stats.tx_linearize; 801 tx_force_wb += p->tx_stats.tx_force_wb; 802 803 /* locate Rx ring */ 804 p = READ_ONCE(vsi->rx_rings[q]); 805 if (!p) 806 continue; 807 808 do { 809 start = u64_stats_fetch_begin_irq(&p->syncp); 810 packets = p->stats.packets; 811 bytes = p->stats.bytes; 812 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 813 rx_b += bytes; 814 rx_p += packets; 815 rx_buf += p->rx_stats.alloc_buff_failed; 816 rx_page += p->rx_stats.alloc_page_failed; 817 818 if (i40e_enabled_xdp_vsi(vsi)) { 819 /* locate XDP ring */ 820 p = READ_ONCE(vsi->xdp_rings[q]); 821 if (!p) 822 continue; 823 824 do { 825 start = u64_stats_fetch_begin_irq(&p->syncp); 826 packets = p->stats.packets; 827 bytes = p->stats.bytes; 828 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 829 tx_b += bytes; 830 tx_p += packets; 831 tx_restart += p->tx_stats.restart_queue; 832 tx_busy += p->tx_stats.tx_busy; 833 tx_linearize += p->tx_stats.tx_linearize; 834 tx_force_wb += p->tx_stats.tx_force_wb; 835 } 836 } 837 rcu_read_unlock(); 838 vsi->tx_restart = tx_restart; 839 vsi->tx_busy = tx_busy; 840 vsi->tx_linearize = tx_linearize; 841 vsi->tx_force_wb = tx_force_wb; 842 vsi->rx_page_failed = rx_page; 843 vsi->rx_buf_failed = rx_buf; 844 845 ns->rx_packets = rx_p; 846 ns->rx_bytes = rx_b; 847 ns->tx_packets = tx_p; 848 ns->tx_bytes = tx_b; 849 850 /* update netdev stats from eth stats */ 851 i40e_update_eth_stats(vsi); 852 ons->tx_errors = oes->tx_errors; 853 ns->tx_errors = es->tx_errors; 854 ons->multicast = oes->rx_multicast; 855 ns->multicast = es->rx_multicast; 856 ons->rx_dropped = oes->rx_discards; 857 ns->rx_dropped = es->rx_discards; 858 ons->tx_dropped = oes->tx_discards; 859 ns->tx_dropped = es->tx_discards; 860 861 /* pull in a couple PF stats if this is the main vsi */ 862 if (vsi == pf->vsi[pf->lan_vsi]) { 863 ns->rx_crc_errors = pf->stats.crc_errors; 864 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 865 ns->rx_length_errors = pf->stats.rx_length_errors; 866 } 867 } 868 869 /** 870 * i40e_update_pf_stats - Update the PF statistics counters. 871 * @pf: the PF to be updated 872 **/ 873 static void i40e_update_pf_stats(struct i40e_pf *pf) 874 { 875 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 876 struct i40e_hw_port_stats *nsd = &pf->stats; 877 struct i40e_hw *hw = &pf->hw; 878 u32 val; 879 int i; 880 881 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 882 I40E_GLPRT_GORCL(hw->port), 883 pf->stat_offsets_loaded, 884 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 885 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 886 I40E_GLPRT_GOTCL(hw->port), 887 pf->stat_offsets_loaded, 888 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 889 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 890 pf->stat_offsets_loaded, 891 &osd->eth.rx_discards, 892 &nsd->eth.rx_discards); 893 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 894 I40E_GLPRT_UPRCL(hw->port), 895 pf->stat_offsets_loaded, 896 &osd->eth.rx_unicast, 897 &nsd->eth.rx_unicast); 898 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 899 I40E_GLPRT_MPRCL(hw->port), 900 pf->stat_offsets_loaded, 901 &osd->eth.rx_multicast, 902 &nsd->eth.rx_multicast); 903 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 904 I40E_GLPRT_BPRCL(hw->port), 905 pf->stat_offsets_loaded, 906 &osd->eth.rx_broadcast, 907 &nsd->eth.rx_broadcast); 908 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 909 I40E_GLPRT_UPTCL(hw->port), 910 pf->stat_offsets_loaded, 911 &osd->eth.tx_unicast, 912 &nsd->eth.tx_unicast); 913 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 914 I40E_GLPRT_MPTCL(hw->port), 915 pf->stat_offsets_loaded, 916 &osd->eth.tx_multicast, 917 &nsd->eth.tx_multicast); 918 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 919 I40E_GLPRT_BPTCL(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->eth.tx_broadcast, 922 &nsd->eth.tx_broadcast); 923 924 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 925 pf->stat_offsets_loaded, 926 &osd->tx_dropped_link_down, 927 &nsd->tx_dropped_link_down); 928 929 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 930 pf->stat_offsets_loaded, 931 &osd->crc_errors, &nsd->crc_errors); 932 933 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 934 pf->stat_offsets_loaded, 935 &osd->illegal_bytes, &nsd->illegal_bytes); 936 937 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 938 pf->stat_offsets_loaded, 939 &osd->mac_local_faults, 940 &nsd->mac_local_faults); 941 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 942 pf->stat_offsets_loaded, 943 &osd->mac_remote_faults, 944 &nsd->mac_remote_faults); 945 946 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 947 pf->stat_offsets_loaded, 948 &osd->rx_length_errors, 949 &nsd->rx_length_errors); 950 951 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 952 pf->stat_offsets_loaded, 953 &osd->link_xon_rx, &nsd->link_xon_rx); 954 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 955 pf->stat_offsets_loaded, 956 &osd->link_xon_tx, &nsd->link_xon_tx); 957 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 958 pf->stat_offsets_loaded, 959 &osd->link_xoff_rx, &nsd->link_xoff_rx); 960 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 961 pf->stat_offsets_loaded, 962 &osd->link_xoff_tx, &nsd->link_xoff_tx); 963 964 for (i = 0; i < 8; i++) { 965 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 966 pf->stat_offsets_loaded, 967 &osd->priority_xoff_rx[i], 968 &nsd->priority_xoff_rx[i]); 969 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 970 pf->stat_offsets_loaded, 971 &osd->priority_xon_rx[i], 972 &nsd->priority_xon_rx[i]); 973 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 974 pf->stat_offsets_loaded, 975 &osd->priority_xon_tx[i], 976 &nsd->priority_xon_tx[i]); 977 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 978 pf->stat_offsets_loaded, 979 &osd->priority_xoff_tx[i], 980 &nsd->priority_xoff_tx[i]); 981 i40e_stat_update32(hw, 982 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 983 pf->stat_offsets_loaded, 984 &osd->priority_xon_2_xoff[i], 985 &nsd->priority_xon_2_xoff[i]); 986 } 987 988 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 989 I40E_GLPRT_PRC64L(hw->port), 990 pf->stat_offsets_loaded, 991 &osd->rx_size_64, &nsd->rx_size_64); 992 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 993 I40E_GLPRT_PRC127L(hw->port), 994 pf->stat_offsets_loaded, 995 &osd->rx_size_127, &nsd->rx_size_127); 996 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 997 I40E_GLPRT_PRC255L(hw->port), 998 pf->stat_offsets_loaded, 999 &osd->rx_size_255, &nsd->rx_size_255); 1000 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 1001 I40E_GLPRT_PRC511L(hw->port), 1002 pf->stat_offsets_loaded, 1003 &osd->rx_size_511, &nsd->rx_size_511); 1004 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 1005 I40E_GLPRT_PRC1023L(hw->port), 1006 pf->stat_offsets_loaded, 1007 &osd->rx_size_1023, &nsd->rx_size_1023); 1008 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 1009 I40E_GLPRT_PRC1522L(hw->port), 1010 pf->stat_offsets_loaded, 1011 &osd->rx_size_1522, &nsd->rx_size_1522); 1012 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 1013 I40E_GLPRT_PRC9522L(hw->port), 1014 pf->stat_offsets_loaded, 1015 &osd->rx_size_big, &nsd->rx_size_big); 1016 1017 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1018 I40E_GLPRT_PTC64L(hw->port), 1019 pf->stat_offsets_loaded, 1020 &osd->tx_size_64, &nsd->tx_size_64); 1021 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1022 I40E_GLPRT_PTC127L(hw->port), 1023 pf->stat_offsets_loaded, 1024 &osd->tx_size_127, &nsd->tx_size_127); 1025 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1026 I40E_GLPRT_PTC255L(hw->port), 1027 pf->stat_offsets_loaded, 1028 &osd->tx_size_255, &nsd->tx_size_255); 1029 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1030 I40E_GLPRT_PTC511L(hw->port), 1031 pf->stat_offsets_loaded, 1032 &osd->tx_size_511, &nsd->tx_size_511); 1033 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1034 I40E_GLPRT_PTC1023L(hw->port), 1035 pf->stat_offsets_loaded, 1036 &osd->tx_size_1023, &nsd->tx_size_1023); 1037 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1038 I40E_GLPRT_PTC1522L(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->tx_size_1522, &nsd->tx_size_1522); 1041 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1042 I40E_GLPRT_PTC9522L(hw->port), 1043 pf->stat_offsets_loaded, 1044 &osd->tx_size_big, &nsd->tx_size_big); 1045 1046 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1047 pf->stat_offsets_loaded, 1048 &osd->rx_undersize, &nsd->rx_undersize); 1049 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1050 pf->stat_offsets_loaded, 1051 &osd->rx_fragments, &nsd->rx_fragments); 1052 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1053 pf->stat_offsets_loaded, 1054 &osd->rx_oversize, &nsd->rx_oversize); 1055 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1056 pf->stat_offsets_loaded, 1057 &osd->rx_jabber, &nsd->rx_jabber); 1058 1059 /* FDIR stats */ 1060 i40e_stat_update_and_clear32(hw, 1061 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1062 &nsd->fd_atr_match); 1063 i40e_stat_update_and_clear32(hw, 1064 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1065 &nsd->fd_sb_match); 1066 i40e_stat_update_and_clear32(hw, 1067 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1068 &nsd->fd_atr_tunnel_match); 1069 1070 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1071 nsd->tx_lpi_status = 1072 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1073 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1074 nsd->rx_lpi_status = 1075 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1076 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1077 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1078 pf->stat_offsets_loaded, 1079 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1080 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1081 pf->stat_offsets_loaded, 1082 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1083 1084 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1085 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1086 nsd->fd_sb_status = true; 1087 else 1088 nsd->fd_sb_status = false; 1089 1090 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1091 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1092 nsd->fd_atr_status = true; 1093 else 1094 nsd->fd_atr_status = false; 1095 1096 pf->stat_offsets_loaded = true; 1097 } 1098 1099 /** 1100 * i40e_update_stats - Update the various statistics counters. 1101 * @vsi: the VSI to be updated 1102 * 1103 * Update the various stats for this VSI and its related entities. 1104 **/ 1105 void i40e_update_stats(struct i40e_vsi *vsi) 1106 { 1107 struct i40e_pf *pf = vsi->back; 1108 1109 if (vsi == pf->vsi[pf->lan_vsi]) 1110 i40e_update_pf_stats(pf); 1111 1112 i40e_update_vsi_stats(vsi); 1113 } 1114 1115 /** 1116 * i40e_count_filters - counts VSI mac filters 1117 * @vsi: the VSI to be searched 1118 * 1119 * Returns count of mac filters 1120 **/ 1121 int i40e_count_filters(struct i40e_vsi *vsi) 1122 { 1123 struct i40e_mac_filter *f; 1124 struct hlist_node *h; 1125 int bkt; 1126 int cnt = 0; 1127 1128 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 1129 ++cnt; 1130 1131 return cnt; 1132 } 1133 1134 /** 1135 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1136 * @vsi: the VSI to be searched 1137 * @macaddr: the MAC address 1138 * @vlan: the vlan 1139 * 1140 * Returns ptr to the filter object or NULL 1141 **/ 1142 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1143 const u8 *macaddr, s16 vlan) 1144 { 1145 struct i40e_mac_filter *f; 1146 u64 key; 1147 1148 if (!vsi || !macaddr) 1149 return NULL; 1150 1151 key = i40e_addr_to_hkey(macaddr); 1152 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1153 if ((ether_addr_equal(macaddr, f->macaddr)) && 1154 (vlan == f->vlan)) 1155 return f; 1156 } 1157 return NULL; 1158 } 1159 1160 /** 1161 * i40e_find_mac - Find a mac addr in the macvlan filters list 1162 * @vsi: the VSI to be searched 1163 * @macaddr: the MAC address we are searching for 1164 * 1165 * Returns the first filter with the provided MAC address or NULL if 1166 * MAC address was not found 1167 **/ 1168 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1169 { 1170 struct i40e_mac_filter *f; 1171 u64 key; 1172 1173 if (!vsi || !macaddr) 1174 return NULL; 1175 1176 key = i40e_addr_to_hkey(macaddr); 1177 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1178 if ((ether_addr_equal(macaddr, f->macaddr))) 1179 return f; 1180 } 1181 return NULL; 1182 } 1183 1184 /** 1185 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1186 * @vsi: the VSI to be searched 1187 * 1188 * Returns true if VSI is in vlan mode or false otherwise 1189 **/ 1190 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1191 { 1192 /* If we have a PVID, always operate in VLAN mode */ 1193 if (vsi->info.pvid) 1194 return true; 1195 1196 /* We need to operate in VLAN mode whenever we have any filters with 1197 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1198 * time, incurring search cost repeatedly. However, we can notice two 1199 * things: 1200 * 1201 * 1) the only place where we can gain a VLAN filter is in 1202 * i40e_add_filter. 1203 * 1204 * 2) the only place where filters are actually removed is in 1205 * i40e_sync_filters_subtask. 1206 * 1207 * Thus, we can simply use a boolean value, has_vlan_filters which we 1208 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1209 * we have to perform the full search after deleting filters in 1210 * i40e_sync_filters_subtask, but we already have to search 1211 * filters here and can perform the check at the same time. This 1212 * results in avoiding embedding a loop for VLAN mode inside another 1213 * loop over all the filters, and should maintain correctness as noted 1214 * above. 1215 */ 1216 return vsi->has_vlan_filter; 1217 } 1218 1219 /** 1220 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1221 * @vsi: the VSI to configure 1222 * @tmp_add_list: list of filters ready to be added 1223 * @tmp_del_list: list of filters ready to be deleted 1224 * @vlan_filters: the number of active VLAN filters 1225 * 1226 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1227 * behave as expected. If we have any active VLAN filters remaining or about 1228 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1229 * so that they only match against untagged traffic. If we no longer have any 1230 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1231 * so that they match against both tagged and untagged traffic. In this way, 1232 * we ensure that we correctly receive the desired traffic. This ensures that 1233 * when we have an active VLAN we will receive only untagged traffic and 1234 * traffic matching active VLANs. If we have no active VLANs then we will 1235 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1236 * 1237 * Finally, in a similar fashion, this function also corrects filters when 1238 * there is an active PVID assigned to this VSI. 1239 * 1240 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1241 * 1242 * This function is only expected to be called from within 1243 * i40e_sync_vsi_filters. 1244 * 1245 * NOTE: This function expects to be called while under the 1246 * mac_filter_hash_lock 1247 */ 1248 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1249 struct hlist_head *tmp_add_list, 1250 struct hlist_head *tmp_del_list, 1251 int vlan_filters) 1252 { 1253 s16 pvid = le16_to_cpu(vsi->info.pvid); 1254 struct i40e_mac_filter *f, *add_head; 1255 struct i40e_new_mac_filter *new; 1256 struct hlist_node *h; 1257 int bkt, new_vlan; 1258 1259 /* To determine if a particular filter needs to be replaced we 1260 * have the three following conditions: 1261 * 1262 * a) if we have a PVID assigned, then all filters which are 1263 * not marked as VLAN=PVID must be replaced with filters that 1264 * are. 1265 * b) otherwise, if we have any active VLANS, all filters 1266 * which are marked as VLAN=-1 must be replaced with 1267 * filters marked as VLAN=0 1268 * c) finally, if we do not have any active VLANS, all filters 1269 * which are marked as VLAN=0 must be replaced with filters 1270 * marked as VLAN=-1 1271 */ 1272 1273 /* Update the filters about to be added in place */ 1274 hlist_for_each_entry(new, tmp_add_list, hlist) { 1275 if (pvid && new->f->vlan != pvid) 1276 new->f->vlan = pvid; 1277 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1278 new->f->vlan = 0; 1279 else if (!vlan_filters && new->f->vlan == 0) 1280 new->f->vlan = I40E_VLAN_ANY; 1281 } 1282 1283 /* Update the remaining active filters */ 1284 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1285 /* Combine the checks for whether a filter needs to be changed 1286 * and then determine the new VLAN inside the if block, in 1287 * order to avoid duplicating code for adding the new filter 1288 * then deleting the old filter. 1289 */ 1290 if ((pvid && f->vlan != pvid) || 1291 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1292 (!vlan_filters && f->vlan == 0)) { 1293 /* Determine the new vlan we will be adding */ 1294 if (pvid) 1295 new_vlan = pvid; 1296 else if (vlan_filters) 1297 new_vlan = 0; 1298 else 1299 new_vlan = I40E_VLAN_ANY; 1300 1301 /* Create the new filter */ 1302 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1303 if (!add_head) 1304 return -ENOMEM; 1305 1306 /* Create a temporary i40e_new_mac_filter */ 1307 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1308 if (!new) 1309 return -ENOMEM; 1310 1311 new->f = add_head; 1312 new->state = add_head->state; 1313 1314 /* Add the new filter to the tmp list */ 1315 hlist_add_head(&new->hlist, tmp_add_list); 1316 1317 /* Put the original filter into the delete list */ 1318 f->state = I40E_FILTER_REMOVE; 1319 hash_del(&f->hlist); 1320 hlist_add_head(&f->hlist, tmp_del_list); 1321 } 1322 } 1323 1324 vsi->has_vlan_filter = !!vlan_filters; 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1331 * @vsi: the PF Main VSI - inappropriate for any other VSI 1332 * @macaddr: the MAC address 1333 * 1334 * Remove whatever filter the firmware set up so the driver can manage 1335 * its own filtering intelligently. 1336 **/ 1337 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1338 { 1339 struct i40e_aqc_remove_macvlan_element_data element; 1340 struct i40e_pf *pf = vsi->back; 1341 1342 /* Only appropriate for the PF main VSI */ 1343 if (vsi->type != I40E_VSI_MAIN) 1344 return; 1345 1346 memset(&element, 0, sizeof(element)); 1347 ether_addr_copy(element.mac_addr, macaddr); 1348 element.vlan_tag = 0; 1349 /* Ignore error returns, some firmware does it this way... */ 1350 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1351 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1352 1353 memset(&element, 0, sizeof(element)); 1354 ether_addr_copy(element.mac_addr, macaddr); 1355 element.vlan_tag = 0; 1356 /* ...and some firmware does it this way. */ 1357 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1358 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1359 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1360 } 1361 1362 /** 1363 * i40e_add_filter - Add a mac/vlan filter to the VSI 1364 * @vsi: the VSI to be searched 1365 * @macaddr: the MAC address 1366 * @vlan: the vlan 1367 * 1368 * Returns ptr to the filter object or NULL when no memory available. 1369 * 1370 * NOTE: This function is expected to be called with mac_filter_hash_lock 1371 * being held. 1372 **/ 1373 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1374 const u8 *macaddr, s16 vlan) 1375 { 1376 struct i40e_mac_filter *f; 1377 u64 key; 1378 1379 if (!vsi || !macaddr) 1380 return NULL; 1381 1382 f = i40e_find_filter(vsi, macaddr, vlan); 1383 if (!f) { 1384 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1385 if (!f) 1386 return NULL; 1387 1388 /* Update the boolean indicating if we need to function in 1389 * VLAN mode. 1390 */ 1391 if (vlan >= 0) 1392 vsi->has_vlan_filter = true; 1393 1394 ether_addr_copy(f->macaddr, macaddr); 1395 f->vlan = vlan; 1396 f->state = I40E_FILTER_NEW; 1397 INIT_HLIST_NODE(&f->hlist); 1398 1399 key = i40e_addr_to_hkey(macaddr); 1400 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1401 1402 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1403 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1404 } 1405 1406 /* If we're asked to add a filter that has been marked for removal, it 1407 * is safe to simply restore it to active state. __i40e_del_filter 1408 * will have simply deleted any filters which were previously marked 1409 * NEW or FAILED, so if it is currently marked REMOVE it must have 1410 * previously been ACTIVE. Since we haven't yet run the sync filters 1411 * task, just restore this filter to the ACTIVE state so that the 1412 * sync task leaves it in place 1413 */ 1414 if (f->state == I40E_FILTER_REMOVE) 1415 f->state = I40E_FILTER_ACTIVE; 1416 1417 return f; 1418 } 1419 1420 /** 1421 * __i40e_del_filter - Remove a specific filter from the VSI 1422 * @vsi: VSI to remove from 1423 * @f: the filter to remove from the list 1424 * 1425 * This function should be called instead of i40e_del_filter only if you know 1426 * the exact filter you will remove already, such as via i40e_find_filter or 1427 * i40e_find_mac. 1428 * 1429 * NOTE: This function is expected to be called with mac_filter_hash_lock 1430 * being held. 1431 * ANOTHER NOTE: This function MUST be called from within the context of 1432 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1433 * instead of list_for_each_entry(). 1434 **/ 1435 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1436 { 1437 if (!f) 1438 return; 1439 1440 /* If the filter was never added to firmware then we can just delete it 1441 * directly and we don't want to set the status to remove or else an 1442 * admin queue command will unnecessarily fire. 1443 */ 1444 if ((f->state == I40E_FILTER_FAILED) || 1445 (f->state == I40E_FILTER_NEW)) { 1446 hash_del(&f->hlist); 1447 kfree(f); 1448 } else { 1449 f->state = I40E_FILTER_REMOVE; 1450 } 1451 1452 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1453 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1454 } 1455 1456 /** 1457 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1458 * @vsi: the VSI to be searched 1459 * @macaddr: the MAC address 1460 * @vlan: the VLAN 1461 * 1462 * NOTE: This function is expected to be called with mac_filter_hash_lock 1463 * being held. 1464 * ANOTHER NOTE: This function MUST be called from within the context of 1465 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1466 * instead of list_for_each_entry(). 1467 **/ 1468 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1469 { 1470 struct i40e_mac_filter *f; 1471 1472 if (!vsi || !macaddr) 1473 return; 1474 1475 f = i40e_find_filter(vsi, macaddr, vlan); 1476 __i40e_del_filter(vsi, f); 1477 } 1478 1479 /** 1480 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1481 * @vsi: the VSI to be searched 1482 * @macaddr: the mac address to be filtered 1483 * 1484 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1485 * go through all the macvlan filters and add a macvlan filter for each 1486 * unique vlan that already exists. If a PVID has been assigned, instead only 1487 * add the macaddr to that VLAN. 1488 * 1489 * Returns last filter added on success, else NULL 1490 **/ 1491 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1492 const u8 *macaddr) 1493 { 1494 struct i40e_mac_filter *f, *add = NULL; 1495 struct hlist_node *h; 1496 int bkt; 1497 1498 if (vsi->info.pvid) 1499 return i40e_add_filter(vsi, macaddr, 1500 le16_to_cpu(vsi->info.pvid)); 1501 1502 if (!i40e_is_vsi_in_vlan(vsi)) 1503 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1504 1505 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1506 if (f->state == I40E_FILTER_REMOVE) 1507 continue; 1508 add = i40e_add_filter(vsi, macaddr, f->vlan); 1509 if (!add) 1510 return NULL; 1511 } 1512 1513 return add; 1514 } 1515 1516 /** 1517 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1518 * @vsi: the VSI to be searched 1519 * @macaddr: the mac address to be removed 1520 * 1521 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1522 * associated with. 1523 * 1524 * Returns 0 for success, or error 1525 **/ 1526 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1527 { 1528 struct i40e_mac_filter *f; 1529 struct hlist_node *h; 1530 bool found = false; 1531 int bkt; 1532 1533 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1534 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1535 if (ether_addr_equal(macaddr, f->macaddr)) { 1536 __i40e_del_filter(vsi, f); 1537 found = true; 1538 } 1539 } 1540 1541 if (found) 1542 return 0; 1543 else 1544 return -ENOENT; 1545 } 1546 1547 /** 1548 * i40e_set_mac - NDO callback to set mac address 1549 * @netdev: network interface device structure 1550 * @p: pointer to an address structure 1551 * 1552 * Returns 0 on success, negative on failure 1553 **/ 1554 static int i40e_set_mac(struct net_device *netdev, void *p) 1555 { 1556 struct i40e_netdev_priv *np = netdev_priv(netdev); 1557 struct i40e_vsi *vsi = np->vsi; 1558 struct i40e_pf *pf = vsi->back; 1559 struct i40e_hw *hw = &pf->hw; 1560 struct sockaddr *addr = p; 1561 1562 if (!is_valid_ether_addr(addr->sa_data)) 1563 return -EADDRNOTAVAIL; 1564 1565 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1566 netdev_info(netdev, "already using mac address %pM\n", 1567 addr->sa_data); 1568 return 0; 1569 } 1570 1571 if (test_bit(__I40E_DOWN, pf->state) || 1572 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1573 return -EADDRNOTAVAIL; 1574 1575 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1576 netdev_info(netdev, "returning to hw mac address %pM\n", 1577 hw->mac.addr); 1578 else 1579 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1580 1581 /* Copy the address first, so that we avoid a possible race with 1582 * .set_rx_mode(). 1583 * - Remove old address from MAC filter 1584 * - Copy new address 1585 * - Add new address to MAC filter 1586 */ 1587 spin_lock_bh(&vsi->mac_filter_hash_lock); 1588 i40e_del_mac_filter(vsi, netdev->dev_addr); 1589 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1590 i40e_add_mac_filter(vsi, netdev->dev_addr); 1591 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1592 1593 if (vsi->type == I40E_VSI_MAIN) { 1594 i40e_status ret; 1595 1596 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1597 addr->sa_data, NULL); 1598 if (ret) 1599 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1600 i40e_stat_str(hw, ret), 1601 i40e_aq_str(hw, hw->aq.asq_last_status)); 1602 } 1603 1604 /* schedule our worker thread which will take care of 1605 * applying the new filter changes 1606 */ 1607 i40e_service_event_schedule(pf); 1608 return 0; 1609 } 1610 1611 /** 1612 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1613 * @vsi: vsi structure 1614 * @seed: RSS hash seed 1615 * @lut: pointer to lookup table of lut_size 1616 * @lut_size: size of the lookup table 1617 **/ 1618 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1619 u8 *lut, u16 lut_size) 1620 { 1621 struct i40e_pf *pf = vsi->back; 1622 struct i40e_hw *hw = &pf->hw; 1623 int ret = 0; 1624 1625 if (seed) { 1626 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1627 (struct i40e_aqc_get_set_rss_key_data *)seed; 1628 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1629 if (ret) { 1630 dev_info(&pf->pdev->dev, 1631 "Cannot set RSS key, err %s aq_err %s\n", 1632 i40e_stat_str(hw, ret), 1633 i40e_aq_str(hw, hw->aq.asq_last_status)); 1634 return ret; 1635 } 1636 } 1637 if (lut) { 1638 bool pf_lut = vsi->type == I40E_VSI_MAIN; 1639 1640 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1641 if (ret) { 1642 dev_info(&pf->pdev->dev, 1643 "Cannot set RSS lut, err %s aq_err %s\n", 1644 i40e_stat_str(hw, ret), 1645 i40e_aq_str(hw, hw->aq.asq_last_status)); 1646 return ret; 1647 } 1648 } 1649 return ret; 1650 } 1651 1652 /** 1653 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1654 * @vsi: VSI structure 1655 **/ 1656 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1657 { 1658 struct i40e_pf *pf = vsi->back; 1659 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1660 u8 *lut; 1661 int ret; 1662 1663 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1664 return 0; 1665 if (!vsi->rss_size) 1666 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1667 vsi->num_queue_pairs); 1668 if (!vsi->rss_size) 1669 return -EINVAL; 1670 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1671 if (!lut) 1672 return -ENOMEM; 1673 1674 /* Use the user configured hash keys and lookup table if there is one, 1675 * otherwise use default 1676 */ 1677 if (vsi->rss_lut_user) 1678 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1679 else 1680 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1681 if (vsi->rss_hkey_user) 1682 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1683 else 1684 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1685 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1686 kfree(lut); 1687 return ret; 1688 } 1689 1690 /** 1691 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1692 * @vsi: the VSI being configured, 1693 * @ctxt: VSI context structure 1694 * @enabled_tc: number of traffic classes to enable 1695 * 1696 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1697 **/ 1698 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1699 struct i40e_vsi_context *ctxt, 1700 u8 enabled_tc) 1701 { 1702 u16 qcount = 0, max_qcount, qmap, sections = 0; 1703 int i, override_q, pow, num_qps, ret; 1704 u8 netdev_tc = 0, offset = 0; 1705 1706 if (vsi->type != I40E_VSI_MAIN) 1707 return -EINVAL; 1708 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1709 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1710 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1711 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1712 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1713 1714 /* find the next higher power-of-2 of num queue pairs */ 1715 pow = ilog2(num_qps); 1716 if (!is_power_of_2(num_qps)) 1717 pow++; 1718 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1719 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1720 1721 /* Setup queue offset/count for all TCs for given VSI */ 1722 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1723 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1724 /* See if the given TC is enabled for the given VSI */ 1725 if (vsi->tc_config.enabled_tc & BIT(i)) { 1726 offset = vsi->mqprio_qopt.qopt.offset[i]; 1727 qcount = vsi->mqprio_qopt.qopt.count[i]; 1728 if (qcount > max_qcount) 1729 max_qcount = qcount; 1730 vsi->tc_config.tc_info[i].qoffset = offset; 1731 vsi->tc_config.tc_info[i].qcount = qcount; 1732 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1733 } else { 1734 /* TC is not enabled so set the offset to 1735 * default queue and allocate one queue 1736 * for the given TC. 1737 */ 1738 vsi->tc_config.tc_info[i].qoffset = 0; 1739 vsi->tc_config.tc_info[i].qcount = 1; 1740 vsi->tc_config.tc_info[i].netdev_tc = 0; 1741 } 1742 } 1743 1744 /* Set actual Tx/Rx queue pairs */ 1745 vsi->num_queue_pairs = offset + qcount; 1746 1747 /* Setup queue TC[0].qmap for given VSI context */ 1748 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1749 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1750 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1751 ctxt->info.valid_sections |= cpu_to_le16(sections); 1752 1753 /* Reconfigure RSS for main VSI with max queue count */ 1754 vsi->rss_size = max_qcount; 1755 ret = i40e_vsi_config_rss(vsi); 1756 if (ret) { 1757 dev_info(&vsi->back->pdev->dev, 1758 "Failed to reconfig rss for num_queues (%u)\n", 1759 max_qcount); 1760 return ret; 1761 } 1762 vsi->reconfig_rss = true; 1763 dev_dbg(&vsi->back->pdev->dev, 1764 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1765 1766 /* Find queue count available for channel VSIs and starting offset 1767 * for channel VSIs 1768 */ 1769 override_q = vsi->mqprio_qopt.qopt.count[0]; 1770 if (override_q && override_q < vsi->num_queue_pairs) { 1771 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1772 vsi->next_base_queue = override_q; 1773 } 1774 return 0; 1775 } 1776 1777 /** 1778 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1779 * @vsi: the VSI being setup 1780 * @ctxt: VSI context structure 1781 * @enabled_tc: Enabled TCs bitmap 1782 * @is_add: True if called before Add VSI 1783 * 1784 * Setup VSI queue mapping for enabled traffic classes. 1785 **/ 1786 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1787 struct i40e_vsi_context *ctxt, 1788 u8 enabled_tc, 1789 bool is_add) 1790 { 1791 struct i40e_pf *pf = vsi->back; 1792 u16 sections = 0; 1793 u8 netdev_tc = 0; 1794 u16 numtc = 1; 1795 u16 qcount; 1796 u8 offset; 1797 u16 qmap; 1798 int i; 1799 u16 num_tc_qps = 0; 1800 1801 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1802 offset = 0; 1803 1804 /* Number of queues per enabled TC */ 1805 num_tc_qps = vsi->alloc_queue_pairs; 1806 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1807 /* Find numtc from enabled TC bitmap */ 1808 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1809 if (enabled_tc & BIT(i)) /* TC is enabled */ 1810 numtc++; 1811 } 1812 if (!numtc) { 1813 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1814 numtc = 1; 1815 } 1816 num_tc_qps = num_tc_qps / numtc; 1817 num_tc_qps = min_t(int, num_tc_qps, 1818 i40e_pf_get_max_q_per_tc(pf)); 1819 } 1820 1821 vsi->tc_config.numtc = numtc; 1822 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1823 1824 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1825 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1826 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1827 1828 /* Setup queue offset/count for all TCs for given VSI */ 1829 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1830 /* See if the given TC is enabled for the given VSI */ 1831 if (vsi->tc_config.enabled_tc & BIT(i)) { 1832 /* TC is enabled */ 1833 int pow, num_qps; 1834 1835 switch (vsi->type) { 1836 case I40E_VSI_MAIN: 1837 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1838 I40E_FLAG_FD_ATR_ENABLED)) || 1839 vsi->tc_config.enabled_tc != 1) { 1840 qcount = min_t(int, pf->alloc_rss_size, 1841 num_tc_qps); 1842 break; 1843 } 1844 fallthrough; 1845 case I40E_VSI_FDIR: 1846 case I40E_VSI_SRIOV: 1847 case I40E_VSI_VMDQ2: 1848 default: 1849 qcount = num_tc_qps; 1850 WARN_ON(i != 0); 1851 break; 1852 } 1853 vsi->tc_config.tc_info[i].qoffset = offset; 1854 vsi->tc_config.tc_info[i].qcount = qcount; 1855 1856 /* find the next higher power-of-2 of num queue pairs */ 1857 num_qps = qcount; 1858 pow = 0; 1859 while (num_qps && (BIT_ULL(pow) < qcount)) { 1860 pow++; 1861 num_qps >>= 1; 1862 } 1863 1864 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1865 qmap = 1866 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1867 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1868 1869 offset += qcount; 1870 } else { 1871 /* TC is not enabled so set the offset to 1872 * default queue and allocate one queue 1873 * for the given TC. 1874 */ 1875 vsi->tc_config.tc_info[i].qoffset = 0; 1876 vsi->tc_config.tc_info[i].qcount = 1; 1877 vsi->tc_config.tc_info[i].netdev_tc = 0; 1878 1879 qmap = 0; 1880 } 1881 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1882 } 1883 1884 /* Set actual Tx/Rx queue pairs */ 1885 vsi->num_queue_pairs = offset; 1886 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1887 if (vsi->req_queue_pairs > 0) 1888 vsi->num_queue_pairs = vsi->req_queue_pairs; 1889 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1890 vsi->num_queue_pairs = pf->num_lan_msix; 1891 } 1892 1893 /* Scheduler section valid can only be set for ADD VSI */ 1894 if (is_add) { 1895 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1896 1897 ctxt->info.up_enable_bits = enabled_tc; 1898 } 1899 if (vsi->type == I40E_VSI_SRIOV) { 1900 ctxt->info.mapping_flags |= 1901 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1902 for (i = 0; i < vsi->num_queue_pairs; i++) 1903 ctxt->info.queue_mapping[i] = 1904 cpu_to_le16(vsi->base_queue + i); 1905 } else { 1906 ctxt->info.mapping_flags |= 1907 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1908 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1909 } 1910 ctxt->info.valid_sections |= cpu_to_le16(sections); 1911 } 1912 1913 /** 1914 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1915 * @netdev: the netdevice 1916 * @addr: address to add 1917 * 1918 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1919 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1920 */ 1921 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1922 { 1923 struct i40e_netdev_priv *np = netdev_priv(netdev); 1924 struct i40e_vsi *vsi = np->vsi; 1925 1926 if (i40e_add_mac_filter(vsi, addr)) 1927 return 0; 1928 else 1929 return -ENOMEM; 1930 } 1931 1932 /** 1933 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1934 * @netdev: the netdevice 1935 * @addr: address to add 1936 * 1937 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1938 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1939 */ 1940 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1941 { 1942 struct i40e_netdev_priv *np = netdev_priv(netdev); 1943 struct i40e_vsi *vsi = np->vsi; 1944 1945 /* Under some circumstances, we might receive a request to delete 1946 * our own device address from our uc list. Because we store the 1947 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1948 * such requests and not delete our device address from this list. 1949 */ 1950 if (ether_addr_equal(addr, netdev->dev_addr)) 1951 return 0; 1952 1953 i40e_del_mac_filter(vsi, addr); 1954 1955 return 0; 1956 } 1957 1958 /** 1959 * i40e_set_rx_mode - NDO callback to set the netdev filters 1960 * @netdev: network interface device structure 1961 **/ 1962 static void i40e_set_rx_mode(struct net_device *netdev) 1963 { 1964 struct i40e_netdev_priv *np = netdev_priv(netdev); 1965 struct i40e_vsi *vsi = np->vsi; 1966 1967 spin_lock_bh(&vsi->mac_filter_hash_lock); 1968 1969 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1970 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1971 1972 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1973 1974 /* check for other flag changes */ 1975 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1976 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1977 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1978 } 1979 } 1980 1981 /** 1982 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1983 * @vsi: Pointer to VSI struct 1984 * @from: Pointer to list which contains MAC filter entries - changes to 1985 * those entries needs to be undone. 1986 * 1987 * MAC filter entries from this list were slated for deletion. 1988 **/ 1989 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1990 struct hlist_head *from) 1991 { 1992 struct i40e_mac_filter *f; 1993 struct hlist_node *h; 1994 1995 hlist_for_each_entry_safe(f, h, from, hlist) { 1996 u64 key = i40e_addr_to_hkey(f->macaddr); 1997 1998 /* Move the element back into MAC filter list*/ 1999 hlist_del(&f->hlist); 2000 hash_add(vsi->mac_filter_hash, &f->hlist, key); 2001 } 2002 } 2003 2004 /** 2005 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 2006 * @vsi: Pointer to vsi struct 2007 * @from: Pointer to list which contains MAC filter entries - changes to 2008 * those entries needs to be undone. 2009 * 2010 * MAC filter entries from this list were slated for addition. 2011 **/ 2012 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 2013 struct hlist_head *from) 2014 { 2015 struct i40e_new_mac_filter *new; 2016 struct hlist_node *h; 2017 2018 hlist_for_each_entry_safe(new, h, from, hlist) { 2019 /* We can simply free the wrapper structure */ 2020 hlist_del(&new->hlist); 2021 kfree(new); 2022 } 2023 } 2024 2025 /** 2026 * i40e_next_filter - Get the next non-broadcast filter from a list 2027 * @next: pointer to filter in list 2028 * 2029 * Returns the next non-broadcast filter in the list. Required so that we 2030 * ignore broadcast filters within the list, since these are not handled via 2031 * the normal firmware update path. 2032 */ 2033 static 2034 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2035 { 2036 hlist_for_each_entry_continue(next, hlist) { 2037 if (!is_broadcast_ether_addr(next->f->macaddr)) 2038 return next; 2039 } 2040 2041 return NULL; 2042 } 2043 2044 /** 2045 * i40e_update_filter_state - Update filter state based on return data 2046 * from firmware 2047 * @count: Number of filters added 2048 * @add_list: return data from fw 2049 * @add_head: pointer to first filter in current batch 2050 * 2051 * MAC filter entries from list were slated to be added to device. Returns 2052 * number of successful filters. Note that 0 does NOT mean success! 2053 **/ 2054 static int 2055 i40e_update_filter_state(int count, 2056 struct i40e_aqc_add_macvlan_element_data *add_list, 2057 struct i40e_new_mac_filter *add_head) 2058 { 2059 int retval = 0; 2060 int i; 2061 2062 for (i = 0; i < count; i++) { 2063 /* Always check status of each filter. We don't need to check 2064 * the firmware return status because we pre-set the filter 2065 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2066 * request to the adminq. Thus, if it no longer matches then 2067 * we know the filter is active. 2068 */ 2069 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2070 add_head->state = I40E_FILTER_FAILED; 2071 } else { 2072 add_head->state = I40E_FILTER_ACTIVE; 2073 retval++; 2074 } 2075 2076 add_head = i40e_next_filter(add_head); 2077 if (!add_head) 2078 break; 2079 } 2080 2081 return retval; 2082 } 2083 2084 /** 2085 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2086 * @vsi: ptr to the VSI 2087 * @vsi_name: name to display in messages 2088 * @list: the list of filters to send to firmware 2089 * @num_del: the number of filters to delete 2090 * @retval: Set to -EIO on failure to delete 2091 * 2092 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2093 * *retval instead of a return value so that success does not force ret_val to 2094 * be set to 0. This ensures that a sequence of calls to this function 2095 * preserve the previous value of *retval on successful delete. 2096 */ 2097 static 2098 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2099 struct i40e_aqc_remove_macvlan_element_data *list, 2100 int num_del, int *retval) 2101 { 2102 struct i40e_hw *hw = &vsi->back->hw; 2103 i40e_status aq_ret; 2104 int aq_err; 2105 2106 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2107 aq_err = hw->aq.asq_last_status; 2108 2109 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2110 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2111 *retval = -EIO; 2112 dev_info(&vsi->back->pdev->dev, 2113 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2114 vsi_name, i40e_stat_str(hw, aq_ret), 2115 i40e_aq_str(hw, aq_err)); 2116 } 2117 } 2118 2119 /** 2120 * i40e_aqc_add_filters - Request firmware to add a set of filters 2121 * @vsi: ptr to the VSI 2122 * @vsi_name: name to display in messages 2123 * @list: the list of filters to send to firmware 2124 * @add_head: Position in the add hlist 2125 * @num_add: the number of filters to add 2126 * 2127 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2128 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2129 * space for more filters. 2130 */ 2131 static 2132 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2133 struct i40e_aqc_add_macvlan_element_data *list, 2134 struct i40e_new_mac_filter *add_head, 2135 int num_add) 2136 { 2137 struct i40e_hw *hw = &vsi->back->hw; 2138 int aq_err, fcnt; 2139 2140 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2141 aq_err = hw->aq.asq_last_status; 2142 fcnt = i40e_update_filter_state(num_add, list, add_head); 2143 2144 if (fcnt != num_add) { 2145 if (vsi->type == I40E_VSI_MAIN) { 2146 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2147 dev_warn(&vsi->back->pdev->dev, 2148 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2149 i40e_aq_str(hw, aq_err), vsi_name); 2150 } else if (vsi->type == I40E_VSI_SRIOV || 2151 vsi->type == I40E_VSI_VMDQ1 || 2152 vsi->type == I40E_VSI_VMDQ2) { 2153 dev_warn(&vsi->back->pdev->dev, 2154 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n", 2155 i40e_aq_str(hw, aq_err), vsi_name, vsi_name); 2156 } else { 2157 dev_warn(&vsi->back->pdev->dev, 2158 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n", 2159 i40e_aq_str(hw, aq_err), vsi_name, vsi->type); 2160 } 2161 } 2162 } 2163 2164 /** 2165 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2166 * @vsi: pointer to the VSI 2167 * @vsi_name: the VSI name 2168 * @f: filter data 2169 * 2170 * This function sets or clears the promiscuous broadcast flags for VLAN 2171 * filters in order to properly receive broadcast frames. Assumes that only 2172 * broadcast filters are passed. 2173 * 2174 * Returns status indicating success or failure; 2175 **/ 2176 static i40e_status 2177 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2178 struct i40e_mac_filter *f) 2179 { 2180 bool enable = f->state == I40E_FILTER_NEW; 2181 struct i40e_hw *hw = &vsi->back->hw; 2182 i40e_status aq_ret; 2183 2184 if (f->vlan == I40E_VLAN_ANY) { 2185 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2186 vsi->seid, 2187 enable, 2188 NULL); 2189 } else { 2190 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2191 vsi->seid, 2192 enable, 2193 f->vlan, 2194 NULL); 2195 } 2196 2197 if (aq_ret) { 2198 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2199 dev_warn(&vsi->back->pdev->dev, 2200 "Error %s, forcing overflow promiscuous on %s\n", 2201 i40e_aq_str(hw, hw->aq.asq_last_status), 2202 vsi_name); 2203 } 2204 2205 return aq_ret; 2206 } 2207 2208 /** 2209 * i40e_set_promiscuous - set promiscuous mode 2210 * @pf: board private structure 2211 * @promisc: promisc on or off 2212 * 2213 * There are different ways of setting promiscuous mode on a PF depending on 2214 * what state/environment we're in. This identifies and sets it appropriately. 2215 * Returns 0 on success. 2216 **/ 2217 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2218 { 2219 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2220 struct i40e_hw *hw = &pf->hw; 2221 i40e_status aq_ret; 2222 2223 if (vsi->type == I40E_VSI_MAIN && 2224 pf->lan_veb != I40E_NO_VEB && 2225 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2226 /* set defport ON for Main VSI instead of true promisc 2227 * this way we will get all unicast/multicast and VLAN 2228 * promisc behavior but will not get VF or VMDq traffic 2229 * replicated on the Main VSI. 2230 */ 2231 if (promisc) 2232 aq_ret = i40e_aq_set_default_vsi(hw, 2233 vsi->seid, 2234 NULL); 2235 else 2236 aq_ret = i40e_aq_clear_default_vsi(hw, 2237 vsi->seid, 2238 NULL); 2239 if (aq_ret) { 2240 dev_info(&pf->pdev->dev, 2241 "Set default VSI failed, err %s, aq_err %s\n", 2242 i40e_stat_str(hw, aq_ret), 2243 i40e_aq_str(hw, hw->aq.asq_last_status)); 2244 } 2245 } else { 2246 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2247 hw, 2248 vsi->seid, 2249 promisc, NULL, 2250 true); 2251 if (aq_ret) { 2252 dev_info(&pf->pdev->dev, 2253 "set unicast promisc failed, err %s, aq_err %s\n", 2254 i40e_stat_str(hw, aq_ret), 2255 i40e_aq_str(hw, hw->aq.asq_last_status)); 2256 } 2257 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2258 hw, 2259 vsi->seid, 2260 promisc, NULL); 2261 if (aq_ret) { 2262 dev_info(&pf->pdev->dev, 2263 "set multicast promisc failed, err %s, aq_err %s\n", 2264 i40e_stat_str(hw, aq_ret), 2265 i40e_aq_str(hw, hw->aq.asq_last_status)); 2266 } 2267 } 2268 2269 if (!aq_ret) 2270 pf->cur_promisc = promisc; 2271 2272 return aq_ret; 2273 } 2274 2275 /** 2276 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2277 * @vsi: ptr to the VSI 2278 * 2279 * Push any outstanding VSI filter changes through the AdminQ. 2280 * 2281 * Returns 0 or error value 2282 **/ 2283 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2284 { 2285 struct hlist_head tmp_add_list, tmp_del_list; 2286 struct i40e_mac_filter *f; 2287 struct i40e_new_mac_filter *new, *add_head = NULL; 2288 struct i40e_hw *hw = &vsi->back->hw; 2289 bool old_overflow, new_overflow; 2290 unsigned int failed_filters = 0; 2291 unsigned int vlan_filters = 0; 2292 char vsi_name[16] = "PF"; 2293 int filter_list_len = 0; 2294 i40e_status aq_ret = 0; 2295 u32 changed_flags = 0; 2296 struct hlist_node *h; 2297 struct i40e_pf *pf; 2298 int num_add = 0; 2299 int num_del = 0; 2300 int retval = 0; 2301 u16 cmd_flags; 2302 int list_size; 2303 int bkt; 2304 2305 /* empty array typed pointers, kcalloc later */ 2306 struct i40e_aqc_add_macvlan_element_data *add_list; 2307 struct i40e_aqc_remove_macvlan_element_data *del_list; 2308 2309 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2310 usleep_range(1000, 2000); 2311 pf = vsi->back; 2312 2313 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2314 2315 if (vsi->netdev) { 2316 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2317 vsi->current_netdev_flags = vsi->netdev->flags; 2318 } 2319 2320 INIT_HLIST_HEAD(&tmp_add_list); 2321 INIT_HLIST_HEAD(&tmp_del_list); 2322 2323 if (vsi->type == I40E_VSI_SRIOV) 2324 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2325 else if (vsi->type != I40E_VSI_MAIN) 2326 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2327 2328 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2329 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2330 2331 spin_lock_bh(&vsi->mac_filter_hash_lock); 2332 /* Create a list of filters to delete. */ 2333 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2334 if (f->state == I40E_FILTER_REMOVE) { 2335 /* Move the element into temporary del_list */ 2336 hash_del(&f->hlist); 2337 hlist_add_head(&f->hlist, &tmp_del_list); 2338 2339 /* Avoid counting removed filters */ 2340 continue; 2341 } 2342 if (f->state == I40E_FILTER_NEW) { 2343 /* Create a temporary i40e_new_mac_filter */ 2344 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2345 if (!new) 2346 goto err_no_memory_locked; 2347 2348 /* Store pointer to the real filter */ 2349 new->f = f; 2350 new->state = f->state; 2351 2352 /* Add it to the hash list */ 2353 hlist_add_head(&new->hlist, &tmp_add_list); 2354 } 2355 2356 /* Count the number of active (current and new) VLAN 2357 * filters we have now. Does not count filters which 2358 * are marked for deletion. 2359 */ 2360 if (f->vlan > 0) 2361 vlan_filters++; 2362 } 2363 2364 retval = i40e_correct_mac_vlan_filters(vsi, 2365 &tmp_add_list, 2366 &tmp_del_list, 2367 vlan_filters); 2368 if (retval) 2369 goto err_no_memory_locked; 2370 2371 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2372 } 2373 2374 /* Now process 'del_list' outside the lock */ 2375 if (!hlist_empty(&tmp_del_list)) { 2376 filter_list_len = hw->aq.asq_buf_size / 2377 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2378 list_size = filter_list_len * 2379 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2380 del_list = kzalloc(list_size, GFP_ATOMIC); 2381 if (!del_list) 2382 goto err_no_memory; 2383 2384 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2385 cmd_flags = 0; 2386 2387 /* handle broadcast filters by updating the broadcast 2388 * promiscuous flag and release filter list. 2389 */ 2390 if (is_broadcast_ether_addr(f->macaddr)) { 2391 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2392 2393 hlist_del(&f->hlist); 2394 kfree(f); 2395 continue; 2396 } 2397 2398 /* add to delete list */ 2399 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2400 if (f->vlan == I40E_VLAN_ANY) { 2401 del_list[num_del].vlan_tag = 0; 2402 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2403 } else { 2404 del_list[num_del].vlan_tag = 2405 cpu_to_le16((u16)(f->vlan)); 2406 } 2407 2408 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2409 del_list[num_del].flags = cmd_flags; 2410 num_del++; 2411 2412 /* flush a full buffer */ 2413 if (num_del == filter_list_len) { 2414 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2415 num_del, &retval); 2416 memset(del_list, 0, list_size); 2417 num_del = 0; 2418 } 2419 /* Release memory for MAC filter entries which were 2420 * synced up with HW. 2421 */ 2422 hlist_del(&f->hlist); 2423 kfree(f); 2424 } 2425 2426 if (num_del) { 2427 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2428 num_del, &retval); 2429 } 2430 2431 kfree(del_list); 2432 del_list = NULL; 2433 } 2434 2435 if (!hlist_empty(&tmp_add_list)) { 2436 /* Do all the adds now. */ 2437 filter_list_len = hw->aq.asq_buf_size / 2438 sizeof(struct i40e_aqc_add_macvlan_element_data); 2439 list_size = filter_list_len * 2440 sizeof(struct i40e_aqc_add_macvlan_element_data); 2441 add_list = kzalloc(list_size, GFP_ATOMIC); 2442 if (!add_list) 2443 goto err_no_memory; 2444 2445 num_add = 0; 2446 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2447 /* handle broadcast filters by updating the broadcast 2448 * promiscuous flag instead of adding a MAC filter. 2449 */ 2450 if (is_broadcast_ether_addr(new->f->macaddr)) { 2451 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2452 new->f)) 2453 new->state = I40E_FILTER_FAILED; 2454 else 2455 new->state = I40E_FILTER_ACTIVE; 2456 continue; 2457 } 2458 2459 /* add to add array */ 2460 if (num_add == 0) 2461 add_head = new; 2462 cmd_flags = 0; 2463 ether_addr_copy(add_list[num_add].mac_addr, 2464 new->f->macaddr); 2465 if (new->f->vlan == I40E_VLAN_ANY) { 2466 add_list[num_add].vlan_tag = 0; 2467 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2468 } else { 2469 add_list[num_add].vlan_tag = 2470 cpu_to_le16((u16)(new->f->vlan)); 2471 } 2472 add_list[num_add].queue_number = 0; 2473 /* set invalid match method for later detection */ 2474 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2475 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2476 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2477 num_add++; 2478 2479 /* flush a full buffer */ 2480 if (num_add == filter_list_len) { 2481 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2482 add_head, num_add); 2483 memset(add_list, 0, list_size); 2484 num_add = 0; 2485 } 2486 } 2487 if (num_add) { 2488 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2489 num_add); 2490 } 2491 /* Now move all of the filters from the temp add list back to 2492 * the VSI's list. 2493 */ 2494 spin_lock_bh(&vsi->mac_filter_hash_lock); 2495 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2496 /* Only update the state if we're still NEW */ 2497 if (new->f->state == I40E_FILTER_NEW) 2498 new->f->state = new->state; 2499 hlist_del(&new->hlist); 2500 kfree(new); 2501 } 2502 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2503 kfree(add_list); 2504 add_list = NULL; 2505 } 2506 2507 /* Determine the number of active and failed filters. */ 2508 spin_lock_bh(&vsi->mac_filter_hash_lock); 2509 vsi->active_filters = 0; 2510 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2511 if (f->state == I40E_FILTER_ACTIVE) 2512 vsi->active_filters++; 2513 else if (f->state == I40E_FILTER_FAILED) 2514 failed_filters++; 2515 } 2516 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2517 2518 /* Check if we are able to exit overflow promiscuous mode. We can 2519 * safely exit if we didn't just enter, we no longer have any failed 2520 * filters, and we have reduced filters below the threshold value. 2521 */ 2522 if (old_overflow && !failed_filters && 2523 vsi->active_filters < vsi->promisc_threshold) { 2524 dev_info(&pf->pdev->dev, 2525 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2526 vsi_name); 2527 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2528 vsi->promisc_threshold = 0; 2529 } 2530 2531 /* if the VF is not trusted do not do promisc */ 2532 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2533 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2534 goto out; 2535 } 2536 2537 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2538 2539 /* If we are entering overflow promiscuous, we need to calculate a new 2540 * threshold for when we are safe to exit 2541 */ 2542 if (!old_overflow && new_overflow) 2543 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2544 2545 /* check for changes in promiscuous modes */ 2546 if (changed_flags & IFF_ALLMULTI) { 2547 bool cur_multipromisc; 2548 2549 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2550 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2551 vsi->seid, 2552 cur_multipromisc, 2553 NULL); 2554 if (aq_ret) { 2555 retval = i40e_aq_rc_to_posix(aq_ret, 2556 hw->aq.asq_last_status); 2557 dev_info(&pf->pdev->dev, 2558 "set multi promisc failed on %s, err %s aq_err %s\n", 2559 vsi_name, 2560 i40e_stat_str(hw, aq_ret), 2561 i40e_aq_str(hw, hw->aq.asq_last_status)); 2562 } else { 2563 dev_info(&pf->pdev->dev, "%s is %s allmulti mode.\n", 2564 vsi->netdev->name, 2565 cur_multipromisc ? "entering" : "leaving"); 2566 } 2567 } 2568 2569 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2570 bool cur_promisc; 2571 2572 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2573 new_overflow); 2574 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2575 if (aq_ret) { 2576 retval = i40e_aq_rc_to_posix(aq_ret, 2577 hw->aq.asq_last_status); 2578 dev_info(&pf->pdev->dev, 2579 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2580 cur_promisc ? "on" : "off", 2581 vsi_name, 2582 i40e_stat_str(hw, aq_ret), 2583 i40e_aq_str(hw, hw->aq.asq_last_status)); 2584 } 2585 } 2586 out: 2587 /* if something went wrong then set the changed flag so we try again */ 2588 if (retval) 2589 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2590 2591 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2592 return retval; 2593 2594 err_no_memory: 2595 /* Restore elements on the temporary add and delete lists */ 2596 spin_lock_bh(&vsi->mac_filter_hash_lock); 2597 err_no_memory_locked: 2598 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2599 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2600 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2601 2602 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2603 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2604 return -ENOMEM; 2605 } 2606 2607 /** 2608 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2609 * @pf: board private structure 2610 **/ 2611 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2612 { 2613 int v; 2614 2615 if (!pf) 2616 return; 2617 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2618 return; 2619 if (test_bit(__I40E_VF_DISABLE, pf->state)) { 2620 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 2621 return; 2622 } 2623 2624 for (v = 0; v < pf->num_alloc_vsi; v++) { 2625 if (pf->vsi[v] && 2626 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2627 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2628 2629 if (ret) { 2630 /* come back and try again later */ 2631 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2632 pf->state); 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 /** 2640 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2641 * @vsi: the vsi 2642 **/ 2643 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2644 { 2645 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2646 return I40E_RXBUFFER_2048; 2647 else 2648 return I40E_RXBUFFER_3072; 2649 } 2650 2651 /** 2652 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2653 * @netdev: network interface device structure 2654 * @new_mtu: new value for maximum frame size 2655 * 2656 * Returns 0 on success, negative on failure 2657 **/ 2658 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2659 { 2660 struct i40e_netdev_priv *np = netdev_priv(netdev); 2661 struct i40e_vsi *vsi = np->vsi; 2662 struct i40e_pf *pf = vsi->back; 2663 2664 if (i40e_enabled_xdp_vsi(vsi)) { 2665 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2666 2667 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2668 return -EINVAL; 2669 } 2670 2671 netdev_dbg(netdev, "changing MTU from %d to %d\n", 2672 netdev->mtu, new_mtu); 2673 netdev->mtu = new_mtu; 2674 if (netif_running(netdev)) 2675 i40e_vsi_reinit_locked(vsi); 2676 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2677 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2678 return 0; 2679 } 2680 2681 /** 2682 * i40e_ioctl - Access the hwtstamp interface 2683 * @netdev: network interface device structure 2684 * @ifr: interface request data 2685 * @cmd: ioctl command 2686 **/ 2687 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2688 { 2689 struct i40e_netdev_priv *np = netdev_priv(netdev); 2690 struct i40e_pf *pf = np->vsi->back; 2691 2692 switch (cmd) { 2693 case SIOCGHWTSTAMP: 2694 return i40e_ptp_get_ts_config(pf, ifr); 2695 case SIOCSHWTSTAMP: 2696 return i40e_ptp_set_ts_config(pf, ifr); 2697 default: 2698 return -EOPNOTSUPP; 2699 } 2700 } 2701 2702 /** 2703 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2704 * @vsi: the vsi being adjusted 2705 **/ 2706 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2707 { 2708 struct i40e_vsi_context ctxt; 2709 i40e_status ret; 2710 2711 /* Don't modify stripping options if a port VLAN is active */ 2712 if (vsi->info.pvid) 2713 return; 2714 2715 if ((vsi->info.valid_sections & 2716 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2717 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2718 return; /* already enabled */ 2719 2720 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2721 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2722 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2723 2724 ctxt.seid = vsi->seid; 2725 ctxt.info = vsi->info; 2726 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2727 if (ret) { 2728 dev_info(&vsi->back->pdev->dev, 2729 "update vlan stripping failed, err %s aq_err %s\n", 2730 i40e_stat_str(&vsi->back->hw, ret), 2731 i40e_aq_str(&vsi->back->hw, 2732 vsi->back->hw.aq.asq_last_status)); 2733 } 2734 } 2735 2736 /** 2737 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2738 * @vsi: the vsi being adjusted 2739 **/ 2740 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2741 { 2742 struct i40e_vsi_context ctxt; 2743 i40e_status ret; 2744 2745 /* Don't modify stripping options if a port VLAN is active */ 2746 if (vsi->info.pvid) 2747 return; 2748 2749 if ((vsi->info.valid_sections & 2750 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2751 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2752 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2753 return; /* already disabled */ 2754 2755 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2756 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2757 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2758 2759 ctxt.seid = vsi->seid; 2760 ctxt.info = vsi->info; 2761 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2762 if (ret) { 2763 dev_info(&vsi->back->pdev->dev, 2764 "update vlan stripping failed, err %s aq_err %s\n", 2765 i40e_stat_str(&vsi->back->hw, ret), 2766 i40e_aq_str(&vsi->back->hw, 2767 vsi->back->hw.aq.asq_last_status)); 2768 } 2769 } 2770 2771 /** 2772 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2773 * @vsi: the vsi being configured 2774 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2775 * 2776 * This is a helper function for adding a new MAC/VLAN filter with the 2777 * specified VLAN for each existing MAC address already in the hash table. 2778 * This function does *not* perform any accounting to update filters based on 2779 * VLAN mode. 2780 * 2781 * NOTE: this function expects to be called while under the 2782 * mac_filter_hash_lock 2783 **/ 2784 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2785 { 2786 struct i40e_mac_filter *f, *add_f; 2787 struct hlist_node *h; 2788 int bkt; 2789 2790 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2791 if (f->state == I40E_FILTER_REMOVE) 2792 continue; 2793 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2794 if (!add_f) { 2795 dev_info(&vsi->back->pdev->dev, 2796 "Could not add vlan filter %d for %pM\n", 2797 vid, f->macaddr); 2798 return -ENOMEM; 2799 } 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be added 2809 **/ 2810 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 int err; 2813 2814 if (vsi->info.pvid) 2815 return -EINVAL; 2816 2817 /* The network stack will attempt to add VID=0, with the intention to 2818 * receive priority tagged packets with a VLAN of 0. Our HW receives 2819 * these packets by default when configured to receive untagged 2820 * packets, so we don't need to add a filter for this case. 2821 * Additionally, HW interprets adding a VID=0 filter as meaning to 2822 * receive *only* tagged traffic and stops receiving untagged traffic. 2823 * Thus, we do not want to actually add a filter for VID=0 2824 */ 2825 if (!vid) 2826 return 0; 2827 2828 /* Locked once because all functions invoked below iterates list*/ 2829 spin_lock_bh(&vsi->mac_filter_hash_lock); 2830 err = i40e_add_vlan_all_mac(vsi, vid); 2831 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2832 if (err) 2833 return err; 2834 2835 /* schedule our worker thread which will take care of 2836 * applying the new filter changes 2837 */ 2838 i40e_service_event_schedule(vsi->back); 2839 return 0; 2840 } 2841 2842 /** 2843 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2844 * @vsi: the vsi being configured 2845 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2846 * 2847 * This function should be used to remove all VLAN filters which match the 2848 * given VID. It does not schedule the service event and does not take the 2849 * mac_filter_hash_lock so it may be combined with other operations under 2850 * a single invocation of the mac_filter_hash_lock. 2851 * 2852 * NOTE: this function expects to be called while under the 2853 * mac_filter_hash_lock 2854 */ 2855 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2856 { 2857 struct i40e_mac_filter *f; 2858 struct hlist_node *h; 2859 int bkt; 2860 2861 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2862 if (f->vlan == vid) 2863 __i40e_del_filter(vsi, f); 2864 } 2865 } 2866 2867 /** 2868 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2869 * @vsi: the VSI being configured 2870 * @vid: VLAN id to be removed 2871 **/ 2872 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2873 { 2874 if (!vid || vsi->info.pvid) 2875 return; 2876 2877 spin_lock_bh(&vsi->mac_filter_hash_lock); 2878 i40e_rm_vlan_all_mac(vsi, vid); 2879 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2880 2881 /* schedule our worker thread which will take care of 2882 * applying the new filter changes 2883 */ 2884 i40e_service_event_schedule(vsi->back); 2885 } 2886 2887 /** 2888 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2889 * @netdev: network interface to be adjusted 2890 * @proto: unused protocol value 2891 * @vid: vlan id to be added 2892 * 2893 * net_device_ops implementation for adding vlan ids 2894 **/ 2895 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2896 __always_unused __be16 proto, u16 vid) 2897 { 2898 struct i40e_netdev_priv *np = netdev_priv(netdev); 2899 struct i40e_vsi *vsi = np->vsi; 2900 int ret = 0; 2901 2902 if (vid >= VLAN_N_VID) 2903 return -EINVAL; 2904 2905 ret = i40e_vsi_add_vlan(vsi, vid); 2906 if (!ret) 2907 set_bit(vid, vsi->active_vlans); 2908 2909 return ret; 2910 } 2911 2912 /** 2913 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2914 * @netdev: network interface to be adjusted 2915 * @proto: unused protocol value 2916 * @vid: vlan id to be added 2917 **/ 2918 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2919 __always_unused __be16 proto, u16 vid) 2920 { 2921 struct i40e_netdev_priv *np = netdev_priv(netdev); 2922 struct i40e_vsi *vsi = np->vsi; 2923 2924 if (vid >= VLAN_N_VID) 2925 return; 2926 set_bit(vid, vsi->active_vlans); 2927 } 2928 2929 /** 2930 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2931 * @netdev: network interface to be adjusted 2932 * @proto: unused protocol value 2933 * @vid: vlan id to be removed 2934 * 2935 * net_device_ops implementation for removing vlan ids 2936 **/ 2937 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2938 __always_unused __be16 proto, u16 vid) 2939 { 2940 struct i40e_netdev_priv *np = netdev_priv(netdev); 2941 struct i40e_vsi *vsi = np->vsi; 2942 2943 /* return code is ignored as there is nothing a user 2944 * can do about failure to remove and a log message was 2945 * already printed from the other function 2946 */ 2947 i40e_vsi_kill_vlan(vsi, vid); 2948 2949 clear_bit(vid, vsi->active_vlans); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2956 * @vsi: the vsi being brought back up 2957 **/ 2958 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2959 { 2960 u16 vid; 2961 2962 if (!vsi->netdev) 2963 return; 2964 2965 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2966 i40e_vlan_stripping_enable(vsi); 2967 else 2968 i40e_vlan_stripping_disable(vsi); 2969 2970 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2971 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2972 vid); 2973 } 2974 2975 /** 2976 * i40e_vsi_add_pvid - Add pvid for the VSI 2977 * @vsi: the vsi being adjusted 2978 * @vid: the vlan id to set as a PVID 2979 **/ 2980 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2981 { 2982 struct i40e_vsi_context ctxt; 2983 i40e_status ret; 2984 2985 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2986 vsi->info.pvid = cpu_to_le16(vid); 2987 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2988 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2989 I40E_AQ_VSI_PVLAN_EMOD_STR; 2990 2991 ctxt.seid = vsi->seid; 2992 ctxt.info = vsi->info; 2993 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2994 if (ret) { 2995 dev_info(&vsi->back->pdev->dev, 2996 "add pvid failed, err %s aq_err %s\n", 2997 i40e_stat_str(&vsi->back->hw, ret), 2998 i40e_aq_str(&vsi->back->hw, 2999 vsi->back->hw.aq.asq_last_status)); 3000 return -ENOENT; 3001 } 3002 3003 return 0; 3004 } 3005 3006 /** 3007 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 3008 * @vsi: the vsi being adjusted 3009 * 3010 * Just use the vlan_rx_register() service to put it back to normal 3011 **/ 3012 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 3013 { 3014 vsi->info.pvid = 0; 3015 3016 i40e_vlan_stripping_disable(vsi); 3017 } 3018 3019 /** 3020 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 3021 * @vsi: ptr to the VSI 3022 * 3023 * If this function returns with an error, then it's possible one or 3024 * more of the rings is populated (while the rest are not). It is the 3025 * callers duty to clean those orphaned rings. 3026 * 3027 * Return 0 on success, negative on failure 3028 **/ 3029 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 3030 { 3031 int i, err = 0; 3032 3033 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3034 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 3035 3036 if (!i40e_enabled_xdp_vsi(vsi)) 3037 return err; 3038 3039 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3040 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 3041 3042 return err; 3043 } 3044 3045 /** 3046 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 3047 * @vsi: ptr to the VSI 3048 * 3049 * Free VSI's transmit software resources 3050 **/ 3051 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 3052 { 3053 int i; 3054 3055 if (vsi->tx_rings) { 3056 for (i = 0; i < vsi->num_queue_pairs; i++) 3057 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 3058 i40e_free_tx_resources(vsi->tx_rings[i]); 3059 } 3060 3061 if (vsi->xdp_rings) { 3062 for (i = 0; i < vsi->num_queue_pairs; i++) 3063 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3064 i40e_free_tx_resources(vsi->xdp_rings[i]); 3065 } 3066 } 3067 3068 /** 3069 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3070 * @vsi: ptr to the VSI 3071 * 3072 * If this function returns with an error, then it's possible one or 3073 * more of the rings is populated (while the rest are not). It is the 3074 * callers duty to clean those orphaned rings. 3075 * 3076 * Return 0 on success, negative on failure 3077 **/ 3078 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3079 { 3080 int i, err = 0; 3081 3082 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3083 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3084 return err; 3085 } 3086 3087 /** 3088 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3089 * @vsi: ptr to the VSI 3090 * 3091 * Free all receive software resources 3092 **/ 3093 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3094 { 3095 int i; 3096 3097 if (!vsi->rx_rings) 3098 return; 3099 3100 for (i = 0; i < vsi->num_queue_pairs; i++) 3101 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3102 i40e_free_rx_resources(vsi->rx_rings[i]); 3103 } 3104 3105 /** 3106 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3107 * @ring: The Tx ring to configure 3108 * 3109 * This enables/disables XPS for a given Tx descriptor ring 3110 * based on the TCs enabled for the VSI that ring belongs to. 3111 **/ 3112 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3113 { 3114 int cpu; 3115 3116 if (!ring->q_vector || !ring->netdev || ring->ch) 3117 return; 3118 3119 /* We only initialize XPS once, so as not to overwrite user settings */ 3120 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3121 return; 3122 3123 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3124 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3125 ring->queue_index); 3126 } 3127 3128 /** 3129 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled 3130 * @ring: The Tx or Rx ring 3131 * 3132 * Returns the AF_XDP buffer pool or NULL. 3133 **/ 3134 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring) 3135 { 3136 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi); 3137 int qid = ring->queue_index; 3138 3139 if (ring_is_xdp(ring)) 3140 qid -= ring->vsi->alloc_queue_pairs; 3141 3142 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps)) 3143 return NULL; 3144 3145 return xsk_get_pool_from_qid(ring->vsi->netdev, qid); 3146 } 3147 3148 /** 3149 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3150 * @ring: The Tx ring to configure 3151 * 3152 * Configure the Tx descriptor ring in the HMC context. 3153 **/ 3154 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3155 { 3156 struct i40e_vsi *vsi = ring->vsi; 3157 u16 pf_q = vsi->base_queue + ring->queue_index; 3158 struct i40e_hw *hw = &vsi->back->hw; 3159 struct i40e_hmc_obj_txq tx_ctx; 3160 i40e_status err = 0; 3161 u32 qtx_ctl = 0; 3162 3163 if (ring_is_xdp(ring)) 3164 ring->xsk_pool = i40e_xsk_pool(ring); 3165 3166 /* some ATR related tx ring init */ 3167 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3168 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3169 ring->atr_count = 0; 3170 } else { 3171 ring->atr_sample_rate = 0; 3172 } 3173 3174 /* configure XPS */ 3175 i40e_config_xps_tx_ring(ring); 3176 3177 /* clear the context structure first */ 3178 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3179 3180 tx_ctx.new_context = 1; 3181 tx_ctx.base = (ring->dma / 128); 3182 tx_ctx.qlen = ring->count; 3183 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3184 I40E_FLAG_FD_ATR_ENABLED)); 3185 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3186 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3187 if (vsi->type != I40E_VSI_FDIR) 3188 tx_ctx.head_wb_ena = 1; 3189 tx_ctx.head_wb_addr = ring->dma + 3190 (ring->count * sizeof(struct i40e_tx_desc)); 3191 3192 /* As part of VSI creation/update, FW allocates certain 3193 * Tx arbitration queue sets for each TC enabled for 3194 * the VSI. The FW returns the handles to these queue 3195 * sets as part of the response buffer to Add VSI, 3196 * Update VSI, etc. AQ commands. It is expected that 3197 * these queue set handles be associated with the Tx 3198 * queues by the driver as part of the TX queue context 3199 * initialization. This has to be done regardless of 3200 * DCB as by default everything is mapped to TC0. 3201 */ 3202 3203 if (ring->ch) 3204 tx_ctx.rdylist = 3205 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3206 3207 else 3208 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3209 3210 tx_ctx.rdylist_act = 0; 3211 3212 /* clear the context in the HMC */ 3213 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3214 if (err) { 3215 dev_info(&vsi->back->pdev->dev, 3216 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3217 ring->queue_index, pf_q, err); 3218 return -ENOMEM; 3219 } 3220 3221 /* set the context in the HMC */ 3222 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3223 if (err) { 3224 dev_info(&vsi->back->pdev->dev, 3225 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3226 ring->queue_index, pf_q, err); 3227 return -ENOMEM; 3228 } 3229 3230 /* Now associate this queue with this PCI function */ 3231 if (ring->ch) { 3232 if (ring->ch->type == I40E_VSI_VMDQ2) 3233 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3234 else 3235 return -EINVAL; 3236 3237 qtx_ctl |= (ring->ch->vsi_number << 3238 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3239 I40E_QTX_CTL_VFVM_INDX_MASK; 3240 } else { 3241 if (vsi->type == I40E_VSI_VMDQ2) { 3242 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3243 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3244 I40E_QTX_CTL_VFVM_INDX_MASK; 3245 } else { 3246 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3247 } 3248 } 3249 3250 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3251 I40E_QTX_CTL_PF_INDX_MASK); 3252 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3253 i40e_flush(hw); 3254 3255 /* cache tail off for easier writes later */ 3256 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * i40e_rx_offset - Return expected offset into page to access data 3263 * @rx_ring: Ring we are requesting offset of 3264 * 3265 * Returns the offset value for ring into the data buffer. 3266 */ 3267 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring) 3268 { 3269 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0; 3270 } 3271 3272 /** 3273 * i40e_configure_rx_ring - Configure a receive ring context 3274 * @ring: The Rx ring to configure 3275 * 3276 * Configure the Rx descriptor ring in the HMC context. 3277 **/ 3278 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3279 { 3280 struct i40e_vsi *vsi = ring->vsi; 3281 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3282 u16 pf_q = vsi->base_queue + ring->queue_index; 3283 struct i40e_hw *hw = &vsi->back->hw; 3284 struct i40e_hmc_obj_rxq rx_ctx; 3285 i40e_status err = 0; 3286 bool ok; 3287 int ret; 3288 3289 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3290 3291 /* clear the context structure first */ 3292 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3293 3294 if (ring->vsi->type == I40E_VSI_MAIN) 3295 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3296 3297 kfree(ring->rx_bi); 3298 ring->xsk_pool = i40e_xsk_pool(ring); 3299 if (ring->xsk_pool) { 3300 ret = i40e_alloc_rx_bi_zc(ring); 3301 if (ret) 3302 return ret; 3303 ring->rx_buf_len = 3304 xsk_pool_get_rx_frame_size(ring->xsk_pool); 3305 /* For AF_XDP ZC, we disallow packets to span on 3306 * multiple buffers, thus letting us skip that 3307 * handling in the fast-path. 3308 */ 3309 chain_len = 1; 3310 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3311 MEM_TYPE_XSK_BUFF_POOL, 3312 NULL); 3313 if (ret) 3314 return ret; 3315 dev_info(&vsi->back->pdev->dev, 3316 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", 3317 ring->queue_index); 3318 3319 } else { 3320 ret = i40e_alloc_rx_bi(ring); 3321 if (ret) 3322 return ret; 3323 ring->rx_buf_len = vsi->rx_buf_len; 3324 if (ring->vsi->type == I40E_VSI_MAIN) { 3325 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3326 MEM_TYPE_PAGE_SHARED, 3327 NULL); 3328 if (ret) 3329 return ret; 3330 } 3331 } 3332 3333 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3334 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3335 3336 rx_ctx.base = (ring->dma / 128); 3337 rx_ctx.qlen = ring->count; 3338 3339 /* use 16 byte descriptors */ 3340 rx_ctx.dsize = 0; 3341 3342 /* descriptor type is always zero 3343 * rx_ctx.dtype = 0; 3344 */ 3345 rx_ctx.hsplit_0 = 0; 3346 3347 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3348 if (hw->revision_id == 0) 3349 rx_ctx.lrxqthresh = 0; 3350 else 3351 rx_ctx.lrxqthresh = 1; 3352 rx_ctx.crcstrip = 1; 3353 rx_ctx.l2tsel = 1; 3354 /* this controls whether VLAN is stripped from inner headers */ 3355 rx_ctx.showiv = 0; 3356 /* set the prefena field to 1 because the manual says to */ 3357 rx_ctx.prefena = 1; 3358 3359 /* clear the context in the HMC */ 3360 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3361 if (err) { 3362 dev_info(&vsi->back->pdev->dev, 3363 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3364 ring->queue_index, pf_q, err); 3365 return -ENOMEM; 3366 } 3367 3368 /* set the context in the HMC */ 3369 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3370 if (err) { 3371 dev_info(&vsi->back->pdev->dev, 3372 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3373 ring->queue_index, pf_q, err); 3374 return -ENOMEM; 3375 } 3376 3377 /* configure Rx buffer alignment */ 3378 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3379 clear_ring_build_skb_enabled(ring); 3380 else 3381 set_ring_build_skb_enabled(ring); 3382 3383 ring->rx_offset = i40e_rx_offset(ring); 3384 3385 /* cache tail for quicker writes, and clear the reg before use */ 3386 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3387 writel(0, ring->tail); 3388 3389 if (ring->xsk_pool) { 3390 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); 3391 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)); 3392 } else { 3393 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3394 } 3395 if (!ok) { 3396 /* Log this in case the user has forgotten to give the kernel 3397 * any buffers, even later in the application. 3398 */ 3399 dev_info(&vsi->back->pdev->dev, 3400 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3401 ring->xsk_pool ? "AF_XDP ZC enabled " : "", 3402 ring->queue_index, pf_q); 3403 } 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * i40e_vsi_configure_tx - Configure the VSI for Tx 3410 * @vsi: VSI structure describing this set of rings and resources 3411 * 3412 * Configure the Tx VSI for operation. 3413 **/ 3414 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3415 { 3416 int err = 0; 3417 u16 i; 3418 3419 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3420 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3421 3422 if (err || !i40e_enabled_xdp_vsi(vsi)) 3423 return err; 3424 3425 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3426 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3427 3428 return err; 3429 } 3430 3431 /** 3432 * i40e_vsi_configure_rx - Configure the VSI for Rx 3433 * @vsi: the VSI being configured 3434 * 3435 * Configure the Rx VSI for operation. 3436 **/ 3437 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3438 { 3439 int err = 0; 3440 u16 i; 3441 3442 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3443 vsi->max_frame = I40E_MAX_RXBUFFER; 3444 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3445 #if (PAGE_SIZE < 8192) 3446 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3447 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3448 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3449 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3450 #endif 3451 } else { 3452 vsi->max_frame = I40E_MAX_RXBUFFER; 3453 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3454 I40E_RXBUFFER_2048; 3455 } 3456 3457 /* set up individual rings */ 3458 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3459 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3460 3461 return err; 3462 } 3463 3464 /** 3465 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3466 * @vsi: ptr to the VSI 3467 **/ 3468 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3469 { 3470 struct i40e_ring *tx_ring, *rx_ring; 3471 u16 qoffset, qcount; 3472 int i, n; 3473 3474 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3475 /* Reset the TC information */ 3476 for (i = 0; i < vsi->num_queue_pairs; i++) { 3477 rx_ring = vsi->rx_rings[i]; 3478 tx_ring = vsi->tx_rings[i]; 3479 rx_ring->dcb_tc = 0; 3480 tx_ring->dcb_tc = 0; 3481 } 3482 return; 3483 } 3484 3485 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3486 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3487 continue; 3488 3489 qoffset = vsi->tc_config.tc_info[n].qoffset; 3490 qcount = vsi->tc_config.tc_info[n].qcount; 3491 for (i = qoffset; i < (qoffset + qcount); i++) { 3492 rx_ring = vsi->rx_rings[i]; 3493 tx_ring = vsi->tx_rings[i]; 3494 rx_ring->dcb_tc = n; 3495 tx_ring->dcb_tc = n; 3496 } 3497 } 3498 } 3499 3500 /** 3501 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3502 * @vsi: ptr to the VSI 3503 **/ 3504 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3505 { 3506 if (vsi->netdev) 3507 i40e_set_rx_mode(vsi->netdev); 3508 } 3509 3510 /** 3511 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters 3512 * @pf: Pointer to the targeted PF 3513 * 3514 * Set all flow director counters to 0. 3515 */ 3516 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf) 3517 { 3518 pf->fd_tcp4_filter_cnt = 0; 3519 pf->fd_udp4_filter_cnt = 0; 3520 pf->fd_sctp4_filter_cnt = 0; 3521 pf->fd_ip4_filter_cnt = 0; 3522 pf->fd_tcp6_filter_cnt = 0; 3523 pf->fd_udp6_filter_cnt = 0; 3524 pf->fd_sctp6_filter_cnt = 0; 3525 pf->fd_ip6_filter_cnt = 0; 3526 } 3527 3528 /** 3529 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3530 * @vsi: Pointer to the targeted VSI 3531 * 3532 * This function replays the hlist on the hw where all the SB Flow Director 3533 * filters were saved. 3534 **/ 3535 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3536 { 3537 struct i40e_fdir_filter *filter; 3538 struct i40e_pf *pf = vsi->back; 3539 struct hlist_node *node; 3540 3541 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3542 return; 3543 3544 /* Reset FDir counters as we're replaying all existing filters */ 3545 i40e_reset_fdir_filter_cnt(pf); 3546 3547 hlist_for_each_entry_safe(filter, node, 3548 &pf->fdir_filter_list, fdir_node) { 3549 i40e_add_del_fdir(vsi, filter, true); 3550 } 3551 } 3552 3553 /** 3554 * i40e_vsi_configure - Set up the VSI for action 3555 * @vsi: the VSI being configured 3556 **/ 3557 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3558 { 3559 int err; 3560 3561 i40e_set_vsi_rx_mode(vsi); 3562 i40e_restore_vlan(vsi); 3563 i40e_vsi_config_dcb_rings(vsi); 3564 err = i40e_vsi_configure_tx(vsi); 3565 if (!err) 3566 err = i40e_vsi_configure_rx(vsi); 3567 3568 return err; 3569 } 3570 3571 /** 3572 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3573 * @vsi: the VSI being configured 3574 **/ 3575 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3576 { 3577 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3578 struct i40e_pf *pf = vsi->back; 3579 struct i40e_hw *hw = &pf->hw; 3580 u16 vector; 3581 int i, q; 3582 u32 qp; 3583 3584 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3585 * and PFINT_LNKLSTn registers, e.g.: 3586 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3587 */ 3588 qp = vsi->base_queue; 3589 vector = vsi->base_vector; 3590 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3591 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3592 3593 q_vector->rx.next_update = jiffies + 1; 3594 q_vector->rx.target_itr = 3595 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3596 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3597 q_vector->rx.target_itr >> 1); 3598 q_vector->rx.current_itr = q_vector->rx.target_itr; 3599 3600 q_vector->tx.next_update = jiffies + 1; 3601 q_vector->tx.target_itr = 3602 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3603 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3604 q_vector->tx.target_itr >> 1); 3605 q_vector->tx.current_itr = q_vector->tx.target_itr; 3606 3607 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3608 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3609 3610 /* Linked list for the queuepairs assigned to this vector */ 3611 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3612 for (q = 0; q < q_vector->num_ringpairs; q++) { 3613 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3614 u32 val; 3615 3616 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3617 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3618 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3619 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3620 (I40E_QUEUE_TYPE_TX << 3621 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3622 3623 wr32(hw, I40E_QINT_RQCTL(qp), val); 3624 3625 if (has_xdp) { 3626 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3627 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3628 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3629 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3630 (I40E_QUEUE_TYPE_TX << 3631 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3632 3633 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3634 } 3635 3636 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3637 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3638 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3639 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3640 (I40E_QUEUE_TYPE_RX << 3641 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3642 3643 /* Terminate the linked list */ 3644 if (q == (q_vector->num_ringpairs - 1)) 3645 val |= (I40E_QUEUE_END_OF_LIST << 3646 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3647 3648 wr32(hw, I40E_QINT_TQCTL(qp), val); 3649 qp++; 3650 } 3651 } 3652 3653 i40e_flush(hw); 3654 } 3655 3656 /** 3657 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3658 * @pf: pointer to private device data structure 3659 **/ 3660 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3661 { 3662 struct i40e_hw *hw = &pf->hw; 3663 u32 val; 3664 3665 /* clear things first */ 3666 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3667 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3668 3669 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3670 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3671 I40E_PFINT_ICR0_ENA_GRST_MASK | 3672 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3673 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3674 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3675 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3676 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3677 3678 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3679 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3680 3681 if (pf->flags & I40E_FLAG_PTP) 3682 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3683 3684 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3685 3686 /* SW_ITR_IDX = 0, but don't change INTENA */ 3687 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3688 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3689 3690 /* OTHER_ITR_IDX = 0 */ 3691 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3692 } 3693 3694 /** 3695 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3696 * @vsi: the VSI being configured 3697 **/ 3698 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3699 { 3700 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3701 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3702 struct i40e_pf *pf = vsi->back; 3703 struct i40e_hw *hw = &pf->hw; 3704 u32 val; 3705 3706 /* set the ITR configuration */ 3707 q_vector->rx.next_update = jiffies + 1; 3708 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3709 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1); 3710 q_vector->rx.current_itr = q_vector->rx.target_itr; 3711 q_vector->tx.next_update = jiffies + 1; 3712 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3713 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1); 3714 q_vector->tx.current_itr = q_vector->tx.target_itr; 3715 3716 i40e_enable_misc_int_causes(pf); 3717 3718 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3719 wr32(hw, I40E_PFINT_LNKLST0, 0); 3720 3721 /* Associate the queue pair to the vector and enable the queue int */ 3722 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3723 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3724 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3725 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3726 3727 wr32(hw, I40E_QINT_RQCTL(0), val); 3728 3729 if (i40e_enabled_xdp_vsi(vsi)) { 3730 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3731 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3732 (I40E_QUEUE_TYPE_TX 3733 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3734 3735 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3736 } 3737 3738 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3739 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3740 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3741 3742 wr32(hw, I40E_QINT_TQCTL(0), val); 3743 i40e_flush(hw); 3744 } 3745 3746 /** 3747 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3748 * @pf: board private structure 3749 **/ 3750 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3751 { 3752 struct i40e_hw *hw = &pf->hw; 3753 3754 wr32(hw, I40E_PFINT_DYN_CTL0, 3755 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3756 i40e_flush(hw); 3757 } 3758 3759 /** 3760 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3761 * @pf: board private structure 3762 **/ 3763 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3764 { 3765 struct i40e_hw *hw = &pf->hw; 3766 u32 val; 3767 3768 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3769 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3770 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3771 3772 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3773 i40e_flush(hw); 3774 } 3775 3776 /** 3777 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3778 * @irq: interrupt number 3779 * @data: pointer to a q_vector 3780 **/ 3781 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3782 { 3783 struct i40e_q_vector *q_vector = data; 3784 3785 if (!q_vector->tx.ring && !q_vector->rx.ring) 3786 return IRQ_HANDLED; 3787 3788 napi_schedule_irqoff(&q_vector->napi); 3789 3790 return IRQ_HANDLED; 3791 } 3792 3793 /** 3794 * i40e_irq_affinity_notify - Callback for affinity changes 3795 * @notify: context as to what irq was changed 3796 * @mask: the new affinity mask 3797 * 3798 * This is a callback function used by the irq_set_affinity_notifier function 3799 * so that we may register to receive changes to the irq affinity masks. 3800 **/ 3801 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3802 const cpumask_t *mask) 3803 { 3804 struct i40e_q_vector *q_vector = 3805 container_of(notify, struct i40e_q_vector, affinity_notify); 3806 3807 cpumask_copy(&q_vector->affinity_mask, mask); 3808 } 3809 3810 /** 3811 * i40e_irq_affinity_release - Callback for affinity notifier release 3812 * @ref: internal core kernel usage 3813 * 3814 * This is a callback function used by the irq_set_affinity_notifier function 3815 * to inform the current notification subscriber that they will no longer 3816 * receive notifications. 3817 **/ 3818 static void i40e_irq_affinity_release(struct kref *ref) {} 3819 3820 /** 3821 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3822 * @vsi: the VSI being configured 3823 * @basename: name for the vector 3824 * 3825 * Allocates MSI-X vectors and requests interrupts from the kernel. 3826 **/ 3827 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3828 { 3829 int q_vectors = vsi->num_q_vectors; 3830 struct i40e_pf *pf = vsi->back; 3831 int base = vsi->base_vector; 3832 int rx_int_idx = 0; 3833 int tx_int_idx = 0; 3834 int vector, err; 3835 int irq_num; 3836 int cpu; 3837 3838 for (vector = 0; vector < q_vectors; vector++) { 3839 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3840 3841 irq_num = pf->msix_entries[base + vector].vector; 3842 3843 if (q_vector->tx.ring && q_vector->rx.ring) { 3844 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3845 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3846 tx_int_idx++; 3847 } else if (q_vector->rx.ring) { 3848 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3849 "%s-%s-%d", basename, "rx", rx_int_idx++); 3850 } else if (q_vector->tx.ring) { 3851 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3852 "%s-%s-%d", basename, "tx", tx_int_idx++); 3853 } else { 3854 /* skip this unused q_vector */ 3855 continue; 3856 } 3857 err = request_irq(irq_num, 3858 vsi->irq_handler, 3859 0, 3860 q_vector->name, 3861 q_vector); 3862 if (err) { 3863 dev_info(&pf->pdev->dev, 3864 "MSIX request_irq failed, error: %d\n", err); 3865 goto free_queue_irqs; 3866 } 3867 3868 /* register for affinity change notifications */ 3869 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3870 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3871 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3872 /* Spread affinity hints out across online CPUs. 3873 * 3874 * get_cpu_mask returns a static constant mask with 3875 * a permanent lifetime so it's ok to pass to 3876 * irq_set_affinity_hint without making a copy. 3877 */ 3878 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3879 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3880 } 3881 3882 vsi->irqs_ready = true; 3883 return 0; 3884 3885 free_queue_irqs: 3886 while (vector) { 3887 vector--; 3888 irq_num = pf->msix_entries[base + vector].vector; 3889 irq_set_affinity_notifier(irq_num, NULL); 3890 irq_set_affinity_hint(irq_num, NULL); 3891 free_irq(irq_num, &vsi->q_vectors[vector]); 3892 } 3893 return err; 3894 } 3895 3896 /** 3897 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3898 * @vsi: the VSI being un-configured 3899 **/ 3900 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3901 { 3902 struct i40e_pf *pf = vsi->back; 3903 struct i40e_hw *hw = &pf->hw; 3904 int base = vsi->base_vector; 3905 int i; 3906 3907 /* disable interrupt causation from each queue */ 3908 for (i = 0; i < vsi->num_queue_pairs; i++) { 3909 u32 val; 3910 3911 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3912 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3913 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3914 3915 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3916 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3917 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3918 3919 if (!i40e_enabled_xdp_vsi(vsi)) 3920 continue; 3921 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3922 } 3923 3924 /* disable each interrupt */ 3925 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3926 for (i = vsi->base_vector; 3927 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3928 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3929 3930 i40e_flush(hw); 3931 for (i = 0; i < vsi->num_q_vectors; i++) 3932 synchronize_irq(pf->msix_entries[i + base].vector); 3933 } else { 3934 /* Legacy and MSI mode - this stops all interrupt handling */ 3935 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3936 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3937 i40e_flush(hw); 3938 synchronize_irq(pf->pdev->irq); 3939 } 3940 } 3941 3942 /** 3943 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3944 * @vsi: the VSI being configured 3945 **/ 3946 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3947 { 3948 struct i40e_pf *pf = vsi->back; 3949 int i; 3950 3951 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3952 for (i = 0; i < vsi->num_q_vectors; i++) 3953 i40e_irq_dynamic_enable(vsi, i); 3954 } else { 3955 i40e_irq_dynamic_enable_icr0(pf); 3956 } 3957 3958 i40e_flush(&pf->hw); 3959 return 0; 3960 } 3961 3962 /** 3963 * i40e_free_misc_vector - Free the vector that handles non-queue events 3964 * @pf: board private structure 3965 **/ 3966 static void i40e_free_misc_vector(struct i40e_pf *pf) 3967 { 3968 /* Disable ICR 0 */ 3969 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3970 i40e_flush(&pf->hw); 3971 3972 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3973 synchronize_irq(pf->msix_entries[0].vector); 3974 free_irq(pf->msix_entries[0].vector, pf); 3975 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3976 } 3977 } 3978 3979 /** 3980 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3981 * @irq: interrupt number 3982 * @data: pointer to a q_vector 3983 * 3984 * This is the handler used for all MSI/Legacy interrupts, and deals 3985 * with both queue and non-queue interrupts. This is also used in 3986 * MSIX mode to handle the non-queue interrupts. 3987 **/ 3988 static irqreturn_t i40e_intr(int irq, void *data) 3989 { 3990 struct i40e_pf *pf = (struct i40e_pf *)data; 3991 struct i40e_hw *hw = &pf->hw; 3992 irqreturn_t ret = IRQ_NONE; 3993 u32 icr0, icr0_remaining; 3994 u32 val, ena_mask; 3995 3996 icr0 = rd32(hw, I40E_PFINT_ICR0); 3997 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3998 3999 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 4000 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 4001 goto enable_intr; 4002 4003 /* if interrupt but no bits showing, must be SWINT */ 4004 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 4005 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 4006 pf->sw_int_count++; 4007 4008 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 4009 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 4010 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 4011 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 4012 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 4013 } 4014 4015 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 4016 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 4017 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 4018 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 4019 4020 /* We do not have a way to disarm Queue causes while leaving 4021 * interrupt enabled for all other causes, ideally 4022 * interrupt should be disabled while we are in NAPI but 4023 * this is not a performance path and napi_schedule() 4024 * can deal with rescheduling. 4025 */ 4026 if (!test_bit(__I40E_DOWN, pf->state)) 4027 napi_schedule_irqoff(&q_vector->napi); 4028 } 4029 4030 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 4031 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 4032 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 4033 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 4034 } 4035 4036 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 4037 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 4038 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 4039 } 4040 4041 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 4042 /* disable any further VFLR event notifications */ 4043 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) { 4044 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 4045 4046 reg &= ~I40E_PFINT_ICR0_VFLR_MASK; 4047 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 4048 } else { 4049 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 4050 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 4051 } 4052 } 4053 4054 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 4055 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4056 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 4057 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 4058 val = rd32(hw, I40E_GLGEN_RSTAT); 4059 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 4060 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 4061 if (val == I40E_RESET_CORER) { 4062 pf->corer_count++; 4063 } else if (val == I40E_RESET_GLOBR) { 4064 pf->globr_count++; 4065 } else if (val == I40E_RESET_EMPR) { 4066 pf->empr_count++; 4067 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 4068 } 4069 } 4070 4071 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 4072 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 4073 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 4074 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 4075 rd32(hw, I40E_PFHMC_ERRORINFO), 4076 rd32(hw, I40E_PFHMC_ERRORDATA)); 4077 } 4078 4079 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 4080 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 4081 4082 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 4083 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 4084 i40e_ptp_tx_hwtstamp(pf); 4085 } 4086 } 4087 4088 /* If a critical error is pending we have no choice but to reset the 4089 * device. 4090 * Report and mask out any remaining unexpected interrupts. 4091 */ 4092 icr0_remaining = icr0 & ena_mask; 4093 if (icr0_remaining) { 4094 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 4095 icr0_remaining); 4096 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 4097 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 4098 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 4099 dev_info(&pf->pdev->dev, "device will be reset\n"); 4100 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 4101 i40e_service_event_schedule(pf); 4102 } 4103 ena_mask &= ~icr0_remaining; 4104 } 4105 ret = IRQ_HANDLED; 4106 4107 enable_intr: 4108 /* re-enable interrupt causes */ 4109 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 4110 if (!test_bit(__I40E_DOWN, pf->state) || 4111 test_bit(__I40E_RECOVERY_MODE, pf->state)) { 4112 i40e_service_event_schedule(pf); 4113 i40e_irq_dynamic_enable_icr0(pf); 4114 } 4115 4116 return ret; 4117 } 4118 4119 /** 4120 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 4121 * @tx_ring: tx ring to clean 4122 * @budget: how many cleans we're allowed 4123 * 4124 * Returns true if there's any budget left (e.g. the clean is finished) 4125 **/ 4126 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 4127 { 4128 struct i40e_vsi *vsi = tx_ring->vsi; 4129 u16 i = tx_ring->next_to_clean; 4130 struct i40e_tx_buffer *tx_buf; 4131 struct i40e_tx_desc *tx_desc; 4132 4133 tx_buf = &tx_ring->tx_bi[i]; 4134 tx_desc = I40E_TX_DESC(tx_ring, i); 4135 i -= tx_ring->count; 4136 4137 do { 4138 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4139 4140 /* if next_to_watch is not set then there is no work pending */ 4141 if (!eop_desc) 4142 break; 4143 4144 /* prevent any other reads prior to eop_desc */ 4145 smp_rmb(); 4146 4147 /* if the descriptor isn't done, no work yet to do */ 4148 if (!(eop_desc->cmd_type_offset_bsz & 4149 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4150 break; 4151 4152 /* clear next_to_watch to prevent false hangs */ 4153 tx_buf->next_to_watch = NULL; 4154 4155 tx_desc->buffer_addr = 0; 4156 tx_desc->cmd_type_offset_bsz = 0; 4157 /* move past filter desc */ 4158 tx_buf++; 4159 tx_desc++; 4160 i++; 4161 if (unlikely(!i)) { 4162 i -= tx_ring->count; 4163 tx_buf = tx_ring->tx_bi; 4164 tx_desc = I40E_TX_DESC(tx_ring, 0); 4165 } 4166 /* unmap skb header data */ 4167 dma_unmap_single(tx_ring->dev, 4168 dma_unmap_addr(tx_buf, dma), 4169 dma_unmap_len(tx_buf, len), 4170 DMA_TO_DEVICE); 4171 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4172 kfree(tx_buf->raw_buf); 4173 4174 tx_buf->raw_buf = NULL; 4175 tx_buf->tx_flags = 0; 4176 tx_buf->next_to_watch = NULL; 4177 dma_unmap_len_set(tx_buf, len, 0); 4178 tx_desc->buffer_addr = 0; 4179 tx_desc->cmd_type_offset_bsz = 0; 4180 4181 /* move us past the eop_desc for start of next FD desc */ 4182 tx_buf++; 4183 tx_desc++; 4184 i++; 4185 if (unlikely(!i)) { 4186 i -= tx_ring->count; 4187 tx_buf = tx_ring->tx_bi; 4188 tx_desc = I40E_TX_DESC(tx_ring, 0); 4189 } 4190 4191 /* update budget accounting */ 4192 budget--; 4193 } while (likely(budget)); 4194 4195 i += tx_ring->count; 4196 tx_ring->next_to_clean = i; 4197 4198 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4199 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4200 4201 return budget > 0; 4202 } 4203 4204 /** 4205 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4206 * @irq: interrupt number 4207 * @data: pointer to a q_vector 4208 **/ 4209 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4210 { 4211 struct i40e_q_vector *q_vector = data; 4212 struct i40e_vsi *vsi; 4213 4214 if (!q_vector->tx.ring) 4215 return IRQ_HANDLED; 4216 4217 vsi = q_vector->tx.ring->vsi; 4218 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4219 4220 return IRQ_HANDLED; 4221 } 4222 4223 /** 4224 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4225 * @vsi: the VSI being configured 4226 * @v_idx: vector index 4227 * @qp_idx: queue pair index 4228 **/ 4229 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4230 { 4231 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4232 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4233 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4234 4235 tx_ring->q_vector = q_vector; 4236 tx_ring->next = q_vector->tx.ring; 4237 q_vector->tx.ring = tx_ring; 4238 q_vector->tx.count++; 4239 4240 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4241 if (i40e_enabled_xdp_vsi(vsi)) { 4242 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4243 4244 xdp_ring->q_vector = q_vector; 4245 xdp_ring->next = q_vector->tx.ring; 4246 q_vector->tx.ring = xdp_ring; 4247 q_vector->tx.count++; 4248 } 4249 4250 rx_ring->q_vector = q_vector; 4251 rx_ring->next = q_vector->rx.ring; 4252 q_vector->rx.ring = rx_ring; 4253 q_vector->rx.count++; 4254 } 4255 4256 /** 4257 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4258 * @vsi: the VSI being configured 4259 * 4260 * This function maps descriptor rings to the queue-specific vectors 4261 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4262 * one vector per queue pair, but on a constrained vector budget, we 4263 * group the queue pairs as "efficiently" as possible. 4264 **/ 4265 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4266 { 4267 int qp_remaining = vsi->num_queue_pairs; 4268 int q_vectors = vsi->num_q_vectors; 4269 int num_ringpairs; 4270 int v_start = 0; 4271 int qp_idx = 0; 4272 4273 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4274 * group them so there are multiple queues per vector. 4275 * It is also important to go through all the vectors available to be 4276 * sure that if we don't use all the vectors, that the remaining vectors 4277 * are cleared. This is especially important when decreasing the 4278 * number of queues in use. 4279 */ 4280 for (; v_start < q_vectors; v_start++) { 4281 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4282 4283 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4284 4285 q_vector->num_ringpairs = num_ringpairs; 4286 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4287 4288 q_vector->rx.count = 0; 4289 q_vector->tx.count = 0; 4290 q_vector->rx.ring = NULL; 4291 q_vector->tx.ring = NULL; 4292 4293 while (num_ringpairs--) { 4294 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4295 qp_idx++; 4296 qp_remaining--; 4297 } 4298 } 4299 } 4300 4301 /** 4302 * i40e_vsi_request_irq - Request IRQ from the OS 4303 * @vsi: the VSI being configured 4304 * @basename: name for the vector 4305 **/ 4306 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4307 { 4308 struct i40e_pf *pf = vsi->back; 4309 int err; 4310 4311 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4312 err = i40e_vsi_request_irq_msix(vsi, basename); 4313 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4314 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4315 pf->int_name, pf); 4316 else 4317 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4318 pf->int_name, pf); 4319 4320 if (err) 4321 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4322 4323 return err; 4324 } 4325 4326 #ifdef CONFIG_NET_POLL_CONTROLLER 4327 /** 4328 * i40e_netpoll - A Polling 'interrupt' handler 4329 * @netdev: network interface device structure 4330 * 4331 * This is used by netconsole to send skbs without having to re-enable 4332 * interrupts. It's not called while the normal interrupt routine is executing. 4333 **/ 4334 static void i40e_netpoll(struct net_device *netdev) 4335 { 4336 struct i40e_netdev_priv *np = netdev_priv(netdev); 4337 struct i40e_vsi *vsi = np->vsi; 4338 struct i40e_pf *pf = vsi->back; 4339 int i; 4340 4341 /* if interface is down do nothing */ 4342 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4343 return; 4344 4345 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4346 for (i = 0; i < vsi->num_q_vectors; i++) 4347 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4348 } else { 4349 i40e_intr(pf->pdev->irq, netdev); 4350 } 4351 } 4352 #endif 4353 4354 #define I40E_QTX_ENA_WAIT_COUNT 50 4355 4356 /** 4357 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4358 * @pf: the PF being configured 4359 * @pf_q: the PF queue 4360 * @enable: enable or disable state of the queue 4361 * 4362 * This routine will wait for the given Tx queue of the PF to reach the 4363 * enabled or disabled state. 4364 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4365 * multiple retries; else will return 0 in case of success. 4366 **/ 4367 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4368 { 4369 int i; 4370 u32 tx_reg; 4371 4372 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4373 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4374 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4375 break; 4376 4377 usleep_range(10, 20); 4378 } 4379 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4380 return -ETIMEDOUT; 4381 4382 return 0; 4383 } 4384 4385 /** 4386 * i40e_control_tx_q - Start or stop a particular Tx queue 4387 * @pf: the PF structure 4388 * @pf_q: the PF queue to configure 4389 * @enable: start or stop the queue 4390 * 4391 * This function enables or disables a single queue. Note that any delay 4392 * required after the operation is expected to be handled by the caller of 4393 * this function. 4394 **/ 4395 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4396 { 4397 struct i40e_hw *hw = &pf->hw; 4398 u32 tx_reg; 4399 int i; 4400 4401 /* warn the TX unit of coming changes */ 4402 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4403 if (!enable) 4404 usleep_range(10, 20); 4405 4406 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4407 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4408 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4409 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4410 break; 4411 usleep_range(1000, 2000); 4412 } 4413 4414 /* Skip if the queue is already in the requested state */ 4415 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4416 return; 4417 4418 /* turn on/off the queue */ 4419 if (enable) { 4420 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4421 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4422 } else { 4423 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4424 } 4425 4426 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4427 } 4428 4429 /** 4430 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4431 * @seid: VSI SEID 4432 * @pf: the PF structure 4433 * @pf_q: the PF queue to configure 4434 * @is_xdp: true if the queue is used for XDP 4435 * @enable: start or stop the queue 4436 **/ 4437 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4438 bool is_xdp, bool enable) 4439 { 4440 int ret; 4441 4442 i40e_control_tx_q(pf, pf_q, enable); 4443 4444 /* wait for the change to finish */ 4445 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4446 if (ret) { 4447 dev_info(&pf->pdev->dev, 4448 "VSI seid %d %sTx ring %d %sable timeout\n", 4449 seid, (is_xdp ? "XDP " : ""), pf_q, 4450 (enable ? "en" : "dis")); 4451 } 4452 4453 return ret; 4454 } 4455 4456 /** 4457 * i40e_vsi_control_tx - Start or stop a VSI's rings 4458 * @vsi: the VSI being configured 4459 * @enable: start or stop the rings 4460 **/ 4461 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4462 { 4463 struct i40e_pf *pf = vsi->back; 4464 int i, pf_q, ret = 0; 4465 4466 pf_q = vsi->base_queue; 4467 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4468 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4469 pf_q, 4470 false /*is xdp*/, enable); 4471 if (ret) 4472 break; 4473 4474 if (!i40e_enabled_xdp_vsi(vsi)) 4475 continue; 4476 4477 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4478 pf_q + vsi->alloc_queue_pairs, 4479 true /*is xdp*/, enable); 4480 if (ret) 4481 break; 4482 } 4483 return ret; 4484 } 4485 4486 /** 4487 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4488 * @pf: the PF being configured 4489 * @pf_q: the PF queue 4490 * @enable: enable or disable state of the queue 4491 * 4492 * This routine will wait for the given Rx queue of the PF to reach the 4493 * enabled or disabled state. 4494 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4495 * multiple retries; else will return 0 in case of success. 4496 **/ 4497 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4498 { 4499 int i; 4500 u32 rx_reg; 4501 4502 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4503 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4504 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4505 break; 4506 4507 usleep_range(10, 20); 4508 } 4509 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4510 return -ETIMEDOUT; 4511 4512 return 0; 4513 } 4514 4515 /** 4516 * i40e_control_rx_q - Start or stop a particular Rx queue 4517 * @pf: the PF structure 4518 * @pf_q: the PF queue to configure 4519 * @enable: start or stop the queue 4520 * 4521 * This function enables or disables a single queue. Note that 4522 * any delay required after the operation is expected to be 4523 * handled by the caller of this function. 4524 **/ 4525 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4526 { 4527 struct i40e_hw *hw = &pf->hw; 4528 u32 rx_reg; 4529 int i; 4530 4531 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4532 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4533 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4534 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4535 break; 4536 usleep_range(1000, 2000); 4537 } 4538 4539 /* Skip if the queue is already in the requested state */ 4540 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4541 return; 4542 4543 /* turn on/off the queue */ 4544 if (enable) 4545 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4546 else 4547 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4548 4549 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4550 } 4551 4552 /** 4553 * i40e_control_wait_rx_q 4554 * @pf: the PF structure 4555 * @pf_q: queue being configured 4556 * @enable: start or stop the rings 4557 * 4558 * This function enables or disables a single queue along with waiting 4559 * for the change to finish. The caller of this function should handle 4560 * the delays needed in the case of disabling queues. 4561 **/ 4562 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4563 { 4564 int ret = 0; 4565 4566 i40e_control_rx_q(pf, pf_q, enable); 4567 4568 /* wait for the change to finish */ 4569 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4570 if (ret) 4571 return ret; 4572 4573 return ret; 4574 } 4575 4576 /** 4577 * i40e_vsi_control_rx - Start or stop a VSI's rings 4578 * @vsi: the VSI being configured 4579 * @enable: start or stop the rings 4580 **/ 4581 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4582 { 4583 struct i40e_pf *pf = vsi->back; 4584 int i, pf_q, ret = 0; 4585 4586 pf_q = vsi->base_queue; 4587 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4588 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4589 if (ret) { 4590 dev_info(&pf->pdev->dev, 4591 "VSI seid %d Rx ring %d %sable timeout\n", 4592 vsi->seid, pf_q, (enable ? "en" : "dis")); 4593 break; 4594 } 4595 } 4596 4597 /* Due to HW errata, on Rx disable only, the register can indicate done 4598 * before it really is. Needs 50ms to be sure 4599 */ 4600 if (!enable) 4601 mdelay(50); 4602 4603 return ret; 4604 } 4605 4606 /** 4607 * i40e_vsi_start_rings - Start a VSI's rings 4608 * @vsi: the VSI being configured 4609 **/ 4610 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4611 { 4612 int ret = 0; 4613 4614 /* do rx first for enable and last for disable */ 4615 ret = i40e_vsi_control_rx(vsi, true); 4616 if (ret) 4617 return ret; 4618 ret = i40e_vsi_control_tx(vsi, true); 4619 4620 return ret; 4621 } 4622 4623 /** 4624 * i40e_vsi_stop_rings - Stop a VSI's rings 4625 * @vsi: the VSI being configured 4626 **/ 4627 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4628 { 4629 /* When port TX is suspended, don't wait */ 4630 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4631 return i40e_vsi_stop_rings_no_wait(vsi); 4632 4633 /* do rx first for enable and last for disable 4634 * Ignore return value, we need to shutdown whatever we can 4635 */ 4636 i40e_vsi_control_tx(vsi, false); 4637 i40e_vsi_control_rx(vsi, false); 4638 } 4639 4640 /** 4641 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4642 * @vsi: the VSI being shutdown 4643 * 4644 * This function stops all the rings for a VSI but does not delay to verify 4645 * that rings have been disabled. It is expected that the caller is shutting 4646 * down multiple VSIs at once and will delay together for all the VSIs after 4647 * initiating the shutdown. This is particularly useful for shutting down lots 4648 * of VFs together. Otherwise, a large delay can be incurred while configuring 4649 * each VSI in serial. 4650 **/ 4651 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4652 { 4653 struct i40e_pf *pf = vsi->back; 4654 int i, pf_q; 4655 4656 pf_q = vsi->base_queue; 4657 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4658 i40e_control_tx_q(pf, pf_q, false); 4659 i40e_control_rx_q(pf, pf_q, false); 4660 } 4661 } 4662 4663 /** 4664 * i40e_vsi_free_irq - Free the irq association with the OS 4665 * @vsi: the VSI being configured 4666 **/ 4667 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4668 { 4669 struct i40e_pf *pf = vsi->back; 4670 struct i40e_hw *hw = &pf->hw; 4671 int base = vsi->base_vector; 4672 u32 val, qp; 4673 int i; 4674 4675 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4676 if (!vsi->q_vectors) 4677 return; 4678 4679 if (!vsi->irqs_ready) 4680 return; 4681 4682 vsi->irqs_ready = false; 4683 for (i = 0; i < vsi->num_q_vectors; i++) { 4684 int irq_num; 4685 u16 vector; 4686 4687 vector = i + base; 4688 irq_num = pf->msix_entries[vector].vector; 4689 4690 /* free only the irqs that were actually requested */ 4691 if (!vsi->q_vectors[i] || 4692 !vsi->q_vectors[i]->num_ringpairs) 4693 continue; 4694 4695 /* clear the affinity notifier in the IRQ descriptor */ 4696 irq_set_affinity_notifier(irq_num, NULL); 4697 /* remove our suggested affinity mask for this IRQ */ 4698 irq_set_affinity_hint(irq_num, NULL); 4699 synchronize_irq(irq_num); 4700 free_irq(irq_num, vsi->q_vectors[i]); 4701 4702 /* Tear down the interrupt queue link list 4703 * 4704 * We know that they come in pairs and always 4705 * the Rx first, then the Tx. To clear the 4706 * link list, stick the EOL value into the 4707 * next_q field of the registers. 4708 */ 4709 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4710 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4711 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4712 val |= I40E_QUEUE_END_OF_LIST 4713 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4714 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4715 4716 while (qp != I40E_QUEUE_END_OF_LIST) { 4717 u32 next; 4718 4719 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4720 4721 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4722 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4723 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4724 I40E_QINT_RQCTL_INTEVENT_MASK); 4725 4726 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4727 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4728 4729 wr32(hw, I40E_QINT_RQCTL(qp), val); 4730 4731 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4732 4733 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4734 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4735 4736 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4737 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4738 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4739 I40E_QINT_TQCTL_INTEVENT_MASK); 4740 4741 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4742 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4743 4744 wr32(hw, I40E_QINT_TQCTL(qp), val); 4745 qp = next; 4746 } 4747 } 4748 } else { 4749 free_irq(pf->pdev->irq, pf); 4750 4751 val = rd32(hw, I40E_PFINT_LNKLST0); 4752 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4753 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4754 val |= I40E_QUEUE_END_OF_LIST 4755 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4756 wr32(hw, I40E_PFINT_LNKLST0, val); 4757 4758 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4759 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4760 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4761 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4762 I40E_QINT_RQCTL_INTEVENT_MASK); 4763 4764 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4765 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4766 4767 wr32(hw, I40E_QINT_RQCTL(qp), val); 4768 4769 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4770 4771 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4772 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4773 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4774 I40E_QINT_TQCTL_INTEVENT_MASK); 4775 4776 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4777 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4778 4779 wr32(hw, I40E_QINT_TQCTL(qp), val); 4780 } 4781 } 4782 4783 /** 4784 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4785 * @vsi: the VSI being configured 4786 * @v_idx: Index of vector to be freed 4787 * 4788 * This function frees the memory allocated to the q_vector. In addition if 4789 * NAPI is enabled it will delete any references to the NAPI struct prior 4790 * to freeing the q_vector. 4791 **/ 4792 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4793 { 4794 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4795 struct i40e_ring *ring; 4796 4797 if (!q_vector) 4798 return; 4799 4800 /* disassociate q_vector from rings */ 4801 i40e_for_each_ring(ring, q_vector->tx) 4802 ring->q_vector = NULL; 4803 4804 i40e_for_each_ring(ring, q_vector->rx) 4805 ring->q_vector = NULL; 4806 4807 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4808 if (vsi->netdev) 4809 netif_napi_del(&q_vector->napi); 4810 4811 vsi->q_vectors[v_idx] = NULL; 4812 4813 kfree_rcu(q_vector, rcu); 4814 } 4815 4816 /** 4817 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4818 * @vsi: the VSI being un-configured 4819 * 4820 * This frees the memory allocated to the q_vectors and 4821 * deletes references to the NAPI struct. 4822 **/ 4823 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4824 { 4825 int v_idx; 4826 4827 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4828 i40e_free_q_vector(vsi, v_idx); 4829 } 4830 4831 /** 4832 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4833 * @pf: board private structure 4834 **/ 4835 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4836 { 4837 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4838 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4839 pci_disable_msix(pf->pdev); 4840 kfree(pf->msix_entries); 4841 pf->msix_entries = NULL; 4842 kfree(pf->irq_pile); 4843 pf->irq_pile = NULL; 4844 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4845 pci_disable_msi(pf->pdev); 4846 } 4847 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4848 } 4849 4850 /** 4851 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4852 * @pf: board private structure 4853 * 4854 * We go through and clear interrupt specific resources and reset the structure 4855 * to pre-load conditions 4856 **/ 4857 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4858 { 4859 int i; 4860 4861 i40e_free_misc_vector(pf); 4862 4863 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4864 I40E_IWARP_IRQ_PILE_ID); 4865 4866 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4867 for (i = 0; i < pf->num_alloc_vsi; i++) 4868 if (pf->vsi[i]) 4869 i40e_vsi_free_q_vectors(pf->vsi[i]); 4870 i40e_reset_interrupt_capability(pf); 4871 } 4872 4873 /** 4874 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4875 * @vsi: the VSI being configured 4876 **/ 4877 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4878 { 4879 int q_idx; 4880 4881 if (!vsi->netdev) 4882 return; 4883 4884 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4885 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4886 4887 if (q_vector->rx.ring || q_vector->tx.ring) 4888 napi_enable(&q_vector->napi); 4889 } 4890 } 4891 4892 /** 4893 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4894 * @vsi: the VSI being configured 4895 **/ 4896 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4897 { 4898 int q_idx; 4899 4900 if (!vsi->netdev) 4901 return; 4902 4903 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4904 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4905 4906 if (q_vector->rx.ring || q_vector->tx.ring) 4907 napi_disable(&q_vector->napi); 4908 } 4909 } 4910 4911 /** 4912 * i40e_vsi_close - Shut down a VSI 4913 * @vsi: the vsi to be quelled 4914 **/ 4915 static void i40e_vsi_close(struct i40e_vsi *vsi) 4916 { 4917 struct i40e_pf *pf = vsi->back; 4918 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4919 i40e_down(vsi); 4920 i40e_vsi_free_irq(vsi); 4921 i40e_vsi_free_tx_resources(vsi); 4922 i40e_vsi_free_rx_resources(vsi); 4923 vsi->current_netdev_flags = 0; 4924 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4925 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4926 set_bit(__I40E_CLIENT_RESET, pf->state); 4927 } 4928 4929 /** 4930 * i40e_quiesce_vsi - Pause a given VSI 4931 * @vsi: the VSI being paused 4932 **/ 4933 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4934 { 4935 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4936 return; 4937 4938 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4939 if (vsi->netdev && netif_running(vsi->netdev)) 4940 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4941 else 4942 i40e_vsi_close(vsi); 4943 } 4944 4945 /** 4946 * i40e_unquiesce_vsi - Resume a given VSI 4947 * @vsi: the VSI being resumed 4948 **/ 4949 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4950 { 4951 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4952 return; 4953 4954 if (vsi->netdev && netif_running(vsi->netdev)) 4955 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4956 else 4957 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4958 } 4959 4960 /** 4961 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4962 * @pf: the PF 4963 **/ 4964 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4965 { 4966 int v; 4967 4968 for (v = 0; v < pf->num_alloc_vsi; v++) { 4969 if (pf->vsi[v]) 4970 i40e_quiesce_vsi(pf->vsi[v]); 4971 } 4972 } 4973 4974 /** 4975 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4976 * @pf: the PF 4977 **/ 4978 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4979 { 4980 int v; 4981 4982 for (v = 0; v < pf->num_alloc_vsi; v++) { 4983 if (pf->vsi[v]) 4984 i40e_unquiesce_vsi(pf->vsi[v]); 4985 } 4986 } 4987 4988 /** 4989 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4990 * @vsi: the VSI being configured 4991 * 4992 * Wait until all queues on a given VSI have been disabled. 4993 **/ 4994 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4995 { 4996 struct i40e_pf *pf = vsi->back; 4997 int i, pf_q, ret; 4998 4999 pf_q = vsi->base_queue; 5000 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 5001 /* Check and wait for the Tx queue */ 5002 ret = i40e_pf_txq_wait(pf, pf_q, false); 5003 if (ret) { 5004 dev_info(&pf->pdev->dev, 5005 "VSI seid %d Tx ring %d disable timeout\n", 5006 vsi->seid, pf_q); 5007 return ret; 5008 } 5009 5010 if (!i40e_enabled_xdp_vsi(vsi)) 5011 goto wait_rx; 5012 5013 /* Check and wait for the XDP Tx queue */ 5014 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 5015 false); 5016 if (ret) { 5017 dev_info(&pf->pdev->dev, 5018 "VSI seid %d XDP Tx ring %d disable timeout\n", 5019 vsi->seid, pf_q); 5020 return ret; 5021 } 5022 wait_rx: 5023 /* Check and wait for the Rx queue */ 5024 ret = i40e_pf_rxq_wait(pf, pf_q, false); 5025 if (ret) { 5026 dev_info(&pf->pdev->dev, 5027 "VSI seid %d Rx ring %d disable timeout\n", 5028 vsi->seid, pf_q); 5029 return ret; 5030 } 5031 } 5032 5033 return 0; 5034 } 5035 5036 #ifdef CONFIG_I40E_DCB 5037 /** 5038 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 5039 * @pf: the PF 5040 * 5041 * This function waits for the queues to be in disabled state for all the 5042 * VSIs that are managed by this PF. 5043 **/ 5044 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 5045 { 5046 int v, ret = 0; 5047 5048 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 5049 if (pf->vsi[v]) { 5050 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 5051 if (ret) 5052 break; 5053 } 5054 } 5055 5056 return ret; 5057 } 5058 5059 #endif 5060 5061 /** 5062 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 5063 * @pf: pointer to PF 5064 * 5065 * Get TC map for ISCSI PF type that will include iSCSI TC 5066 * and LAN TC. 5067 **/ 5068 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 5069 { 5070 struct i40e_dcb_app_priority_table app; 5071 struct i40e_hw *hw = &pf->hw; 5072 u8 enabled_tc = 1; /* TC0 is always enabled */ 5073 u8 tc, i; 5074 /* Get the iSCSI APP TLV */ 5075 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5076 5077 for (i = 0; i < dcbcfg->numapps; i++) { 5078 app = dcbcfg->app[i]; 5079 if (app.selector == I40E_APP_SEL_TCPIP && 5080 app.protocolid == I40E_APP_PROTOID_ISCSI) { 5081 tc = dcbcfg->etscfg.prioritytable[app.priority]; 5082 enabled_tc |= BIT(tc); 5083 break; 5084 } 5085 } 5086 5087 return enabled_tc; 5088 } 5089 5090 /** 5091 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 5092 * @dcbcfg: the corresponding DCBx configuration structure 5093 * 5094 * Return the number of TCs from given DCBx configuration 5095 **/ 5096 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 5097 { 5098 int i, tc_unused = 0; 5099 u8 num_tc = 0; 5100 u8 ret = 0; 5101 5102 /* Scan the ETS Config Priority Table to find 5103 * traffic class enabled for a given priority 5104 * and create a bitmask of enabled TCs 5105 */ 5106 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 5107 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 5108 5109 /* Now scan the bitmask to check for 5110 * contiguous TCs starting with TC0 5111 */ 5112 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5113 if (num_tc & BIT(i)) { 5114 if (!tc_unused) { 5115 ret++; 5116 } else { 5117 pr_err("Non-contiguous TC - Disabling DCB\n"); 5118 return 1; 5119 } 5120 } else { 5121 tc_unused = 1; 5122 } 5123 } 5124 5125 /* There is always at least TC0 */ 5126 if (!ret) 5127 ret = 1; 5128 5129 return ret; 5130 } 5131 5132 /** 5133 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5134 * @dcbcfg: the corresponding DCBx configuration structure 5135 * 5136 * Query the current DCB configuration and return the number of 5137 * traffic classes enabled from the given DCBX config 5138 **/ 5139 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5140 { 5141 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5142 u8 enabled_tc = 1; 5143 u8 i; 5144 5145 for (i = 0; i < num_tc; i++) 5146 enabled_tc |= BIT(i); 5147 5148 return enabled_tc; 5149 } 5150 5151 /** 5152 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5153 * @pf: PF being queried 5154 * 5155 * Query the current MQPRIO configuration and return the number of 5156 * traffic classes enabled. 5157 **/ 5158 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5159 { 5160 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5161 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5162 u8 enabled_tc = 1, i; 5163 5164 for (i = 1; i < num_tc; i++) 5165 enabled_tc |= BIT(i); 5166 return enabled_tc; 5167 } 5168 5169 /** 5170 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5171 * @pf: PF being queried 5172 * 5173 * Return number of traffic classes enabled for the given PF 5174 **/ 5175 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5176 { 5177 struct i40e_hw *hw = &pf->hw; 5178 u8 i, enabled_tc = 1; 5179 u8 num_tc = 0; 5180 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5181 5182 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5183 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5184 5185 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5186 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5187 return 1; 5188 5189 /* SFP mode will be enabled for all TCs on port */ 5190 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5191 return i40e_dcb_get_num_tc(dcbcfg); 5192 5193 /* MFP mode return count of enabled TCs for this PF */ 5194 if (pf->hw.func_caps.iscsi) 5195 enabled_tc = i40e_get_iscsi_tc_map(pf); 5196 else 5197 return 1; /* Only TC0 */ 5198 5199 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5200 if (enabled_tc & BIT(i)) 5201 num_tc++; 5202 } 5203 return num_tc; 5204 } 5205 5206 /** 5207 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes 5208 * @pf: PF being queried 5209 * 5210 * Return a bitmap for enabled traffic classes for this PF. 5211 **/ 5212 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5213 { 5214 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5215 return i40e_mqprio_get_enabled_tc(pf); 5216 5217 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5218 * default TC 5219 */ 5220 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5221 return I40E_DEFAULT_TRAFFIC_CLASS; 5222 5223 /* SFP mode we want PF to be enabled for all TCs */ 5224 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5225 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5226 5227 /* MFP enabled and iSCSI PF type */ 5228 if (pf->hw.func_caps.iscsi) 5229 return i40e_get_iscsi_tc_map(pf); 5230 else 5231 return I40E_DEFAULT_TRAFFIC_CLASS; 5232 } 5233 5234 /** 5235 * i40e_vsi_get_bw_info - Query VSI BW Information 5236 * @vsi: the VSI being queried 5237 * 5238 * Returns 0 on success, negative value on failure 5239 **/ 5240 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5241 { 5242 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5243 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5244 struct i40e_pf *pf = vsi->back; 5245 struct i40e_hw *hw = &pf->hw; 5246 i40e_status ret; 5247 u32 tc_bw_max; 5248 int i; 5249 5250 /* Get the VSI level BW configuration */ 5251 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5252 if (ret) { 5253 dev_info(&pf->pdev->dev, 5254 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5255 i40e_stat_str(&pf->hw, ret), 5256 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5257 return -EINVAL; 5258 } 5259 5260 /* Get the VSI level BW configuration per TC */ 5261 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5262 NULL); 5263 if (ret) { 5264 dev_info(&pf->pdev->dev, 5265 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5266 i40e_stat_str(&pf->hw, ret), 5267 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5268 return -EINVAL; 5269 } 5270 5271 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5272 dev_info(&pf->pdev->dev, 5273 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5274 bw_config.tc_valid_bits, 5275 bw_ets_config.tc_valid_bits); 5276 /* Still continuing */ 5277 } 5278 5279 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5280 vsi->bw_max_quanta = bw_config.max_bw; 5281 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5282 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5283 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5284 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5285 vsi->bw_ets_limit_credits[i] = 5286 le16_to_cpu(bw_ets_config.credits[i]); 5287 /* 3 bits out of 4 for each TC */ 5288 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5289 } 5290 5291 return 0; 5292 } 5293 5294 /** 5295 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5296 * @vsi: the VSI being configured 5297 * @enabled_tc: TC bitmap 5298 * @bw_share: BW shared credits per TC 5299 * 5300 * Returns 0 on success, negative value on failure 5301 **/ 5302 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5303 u8 *bw_share) 5304 { 5305 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5306 struct i40e_pf *pf = vsi->back; 5307 i40e_status ret; 5308 int i; 5309 5310 /* There is no need to reset BW when mqprio mode is on. */ 5311 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5312 return 0; 5313 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5314 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5315 if (ret) 5316 dev_info(&pf->pdev->dev, 5317 "Failed to reset tx rate for vsi->seid %u\n", 5318 vsi->seid); 5319 return ret; 5320 } 5321 memset(&bw_data, 0, sizeof(bw_data)); 5322 bw_data.tc_valid_bits = enabled_tc; 5323 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5324 bw_data.tc_bw_credits[i] = bw_share[i]; 5325 5326 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5327 if (ret) { 5328 dev_info(&pf->pdev->dev, 5329 "AQ command Config VSI BW allocation per TC failed = %d\n", 5330 pf->hw.aq.asq_last_status); 5331 return -EINVAL; 5332 } 5333 5334 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5335 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5336 5337 return 0; 5338 } 5339 5340 /** 5341 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5342 * @vsi: the VSI being configured 5343 * @enabled_tc: TC map to be enabled 5344 * 5345 **/ 5346 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5347 { 5348 struct net_device *netdev = vsi->netdev; 5349 struct i40e_pf *pf = vsi->back; 5350 struct i40e_hw *hw = &pf->hw; 5351 u8 netdev_tc = 0; 5352 int i; 5353 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5354 5355 if (!netdev) 5356 return; 5357 5358 if (!enabled_tc) { 5359 netdev_reset_tc(netdev); 5360 return; 5361 } 5362 5363 /* Set up actual enabled TCs on the VSI */ 5364 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5365 return; 5366 5367 /* set per TC queues for the VSI */ 5368 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5369 /* Only set TC queues for enabled tcs 5370 * 5371 * e.g. For a VSI that has TC0 and TC3 enabled the 5372 * enabled_tc bitmap would be 0x00001001; the driver 5373 * will set the numtc for netdev as 2 that will be 5374 * referenced by the netdev layer as TC 0 and 1. 5375 */ 5376 if (vsi->tc_config.enabled_tc & BIT(i)) 5377 netdev_set_tc_queue(netdev, 5378 vsi->tc_config.tc_info[i].netdev_tc, 5379 vsi->tc_config.tc_info[i].qcount, 5380 vsi->tc_config.tc_info[i].qoffset); 5381 } 5382 5383 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5384 return; 5385 5386 /* Assign UP2TC map for the VSI */ 5387 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5388 /* Get the actual TC# for the UP */ 5389 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5390 /* Get the mapped netdev TC# for the UP */ 5391 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5392 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5393 } 5394 } 5395 5396 /** 5397 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5398 * @vsi: the VSI being configured 5399 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5400 **/ 5401 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5402 struct i40e_vsi_context *ctxt) 5403 { 5404 /* copy just the sections touched not the entire info 5405 * since not all sections are valid as returned by 5406 * update vsi params 5407 */ 5408 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5409 memcpy(&vsi->info.queue_mapping, 5410 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5411 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5412 sizeof(vsi->info.tc_mapping)); 5413 } 5414 5415 /** 5416 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5417 * @vsi: VSI to be configured 5418 * @enabled_tc: TC bitmap 5419 * 5420 * This configures a particular VSI for TCs that are mapped to the 5421 * given TC bitmap. It uses default bandwidth share for TCs across 5422 * VSIs to configure TC for a particular VSI. 5423 * 5424 * NOTE: 5425 * It is expected that the VSI queues have been quisced before calling 5426 * this function. 5427 **/ 5428 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5429 { 5430 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5431 struct i40e_pf *pf = vsi->back; 5432 struct i40e_hw *hw = &pf->hw; 5433 struct i40e_vsi_context ctxt; 5434 int ret = 0; 5435 int i; 5436 5437 /* Check if enabled_tc is same as existing or new TCs */ 5438 if (vsi->tc_config.enabled_tc == enabled_tc && 5439 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5440 return ret; 5441 5442 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5443 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5444 if (enabled_tc & BIT(i)) 5445 bw_share[i] = 1; 5446 } 5447 5448 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5449 if (ret) { 5450 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5451 5452 dev_info(&pf->pdev->dev, 5453 "Failed configuring TC map %d for VSI %d\n", 5454 enabled_tc, vsi->seid); 5455 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5456 &bw_config, NULL); 5457 if (ret) { 5458 dev_info(&pf->pdev->dev, 5459 "Failed querying vsi bw info, err %s aq_err %s\n", 5460 i40e_stat_str(hw, ret), 5461 i40e_aq_str(hw, hw->aq.asq_last_status)); 5462 goto out; 5463 } 5464 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5465 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5466 5467 if (!valid_tc) 5468 valid_tc = bw_config.tc_valid_bits; 5469 /* Always enable TC0, no matter what */ 5470 valid_tc |= 1; 5471 dev_info(&pf->pdev->dev, 5472 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5473 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5474 enabled_tc = valid_tc; 5475 } 5476 5477 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5478 if (ret) { 5479 dev_err(&pf->pdev->dev, 5480 "Unable to configure TC map %d for VSI %d\n", 5481 enabled_tc, vsi->seid); 5482 goto out; 5483 } 5484 } 5485 5486 /* Update Queue Pairs Mapping for currently enabled UPs */ 5487 ctxt.seid = vsi->seid; 5488 ctxt.pf_num = vsi->back->hw.pf_id; 5489 ctxt.vf_num = 0; 5490 ctxt.uplink_seid = vsi->uplink_seid; 5491 ctxt.info = vsi->info; 5492 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5493 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5494 if (ret) 5495 goto out; 5496 } else { 5497 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5498 } 5499 5500 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5501 * queues changed. 5502 */ 5503 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5504 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5505 vsi->num_queue_pairs); 5506 ret = i40e_vsi_config_rss(vsi); 5507 if (ret) { 5508 dev_info(&vsi->back->pdev->dev, 5509 "Failed to reconfig rss for num_queues\n"); 5510 return ret; 5511 } 5512 vsi->reconfig_rss = false; 5513 } 5514 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5515 ctxt.info.valid_sections |= 5516 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5517 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5518 } 5519 5520 /* Update the VSI after updating the VSI queue-mapping 5521 * information 5522 */ 5523 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5524 if (ret) { 5525 dev_info(&pf->pdev->dev, 5526 "Update vsi tc config failed, err %s aq_err %s\n", 5527 i40e_stat_str(hw, ret), 5528 i40e_aq_str(hw, hw->aq.asq_last_status)); 5529 goto out; 5530 } 5531 /* update the local VSI info with updated queue map */ 5532 i40e_vsi_update_queue_map(vsi, &ctxt); 5533 vsi->info.valid_sections = 0; 5534 5535 /* Update current VSI BW information */ 5536 ret = i40e_vsi_get_bw_info(vsi); 5537 if (ret) { 5538 dev_info(&pf->pdev->dev, 5539 "Failed updating vsi bw info, err %s aq_err %s\n", 5540 i40e_stat_str(hw, ret), 5541 i40e_aq_str(hw, hw->aq.asq_last_status)); 5542 goto out; 5543 } 5544 5545 /* Update the netdev TC setup */ 5546 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5547 out: 5548 return ret; 5549 } 5550 5551 /** 5552 * i40e_get_link_speed - Returns link speed for the interface 5553 * @vsi: VSI to be configured 5554 * 5555 **/ 5556 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5557 { 5558 struct i40e_pf *pf = vsi->back; 5559 5560 switch (pf->hw.phy.link_info.link_speed) { 5561 case I40E_LINK_SPEED_40GB: 5562 return 40000; 5563 case I40E_LINK_SPEED_25GB: 5564 return 25000; 5565 case I40E_LINK_SPEED_20GB: 5566 return 20000; 5567 case I40E_LINK_SPEED_10GB: 5568 return 10000; 5569 case I40E_LINK_SPEED_1GB: 5570 return 1000; 5571 default: 5572 return -EINVAL; 5573 } 5574 } 5575 5576 /** 5577 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5578 * @vsi: VSI to be configured 5579 * @seid: seid of the channel/VSI 5580 * @max_tx_rate: max TX rate to be configured as BW limit 5581 * 5582 * Helper function to set BW limit for a given VSI 5583 **/ 5584 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5585 { 5586 struct i40e_pf *pf = vsi->back; 5587 u64 credits = 0; 5588 int speed = 0; 5589 int ret = 0; 5590 5591 speed = i40e_get_link_speed(vsi); 5592 if (max_tx_rate > speed) { 5593 dev_err(&pf->pdev->dev, 5594 "Invalid max tx rate %llu specified for VSI seid %d.", 5595 max_tx_rate, seid); 5596 return -EINVAL; 5597 } 5598 if (max_tx_rate && max_tx_rate < 50) { 5599 dev_warn(&pf->pdev->dev, 5600 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5601 max_tx_rate = 50; 5602 } 5603 5604 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5605 credits = max_tx_rate; 5606 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5607 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5608 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5609 if (ret) 5610 dev_err(&pf->pdev->dev, 5611 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5612 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5613 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5614 return ret; 5615 } 5616 5617 /** 5618 * i40e_remove_queue_channels - Remove queue channels for the TCs 5619 * @vsi: VSI to be configured 5620 * 5621 * Remove queue channels for the TCs 5622 **/ 5623 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5624 { 5625 enum i40e_admin_queue_err last_aq_status; 5626 struct i40e_cloud_filter *cfilter; 5627 struct i40e_channel *ch, *ch_tmp; 5628 struct i40e_pf *pf = vsi->back; 5629 struct hlist_node *node; 5630 int ret, i; 5631 5632 /* Reset rss size that was stored when reconfiguring rss for 5633 * channel VSIs with non-power-of-2 queue count. 5634 */ 5635 vsi->current_rss_size = 0; 5636 5637 /* perform cleanup for channels if they exist */ 5638 if (list_empty(&vsi->ch_list)) 5639 return; 5640 5641 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5642 struct i40e_vsi *p_vsi; 5643 5644 list_del(&ch->list); 5645 p_vsi = ch->parent_vsi; 5646 if (!p_vsi || !ch->initialized) { 5647 kfree(ch); 5648 continue; 5649 } 5650 /* Reset queue contexts */ 5651 for (i = 0; i < ch->num_queue_pairs; i++) { 5652 struct i40e_ring *tx_ring, *rx_ring; 5653 u16 pf_q; 5654 5655 pf_q = ch->base_queue + i; 5656 tx_ring = vsi->tx_rings[pf_q]; 5657 tx_ring->ch = NULL; 5658 5659 rx_ring = vsi->rx_rings[pf_q]; 5660 rx_ring->ch = NULL; 5661 } 5662 5663 /* Reset BW configured for this VSI via mqprio */ 5664 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5665 if (ret) 5666 dev_info(&vsi->back->pdev->dev, 5667 "Failed to reset tx rate for ch->seid %u\n", 5668 ch->seid); 5669 5670 /* delete cloud filters associated with this channel */ 5671 hlist_for_each_entry_safe(cfilter, node, 5672 &pf->cloud_filter_list, cloud_node) { 5673 if (cfilter->seid != ch->seid) 5674 continue; 5675 5676 hash_del(&cfilter->cloud_node); 5677 if (cfilter->dst_port) 5678 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5679 cfilter, 5680 false); 5681 else 5682 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5683 false); 5684 last_aq_status = pf->hw.aq.asq_last_status; 5685 if (ret) 5686 dev_info(&pf->pdev->dev, 5687 "Failed to delete cloud filter, err %s aq_err %s\n", 5688 i40e_stat_str(&pf->hw, ret), 5689 i40e_aq_str(&pf->hw, last_aq_status)); 5690 kfree(cfilter); 5691 } 5692 5693 /* delete VSI from FW */ 5694 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5695 NULL); 5696 if (ret) 5697 dev_err(&vsi->back->pdev->dev, 5698 "unable to remove channel (%d) for parent VSI(%d)\n", 5699 ch->seid, p_vsi->seid); 5700 kfree(ch); 5701 } 5702 INIT_LIST_HEAD(&vsi->ch_list); 5703 } 5704 5705 /** 5706 * i40e_is_any_channel - channel exist or not 5707 * @vsi: ptr to VSI to which channels are associated with 5708 * 5709 * Returns true or false if channel(s) exist for associated VSI or not 5710 **/ 5711 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5712 { 5713 struct i40e_channel *ch, *ch_tmp; 5714 5715 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5716 if (ch->initialized) 5717 return true; 5718 } 5719 5720 return false; 5721 } 5722 5723 /** 5724 * i40e_get_max_queues_for_channel 5725 * @vsi: ptr to VSI to which channels are associated with 5726 * 5727 * Helper function which returns max value among the queue counts set on the 5728 * channels/TCs created. 5729 **/ 5730 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5731 { 5732 struct i40e_channel *ch, *ch_tmp; 5733 int max = 0; 5734 5735 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5736 if (!ch->initialized) 5737 continue; 5738 if (ch->num_queue_pairs > max) 5739 max = ch->num_queue_pairs; 5740 } 5741 5742 return max; 5743 } 5744 5745 /** 5746 * i40e_validate_num_queues - validate num_queues w.r.t channel 5747 * @pf: ptr to PF device 5748 * @num_queues: number of queues 5749 * @vsi: the parent VSI 5750 * @reconfig_rss: indicates should the RSS be reconfigured or not 5751 * 5752 * This function validates number of queues in the context of new channel 5753 * which is being established and determines if RSS should be reconfigured 5754 * or not for parent VSI. 5755 **/ 5756 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5757 struct i40e_vsi *vsi, bool *reconfig_rss) 5758 { 5759 int max_ch_queues; 5760 5761 if (!reconfig_rss) 5762 return -EINVAL; 5763 5764 *reconfig_rss = false; 5765 if (vsi->current_rss_size) { 5766 if (num_queues > vsi->current_rss_size) { 5767 dev_dbg(&pf->pdev->dev, 5768 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5769 num_queues, vsi->current_rss_size); 5770 return -EINVAL; 5771 } else if ((num_queues < vsi->current_rss_size) && 5772 (!is_power_of_2(num_queues))) { 5773 dev_dbg(&pf->pdev->dev, 5774 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5775 num_queues, vsi->current_rss_size); 5776 return -EINVAL; 5777 } 5778 } 5779 5780 if (!is_power_of_2(num_queues)) { 5781 /* Find the max num_queues configured for channel if channel 5782 * exist. 5783 * if channel exist, then enforce 'num_queues' to be more than 5784 * max ever queues configured for channel. 5785 */ 5786 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5787 if (num_queues < max_ch_queues) { 5788 dev_dbg(&pf->pdev->dev, 5789 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5790 num_queues, max_ch_queues); 5791 return -EINVAL; 5792 } 5793 *reconfig_rss = true; 5794 } 5795 5796 return 0; 5797 } 5798 5799 /** 5800 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5801 * @vsi: the VSI being setup 5802 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5803 * 5804 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5805 **/ 5806 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5807 { 5808 struct i40e_pf *pf = vsi->back; 5809 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5810 struct i40e_hw *hw = &pf->hw; 5811 int local_rss_size; 5812 u8 *lut; 5813 int ret; 5814 5815 if (!vsi->rss_size) 5816 return -EINVAL; 5817 5818 if (rss_size > vsi->rss_size) 5819 return -EINVAL; 5820 5821 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5822 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5823 if (!lut) 5824 return -ENOMEM; 5825 5826 /* Ignoring user configured lut if there is one */ 5827 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5828 5829 /* Use user configured hash key if there is one, otherwise 5830 * use default. 5831 */ 5832 if (vsi->rss_hkey_user) 5833 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5834 else 5835 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5836 5837 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5838 if (ret) { 5839 dev_info(&pf->pdev->dev, 5840 "Cannot set RSS lut, err %s aq_err %s\n", 5841 i40e_stat_str(hw, ret), 5842 i40e_aq_str(hw, hw->aq.asq_last_status)); 5843 kfree(lut); 5844 return ret; 5845 } 5846 kfree(lut); 5847 5848 /* Do the update w.r.t. storing rss_size */ 5849 if (!vsi->orig_rss_size) 5850 vsi->orig_rss_size = vsi->rss_size; 5851 vsi->current_rss_size = local_rss_size; 5852 5853 return ret; 5854 } 5855 5856 /** 5857 * i40e_channel_setup_queue_map - Setup a channel queue map 5858 * @pf: ptr to PF device 5859 * @ctxt: VSI context structure 5860 * @ch: ptr to channel structure 5861 * 5862 * Setup queue map for a specific channel 5863 **/ 5864 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5865 struct i40e_vsi_context *ctxt, 5866 struct i40e_channel *ch) 5867 { 5868 u16 qcount, qmap, sections = 0; 5869 u8 offset = 0; 5870 int pow; 5871 5872 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5873 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5874 5875 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5876 ch->num_queue_pairs = qcount; 5877 5878 /* find the next higher power-of-2 of num queue pairs */ 5879 pow = ilog2(qcount); 5880 if (!is_power_of_2(qcount)) 5881 pow++; 5882 5883 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5884 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5885 5886 /* Setup queue TC[0].qmap for given VSI context */ 5887 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5888 5889 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5890 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5891 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5892 ctxt->info.valid_sections |= cpu_to_le16(sections); 5893 } 5894 5895 /** 5896 * i40e_add_channel - add a channel by adding VSI 5897 * @pf: ptr to PF device 5898 * @uplink_seid: underlying HW switching element (VEB) ID 5899 * @ch: ptr to channel structure 5900 * 5901 * Add a channel (VSI) using add_vsi and queue_map 5902 **/ 5903 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5904 struct i40e_channel *ch) 5905 { 5906 struct i40e_hw *hw = &pf->hw; 5907 struct i40e_vsi_context ctxt; 5908 u8 enabled_tc = 0x1; /* TC0 enabled */ 5909 int ret; 5910 5911 if (ch->type != I40E_VSI_VMDQ2) { 5912 dev_info(&pf->pdev->dev, 5913 "add new vsi failed, ch->type %d\n", ch->type); 5914 return -EINVAL; 5915 } 5916 5917 memset(&ctxt, 0, sizeof(ctxt)); 5918 ctxt.pf_num = hw->pf_id; 5919 ctxt.vf_num = 0; 5920 ctxt.uplink_seid = uplink_seid; 5921 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5922 if (ch->type == I40E_VSI_VMDQ2) 5923 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5924 5925 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5926 ctxt.info.valid_sections |= 5927 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5928 ctxt.info.switch_id = 5929 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5930 } 5931 5932 /* Set queue map for a given VSI context */ 5933 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5934 5935 /* Now time to create VSI */ 5936 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5937 if (ret) { 5938 dev_info(&pf->pdev->dev, 5939 "add new vsi failed, err %s aq_err %s\n", 5940 i40e_stat_str(&pf->hw, ret), 5941 i40e_aq_str(&pf->hw, 5942 pf->hw.aq.asq_last_status)); 5943 return -ENOENT; 5944 } 5945 5946 /* Success, update channel, set enabled_tc only if the channel 5947 * is not a macvlan 5948 */ 5949 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc; 5950 ch->seid = ctxt.seid; 5951 ch->vsi_number = ctxt.vsi_number; 5952 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx); 5953 5954 /* copy just the sections touched not the entire info 5955 * since not all sections are valid as returned by 5956 * update vsi params 5957 */ 5958 ch->info.mapping_flags = ctxt.info.mapping_flags; 5959 memcpy(&ch->info.queue_mapping, 5960 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5961 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5962 sizeof(ctxt.info.tc_mapping)); 5963 5964 return 0; 5965 } 5966 5967 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5968 u8 *bw_share) 5969 { 5970 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5971 i40e_status ret; 5972 int i; 5973 5974 memset(&bw_data, 0, sizeof(bw_data)); 5975 bw_data.tc_valid_bits = ch->enabled_tc; 5976 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5977 bw_data.tc_bw_credits[i] = bw_share[i]; 5978 5979 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5980 &bw_data, NULL); 5981 if (ret) { 5982 dev_info(&vsi->back->pdev->dev, 5983 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5984 vsi->back->hw.aq.asq_last_status, ch->seid); 5985 return -EINVAL; 5986 } 5987 5988 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5989 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5990 5991 return 0; 5992 } 5993 5994 /** 5995 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5996 * @pf: ptr to PF device 5997 * @vsi: the VSI being setup 5998 * @ch: ptr to channel structure 5999 * 6000 * Configure TX rings associated with channel (VSI) since queues are being 6001 * from parent VSI. 6002 **/ 6003 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 6004 struct i40e_vsi *vsi, 6005 struct i40e_channel *ch) 6006 { 6007 i40e_status ret; 6008 int i; 6009 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 6010 6011 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 6012 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6013 if (ch->enabled_tc & BIT(i)) 6014 bw_share[i] = 1; 6015 } 6016 6017 /* configure BW for new VSI */ 6018 ret = i40e_channel_config_bw(vsi, ch, bw_share); 6019 if (ret) { 6020 dev_info(&vsi->back->pdev->dev, 6021 "Failed configuring TC map %d for channel (seid %u)\n", 6022 ch->enabled_tc, ch->seid); 6023 return ret; 6024 } 6025 6026 for (i = 0; i < ch->num_queue_pairs; i++) { 6027 struct i40e_ring *tx_ring, *rx_ring; 6028 u16 pf_q; 6029 6030 pf_q = ch->base_queue + i; 6031 6032 /* Get to TX ring ptr of main VSI, for re-setup TX queue 6033 * context 6034 */ 6035 tx_ring = vsi->tx_rings[pf_q]; 6036 tx_ring->ch = ch; 6037 6038 /* Get the RX ring ptr */ 6039 rx_ring = vsi->rx_rings[pf_q]; 6040 rx_ring->ch = ch; 6041 } 6042 6043 return 0; 6044 } 6045 6046 /** 6047 * i40e_setup_hw_channel - setup new channel 6048 * @pf: ptr to PF device 6049 * @vsi: the VSI being setup 6050 * @ch: ptr to channel structure 6051 * @uplink_seid: underlying HW switching element (VEB) ID 6052 * @type: type of channel to be created (VMDq2/VF) 6053 * 6054 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6055 * and configures TX rings accordingly 6056 **/ 6057 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 6058 struct i40e_vsi *vsi, 6059 struct i40e_channel *ch, 6060 u16 uplink_seid, u8 type) 6061 { 6062 int ret; 6063 6064 ch->initialized = false; 6065 ch->base_queue = vsi->next_base_queue; 6066 ch->type = type; 6067 6068 /* Proceed with creation of channel (VMDq2) VSI */ 6069 ret = i40e_add_channel(pf, uplink_seid, ch); 6070 if (ret) { 6071 dev_info(&pf->pdev->dev, 6072 "failed to add_channel using uplink_seid %u\n", 6073 uplink_seid); 6074 return ret; 6075 } 6076 6077 /* Mark the successful creation of channel */ 6078 ch->initialized = true; 6079 6080 /* Reconfigure TX queues using QTX_CTL register */ 6081 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 6082 if (ret) { 6083 dev_info(&pf->pdev->dev, 6084 "failed to configure TX rings for channel %u\n", 6085 ch->seid); 6086 return ret; 6087 } 6088 6089 /* update 'next_base_queue' */ 6090 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 6091 dev_dbg(&pf->pdev->dev, 6092 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 6093 ch->seid, ch->vsi_number, ch->stat_counter_idx, 6094 ch->num_queue_pairs, 6095 vsi->next_base_queue); 6096 return ret; 6097 } 6098 6099 /** 6100 * i40e_setup_channel - setup new channel using uplink element 6101 * @pf: ptr to PF device 6102 * @vsi: pointer to the VSI to set up the channel within 6103 * @ch: ptr to channel structure 6104 * 6105 * Setup new channel (VSI) based on specified type (VMDq2/VF) 6106 * and uplink switching element (uplink_seid) 6107 **/ 6108 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 6109 struct i40e_channel *ch) 6110 { 6111 u8 vsi_type; 6112 u16 seid; 6113 int ret; 6114 6115 if (vsi->type == I40E_VSI_MAIN) { 6116 vsi_type = I40E_VSI_VMDQ2; 6117 } else { 6118 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 6119 vsi->type); 6120 return false; 6121 } 6122 6123 /* underlying switching element */ 6124 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 6125 6126 /* create channel (VSI), configure TX rings */ 6127 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 6128 if (ret) { 6129 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6130 return false; 6131 } 6132 6133 return ch->initialized ? true : false; 6134 } 6135 6136 /** 6137 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6138 * @vsi: ptr to VSI which has PF backing 6139 * 6140 * Sets up switch mode correctly if it needs to be changed and perform 6141 * what are allowed modes. 6142 **/ 6143 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6144 { 6145 u8 mode; 6146 struct i40e_pf *pf = vsi->back; 6147 struct i40e_hw *hw = &pf->hw; 6148 int ret; 6149 6150 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6151 if (ret) 6152 return -EINVAL; 6153 6154 if (hw->dev_caps.switch_mode) { 6155 /* if switch mode is set, support mode2 (non-tunneled for 6156 * cloud filter) for now 6157 */ 6158 u32 switch_mode = hw->dev_caps.switch_mode & 6159 I40E_SWITCH_MODE_MASK; 6160 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6161 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6162 return 0; 6163 dev_err(&pf->pdev->dev, 6164 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6165 hw->dev_caps.switch_mode); 6166 return -EINVAL; 6167 } 6168 } 6169 6170 /* Set Bit 7 to be valid */ 6171 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6172 6173 /* Set L4type for TCP support */ 6174 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6175 6176 /* Set cloud filter mode */ 6177 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6178 6179 /* Prep mode field for set_switch_config */ 6180 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6181 pf->last_sw_conf_valid_flags, 6182 mode, NULL); 6183 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6184 dev_err(&pf->pdev->dev, 6185 "couldn't set switch config bits, err %s aq_err %s\n", 6186 i40e_stat_str(hw, ret), 6187 i40e_aq_str(hw, 6188 hw->aq.asq_last_status)); 6189 6190 return ret; 6191 } 6192 6193 /** 6194 * i40e_create_queue_channel - function to create channel 6195 * @vsi: VSI to be configured 6196 * @ch: ptr to channel (it contains channel specific params) 6197 * 6198 * This function creates channel (VSI) using num_queues specified by user, 6199 * reconfigs RSS if needed. 6200 **/ 6201 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6202 struct i40e_channel *ch) 6203 { 6204 struct i40e_pf *pf = vsi->back; 6205 bool reconfig_rss; 6206 int err; 6207 6208 if (!ch) 6209 return -EINVAL; 6210 6211 if (!ch->num_queue_pairs) { 6212 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6213 ch->num_queue_pairs); 6214 return -EINVAL; 6215 } 6216 6217 /* validate user requested num_queues for channel */ 6218 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6219 &reconfig_rss); 6220 if (err) { 6221 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6222 ch->num_queue_pairs); 6223 return -EINVAL; 6224 } 6225 6226 /* By default we are in VEPA mode, if this is the first VF/VMDq 6227 * VSI to be added switch to VEB mode. 6228 */ 6229 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6230 (!i40e_is_any_channel(vsi))) { 6231 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6232 dev_dbg(&pf->pdev->dev, 6233 "Failed to create channel. Override queues (%u) not power of 2\n", 6234 vsi->tc_config.tc_info[0].qcount); 6235 return -EINVAL; 6236 } 6237 6238 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6239 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6240 6241 if (vsi->type == I40E_VSI_MAIN) { 6242 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6243 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6244 true); 6245 else 6246 i40e_do_reset_safe(pf, 6247 I40E_PF_RESET_FLAG); 6248 } 6249 } 6250 /* now onwards for main VSI, number of queues will be value 6251 * of TC0's queue count 6252 */ 6253 } 6254 6255 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6256 * it should be more than num_queues 6257 */ 6258 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6259 dev_dbg(&pf->pdev->dev, 6260 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6261 vsi->cnt_q_avail, ch->num_queue_pairs); 6262 return -EINVAL; 6263 } 6264 6265 /* reconfig_rss only if vsi type is MAIN_VSI */ 6266 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6267 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6268 if (err) { 6269 dev_info(&pf->pdev->dev, 6270 "Error: unable to reconfig rss for num_queues (%u)\n", 6271 ch->num_queue_pairs); 6272 return -EINVAL; 6273 } 6274 } 6275 6276 if (!i40e_setup_channel(pf, vsi, ch)) { 6277 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6278 return -EINVAL; 6279 } 6280 6281 dev_info(&pf->pdev->dev, 6282 "Setup channel (id:%u) utilizing num_queues %d\n", 6283 ch->seid, ch->num_queue_pairs); 6284 6285 /* configure VSI for BW limit */ 6286 if (ch->max_tx_rate) { 6287 u64 credits = ch->max_tx_rate; 6288 6289 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6290 return -EINVAL; 6291 6292 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6293 dev_dbg(&pf->pdev->dev, 6294 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6295 ch->max_tx_rate, 6296 credits, 6297 ch->seid); 6298 } 6299 6300 /* in case of VF, this will be main SRIOV VSI */ 6301 ch->parent_vsi = vsi; 6302 6303 /* and update main_vsi's count for queue_available to use */ 6304 vsi->cnt_q_avail -= ch->num_queue_pairs; 6305 6306 return 0; 6307 } 6308 6309 /** 6310 * i40e_configure_queue_channels - Add queue channel for the given TCs 6311 * @vsi: VSI to be configured 6312 * 6313 * Configures queue channel mapping to the given TCs 6314 **/ 6315 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6316 { 6317 struct i40e_channel *ch; 6318 u64 max_rate = 0; 6319 int ret = 0, i; 6320 6321 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6322 vsi->tc_seid_map[0] = vsi->seid; 6323 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6324 if (vsi->tc_config.enabled_tc & BIT(i)) { 6325 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6326 if (!ch) { 6327 ret = -ENOMEM; 6328 goto err_free; 6329 } 6330 6331 INIT_LIST_HEAD(&ch->list); 6332 ch->num_queue_pairs = 6333 vsi->tc_config.tc_info[i].qcount; 6334 ch->base_queue = 6335 vsi->tc_config.tc_info[i].qoffset; 6336 6337 /* Bandwidth limit through tc interface is in bytes/s, 6338 * change to Mbit/s 6339 */ 6340 max_rate = vsi->mqprio_qopt.max_rate[i]; 6341 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6342 ch->max_tx_rate = max_rate; 6343 6344 list_add_tail(&ch->list, &vsi->ch_list); 6345 6346 ret = i40e_create_queue_channel(vsi, ch); 6347 if (ret) { 6348 dev_err(&vsi->back->pdev->dev, 6349 "Failed creating queue channel with TC%d: queues %d\n", 6350 i, ch->num_queue_pairs); 6351 goto err_free; 6352 } 6353 vsi->tc_seid_map[i] = ch->seid; 6354 } 6355 } 6356 return ret; 6357 6358 err_free: 6359 i40e_remove_queue_channels(vsi); 6360 return ret; 6361 } 6362 6363 /** 6364 * i40e_veb_config_tc - Configure TCs for given VEB 6365 * @veb: given VEB 6366 * @enabled_tc: TC bitmap 6367 * 6368 * Configures given TC bitmap for VEB (switching) element 6369 **/ 6370 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6371 { 6372 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6373 struct i40e_pf *pf = veb->pf; 6374 int ret = 0; 6375 int i; 6376 6377 /* No TCs or already enabled TCs just return */ 6378 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6379 return ret; 6380 6381 bw_data.tc_valid_bits = enabled_tc; 6382 /* bw_data.absolute_credits is not set (relative) */ 6383 6384 /* Enable ETS TCs with equal BW Share for now */ 6385 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6386 if (enabled_tc & BIT(i)) 6387 bw_data.tc_bw_share_credits[i] = 1; 6388 } 6389 6390 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6391 &bw_data, NULL); 6392 if (ret) { 6393 dev_info(&pf->pdev->dev, 6394 "VEB bw config failed, err %s aq_err %s\n", 6395 i40e_stat_str(&pf->hw, ret), 6396 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6397 goto out; 6398 } 6399 6400 /* Update the BW information */ 6401 ret = i40e_veb_get_bw_info(veb); 6402 if (ret) { 6403 dev_info(&pf->pdev->dev, 6404 "Failed getting veb bw config, err %s aq_err %s\n", 6405 i40e_stat_str(&pf->hw, ret), 6406 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6407 } 6408 6409 out: 6410 return ret; 6411 } 6412 6413 #ifdef CONFIG_I40E_DCB 6414 /** 6415 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6416 * @pf: PF struct 6417 * 6418 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6419 * the caller would've quiesce all the VSIs before calling 6420 * this function 6421 **/ 6422 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6423 { 6424 u8 tc_map = 0; 6425 int ret; 6426 u8 v; 6427 6428 /* Enable the TCs available on PF to all VEBs */ 6429 tc_map = i40e_pf_get_tc_map(pf); 6430 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS) 6431 return; 6432 6433 for (v = 0; v < I40E_MAX_VEB; v++) { 6434 if (!pf->veb[v]) 6435 continue; 6436 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6437 if (ret) { 6438 dev_info(&pf->pdev->dev, 6439 "Failed configuring TC for VEB seid=%d\n", 6440 pf->veb[v]->seid); 6441 /* Will try to configure as many components */ 6442 } 6443 } 6444 6445 /* Update each VSI */ 6446 for (v = 0; v < pf->num_alloc_vsi; v++) { 6447 if (!pf->vsi[v]) 6448 continue; 6449 6450 /* - Enable all TCs for the LAN VSI 6451 * - For all others keep them at TC0 for now 6452 */ 6453 if (v == pf->lan_vsi) 6454 tc_map = i40e_pf_get_tc_map(pf); 6455 else 6456 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6457 6458 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6459 if (ret) { 6460 dev_info(&pf->pdev->dev, 6461 "Failed configuring TC for VSI seid=%d\n", 6462 pf->vsi[v]->seid); 6463 /* Will try to configure as many components */ 6464 } else { 6465 /* Re-configure VSI vectors based on updated TC map */ 6466 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6467 if (pf->vsi[v]->netdev) 6468 i40e_dcbnl_set_all(pf->vsi[v]); 6469 } 6470 } 6471 } 6472 6473 /** 6474 * i40e_resume_port_tx - Resume port Tx 6475 * @pf: PF struct 6476 * 6477 * Resume a port's Tx and issue a PF reset in case of failure to 6478 * resume. 6479 **/ 6480 static int i40e_resume_port_tx(struct i40e_pf *pf) 6481 { 6482 struct i40e_hw *hw = &pf->hw; 6483 int ret; 6484 6485 ret = i40e_aq_resume_port_tx(hw, NULL); 6486 if (ret) { 6487 dev_info(&pf->pdev->dev, 6488 "Resume Port Tx failed, err %s aq_err %s\n", 6489 i40e_stat_str(&pf->hw, ret), 6490 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6491 /* Schedule PF reset to recover */ 6492 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6493 i40e_service_event_schedule(pf); 6494 } 6495 6496 return ret; 6497 } 6498 6499 /** 6500 * i40e_suspend_port_tx - Suspend port Tx 6501 * @pf: PF struct 6502 * 6503 * Suspend a port's Tx and issue a PF reset in case of failure. 6504 **/ 6505 static int i40e_suspend_port_tx(struct i40e_pf *pf) 6506 { 6507 struct i40e_hw *hw = &pf->hw; 6508 int ret; 6509 6510 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL); 6511 if (ret) { 6512 dev_info(&pf->pdev->dev, 6513 "Suspend Port Tx failed, err %s aq_err %s\n", 6514 i40e_stat_str(&pf->hw, ret), 6515 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6516 /* Schedule PF reset to recover */ 6517 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6518 i40e_service_event_schedule(pf); 6519 } 6520 6521 return ret; 6522 } 6523 6524 /** 6525 * i40e_hw_set_dcb_config - Program new DCBX settings into HW 6526 * @pf: PF being configured 6527 * @new_cfg: New DCBX configuration 6528 * 6529 * Program DCB settings into HW and reconfigure VEB/VSIs on 6530 * given PF. Uses "Set LLDP MIB" AQC to program the hardware. 6531 **/ 6532 static int i40e_hw_set_dcb_config(struct i40e_pf *pf, 6533 struct i40e_dcbx_config *new_cfg) 6534 { 6535 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config; 6536 int ret; 6537 6538 /* Check if need reconfiguration */ 6539 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) { 6540 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n"); 6541 return 0; 6542 } 6543 6544 /* Config change disable all VSIs */ 6545 i40e_pf_quiesce_all_vsi(pf); 6546 6547 /* Copy the new config to the current config */ 6548 *old_cfg = *new_cfg; 6549 old_cfg->etsrec = old_cfg->etscfg; 6550 ret = i40e_set_dcb_config(&pf->hw); 6551 if (ret) { 6552 dev_info(&pf->pdev->dev, 6553 "Set DCB Config failed, err %s aq_err %s\n", 6554 i40e_stat_str(&pf->hw, ret), 6555 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6556 goto out; 6557 } 6558 6559 /* Changes in configuration update VEB/VSI */ 6560 i40e_dcb_reconfigure(pf); 6561 out: 6562 /* In case of reset do not try to resume anything */ 6563 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) { 6564 /* Re-start the VSIs if disabled */ 6565 ret = i40e_resume_port_tx(pf); 6566 /* In case of error no point in resuming VSIs */ 6567 if (ret) 6568 goto err; 6569 i40e_pf_unquiesce_all_vsi(pf); 6570 } 6571 err: 6572 return ret; 6573 } 6574 6575 /** 6576 * i40e_hw_dcb_config - Program new DCBX settings into HW 6577 * @pf: PF being configured 6578 * @new_cfg: New DCBX configuration 6579 * 6580 * Program DCB settings into HW and reconfigure VEB/VSIs on 6581 * given PF 6582 **/ 6583 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg) 6584 { 6585 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6586 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0}; 6587 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS]; 6588 struct i40e_dcbx_config *old_cfg; 6589 u8 mode[I40E_MAX_TRAFFIC_CLASS]; 6590 struct i40e_rx_pb_config pb_cfg; 6591 struct i40e_hw *hw = &pf->hw; 6592 u8 num_ports = hw->num_ports; 6593 bool need_reconfig; 6594 int ret = -EINVAL; 6595 u8 lltc_map = 0; 6596 u8 tc_map = 0; 6597 u8 new_numtc; 6598 u8 i; 6599 6600 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n"); 6601 /* Un-pack information to Program ETS HW via shared API 6602 * numtc, tcmap 6603 * LLTC map 6604 * ETS/NON-ETS arbiter mode 6605 * max exponent (credit refills) 6606 * Total number of ports 6607 * PFC priority bit-map 6608 * Priority Table 6609 * BW % per TC 6610 * Arbiter mode between UPs sharing same TC 6611 * TSA table (ETS or non-ETS) 6612 * EEE enabled or not 6613 * MFS TC table 6614 */ 6615 6616 new_numtc = i40e_dcb_get_num_tc(new_cfg); 6617 6618 memset(&ets_data, 0, sizeof(ets_data)); 6619 for (i = 0; i < new_numtc; i++) { 6620 tc_map |= BIT(i); 6621 switch (new_cfg->etscfg.tsatable[i]) { 6622 case I40E_IEEE_TSA_ETS: 6623 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS; 6624 ets_data.tc_bw_share_credits[i] = 6625 new_cfg->etscfg.tcbwtable[i]; 6626 break; 6627 case I40E_IEEE_TSA_STRICT: 6628 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT; 6629 lltc_map |= BIT(i); 6630 ets_data.tc_bw_share_credits[i] = 6631 I40E_DCB_STRICT_PRIO_CREDITS; 6632 break; 6633 default: 6634 /* Invalid TSA type */ 6635 need_reconfig = false; 6636 goto out; 6637 } 6638 } 6639 6640 old_cfg = &hw->local_dcbx_config; 6641 /* Check if need reconfiguration */ 6642 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg); 6643 6644 /* If needed, enable/disable frame tagging, disable all VSIs 6645 * and suspend port tx 6646 */ 6647 if (need_reconfig) { 6648 /* Enable DCB tagging only when more than one TC */ 6649 if (new_numtc > 1) 6650 pf->flags |= I40E_FLAG_DCB_ENABLED; 6651 else 6652 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6653 6654 set_bit(__I40E_PORT_SUSPENDED, pf->state); 6655 /* Reconfiguration needed quiesce all VSIs */ 6656 i40e_pf_quiesce_all_vsi(pf); 6657 ret = i40e_suspend_port_tx(pf); 6658 if (ret) 6659 goto err; 6660 } 6661 6662 /* Configure Port ETS Tx Scheduler */ 6663 ets_data.tc_valid_bits = tc_map; 6664 ets_data.tc_strict_priority_flags = lltc_map; 6665 ret = i40e_aq_config_switch_comp_ets 6666 (hw, pf->mac_seid, &ets_data, 6667 i40e_aqc_opc_modify_switching_comp_ets, NULL); 6668 if (ret) { 6669 dev_info(&pf->pdev->dev, 6670 "Modify Port ETS failed, err %s aq_err %s\n", 6671 i40e_stat_str(&pf->hw, ret), 6672 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6673 goto out; 6674 } 6675 6676 /* Configure Rx ETS HW */ 6677 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode)); 6678 i40e_dcb_hw_set_num_tc(hw, new_numtc); 6679 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN, 6680 I40E_DCB_ARB_MODE_STRICT_PRIORITY, 6681 I40E_DCB_DEFAULT_MAX_EXPONENT, 6682 lltc_map); 6683 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports); 6684 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode, 6685 prio_type); 6686 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable, 6687 new_cfg->etscfg.prioritytable); 6688 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable); 6689 6690 /* Configure Rx Packet Buffers in HW */ 6691 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6692 mfs_tc[i] = pf->vsi[pf->lan_vsi]->netdev->mtu; 6693 mfs_tc[i] += I40E_PACKET_HDR_PAD; 6694 } 6695 6696 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports, 6697 false, new_cfg->pfc.pfcenable, 6698 mfs_tc, &pb_cfg); 6699 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg); 6700 6701 /* Update the local Rx Packet buffer config */ 6702 pf->pb_cfg = pb_cfg; 6703 6704 /* Inform the FW about changes to DCB configuration */ 6705 ret = i40e_aq_dcb_updated(&pf->hw, NULL); 6706 if (ret) { 6707 dev_info(&pf->pdev->dev, 6708 "DCB Updated failed, err %s aq_err %s\n", 6709 i40e_stat_str(&pf->hw, ret), 6710 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6711 goto out; 6712 } 6713 6714 /* Update the port DCBx configuration */ 6715 *old_cfg = *new_cfg; 6716 6717 /* Changes in configuration update VEB/VSI */ 6718 i40e_dcb_reconfigure(pf); 6719 out: 6720 /* Re-start the VSIs if disabled */ 6721 if (need_reconfig) { 6722 ret = i40e_resume_port_tx(pf); 6723 6724 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 6725 /* In case of error no point in resuming VSIs */ 6726 if (ret) 6727 goto err; 6728 6729 /* Wait for the PF's queues to be disabled */ 6730 ret = i40e_pf_wait_queues_disabled(pf); 6731 if (ret) { 6732 /* Schedule PF reset to recover */ 6733 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6734 i40e_service_event_schedule(pf); 6735 goto err; 6736 } else { 6737 i40e_pf_unquiesce_all_vsi(pf); 6738 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6739 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 6740 } 6741 /* registers are set, lets apply */ 6742 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) 6743 ret = i40e_hw_set_dcb_config(pf, new_cfg); 6744 } 6745 6746 err: 6747 return ret; 6748 } 6749 6750 /** 6751 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW 6752 * @pf: PF being queried 6753 * 6754 * Set default DCB configuration in case DCB is to be done in SW. 6755 **/ 6756 int i40e_dcb_sw_default_config(struct i40e_pf *pf) 6757 { 6758 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config; 6759 struct i40e_aqc_configure_switching_comp_ets_data ets_data; 6760 struct i40e_hw *hw = &pf->hw; 6761 int err; 6762 6763 if (pf->hw_features & I40E_HW_USE_SET_LLDP_MIB) { 6764 /* Update the local cached instance with TC0 ETS */ 6765 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config)); 6766 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6767 pf->tmp_cfg.etscfg.maxtcs = 0; 6768 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6769 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS; 6770 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING; 6771 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS; 6772 /* FW needs one App to configure HW */ 6773 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS; 6774 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE; 6775 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO; 6776 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE; 6777 6778 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg); 6779 } 6780 6781 memset(&ets_data, 0, sizeof(ets_data)); 6782 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */ 6783 ets_data.tc_strict_priority_flags = 0; /* ETS */ 6784 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */ 6785 6786 /* Enable ETS on the Physical port */ 6787 err = i40e_aq_config_switch_comp_ets 6788 (hw, pf->mac_seid, &ets_data, 6789 i40e_aqc_opc_enable_switching_comp_ets, NULL); 6790 if (err) { 6791 dev_info(&pf->pdev->dev, 6792 "Enable Port ETS failed, err %s aq_err %s\n", 6793 i40e_stat_str(&pf->hw, err), 6794 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6795 err = -ENOENT; 6796 goto out; 6797 } 6798 6799 /* Update the local cached instance with TC0 ETS */ 6800 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING; 6801 dcb_cfg->etscfg.cbs = 0; 6802 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS; 6803 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW; 6804 6805 out: 6806 return err; 6807 } 6808 6809 /** 6810 * i40e_init_pf_dcb - Initialize DCB configuration 6811 * @pf: PF being configured 6812 * 6813 * Query the current DCB configuration and cache it 6814 * in the hardware structure 6815 **/ 6816 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6817 { 6818 struct i40e_hw *hw = &pf->hw; 6819 int err; 6820 6821 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6822 * Also do not enable DCBx if FW LLDP agent is disabled 6823 */ 6824 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT) { 6825 dev_info(&pf->pdev->dev, "DCB is not supported.\n"); 6826 err = I40E_NOT_SUPPORTED; 6827 goto out; 6828 } 6829 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) { 6830 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n"); 6831 err = i40e_dcb_sw_default_config(pf); 6832 if (err) { 6833 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n"); 6834 goto out; 6835 } 6836 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n"); 6837 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 6838 DCB_CAP_DCBX_VER_IEEE; 6839 /* at init capable but disabled */ 6840 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6841 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6842 goto out; 6843 } 6844 err = i40e_init_dcb(hw, true); 6845 if (!err) { 6846 /* Device/Function is not DCBX capable */ 6847 if ((!hw->func_caps.dcb) || 6848 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6849 dev_info(&pf->pdev->dev, 6850 "DCBX offload is not supported or is disabled for this PF.\n"); 6851 } else { 6852 /* When status is not DISABLED then DCBX in FW */ 6853 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6854 DCB_CAP_DCBX_VER_IEEE; 6855 6856 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6857 /* Enable DCB tagging only when more than one TC 6858 * or explicitly disable if only one TC 6859 */ 6860 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6861 pf->flags |= I40E_FLAG_DCB_ENABLED; 6862 else 6863 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6864 dev_dbg(&pf->pdev->dev, 6865 "DCBX offload is supported for this PF.\n"); 6866 } 6867 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6868 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6869 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6870 } else { 6871 dev_info(&pf->pdev->dev, 6872 "Query for DCB configuration failed, err %s aq_err %s\n", 6873 i40e_stat_str(&pf->hw, err), 6874 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6875 } 6876 6877 out: 6878 return err; 6879 } 6880 #endif /* CONFIG_I40E_DCB */ 6881 6882 /** 6883 * i40e_set_lldp_forwarding - set forwarding of lldp frames 6884 * @pf: PF being configured 6885 * @enable: if forwarding to OS shall be enabled 6886 * 6887 * Toggle forwarding of lldp frames behavior, 6888 * When passing DCB control from firmware to software 6889 * lldp frames must be forwarded to the software based 6890 * lldp agent. 6891 */ 6892 void i40e_set_lldp_forwarding(struct i40e_pf *pf, bool enable) 6893 { 6894 if (pf->lan_vsi == I40E_NO_VSI) 6895 return; 6896 6897 if (!pf->vsi[pf->lan_vsi]) 6898 return; 6899 6900 /* No need to check the outcome, commands may fail 6901 * if desired value is already set 6902 */ 6903 i40e_aq_add_rem_control_packet_filter(&pf->hw, NULL, ETH_P_LLDP, 6904 I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX | 6905 I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC, 6906 pf->vsi[pf->lan_vsi]->seid, 0, 6907 enable, NULL, NULL); 6908 6909 i40e_aq_add_rem_control_packet_filter(&pf->hw, NULL, ETH_P_LLDP, 6910 I40E_AQC_ADD_CONTROL_PACKET_FLAGS_RX | 6911 I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC, 6912 pf->vsi[pf->lan_vsi]->seid, 0, 6913 enable, NULL, NULL); 6914 } 6915 6916 /** 6917 * i40e_print_link_message - print link up or down 6918 * @vsi: the VSI for which link needs a message 6919 * @isup: true of link is up, false otherwise 6920 */ 6921 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6922 { 6923 enum i40e_aq_link_speed new_speed; 6924 struct i40e_pf *pf = vsi->back; 6925 char *speed = "Unknown"; 6926 char *fc = "Unknown"; 6927 char *fec = ""; 6928 char *req_fec = ""; 6929 char *an = ""; 6930 6931 if (isup) 6932 new_speed = pf->hw.phy.link_info.link_speed; 6933 else 6934 new_speed = I40E_LINK_SPEED_UNKNOWN; 6935 6936 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6937 return; 6938 vsi->current_isup = isup; 6939 vsi->current_speed = new_speed; 6940 if (!isup) { 6941 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6942 return; 6943 } 6944 6945 /* Warn user if link speed on NPAR enabled partition is not at 6946 * least 10GB 6947 */ 6948 if (pf->hw.func_caps.npar_enable && 6949 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6950 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6951 netdev_warn(vsi->netdev, 6952 "The partition detected link speed that is less than 10Gbps\n"); 6953 6954 switch (pf->hw.phy.link_info.link_speed) { 6955 case I40E_LINK_SPEED_40GB: 6956 speed = "40 G"; 6957 break; 6958 case I40E_LINK_SPEED_20GB: 6959 speed = "20 G"; 6960 break; 6961 case I40E_LINK_SPEED_25GB: 6962 speed = "25 G"; 6963 break; 6964 case I40E_LINK_SPEED_10GB: 6965 speed = "10 G"; 6966 break; 6967 case I40E_LINK_SPEED_5GB: 6968 speed = "5 G"; 6969 break; 6970 case I40E_LINK_SPEED_2_5GB: 6971 speed = "2.5 G"; 6972 break; 6973 case I40E_LINK_SPEED_1GB: 6974 speed = "1000 M"; 6975 break; 6976 case I40E_LINK_SPEED_100MB: 6977 speed = "100 M"; 6978 break; 6979 default: 6980 break; 6981 } 6982 6983 switch (pf->hw.fc.current_mode) { 6984 case I40E_FC_FULL: 6985 fc = "RX/TX"; 6986 break; 6987 case I40E_FC_TX_PAUSE: 6988 fc = "TX"; 6989 break; 6990 case I40E_FC_RX_PAUSE: 6991 fc = "RX"; 6992 break; 6993 default: 6994 fc = "None"; 6995 break; 6996 } 6997 6998 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6999 req_fec = "None"; 7000 fec = "None"; 7001 an = "False"; 7002 7003 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7004 an = "True"; 7005 7006 if (pf->hw.phy.link_info.fec_info & 7007 I40E_AQ_CONFIG_FEC_KR_ENA) 7008 fec = "CL74 FC-FEC/BASE-R"; 7009 else if (pf->hw.phy.link_info.fec_info & 7010 I40E_AQ_CONFIG_FEC_RS_ENA) 7011 fec = "CL108 RS-FEC"; 7012 7013 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 7014 * both RS and FC are requested 7015 */ 7016 if (vsi->back->hw.phy.link_info.req_fec_info & 7017 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 7018 if (vsi->back->hw.phy.link_info.req_fec_info & 7019 I40E_AQ_REQUEST_FEC_RS) 7020 req_fec = "CL108 RS-FEC"; 7021 else 7022 req_fec = "CL74 FC-FEC/BASE-R"; 7023 } 7024 netdev_info(vsi->netdev, 7025 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7026 speed, req_fec, fec, an, fc); 7027 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) { 7028 req_fec = "None"; 7029 fec = "None"; 7030 an = "False"; 7031 7032 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 7033 an = "True"; 7034 7035 if (pf->hw.phy.link_info.fec_info & 7036 I40E_AQ_CONFIG_FEC_KR_ENA) 7037 fec = "CL74 FC-FEC/BASE-R"; 7038 7039 if (pf->hw.phy.link_info.req_fec_info & 7040 I40E_AQ_REQUEST_FEC_KR) 7041 req_fec = "CL74 FC-FEC/BASE-R"; 7042 7043 netdev_info(vsi->netdev, 7044 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n", 7045 speed, req_fec, fec, an, fc); 7046 } else { 7047 netdev_info(vsi->netdev, 7048 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n", 7049 speed, fc); 7050 } 7051 7052 } 7053 7054 /** 7055 * i40e_up_complete - Finish the last steps of bringing up a connection 7056 * @vsi: the VSI being configured 7057 **/ 7058 static int i40e_up_complete(struct i40e_vsi *vsi) 7059 { 7060 struct i40e_pf *pf = vsi->back; 7061 int err; 7062 7063 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 7064 i40e_vsi_configure_msix(vsi); 7065 else 7066 i40e_configure_msi_and_legacy(vsi); 7067 7068 /* start rings */ 7069 err = i40e_vsi_start_rings(vsi); 7070 if (err) 7071 return err; 7072 7073 clear_bit(__I40E_VSI_DOWN, vsi->state); 7074 i40e_napi_enable_all(vsi); 7075 i40e_vsi_enable_irq(vsi); 7076 7077 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 7078 (vsi->netdev)) { 7079 i40e_print_link_message(vsi, true); 7080 netif_tx_start_all_queues(vsi->netdev); 7081 netif_carrier_on(vsi->netdev); 7082 } 7083 7084 /* replay FDIR SB filters */ 7085 if (vsi->type == I40E_VSI_FDIR) { 7086 /* reset fd counters */ 7087 pf->fd_add_err = 0; 7088 pf->fd_atr_cnt = 0; 7089 i40e_fdir_filter_restore(vsi); 7090 } 7091 7092 /* On the next run of the service_task, notify any clients of the new 7093 * opened netdev 7094 */ 7095 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 7096 i40e_service_event_schedule(pf); 7097 7098 return 0; 7099 } 7100 7101 /** 7102 * i40e_vsi_reinit_locked - Reset the VSI 7103 * @vsi: the VSI being configured 7104 * 7105 * Rebuild the ring structs after some configuration 7106 * has changed, e.g. MTU size. 7107 **/ 7108 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 7109 { 7110 struct i40e_pf *pf = vsi->back; 7111 7112 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 7113 usleep_range(1000, 2000); 7114 i40e_down(vsi); 7115 7116 i40e_up(vsi); 7117 clear_bit(__I40E_CONFIG_BUSY, pf->state); 7118 } 7119 7120 /** 7121 * i40e_force_link_state - Force the link status 7122 * @pf: board private structure 7123 * @is_up: whether the link state should be forced up or down 7124 **/ 7125 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 7126 { 7127 struct i40e_aq_get_phy_abilities_resp abilities; 7128 struct i40e_aq_set_phy_config config = {0}; 7129 bool non_zero_phy_type = is_up; 7130 struct i40e_hw *hw = &pf->hw; 7131 i40e_status err; 7132 u64 mask; 7133 u8 speed; 7134 7135 /* Card might've been put in an unstable state by other drivers 7136 * and applications, which causes incorrect speed values being 7137 * set on startup. In order to clear speed registers, we call 7138 * get_phy_capabilities twice, once to get initial state of 7139 * available speeds, and once to get current PHY config. 7140 */ 7141 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 7142 NULL); 7143 if (err) { 7144 dev_err(&pf->pdev->dev, 7145 "failed to get phy cap., ret = %s last_status = %s\n", 7146 i40e_stat_str(hw, err), 7147 i40e_aq_str(hw, hw->aq.asq_last_status)); 7148 return err; 7149 } 7150 speed = abilities.link_speed; 7151 7152 /* Get the current phy config */ 7153 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 7154 NULL); 7155 if (err) { 7156 dev_err(&pf->pdev->dev, 7157 "failed to get phy cap., ret = %s last_status = %s\n", 7158 i40e_stat_str(hw, err), 7159 i40e_aq_str(hw, hw->aq.asq_last_status)); 7160 return err; 7161 } 7162 7163 /* If link needs to go up, but was not forced to go down, 7164 * and its speed values are OK, no need for a flap 7165 * if non_zero_phy_type was set, still need to force up 7166 */ 7167 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) 7168 non_zero_phy_type = true; 7169 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 7170 return I40E_SUCCESS; 7171 7172 /* To force link we need to set bits for all supported PHY types, 7173 * but there are now more than 32, so we need to split the bitmap 7174 * across two fields. 7175 */ 7176 mask = I40E_PHY_TYPES_BITMASK; 7177 config.phy_type = 7178 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 7179 config.phy_type_ext = 7180 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0; 7181 /* Copy the old settings, except of phy_type */ 7182 config.abilities = abilities.abilities; 7183 if (pf->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED) { 7184 if (is_up) 7185 config.abilities |= I40E_AQ_PHY_ENABLE_LINK; 7186 else 7187 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK); 7188 } 7189 if (abilities.link_speed != 0) 7190 config.link_speed = abilities.link_speed; 7191 else 7192 config.link_speed = speed; 7193 config.eee_capability = abilities.eee_capability; 7194 config.eeer = abilities.eeer_val; 7195 config.low_power_ctrl = abilities.d3_lpan; 7196 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 7197 I40E_AQ_PHY_FEC_CONFIG_MASK; 7198 err = i40e_aq_set_phy_config(hw, &config, NULL); 7199 7200 if (err) { 7201 dev_err(&pf->pdev->dev, 7202 "set phy config ret = %s last_status = %s\n", 7203 i40e_stat_str(&pf->hw, err), 7204 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 7205 return err; 7206 } 7207 7208 /* Update the link info */ 7209 err = i40e_update_link_info(hw); 7210 if (err) { 7211 /* Wait a little bit (on 40G cards it sometimes takes a really 7212 * long time for link to come back from the atomic reset) 7213 * and try once more 7214 */ 7215 msleep(1000); 7216 i40e_update_link_info(hw); 7217 } 7218 7219 i40e_aq_set_link_restart_an(hw, is_up, NULL); 7220 7221 return I40E_SUCCESS; 7222 } 7223 7224 /** 7225 * i40e_up - Bring the connection back up after being down 7226 * @vsi: the VSI being configured 7227 **/ 7228 int i40e_up(struct i40e_vsi *vsi) 7229 { 7230 int err; 7231 7232 if (vsi->type == I40E_VSI_MAIN && 7233 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7234 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7235 i40e_force_link_state(vsi->back, true); 7236 7237 err = i40e_vsi_configure(vsi); 7238 if (!err) 7239 err = i40e_up_complete(vsi); 7240 7241 return err; 7242 } 7243 7244 /** 7245 * i40e_down - Shutdown the connection processing 7246 * @vsi: the VSI being stopped 7247 **/ 7248 void i40e_down(struct i40e_vsi *vsi) 7249 { 7250 int i; 7251 7252 /* It is assumed that the caller of this function 7253 * sets the vsi->state __I40E_VSI_DOWN bit. 7254 */ 7255 if (vsi->netdev) { 7256 netif_carrier_off(vsi->netdev); 7257 netif_tx_disable(vsi->netdev); 7258 } 7259 i40e_vsi_disable_irq(vsi); 7260 i40e_vsi_stop_rings(vsi); 7261 if (vsi->type == I40E_VSI_MAIN && 7262 (vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED || 7263 vsi->back->flags & I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED)) 7264 i40e_force_link_state(vsi->back, false); 7265 i40e_napi_disable_all(vsi); 7266 7267 for (i = 0; i < vsi->num_queue_pairs; i++) { 7268 i40e_clean_tx_ring(vsi->tx_rings[i]); 7269 if (i40e_enabled_xdp_vsi(vsi)) { 7270 /* Make sure that in-progress ndo_xdp_xmit and 7271 * ndo_xsk_wakeup calls are completed. 7272 */ 7273 synchronize_rcu(); 7274 i40e_clean_tx_ring(vsi->xdp_rings[i]); 7275 } 7276 i40e_clean_rx_ring(vsi->rx_rings[i]); 7277 } 7278 7279 } 7280 7281 /** 7282 * i40e_validate_mqprio_qopt- validate queue mapping info 7283 * @vsi: the VSI being configured 7284 * @mqprio_qopt: queue parametrs 7285 **/ 7286 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 7287 struct tc_mqprio_qopt_offload *mqprio_qopt) 7288 { 7289 u64 sum_max_rate = 0; 7290 u64 max_rate = 0; 7291 int i; 7292 7293 if (mqprio_qopt->qopt.offset[0] != 0 || 7294 mqprio_qopt->qopt.num_tc < 1 || 7295 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 7296 return -EINVAL; 7297 for (i = 0; ; i++) { 7298 if (!mqprio_qopt->qopt.count[i]) 7299 return -EINVAL; 7300 if (mqprio_qopt->min_rate[i]) { 7301 dev_err(&vsi->back->pdev->dev, 7302 "Invalid min tx rate (greater than 0) specified\n"); 7303 return -EINVAL; 7304 } 7305 max_rate = mqprio_qopt->max_rate[i]; 7306 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 7307 sum_max_rate += max_rate; 7308 7309 if (i >= mqprio_qopt->qopt.num_tc - 1) 7310 break; 7311 if (mqprio_qopt->qopt.offset[i + 1] != 7312 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7313 return -EINVAL; 7314 } 7315 if (vsi->num_queue_pairs < 7316 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 7317 return -EINVAL; 7318 } 7319 if (sum_max_rate > i40e_get_link_speed(vsi)) { 7320 dev_err(&vsi->back->pdev->dev, 7321 "Invalid max tx rate specified\n"); 7322 return -EINVAL; 7323 } 7324 return 0; 7325 } 7326 7327 /** 7328 * i40e_vsi_set_default_tc_config - set default values for tc configuration 7329 * @vsi: the VSI being configured 7330 **/ 7331 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 7332 { 7333 u16 qcount; 7334 int i; 7335 7336 /* Only TC0 is enabled */ 7337 vsi->tc_config.numtc = 1; 7338 vsi->tc_config.enabled_tc = 1; 7339 qcount = min_t(int, vsi->alloc_queue_pairs, 7340 i40e_pf_get_max_q_per_tc(vsi->back)); 7341 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 7342 /* For the TC that is not enabled set the offset to to default 7343 * queue and allocate one queue for the given TC. 7344 */ 7345 vsi->tc_config.tc_info[i].qoffset = 0; 7346 if (i == 0) 7347 vsi->tc_config.tc_info[i].qcount = qcount; 7348 else 7349 vsi->tc_config.tc_info[i].qcount = 1; 7350 vsi->tc_config.tc_info[i].netdev_tc = 0; 7351 } 7352 } 7353 7354 /** 7355 * i40e_del_macvlan_filter 7356 * @hw: pointer to the HW structure 7357 * @seid: seid of the channel VSI 7358 * @macaddr: the mac address to apply as a filter 7359 * @aq_err: store the admin Q error 7360 * 7361 * This function deletes a mac filter on the channel VSI which serves as the 7362 * macvlan. Returns 0 on success. 7363 **/ 7364 static i40e_status i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid, 7365 const u8 *macaddr, int *aq_err) 7366 { 7367 struct i40e_aqc_remove_macvlan_element_data element; 7368 i40e_status status; 7369 7370 memset(&element, 0, sizeof(element)); 7371 ether_addr_copy(element.mac_addr, macaddr); 7372 element.vlan_tag = 0; 7373 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 7374 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL); 7375 *aq_err = hw->aq.asq_last_status; 7376 7377 return status; 7378 } 7379 7380 /** 7381 * i40e_add_macvlan_filter 7382 * @hw: pointer to the HW structure 7383 * @seid: seid of the channel VSI 7384 * @macaddr: the mac address to apply as a filter 7385 * @aq_err: store the admin Q error 7386 * 7387 * This function adds a mac filter on the channel VSI which serves as the 7388 * macvlan. Returns 0 on success. 7389 **/ 7390 static i40e_status i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid, 7391 const u8 *macaddr, int *aq_err) 7392 { 7393 struct i40e_aqc_add_macvlan_element_data element; 7394 i40e_status status; 7395 u16 cmd_flags = 0; 7396 7397 ether_addr_copy(element.mac_addr, macaddr); 7398 element.vlan_tag = 0; 7399 element.queue_number = 0; 7400 element.match_method = I40E_AQC_MM_ERR_NO_RES; 7401 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 7402 element.flags = cpu_to_le16(cmd_flags); 7403 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL); 7404 *aq_err = hw->aq.asq_last_status; 7405 7406 return status; 7407 } 7408 7409 /** 7410 * i40e_reset_ch_rings - Reset the queue contexts in a channel 7411 * @vsi: the VSI we want to access 7412 * @ch: the channel we want to access 7413 */ 7414 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch) 7415 { 7416 struct i40e_ring *tx_ring, *rx_ring; 7417 u16 pf_q; 7418 int i; 7419 7420 for (i = 0; i < ch->num_queue_pairs; i++) { 7421 pf_q = ch->base_queue + i; 7422 tx_ring = vsi->tx_rings[pf_q]; 7423 tx_ring->ch = NULL; 7424 rx_ring = vsi->rx_rings[pf_q]; 7425 rx_ring->ch = NULL; 7426 } 7427 } 7428 7429 /** 7430 * i40e_free_macvlan_channels 7431 * @vsi: the VSI we want to access 7432 * 7433 * This function frees the Qs of the channel VSI from 7434 * the stack and also deletes the channel VSIs which 7435 * serve as macvlans. 7436 */ 7437 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi) 7438 { 7439 struct i40e_channel *ch, *ch_tmp; 7440 int ret; 7441 7442 if (list_empty(&vsi->macvlan_list)) 7443 return; 7444 7445 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7446 struct i40e_vsi *parent_vsi; 7447 7448 if (i40e_is_channel_macvlan(ch)) { 7449 i40e_reset_ch_rings(vsi, ch); 7450 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7451 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev); 7452 netdev_set_sb_channel(ch->fwd->netdev, 0); 7453 kfree(ch->fwd); 7454 ch->fwd = NULL; 7455 } 7456 7457 list_del(&ch->list); 7458 parent_vsi = ch->parent_vsi; 7459 if (!parent_vsi || !ch->initialized) { 7460 kfree(ch); 7461 continue; 7462 } 7463 7464 /* remove the VSI */ 7465 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 7466 NULL); 7467 if (ret) 7468 dev_err(&vsi->back->pdev->dev, 7469 "unable to remove channel (%d) for parent VSI(%d)\n", 7470 ch->seid, parent_vsi->seid); 7471 kfree(ch); 7472 } 7473 vsi->macvlan_cnt = 0; 7474 } 7475 7476 /** 7477 * i40e_fwd_ring_up - bring the macvlan device up 7478 * @vsi: the VSI we want to access 7479 * @vdev: macvlan netdevice 7480 * @fwd: the private fwd structure 7481 */ 7482 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev, 7483 struct i40e_fwd_adapter *fwd) 7484 { 7485 int ret = 0, num_tc = 1, i, aq_err; 7486 struct i40e_channel *ch, *ch_tmp; 7487 struct i40e_pf *pf = vsi->back; 7488 struct i40e_hw *hw = &pf->hw; 7489 7490 if (list_empty(&vsi->macvlan_list)) 7491 return -EINVAL; 7492 7493 /* Go through the list and find an available channel */ 7494 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7495 if (!i40e_is_channel_macvlan(ch)) { 7496 ch->fwd = fwd; 7497 /* record configuration for macvlan interface in vdev */ 7498 for (i = 0; i < num_tc; i++) 7499 netdev_bind_sb_channel_queue(vsi->netdev, vdev, 7500 i, 7501 ch->num_queue_pairs, 7502 ch->base_queue); 7503 for (i = 0; i < ch->num_queue_pairs; i++) { 7504 struct i40e_ring *tx_ring, *rx_ring; 7505 u16 pf_q; 7506 7507 pf_q = ch->base_queue + i; 7508 7509 /* Get to TX ring ptr */ 7510 tx_ring = vsi->tx_rings[pf_q]; 7511 tx_ring->ch = ch; 7512 7513 /* Get the RX ring ptr */ 7514 rx_ring = vsi->rx_rings[pf_q]; 7515 rx_ring->ch = ch; 7516 } 7517 break; 7518 } 7519 } 7520 7521 /* Guarantee all rings are updated before we update the 7522 * MAC address filter. 7523 */ 7524 wmb(); 7525 7526 /* Add a mac filter */ 7527 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err); 7528 if (ret) { 7529 /* if we cannot add the MAC rule then disable the offload */ 7530 macvlan_release_l2fw_offload(vdev); 7531 for (i = 0; i < ch->num_queue_pairs; i++) { 7532 struct i40e_ring *rx_ring; 7533 u16 pf_q; 7534 7535 pf_q = ch->base_queue + i; 7536 rx_ring = vsi->rx_rings[pf_q]; 7537 rx_ring->netdev = NULL; 7538 } 7539 dev_info(&pf->pdev->dev, 7540 "Error adding mac filter on macvlan err %s, aq_err %s\n", 7541 i40e_stat_str(hw, ret), 7542 i40e_aq_str(hw, aq_err)); 7543 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n"); 7544 } 7545 7546 return ret; 7547 } 7548 7549 /** 7550 * i40e_setup_macvlans - create the channels which will be macvlans 7551 * @vsi: the VSI we want to access 7552 * @macvlan_cnt: no. of macvlans to be setup 7553 * @qcnt: no. of Qs per macvlan 7554 * @vdev: macvlan netdevice 7555 */ 7556 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt, 7557 struct net_device *vdev) 7558 { 7559 struct i40e_pf *pf = vsi->back; 7560 struct i40e_hw *hw = &pf->hw; 7561 struct i40e_vsi_context ctxt; 7562 u16 sections, qmap, num_qps; 7563 struct i40e_channel *ch; 7564 int i, pow, ret = 0; 7565 u8 offset = 0; 7566 7567 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt) 7568 return -EINVAL; 7569 7570 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt); 7571 7572 /* find the next higher power-of-2 of num queue pairs */ 7573 pow = fls(roundup_pow_of_two(num_qps) - 1); 7574 7575 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 7576 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 7577 7578 /* Setup context bits for the main VSI */ 7579 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 7580 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 7581 memset(&ctxt, 0, sizeof(ctxt)); 7582 ctxt.seid = vsi->seid; 7583 ctxt.pf_num = vsi->back->hw.pf_id; 7584 ctxt.vf_num = 0; 7585 ctxt.uplink_seid = vsi->uplink_seid; 7586 ctxt.info = vsi->info; 7587 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap); 7588 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 7589 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 7590 ctxt.info.valid_sections |= cpu_to_le16(sections); 7591 7592 /* Reconfigure RSS for main VSI with new max queue count */ 7593 vsi->rss_size = max_t(u16, num_qps, qcnt); 7594 ret = i40e_vsi_config_rss(vsi); 7595 if (ret) { 7596 dev_info(&pf->pdev->dev, 7597 "Failed to reconfig RSS for num_queues (%u)\n", 7598 vsi->rss_size); 7599 return ret; 7600 } 7601 vsi->reconfig_rss = true; 7602 dev_dbg(&vsi->back->pdev->dev, 7603 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size); 7604 vsi->next_base_queue = num_qps; 7605 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps; 7606 7607 /* Update the VSI after updating the VSI queue-mapping 7608 * information 7609 */ 7610 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 7611 if (ret) { 7612 dev_info(&pf->pdev->dev, 7613 "Update vsi tc config failed, err %s aq_err %s\n", 7614 i40e_stat_str(hw, ret), 7615 i40e_aq_str(hw, hw->aq.asq_last_status)); 7616 return ret; 7617 } 7618 /* update the local VSI info with updated queue map */ 7619 i40e_vsi_update_queue_map(vsi, &ctxt); 7620 vsi->info.valid_sections = 0; 7621 7622 /* Create channels for macvlans */ 7623 INIT_LIST_HEAD(&vsi->macvlan_list); 7624 for (i = 0; i < macvlan_cnt; i++) { 7625 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7626 if (!ch) { 7627 ret = -ENOMEM; 7628 goto err_free; 7629 } 7630 INIT_LIST_HEAD(&ch->list); 7631 ch->num_queue_pairs = qcnt; 7632 if (!i40e_setup_channel(pf, vsi, ch)) { 7633 ret = -EINVAL; 7634 kfree(ch); 7635 goto err_free; 7636 } 7637 ch->parent_vsi = vsi; 7638 vsi->cnt_q_avail -= ch->num_queue_pairs; 7639 vsi->macvlan_cnt++; 7640 list_add_tail(&ch->list, &vsi->macvlan_list); 7641 } 7642 7643 return ret; 7644 7645 err_free: 7646 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n"); 7647 i40e_free_macvlan_channels(vsi); 7648 7649 return ret; 7650 } 7651 7652 /** 7653 * i40e_fwd_add - configure macvlans 7654 * @netdev: net device to configure 7655 * @vdev: macvlan netdevice 7656 **/ 7657 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev) 7658 { 7659 struct i40e_netdev_priv *np = netdev_priv(netdev); 7660 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors; 7661 struct i40e_vsi *vsi = np->vsi; 7662 struct i40e_pf *pf = vsi->back; 7663 struct i40e_fwd_adapter *fwd; 7664 int avail_macvlan, ret; 7665 7666 if ((pf->flags & I40E_FLAG_DCB_ENABLED)) { 7667 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n"); 7668 return ERR_PTR(-EINVAL); 7669 } 7670 if ((pf->flags & I40E_FLAG_TC_MQPRIO)) { 7671 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n"); 7672 return ERR_PTR(-EINVAL); 7673 } 7674 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) { 7675 netdev_info(netdev, "Not enough vectors available to support macvlans\n"); 7676 return ERR_PTR(-EINVAL); 7677 } 7678 7679 /* The macvlan device has to be a single Q device so that the 7680 * tc_to_txq field can be reused to pick the tx queue. 7681 */ 7682 if (netif_is_multiqueue(vdev)) 7683 return ERR_PTR(-ERANGE); 7684 7685 if (!vsi->macvlan_cnt) { 7686 /* reserve bit 0 for the pf device */ 7687 set_bit(0, vsi->fwd_bitmask); 7688 7689 /* Try to reserve as many queues as possible for macvlans. First 7690 * reserve 3/4th of max vectors, then half, then quarter and 7691 * calculate Qs per macvlan as you go 7692 */ 7693 vectors = pf->num_lan_msix; 7694 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) { 7695 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/ 7696 q_per_macvlan = 4; 7697 macvlan_cnt = (vectors - 32) / 4; 7698 } else if (vectors <= 64 && vectors > 32) { 7699 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/ 7700 q_per_macvlan = 2; 7701 macvlan_cnt = (vectors - 16) / 2; 7702 } else if (vectors <= 32 && vectors > 16) { 7703 /* allocate 1 Q per macvlan and 16 Qs to the PF*/ 7704 q_per_macvlan = 1; 7705 macvlan_cnt = vectors - 16; 7706 } else if (vectors <= 16 && vectors > 8) { 7707 /* allocate 1 Q per macvlan and 8 Qs to the PF */ 7708 q_per_macvlan = 1; 7709 macvlan_cnt = vectors - 8; 7710 } else { 7711 /* allocate 1 Q per macvlan and 1 Q to the PF */ 7712 q_per_macvlan = 1; 7713 macvlan_cnt = vectors - 1; 7714 } 7715 7716 if (macvlan_cnt == 0) 7717 return ERR_PTR(-EBUSY); 7718 7719 /* Quiesce VSI queues */ 7720 i40e_quiesce_vsi(vsi); 7721 7722 /* sets up the macvlans but does not "enable" them */ 7723 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan, 7724 vdev); 7725 if (ret) 7726 return ERR_PTR(ret); 7727 7728 /* Unquiesce VSI */ 7729 i40e_unquiesce_vsi(vsi); 7730 } 7731 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask, 7732 vsi->macvlan_cnt); 7733 if (avail_macvlan >= I40E_MAX_MACVLANS) 7734 return ERR_PTR(-EBUSY); 7735 7736 /* create the fwd struct */ 7737 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL); 7738 if (!fwd) 7739 return ERR_PTR(-ENOMEM); 7740 7741 set_bit(avail_macvlan, vsi->fwd_bitmask); 7742 fwd->bit_no = avail_macvlan; 7743 netdev_set_sb_channel(vdev, avail_macvlan); 7744 fwd->netdev = vdev; 7745 7746 if (!netif_running(netdev)) 7747 return fwd; 7748 7749 /* Set fwd ring up */ 7750 ret = i40e_fwd_ring_up(vsi, vdev, fwd); 7751 if (ret) { 7752 /* unbind the queues and drop the subordinate channel config */ 7753 netdev_unbind_sb_channel(netdev, vdev); 7754 netdev_set_sb_channel(vdev, 0); 7755 7756 kfree(fwd); 7757 return ERR_PTR(-EINVAL); 7758 } 7759 7760 return fwd; 7761 } 7762 7763 /** 7764 * i40e_del_all_macvlans - Delete all the mac filters on the channels 7765 * @vsi: the VSI we want to access 7766 */ 7767 static void i40e_del_all_macvlans(struct i40e_vsi *vsi) 7768 { 7769 struct i40e_channel *ch, *ch_tmp; 7770 struct i40e_pf *pf = vsi->back; 7771 struct i40e_hw *hw = &pf->hw; 7772 int aq_err, ret = 0; 7773 7774 if (list_empty(&vsi->macvlan_list)) 7775 return; 7776 7777 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7778 if (i40e_is_channel_macvlan(ch)) { 7779 ret = i40e_del_macvlan_filter(hw, ch->seid, 7780 i40e_channel_mac(ch), 7781 &aq_err); 7782 if (!ret) { 7783 /* Reset queue contexts */ 7784 i40e_reset_ch_rings(vsi, ch); 7785 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7786 netdev_unbind_sb_channel(vsi->netdev, 7787 ch->fwd->netdev); 7788 netdev_set_sb_channel(ch->fwd->netdev, 0); 7789 kfree(ch->fwd); 7790 ch->fwd = NULL; 7791 } 7792 } 7793 } 7794 } 7795 7796 /** 7797 * i40e_fwd_del - delete macvlan interfaces 7798 * @netdev: net device to configure 7799 * @vdev: macvlan netdevice 7800 */ 7801 static void i40e_fwd_del(struct net_device *netdev, void *vdev) 7802 { 7803 struct i40e_netdev_priv *np = netdev_priv(netdev); 7804 struct i40e_fwd_adapter *fwd = vdev; 7805 struct i40e_channel *ch, *ch_tmp; 7806 struct i40e_vsi *vsi = np->vsi; 7807 struct i40e_pf *pf = vsi->back; 7808 struct i40e_hw *hw = &pf->hw; 7809 int aq_err, ret = 0; 7810 7811 /* Find the channel associated with the macvlan and del mac filter */ 7812 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) { 7813 if (i40e_is_channel_macvlan(ch) && 7814 ether_addr_equal(i40e_channel_mac(ch), 7815 fwd->netdev->dev_addr)) { 7816 ret = i40e_del_macvlan_filter(hw, ch->seid, 7817 i40e_channel_mac(ch), 7818 &aq_err); 7819 if (!ret) { 7820 /* Reset queue contexts */ 7821 i40e_reset_ch_rings(vsi, ch); 7822 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask); 7823 netdev_unbind_sb_channel(netdev, fwd->netdev); 7824 netdev_set_sb_channel(fwd->netdev, 0); 7825 kfree(ch->fwd); 7826 ch->fwd = NULL; 7827 } else { 7828 dev_info(&pf->pdev->dev, 7829 "Error deleting mac filter on macvlan err %s, aq_err %s\n", 7830 i40e_stat_str(hw, ret), 7831 i40e_aq_str(hw, aq_err)); 7832 } 7833 break; 7834 } 7835 } 7836 } 7837 7838 /** 7839 * i40e_setup_tc - configure multiple traffic classes 7840 * @netdev: net device to configure 7841 * @type_data: tc offload data 7842 **/ 7843 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 7844 { 7845 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7846 struct i40e_netdev_priv *np = netdev_priv(netdev); 7847 struct i40e_vsi *vsi = np->vsi; 7848 struct i40e_pf *pf = vsi->back; 7849 u8 enabled_tc = 0, num_tc, hw; 7850 bool need_reset = false; 7851 int old_queue_pairs; 7852 int ret = -EINVAL; 7853 u16 mode; 7854 int i; 7855 7856 old_queue_pairs = vsi->num_queue_pairs; 7857 num_tc = mqprio_qopt->qopt.num_tc; 7858 hw = mqprio_qopt->qopt.hw; 7859 mode = mqprio_qopt->mode; 7860 if (!hw) { 7861 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7862 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7863 goto config_tc; 7864 } 7865 7866 /* Check if MFP enabled */ 7867 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 7868 netdev_info(netdev, 7869 "Configuring TC not supported in MFP mode\n"); 7870 return ret; 7871 } 7872 switch (mode) { 7873 case TC_MQPRIO_MODE_DCB: 7874 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 7875 7876 /* Check if DCB enabled to continue */ 7877 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 7878 netdev_info(netdev, 7879 "DCB is not enabled for adapter\n"); 7880 return ret; 7881 } 7882 7883 /* Check whether tc count is within enabled limit */ 7884 if (num_tc > i40e_pf_get_num_tc(pf)) { 7885 netdev_info(netdev, 7886 "TC count greater than enabled on link for adapter\n"); 7887 return ret; 7888 } 7889 break; 7890 case TC_MQPRIO_MODE_CHANNEL: 7891 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 7892 netdev_info(netdev, 7893 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 7894 return ret; 7895 } 7896 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 7897 return ret; 7898 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 7899 if (ret) 7900 return ret; 7901 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 7902 sizeof(*mqprio_qopt)); 7903 pf->flags |= I40E_FLAG_TC_MQPRIO; 7904 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 7905 break; 7906 default: 7907 return -EINVAL; 7908 } 7909 7910 config_tc: 7911 /* Generate TC map for number of tc requested */ 7912 for (i = 0; i < num_tc; i++) 7913 enabled_tc |= BIT(i); 7914 7915 /* Requesting same TC configuration as already enabled */ 7916 if (enabled_tc == vsi->tc_config.enabled_tc && 7917 mode != TC_MQPRIO_MODE_CHANNEL) 7918 return 0; 7919 7920 /* Quiesce VSI queues */ 7921 i40e_quiesce_vsi(vsi); 7922 7923 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 7924 i40e_remove_queue_channels(vsi); 7925 7926 /* Configure VSI for enabled TCs */ 7927 ret = i40e_vsi_config_tc(vsi, enabled_tc); 7928 if (ret) { 7929 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 7930 vsi->seid); 7931 need_reset = true; 7932 goto exit; 7933 } else { 7934 dev_info(&vsi->back->pdev->dev, 7935 "Setup channel (id:%u) utilizing num_queues %d\n", 7936 vsi->seid, vsi->tc_config.tc_info[0].qcount); 7937 } 7938 7939 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 7940 if (vsi->mqprio_qopt.max_rate[0]) { 7941 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 7942 7943 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 7944 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 7945 if (!ret) { 7946 u64 credits = max_tx_rate; 7947 7948 do_div(credits, I40E_BW_CREDIT_DIVISOR); 7949 dev_dbg(&vsi->back->pdev->dev, 7950 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 7951 max_tx_rate, 7952 credits, 7953 vsi->seid); 7954 } else { 7955 need_reset = true; 7956 goto exit; 7957 } 7958 } 7959 ret = i40e_configure_queue_channels(vsi); 7960 if (ret) { 7961 vsi->num_queue_pairs = old_queue_pairs; 7962 netdev_info(netdev, 7963 "Failed configuring queue channels\n"); 7964 need_reset = true; 7965 goto exit; 7966 } 7967 } 7968 7969 exit: 7970 /* Reset the configuration data to defaults, only TC0 is enabled */ 7971 if (need_reset) { 7972 i40e_vsi_set_default_tc_config(vsi); 7973 need_reset = false; 7974 } 7975 7976 /* Unquiesce VSI */ 7977 i40e_unquiesce_vsi(vsi); 7978 return ret; 7979 } 7980 7981 /** 7982 * i40e_set_cld_element - sets cloud filter element data 7983 * @filter: cloud filter rule 7984 * @cld: ptr to cloud filter element data 7985 * 7986 * This is helper function to copy data into cloud filter element 7987 **/ 7988 static inline void 7989 i40e_set_cld_element(struct i40e_cloud_filter *filter, 7990 struct i40e_aqc_cloud_filters_element_data *cld) 7991 { 7992 u32 ipa; 7993 int i; 7994 7995 memset(cld, 0, sizeof(*cld)); 7996 ether_addr_copy(cld->outer_mac, filter->dst_mac); 7997 ether_addr_copy(cld->inner_mac, filter->src_mac); 7998 7999 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 8000 return; 8001 8002 if (filter->n_proto == ETH_P_IPV6) { 8003 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 8004 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) { 8005 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 8006 8007 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa); 8008 } 8009 } else { 8010 ipa = be32_to_cpu(filter->dst_ipv4); 8011 8012 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 8013 } 8014 8015 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 8016 8017 /* tenant_id is not supported by FW now, once the support is enabled 8018 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 8019 */ 8020 if (filter->tenant_id) 8021 return; 8022 } 8023 8024 /** 8025 * i40e_add_del_cloud_filter - Add/del cloud filter 8026 * @vsi: pointer to VSI 8027 * @filter: cloud filter rule 8028 * @add: if true, add, if false, delete 8029 * 8030 * Add or delete a cloud filter for a specific flow spec. 8031 * Returns 0 if the filter were successfully added. 8032 **/ 8033 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 8034 struct i40e_cloud_filter *filter, bool add) 8035 { 8036 struct i40e_aqc_cloud_filters_element_data cld_filter; 8037 struct i40e_pf *pf = vsi->back; 8038 int ret; 8039 static const u16 flag_table[128] = { 8040 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 8041 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 8042 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 8043 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 8044 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 8045 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 8046 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 8047 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 8048 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 8049 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 8050 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 8051 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 8052 [I40E_CLOUD_FILTER_FLAGS_IIP] = 8053 I40E_AQC_ADD_CLOUD_FILTER_IIP, 8054 }; 8055 8056 if (filter->flags >= ARRAY_SIZE(flag_table)) 8057 return I40E_ERR_CONFIG; 8058 8059 memset(&cld_filter, 0, sizeof(cld_filter)); 8060 8061 /* copy element needed to add cloud filter from filter */ 8062 i40e_set_cld_element(filter, &cld_filter); 8063 8064 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 8065 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 8066 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 8067 8068 if (filter->n_proto == ETH_P_IPV6) 8069 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8070 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8071 else 8072 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 8073 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8074 8075 if (add) 8076 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 8077 &cld_filter, 1); 8078 else 8079 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 8080 &cld_filter, 1); 8081 if (ret) 8082 dev_dbg(&pf->pdev->dev, 8083 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 8084 add ? "add" : "delete", filter->dst_port, ret, 8085 pf->hw.aq.asq_last_status); 8086 else 8087 dev_info(&pf->pdev->dev, 8088 "%s cloud filter for VSI: %d\n", 8089 add ? "Added" : "Deleted", filter->seid); 8090 return ret; 8091 } 8092 8093 /** 8094 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 8095 * @vsi: pointer to VSI 8096 * @filter: cloud filter rule 8097 * @add: if true, add, if false, delete 8098 * 8099 * Add or delete a cloud filter for a specific flow spec using big buffer. 8100 * Returns 0 if the filter were successfully added. 8101 **/ 8102 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 8103 struct i40e_cloud_filter *filter, 8104 bool add) 8105 { 8106 struct i40e_aqc_cloud_filters_element_bb cld_filter; 8107 struct i40e_pf *pf = vsi->back; 8108 int ret; 8109 8110 /* Both (src/dst) valid mac_addr are not supported */ 8111 if ((is_valid_ether_addr(filter->dst_mac) && 8112 is_valid_ether_addr(filter->src_mac)) || 8113 (is_multicast_ether_addr(filter->dst_mac) && 8114 is_multicast_ether_addr(filter->src_mac))) 8115 return -EOPNOTSUPP; 8116 8117 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 8118 * ports are not supported via big buffer now. 8119 */ 8120 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 8121 return -EOPNOTSUPP; 8122 8123 /* adding filter using src_port/src_ip is not supported at this stage */ 8124 if (filter->src_port || 8125 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) || 8126 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 8127 return -EOPNOTSUPP; 8128 8129 memset(&cld_filter, 0, sizeof(cld_filter)); 8130 8131 /* copy element needed to add cloud filter from filter */ 8132 i40e_set_cld_element(filter, &cld_filter.element); 8133 8134 if (is_valid_ether_addr(filter->dst_mac) || 8135 is_valid_ether_addr(filter->src_mac) || 8136 is_multicast_ether_addr(filter->dst_mac) || 8137 is_multicast_ether_addr(filter->src_mac)) { 8138 /* MAC + IP : unsupported mode */ 8139 if (filter->dst_ipv4) 8140 return -EOPNOTSUPP; 8141 8142 /* since we validated that L4 port must be valid before 8143 * we get here, start with respective "flags" value 8144 * and update if vlan is present or not 8145 */ 8146 cld_filter.element.flags = 8147 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 8148 8149 if (filter->vlan_id) { 8150 cld_filter.element.flags = 8151 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 8152 } 8153 8154 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) || 8155 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 8156 cld_filter.element.flags = 8157 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 8158 if (filter->n_proto == ETH_P_IPV6) 8159 cld_filter.element.flags |= 8160 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 8161 else 8162 cld_filter.element.flags |= 8163 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 8164 } else { 8165 dev_err(&pf->pdev->dev, 8166 "either mac or ip has to be valid for cloud filter\n"); 8167 return -EINVAL; 8168 } 8169 8170 /* Now copy L4 port in Byte 6..7 in general fields */ 8171 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 8172 be16_to_cpu(filter->dst_port); 8173 8174 if (add) { 8175 /* Validate current device switch mode, change if necessary */ 8176 ret = i40e_validate_and_set_switch_mode(vsi); 8177 if (ret) { 8178 dev_err(&pf->pdev->dev, 8179 "failed to set switch mode, ret %d\n", 8180 ret); 8181 return ret; 8182 } 8183 8184 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 8185 &cld_filter, 1); 8186 } else { 8187 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 8188 &cld_filter, 1); 8189 } 8190 8191 if (ret) 8192 dev_dbg(&pf->pdev->dev, 8193 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 8194 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 8195 else 8196 dev_info(&pf->pdev->dev, 8197 "%s cloud filter for VSI: %d, L4 port: %d\n", 8198 add ? "add" : "delete", filter->seid, 8199 ntohs(filter->dst_port)); 8200 return ret; 8201 } 8202 8203 /** 8204 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 8205 * @vsi: Pointer to VSI 8206 * @f: Pointer to struct flow_cls_offload 8207 * @filter: Pointer to cloud filter structure 8208 * 8209 **/ 8210 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 8211 struct flow_cls_offload *f, 8212 struct i40e_cloud_filter *filter) 8213 { 8214 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 8215 struct flow_dissector *dissector = rule->match.dissector; 8216 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 8217 struct i40e_pf *pf = vsi->back; 8218 u8 field_flags = 0; 8219 8220 if (dissector->used_keys & 8221 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 8222 BIT(FLOW_DISSECTOR_KEY_BASIC) | 8223 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 8224 BIT(FLOW_DISSECTOR_KEY_VLAN) | 8225 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 8226 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 8227 BIT(FLOW_DISSECTOR_KEY_PORTS) | 8228 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 8229 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 8230 dissector->used_keys); 8231 return -EOPNOTSUPP; 8232 } 8233 8234 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 8235 struct flow_match_enc_keyid match; 8236 8237 flow_rule_match_enc_keyid(rule, &match); 8238 if (match.mask->keyid != 0) 8239 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 8240 8241 filter->tenant_id = be32_to_cpu(match.key->keyid); 8242 } 8243 8244 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 8245 struct flow_match_basic match; 8246 8247 flow_rule_match_basic(rule, &match); 8248 n_proto_key = ntohs(match.key->n_proto); 8249 n_proto_mask = ntohs(match.mask->n_proto); 8250 8251 if (n_proto_key == ETH_P_ALL) { 8252 n_proto_key = 0; 8253 n_proto_mask = 0; 8254 } 8255 filter->n_proto = n_proto_key & n_proto_mask; 8256 filter->ip_proto = match.key->ip_proto; 8257 } 8258 8259 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 8260 struct flow_match_eth_addrs match; 8261 8262 flow_rule_match_eth_addrs(rule, &match); 8263 8264 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 8265 if (!is_zero_ether_addr(match.mask->dst)) { 8266 if (is_broadcast_ether_addr(match.mask->dst)) { 8267 field_flags |= I40E_CLOUD_FIELD_OMAC; 8268 } else { 8269 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 8270 match.mask->dst); 8271 return I40E_ERR_CONFIG; 8272 } 8273 } 8274 8275 if (!is_zero_ether_addr(match.mask->src)) { 8276 if (is_broadcast_ether_addr(match.mask->src)) { 8277 field_flags |= I40E_CLOUD_FIELD_IMAC; 8278 } else { 8279 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 8280 match.mask->src); 8281 return I40E_ERR_CONFIG; 8282 } 8283 } 8284 ether_addr_copy(filter->dst_mac, match.key->dst); 8285 ether_addr_copy(filter->src_mac, match.key->src); 8286 } 8287 8288 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 8289 struct flow_match_vlan match; 8290 8291 flow_rule_match_vlan(rule, &match); 8292 if (match.mask->vlan_id) { 8293 if (match.mask->vlan_id == VLAN_VID_MASK) { 8294 field_flags |= I40E_CLOUD_FIELD_IVLAN; 8295 8296 } else { 8297 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 8298 match.mask->vlan_id); 8299 return I40E_ERR_CONFIG; 8300 } 8301 } 8302 8303 filter->vlan_id = cpu_to_be16(match.key->vlan_id); 8304 } 8305 8306 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 8307 struct flow_match_control match; 8308 8309 flow_rule_match_control(rule, &match); 8310 addr_type = match.key->addr_type; 8311 } 8312 8313 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 8314 struct flow_match_ipv4_addrs match; 8315 8316 flow_rule_match_ipv4_addrs(rule, &match); 8317 if (match.mask->dst) { 8318 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 8319 field_flags |= I40E_CLOUD_FIELD_IIP; 8320 } else { 8321 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 8322 &match.mask->dst); 8323 return I40E_ERR_CONFIG; 8324 } 8325 } 8326 8327 if (match.mask->src) { 8328 if (match.mask->src == cpu_to_be32(0xffffffff)) { 8329 field_flags |= I40E_CLOUD_FIELD_IIP; 8330 } else { 8331 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 8332 &match.mask->src); 8333 return I40E_ERR_CONFIG; 8334 } 8335 } 8336 8337 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 8338 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 8339 return I40E_ERR_CONFIG; 8340 } 8341 filter->dst_ipv4 = match.key->dst; 8342 filter->src_ipv4 = match.key->src; 8343 } 8344 8345 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 8346 struct flow_match_ipv6_addrs match; 8347 8348 flow_rule_match_ipv6_addrs(rule, &match); 8349 8350 /* src and dest IPV6 address should not be LOOPBACK 8351 * (0:0:0:0:0:0:0:1), which can be represented as ::1 8352 */ 8353 if (ipv6_addr_loopback(&match.key->dst) || 8354 ipv6_addr_loopback(&match.key->src)) { 8355 dev_err(&pf->pdev->dev, 8356 "Bad ipv6, addr is LOOPBACK\n"); 8357 return I40E_ERR_CONFIG; 8358 } 8359 if (!ipv6_addr_any(&match.mask->dst) || 8360 !ipv6_addr_any(&match.mask->src)) 8361 field_flags |= I40E_CLOUD_FIELD_IIP; 8362 8363 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32, 8364 sizeof(filter->src_ipv6)); 8365 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32, 8366 sizeof(filter->dst_ipv6)); 8367 } 8368 8369 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 8370 struct flow_match_ports match; 8371 8372 flow_rule_match_ports(rule, &match); 8373 if (match.mask->src) { 8374 if (match.mask->src == cpu_to_be16(0xffff)) { 8375 field_flags |= I40E_CLOUD_FIELD_IIP; 8376 } else { 8377 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 8378 be16_to_cpu(match.mask->src)); 8379 return I40E_ERR_CONFIG; 8380 } 8381 } 8382 8383 if (match.mask->dst) { 8384 if (match.mask->dst == cpu_to_be16(0xffff)) { 8385 field_flags |= I40E_CLOUD_FIELD_IIP; 8386 } else { 8387 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 8388 be16_to_cpu(match.mask->dst)); 8389 return I40E_ERR_CONFIG; 8390 } 8391 } 8392 8393 filter->dst_port = match.key->dst; 8394 filter->src_port = match.key->src; 8395 8396 switch (filter->ip_proto) { 8397 case IPPROTO_TCP: 8398 case IPPROTO_UDP: 8399 break; 8400 default: 8401 dev_err(&pf->pdev->dev, 8402 "Only UDP and TCP transport are supported\n"); 8403 return -EINVAL; 8404 } 8405 } 8406 filter->flags = field_flags; 8407 return 0; 8408 } 8409 8410 /** 8411 * i40e_handle_tclass: Forward to a traffic class on the device 8412 * @vsi: Pointer to VSI 8413 * @tc: traffic class index on the device 8414 * @filter: Pointer to cloud filter structure 8415 * 8416 **/ 8417 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 8418 struct i40e_cloud_filter *filter) 8419 { 8420 struct i40e_channel *ch, *ch_tmp; 8421 8422 /* direct to a traffic class on the same device */ 8423 if (tc == 0) { 8424 filter->seid = vsi->seid; 8425 return 0; 8426 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 8427 if (!filter->dst_port) { 8428 dev_err(&vsi->back->pdev->dev, 8429 "Specify destination port to direct to traffic class that is not default\n"); 8430 return -EINVAL; 8431 } 8432 if (list_empty(&vsi->ch_list)) 8433 return -EINVAL; 8434 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 8435 list) { 8436 if (ch->seid == vsi->tc_seid_map[tc]) 8437 filter->seid = ch->seid; 8438 } 8439 return 0; 8440 } 8441 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 8442 return -EINVAL; 8443 } 8444 8445 /** 8446 * i40e_configure_clsflower - Configure tc flower filters 8447 * @vsi: Pointer to VSI 8448 * @cls_flower: Pointer to struct flow_cls_offload 8449 * 8450 **/ 8451 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 8452 struct flow_cls_offload *cls_flower) 8453 { 8454 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 8455 struct i40e_cloud_filter *filter = NULL; 8456 struct i40e_pf *pf = vsi->back; 8457 int err = 0; 8458 8459 if (tc < 0) { 8460 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 8461 return -EOPNOTSUPP; 8462 } 8463 8464 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 8465 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 8466 return -EBUSY; 8467 8468 if (pf->fdir_pf_active_filters || 8469 (!hlist_empty(&pf->fdir_filter_list))) { 8470 dev_err(&vsi->back->pdev->dev, 8471 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 8472 return -EINVAL; 8473 } 8474 8475 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 8476 dev_err(&vsi->back->pdev->dev, 8477 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 8478 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 8479 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8480 } 8481 8482 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 8483 if (!filter) 8484 return -ENOMEM; 8485 8486 filter->cookie = cls_flower->cookie; 8487 8488 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 8489 if (err < 0) 8490 goto err; 8491 8492 err = i40e_handle_tclass(vsi, tc, filter); 8493 if (err < 0) 8494 goto err; 8495 8496 /* Add cloud filter */ 8497 if (filter->dst_port) 8498 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 8499 else 8500 err = i40e_add_del_cloud_filter(vsi, filter, true); 8501 8502 if (err) { 8503 dev_err(&pf->pdev->dev, 8504 "Failed to add cloud filter, err %s\n", 8505 i40e_stat_str(&pf->hw, err)); 8506 goto err; 8507 } 8508 8509 /* add filter to the ordered list */ 8510 INIT_HLIST_NODE(&filter->cloud_node); 8511 8512 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 8513 8514 pf->num_cloud_filters++; 8515 8516 return err; 8517 err: 8518 kfree(filter); 8519 return err; 8520 } 8521 8522 /** 8523 * i40e_find_cloud_filter - Find the could filter in the list 8524 * @vsi: Pointer to VSI 8525 * @cookie: filter specific cookie 8526 * 8527 **/ 8528 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 8529 unsigned long *cookie) 8530 { 8531 struct i40e_cloud_filter *filter = NULL; 8532 struct hlist_node *node2; 8533 8534 hlist_for_each_entry_safe(filter, node2, 8535 &vsi->back->cloud_filter_list, cloud_node) 8536 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 8537 return filter; 8538 return NULL; 8539 } 8540 8541 /** 8542 * i40e_delete_clsflower - Remove tc flower filters 8543 * @vsi: Pointer to VSI 8544 * @cls_flower: Pointer to struct flow_cls_offload 8545 * 8546 **/ 8547 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 8548 struct flow_cls_offload *cls_flower) 8549 { 8550 struct i40e_cloud_filter *filter = NULL; 8551 struct i40e_pf *pf = vsi->back; 8552 int err = 0; 8553 8554 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 8555 8556 if (!filter) 8557 return -EINVAL; 8558 8559 hash_del(&filter->cloud_node); 8560 8561 if (filter->dst_port) 8562 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 8563 else 8564 err = i40e_add_del_cloud_filter(vsi, filter, false); 8565 8566 kfree(filter); 8567 if (err) { 8568 dev_err(&pf->pdev->dev, 8569 "Failed to delete cloud filter, err %s\n", 8570 i40e_stat_str(&pf->hw, err)); 8571 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 8572 } 8573 8574 pf->num_cloud_filters--; 8575 if (!pf->num_cloud_filters) 8576 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8577 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8578 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8579 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8580 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8581 } 8582 return 0; 8583 } 8584 8585 /** 8586 * i40e_setup_tc_cls_flower - flower classifier offloads 8587 * @np: net device to configure 8588 * @cls_flower: offload data 8589 **/ 8590 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 8591 struct flow_cls_offload *cls_flower) 8592 { 8593 struct i40e_vsi *vsi = np->vsi; 8594 8595 switch (cls_flower->command) { 8596 case FLOW_CLS_REPLACE: 8597 return i40e_configure_clsflower(vsi, cls_flower); 8598 case FLOW_CLS_DESTROY: 8599 return i40e_delete_clsflower(vsi, cls_flower); 8600 case FLOW_CLS_STATS: 8601 return -EOPNOTSUPP; 8602 default: 8603 return -EOPNOTSUPP; 8604 } 8605 } 8606 8607 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 8608 void *cb_priv) 8609 { 8610 struct i40e_netdev_priv *np = cb_priv; 8611 8612 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 8613 return -EOPNOTSUPP; 8614 8615 switch (type) { 8616 case TC_SETUP_CLSFLOWER: 8617 return i40e_setup_tc_cls_flower(np, type_data); 8618 8619 default: 8620 return -EOPNOTSUPP; 8621 } 8622 } 8623 8624 static LIST_HEAD(i40e_block_cb_list); 8625 8626 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8627 void *type_data) 8628 { 8629 struct i40e_netdev_priv *np = netdev_priv(netdev); 8630 8631 switch (type) { 8632 case TC_SETUP_QDISC_MQPRIO: 8633 return i40e_setup_tc(netdev, type_data); 8634 case TC_SETUP_BLOCK: 8635 return flow_block_cb_setup_simple(type_data, 8636 &i40e_block_cb_list, 8637 i40e_setup_tc_block_cb, 8638 np, np, true); 8639 default: 8640 return -EOPNOTSUPP; 8641 } 8642 } 8643 8644 /** 8645 * i40e_open - Called when a network interface is made active 8646 * @netdev: network interface device structure 8647 * 8648 * The open entry point is called when a network interface is made 8649 * active by the system (IFF_UP). At this point all resources needed 8650 * for transmit and receive operations are allocated, the interrupt 8651 * handler is registered with the OS, the netdev watchdog subtask is 8652 * enabled, and the stack is notified that the interface is ready. 8653 * 8654 * Returns 0 on success, negative value on failure 8655 **/ 8656 int i40e_open(struct net_device *netdev) 8657 { 8658 struct i40e_netdev_priv *np = netdev_priv(netdev); 8659 struct i40e_vsi *vsi = np->vsi; 8660 struct i40e_pf *pf = vsi->back; 8661 int err; 8662 8663 /* disallow open during test or if eeprom is broken */ 8664 if (test_bit(__I40E_TESTING, pf->state) || 8665 test_bit(__I40E_BAD_EEPROM, pf->state)) 8666 return -EBUSY; 8667 8668 netif_carrier_off(netdev); 8669 8670 if (i40e_force_link_state(pf, true)) 8671 return -EAGAIN; 8672 8673 err = i40e_vsi_open(vsi); 8674 if (err) 8675 return err; 8676 8677 /* configure global TSO hardware offload settings */ 8678 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 8679 TCP_FLAG_FIN) >> 16); 8680 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 8681 TCP_FLAG_FIN | 8682 TCP_FLAG_CWR) >> 16); 8683 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 8684 udp_tunnel_get_rx_info(netdev); 8685 8686 return 0; 8687 } 8688 8689 /** 8690 * i40e_vsi_open - 8691 * @vsi: the VSI to open 8692 * 8693 * Finish initialization of the VSI. 8694 * 8695 * Returns 0 on success, negative value on failure 8696 * 8697 * Note: expects to be called while under rtnl_lock() 8698 **/ 8699 int i40e_vsi_open(struct i40e_vsi *vsi) 8700 { 8701 struct i40e_pf *pf = vsi->back; 8702 char int_name[I40E_INT_NAME_STR_LEN]; 8703 int err; 8704 8705 /* allocate descriptors */ 8706 err = i40e_vsi_setup_tx_resources(vsi); 8707 if (err) 8708 goto err_setup_tx; 8709 err = i40e_vsi_setup_rx_resources(vsi); 8710 if (err) 8711 goto err_setup_rx; 8712 8713 err = i40e_vsi_configure(vsi); 8714 if (err) 8715 goto err_setup_rx; 8716 8717 if (vsi->netdev) { 8718 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 8719 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 8720 err = i40e_vsi_request_irq(vsi, int_name); 8721 if (err) 8722 goto err_setup_rx; 8723 8724 /* Notify the stack of the actual queue counts. */ 8725 err = netif_set_real_num_tx_queues(vsi->netdev, 8726 vsi->num_queue_pairs); 8727 if (err) 8728 goto err_set_queues; 8729 8730 err = netif_set_real_num_rx_queues(vsi->netdev, 8731 vsi->num_queue_pairs); 8732 if (err) 8733 goto err_set_queues; 8734 8735 } else if (vsi->type == I40E_VSI_FDIR) { 8736 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 8737 dev_driver_string(&pf->pdev->dev), 8738 dev_name(&pf->pdev->dev)); 8739 err = i40e_vsi_request_irq(vsi, int_name); 8740 8741 } else { 8742 err = -EINVAL; 8743 goto err_setup_rx; 8744 } 8745 8746 err = i40e_up_complete(vsi); 8747 if (err) 8748 goto err_up_complete; 8749 8750 return 0; 8751 8752 err_up_complete: 8753 i40e_down(vsi); 8754 err_set_queues: 8755 i40e_vsi_free_irq(vsi); 8756 err_setup_rx: 8757 i40e_vsi_free_rx_resources(vsi); 8758 err_setup_tx: 8759 i40e_vsi_free_tx_resources(vsi); 8760 if (vsi == pf->vsi[pf->lan_vsi]) 8761 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 8762 8763 return err; 8764 } 8765 8766 /** 8767 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 8768 * @pf: Pointer to PF 8769 * 8770 * This function destroys the hlist where all the Flow Director 8771 * filters were saved. 8772 **/ 8773 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 8774 { 8775 struct i40e_fdir_filter *filter; 8776 struct i40e_flex_pit *pit_entry, *tmp; 8777 struct hlist_node *node2; 8778 8779 hlist_for_each_entry_safe(filter, node2, 8780 &pf->fdir_filter_list, fdir_node) { 8781 hlist_del(&filter->fdir_node); 8782 kfree(filter); 8783 } 8784 8785 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 8786 list_del(&pit_entry->list); 8787 kfree(pit_entry); 8788 } 8789 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 8790 8791 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 8792 list_del(&pit_entry->list); 8793 kfree(pit_entry); 8794 } 8795 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 8796 8797 pf->fdir_pf_active_filters = 0; 8798 i40e_reset_fdir_filter_cnt(pf); 8799 8800 /* Reprogram the default input set for TCP/IPv4 */ 8801 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8802 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8803 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8804 8805 /* Reprogram the default input set for TCP/IPv6 */ 8806 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_TCP, 8807 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8808 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8809 8810 /* Reprogram the default input set for UDP/IPv4 */ 8811 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 8812 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8813 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8814 8815 /* Reprogram the default input set for UDP/IPv6 */ 8816 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_UDP, 8817 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8818 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8819 8820 /* Reprogram the default input set for SCTP/IPv4 */ 8821 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 8822 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8823 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8824 8825 /* Reprogram the default input set for SCTP/IPv6 */ 8826 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP, 8827 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK | 8828 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8829 8830 /* Reprogram the default input set for Other/IPv4 */ 8831 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 8832 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8833 8834 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 8835 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8836 8837 /* Reprogram the default input set for Other/IPv6 */ 8838 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV6_OTHER, 8839 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8840 8841 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV6, 8842 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 8843 } 8844 8845 /** 8846 * i40e_cloud_filter_exit - Cleans up the cloud filters 8847 * @pf: Pointer to PF 8848 * 8849 * This function destroys the hlist where all the cloud filters 8850 * were saved. 8851 **/ 8852 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 8853 { 8854 struct i40e_cloud_filter *cfilter; 8855 struct hlist_node *node; 8856 8857 hlist_for_each_entry_safe(cfilter, node, 8858 &pf->cloud_filter_list, cloud_node) { 8859 hlist_del(&cfilter->cloud_node); 8860 kfree(cfilter); 8861 } 8862 pf->num_cloud_filters = 0; 8863 8864 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 8865 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 8866 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 8867 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 8868 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 8869 } 8870 } 8871 8872 /** 8873 * i40e_close - Disables a network interface 8874 * @netdev: network interface device structure 8875 * 8876 * The close entry point is called when an interface is de-activated 8877 * by the OS. The hardware is still under the driver's control, but 8878 * this netdev interface is disabled. 8879 * 8880 * Returns 0, this is not allowed to fail 8881 **/ 8882 int i40e_close(struct net_device *netdev) 8883 { 8884 struct i40e_netdev_priv *np = netdev_priv(netdev); 8885 struct i40e_vsi *vsi = np->vsi; 8886 8887 i40e_vsi_close(vsi); 8888 8889 return 0; 8890 } 8891 8892 /** 8893 * i40e_do_reset - Start a PF or Core Reset sequence 8894 * @pf: board private structure 8895 * @reset_flags: which reset is requested 8896 * @lock_acquired: indicates whether or not the lock has been acquired 8897 * before this function was called. 8898 * 8899 * The essential difference in resets is that the PF Reset 8900 * doesn't clear the packet buffers, doesn't reset the PE 8901 * firmware, and doesn't bother the other PFs on the chip. 8902 **/ 8903 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 8904 { 8905 u32 val; 8906 8907 /* do the biggest reset indicated */ 8908 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 8909 8910 /* Request a Global Reset 8911 * 8912 * This will start the chip's countdown to the actual full 8913 * chip reset event, and a warning interrupt to be sent 8914 * to all PFs, including the requestor. Our handler 8915 * for the warning interrupt will deal with the shutdown 8916 * and recovery of the switch setup. 8917 */ 8918 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 8919 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8920 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 8921 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8922 8923 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 8924 8925 /* Request a Core Reset 8926 * 8927 * Same as Global Reset, except does *not* include the MAC/PHY 8928 */ 8929 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 8930 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 8931 val |= I40E_GLGEN_RTRIG_CORER_MASK; 8932 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 8933 i40e_flush(&pf->hw); 8934 8935 } else if (reset_flags & I40E_PF_RESET_FLAG) { 8936 8937 /* Request a PF Reset 8938 * 8939 * Resets only the PF-specific registers 8940 * 8941 * This goes directly to the tear-down and rebuild of 8942 * the switch, since we need to do all the recovery as 8943 * for the Core Reset. 8944 */ 8945 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 8946 i40e_handle_reset_warning(pf, lock_acquired); 8947 8948 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) { 8949 /* Request a PF Reset 8950 * 8951 * Resets PF and reinitializes PFs VSI. 8952 */ 8953 i40e_prep_for_reset(pf); 8954 i40e_reset_and_rebuild(pf, true, lock_acquired); 8955 dev_info(&pf->pdev->dev, 8956 pf->flags & I40E_FLAG_DISABLE_FW_LLDP ? 8957 "FW LLDP is disabled\n" : 8958 "FW LLDP is enabled\n"); 8959 8960 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 8961 int v; 8962 8963 /* Find the VSI(s) that requested a re-init */ 8964 dev_info(&pf->pdev->dev, 8965 "VSI reinit requested\n"); 8966 for (v = 0; v < pf->num_alloc_vsi; v++) { 8967 struct i40e_vsi *vsi = pf->vsi[v]; 8968 8969 if (vsi != NULL && 8970 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 8971 vsi->state)) 8972 i40e_vsi_reinit_locked(pf->vsi[v]); 8973 } 8974 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 8975 int v; 8976 8977 /* Find the VSI(s) that needs to be brought down */ 8978 dev_info(&pf->pdev->dev, "VSI down requested\n"); 8979 for (v = 0; v < pf->num_alloc_vsi; v++) { 8980 struct i40e_vsi *vsi = pf->vsi[v]; 8981 8982 if (vsi != NULL && 8983 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 8984 vsi->state)) { 8985 set_bit(__I40E_VSI_DOWN, vsi->state); 8986 i40e_down(vsi); 8987 } 8988 } 8989 } else { 8990 dev_info(&pf->pdev->dev, 8991 "bad reset request 0x%08x\n", reset_flags); 8992 } 8993 } 8994 8995 #ifdef CONFIG_I40E_DCB 8996 /** 8997 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 8998 * @pf: board private structure 8999 * @old_cfg: current DCB config 9000 * @new_cfg: new DCB config 9001 **/ 9002 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 9003 struct i40e_dcbx_config *old_cfg, 9004 struct i40e_dcbx_config *new_cfg) 9005 { 9006 bool need_reconfig = false; 9007 9008 /* Check if ETS configuration has changed */ 9009 if (memcmp(&new_cfg->etscfg, 9010 &old_cfg->etscfg, 9011 sizeof(new_cfg->etscfg))) { 9012 /* If Priority Table has changed reconfig is needed */ 9013 if (memcmp(&new_cfg->etscfg.prioritytable, 9014 &old_cfg->etscfg.prioritytable, 9015 sizeof(new_cfg->etscfg.prioritytable))) { 9016 need_reconfig = true; 9017 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 9018 } 9019 9020 if (memcmp(&new_cfg->etscfg.tcbwtable, 9021 &old_cfg->etscfg.tcbwtable, 9022 sizeof(new_cfg->etscfg.tcbwtable))) 9023 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 9024 9025 if (memcmp(&new_cfg->etscfg.tsatable, 9026 &old_cfg->etscfg.tsatable, 9027 sizeof(new_cfg->etscfg.tsatable))) 9028 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 9029 } 9030 9031 /* Check if PFC configuration has changed */ 9032 if (memcmp(&new_cfg->pfc, 9033 &old_cfg->pfc, 9034 sizeof(new_cfg->pfc))) { 9035 need_reconfig = true; 9036 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 9037 } 9038 9039 /* Check if APP Table has changed */ 9040 if (memcmp(&new_cfg->app, 9041 &old_cfg->app, 9042 sizeof(new_cfg->app))) { 9043 need_reconfig = true; 9044 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 9045 } 9046 9047 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 9048 return need_reconfig; 9049 } 9050 9051 /** 9052 * i40e_handle_lldp_event - Handle LLDP Change MIB event 9053 * @pf: board private structure 9054 * @e: event info posted on ARQ 9055 **/ 9056 static int i40e_handle_lldp_event(struct i40e_pf *pf, 9057 struct i40e_arq_event_info *e) 9058 { 9059 struct i40e_aqc_lldp_get_mib *mib = 9060 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 9061 struct i40e_hw *hw = &pf->hw; 9062 struct i40e_dcbx_config tmp_dcbx_cfg; 9063 bool need_reconfig = false; 9064 int ret = 0; 9065 u8 type; 9066 9067 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9068 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9069 (hw->phy.link_info.link_speed & 9070 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) && 9071 !(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9072 /* let firmware decide if the DCB should be disabled */ 9073 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9074 9075 /* Not DCB capable or capability disabled */ 9076 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 9077 return ret; 9078 9079 /* Ignore if event is not for Nearest Bridge */ 9080 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 9081 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 9082 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 9083 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 9084 return ret; 9085 9086 /* Check MIB Type and return if event for Remote MIB update */ 9087 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 9088 dev_dbg(&pf->pdev->dev, 9089 "LLDP event mib type %s\n", type ? "remote" : "local"); 9090 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 9091 /* Update the remote cached instance and return */ 9092 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 9093 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 9094 &hw->remote_dcbx_config); 9095 goto exit; 9096 } 9097 9098 /* Store the old configuration */ 9099 tmp_dcbx_cfg = hw->local_dcbx_config; 9100 9101 /* Reset the old DCBx configuration data */ 9102 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 9103 /* Get updated DCBX data from firmware */ 9104 ret = i40e_get_dcb_config(&pf->hw); 9105 if (ret) { 9106 /* X710-T*L 2.5G and 5G speeds don't support DCB */ 9107 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 9108 (hw->phy.link_info.link_speed & 9109 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 9110 dev_warn(&pf->pdev->dev, 9111 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 9112 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9113 } else { 9114 dev_info(&pf->pdev->dev, 9115 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 9116 i40e_stat_str(&pf->hw, ret), 9117 i40e_aq_str(&pf->hw, 9118 pf->hw.aq.asq_last_status)); 9119 } 9120 goto exit; 9121 } 9122 9123 /* No change detected in DCBX configs */ 9124 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 9125 sizeof(tmp_dcbx_cfg))) { 9126 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 9127 goto exit; 9128 } 9129 9130 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 9131 &hw->local_dcbx_config); 9132 9133 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 9134 9135 if (!need_reconfig) 9136 goto exit; 9137 9138 /* Enable DCB tagging only when more than one TC */ 9139 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 9140 pf->flags |= I40E_FLAG_DCB_ENABLED; 9141 else 9142 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9143 9144 set_bit(__I40E_PORT_SUSPENDED, pf->state); 9145 /* Reconfiguration needed quiesce all VSIs */ 9146 i40e_pf_quiesce_all_vsi(pf); 9147 9148 /* Changes in configuration update VEB/VSI */ 9149 i40e_dcb_reconfigure(pf); 9150 9151 ret = i40e_resume_port_tx(pf); 9152 9153 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 9154 /* In case of error no point in resuming VSIs */ 9155 if (ret) 9156 goto exit; 9157 9158 /* Wait for the PF's queues to be disabled */ 9159 ret = i40e_pf_wait_queues_disabled(pf); 9160 if (ret) { 9161 /* Schedule PF reset to recover */ 9162 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9163 i40e_service_event_schedule(pf); 9164 } else { 9165 i40e_pf_unquiesce_all_vsi(pf); 9166 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 9167 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 9168 } 9169 9170 exit: 9171 return ret; 9172 } 9173 #endif /* CONFIG_I40E_DCB */ 9174 9175 /** 9176 * i40e_do_reset_safe - Protected reset path for userland calls. 9177 * @pf: board private structure 9178 * @reset_flags: which reset is requested 9179 * 9180 **/ 9181 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 9182 { 9183 rtnl_lock(); 9184 i40e_do_reset(pf, reset_flags, true); 9185 rtnl_unlock(); 9186 } 9187 9188 /** 9189 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 9190 * @pf: board private structure 9191 * @e: event info posted on ARQ 9192 * 9193 * Handler for LAN Queue Overflow Event generated by the firmware for PF 9194 * and VF queues 9195 **/ 9196 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 9197 struct i40e_arq_event_info *e) 9198 { 9199 struct i40e_aqc_lan_overflow *data = 9200 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 9201 u32 queue = le32_to_cpu(data->prtdcb_rupto); 9202 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 9203 struct i40e_hw *hw = &pf->hw; 9204 struct i40e_vf *vf; 9205 u16 vf_id; 9206 9207 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 9208 queue, qtx_ctl); 9209 9210 /* Queue belongs to VF, find the VF and issue VF reset */ 9211 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 9212 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 9213 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 9214 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 9215 vf_id -= hw->func_caps.vf_base_id; 9216 vf = &pf->vf[vf_id]; 9217 i40e_vc_notify_vf_reset(vf); 9218 /* Allow VF to process pending reset notification */ 9219 msleep(20); 9220 i40e_reset_vf(vf, false); 9221 } 9222 } 9223 9224 /** 9225 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 9226 * @pf: board private structure 9227 **/ 9228 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 9229 { 9230 u32 val, fcnt_prog; 9231 9232 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9233 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 9234 return fcnt_prog; 9235 } 9236 9237 /** 9238 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 9239 * @pf: board private structure 9240 **/ 9241 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 9242 { 9243 u32 val, fcnt_prog; 9244 9245 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 9246 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 9247 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 9248 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 9249 return fcnt_prog; 9250 } 9251 9252 /** 9253 * i40e_get_global_fd_count - Get total FD filters programmed on device 9254 * @pf: board private structure 9255 **/ 9256 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 9257 { 9258 u32 val, fcnt_prog; 9259 9260 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 9261 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 9262 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 9263 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 9264 return fcnt_prog; 9265 } 9266 9267 /** 9268 * i40e_reenable_fdir_sb - Restore FDir SB capability 9269 * @pf: board private structure 9270 **/ 9271 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 9272 { 9273 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 9274 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 9275 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9276 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 9277 } 9278 9279 /** 9280 * i40e_reenable_fdir_atr - Restore FDir ATR capability 9281 * @pf: board private structure 9282 **/ 9283 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 9284 { 9285 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 9286 /* ATR uses the same filtering logic as SB rules. It only 9287 * functions properly if the input set mask is at the default 9288 * settings. It is safe to restore the default input set 9289 * because there are no active TCPv4 filter rules. 9290 */ 9291 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 9292 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 9293 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 9294 9295 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 9296 (I40E_DEBUG_FD & pf->hw.debug_mask)) 9297 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 9298 } 9299 } 9300 9301 /** 9302 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 9303 * @pf: board private structure 9304 * @filter: FDir filter to remove 9305 */ 9306 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 9307 struct i40e_fdir_filter *filter) 9308 { 9309 /* Update counters */ 9310 pf->fdir_pf_active_filters--; 9311 pf->fd_inv = 0; 9312 9313 switch (filter->flow_type) { 9314 case TCP_V4_FLOW: 9315 pf->fd_tcp4_filter_cnt--; 9316 break; 9317 case UDP_V4_FLOW: 9318 pf->fd_udp4_filter_cnt--; 9319 break; 9320 case SCTP_V4_FLOW: 9321 pf->fd_sctp4_filter_cnt--; 9322 break; 9323 case TCP_V6_FLOW: 9324 pf->fd_tcp6_filter_cnt--; 9325 break; 9326 case UDP_V6_FLOW: 9327 pf->fd_udp6_filter_cnt--; 9328 break; 9329 case SCTP_V6_FLOW: 9330 pf->fd_udp6_filter_cnt--; 9331 break; 9332 case IP_USER_FLOW: 9333 switch (filter->ipl4_proto) { 9334 case IPPROTO_TCP: 9335 pf->fd_tcp4_filter_cnt--; 9336 break; 9337 case IPPROTO_UDP: 9338 pf->fd_udp4_filter_cnt--; 9339 break; 9340 case IPPROTO_SCTP: 9341 pf->fd_sctp4_filter_cnt--; 9342 break; 9343 case IPPROTO_IP: 9344 pf->fd_ip4_filter_cnt--; 9345 break; 9346 } 9347 break; 9348 case IPV6_USER_FLOW: 9349 switch (filter->ipl4_proto) { 9350 case IPPROTO_TCP: 9351 pf->fd_tcp6_filter_cnt--; 9352 break; 9353 case IPPROTO_UDP: 9354 pf->fd_udp6_filter_cnt--; 9355 break; 9356 case IPPROTO_SCTP: 9357 pf->fd_sctp6_filter_cnt--; 9358 break; 9359 case IPPROTO_IP: 9360 pf->fd_ip6_filter_cnt--; 9361 break; 9362 } 9363 break; 9364 } 9365 9366 /* Remove the filter from the list and free memory */ 9367 hlist_del(&filter->fdir_node); 9368 kfree(filter); 9369 } 9370 9371 /** 9372 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 9373 * @pf: board private structure 9374 **/ 9375 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 9376 { 9377 struct i40e_fdir_filter *filter; 9378 u32 fcnt_prog, fcnt_avail; 9379 struct hlist_node *node; 9380 9381 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9382 return; 9383 9384 /* Check if we have enough room to re-enable FDir SB capability. */ 9385 fcnt_prog = i40e_get_global_fd_count(pf); 9386 fcnt_avail = pf->fdir_pf_filter_count; 9387 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 9388 (pf->fd_add_err == 0) || 9389 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 9390 i40e_reenable_fdir_sb(pf); 9391 9392 /* We should wait for even more space before re-enabling ATR. 9393 * Additionally, we cannot enable ATR as long as we still have TCP SB 9394 * rules active. 9395 */ 9396 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 9397 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0) 9398 i40e_reenable_fdir_atr(pf); 9399 9400 /* if hw had a problem adding a filter, delete it */ 9401 if (pf->fd_inv > 0) { 9402 hlist_for_each_entry_safe(filter, node, 9403 &pf->fdir_filter_list, fdir_node) 9404 if (filter->fd_id == pf->fd_inv) 9405 i40e_delete_invalid_filter(pf, filter); 9406 } 9407 } 9408 9409 #define I40E_MIN_FD_FLUSH_INTERVAL 10 9410 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 9411 /** 9412 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 9413 * @pf: board private structure 9414 **/ 9415 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 9416 { 9417 unsigned long min_flush_time; 9418 int flush_wait_retry = 50; 9419 bool disable_atr = false; 9420 int fd_room; 9421 int reg; 9422 9423 if (!time_after(jiffies, pf->fd_flush_timestamp + 9424 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 9425 return; 9426 9427 /* If the flush is happening too quick and we have mostly SB rules we 9428 * should not re-enable ATR for some time. 9429 */ 9430 min_flush_time = pf->fd_flush_timestamp + 9431 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 9432 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 9433 9434 if (!(time_after(jiffies, min_flush_time)) && 9435 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 9436 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9437 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 9438 disable_atr = true; 9439 } 9440 9441 pf->fd_flush_timestamp = jiffies; 9442 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9443 /* flush all filters */ 9444 wr32(&pf->hw, I40E_PFQF_CTL_1, 9445 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 9446 i40e_flush(&pf->hw); 9447 pf->fd_flush_cnt++; 9448 pf->fd_add_err = 0; 9449 do { 9450 /* Check FD flush status every 5-6msec */ 9451 usleep_range(5000, 6000); 9452 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 9453 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 9454 break; 9455 } while (flush_wait_retry--); 9456 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 9457 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 9458 } else { 9459 /* replay sideband filters */ 9460 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 9461 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 9462 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 9463 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 9464 if (I40E_DEBUG_FD & pf->hw.debug_mask) 9465 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 9466 } 9467 } 9468 9469 /** 9470 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed 9471 * @pf: board private structure 9472 **/ 9473 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 9474 { 9475 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 9476 } 9477 9478 /** 9479 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 9480 * @pf: board private structure 9481 **/ 9482 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 9483 { 9484 9485 /* if interface is down do nothing */ 9486 if (test_bit(__I40E_DOWN, pf->state)) 9487 return; 9488 9489 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 9490 i40e_fdir_flush_and_replay(pf); 9491 9492 i40e_fdir_check_and_reenable(pf); 9493 9494 } 9495 9496 /** 9497 * i40e_vsi_link_event - notify VSI of a link event 9498 * @vsi: vsi to be notified 9499 * @link_up: link up or down 9500 **/ 9501 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 9502 { 9503 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 9504 return; 9505 9506 switch (vsi->type) { 9507 case I40E_VSI_MAIN: 9508 if (!vsi->netdev || !vsi->netdev_registered) 9509 break; 9510 9511 if (link_up) { 9512 netif_carrier_on(vsi->netdev); 9513 netif_tx_wake_all_queues(vsi->netdev); 9514 } else { 9515 netif_carrier_off(vsi->netdev); 9516 netif_tx_stop_all_queues(vsi->netdev); 9517 } 9518 break; 9519 9520 case I40E_VSI_SRIOV: 9521 case I40E_VSI_VMDQ2: 9522 case I40E_VSI_CTRL: 9523 case I40E_VSI_IWARP: 9524 case I40E_VSI_MIRROR: 9525 default: 9526 /* there is no notification for other VSIs */ 9527 break; 9528 } 9529 } 9530 9531 /** 9532 * i40e_veb_link_event - notify elements on the veb of a link event 9533 * @veb: veb to be notified 9534 * @link_up: link up or down 9535 **/ 9536 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 9537 { 9538 struct i40e_pf *pf; 9539 int i; 9540 9541 if (!veb || !veb->pf) 9542 return; 9543 pf = veb->pf; 9544 9545 /* depth first... */ 9546 for (i = 0; i < I40E_MAX_VEB; i++) 9547 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 9548 i40e_veb_link_event(pf->veb[i], link_up); 9549 9550 /* ... now the local VSIs */ 9551 for (i = 0; i < pf->num_alloc_vsi; i++) 9552 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 9553 i40e_vsi_link_event(pf->vsi[i], link_up); 9554 } 9555 9556 /** 9557 * i40e_link_event - Update netif_carrier status 9558 * @pf: board private structure 9559 **/ 9560 static void i40e_link_event(struct i40e_pf *pf) 9561 { 9562 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9563 u8 new_link_speed, old_link_speed; 9564 i40e_status status; 9565 bool new_link, old_link; 9566 #ifdef CONFIG_I40E_DCB 9567 int err; 9568 #endif /* CONFIG_I40E_DCB */ 9569 9570 /* set this to force the get_link_status call to refresh state */ 9571 pf->hw.phy.get_link_info = true; 9572 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 9573 status = i40e_get_link_status(&pf->hw, &new_link); 9574 9575 /* On success, disable temp link polling */ 9576 if (status == I40E_SUCCESS) { 9577 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9578 } else { 9579 /* Enable link polling temporarily until i40e_get_link_status 9580 * returns I40E_SUCCESS 9581 */ 9582 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 9583 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 9584 status); 9585 return; 9586 } 9587 9588 old_link_speed = pf->hw.phy.link_info_old.link_speed; 9589 new_link_speed = pf->hw.phy.link_info.link_speed; 9590 9591 if (new_link == old_link && 9592 new_link_speed == old_link_speed && 9593 (test_bit(__I40E_VSI_DOWN, vsi->state) || 9594 new_link == netif_carrier_ok(vsi->netdev))) 9595 return; 9596 9597 i40e_print_link_message(vsi, new_link); 9598 9599 /* Notify the base of the switch tree connected to 9600 * the link. Floating VEBs are not notified. 9601 */ 9602 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 9603 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 9604 else 9605 i40e_vsi_link_event(vsi, new_link); 9606 9607 if (pf->vf) 9608 i40e_vc_notify_link_state(pf); 9609 9610 if (pf->flags & I40E_FLAG_PTP) 9611 i40e_ptp_set_increment(pf); 9612 #ifdef CONFIG_I40E_DCB 9613 if (new_link == old_link) 9614 return; 9615 /* Not SW DCB so firmware will take care of default settings */ 9616 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED) 9617 return; 9618 9619 /* We cover here only link down, as after link up in case of SW DCB 9620 * SW LLDP agent will take care of setting it up 9621 */ 9622 if (!new_link) { 9623 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n"); 9624 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg)); 9625 err = i40e_dcb_sw_default_config(pf); 9626 if (err) { 9627 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 9628 I40E_FLAG_DCB_ENABLED); 9629 } else { 9630 pf->dcbx_cap = DCB_CAP_DCBX_HOST | 9631 DCB_CAP_DCBX_VER_IEEE; 9632 pf->flags |= I40E_FLAG_DCB_CAPABLE; 9633 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 9634 } 9635 } 9636 #endif /* CONFIG_I40E_DCB */ 9637 } 9638 9639 /** 9640 * i40e_watchdog_subtask - periodic checks not using event driven response 9641 * @pf: board private structure 9642 **/ 9643 static void i40e_watchdog_subtask(struct i40e_pf *pf) 9644 { 9645 int i; 9646 9647 /* if interface is down do nothing */ 9648 if (test_bit(__I40E_DOWN, pf->state) || 9649 test_bit(__I40E_CONFIG_BUSY, pf->state)) 9650 return; 9651 9652 /* make sure we don't do these things too often */ 9653 if (time_before(jiffies, (pf->service_timer_previous + 9654 pf->service_timer_period))) 9655 return; 9656 pf->service_timer_previous = jiffies; 9657 9658 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 9659 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 9660 i40e_link_event(pf); 9661 9662 /* Update the stats for active netdevs so the network stack 9663 * can look at updated numbers whenever it cares to 9664 */ 9665 for (i = 0; i < pf->num_alloc_vsi; i++) 9666 if (pf->vsi[i] && pf->vsi[i]->netdev) 9667 i40e_update_stats(pf->vsi[i]); 9668 9669 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 9670 /* Update the stats for the active switching components */ 9671 for (i = 0; i < I40E_MAX_VEB; i++) 9672 if (pf->veb[i]) 9673 i40e_update_veb_stats(pf->veb[i]); 9674 } 9675 9676 i40e_ptp_rx_hang(pf); 9677 i40e_ptp_tx_hang(pf); 9678 } 9679 9680 /** 9681 * i40e_reset_subtask - Set up for resetting the device and driver 9682 * @pf: board private structure 9683 **/ 9684 static void i40e_reset_subtask(struct i40e_pf *pf) 9685 { 9686 u32 reset_flags = 0; 9687 9688 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 9689 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 9690 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 9691 } 9692 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 9693 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 9694 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9695 } 9696 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 9697 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 9698 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 9699 } 9700 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 9701 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 9702 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 9703 } 9704 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 9705 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 9706 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 9707 } 9708 9709 /* If there's a recovery already waiting, it takes 9710 * precedence before starting a new reset sequence. 9711 */ 9712 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 9713 i40e_prep_for_reset(pf); 9714 i40e_reset(pf); 9715 i40e_rebuild(pf, false, false); 9716 } 9717 9718 /* If we're already down or resetting, just bail */ 9719 if (reset_flags && 9720 !test_bit(__I40E_DOWN, pf->state) && 9721 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 9722 i40e_do_reset(pf, reset_flags, false); 9723 } 9724 } 9725 9726 /** 9727 * i40e_handle_link_event - Handle link event 9728 * @pf: board private structure 9729 * @e: event info posted on ARQ 9730 **/ 9731 static void i40e_handle_link_event(struct i40e_pf *pf, 9732 struct i40e_arq_event_info *e) 9733 { 9734 struct i40e_aqc_get_link_status *status = 9735 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 9736 9737 /* Do a new status request to re-enable LSE reporting 9738 * and load new status information into the hw struct 9739 * This completely ignores any state information 9740 * in the ARQ event info, instead choosing to always 9741 * issue the AQ update link status command. 9742 */ 9743 i40e_link_event(pf); 9744 9745 /* Check if module meets thermal requirements */ 9746 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 9747 dev_err(&pf->pdev->dev, 9748 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 9749 dev_err(&pf->pdev->dev, 9750 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9751 } else { 9752 /* check for unqualified module, if link is down, suppress 9753 * the message if link was forced to be down. 9754 */ 9755 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 9756 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 9757 (!(status->link_info & I40E_AQ_LINK_UP)) && 9758 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 9759 dev_err(&pf->pdev->dev, 9760 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 9761 dev_err(&pf->pdev->dev, 9762 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 9763 } 9764 } 9765 } 9766 9767 /** 9768 * i40e_clean_adminq_subtask - Clean the AdminQ rings 9769 * @pf: board private structure 9770 **/ 9771 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 9772 { 9773 struct i40e_arq_event_info event; 9774 struct i40e_hw *hw = &pf->hw; 9775 u16 pending, i = 0; 9776 i40e_status ret; 9777 u16 opcode; 9778 u32 oldval; 9779 u32 val; 9780 9781 /* Do not run clean AQ when PF reset fails */ 9782 if (test_bit(__I40E_RESET_FAILED, pf->state)) 9783 return; 9784 9785 /* check for error indications */ 9786 val = rd32(&pf->hw, pf->hw.aq.arq.len); 9787 oldval = val; 9788 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 9789 if (hw->debug_mask & I40E_DEBUG_AQ) 9790 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 9791 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 9792 } 9793 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 9794 if (hw->debug_mask & I40E_DEBUG_AQ) 9795 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 9796 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 9797 pf->arq_overflows++; 9798 } 9799 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 9800 if (hw->debug_mask & I40E_DEBUG_AQ) 9801 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 9802 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 9803 } 9804 if (oldval != val) 9805 wr32(&pf->hw, pf->hw.aq.arq.len, val); 9806 9807 val = rd32(&pf->hw, pf->hw.aq.asq.len); 9808 oldval = val; 9809 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 9810 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9811 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 9812 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 9813 } 9814 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 9815 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9816 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 9817 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 9818 } 9819 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 9820 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 9821 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 9822 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 9823 } 9824 if (oldval != val) 9825 wr32(&pf->hw, pf->hw.aq.asq.len, val); 9826 9827 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 9828 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 9829 if (!event.msg_buf) 9830 return; 9831 9832 do { 9833 ret = i40e_clean_arq_element(hw, &event, &pending); 9834 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 9835 break; 9836 else if (ret) { 9837 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 9838 break; 9839 } 9840 9841 opcode = le16_to_cpu(event.desc.opcode); 9842 switch (opcode) { 9843 9844 case i40e_aqc_opc_get_link_status: 9845 rtnl_lock(); 9846 i40e_handle_link_event(pf, &event); 9847 rtnl_unlock(); 9848 break; 9849 case i40e_aqc_opc_send_msg_to_pf: 9850 ret = i40e_vc_process_vf_msg(pf, 9851 le16_to_cpu(event.desc.retval), 9852 le32_to_cpu(event.desc.cookie_high), 9853 le32_to_cpu(event.desc.cookie_low), 9854 event.msg_buf, 9855 event.msg_len); 9856 break; 9857 case i40e_aqc_opc_lldp_update_mib: 9858 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 9859 #ifdef CONFIG_I40E_DCB 9860 rtnl_lock(); 9861 i40e_handle_lldp_event(pf, &event); 9862 rtnl_unlock(); 9863 #endif /* CONFIG_I40E_DCB */ 9864 break; 9865 case i40e_aqc_opc_event_lan_overflow: 9866 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 9867 i40e_handle_lan_overflow_event(pf, &event); 9868 break; 9869 case i40e_aqc_opc_send_msg_to_peer: 9870 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 9871 break; 9872 case i40e_aqc_opc_nvm_erase: 9873 case i40e_aqc_opc_nvm_update: 9874 case i40e_aqc_opc_oem_post_update: 9875 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 9876 "ARQ NVM operation 0x%04x completed\n", 9877 opcode); 9878 break; 9879 default: 9880 dev_info(&pf->pdev->dev, 9881 "ARQ: Unknown event 0x%04x ignored\n", 9882 opcode); 9883 break; 9884 } 9885 } while (i++ < pf->adminq_work_limit); 9886 9887 if (i < pf->adminq_work_limit) 9888 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 9889 9890 /* re-enable Admin queue interrupt cause */ 9891 val = rd32(hw, I40E_PFINT_ICR0_ENA); 9892 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 9893 wr32(hw, I40E_PFINT_ICR0_ENA, val); 9894 i40e_flush(hw); 9895 9896 kfree(event.msg_buf); 9897 } 9898 9899 /** 9900 * i40e_verify_eeprom - make sure eeprom is good to use 9901 * @pf: board private structure 9902 **/ 9903 static void i40e_verify_eeprom(struct i40e_pf *pf) 9904 { 9905 int err; 9906 9907 err = i40e_diag_eeprom_test(&pf->hw); 9908 if (err) { 9909 /* retry in case of garbage read */ 9910 err = i40e_diag_eeprom_test(&pf->hw); 9911 if (err) { 9912 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 9913 err); 9914 set_bit(__I40E_BAD_EEPROM, pf->state); 9915 } 9916 } 9917 9918 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 9919 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 9920 clear_bit(__I40E_BAD_EEPROM, pf->state); 9921 } 9922 } 9923 9924 /** 9925 * i40e_enable_pf_switch_lb 9926 * @pf: pointer to the PF structure 9927 * 9928 * enable switch loop back or die - no point in a return value 9929 **/ 9930 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 9931 { 9932 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9933 struct i40e_vsi_context ctxt; 9934 int ret; 9935 9936 ctxt.seid = pf->main_vsi_seid; 9937 ctxt.pf_num = pf->hw.pf_id; 9938 ctxt.vf_num = 0; 9939 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9940 if (ret) { 9941 dev_info(&pf->pdev->dev, 9942 "couldn't get PF vsi config, err %s aq_err %s\n", 9943 i40e_stat_str(&pf->hw, ret), 9944 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9945 return; 9946 } 9947 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9948 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9949 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9950 9951 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9952 if (ret) { 9953 dev_info(&pf->pdev->dev, 9954 "update vsi switch failed, err %s aq_err %s\n", 9955 i40e_stat_str(&pf->hw, ret), 9956 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9957 } 9958 } 9959 9960 /** 9961 * i40e_disable_pf_switch_lb 9962 * @pf: pointer to the PF structure 9963 * 9964 * disable switch loop back or die - no point in a return value 9965 **/ 9966 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 9967 { 9968 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9969 struct i40e_vsi_context ctxt; 9970 int ret; 9971 9972 ctxt.seid = pf->main_vsi_seid; 9973 ctxt.pf_num = pf->hw.pf_id; 9974 ctxt.vf_num = 0; 9975 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 9976 if (ret) { 9977 dev_info(&pf->pdev->dev, 9978 "couldn't get PF vsi config, err %s aq_err %s\n", 9979 i40e_stat_str(&pf->hw, ret), 9980 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9981 return; 9982 } 9983 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 9984 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 9985 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 9986 9987 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 9988 if (ret) { 9989 dev_info(&pf->pdev->dev, 9990 "update vsi switch failed, err %s aq_err %s\n", 9991 i40e_stat_str(&pf->hw, ret), 9992 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9993 } 9994 } 9995 9996 /** 9997 * i40e_config_bridge_mode - Configure the HW bridge mode 9998 * @veb: pointer to the bridge instance 9999 * 10000 * Configure the loop back mode for the LAN VSI that is downlink to the 10001 * specified HW bridge instance. It is expected this function is called 10002 * when a new HW bridge is instantiated. 10003 **/ 10004 static void i40e_config_bridge_mode(struct i40e_veb *veb) 10005 { 10006 struct i40e_pf *pf = veb->pf; 10007 10008 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 10009 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 10010 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 10011 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 10012 i40e_disable_pf_switch_lb(pf); 10013 else 10014 i40e_enable_pf_switch_lb(pf); 10015 } 10016 10017 /** 10018 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 10019 * @veb: pointer to the VEB instance 10020 * 10021 * This is a recursive function that first builds the attached VSIs then 10022 * recurses in to build the next layer of VEB. We track the connections 10023 * through our own index numbers because the seid's from the HW could 10024 * change across the reset. 10025 **/ 10026 static int i40e_reconstitute_veb(struct i40e_veb *veb) 10027 { 10028 struct i40e_vsi *ctl_vsi = NULL; 10029 struct i40e_pf *pf = veb->pf; 10030 int v, veb_idx; 10031 int ret; 10032 10033 /* build VSI that owns this VEB, temporarily attached to base VEB */ 10034 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 10035 if (pf->vsi[v] && 10036 pf->vsi[v]->veb_idx == veb->idx && 10037 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 10038 ctl_vsi = pf->vsi[v]; 10039 break; 10040 } 10041 } 10042 if (!ctl_vsi) { 10043 dev_info(&pf->pdev->dev, 10044 "missing owner VSI for veb_idx %d\n", veb->idx); 10045 ret = -ENOENT; 10046 goto end_reconstitute; 10047 } 10048 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 10049 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 10050 ret = i40e_add_vsi(ctl_vsi); 10051 if (ret) { 10052 dev_info(&pf->pdev->dev, 10053 "rebuild of veb_idx %d owner VSI failed: %d\n", 10054 veb->idx, ret); 10055 goto end_reconstitute; 10056 } 10057 i40e_vsi_reset_stats(ctl_vsi); 10058 10059 /* create the VEB in the switch and move the VSI onto the VEB */ 10060 ret = i40e_add_veb(veb, ctl_vsi); 10061 if (ret) 10062 goto end_reconstitute; 10063 10064 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 10065 veb->bridge_mode = BRIDGE_MODE_VEB; 10066 else 10067 veb->bridge_mode = BRIDGE_MODE_VEPA; 10068 i40e_config_bridge_mode(veb); 10069 10070 /* create the remaining VSIs attached to this VEB */ 10071 for (v = 0; v < pf->num_alloc_vsi; v++) { 10072 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 10073 continue; 10074 10075 if (pf->vsi[v]->veb_idx == veb->idx) { 10076 struct i40e_vsi *vsi = pf->vsi[v]; 10077 10078 vsi->uplink_seid = veb->seid; 10079 ret = i40e_add_vsi(vsi); 10080 if (ret) { 10081 dev_info(&pf->pdev->dev, 10082 "rebuild of vsi_idx %d failed: %d\n", 10083 v, ret); 10084 goto end_reconstitute; 10085 } 10086 i40e_vsi_reset_stats(vsi); 10087 } 10088 } 10089 10090 /* create any VEBs attached to this VEB - RECURSION */ 10091 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 10092 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 10093 pf->veb[veb_idx]->uplink_seid = veb->seid; 10094 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 10095 if (ret) 10096 break; 10097 } 10098 } 10099 10100 end_reconstitute: 10101 return ret; 10102 } 10103 10104 /** 10105 * i40e_get_capabilities - get info about the HW 10106 * @pf: the PF struct 10107 * @list_type: AQ capability to be queried 10108 **/ 10109 static int i40e_get_capabilities(struct i40e_pf *pf, 10110 enum i40e_admin_queue_opc list_type) 10111 { 10112 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 10113 u16 data_size; 10114 int buf_len; 10115 int err; 10116 10117 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 10118 do { 10119 cap_buf = kzalloc(buf_len, GFP_KERNEL); 10120 if (!cap_buf) 10121 return -ENOMEM; 10122 10123 /* this loads the data into the hw struct for us */ 10124 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 10125 &data_size, list_type, 10126 NULL); 10127 /* data loaded, buffer no longer needed */ 10128 kfree(cap_buf); 10129 10130 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 10131 /* retry with a larger buffer */ 10132 buf_len = data_size; 10133 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 10134 dev_info(&pf->pdev->dev, 10135 "capability discovery failed, err %s aq_err %s\n", 10136 i40e_stat_str(&pf->hw, err), 10137 i40e_aq_str(&pf->hw, 10138 pf->hw.aq.asq_last_status)); 10139 return -ENODEV; 10140 } 10141 } while (err); 10142 10143 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 10144 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10145 dev_info(&pf->pdev->dev, 10146 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 10147 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 10148 pf->hw.func_caps.num_msix_vectors, 10149 pf->hw.func_caps.num_msix_vectors_vf, 10150 pf->hw.func_caps.fd_filters_guaranteed, 10151 pf->hw.func_caps.fd_filters_best_effort, 10152 pf->hw.func_caps.num_tx_qp, 10153 pf->hw.func_caps.num_vsis); 10154 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 10155 dev_info(&pf->pdev->dev, 10156 "switch_mode=0x%04x, function_valid=0x%08x\n", 10157 pf->hw.dev_caps.switch_mode, 10158 pf->hw.dev_caps.valid_functions); 10159 dev_info(&pf->pdev->dev, 10160 "SR-IOV=%d, num_vfs for all function=%u\n", 10161 pf->hw.dev_caps.sr_iov_1_1, 10162 pf->hw.dev_caps.num_vfs); 10163 dev_info(&pf->pdev->dev, 10164 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 10165 pf->hw.dev_caps.num_vsis, 10166 pf->hw.dev_caps.num_rx_qp, 10167 pf->hw.dev_caps.num_tx_qp); 10168 } 10169 } 10170 if (list_type == i40e_aqc_opc_list_func_capabilities) { 10171 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 10172 + pf->hw.func_caps.num_vfs) 10173 if (pf->hw.revision_id == 0 && 10174 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 10175 dev_info(&pf->pdev->dev, 10176 "got num_vsis %d, setting num_vsis to %d\n", 10177 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 10178 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 10179 } 10180 } 10181 return 0; 10182 } 10183 10184 static int i40e_vsi_clear(struct i40e_vsi *vsi); 10185 10186 /** 10187 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 10188 * @pf: board private structure 10189 **/ 10190 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 10191 { 10192 struct i40e_vsi *vsi; 10193 10194 /* quick workaround for an NVM issue that leaves a critical register 10195 * uninitialized 10196 */ 10197 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 10198 static const u32 hkey[] = { 10199 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 10200 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 10201 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 10202 0x95b3a76d}; 10203 int i; 10204 10205 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 10206 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 10207 } 10208 10209 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 10210 return; 10211 10212 /* find existing VSI and see if it needs configuring */ 10213 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10214 10215 /* create a new VSI if none exists */ 10216 if (!vsi) { 10217 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 10218 pf->vsi[pf->lan_vsi]->seid, 0); 10219 if (!vsi) { 10220 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 10221 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10222 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10223 return; 10224 } 10225 } 10226 10227 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 10228 } 10229 10230 /** 10231 * i40e_fdir_teardown - release the Flow Director resources 10232 * @pf: board private structure 10233 **/ 10234 static void i40e_fdir_teardown(struct i40e_pf *pf) 10235 { 10236 struct i40e_vsi *vsi; 10237 10238 i40e_fdir_filter_exit(pf); 10239 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 10240 if (vsi) 10241 i40e_vsi_release(vsi); 10242 } 10243 10244 /** 10245 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 10246 * @vsi: PF main vsi 10247 * @seid: seid of main or channel VSIs 10248 * 10249 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 10250 * existed before reset 10251 **/ 10252 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 10253 { 10254 struct i40e_cloud_filter *cfilter; 10255 struct i40e_pf *pf = vsi->back; 10256 struct hlist_node *node; 10257 i40e_status ret; 10258 10259 /* Add cloud filters back if they exist */ 10260 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 10261 cloud_node) { 10262 if (cfilter->seid != seid) 10263 continue; 10264 10265 if (cfilter->dst_port) 10266 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 10267 true); 10268 else 10269 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 10270 10271 if (ret) { 10272 dev_dbg(&pf->pdev->dev, 10273 "Failed to rebuild cloud filter, err %s aq_err %s\n", 10274 i40e_stat_str(&pf->hw, ret), 10275 i40e_aq_str(&pf->hw, 10276 pf->hw.aq.asq_last_status)); 10277 return ret; 10278 } 10279 } 10280 return 0; 10281 } 10282 10283 /** 10284 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 10285 * @vsi: PF main vsi 10286 * 10287 * Rebuilds channel VSIs if they existed before reset 10288 **/ 10289 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 10290 { 10291 struct i40e_channel *ch, *ch_tmp; 10292 i40e_status ret; 10293 10294 if (list_empty(&vsi->ch_list)) 10295 return 0; 10296 10297 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 10298 if (!ch->initialized) 10299 break; 10300 /* Proceed with creation of channel (VMDq2) VSI */ 10301 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 10302 if (ret) { 10303 dev_info(&vsi->back->pdev->dev, 10304 "failed to rebuild channels using uplink_seid %u\n", 10305 vsi->uplink_seid); 10306 return ret; 10307 } 10308 /* Reconfigure TX queues using QTX_CTL register */ 10309 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 10310 if (ret) { 10311 dev_info(&vsi->back->pdev->dev, 10312 "failed to configure TX rings for channel %u\n", 10313 ch->seid); 10314 return ret; 10315 } 10316 /* update 'next_base_queue' */ 10317 vsi->next_base_queue = vsi->next_base_queue + 10318 ch->num_queue_pairs; 10319 if (ch->max_tx_rate) { 10320 u64 credits = ch->max_tx_rate; 10321 10322 if (i40e_set_bw_limit(vsi, ch->seid, 10323 ch->max_tx_rate)) 10324 return -EINVAL; 10325 10326 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10327 dev_dbg(&vsi->back->pdev->dev, 10328 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10329 ch->max_tx_rate, 10330 credits, 10331 ch->seid); 10332 } 10333 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 10334 if (ret) { 10335 dev_dbg(&vsi->back->pdev->dev, 10336 "Failed to rebuild cloud filters for channel VSI %u\n", 10337 ch->seid); 10338 return ret; 10339 } 10340 } 10341 return 0; 10342 } 10343 10344 /** 10345 * i40e_prep_for_reset - prep for the core to reset 10346 * @pf: board private structure 10347 * 10348 * Close up the VFs and other things in prep for PF Reset. 10349 **/ 10350 static void i40e_prep_for_reset(struct i40e_pf *pf) 10351 { 10352 struct i40e_hw *hw = &pf->hw; 10353 i40e_status ret = 0; 10354 u32 v; 10355 10356 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 10357 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 10358 return; 10359 if (i40e_check_asq_alive(&pf->hw)) 10360 i40e_vc_notify_reset(pf); 10361 10362 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 10363 10364 /* quiesce the VSIs and their queues that are not already DOWN */ 10365 i40e_pf_quiesce_all_vsi(pf); 10366 10367 for (v = 0; v < pf->num_alloc_vsi; v++) { 10368 if (pf->vsi[v]) 10369 pf->vsi[v]->seid = 0; 10370 } 10371 10372 i40e_shutdown_adminq(&pf->hw); 10373 10374 /* call shutdown HMC */ 10375 if (hw->hmc.hmc_obj) { 10376 ret = i40e_shutdown_lan_hmc(hw); 10377 if (ret) 10378 dev_warn(&pf->pdev->dev, 10379 "shutdown_lan_hmc failed: %d\n", ret); 10380 } 10381 10382 /* Save the current PTP time so that we can restore the time after the 10383 * reset completes. 10384 */ 10385 i40e_ptp_save_hw_time(pf); 10386 } 10387 10388 /** 10389 * i40e_send_version - update firmware with driver version 10390 * @pf: PF struct 10391 */ 10392 static void i40e_send_version(struct i40e_pf *pf) 10393 { 10394 struct i40e_driver_version dv; 10395 10396 dv.major_version = 0xff; 10397 dv.minor_version = 0xff; 10398 dv.build_version = 0xff; 10399 dv.subbuild_version = 0; 10400 strlcpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); 10401 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 10402 } 10403 10404 /** 10405 * i40e_get_oem_version - get OEM specific version information 10406 * @hw: pointer to the hardware structure 10407 **/ 10408 static void i40e_get_oem_version(struct i40e_hw *hw) 10409 { 10410 u16 block_offset = 0xffff; 10411 u16 block_length = 0; 10412 u16 capabilities = 0; 10413 u16 gen_snap = 0; 10414 u16 release = 0; 10415 10416 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 10417 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 10418 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 10419 #define I40E_NVM_OEM_GEN_OFFSET 0x02 10420 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 10421 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 10422 #define I40E_NVM_OEM_LENGTH 3 10423 10424 /* Check if pointer to OEM version block is valid. */ 10425 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 10426 if (block_offset == 0xffff) 10427 return; 10428 10429 /* Check if OEM version block has correct length. */ 10430 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 10431 &block_length); 10432 if (block_length < I40E_NVM_OEM_LENGTH) 10433 return; 10434 10435 /* Check if OEM version format is as expected. */ 10436 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 10437 &capabilities); 10438 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 10439 return; 10440 10441 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 10442 &gen_snap); 10443 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 10444 &release); 10445 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 10446 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 10447 } 10448 10449 /** 10450 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 10451 * @pf: board private structure 10452 **/ 10453 static int i40e_reset(struct i40e_pf *pf) 10454 { 10455 struct i40e_hw *hw = &pf->hw; 10456 i40e_status ret; 10457 10458 ret = i40e_pf_reset(hw); 10459 if (ret) { 10460 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 10461 set_bit(__I40E_RESET_FAILED, pf->state); 10462 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10463 } else { 10464 pf->pfr_count++; 10465 } 10466 return ret; 10467 } 10468 10469 /** 10470 * i40e_rebuild - rebuild using a saved config 10471 * @pf: board private structure 10472 * @reinit: if the Main VSI needs to re-initialized. 10473 * @lock_acquired: indicates whether or not the lock has been acquired 10474 * before this function was called. 10475 **/ 10476 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 10477 { 10478 int old_recovery_mode_bit = test_bit(__I40E_RECOVERY_MODE, pf->state); 10479 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10480 struct i40e_hw *hw = &pf->hw; 10481 i40e_status ret; 10482 u32 val; 10483 int v; 10484 10485 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10486 i40e_check_recovery_mode(pf)) { 10487 i40e_set_ethtool_ops(pf->vsi[pf->lan_vsi]->netdev); 10488 } 10489 10490 if (test_bit(__I40E_DOWN, pf->state) && 10491 !test_bit(__I40E_RECOVERY_MODE, pf->state) && 10492 !old_recovery_mode_bit) 10493 goto clear_recovery; 10494 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 10495 10496 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 10497 ret = i40e_init_adminq(&pf->hw); 10498 if (ret) { 10499 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 10500 i40e_stat_str(&pf->hw, ret), 10501 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10502 goto clear_recovery; 10503 } 10504 i40e_get_oem_version(&pf->hw); 10505 10506 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 10507 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 10508 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 10509 /* The following delay is necessary for 4.33 firmware and older 10510 * to recover after EMP reset. 200 ms should suffice but we 10511 * put here 300 ms to be sure that FW is ready to operate 10512 * after reset. 10513 */ 10514 mdelay(300); 10515 } 10516 10517 /* re-verify the eeprom if we just had an EMP reset */ 10518 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 10519 i40e_verify_eeprom(pf); 10520 10521 /* if we are going out of or into recovery mode we have to act 10522 * accordingly with regard to resources initialization 10523 * and deinitialization 10524 */ 10525 if (test_bit(__I40E_RECOVERY_MODE, pf->state) || 10526 old_recovery_mode_bit) { 10527 if (i40e_get_capabilities(pf, 10528 i40e_aqc_opc_list_func_capabilities)) 10529 goto end_unlock; 10530 10531 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10532 /* we're staying in recovery mode so we'll reinitialize 10533 * misc vector here 10534 */ 10535 if (i40e_setup_misc_vector_for_recovery_mode(pf)) 10536 goto end_unlock; 10537 } else { 10538 if (!lock_acquired) 10539 rtnl_lock(); 10540 /* we're going out of recovery mode so we'll free 10541 * the IRQ allocated specifically for recovery mode 10542 * and restore the interrupt scheme 10543 */ 10544 free_irq(pf->pdev->irq, pf); 10545 i40e_clear_interrupt_scheme(pf); 10546 if (i40e_restore_interrupt_scheme(pf)) 10547 goto end_unlock; 10548 } 10549 10550 /* tell the firmware that we're starting */ 10551 i40e_send_version(pf); 10552 10553 /* bail out in case recovery mode was detected, as there is 10554 * no need for further configuration. 10555 */ 10556 goto end_unlock; 10557 } 10558 10559 i40e_clear_pxe_mode(hw); 10560 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 10561 if (ret) 10562 goto end_core_reset; 10563 10564 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 10565 hw->func_caps.num_rx_qp, 0, 0); 10566 if (ret) { 10567 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 10568 goto end_core_reset; 10569 } 10570 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 10571 if (ret) { 10572 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 10573 goto end_core_reset; 10574 } 10575 10576 if (!lock_acquired) 10577 rtnl_lock(); 10578 ret = i40e_setup_pf_switch(pf, reinit); 10579 if (ret) 10580 goto end_unlock; 10581 10582 #ifdef CONFIG_I40E_DCB 10583 /* Enable FW to write a default DCB config on link-up 10584 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB 10585 * is not supported with new link speed 10586 */ 10587 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 10588 i40e_aq_set_dcb_parameters(hw, false, NULL); 10589 } else { 10590 if (I40E_IS_X710TL_DEVICE(hw->device_id) && 10591 (hw->phy.link_info.link_speed & 10592 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) { 10593 i40e_aq_set_dcb_parameters(hw, false, NULL); 10594 dev_warn(&pf->pdev->dev, 10595 "DCB is not supported for X710-T*L 2.5/5G speeds\n"); 10596 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10597 } else { 10598 i40e_aq_set_dcb_parameters(hw, true, NULL); 10599 ret = i40e_init_pf_dcb(pf); 10600 if (ret) { 10601 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", 10602 ret); 10603 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 10604 /* Continue without DCB enabled */ 10605 } 10606 } 10607 } 10608 10609 #endif /* CONFIG_I40E_DCB */ 10610 10611 /* The driver only wants link up/down and module qualification 10612 * reports from firmware. Note the negative logic. 10613 */ 10614 ret = i40e_aq_set_phy_int_mask(&pf->hw, 10615 ~(I40E_AQ_EVENT_LINK_UPDOWN | 10616 I40E_AQ_EVENT_MEDIA_NA | 10617 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 10618 if (ret) 10619 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 10620 i40e_stat_str(&pf->hw, ret), 10621 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10622 10623 /* Rebuild the VSIs and VEBs that existed before reset. 10624 * They are still in our local switch element arrays, so only 10625 * need to rebuild the switch model in the HW. 10626 * 10627 * If there were VEBs but the reconstitution failed, we'll try 10628 * try to recover minimal use by getting the basic PF VSI working. 10629 */ 10630 if (vsi->uplink_seid != pf->mac_seid) { 10631 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 10632 /* find the one VEB connected to the MAC, and find orphans */ 10633 for (v = 0; v < I40E_MAX_VEB; v++) { 10634 if (!pf->veb[v]) 10635 continue; 10636 10637 if (pf->veb[v]->uplink_seid == pf->mac_seid || 10638 pf->veb[v]->uplink_seid == 0) { 10639 ret = i40e_reconstitute_veb(pf->veb[v]); 10640 10641 if (!ret) 10642 continue; 10643 10644 /* If Main VEB failed, we're in deep doodoo, 10645 * so give up rebuilding the switch and set up 10646 * for minimal rebuild of PF VSI. 10647 * If orphan failed, we'll report the error 10648 * but try to keep going. 10649 */ 10650 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 10651 dev_info(&pf->pdev->dev, 10652 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 10653 ret); 10654 vsi->uplink_seid = pf->mac_seid; 10655 break; 10656 } else if (pf->veb[v]->uplink_seid == 0) { 10657 dev_info(&pf->pdev->dev, 10658 "rebuild of orphan VEB failed: %d\n", 10659 ret); 10660 } 10661 } 10662 } 10663 } 10664 10665 if (vsi->uplink_seid == pf->mac_seid) { 10666 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 10667 /* no VEB, so rebuild only the Main VSI */ 10668 ret = i40e_add_vsi(vsi); 10669 if (ret) { 10670 dev_info(&pf->pdev->dev, 10671 "rebuild of Main VSI failed: %d\n", ret); 10672 goto end_unlock; 10673 } 10674 } 10675 10676 if (vsi->mqprio_qopt.max_rate[0]) { 10677 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 10678 u64 credits = 0; 10679 10680 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 10681 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 10682 if (ret) 10683 goto end_unlock; 10684 10685 credits = max_tx_rate; 10686 do_div(credits, I40E_BW_CREDIT_DIVISOR); 10687 dev_dbg(&vsi->back->pdev->dev, 10688 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 10689 max_tx_rate, 10690 credits, 10691 vsi->seid); 10692 } 10693 10694 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 10695 if (ret) 10696 goto end_unlock; 10697 10698 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 10699 * for this main VSI if they exist 10700 */ 10701 ret = i40e_rebuild_channels(vsi); 10702 if (ret) 10703 goto end_unlock; 10704 10705 /* Reconfigure hardware for allowing smaller MSS in the case 10706 * of TSO, so that we avoid the MDD being fired and causing 10707 * a reset in the case of small MSS+TSO. 10708 */ 10709 #define I40E_REG_MSS 0x000E64DC 10710 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 10711 #define I40E_64BYTE_MSS 0x400000 10712 val = rd32(hw, I40E_REG_MSS); 10713 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 10714 val &= ~I40E_REG_MSS_MIN_MASK; 10715 val |= I40E_64BYTE_MSS; 10716 wr32(hw, I40E_REG_MSS, val); 10717 } 10718 10719 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 10720 msleep(75); 10721 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 10722 if (ret) 10723 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 10724 i40e_stat_str(&pf->hw, ret), 10725 i40e_aq_str(&pf->hw, 10726 pf->hw.aq.asq_last_status)); 10727 } 10728 /* reinit the misc interrupt */ 10729 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10730 ret = i40e_setup_misc_vector(pf); 10731 10732 /* Add a filter to drop all Flow control frames from any VSI from being 10733 * transmitted. By doing so we stop a malicious VF from sending out 10734 * PAUSE or PFC frames and potentially controlling traffic for other 10735 * PF/VF VSIs. 10736 * The FW can still send Flow control frames if enabled. 10737 */ 10738 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 10739 pf->main_vsi_seid); 10740 #ifdef CONFIG_I40E_DCB 10741 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) 10742 i40e_set_lldp_forwarding(pf, true); 10743 #endif /* CONFIG_I40E_DCB */ 10744 10745 /* restart the VSIs that were rebuilt and running before the reset */ 10746 i40e_pf_unquiesce_all_vsi(pf); 10747 10748 /* Release the RTNL lock before we start resetting VFs */ 10749 if (!lock_acquired) 10750 rtnl_unlock(); 10751 10752 /* Restore promiscuous settings */ 10753 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 10754 if (ret) 10755 dev_warn(&pf->pdev->dev, 10756 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 10757 pf->cur_promisc ? "on" : "off", 10758 i40e_stat_str(&pf->hw, ret), 10759 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 10760 10761 i40e_reset_all_vfs(pf, true); 10762 10763 /* tell the firmware that we're starting */ 10764 i40e_send_version(pf); 10765 10766 /* We've already released the lock, so don't do it again */ 10767 goto end_core_reset; 10768 10769 end_unlock: 10770 if (!lock_acquired) 10771 rtnl_unlock(); 10772 end_core_reset: 10773 clear_bit(__I40E_RESET_FAILED, pf->state); 10774 clear_recovery: 10775 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 10776 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 10777 } 10778 10779 /** 10780 * i40e_reset_and_rebuild - reset and rebuild using a saved config 10781 * @pf: board private structure 10782 * @reinit: if the Main VSI needs to re-initialized. 10783 * @lock_acquired: indicates whether or not the lock has been acquired 10784 * before this function was called. 10785 **/ 10786 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 10787 bool lock_acquired) 10788 { 10789 int ret; 10790 /* Now we wait for GRST to settle out. 10791 * We don't have to delete the VEBs or VSIs from the hw switch 10792 * because the reset will make them disappear. 10793 */ 10794 ret = i40e_reset(pf); 10795 if (!ret) 10796 i40e_rebuild(pf, reinit, lock_acquired); 10797 } 10798 10799 /** 10800 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 10801 * @pf: board private structure 10802 * 10803 * Close up the VFs and other things in prep for a Core Reset, 10804 * then get ready to rebuild the world. 10805 * @lock_acquired: indicates whether or not the lock has been acquired 10806 * before this function was called. 10807 **/ 10808 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 10809 { 10810 i40e_prep_for_reset(pf); 10811 i40e_reset_and_rebuild(pf, false, lock_acquired); 10812 } 10813 10814 /** 10815 * i40e_handle_mdd_event 10816 * @pf: pointer to the PF structure 10817 * 10818 * Called from the MDD irq handler to identify possibly malicious vfs 10819 **/ 10820 static void i40e_handle_mdd_event(struct i40e_pf *pf) 10821 { 10822 struct i40e_hw *hw = &pf->hw; 10823 bool mdd_detected = false; 10824 struct i40e_vf *vf; 10825 u32 reg; 10826 int i; 10827 10828 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 10829 return; 10830 10831 /* find what triggered the MDD event */ 10832 reg = rd32(hw, I40E_GL_MDET_TX); 10833 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 10834 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 10835 I40E_GL_MDET_TX_PF_NUM_SHIFT; 10836 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 10837 I40E_GL_MDET_TX_VF_NUM_SHIFT; 10838 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 10839 I40E_GL_MDET_TX_EVENT_SHIFT; 10840 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 10841 I40E_GL_MDET_TX_QUEUE_SHIFT) - 10842 pf->hw.func_caps.base_queue; 10843 if (netif_msg_tx_err(pf)) 10844 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 10845 event, queue, pf_num, vf_num); 10846 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 10847 mdd_detected = true; 10848 } 10849 reg = rd32(hw, I40E_GL_MDET_RX); 10850 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 10851 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 10852 I40E_GL_MDET_RX_FUNCTION_SHIFT; 10853 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 10854 I40E_GL_MDET_RX_EVENT_SHIFT; 10855 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 10856 I40E_GL_MDET_RX_QUEUE_SHIFT) - 10857 pf->hw.func_caps.base_queue; 10858 if (netif_msg_rx_err(pf)) 10859 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 10860 event, queue, func); 10861 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 10862 mdd_detected = true; 10863 } 10864 10865 if (mdd_detected) { 10866 reg = rd32(hw, I40E_PF_MDET_TX); 10867 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 10868 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 10869 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n"); 10870 } 10871 reg = rd32(hw, I40E_PF_MDET_RX); 10872 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 10873 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 10874 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n"); 10875 } 10876 } 10877 10878 /* see if one of the VFs needs its hand slapped */ 10879 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 10880 vf = &(pf->vf[i]); 10881 reg = rd32(hw, I40E_VP_MDET_TX(i)); 10882 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 10883 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 10884 vf->num_mdd_events++; 10885 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 10886 i); 10887 dev_info(&pf->pdev->dev, 10888 "Use PF Control I/F to re-enable the VF\n"); 10889 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10890 } 10891 10892 reg = rd32(hw, I40E_VP_MDET_RX(i)); 10893 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 10894 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 10895 vf->num_mdd_events++; 10896 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 10897 i); 10898 dev_info(&pf->pdev->dev, 10899 "Use PF Control I/F to re-enable the VF\n"); 10900 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 10901 } 10902 } 10903 10904 /* re-enable mdd interrupt cause */ 10905 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 10906 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 10907 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 10908 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 10909 i40e_flush(hw); 10910 } 10911 10912 /** 10913 * i40e_service_task - Run the driver's async subtasks 10914 * @work: pointer to work_struct containing our data 10915 **/ 10916 static void i40e_service_task(struct work_struct *work) 10917 { 10918 struct i40e_pf *pf = container_of(work, 10919 struct i40e_pf, 10920 service_task); 10921 unsigned long start_time = jiffies; 10922 10923 /* don't bother with service tasks if a reset is in progress */ 10924 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 10925 test_bit(__I40E_SUSPENDED, pf->state)) 10926 return; 10927 10928 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 10929 return; 10930 10931 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) { 10932 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 10933 i40e_sync_filters_subtask(pf); 10934 i40e_reset_subtask(pf); 10935 i40e_handle_mdd_event(pf); 10936 i40e_vc_process_vflr_event(pf); 10937 i40e_watchdog_subtask(pf); 10938 i40e_fdir_reinit_subtask(pf); 10939 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 10940 /* Client subtask will reopen next time through. */ 10941 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], 10942 true); 10943 } else { 10944 i40e_client_subtask(pf); 10945 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 10946 pf->state)) 10947 i40e_notify_client_of_l2_param_changes( 10948 pf->vsi[pf->lan_vsi]); 10949 } 10950 i40e_sync_filters_subtask(pf); 10951 } else { 10952 i40e_reset_subtask(pf); 10953 } 10954 10955 i40e_clean_adminq_subtask(pf); 10956 10957 /* flush memory to make sure state is correct before next watchdog */ 10958 smp_mb__before_atomic(); 10959 clear_bit(__I40E_SERVICE_SCHED, pf->state); 10960 10961 /* If the tasks have taken longer than one timer cycle or there 10962 * is more work to be done, reschedule the service task now 10963 * rather than wait for the timer to tick again. 10964 */ 10965 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 10966 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 10967 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 10968 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 10969 i40e_service_event_schedule(pf); 10970 } 10971 10972 /** 10973 * i40e_service_timer - timer callback 10974 * @t: timer list pointer 10975 **/ 10976 static void i40e_service_timer(struct timer_list *t) 10977 { 10978 struct i40e_pf *pf = from_timer(pf, t, service_timer); 10979 10980 mod_timer(&pf->service_timer, 10981 round_jiffies(jiffies + pf->service_timer_period)); 10982 i40e_service_event_schedule(pf); 10983 } 10984 10985 /** 10986 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 10987 * @vsi: the VSI being configured 10988 **/ 10989 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 10990 { 10991 struct i40e_pf *pf = vsi->back; 10992 10993 switch (vsi->type) { 10994 case I40E_VSI_MAIN: 10995 vsi->alloc_queue_pairs = pf->num_lan_qps; 10996 if (!vsi->num_tx_desc) 10997 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 10998 I40E_REQ_DESCRIPTOR_MULTIPLE); 10999 if (!vsi->num_rx_desc) 11000 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11001 I40E_REQ_DESCRIPTOR_MULTIPLE); 11002 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11003 vsi->num_q_vectors = pf->num_lan_msix; 11004 else 11005 vsi->num_q_vectors = 1; 11006 11007 break; 11008 11009 case I40E_VSI_FDIR: 11010 vsi->alloc_queue_pairs = 1; 11011 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11012 I40E_REQ_DESCRIPTOR_MULTIPLE); 11013 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT, 11014 I40E_REQ_DESCRIPTOR_MULTIPLE); 11015 vsi->num_q_vectors = pf->num_fdsb_msix; 11016 break; 11017 11018 case I40E_VSI_VMDQ2: 11019 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 11020 if (!vsi->num_tx_desc) 11021 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11022 I40E_REQ_DESCRIPTOR_MULTIPLE); 11023 if (!vsi->num_rx_desc) 11024 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11025 I40E_REQ_DESCRIPTOR_MULTIPLE); 11026 vsi->num_q_vectors = pf->num_vmdq_msix; 11027 break; 11028 11029 case I40E_VSI_SRIOV: 11030 vsi->alloc_queue_pairs = pf->num_vf_qps; 11031 if (!vsi->num_tx_desc) 11032 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11033 I40E_REQ_DESCRIPTOR_MULTIPLE); 11034 if (!vsi->num_rx_desc) 11035 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 11036 I40E_REQ_DESCRIPTOR_MULTIPLE); 11037 break; 11038 11039 default: 11040 WARN_ON(1); 11041 return -ENODATA; 11042 } 11043 11044 return 0; 11045 } 11046 11047 /** 11048 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 11049 * @vsi: VSI pointer 11050 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 11051 * 11052 * On error: returns error code (negative) 11053 * On success: returns 0 11054 **/ 11055 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 11056 { 11057 struct i40e_ring **next_rings; 11058 int size; 11059 int ret = 0; 11060 11061 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 11062 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 11063 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 11064 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 11065 if (!vsi->tx_rings) 11066 return -ENOMEM; 11067 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 11068 if (i40e_enabled_xdp_vsi(vsi)) { 11069 vsi->xdp_rings = next_rings; 11070 next_rings += vsi->alloc_queue_pairs; 11071 } 11072 vsi->rx_rings = next_rings; 11073 11074 if (alloc_qvectors) { 11075 /* allocate memory for q_vector pointers */ 11076 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 11077 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 11078 if (!vsi->q_vectors) { 11079 ret = -ENOMEM; 11080 goto err_vectors; 11081 } 11082 } 11083 return ret; 11084 11085 err_vectors: 11086 kfree(vsi->tx_rings); 11087 return ret; 11088 } 11089 11090 /** 11091 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 11092 * @pf: board private structure 11093 * @type: type of VSI 11094 * 11095 * On error: returns error code (negative) 11096 * On success: returns vsi index in PF (positive) 11097 **/ 11098 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 11099 { 11100 int ret = -ENODEV; 11101 struct i40e_vsi *vsi; 11102 int vsi_idx; 11103 int i; 11104 11105 /* Need to protect the allocation of the VSIs at the PF level */ 11106 mutex_lock(&pf->switch_mutex); 11107 11108 /* VSI list may be fragmented if VSI creation/destruction has 11109 * been happening. We can afford to do a quick scan to look 11110 * for any free VSIs in the list. 11111 * 11112 * find next empty vsi slot, looping back around if necessary 11113 */ 11114 i = pf->next_vsi; 11115 while (i < pf->num_alloc_vsi && pf->vsi[i]) 11116 i++; 11117 if (i >= pf->num_alloc_vsi) { 11118 i = 0; 11119 while (i < pf->next_vsi && pf->vsi[i]) 11120 i++; 11121 } 11122 11123 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 11124 vsi_idx = i; /* Found one! */ 11125 } else { 11126 ret = -ENODEV; 11127 goto unlock_pf; /* out of VSI slots! */ 11128 } 11129 pf->next_vsi = ++i; 11130 11131 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 11132 if (!vsi) { 11133 ret = -ENOMEM; 11134 goto unlock_pf; 11135 } 11136 vsi->type = type; 11137 vsi->back = pf; 11138 set_bit(__I40E_VSI_DOWN, vsi->state); 11139 vsi->flags = 0; 11140 vsi->idx = vsi_idx; 11141 vsi->int_rate_limit = 0; 11142 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 11143 pf->rss_table_size : 64; 11144 vsi->netdev_registered = false; 11145 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 11146 hash_init(vsi->mac_filter_hash); 11147 vsi->irqs_ready = false; 11148 11149 if (type == I40E_VSI_MAIN) { 11150 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL); 11151 if (!vsi->af_xdp_zc_qps) 11152 goto err_rings; 11153 } 11154 11155 ret = i40e_set_num_rings_in_vsi(vsi); 11156 if (ret) 11157 goto err_rings; 11158 11159 ret = i40e_vsi_alloc_arrays(vsi, true); 11160 if (ret) 11161 goto err_rings; 11162 11163 /* Setup default MSIX irq handler for VSI */ 11164 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 11165 11166 /* Initialize VSI lock */ 11167 spin_lock_init(&vsi->mac_filter_hash_lock); 11168 pf->vsi[vsi_idx] = vsi; 11169 ret = vsi_idx; 11170 goto unlock_pf; 11171 11172 err_rings: 11173 bitmap_free(vsi->af_xdp_zc_qps); 11174 pf->next_vsi = i - 1; 11175 kfree(vsi); 11176 unlock_pf: 11177 mutex_unlock(&pf->switch_mutex); 11178 return ret; 11179 } 11180 11181 /** 11182 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 11183 * @vsi: VSI pointer 11184 * @free_qvectors: a bool to specify if q_vectors need to be freed. 11185 * 11186 * On error: returns error code (negative) 11187 * On success: returns 0 11188 **/ 11189 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 11190 { 11191 /* free the ring and vector containers */ 11192 if (free_qvectors) { 11193 kfree(vsi->q_vectors); 11194 vsi->q_vectors = NULL; 11195 } 11196 kfree(vsi->tx_rings); 11197 vsi->tx_rings = NULL; 11198 vsi->rx_rings = NULL; 11199 vsi->xdp_rings = NULL; 11200 } 11201 11202 /** 11203 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 11204 * and lookup table 11205 * @vsi: Pointer to VSI structure 11206 */ 11207 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 11208 { 11209 if (!vsi) 11210 return; 11211 11212 kfree(vsi->rss_hkey_user); 11213 vsi->rss_hkey_user = NULL; 11214 11215 kfree(vsi->rss_lut_user); 11216 vsi->rss_lut_user = NULL; 11217 } 11218 11219 /** 11220 * i40e_vsi_clear - Deallocate the VSI provided 11221 * @vsi: the VSI being un-configured 11222 **/ 11223 static int i40e_vsi_clear(struct i40e_vsi *vsi) 11224 { 11225 struct i40e_pf *pf; 11226 11227 if (!vsi) 11228 return 0; 11229 11230 if (!vsi->back) 11231 goto free_vsi; 11232 pf = vsi->back; 11233 11234 mutex_lock(&pf->switch_mutex); 11235 if (!pf->vsi[vsi->idx]) { 11236 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 11237 vsi->idx, vsi->idx, vsi->type); 11238 goto unlock_vsi; 11239 } 11240 11241 if (pf->vsi[vsi->idx] != vsi) { 11242 dev_err(&pf->pdev->dev, 11243 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 11244 pf->vsi[vsi->idx]->idx, 11245 pf->vsi[vsi->idx]->type, 11246 vsi->idx, vsi->type); 11247 goto unlock_vsi; 11248 } 11249 11250 /* updates the PF for this cleared vsi */ 11251 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 11252 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 11253 11254 bitmap_free(vsi->af_xdp_zc_qps); 11255 i40e_vsi_free_arrays(vsi, true); 11256 i40e_clear_rss_config_user(vsi); 11257 11258 pf->vsi[vsi->idx] = NULL; 11259 if (vsi->idx < pf->next_vsi) 11260 pf->next_vsi = vsi->idx; 11261 11262 unlock_vsi: 11263 mutex_unlock(&pf->switch_mutex); 11264 free_vsi: 11265 kfree(vsi); 11266 11267 return 0; 11268 } 11269 11270 /** 11271 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 11272 * @vsi: the VSI being cleaned 11273 **/ 11274 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 11275 { 11276 int i; 11277 11278 if (vsi->tx_rings && vsi->tx_rings[0]) { 11279 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11280 kfree_rcu(vsi->tx_rings[i], rcu); 11281 WRITE_ONCE(vsi->tx_rings[i], NULL); 11282 WRITE_ONCE(vsi->rx_rings[i], NULL); 11283 if (vsi->xdp_rings) 11284 WRITE_ONCE(vsi->xdp_rings[i], NULL); 11285 } 11286 } 11287 } 11288 11289 /** 11290 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 11291 * @vsi: the VSI being configured 11292 **/ 11293 static int i40e_alloc_rings(struct i40e_vsi *vsi) 11294 { 11295 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 11296 struct i40e_pf *pf = vsi->back; 11297 struct i40e_ring *ring; 11298 11299 /* Set basic values in the rings to be used later during open() */ 11300 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 11301 /* allocate space for both Tx and Rx in one shot */ 11302 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 11303 if (!ring) 11304 goto err_out; 11305 11306 ring->queue_index = i; 11307 ring->reg_idx = vsi->base_queue + i; 11308 ring->ring_active = false; 11309 ring->vsi = vsi; 11310 ring->netdev = vsi->netdev; 11311 ring->dev = &pf->pdev->dev; 11312 ring->count = vsi->num_tx_desc; 11313 ring->size = 0; 11314 ring->dcb_tc = 0; 11315 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11316 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11317 ring->itr_setting = pf->tx_itr_default; 11318 WRITE_ONCE(vsi->tx_rings[i], ring++); 11319 11320 if (!i40e_enabled_xdp_vsi(vsi)) 11321 goto setup_rx; 11322 11323 ring->queue_index = vsi->alloc_queue_pairs + i; 11324 ring->reg_idx = vsi->base_queue + ring->queue_index; 11325 ring->ring_active = false; 11326 ring->vsi = vsi; 11327 ring->netdev = NULL; 11328 ring->dev = &pf->pdev->dev; 11329 ring->count = vsi->num_tx_desc; 11330 ring->size = 0; 11331 ring->dcb_tc = 0; 11332 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 11333 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 11334 set_ring_xdp(ring); 11335 ring->itr_setting = pf->tx_itr_default; 11336 WRITE_ONCE(vsi->xdp_rings[i], ring++); 11337 11338 setup_rx: 11339 ring->queue_index = i; 11340 ring->reg_idx = vsi->base_queue + i; 11341 ring->ring_active = false; 11342 ring->vsi = vsi; 11343 ring->netdev = vsi->netdev; 11344 ring->dev = &pf->pdev->dev; 11345 ring->count = vsi->num_rx_desc; 11346 ring->size = 0; 11347 ring->dcb_tc = 0; 11348 ring->itr_setting = pf->rx_itr_default; 11349 WRITE_ONCE(vsi->rx_rings[i], ring); 11350 } 11351 11352 return 0; 11353 11354 err_out: 11355 i40e_vsi_clear_rings(vsi); 11356 return -ENOMEM; 11357 } 11358 11359 /** 11360 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 11361 * @pf: board private structure 11362 * @vectors: the number of MSI-X vectors to request 11363 * 11364 * Returns the number of vectors reserved, or error 11365 **/ 11366 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 11367 { 11368 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 11369 I40E_MIN_MSIX, vectors); 11370 if (vectors < 0) { 11371 dev_info(&pf->pdev->dev, 11372 "MSI-X vector reservation failed: %d\n", vectors); 11373 vectors = 0; 11374 } 11375 11376 return vectors; 11377 } 11378 11379 /** 11380 * i40e_init_msix - Setup the MSIX capability 11381 * @pf: board private structure 11382 * 11383 * Work with the OS to set up the MSIX vectors needed. 11384 * 11385 * Returns the number of vectors reserved or negative on failure 11386 **/ 11387 static int i40e_init_msix(struct i40e_pf *pf) 11388 { 11389 struct i40e_hw *hw = &pf->hw; 11390 int cpus, extra_vectors; 11391 int vectors_left; 11392 int v_budget, i; 11393 int v_actual; 11394 int iwarp_requested = 0; 11395 11396 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 11397 return -ENODEV; 11398 11399 /* The number of vectors we'll request will be comprised of: 11400 * - Add 1 for "other" cause for Admin Queue events, etc. 11401 * - The number of LAN queue pairs 11402 * - Queues being used for RSS. 11403 * We don't need as many as max_rss_size vectors. 11404 * use rss_size instead in the calculation since that 11405 * is governed by number of cpus in the system. 11406 * - assumes symmetric Tx/Rx pairing 11407 * - The number of VMDq pairs 11408 * - The CPU count within the NUMA node if iWARP is enabled 11409 * Once we count this up, try the request. 11410 * 11411 * If we can't get what we want, we'll simplify to nearly nothing 11412 * and try again. If that still fails, we punt. 11413 */ 11414 vectors_left = hw->func_caps.num_msix_vectors; 11415 v_budget = 0; 11416 11417 /* reserve one vector for miscellaneous handler */ 11418 if (vectors_left) { 11419 v_budget++; 11420 vectors_left--; 11421 } 11422 11423 /* reserve some vectors for the main PF traffic queues. Initially we 11424 * only reserve at most 50% of the available vectors, in the case that 11425 * the number of online CPUs is large. This ensures that we can enable 11426 * extra features as well. Once we've enabled the other features, we 11427 * will use any remaining vectors to reach as close as we can to the 11428 * number of online CPUs. 11429 */ 11430 cpus = num_online_cpus(); 11431 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 11432 vectors_left -= pf->num_lan_msix; 11433 11434 /* reserve one vector for sideband flow director */ 11435 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11436 if (vectors_left) { 11437 pf->num_fdsb_msix = 1; 11438 v_budget++; 11439 vectors_left--; 11440 } else { 11441 pf->num_fdsb_msix = 0; 11442 } 11443 } 11444 11445 /* can we reserve enough for iWARP? */ 11446 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11447 iwarp_requested = pf->num_iwarp_msix; 11448 11449 if (!vectors_left) 11450 pf->num_iwarp_msix = 0; 11451 else if (vectors_left < pf->num_iwarp_msix) 11452 pf->num_iwarp_msix = 1; 11453 v_budget += pf->num_iwarp_msix; 11454 vectors_left -= pf->num_iwarp_msix; 11455 } 11456 11457 /* any vectors left over go for VMDq support */ 11458 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 11459 if (!vectors_left) { 11460 pf->num_vmdq_msix = 0; 11461 pf->num_vmdq_qps = 0; 11462 } else { 11463 int vmdq_vecs_wanted = 11464 pf->num_vmdq_vsis * pf->num_vmdq_qps; 11465 int vmdq_vecs = 11466 min_t(int, vectors_left, vmdq_vecs_wanted); 11467 11468 /* if we're short on vectors for what's desired, we limit 11469 * the queues per vmdq. If this is still more than are 11470 * available, the user will need to change the number of 11471 * queues/vectors used by the PF later with the ethtool 11472 * channels command 11473 */ 11474 if (vectors_left < vmdq_vecs_wanted) { 11475 pf->num_vmdq_qps = 1; 11476 vmdq_vecs_wanted = pf->num_vmdq_vsis; 11477 vmdq_vecs = min_t(int, 11478 vectors_left, 11479 vmdq_vecs_wanted); 11480 } 11481 pf->num_vmdq_msix = pf->num_vmdq_qps; 11482 11483 v_budget += vmdq_vecs; 11484 vectors_left -= vmdq_vecs; 11485 } 11486 } 11487 11488 /* On systems with a large number of SMP cores, we previously limited 11489 * the number of vectors for num_lan_msix to be at most 50% of the 11490 * available vectors, to allow for other features. Now, we add back 11491 * the remaining vectors. However, we ensure that the total 11492 * num_lan_msix will not exceed num_online_cpus(). To do this, we 11493 * calculate the number of vectors we can add without going over the 11494 * cap of CPUs. For systems with a small number of CPUs this will be 11495 * zero. 11496 */ 11497 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 11498 pf->num_lan_msix += extra_vectors; 11499 vectors_left -= extra_vectors; 11500 11501 WARN(vectors_left < 0, 11502 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 11503 11504 v_budget += pf->num_lan_msix; 11505 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 11506 GFP_KERNEL); 11507 if (!pf->msix_entries) 11508 return -ENOMEM; 11509 11510 for (i = 0; i < v_budget; i++) 11511 pf->msix_entries[i].entry = i; 11512 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 11513 11514 if (v_actual < I40E_MIN_MSIX) { 11515 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 11516 kfree(pf->msix_entries); 11517 pf->msix_entries = NULL; 11518 pci_disable_msix(pf->pdev); 11519 return -ENODEV; 11520 11521 } else if (v_actual == I40E_MIN_MSIX) { 11522 /* Adjust for minimal MSIX use */ 11523 pf->num_vmdq_vsis = 0; 11524 pf->num_vmdq_qps = 0; 11525 pf->num_lan_qps = 1; 11526 pf->num_lan_msix = 1; 11527 11528 } else if (v_actual != v_budget) { 11529 /* If we have limited resources, we will start with no vectors 11530 * for the special features and then allocate vectors to some 11531 * of these features based on the policy and at the end disable 11532 * the features that did not get any vectors. 11533 */ 11534 int vec; 11535 11536 dev_info(&pf->pdev->dev, 11537 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 11538 v_actual, v_budget); 11539 /* reserve the misc vector */ 11540 vec = v_actual - 1; 11541 11542 /* Scale vector usage down */ 11543 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 11544 pf->num_vmdq_vsis = 1; 11545 pf->num_vmdq_qps = 1; 11546 11547 /* partition out the remaining vectors */ 11548 switch (vec) { 11549 case 2: 11550 pf->num_lan_msix = 1; 11551 break; 11552 case 3: 11553 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11554 pf->num_lan_msix = 1; 11555 pf->num_iwarp_msix = 1; 11556 } else { 11557 pf->num_lan_msix = 2; 11558 } 11559 break; 11560 default: 11561 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 11562 pf->num_iwarp_msix = min_t(int, (vec / 3), 11563 iwarp_requested); 11564 pf->num_vmdq_vsis = min_t(int, (vec / 3), 11565 I40E_DEFAULT_NUM_VMDQ_VSI); 11566 } else { 11567 pf->num_vmdq_vsis = min_t(int, (vec / 2), 11568 I40E_DEFAULT_NUM_VMDQ_VSI); 11569 } 11570 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11571 pf->num_fdsb_msix = 1; 11572 vec--; 11573 } 11574 pf->num_lan_msix = min_t(int, 11575 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 11576 pf->num_lan_msix); 11577 pf->num_lan_qps = pf->num_lan_msix; 11578 break; 11579 } 11580 } 11581 11582 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 11583 (pf->num_fdsb_msix == 0)) { 11584 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 11585 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11586 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11587 } 11588 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 11589 (pf->num_vmdq_msix == 0)) { 11590 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 11591 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 11592 } 11593 11594 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 11595 (pf->num_iwarp_msix == 0)) { 11596 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 11597 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 11598 } 11599 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 11600 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 11601 pf->num_lan_msix, 11602 pf->num_vmdq_msix * pf->num_vmdq_vsis, 11603 pf->num_fdsb_msix, 11604 pf->num_iwarp_msix); 11605 11606 return v_actual; 11607 } 11608 11609 /** 11610 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 11611 * @vsi: the VSI being configured 11612 * @v_idx: index of the vector in the vsi struct 11613 * 11614 * We allocate one q_vector. If allocation fails we return -ENOMEM. 11615 **/ 11616 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) 11617 { 11618 struct i40e_q_vector *q_vector; 11619 11620 /* allocate q_vector */ 11621 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 11622 if (!q_vector) 11623 return -ENOMEM; 11624 11625 q_vector->vsi = vsi; 11626 q_vector->v_idx = v_idx; 11627 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 11628 11629 if (vsi->netdev) 11630 netif_napi_add(vsi->netdev, &q_vector->napi, 11631 i40e_napi_poll, NAPI_POLL_WEIGHT); 11632 11633 /* tie q_vector and vsi together */ 11634 vsi->q_vectors[v_idx] = q_vector; 11635 11636 return 0; 11637 } 11638 11639 /** 11640 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 11641 * @vsi: the VSI being configured 11642 * 11643 * We allocate one q_vector per queue interrupt. If allocation fails we 11644 * return -ENOMEM. 11645 **/ 11646 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 11647 { 11648 struct i40e_pf *pf = vsi->back; 11649 int err, v_idx, num_q_vectors; 11650 11651 /* if not MSIX, give the one vector only to the LAN VSI */ 11652 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 11653 num_q_vectors = vsi->num_q_vectors; 11654 else if (vsi == pf->vsi[pf->lan_vsi]) 11655 num_q_vectors = 1; 11656 else 11657 return -EINVAL; 11658 11659 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 11660 err = i40e_vsi_alloc_q_vector(vsi, v_idx); 11661 if (err) 11662 goto err_out; 11663 } 11664 11665 return 0; 11666 11667 err_out: 11668 while (v_idx--) 11669 i40e_free_q_vector(vsi, v_idx); 11670 11671 return err; 11672 } 11673 11674 /** 11675 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 11676 * @pf: board private structure to initialize 11677 **/ 11678 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 11679 { 11680 int vectors = 0; 11681 ssize_t size; 11682 11683 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11684 vectors = i40e_init_msix(pf); 11685 if (vectors < 0) { 11686 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 11687 I40E_FLAG_IWARP_ENABLED | 11688 I40E_FLAG_RSS_ENABLED | 11689 I40E_FLAG_DCB_CAPABLE | 11690 I40E_FLAG_DCB_ENABLED | 11691 I40E_FLAG_SRIOV_ENABLED | 11692 I40E_FLAG_FD_SB_ENABLED | 11693 I40E_FLAG_FD_ATR_ENABLED | 11694 I40E_FLAG_VMDQ_ENABLED); 11695 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11696 11697 /* rework the queue expectations without MSIX */ 11698 i40e_determine_queue_usage(pf); 11699 } 11700 } 11701 11702 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 11703 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 11704 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 11705 vectors = pci_enable_msi(pf->pdev); 11706 if (vectors < 0) { 11707 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 11708 vectors); 11709 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 11710 } 11711 vectors = 1; /* one MSI or Legacy vector */ 11712 } 11713 11714 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 11715 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 11716 11717 /* set up vector assignment tracking */ 11718 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 11719 pf->irq_pile = kzalloc(size, GFP_KERNEL); 11720 if (!pf->irq_pile) 11721 return -ENOMEM; 11722 11723 pf->irq_pile->num_entries = vectors; 11724 pf->irq_pile->search_hint = 0; 11725 11726 /* track first vector for misc interrupts, ignore return */ 11727 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 11728 11729 return 0; 11730 } 11731 11732 /** 11733 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 11734 * @pf: private board data structure 11735 * 11736 * Restore the interrupt scheme that was cleared when we suspended the 11737 * device. This should be called during resume to re-allocate the q_vectors 11738 * and reacquire IRQs. 11739 */ 11740 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 11741 { 11742 int err, i; 11743 11744 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 11745 * scheme. We need to re-enabled them here in order to attempt to 11746 * re-acquire the MSI or MSI-X vectors 11747 */ 11748 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 11749 11750 err = i40e_init_interrupt_scheme(pf); 11751 if (err) 11752 return err; 11753 11754 /* Now that we've re-acquired IRQs, we need to remap the vectors and 11755 * rings together again. 11756 */ 11757 for (i = 0; i < pf->num_alloc_vsi; i++) { 11758 if (pf->vsi[i]) { 11759 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 11760 if (err) 11761 goto err_unwind; 11762 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 11763 } 11764 } 11765 11766 err = i40e_setup_misc_vector(pf); 11767 if (err) 11768 goto err_unwind; 11769 11770 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 11771 i40e_client_update_msix_info(pf); 11772 11773 return 0; 11774 11775 err_unwind: 11776 while (i--) { 11777 if (pf->vsi[i]) 11778 i40e_vsi_free_q_vectors(pf->vsi[i]); 11779 } 11780 11781 return err; 11782 } 11783 11784 /** 11785 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle 11786 * non queue events in recovery mode 11787 * @pf: board private structure 11788 * 11789 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage 11790 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode. 11791 * This is handled differently than in recovery mode since no Tx/Rx resources 11792 * are being allocated. 11793 **/ 11794 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf) 11795 { 11796 int err; 11797 11798 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 11799 err = i40e_setup_misc_vector(pf); 11800 11801 if (err) { 11802 dev_info(&pf->pdev->dev, 11803 "MSI-X misc vector request failed, error %d\n", 11804 err); 11805 return err; 11806 } 11807 } else { 11808 u32 flags = pf->flags & I40E_FLAG_MSI_ENABLED ? 0 : IRQF_SHARED; 11809 11810 err = request_irq(pf->pdev->irq, i40e_intr, flags, 11811 pf->int_name, pf); 11812 11813 if (err) { 11814 dev_info(&pf->pdev->dev, 11815 "MSI/legacy misc vector request failed, error %d\n", 11816 err); 11817 return err; 11818 } 11819 i40e_enable_misc_int_causes(pf); 11820 i40e_irq_dynamic_enable_icr0(pf); 11821 } 11822 11823 return 0; 11824 } 11825 11826 /** 11827 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 11828 * @pf: board private structure 11829 * 11830 * This sets up the handler for MSIX 0, which is used to manage the 11831 * non-queue interrupts, e.g. AdminQ and errors. This is not used 11832 * when in MSI or Legacy interrupt mode. 11833 **/ 11834 static int i40e_setup_misc_vector(struct i40e_pf *pf) 11835 { 11836 struct i40e_hw *hw = &pf->hw; 11837 int err = 0; 11838 11839 /* Only request the IRQ once, the first time through. */ 11840 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 11841 err = request_irq(pf->msix_entries[0].vector, 11842 i40e_intr, 0, pf->int_name, pf); 11843 if (err) { 11844 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 11845 dev_info(&pf->pdev->dev, 11846 "request_irq for %s failed: %d\n", 11847 pf->int_name, err); 11848 return -EFAULT; 11849 } 11850 } 11851 11852 i40e_enable_misc_int_causes(pf); 11853 11854 /* associate no queues to the misc vector */ 11855 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 11856 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1); 11857 11858 i40e_flush(hw); 11859 11860 i40e_irq_dynamic_enable_icr0(pf); 11861 11862 return err; 11863 } 11864 11865 /** 11866 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 11867 * @vsi: Pointer to vsi structure 11868 * @seed: Buffter to store the hash keys 11869 * @lut: Buffer to store the lookup table entries 11870 * @lut_size: Size of buffer to store the lookup table entries 11871 * 11872 * Return 0 on success, negative on failure 11873 */ 11874 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 11875 u8 *lut, u16 lut_size) 11876 { 11877 struct i40e_pf *pf = vsi->back; 11878 struct i40e_hw *hw = &pf->hw; 11879 int ret = 0; 11880 11881 if (seed) { 11882 ret = i40e_aq_get_rss_key(hw, vsi->id, 11883 (struct i40e_aqc_get_set_rss_key_data *)seed); 11884 if (ret) { 11885 dev_info(&pf->pdev->dev, 11886 "Cannot get RSS key, err %s aq_err %s\n", 11887 i40e_stat_str(&pf->hw, ret), 11888 i40e_aq_str(&pf->hw, 11889 pf->hw.aq.asq_last_status)); 11890 return ret; 11891 } 11892 } 11893 11894 if (lut) { 11895 bool pf_lut = vsi->type == I40E_VSI_MAIN; 11896 11897 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 11898 if (ret) { 11899 dev_info(&pf->pdev->dev, 11900 "Cannot get RSS lut, err %s aq_err %s\n", 11901 i40e_stat_str(&pf->hw, ret), 11902 i40e_aq_str(&pf->hw, 11903 pf->hw.aq.asq_last_status)); 11904 return ret; 11905 } 11906 } 11907 11908 return ret; 11909 } 11910 11911 /** 11912 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 11913 * @vsi: Pointer to vsi structure 11914 * @seed: RSS hash seed 11915 * @lut: Lookup table 11916 * @lut_size: Lookup table size 11917 * 11918 * Returns 0 on success, negative on failure 11919 **/ 11920 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 11921 const u8 *lut, u16 lut_size) 11922 { 11923 struct i40e_pf *pf = vsi->back; 11924 struct i40e_hw *hw = &pf->hw; 11925 u16 vf_id = vsi->vf_id; 11926 u8 i; 11927 11928 /* Fill out hash function seed */ 11929 if (seed) { 11930 u32 *seed_dw = (u32 *)seed; 11931 11932 if (vsi->type == I40E_VSI_MAIN) { 11933 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11934 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 11935 } else if (vsi->type == I40E_VSI_SRIOV) { 11936 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 11937 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 11938 } else { 11939 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 11940 } 11941 } 11942 11943 if (lut) { 11944 u32 *lut_dw = (u32 *)lut; 11945 11946 if (vsi->type == I40E_VSI_MAIN) { 11947 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11948 return -EINVAL; 11949 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11950 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 11951 } else if (vsi->type == I40E_VSI_SRIOV) { 11952 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 11953 return -EINVAL; 11954 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11955 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 11956 } else { 11957 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11958 } 11959 } 11960 i40e_flush(hw); 11961 11962 return 0; 11963 } 11964 11965 /** 11966 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 11967 * @vsi: Pointer to VSI structure 11968 * @seed: Buffer to store the keys 11969 * @lut: Buffer to store the lookup table entries 11970 * @lut_size: Size of buffer to store the lookup table entries 11971 * 11972 * Returns 0 on success, negative on failure 11973 */ 11974 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 11975 u8 *lut, u16 lut_size) 11976 { 11977 struct i40e_pf *pf = vsi->back; 11978 struct i40e_hw *hw = &pf->hw; 11979 u16 i; 11980 11981 if (seed) { 11982 u32 *seed_dw = (u32 *)seed; 11983 11984 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 11985 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 11986 } 11987 if (lut) { 11988 u32 *lut_dw = (u32 *)lut; 11989 11990 if (lut_size != I40E_HLUT_ARRAY_SIZE) 11991 return -EINVAL; 11992 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11993 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 11994 } 11995 11996 return 0; 11997 } 11998 11999 /** 12000 * i40e_config_rss - Configure RSS keys and lut 12001 * @vsi: Pointer to VSI structure 12002 * @seed: RSS hash seed 12003 * @lut: Lookup table 12004 * @lut_size: Lookup table size 12005 * 12006 * Returns 0 on success, negative on failure 12007 */ 12008 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12009 { 12010 struct i40e_pf *pf = vsi->back; 12011 12012 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 12013 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 12014 else 12015 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 12016 } 12017 12018 /** 12019 * i40e_get_rss - Get RSS keys and lut 12020 * @vsi: Pointer to VSI structure 12021 * @seed: Buffer to store the keys 12022 * @lut: Buffer to store the lookup table entries 12023 * @lut_size: Size of buffer to store the lookup table entries 12024 * 12025 * Returns 0 on success, negative on failure 12026 */ 12027 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 12028 { 12029 struct i40e_pf *pf = vsi->back; 12030 12031 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 12032 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 12033 else 12034 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 12035 } 12036 12037 /** 12038 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 12039 * @pf: Pointer to board private structure 12040 * @lut: Lookup table 12041 * @rss_table_size: Lookup table size 12042 * @rss_size: Range of queue number for hashing 12043 */ 12044 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 12045 u16 rss_table_size, u16 rss_size) 12046 { 12047 u16 i; 12048 12049 for (i = 0; i < rss_table_size; i++) 12050 lut[i] = i % rss_size; 12051 } 12052 12053 /** 12054 * i40e_pf_config_rss - Prepare for RSS if used 12055 * @pf: board private structure 12056 **/ 12057 static int i40e_pf_config_rss(struct i40e_pf *pf) 12058 { 12059 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12060 u8 seed[I40E_HKEY_ARRAY_SIZE]; 12061 u8 *lut; 12062 struct i40e_hw *hw = &pf->hw; 12063 u32 reg_val; 12064 u64 hena; 12065 int ret; 12066 12067 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 12068 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 12069 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 12070 hena |= i40e_pf_get_default_rss_hena(pf); 12071 12072 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 12073 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 12074 12075 /* Determine the RSS table size based on the hardware capabilities */ 12076 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 12077 reg_val = (pf->rss_table_size == 512) ? 12078 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 12079 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 12080 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 12081 12082 /* Determine the RSS size of the VSI */ 12083 if (!vsi->rss_size) { 12084 u16 qcount; 12085 /* If the firmware does something weird during VSI init, we 12086 * could end up with zero TCs. Check for that to avoid 12087 * divide-by-zero. It probably won't pass traffic, but it also 12088 * won't panic. 12089 */ 12090 qcount = vsi->num_queue_pairs / 12091 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 12092 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12093 } 12094 if (!vsi->rss_size) 12095 return -EINVAL; 12096 12097 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 12098 if (!lut) 12099 return -ENOMEM; 12100 12101 /* Use user configured lut if there is one, otherwise use default */ 12102 if (vsi->rss_lut_user) 12103 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 12104 else 12105 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 12106 12107 /* Use user configured hash key if there is one, otherwise 12108 * use default. 12109 */ 12110 if (vsi->rss_hkey_user) 12111 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 12112 else 12113 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 12114 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 12115 kfree(lut); 12116 12117 return ret; 12118 } 12119 12120 /** 12121 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 12122 * @pf: board private structure 12123 * @queue_count: the requested queue count for rss. 12124 * 12125 * returns 0 if rss is not enabled, if enabled returns the final rss queue 12126 * count which may be different from the requested queue count. 12127 * Note: expects to be called while under rtnl_lock() 12128 **/ 12129 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 12130 { 12131 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 12132 int new_rss_size; 12133 12134 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 12135 return 0; 12136 12137 queue_count = min_t(int, queue_count, num_online_cpus()); 12138 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 12139 12140 if (queue_count != vsi->num_queue_pairs) { 12141 u16 qcount; 12142 12143 vsi->req_queue_pairs = queue_count; 12144 i40e_prep_for_reset(pf); 12145 12146 pf->alloc_rss_size = new_rss_size; 12147 12148 i40e_reset_and_rebuild(pf, true, true); 12149 12150 /* Discard the user configured hash keys and lut, if less 12151 * queues are enabled. 12152 */ 12153 if (queue_count < vsi->rss_size) { 12154 i40e_clear_rss_config_user(vsi); 12155 dev_dbg(&pf->pdev->dev, 12156 "discard user configured hash keys and lut\n"); 12157 } 12158 12159 /* Reset vsi->rss_size, as number of enabled queues changed */ 12160 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 12161 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 12162 12163 i40e_pf_config_rss(pf); 12164 } 12165 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 12166 vsi->req_queue_pairs, pf->rss_size_max); 12167 return pf->alloc_rss_size; 12168 } 12169 12170 /** 12171 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 12172 * @pf: board private structure 12173 **/ 12174 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 12175 { 12176 i40e_status status; 12177 bool min_valid, max_valid; 12178 u32 max_bw, min_bw; 12179 12180 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 12181 &min_valid, &max_valid); 12182 12183 if (!status) { 12184 if (min_valid) 12185 pf->min_bw = min_bw; 12186 if (max_valid) 12187 pf->max_bw = max_bw; 12188 } 12189 12190 return status; 12191 } 12192 12193 /** 12194 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 12195 * @pf: board private structure 12196 **/ 12197 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 12198 { 12199 struct i40e_aqc_configure_partition_bw_data bw_data; 12200 i40e_status status; 12201 12202 memset(&bw_data, 0, sizeof(bw_data)); 12203 12204 /* Set the valid bit for this PF */ 12205 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 12206 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 12207 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 12208 12209 /* Set the new bandwidths */ 12210 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 12211 12212 return status; 12213 } 12214 12215 /** 12216 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 12217 * @pf: board private structure 12218 **/ 12219 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 12220 { 12221 /* Commit temporary BW setting to permanent NVM image */ 12222 enum i40e_admin_queue_err last_aq_status; 12223 i40e_status ret; 12224 u16 nvm_word; 12225 12226 if (pf->hw.partition_id != 1) { 12227 dev_info(&pf->pdev->dev, 12228 "Commit BW only works on partition 1! This is partition %d", 12229 pf->hw.partition_id); 12230 ret = I40E_NOT_SUPPORTED; 12231 goto bw_commit_out; 12232 } 12233 12234 /* Acquire NVM for read access */ 12235 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 12236 last_aq_status = pf->hw.aq.asq_last_status; 12237 if (ret) { 12238 dev_info(&pf->pdev->dev, 12239 "Cannot acquire NVM for read access, err %s aq_err %s\n", 12240 i40e_stat_str(&pf->hw, ret), 12241 i40e_aq_str(&pf->hw, last_aq_status)); 12242 goto bw_commit_out; 12243 } 12244 12245 /* Read word 0x10 of NVM - SW compatibility word 1 */ 12246 ret = i40e_aq_read_nvm(&pf->hw, 12247 I40E_SR_NVM_CONTROL_WORD, 12248 0x10, sizeof(nvm_word), &nvm_word, 12249 false, NULL); 12250 /* Save off last admin queue command status before releasing 12251 * the NVM 12252 */ 12253 last_aq_status = pf->hw.aq.asq_last_status; 12254 i40e_release_nvm(&pf->hw); 12255 if (ret) { 12256 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 12257 i40e_stat_str(&pf->hw, ret), 12258 i40e_aq_str(&pf->hw, last_aq_status)); 12259 goto bw_commit_out; 12260 } 12261 12262 /* Wait a bit for NVM release to complete */ 12263 msleep(50); 12264 12265 /* Acquire NVM for write access */ 12266 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 12267 last_aq_status = pf->hw.aq.asq_last_status; 12268 if (ret) { 12269 dev_info(&pf->pdev->dev, 12270 "Cannot acquire NVM for write access, err %s aq_err %s\n", 12271 i40e_stat_str(&pf->hw, ret), 12272 i40e_aq_str(&pf->hw, last_aq_status)); 12273 goto bw_commit_out; 12274 } 12275 /* Write it back out unchanged to initiate update NVM, 12276 * which will force a write of the shadow (alt) RAM to 12277 * the NVM - thus storing the bandwidth values permanently. 12278 */ 12279 ret = i40e_aq_update_nvm(&pf->hw, 12280 I40E_SR_NVM_CONTROL_WORD, 12281 0x10, sizeof(nvm_word), 12282 &nvm_word, true, 0, NULL); 12283 /* Save off last admin queue command status before releasing 12284 * the NVM 12285 */ 12286 last_aq_status = pf->hw.aq.asq_last_status; 12287 i40e_release_nvm(&pf->hw); 12288 if (ret) 12289 dev_info(&pf->pdev->dev, 12290 "BW settings NOT SAVED, err %s aq_err %s\n", 12291 i40e_stat_str(&pf->hw, ret), 12292 i40e_aq_str(&pf->hw, last_aq_status)); 12293 bw_commit_out: 12294 12295 return ret; 12296 } 12297 12298 /** 12299 * i40e_is_total_port_shutdown_enabled - read NVM and return value 12300 * if total port shutdown feature is enabled for this PF 12301 * @pf: board private structure 12302 **/ 12303 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf) 12304 { 12305 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4) 12306 #define I40E_FEATURES_ENABLE_PTR 0x2A 12307 #define I40E_CURRENT_SETTING_PTR 0x2B 12308 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D 12309 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1 12310 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0) 12311 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4 12312 i40e_status read_status = I40E_SUCCESS; 12313 u16 sr_emp_sr_settings_ptr = 0; 12314 u16 features_enable = 0; 12315 u16 link_behavior = 0; 12316 bool ret = false; 12317 12318 read_status = i40e_read_nvm_word(&pf->hw, 12319 I40E_SR_EMP_SR_SETTINGS_PTR, 12320 &sr_emp_sr_settings_ptr); 12321 if (read_status) 12322 goto err_nvm; 12323 read_status = i40e_read_nvm_word(&pf->hw, 12324 sr_emp_sr_settings_ptr + 12325 I40E_FEATURES_ENABLE_PTR, 12326 &features_enable); 12327 if (read_status) 12328 goto err_nvm; 12329 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) { 12330 read_status = i40e_read_nvm_module_data(&pf->hw, 12331 I40E_SR_EMP_SR_SETTINGS_PTR, 12332 I40E_CURRENT_SETTING_PTR, 12333 I40E_LINK_BEHAVIOR_WORD_OFFSET, 12334 I40E_LINK_BEHAVIOR_WORD_LENGTH, 12335 &link_behavior); 12336 if (read_status) 12337 goto err_nvm; 12338 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH); 12339 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior; 12340 } 12341 return ret; 12342 12343 err_nvm: 12344 dev_warn(&pf->pdev->dev, 12345 "total-port-shutdown feature is off due to read nvm error: %s\n", 12346 i40e_stat_str(&pf->hw, read_status)); 12347 return ret; 12348 } 12349 12350 /** 12351 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 12352 * @pf: board private structure to initialize 12353 * 12354 * i40e_sw_init initializes the Adapter private data structure. 12355 * Fields are initialized based on PCI device information and 12356 * OS network device settings (MTU size). 12357 **/ 12358 static int i40e_sw_init(struct i40e_pf *pf) 12359 { 12360 int err = 0; 12361 int size; 12362 12363 /* Set default capability flags */ 12364 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 12365 I40E_FLAG_MSI_ENABLED | 12366 I40E_FLAG_MSIX_ENABLED; 12367 12368 /* Set default ITR */ 12369 pf->rx_itr_default = I40E_ITR_RX_DEF; 12370 pf->tx_itr_default = I40E_ITR_TX_DEF; 12371 12372 /* Depending on PF configurations, it is possible that the RSS 12373 * maximum might end up larger than the available queues 12374 */ 12375 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 12376 pf->alloc_rss_size = 1; 12377 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 12378 pf->rss_size_max = min_t(int, pf->rss_size_max, 12379 pf->hw.func_caps.num_tx_qp); 12380 if (pf->hw.func_caps.rss) { 12381 pf->flags |= I40E_FLAG_RSS_ENABLED; 12382 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 12383 num_online_cpus()); 12384 } 12385 12386 /* MFP mode enabled */ 12387 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 12388 pf->flags |= I40E_FLAG_MFP_ENABLED; 12389 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 12390 if (i40e_get_partition_bw_setting(pf)) { 12391 dev_warn(&pf->pdev->dev, 12392 "Could not get partition bw settings\n"); 12393 } else { 12394 dev_info(&pf->pdev->dev, 12395 "Partition BW Min = %8.8x, Max = %8.8x\n", 12396 pf->min_bw, pf->max_bw); 12397 12398 /* nudge the Tx scheduler */ 12399 i40e_set_partition_bw_setting(pf); 12400 } 12401 } 12402 12403 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 12404 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 12405 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 12406 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 12407 if (pf->flags & I40E_FLAG_MFP_ENABLED && 12408 pf->hw.num_partitions > 1) 12409 dev_info(&pf->pdev->dev, 12410 "Flow Director Sideband mode Disabled in MFP mode\n"); 12411 else 12412 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12413 pf->fdir_pf_filter_count = 12414 pf->hw.func_caps.fd_filters_guaranteed; 12415 pf->hw.fdir_shared_filter_count = 12416 pf->hw.func_caps.fd_filters_best_effort; 12417 } 12418 12419 if (pf->hw.mac.type == I40E_MAC_X722) { 12420 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 12421 I40E_HW_128_QP_RSS_CAPABLE | 12422 I40E_HW_ATR_EVICT_CAPABLE | 12423 I40E_HW_WB_ON_ITR_CAPABLE | 12424 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 12425 I40E_HW_NO_PCI_LINK_CHECK | 12426 I40E_HW_USE_SET_LLDP_MIB | 12427 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 12428 I40E_HW_PTP_L4_CAPABLE | 12429 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 12430 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 12431 12432 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 12433 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 12434 I40E_FDEVICT_PCTYPE_DEFAULT) { 12435 dev_warn(&pf->pdev->dev, 12436 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 12437 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 12438 } 12439 } else if ((pf->hw.aq.api_maj_ver > 1) || 12440 ((pf->hw.aq.api_maj_ver == 1) && 12441 (pf->hw.aq.api_min_ver > 4))) { 12442 /* Supported in FW API version higher than 1.4 */ 12443 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 12444 } 12445 12446 /* Enable HW ATR eviction if possible */ 12447 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 12448 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 12449 12450 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12451 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 12452 (pf->hw.aq.fw_maj_ver < 4))) { 12453 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 12454 /* No DCB support for FW < v4.33 */ 12455 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 12456 } 12457 12458 /* Disable FW LLDP if FW < v4.3 */ 12459 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12460 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 12461 (pf->hw.aq.fw_maj_ver < 4))) 12462 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 12463 12464 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 12465 if ((pf->hw.mac.type == I40E_MAC_XL710) && 12466 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 12467 (pf->hw.aq.fw_maj_ver >= 5))) 12468 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 12469 12470 /* Enable PTP L4 if FW > v6.0 */ 12471 if (pf->hw.mac.type == I40E_MAC_XL710 && 12472 pf->hw.aq.fw_maj_ver >= 6) 12473 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 12474 12475 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 12476 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 12477 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 12478 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 12479 } 12480 12481 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 12482 pf->flags |= I40E_FLAG_IWARP_ENABLED; 12483 /* IWARP needs one extra vector for CQP just like MISC.*/ 12484 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 12485 } 12486 /* Stopping FW LLDP engine is supported on XL710 and X722 12487 * starting from FW versions determined in i40e_init_adminq. 12488 * Stopping the FW LLDP engine is not supported on XL710 12489 * if NPAR is functioning so unset this hw flag in this case. 12490 */ 12491 if (pf->hw.mac.type == I40E_MAC_XL710 && 12492 pf->hw.func_caps.npar_enable && 12493 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 12494 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 12495 12496 #ifdef CONFIG_PCI_IOV 12497 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 12498 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 12499 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 12500 pf->num_req_vfs = min_t(int, 12501 pf->hw.func_caps.num_vfs, 12502 I40E_MAX_VF_COUNT); 12503 } 12504 #endif /* CONFIG_PCI_IOV */ 12505 pf->eeprom_version = 0xDEAD; 12506 pf->lan_veb = I40E_NO_VEB; 12507 pf->lan_vsi = I40E_NO_VSI; 12508 12509 /* By default FW has this off for performance reasons */ 12510 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 12511 12512 /* set up queue assignment tracking */ 12513 size = sizeof(struct i40e_lump_tracking) 12514 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 12515 pf->qp_pile = kzalloc(size, GFP_KERNEL); 12516 if (!pf->qp_pile) { 12517 err = -ENOMEM; 12518 goto sw_init_done; 12519 } 12520 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 12521 pf->qp_pile->search_hint = 0; 12522 12523 pf->tx_timeout_recovery_level = 1; 12524 12525 if (pf->hw.mac.type != I40E_MAC_X722 && 12526 i40e_is_total_port_shutdown_enabled(pf)) { 12527 /* Link down on close must be on when total port shutdown 12528 * is enabled for a given port 12529 */ 12530 pf->flags |= (I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENABLED | 12531 I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED); 12532 dev_info(&pf->pdev->dev, 12533 "total-port-shutdown was enabled, link-down-on-close is forced on\n"); 12534 } 12535 mutex_init(&pf->switch_mutex); 12536 12537 sw_init_done: 12538 return err; 12539 } 12540 12541 /** 12542 * i40e_set_ntuple - set the ntuple feature flag and take action 12543 * @pf: board private structure to initialize 12544 * @features: the feature set that the stack is suggesting 12545 * 12546 * returns a bool to indicate if reset needs to happen 12547 **/ 12548 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 12549 { 12550 bool need_reset = false; 12551 12552 /* Check if Flow Director n-tuple support was enabled or disabled. If 12553 * the state changed, we need to reset. 12554 */ 12555 if (features & NETIF_F_NTUPLE) { 12556 /* Enable filters and mark for reset */ 12557 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 12558 need_reset = true; 12559 /* enable FD_SB only if there is MSI-X vector and no cloud 12560 * filters exist 12561 */ 12562 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 12563 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 12564 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 12565 } 12566 } else { 12567 /* turn off filters, mark for reset and clear SW filter list */ 12568 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 12569 need_reset = true; 12570 i40e_fdir_filter_exit(pf); 12571 } 12572 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 12573 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 12574 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 12575 12576 /* reset fd counters */ 12577 pf->fd_add_err = 0; 12578 pf->fd_atr_cnt = 0; 12579 /* if ATR was auto disabled it can be re-enabled. */ 12580 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 12581 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 12582 (I40E_DEBUG_FD & pf->hw.debug_mask)) 12583 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 12584 } 12585 return need_reset; 12586 } 12587 12588 /** 12589 * i40e_clear_rss_lut - clear the rx hash lookup table 12590 * @vsi: the VSI being configured 12591 **/ 12592 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 12593 { 12594 struct i40e_pf *pf = vsi->back; 12595 struct i40e_hw *hw = &pf->hw; 12596 u16 vf_id = vsi->vf_id; 12597 u8 i; 12598 12599 if (vsi->type == I40E_VSI_MAIN) { 12600 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 12601 wr32(hw, I40E_PFQF_HLUT(i), 0); 12602 } else if (vsi->type == I40E_VSI_SRIOV) { 12603 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 12604 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 12605 } else { 12606 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 12607 } 12608 } 12609 12610 /** 12611 * i40e_set_features - set the netdev feature flags 12612 * @netdev: ptr to the netdev being adjusted 12613 * @features: the feature set that the stack is suggesting 12614 * Note: expects to be called while under rtnl_lock() 12615 **/ 12616 static int i40e_set_features(struct net_device *netdev, 12617 netdev_features_t features) 12618 { 12619 struct i40e_netdev_priv *np = netdev_priv(netdev); 12620 struct i40e_vsi *vsi = np->vsi; 12621 struct i40e_pf *pf = vsi->back; 12622 bool need_reset; 12623 12624 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 12625 i40e_pf_config_rss(pf); 12626 else if (!(features & NETIF_F_RXHASH) && 12627 netdev->features & NETIF_F_RXHASH) 12628 i40e_clear_rss_lut(vsi); 12629 12630 if (features & NETIF_F_HW_VLAN_CTAG_RX) 12631 i40e_vlan_stripping_enable(vsi); 12632 else 12633 i40e_vlan_stripping_disable(vsi); 12634 12635 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 12636 dev_err(&pf->pdev->dev, 12637 "Offloaded tc filters active, can't turn hw_tc_offload off"); 12638 return -EINVAL; 12639 } 12640 12641 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt) 12642 i40e_del_all_macvlans(vsi); 12643 12644 need_reset = i40e_set_ntuple(pf, features); 12645 12646 if (need_reset) 12647 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12648 12649 return 0; 12650 } 12651 12652 static int i40e_udp_tunnel_set_port(struct net_device *netdev, 12653 unsigned int table, unsigned int idx, 12654 struct udp_tunnel_info *ti) 12655 { 12656 struct i40e_netdev_priv *np = netdev_priv(netdev); 12657 struct i40e_hw *hw = &np->vsi->back->hw; 12658 u8 type, filter_index; 12659 i40e_status ret; 12660 12661 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN : 12662 I40E_AQC_TUNNEL_TYPE_NGE; 12663 12664 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index, 12665 NULL); 12666 if (ret) { 12667 netdev_info(netdev, "add UDP port failed, err %s aq_err %s\n", 12668 i40e_stat_str(hw, ret), 12669 i40e_aq_str(hw, hw->aq.asq_last_status)); 12670 return -EIO; 12671 } 12672 12673 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index); 12674 return 0; 12675 } 12676 12677 static int i40e_udp_tunnel_unset_port(struct net_device *netdev, 12678 unsigned int table, unsigned int idx, 12679 struct udp_tunnel_info *ti) 12680 { 12681 struct i40e_netdev_priv *np = netdev_priv(netdev); 12682 struct i40e_hw *hw = &np->vsi->back->hw; 12683 i40e_status ret; 12684 12685 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL); 12686 if (ret) { 12687 netdev_info(netdev, "delete UDP port failed, err %s aq_err %s\n", 12688 i40e_stat_str(hw, ret), 12689 i40e_aq_str(hw, hw->aq.asq_last_status)); 12690 return -EIO; 12691 } 12692 12693 return 0; 12694 } 12695 12696 static int i40e_get_phys_port_id(struct net_device *netdev, 12697 struct netdev_phys_item_id *ppid) 12698 { 12699 struct i40e_netdev_priv *np = netdev_priv(netdev); 12700 struct i40e_pf *pf = np->vsi->back; 12701 struct i40e_hw *hw = &pf->hw; 12702 12703 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 12704 return -EOPNOTSUPP; 12705 12706 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 12707 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 12708 12709 return 0; 12710 } 12711 12712 /** 12713 * i40e_ndo_fdb_add - add an entry to the hardware database 12714 * @ndm: the input from the stack 12715 * @tb: pointer to array of nladdr (unused) 12716 * @dev: the net device pointer 12717 * @addr: the MAC address entry being added 12718 * @vid: VLAN ID 12719 * @flags: instructions from stack about fdb operation 12720 * @extack: netlink extended ack, unused currently 12721 */ 12722 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 12723 struct net_device *dev, 12724 const unsigned char *addr, u16 vid, 12725 u16 flags, 12726 struct netlink_ext_ack *extack) 12727 { 12728 struct i40e_netdev_priv *np = netdev_priv(dev); 12729 struct i40e_pf *pf = np->vsi->back; 12730 int err = 0; 12731 12732 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 12733 return -EOPNOTSUPP; 12734 12735 if (vid) { 12736 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 12737 return -EINVAL; 12738 } 12739 12740 /* Hardware does not support aging addresses so if a 12741 * ndm_state is given only allow permanent addresses 12742 */ 12743 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 12744 netdev_info(dev, "FDB only supports static addresses\n"); 12745 return -EINVAL; 12746 } 12747 12748 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 12749 err = dev_uc_add_excl(dev, addr); 12750 else if (is_multicast_ether_addr(addr)) 12751 err = dev_mc_add_excl(dev, addr); 12752 else 12753 err = -EINVAL; 12754 12755 /* Only return duplicate errors if NLM_F_EXCL is set */ 12756 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 12757 err = 0; 12758 12759 return err; 12760 } 12761 12762 /** 12763 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 12764 * @dev: the netdev being configured 12765 * @nlh: RTNL message 12766 * @flags: bridge flags 12767 * @extack: netlink extended ack 12768 * 12769 * Inserts a new hardware bridge if not already created and 12770 * enables the bridging mode requested (VEB or VEPA). If the 12771 * hardware bridge has already been inserted and the request 12772 * is to change the mode then that requires a PF reset to 12773 * allow rebuild of the components with required hardware 12774 * bridge mode enabled. 12775 * 12776 * Note: expects to be called while under rtnl_lock() 12777 **/ 12778 static int i40e_ndo_bridge_setlink(struct net_device *dev, 12779 struct nlmsghdr *nlh, 12780 u16 flags, 12781 struct netlink_ext_ack *extack) 12782 { 12783 struct i40e_netdev_priv *np = netdev_priv(dev); 12784 struct i40e_vsi *vsi = np->vsi; 12785 struct i40e_pf *pf = vsi->back; 12786 struct i40e_veb *veb = NULL; 12787 struct nlattr *attr, *br_spec; 12788 int i, rem; 12789 12790 /* Only for PF VSI for now */ 12791 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12792 return -EOPNOTSUPP; 12793 12794 /* Find the HW bridge for PF VSI */ 12795 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12796 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12797 veb = pf->veb[i]; 12798 } 12799 12800 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 12801 12802 nla_for_each_nested(attr, br_spec, rem) { 12803 __u16 mode; 12804 12805 if (nla_type(attr) != IFLA_BRIDGE_MODE) 12806 continue; 12807 12808 mode = nla_get_u16(attr); 12809 if ((mode != BRIDGE_MODE_VEPA) && 12810 (mode != BRIDGE_MODE_VEB)) 12811 return -EINVAL; 12812 12813 /* Insert a new HW bridge */ 12814 if (!veb) { 12815 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12816 vsi->tc_config.enabled_tc); 12817 if (veb) { 12818 veb->bridge_mode = mode; 12819 i40e_config_bridge_mode(veb); 12820 } else { 12821 /* No Bridge HW offload available */ 12822 return -ENOENT; 12823 } 12824 break; 12825 } else if (mode != veb->bridge_mode) { 12826 /* Existing HW bridge but different mode needs reset */ 12827 veb->bridge_mode = mode; 12828 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 12829 if (mode == BRIDGE_MODE_VEB) 12830 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 12831 else 12832 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12833 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 12834 break; 12835 } 12836 } 12837 12838 return 0; 12839 } 12840 12841 /** 12842 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 12843 * @skb: skb buff 12844 * @pid: process id 12845 * @seq: RTNL message seq # 12846 * @dev: the netdev being configured 12847 * @filter_mask: unused 12848 * @nlflags: netlink flags passed in 12849 * 12850 * Return the mode in which the hardware bridge is operating in 12851 * i.e VEB or VEPA. 12852 **/ 12853 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 12854 struct net_device *dev, 12855 u32 __always_unused filter_mask, 12856 int nlflags) 12857 { 12858 struct i40e_netdev_priv *np = netdev_priv(dev); 12859 struct i40e_vsi *vsi = np->vsi; 12860 struct i40e_pf *pf = vsi->back; 12861 struct i40e_veb *veb = NULL; 12862 int i; 12863 12864 /* Only for PF VSI for now */ 12865 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 12866 return -EOPNOTSUPP; 12867 12868 /* Find the HW bridge for the PF VSI */ 12869 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12870 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12871 veb = pf->veb[i]; 12872 } 12873 12874 if (!veb) 12875 return 0; 12876 12877 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 12878 0, 0, nlflags, filter_mask, NULL); 12879 } 12880 12881 /** 12882 * i40e_features_check - Validate encapsulated packet conforms to limits 12883 * @skb: skb buff 12884 * @dev: This physical port's netdev 12885 * @features: Offload features that the stack believes apply 12886 **/ 12887 static netdev_features_t i40e_features_check(struct sk_buff *skb, 12888 struct net_device *dev, 12889 netdev_features_t features) 12890 { 12891 size_t len; 12892 12893 /* No point in doing any of this if neither checksum nor GSO are 12894 * being requested for this frame. We can rule out both by just 12895 * checking for CHECKSUM_PARTIAL 12896 */ 12897 if (skb->ip_summed != CHECKSUM_PARTIAL) 12898 return features; 12899 12900 /* We cannot support GSO if the MSS is going to be less than 12901 * 64 bytes. If it is then we need to drop support for GSO. 12902 */ 12903 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 12904 features &= ~NETIF_F_GSO_MASK; 12905 12906 /* MACLEN can support at most 63 words */ 12907 len = skb_network_header(skb) - skb->data; 12908 if (len & ~(63 * 2)) 12909 goto out_err; 12910 12911 /* IPLEN and EIPLEN can support at most 127 dwords */ 12912 len = skb_transport_header(skb) - skb_network_header(skb); 12913 if (len & ~(127 * 4)) 12914 goto out_err; 12915 12916 if (skb->encapsulation) { 12917 /* L4TUNLEN can support 127 words */ 12918 len = skb_inner_network_header(skb) - skb_transport_header(skb); 12919 if (len & ~(127 * 2)) 12920 goto out_err; 12921 12922 /* IPLEN can support at most 127 dwords */ 12923 len = skb_inner_transport_header(skb) - 12924 skb_inner_network_header(skb); 12925 if (len & ~(127 * 4)) 12926 goto out_err; 12927 } 12928 12929 /* No need to validate L4LEN as TCP is the only protocol with a 12930 * a flexible value and we support all possible values supported 12931 * by TCP, which is at most 15 dwords 12932 */ 12933 12934 return features; 12935 out_err: 12936 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 12937 } 12938 12939 /** 12940 * i40e_xdp_setup - add/remove an XDP program 12941 * @vsi: VSI to changed 12942 * @prog: XDP program 12943 * @extack: netlink extended ack 12944 **/ 12945 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog, 12946 struct netlink_ext_ack *extack) 12947 { 12948 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 12949 struct i40e_pf *pf = vsi->back; 12950 struct bpf_prog *old_prog; 12951 bool need_reset; 12952 int i; 12953 12954 /* Don't allow frames that span over multiple buffers */ 12955 if (frame_size > vsi->rx_buf_len) { 12956 NL_SET_ERR_MSG_MOD(extack, "MTU too large to enable XDP"); 12957 return -EINVAL; 12958 } 12959 12960 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 12961 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 12962 12963 if (need_reset) 12964 i40e_prep_for_reset(pf); 12965 12966 old_prog = xchg(&vsi->xdp_prog, prog); 12967 12968 if (need_reset) { 12969 if (!prog) 12970 /* Wait until ndo_xsk_wakeup completes. */ 12971 synchronize_rcu(); 12972 i40e_reset_and_rebuild(pf, true, true); 12973 } 12974 12975 for (i = 0; i < vsi->num_queue_pairs; i++) 12976 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 12977 12978 if (old_prog) 12979 bpf_prog_put(old_prog); 12980 12981 /* Kick start the NAPI context if there is an AF_XDP socket open 12982 * on that queue id. This so that receiving will start. 12983 */ 12984 if (need_reset && prog) 12985 for (i = 0; i < vsi->num_queue_pairs; i++) 12986 if (vsi->xdp_rings[i]->xsk_pool) 12987 (void)i40e_xsk_wakeup(vsi->netdev, i, 12988 XDP_WAKEUP_RX); 12989 12990 return 0; 12991 } 12992 12993 /** 12994 * i40e_enter_busy_conf - Enters busy config state 12995 * @vsi: vsi 12996 * 12997 * Returns 0 on success, <0 for failure. 12998 **/ 12999 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 13000 { 13001 struct i40e_pf *pf = vsi->back; 13002 int timeout = 50; 13003 13004 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 13005 timeout--; 13006 if (!timeout) 13007 return -EBUSY; 13008 usleep_range(1000, 2000); 13009 } 13010 13011 return 0; 13012 } 13013 13014 /** 13015 * i40e_exit_busy_conf - Exits busy config state 13016 * @vsi: vsi 13017 **/ 13018 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 13019 { 13020 struct i40e_pf *pf = vsi->back; 13021 13022 clear_bit(__I40E_CONFIG_BUSY, pf->state); 13023 } 13024 13025 /** 13026 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 13027 * @vsi: vsi 13028 * @queue_pair: queue pair 13029 **/ 13030 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 13031 { 13032 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 13033 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 13034 memset(&vsi->tx_rings[queue_pair]->stats, 0, 13035 sizeof(vsi->tx_rings[queue_pair]->stats)); 13036 if (i40e_enabled_xdp_vsi(vsi)) { 13037 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 13038 sizeof(vsi->xdp_rings[queue_pair]->stats)); 13039 } 13040 } 13041 13042 /** 13043 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 13044 * @vsi: vsi 13045 * @queue_pair: queue pair 13046 **/ 13047 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 13048 { 13049 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 13050 if (i40e_enabled_xdp_vsi(vsi)) { 13051 /* Make sure that in-progress ndo_xdp_xmit calls are 13052 * completed. 13053 */ 13054 synchronize_rcu(); 13055 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 13056 } 13057 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 13058 } 13059 13060 /** 13061 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 13062 * @vsi: vsi 13063 * @queue_pair: queue pair 13064 * @enable: true for enable, false for disable 13065 **/ 13066 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 13067 bool enable) 13068 { 13069 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13070 struct i40e_q_vector *q_vector = rxr->q_vector; 13071 13072 if (!vsi->netdev) 13073 return; 13074 13075 /* All rings in a qp belong to the same qvector. */ 13076 if (q_vector->rx.ring || q_vector->tx.ring) { 13077 if (enable) 13078 napi_enable(&q_vector->napi); 13079 else 13080 napi_disable(&q_vector->napi); 13081 } 13082 } 13083 13084 /** 13085 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 13086 * @vsi: vsi 13087 * @queue_pair: queue pair 13088 * @enable: true for enable, false for disable 13089 * 13090 * Returns 0 on success, <0 on failure. 13091 **/ 13092 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 13093 bool enable) 13094 { 13095 struct i40e_pf *pf = vsi->back; 13096 int pf_q, ret = 0; 13097 13098 pf_q = vsi->base_queue + queue_pair; 13099 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 13100 false /*is xdp*/, enable); 13101 if (ret) { 13102 dev_info(&pf->pdev->dev, 13103 "VSI seid %d Tx ring %d %sable timeout\n", 13104 vsi->seid, pf_q, (enable ? "en" : "dis")); 13105 return ret; 13106 } 13107 13108 i40e_control_rx_q(pf, pf_q, enable); 13109 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 13110 if (ret) { 13111 dev_info(&pf->pdev->dev, 13112 "VSI seid %d Rx ring %d %sable timeout\n", 13113 vsi->seid, pf_q, (enable ? "en" : "dis")); 13114 return ret; 13115 } 13116 13117 /* Due to HW errata, on Rx disable only, the register can 13118 * indicate done before it really is. Needs 50ms to be sure 13119 */ 13120 if (!enable) 13121 mdelay(50); 13122 13123 if (!i40e_enabled_xdp_vsi(vsi)) 13124 return ret; 13125 13126 ret = i40e_control_wait_tx_q(vsi->seid, pf, 13127 pf_q + vsi->alloc_queue_pairs, 13128 true /*is xdp*/, enable); 13129 if (ret) { 13130 dev_info(&pf->pdev->dev, 13131 "VSI seid %d XDP Tx ring %d %sable timeout\n", 13132 vsi->seid, pf_q, (enable ? "en" : "dis")); 13133 } 13134 13135 return ret; 13136 } 13137 13138 /** 13139 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 13140 * @vsi: vsi 13141 * @queue_pair: queue_pair 13142 **/ 13143 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 13144 { 13145 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13146 struct i40e_pf *pf = vsi->back; 13147 struct i40e_hw *hw = &pf->hw; 13148 13149 /* All rings in a qp belong to the same qvector. */ 13150 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 13151 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 13152 else 13153 i40e_irq_dynamic_enable_icr0(pf); 13154 13155 i40e_flush(hw); 13156 } 13157 13158 /** 13159 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 13160 * @vsi: vsi 13161 * @queue_pair: queue_pair 13162 **/ 13163 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 13164 { 13165 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 13166 struct i40e_pf *pf = vsi->back; 13167 struct i40e_hw *hw = &pf->hw; 13168 13169 /* For simplicity, instead of removing the qp interrupt causes 13170 * from the interrupt linked list, we simply disable the interrupt, and 13171 * leave the list intact. 13172 * 13173 * All rings in a qp belong to the same qvector. 13174 */ 13175 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 13176 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 13177 13178 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 13179 i40e_flush(hw); 13180 synchronize_irq(pf->msix_entries[intpf].vector); 13181 } else { 13182 /* Legacy and MSI mode - this stops all interrupt handling */ 13183 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 13184 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 13185 i40e_flush(hw); 13186 synchronize_irq(pf->pdev->irq); 13187 } 13188 } 13189 13190 /** 13191 * i40e_queue_pair_disable - Disables a queue pair 13192 * @vsi: vsi 13193 * @queue_pair: queue pair 13194 * 13195 * Returns 0 on success, <0 on failure. 13196 **/ 13197 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 13198 { 13199 int err; 13200 13201 err = i40e_enter_busy_conf(vsi); 13202 if (err) 13203 return err; 13204 13205 i40e_queue_pair_disable_irq(vsi, queue_pair); 13206 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 13207 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 13208 i40e_queue_pair_clean_rings(vsi, queue_pair); 13209 i40e_queue_pair_reset_stats(vsi, queue_pair); 13210 13211 return err; 13212 } 13213 13214 /** 13215 * i40e_queue_pair_enable - Enables a queue pair 13216 * @vsi: vsi 13217 * @queue_pair: queue pair 13218 * 13219 * Returns 0 on success, <0 on failure. 13220 **/ 13221 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 13222 { 13223 int err; 13224 13225 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 13226 if (err) 13227 return err; 13228 13229 if (i40e_enabled_xdp_vsi(vsi)) { 13230 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 13231 if (err) 13232 return err; 13233 } 13234 13235 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 13236 if (err) 13237 return err; 13238 13239 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 13240 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 13241 i40e_queue_pair_enable_irq(vsi, queue_pair); 13242 13243 i40e_exit_busy_conf(vsi); 13244 13245 return err; 13246 } 13247 13248 /** 13249 * i40e_xdp - implements ndo_bpf for i40e 13250 * @dev: netdevice 13251 * @xdp: XDP command 13252 **/ 13253 static int i40e_xdp(struct net_device *dev, 13254 struct netdev_bpf *xdp) 13255 { 13256 struct i40e_netdev_priv *np = netdev_priv(dev); 13257 struct i40e_vsi *vsi = np->vsi; 13258 13259 if (vsi->type != I40E_VSI_MAIN) 13260 return -EINVAL; 13261 13262 switch (xdp->command) { 13263 case XDP_SETUP_PROG: 13264 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack); 13265 case XDP_SETUP_XSK_POOL: 13266 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool, 13267 xdp->xsk.queue_id); 13268 default: 13269 return -EINVAL; 13270 } 13271 } 13272 13273 static const struct net_device_ops i40e_netdev_ops = { 13274 .ndo_open = i40e_open, 13275 .ndo_stop = i40e_close, 13276 .ndo_start_xmit = i40e_lan_xmit_frame, 13277 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 13278 .ndo_set_rx_mode = i40e_set_rx_mode, 13279 .ndo_validate_addr = eth_validate_addr, 13280 .ndo_set_mac_address = i40e_set_mac, 13281 .ndo_change_mtu = i40e_change_mtu, 13282 .ndo_do_ioctl = i40e_ioctl, 13283 .ndo_tx_timeout = i40e_tx_timeout, 13284 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 13285 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 13286 #ifdef CONFIG_NET_POLL_CONTROLLER 13287 .ndo_poll_controller = i40e_netpoll, 13288 #endif 13289 .ndo_setup_tc = __i40e_setup_tc, 13290 .ndo_set_features = i40e_set_features, 13291 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 13292 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 13293 .ndo_get_vf_stats = i40e_get_vf_stats, 13294 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 13295 .ndo_get_vf_config = i40e_ndo_get_vf_config, 13296 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 13297 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 13298 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 13299 .ndo_get_phys_port_id = i40e_get_phys_port_id, 13300 .ndo_fdb_add = i40e_ndo_fdb_add, 13301 .ndo_features_check = i40e_features_check, 13302 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 13303 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 13304 .ndo_bpf = i40e_xdp, 13305 .ndo_xdp_xmit = i40e_xdp_xmit, 13306 .ndo_xsk_wakeup = i40e_xsk_wakeup, 13307 .ndo_dfwd_add_station = i40e_fwd_add, 13308 .ndo_dfwd_del_station = i40e_fwd_del, 13309 }; 13310 13311 /** 13312 * i40e_config_netdev - Setup the netdev flags 13313 * @vsi: the VSI being configured 13314 * 13315 * Returns 0 on success, negative value on failure 13316 **/ 13317 static int i40e_config_netdev(struct i40e_vsi *vsi) 13318 { 13319 struct i40e_pf *pf = vsi->back; 13320 struct i40e_hw *hw = &pf->hw; 13321 struct i40e_netdev_priv *np; 13322 struct net_device *netdev; 13323 u8 broadcast[ETH_ALEN]; 13324 u8 mac_addr[ETH_ALEN]; 13325 int etherdev_size; 13326 netdev_features_t hw_enc_features; 13327 netdev_features_t hw_features; 13328 13329 etherdev_size = sizeof(struct i40e_netdev_priv); 13330 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 13331 if (!netdev) 13332 return -ENOMEM; 13333 13334 vsi->netdev = netdev; 13335 np = netdev_priv(netdev); 13336 np->vsi = vsi; 13337 13338 hw_enc_features = NETIF_F_SG | 13339 NETIF_F_IP_CSUM | 13340 NETIF_F_IPV6_CSUM | 13341 NETIF_F_HIGHDMA | 13342 NETIF_F_SOFT_FEATURES | 13343 NETIF_F_TSO | 13344 NETIF_F_TSO_ECN | 13345 NETIF_F_TSO6 | 13346 NETIF_F_GSO_GRE | 13347 NETIF_F_GSO_GRE_CSUM | 13348 NETIF_F_GSO_PARTIAL | 13349 NETIF_F_GSO_IPXIP4 | 13350 NETIF_F_GSO_IPXIP6 | 13351 NETIF_F_GSO_UDP_TUNNEL | 13352 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13353 NETIF_F_GSO_UDP_L4 | 13354 NETIF_F_SCTP_CRC | 13355 NETIF_F_RXHASH | 13356 NETIF_F_RXCSUM | 13357 0; 13358 13359 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 13360 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 13361 13362 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic; 13363 13364 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 13365 13366 netdev->hw_enc_features |= hw_enc_features; 13367 13368 /* record features VLANs can make use of */ 13369 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 13370 13371 /* enable macvlan offloads */ 13372 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; 13373 13374 hw_features = hw_enc_features | 13375 NETIF_F_HW_VLAN_CTAG_TX | 13376 NETIF_F_HW_VLAN_CTAG_RX; 13377 13378 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 13379 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 13380 13381 netdev->hw_features |= hw_features; 13382 13383 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 13384 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 13385 13386 if (vsi->type == I40E_VSI_MAIN) { 13387 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 13388 ether_addr_copy(mac_addr, hw->mac.perm_addr); 13389 /* The following steps are necessary for two reasons. First, 13390 * some older NVM configurations load a default MAC-VLAN 13391 * filter that will accept any tagged packet, and we want to 13392 * replace this with a normal filter. Additionally, it is 13393 * possible our MAC address was provided by the platform using 13394 * Open Firmware or similar. 13395 * 13396 * Thus, we need to remove the default filter and install one 13397 * specific to the MAC address. 13398 */ 13399 i40e_rm_default_mac_filter(vsi, mac_addr); 13400 spin_lock_bh(&vsi->mac_filter_hash_lock); 13401 i40e_add_mac_filter(vsi, mac_addr); 13402 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13403 } else { 13404 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 13405 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 13406 * the end, which is 4 bytes long, so force truncation of the 13407 * original name by IFNAMSIZ - 4 13408 */ 13409 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 13410 IFNAMSIZ - 4, 13411 pf->vsi[pf->lan_vsi]->netdev->name); 13412 eth_random_addr(mac_addr); 13413 13414 spin_lock_bh(&vsi->mac_filter_hash_lock); 13415 i40e_add_mac_filter(vsi, mac_addr); 13416 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13417 } 13418 13419 /* Add the broadcast filter so that we initially will receive 13420 * broadcast packets. Note that when a new VLAN is first added the 13421 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 13422 * specific filters as part of transitioning into "vlan" operation. 13423 * When more VLANs are added, the driver will copy each existing MAC 13424 * filter and add it for the new VLAN. 13425 * 13426 * Broadcast filters are handled specially by 13427 * i40e_sync_filters_subtask, as the driver must to set the broadcast 13428 * promiscuous bit instead of adding this directly as a MAC/VLAN 13429 * filter. The subtask will update the correct broadcast promiscuous 13430 * bits as VLANs become active or inactive. 13431 */ 13432 eth_broadcast_addr(broadcast); 13433 spin_lock_bh(&vsi->mac_filter_hash_lock); 13434 i40e_add_mac_filter(vsi, broadcast); 13435 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13436 13437 ether_addr_copy(netdev->dev_addr, mac_addr); 13438 ether_addr_copy(netdev->perm_addr, mac_addr); 13439 13440 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 13441 netdev->neigh_priv_len = sizeof(u32) * 4; 13442 13443 netdev->priv_flags |= IFF_UNICAST_FLT; 13444 netdev->priv_flags |= IFF_SUPP_NOFCS; 13445 /* Setup netdev TC information */ 13446 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 13447 13448 netdev->netdev_ops = &i40e_netdev_ops; 13449 netdev->watchdog_timeo = 5 * HZ; 13450 i40e_set_ethtool_ops(netdev); 13451 13452 /* MTU range: 68 - 9706 */ 13453 netdev->min_mtu = ETH_MIN_MTU; 13454 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 13455 13456 return 0; 13457 } 13458 13459 /** 13460 * i40e_vsi_delete - Delete a VSI from the switch 13461 * @vsi: the VSI being removed 13462 * 13463 * Returns 0 on success, negative value on failure 13464 **/ 13465 static void i40e_vsi_delete(struct i40e_vsi *vsi) 13466 { 13467 /* remove default VSI is not allowed */ 13468 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 13469 return; 13470 13471 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 13472 } 13473 13474 /** 13475 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 13476 * @vsi: the VSI being queried 13477 * 13478 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 13479 **/ 13480 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 13481 { 13482 struct i40e_veb *veb; 13483 struct i40e_pf *pf = vsi->back; 13484 13485 /* Uplink is not a bridge so default to VEB */ 13486 if (vsi->veb_idx >= I40E_MAX_VEB) 13487 return 1; 13488 13489 veb = pf->veb[vsi->veb_idx]; 13490 if (!veb) { 13491 dev_info(&pf->pdev->dev, 13492 "There is no veb associated with the bridge\n"); 13493 return -ENOENT; 13494 } 13495 13496 /* Uplink is a bridge in VEPA mode */ 13497 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 13498 return 0; 13499 } else { 13500 /* Uplink is a bridge in VEB mode */ 13501 return 1; 13502 } 13503 13504 /* VEPA is now default bridge, so return 0 */ 13505 return 0; 13506 } 13507 13508 /** 13509 * i40e_add_vsi - Add a VSI to the switch 13510 * @vsi: the VSI being configured 13511 * 13512 * This initializes a VSI context depending on the VSI type to be added and 13513 * passes it down to the add_vsi aq command. 13514 **/ 13515 static int i40e_add_vsi(struct i40e_vsi *vsi) 13516 { 13517 int ret = -ENODEV; 13518 struct i40e_pf *pf = vsi->back; 13519 struct i40e_hw *hw = &pf->hw; 13520 struct i40e_vsi_context ctxt; 13521 struct i40e_mac_filter *f; 13522 struct hlist_node *h; 13523 int bkt; 13524 13525 u8 enabled_tc = 0x1; /* TC0 enabled */ 13526 int f_count = 0; 13527 13528 memset(&ctxt, 0, sizeof(ctxt)); 13529 switch (vsi->type) { 13530 case I40E_VSI_MAIN: 13531 /* The PF's main VSI is already setup as part of the 13532 * device initialization, so we'll not bother with 13533 * the add_vsi call, but we will retrieve the current 13534 * VSI context. 13535 */ 13536 ctxt.seid = pf->main_vsi_seid; 13537 ctxt.pf_num = pf->hw.pf_id; 13538 ctxt.vf_num = 0; 13539 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 13540 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13541 if (ret) { 13542 dev_info(&pf->pdev->dev, 13543 "couldn't get PF vsi config, err %s aq_err %s\n", 13544 i40e_stat_str(&pf->hw, ret), 13545 i40e_aq_str(&pf->hw, 13546 pf->hw.aq.asq_last_status)); 13547 return -ENOENT; 13548 } 13549 vsi->info = ctxt.info; 13550 vsi->info.valid_sections = 0; 13551 13552 vsi->seid = ctxt.seid; 13553 vsi->id = ctxt.vsi_number; 13554 13555 enabled_tc = i40e_pf_get_tc_map(pf); 13556 13557 /* Source pruning is enabled by default, so the flag is 13558 * negative logic - if it's set, we need to fiddle with 13559 * the VSI to disable source pruning. 13560 */ 13561 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 13562 memset(&ctxt, 0, sizeof(ctxt)); 13563 ctxt.seid = pf->main_vsi_seid; 13564 ctxt.pf_num = pf->hw.pf_id; 13565 ctxt.vf_num = 0; 13566 ctxt.info.valid_sections |= 13567 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13568 ctxt.info.switch_id = 13569 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 13570 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13571 if (ret) { 13572 dev_info(&pf->pdev->dev, 13573 "update vsi failed, err %s aq_err %s\n", 13574 i40e_stat_str(&pf->hw, ret), 13575 i40e_aq_str(&pf->hw, 13576 pf->hw.aq.asq_last_status)); 13577 ret = -ENOENT; 13578 goto err; 13579 } 13580 } 13581 13582 /* MFP mode setup queue map and update VSI */ 13583 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 13584 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 13585 memset(&ctxt, 0, sizeof(ctxt)); 13586 ctxt.seid = pf->main_vsi_seid; 13587 ctxt.pf_num = pf->hw.pf_id; 13588 ctxt.vf_num = 0; 13589 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 13590 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 13591 if (ret) { 13592 dev_info(&pf->pdev->dev, 13593 "update vsi failed, err %s aq_err %s\n", 13594 i40e_stat_str(&pf->hw, ret), 13595 i40e_aq_str(&pf->hw, 13596 pf->hw.aq.asq_last_status)); 13597 ret = -ENOENT; 13598 goto err; 13599 } 13600 /* update the local VSI info queue map */ 13601 i40e_vsi_update_queue_map(vsi, &ctxt); 13602 vsi->info.valid_sections = 0; 13603 } else { 13604 /* Default/Main VSI is only enabled for TC0 13605 * reconfigure it to enable all TCs that are 13606 * available on the port in SFP mode. 13607 * For MFP case the iSCSI PF would use this 13608 * flow to enable LAN+iSCSI TC. 13609 */ 13610 ret = i40e_vsi_config_tc(vsi, enabled_tc); 13611 if (ret) { 13612 /* Single TC condition is not fatal, 13613 * message and continue 13614 */ 13615 dev_info(&pf->pdev->dev, 13616 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 13617 enabled_tc, 13618 i40e_stat_str(&pf->hw, ret), 13619 i40e_aq_str(&pf->hw, 13620 pf->hw.aq.asq_last_status)); 13621 } 13622 } 13623 break; 13624 13625 case I40E_VSI_FDIR: 13626 ctxt.pf_num = hw->pf_id; 13627 ctxt.vf_num = 0; 13628 ctxt.uplink_seid = vsi->uplink_seid; 13629 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13630 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 13631 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 13632 (i40e_is_vsi_uplink_mode_veb(vsi))) { 13633 ctxt.info.valid_sections |= 13634 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13635 ctxt.info.switch_id = 13636 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13637 } 13638 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13639 break; 13640 13641 case I40E_VSI_VMDQ2: 13642 ctxt.pf_num = hw->pf_id; 13643 ctxt.vf_num = 0; 13644 ctxt.uplink_seid = vsi->uplink_seid; 13645 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13646 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 13647 13648 /* This VSI is connected to VEB so the switch_id 13649 * should be set to zero by default. 13650 */ 13651 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13652 ctxt.info.valid_sections |= 13653 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13654 ctxt.info.switch_id = 13655 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13656 } 13657 13658 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13659 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13660 break; 13661 13662 case I40E_VSI_SRIOV: 13663 ctxt.pf_num = hw->pf_id; 13664 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 13665 ctxt.uplink_seid = vsi->uplink_seid; 13666 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 13667 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 13668 13669 /* This VSI is connected to VEB so the switch_id 13670 * should be set to zero by default. 13671 */ 13672 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 13673 ctxt.info.valid_sections |= 13674 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 13675 ctxt.info.switch_id = 13676 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 13677 } 13678 13679 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 13680 ctxt.info.valid_sections |= 13681 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 13682 ctxt.info.queueing_opt_flags |= 13683 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 13684 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 13685 } 13686 13687 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 13688 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 13689 if (pf->vf[vsi->vf_id].spoofchk) { 13690 ctxt.info.valid_sections |= 13691 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 13692 ctxt.info.sec_flags |= 13693 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 13694 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 13695 } 13696 /* Setup the VSI tx/rx queue map for TC0 only for now */ 13697 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 13698 break; 13699 13700 case I40E_VSI_IWARP: 13701 /* send down message to iWARP */ 13702 break; 13703 13704 default: 13705 return -ENODEV; 13706 } 13707 13708 if (vsi->type != I40E_VSI_MAIN) { 13709 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 13710 if (ret) { 13711 dev_info(&vsi->back->pdev->dev, 13712 "add vsi failed, err %s aq_err %s\n", 13713 i40e_stat_str(&pf->hw, ret), 13714 i40e_aq_str(&pf->hw, 13715 pf->hw.aq.asq_last_status)); 13716 ret = -ENOENT; 13717 goto err; 13718 } 13719 vsi->info = ctxt.info; 13720 vsi->info.valid_sections = 0; 13721 vsi->seid = ctxt.seid; 13722 vsi->id = ctxt.vsi_number; 13723 } 13724 13725 vsi->active_filters = 0; 13726 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 13727 spin_lock_bh(&vsi->mac_filter_hash_lock); 13728 /* If macvlan filters already exist, force them to get loaded */ 13729 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 13730 f->state = I40E_FILTER_NEW; 13731 f_count++; 13732 } 13733 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13734 13735 if (f_count) { 13736 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 13737 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 13738 } 13739 13740 /* Update VSI BW information */ 13741 ret = i40e_vsi_get_bw_info(vsi); 13742 if (ret) { 13743 dev_info(&pf->pdev->dev, 13744 "couldn't get vsi bw info, err %s aq_err %s\n", 13745 i40e_stat_str(&pf->hw, ret), 13746 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13747 /* VSI is already added so not tearing that up */ 13748 ret = 0; 13749 } 13750 13751 err: 13752 return ret; 13753 } 13754 13755 /** 13756 * i40e_vsi_release - Delete a VSI and free its resources 13757 * @vsi: the VSI being removed 13758 * 13759 * Returns 0 on success or < 0 on error 13760 **/ 13761 int i40e_vsi_release(struct i40e_vsi *vsi) 13762 { 13763 struct i40e_mac_filter *f; 13764 struct hlist_node *h; 13765 struct i40e_veb *veb = NULL; 13766 struct i40e_pf *pf; 13767 u16 uplink_seid; 13768 int i, n, bkt; 13769 13770 pf = vsi->back; 13771 13772 /* release of a VEB-owner or last VSI is not allowed */ 13773 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 13774 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 13775 vsi->seid, vsi->uplink_seid); 13776 return -ENODEV; 13777 } 13778 if (vsi == pf->vsi[pf->lan_vsi] && 13779 !test_bit(__I40E_DOWN, pf->state)) { 13780 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 13781 return -ENODEV; 13782 } 13783 13784 uplink_seid = vsi->uplink_seid; 13785 if (vsi->type != I40E_VSI_SRIOV) { 13786 if (vsi->netdev_registered) { 13787 vsi->netdev_registered = false; 13788 if (vsi->netdev) { 13789 /* results in a call to i40e_close() */ 13790 unregister_netdev(vsi->netdev); 13791 } 13792 } else { 13793 i40e_vsi_close(vsi); 13794 } 13795 i40e_vsi_disable_irq(vsi); 13796 } 13797 13798 spin_lock_bh(&vsi->mac_filter_hash_lock); 13799 13800 /* clear the sync flag on all filters */ 13801 if (vsi->netdev) { 13802 __dev_uc_unsync(vsi->netdev, NULL); 13803 __dev_mc_unsync(vsi->netdev, NULL); 13804 } 13805 13806 /* make sure any remaining filters are marked for deletion */ 13807 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 13808 __i40e_del_filter(vsi, f); 13809 13810 spin_unlock_bh(&vsi->mac_filter_hash_lock); 13811 13812 i40e_sync_vsi_filters(vsi); 13813 13814 i40e_vsi_delete(vsi); 13815 i40e_vsi_free_q_vectors(vsi); 13816 if (vsi->netdev) { 13817 free_netdev(vsi->netdev); 13818 vsi->netdev = NULL; 13819 } 13820 i40e_vsi_clear_rings(vsi); 13821 i40e_vsi_clear(vsi); 13822 13823 /* If this was the last thing on the VEB, except for the 13824 * controlling VSI, remove the VEB, which puts the controlling 13825 * VSI onto the next level down in the switch. 13826 * 13827 * Well, okay, there's one more exception here: don't remove 13828 * the orphan VEBs yet. We'll wait for an explicit remove request 13829 * from up the network stack. 13830 */ 13831 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 13832 if (pf->vsi[i] && 13833 pf->vsi[i]->uplink_seid == uplink_seid && 13834 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13835 n++; /* count the VSIs */ 13836 } 13837 } 13838 for (i = 0; i < I40E_MAX_VEB; i++) { 13839 if (!pf->veb[i]) 13840 continue; 13841 if (pf->veb[i]->uplink_seid == uplink_seid) 13842 n++; /* count the VEBs */ 13843 if (pf->veb[i]->seid == uplink_seid) 13844 veb = pf->veb[i]; 13845 } 13846 if (n == 0 && veb && veb->uplink_seid != 0) 13847 i40e_veb_release(veb); 13848 13849 return 0; 13850 } 13851 13852 /** 13853 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 13854 * @vsi: ptr to the VSI 13855 * 13856 * This should only be called after i40e_vsi_mem_alloc() which allocates the 13857 * corresponding SW VSI structure and initializes num_queue_pairs for the 13858 * newly allocated VSI. 13859 * 13860 * Returns 0 on success or negative on failure 13861 **/ 13862 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 13863 { 13864 int ret = -ENOENT; 13865 struct i40e_pf *pf = vsi->back; 13866 13867 if (vsi->q_vectors[0]) { 13868 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 13869 vsi->seid); 13870 return -EEXIST; 13871 } 13872 13873 if (vsi->base_vector) { 13874 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 13875 vsi->seid, vsi->base_vector); 13876 return -EEXIST; 13877 } 13878 13879 ret = i40e_vsi_alloc_q_vectors(vsi); 13880 if (ret) { 13881 dev_info(&pf->pdev->dev, 13882 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 13883 vsi->num_q_vectors, vsi->seid, ret); 13884 vsi->num_q_vectors = 0; 13885 goto vector_setup_out; 13886 } 13887 13888 /* In Legacy mode, we do not have to get any other vector since we 13889 * piggyback on the misc/ICR0 for queue interrupts. 13890 */ 13891 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 13892 return ret; 13893 if (vsi->num_q_vectors) 13894 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 13895 vsi->num_q_vectors, vsi->idx); 13896 if (vsi->base_vector < 0) { 13897 dev_info(&pf->pdev->dev, 13898 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 13899 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 13900 i40e_vsi_free_q_vectors(vsi); 13901 ret = -ENOENT; 13902 goto vector_setup_out; 13903 } 13904 13905 vector_setup_out: 13906 return ret; 13907 } 13908 13909 /** 13910 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 13911 * @vsi: pointer to the vsi. 13912 * 13913 * This re-allocates a vsi's queue resources. 13914 * 13915 * Returns pointer to the successfully allocated and configured VSI sw struct 13916 * on success, otherwise returns NULL on failure. 13917 **/ 13918 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 13919 { 13920 u16 alloc_queue_pairs; 13921 struct i40e_pf *pf; 13922 u8 enabled_tc; 13923 int ret; 13924 13925 if (!vsi) 13926 return NULL; 13927 13928 pf = vsi->back; 13929 13930 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 13931 i40e_vsi_clear_rings(vsi); 13932 13933 i40e_vsi_free_arrays(vsi, false); 13934 i40e_set_num_rings_in_vsi(vsi); 13935 ret = i40e_vsi_alloc_arrays(vsi, false); 13936 if (ret) 13937 goto err_vsi; 13938 13939 alloc_queue_pairs = vsi->alloc_queue_pairs * 13940 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13941 13942 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13943 if (ret < 0) { 13944 dev_info(&pf->pdev->dev, 13945 "failed to get tracking for %d queues for VSI %d err %d\n", 13946 alloc_queue_pairs, vsi->seid, ret); 13947 goto err_vsi; 13948 } 13949 vsi->base_queue = ret; 13950 13951 /* Update the FW view of the VSI. Force a reset of TC and queue 13952 * layout configurations. 13953 */ 13954 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13955 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13956 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13957 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13958 if (vsi->type == I40E_VSI_MAIN) 13959 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 13960 13961 /* assign it some queues */ 13962 ret = i40e_alloc_rings(vsi); 13963 if (ret) 13964 goto err_rings; 13965 13966 /* map all of the rings to the q_vectors */ 13967 i40e_vsi_map_rings_to_vectors(vsi); 13968 return vsi; 13969 13970 err_rings: 13971 i40e_vsi_free_q_vectors(vsi); 13972 if (vsi->netdev_registered) { 13973 vsi->netdev_registered = false; 13974 unregister_netdev(vsi->netdev); 13975 free_netdev(vsi->netdev); 13976 vsi->netdev = NULL; 13977 } 13978 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13979 err_vsi: 13980 i40e_vsi_clear(vsi); 13981 return NULL; 13982 } 13983 13984 /** 13985 * i40e_vsi_setup - Set up a VSI by a given type 13986 * @pf: board private structure 13987 * @type: VSI type 13988 * @uplink_seid: the switch element to link to 13989 * @param1: usage depends upon VSI type. For VF types, indicates VF id 13990 * 13991 * This allocates the sw VSI structure and its queue resources, then add a VSI 13992 * to the identified VEB. 13993 * 13994 * Returns pointer to the successfully allocated and configure VSI sw struct on 13995 * success, otherwise returns NULL on failure. 13996 **/ 13997 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 13998 u16 uplink_seid, u32 param1) 13999 { 14000 struct i40e_vsi *vsi = NULL; 14001 struct i40e_veb *veb = NULL; 14002 u16 alloc_queue_pairs; 14003 int ret, i; 14004 int v_idx; 14005 14006 /* The requested uplink_seid must be either 14007 * - the PF's port seid 14008 * no VEB is needed because this is the PF 14009 * or this is a Flow Director special case VSI 14010 * - seid of an existing VEB 14011 * - seid of a VSI that owns an existing VEB 14012 * - seid of a VSI that doesn't own a VEB 14013 * a new VEB is created and the VSI becomes the owner 14014 * - seid of the PF VSI, which is what creates the first VEB 14015 * this is a special case of the previous 14016 * 14017 * Find which uplink_seid we were given and create a new VEB if needed 14018 */ 14019 for (i = 0; i < I40E_MAX_VEB; i++) { 14020 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 14021 veb = pf->veb[i]; 14022 break; 14023 } 14024 } 14025 14026 if (!veb && uplink_seid != pf->mac_seid) { 14027 14028 for (i = 0; i < pf->num_alloc_vsi; i++) { 14029 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 14030 vsi = pf->vsi[i]; 14031 break; 14032 } 14033 } 14034 if (!vsi) { 14035 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 14036 uplink_seid); 14037 return NULL; 14038 } 14039 14040 if (vsi->uplink_seid == pf->mac_seid) 14041 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 14042 vsi->tc_config.enabled_tc); 14043 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 14044 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 14045 vsi->tc_config.enabled_tc); 14046 if (veb) { 14047 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 14048 dev_info(&vsi->back->pdev->dev, 14049 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 14050 return NULL; 14051 } 14052 /* We come up by default in VEPA mode if SRIOV is not 14053 * already enabled, in which case we can't force VEPA 14054 * mode. 14055 */ 14056 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 14057 veb->bridge_mode = BRIDGE_MODE_VEPA; 14058 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 14059 } 14060 i40e_config_bridge_mode(veb); 14061 } 14062 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 14063 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 14064 veb = pf->veb[i]; 14065 } 14066 if (!veb) { 14067 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 14068 return NULL; 14069 } 14070 14071 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14072 uplink_seid = veb->seid; 14073 } 14074 14075 /* get vsi sw struct */ 14076 v_idx = i40e_vsi_mem_alloc(pf, type); 14077 if (v_idx < 0) 14078 goto err_alloc; 14079 vsi = pf->vsi[v_idx]; 14080 if (!vsi) 14081 goto err_alloc; 14082 vsi->type = type; 14083 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 14084 14085 if (type == I40E_VSI_MAIN) 14086 pf->lan_vsi = v_idx; 14087 else if (type == I40E_VSI_SRIOV) 14088 vsi->vf_id = param1; 14089 /* assign it some queues */ 14090 alloc_queue_pairs = vsi->alloc_queue_pairs * 14091 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 14092 14093 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 14094 if (ret < 0) { 14095 dev_info(&pf->pdev->dev, 14096 "failed to get tracking for %d queues for VSI %d err=%d\n", 14097 alloc_queue_pairs, vsi->seid, ret); 14098 goto err_vsi; 14099 } 14100 vsi->base_queue = ret; 14101 14102 /* get a VSI from the hardware */ 14103 vsi->uplink_seid = uplink_seid; 14104 ret = i40e_add_vsi(vsi); 14105 if (ret) 14106 goto err_vsi; 14107 14108 switch (vsi->type) { 14109 /* setup the netdev if needed */ 14110 case I40E_VSI_MAIN: 14111 case I40E_VSI_VMDQ2: 14112 ret = i40e_config_netdev(vsi); 14113 if (ret) 14114 goto err_netdev; 14115 ret = register_netdev(vsi->netdev); 14116 if (ret) 14117 goto err_netdev; 14118 vsi->netdev_registered = true; 14119 netif_carrier_off(vsi->netdev); 14120 #ifdef CONFIG_I40E_DCB 14121 /* Setup DCB netlink interface */ 14122 i40e_dcbnl_setup(vsi); 14123 #endif /* CONFIG_I40E_DCB */ 14124 fallthrough; 14125 case I40E_VSI_FDIR: 14126 /* set up vectors and rings if needed */ 14127 ret = i40e_vsi_setup_vectors(vsi); 14128 if (ret) 14129 goto err_msix; 14130 14131 ret = i40e_alloc_rings(vsi); 14132 if (ret) 14133 goto err_rings; 14134 14135 /* map all of the rings to the q_vectors */ 14136 i40e_vsi_map_rings_to_vectors(vsi); 14137 14138 i40e_vsi_reset_stats(vsi); 14139 break; 14140 default: 14141 /* no netdev or rings for the other VSI types */ 14142 break; 14143 } 14144 14145 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 14146 (vsi->type == I40E_VSI_VMDQ2)) { 14147 ret = i40e_vsi_config_rss(vsi); 14148 } 14149 return vsi; 14150 14151 err_rings: 14152 i40e_vsi_free_q_vectors(vsi); 14153 err_msix: 14154 if (vsi->netdev_registered) { 14155 vsi->netdev_registered = false; 14156 unregister_netdev(vsi->netdev); 14157 free_netdev(vsi->netdev); 14158 vsi->netdev = NULL; 14159 } 14160 err_netdev: 14161 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 14162 err_vsi: 14163 i40e_vsi_clear(vsi); 14164 err_alloc: 14165 return NULL; 14166 } 14167 14168 /** 14169 * i40e_veb_get_bw_info - Query VEB BW information 14170 * @veb: the veb to query 14171 * 14172 * Query the Tx scheduler BW configuration data for given VEB 14173 **/ 14174 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 14175 { 14176 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 14177 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 14178 struct i40e_pf *pf = veb->pf; 14179 struct i40e_hw *hw = &pf->hw; 14180 u32 tc_bw_max; 14181 int ret = 0; 14182 int i; 14183 14184 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 14185 &bw_data, NULL); 14186 if (ret) { 14187 dev_info(&pf->pdev->dev, 14188 "query veb bw config failed, err %s aq_err %s\n", 14189 i40e_stat_str(&pf->hw, ret), 14190 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14191 goto out; 14192 } 14193 14194 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 14195 &ets_data, NULL); 14196 if (ret) { 14197 dev_info(&pf->pdev->dev, 14198 "query veb bw ets config failed, err %s aq_err %s\n", 14199 i40e_stat_str(&pf->hw, ret), 14200 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 14201 goto out; 14202 } 14203 14204 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 14205 veb->bw_max_quanta = ets_data.tc_bw_max; 14206 veb->is_abs_credits = bw_data.absolute_credits_enable; 14207 veb->enabled_tc = ets_data.tc_valid_bits; 14208 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 14209 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 14210 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 14211 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 14212 veb->bw_tc_limit_credits[i] = 14213 le16_to_cpu(bw_data.tc_bw_limits[i]); 14214 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 14215 } 14216 14217 out: 14218 return ret; 14219 } 14220 14221 /** 14222 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 14223 * @pf: board private structure 14224 * 14225 * On error: returns error code (negative) 14226 * On success: returns vsi index in PF (positive) 14227 **/ 14228 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 14229 { 14230 int ret = -ENOENT; 14231 struct i40e_veb *veb; 14232 int i; 14233 14234 /* Need to protect the allocation of switch elements at the PF level */ 14235 mutex_lock(&pf->switch_mutex); 14236 14237 /* VEB list may be fragmented if VEB creation/destruction has 14238 * been happening. We can afford to do a quick scan to look 14239 * for any free slots in the list. 14240 * 14241 * find next empty veb slot, looping back around if necessary 14242 */ 14243 i = 0; 14244 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 14245 i++; 14246 if (i >= I40E_MAX_VEB) { 14247 ret = -ENOMEM; 14248 goto err_alloc_veb; /* out of VEB slots! */ 14249 } 14250 14251 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 14252 if (!veb) { 14253 ret = -ENOMEM; 14254 goto err_alloc_veb; 14255 } 14256 veb->pf = pf; 14257 veb->idx = i; 14258 veb->enabled_tc = 1; 14259 14260 pf->veb[i] = veb; 14261 ret = i; 14262 err_alloc_veb: 14263 mutex_unlock(&pf->switch_mutex); 14264 return ret; 14265 } 14266 14267 /** 14268 * i40e_switch_branch_release - Delete a branch of the switch tree 14269 * @branch: where to start deleting 14270 * 14271 * This uses recursion to find the tips of the branch to be 14272 * removed, deleting until we get back to and can delete this VEB. 14273 **/ 14274 static void i40e_switch_branch_release(struct i40e_veb *branch) 14275 { 14276 struct i40e_pf *pf = branch->pf; 14277 u16 branch_seid = branch->seid; 14278 u16 veb_idx = branch->idx; 14279 int i; 14280 14281 /* release any VEBs on this VEB - RECURSION */ 14282 for (i = 0; i < I40E_MAX_VEB; i++) { 14283 if (!pf->veb[i]) 14284 continue; 14285 if (pf->veb[i]->uplink_seid == branch->seid) 14286 i40e_switch_branch_release(pf->veb[i]); 14287 } 14288 14289 /* Release the VSIs on this VEB, but not the owner VSI. 14290 * 14291 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 14292 * the VEB itself, so don't use (*branch) after this loop. 14293 */ 14294 for (i = 0; i < pf->num_alloc_vsi; i++) { 14295 if (!pf->vsi[i]) 14296 continue; 14297 if (pf->vsi[i]->uplink_seid == branch_seid && 14298 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 14299 i40e_vsi_release(pf->vsi[i]); 14300 } 14301 } 14302 14303 /* There's one corner case where the VEB might not have been 14304 * removed, so double check it here and remove it if needed. 14305 * This case happens if the veb was created from the debugfs 14306 * commands and no VSIs were added to it. 14307 */ 14308 if (pf->veb[veb_idx]) 14309 i40e_veb_release(pf->veb[veb_idx]); 14310 } 14311 14312 /** 14313 * i40e_veb_clear - remove veb struct 14314 * @veb: the veb to remove 14315 **/ 14316 static void i40e_veb_clear(struct i40e_veb *veb) 14317 { 14318 if (!veb) 14319 return; 14320 14321 if (veb->pf) { 14322 struct i40e_pf *pf = veb->pf; 14323 14324 mutex_lock(&pf->switch_mutex); 14325 if (pf->veb[veb->idx] == veb) 14326 pf->veb[veb->idx] = NULL; 14327 mutex_unlock(&pf->switch_mutex); 14328 } 14329 14330 kfree(veb); 14331 } 14332 14333 /** 14334 * i40e_veb_release - Delete a VEB and free its resources 14335 * @veb: the VEB being removed 14336 **/ 14337 void i40e_veb_release(struct i40e_veb *veb) 14338 { 14339 struct i40e_vsi *vsi = NULL; 14340 struct i40e_pf *pf; 14341 int i, n = 0; 14342 14343 pf = veb->pf; 14344 14345 /* find the remaining VSI and check for extras */ 14346 for (i = 0; i < pf->num_alloc_vsi; i++) { 14347 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 14348 n++; 14349 vsi = pf->vsi[i]; 14350 } 14351 } 14352 if (n != 1) { 14353 dev_info(&pf->pdev->dev, 14354 "can't remove VEB %d with %d VSIs left\n", 14355 veb->seid, n); 14356 return; 14357 } 14358 14359 /* move the remaining VSI to uplink veb */ 14360 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 14361 if (veb->uplink_seid) { 14362 vsi->uplink_seid = veb->uplink_seid; 14363 if (veb->uplink_seid == pf->mac_seid) 14364 vsi->veb_idx = I40E_NO_VEB; 14365 else 14366 vsi->veb_idx = veb->veb_idx; 14367 } else { 14368 /* floating VEB */ 14369 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 14370 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 14371 } 14372 14373 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14374 i40e_veb_clear(veb); 14375 } 14376 14377 /** 14378 * i40e_add_veb - create the VEB in the switch 14379 * @veb: the VEB to be instantiated 14380 * @vsi: the controlling VSI 14381 **/ 14382 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 14383 { 14384 struct i40e_pf *pf = veb->pf; 14385 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 14386 int ret; 14387 14388 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 14389 veb->enabled_tc, false, 14390 &veb->seid, enable_stats, NULL); 14391 14392 /* get a VEB from the hardware */ 14393 if (ret) { 14394 dev_info(&pf->pdev->dev, 14395 "couldn't add VEB, err %s aq_err %s\n", 14396 i40e_stat_str(&pf->hw, ret), 14397 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14398 return -EPERM; 14399 } 14400 14401 /* get statistics counter */ 14402 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 14403 &veb->stats_idx, NULL, NULL, NULL); 14404 if (ret) { 14405 dev_info(&pf->pdev->dev, 14406 "couldn't get VEB statistics idx, err %s aq_err %s\n", 14407 i40e_stat_str(&pf->hw, ret), 14408 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14409 return -EPERM; 14410 } 14411 ret = i40e_veb_get_bw_info(veb); 14412 if (ret) { 14413 dev_info(&pf->pdev->dev, 14414 "couldn't get VEB bw info, err %s aq_err %s\n", 14415 i40e_stat_str(&pf->hw, ret), 14416 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14417 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 14418 return -ENOENT; 14419 } 14420 14421 vsi->uplink_seid = veb->seid; 14422 vsi->veb_idx = veb->idx; 14423 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 14424 14425 return 0; 14426 } 14427 14428 /** 14429 * i40e_veb_setup - Set up a VEB 14430 * @pf: board private structure 14431 * @flags: VEB setup flags 14432 * @uplink_seid: the switch element to link to 14433 * @vsi_seid: the initial VSI seid 14434 * @enabled_tc: Enabled TC bit-map 14435 * 14436 * This allocates the sw VEB structure and links it into the switch 14437 * It is possible and legal for this to be a duplicate of an already 14438 * existing VEB. It is also possible for both uplink and vsi seids 14439 * to be zero, in order to create a floating VEB. 14440 * 14441 * Returns pointer to the successfully allocated VEB sw struct on 14442 * success, otherwise returns NULL on failure. 14443 **/ 14444 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 14445 u16 uplink_seid, u16 vsi_seid, 14446 u8 enabled_tc) 14447 { 14448 struct i40e_veb *veb, *uplink_veb = NULL; 14449 int vsi_idx, veb_idx; 14450 int ret; 14451 14452 /* if one seid is 0, the other must be 0 to create a floating relay */ 14453 if ((uplink_seid == 0 || vsi_seid == 0) && 14454 (uplink_seid + vsi_seid != 0)) { 14455 dev_info(&pf->pdev->dev, 14456 "one, not both seid's are 0: uplink=%d vsi=%d\n", 14457 uplink_seid, vsi_seid); 14458 return NULL; 14459 } 14460 14461 /* make sure there is such a vsi and uplink */ 14462 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 14463 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 14464 break; 14465 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 14466 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 14467 vsi_seid); 14468 return NULL; 14469 } 14470 14471 if (uplink_seid && uplink_seid != pf->mac_seid) { 14472 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 14473 if (pf->veb[veb_idx] && 14474 pf->veb[veb_idx]->seid == uplink_seid) { 14475 uplink_veb = pf->veb[veb_idx]; 14476 break; 14477 } 14478 } 14479 if (!uplink_veb) { 14480 dev_info(&pf->pdev->dev, 14481 "uplink seid %d not found\n", uplink_seid); 14482 return NULL; 14483 } 14484 } 14485 14486 /* get veb sw struct */ 14487 veb_idx = i40e_veb_mem_alloc(pf); 14488 if (veb_idx < 0) 14489 goto err_alloc; 14490 veb = pf->veb[veb_idx]; 14491 veb->flags = flags; 14492 veb->uplink_seid = uplink_seid; 14493 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 14494 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 14495 14496 /* create the VEB in the switch */ 14497 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 14498 if (ret) 14499 goto err_veb; 14500 if (vsi_idx == pf->lan_vsi) 14501 pf->lan_veb = veb->idx; 14502 14503 return veb; 14504 14505 err_veb: 14506 i40e_veb_clear(veb); 14507 err_alloc: 14508 return NULL; 14509 } 14510 14511 /** 14512 * i40e_setup_pf_switch_element - set PF vars based on switch type 14513 * @pf: board private structure 14514 * @ele: element we are building info from 14515 * @num_reported: total number of elements 14516 * @printconfig: should we print the contents 14517 * 14518 * helper function to assist in extracting a few useful SEID values. 14519 **/ 14520 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 14521 struct i40e_aqc_switch_config_element_resp *ele, 14522 u16 num_reported, bool printconfig) 14523 { 14524 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 14525 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 14526 u8 element_type = ele->element_type; 14527 u16 seid = le16_to_cpu(ele->seid); 14528 14529 if (printconfig) 14530 dev_info(&pf->pdev->dev, 14531 "type=%d seid=%d uplink=%d downlink=%d\n", 14532 element_type, seid, uplink_seid, downlink_seid); 14533 14534 switch (element_type) { 14535 case I40E_SWITCH_ELEMENT_TYPE_MAC: 14536 pf->mac_seid = seid; 14537 break; 14538 case I40E_SWITCH_ELEMENT_TYPE_VEB: 14539 /* Main VEB? */ 14540 if (uplink_seid != pf->mac_seid) 14541 break; 14542 if (pf->lan_veb >= I40E_MAX_VEB) { 14543 int v; 14544 14545 /* find existing or else empty VEB */ 14546 for (v = 0; v < I40E_MAX_VEB; v++) { 14547 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 14548 pf->lan_veb = v; 14549 break; 14550 } 14551 } 14552 if (pf->lan_veb >= I40E_MAX_VEB) { 14553 v = i40e_veb_mem_alloc(pf); 14554 if (v < 0) 14555 break; 14556 pf->lan_veb = v; 14557 } 14558 } 14559 if (pf->lan_veb >= I40E_MAX_VEB) 14560 break; 14561 14562 pf->veb[pf->lan_veb]->seid = seid; 14563 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 14564 pf->veb[pf->lan_veb]->pf = pf; 14565 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 14566 break; 14567 case I40E_SWITCH_ELEMENT_TYPE_VSI: 14568 if (num_reported != 1) 14569 break; 14570 /* This is immediately after a reset so we can assume this is 14571 * the PF's VSI 14572 */ 14573 pf->mac_seid = uplink_seid; 14574 pf->pf_seid = downlink_seid; 14575 pf->main_vsi_seid = seid; 14576 if (printconfig) 14577 dev_info(&pf->pdev->dev, 14578 "pf_seid=%d main_vsi_seid=%d\n", 14579 pf->pf_seid, pf->main_vsi_seid); 14580 break; 14581 case I40E_SWITCH_ELEMENT_TYPE_PF: 14582 case I40E_SWITCH_ELEMENT_TYPE_VF: 14583 case I40E_SWITCH_ELEMENT_TYPE_EMP: 14584 case I40E_SWITCH_ELEMENT_TYPE_BMC: 14585 case I40E_SWITCH_ELEMENT_TYPE_PE: 14586 case I40E_SWITCH_ELEMENT_TYPE_PA: 14587 /* ignore these for now */ 14588 break; 14589 default: 14590 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 14591 element_type, seid); 14592 break; 14593 } 14594 } 14595 14596 /** 14597 * i40e_fetch_switch_configuration - Get switch config from firmware 14598 * @pf: board private structure 14599 * @printconfig: should we print the contents 14600 * 14601 * Get the current switch configuration from the device and 14602 * extract a few useful SEID values. 14603 **/ 14604 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 14605 { 14606 struct i40e_aqc_get_switch_config_resp *sw_config; 14607 u16 next_seid = 0; 14608 int ret = 0; 14609 u8 *aq_buf; 14610 int i; 14611 14612 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 14613 if (!aq_buf) 14614 return -ENOMEM; 14615 14616 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 14617 do { 14618 u16 num_reported, num_total; 14619 14620 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 14621 I40E_AQ_LARGE_BUF, 14622 &next_seid, NULL); 14623 if (ret) { 14624 dev_info(&pf->pdev->dev, 14625 "get switch config failed err %s aq_err %s\n", 14626 i40e_stat_str(&pf->hw, ret), 14627 i40e_aq_str(&pf->hw, 14628 pf->hw.aq.asq_last_status)); 14629 kfree(aq_buf); 14630 return -ENOENT; 14631 } 14632 14633 num_reported = le16_to_cpu(sw_config->header.num_reported); 14634 num_total = le16_to_cpu(sw_config->header.num_total); 14635 14636 if (printconfig) 14637 dev_info(&pf->pdev->dev, 14638 "header: %d reported %d total\n", 14639 num_reported, num_total); 14640 14641 for (i = 0; i < num_reported; i++) { 14642 struct i40e_aqc_switch_config_element_resp *ele = 14643 &sw_config->element[i]; 14644 14645 i40e_setup_pf_switch_element(pf, ele, num_reported, 14646 printconfig); 14647 } 14648 } while (next_seid != 0); 14649 14650 kfree(aq_buf); 14651 return ret; 14652 } 14653 14654 /** 14655 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 14656 * @pf: board private structure 14657 * @reinit: if the Main VSI needs to re-initialized. 14658 * 14659 * Returns 0 on success, negative value on failure 14660 **/ 14661 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 14662 { 14663 u16 flags = 0; 14664 int ret; 14665 14666 /* find out what's out there already */ 14667 ret = i40e_fetch_switch_configuration(pf, false); 14668 if (ret) { 14669 dev_info(&pf->pdev->dev, 14670 "couldn't fetch switch config, err %s aq_err %s\n", 14671 i40e_stat_str(&pf->hw, ret), 14672 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14673 return ret; 14674 } 14675 i40e_pf_reset_stats(pf); 14676 14677 /* set the switch config bit for the whole device to 14678 * support limited promisc or true promisc 14679 * when user requests promisc. The default is limited 14680 * promisc. 14681 */ 14682 14683 if ((pf->hw.pf_id == 0) && 14684 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 14685 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14686 pf->last_sw_conf_flags = flags; 14687 } 14688 14689 if (pf->hw.pf_id == 0) { 14690 u16 valid_flags; 14691 14692 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 14693 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 14694 NULL); 14695 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 14696 dev_info(&pf->pdev->dev, 14697 "couldn't set switch config bits, err %s aq_err %s\n", 14698 i40e_stat_str(&pf->hw, ret), 14699 i40e_aq_str(&pf->hw, 14700 pf->hw.aq.asq_last_status)); 14701 /* not a fatal problem, just keep going */ 14702 } 14703 pf->last_sw_conf_valid_flags = valid_flags; 14704 } 14705 14706 /* first time setup */ 14707 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 14708 struct i40e_vsi *vsi = NULL; 14709 u16 uplink_seid; 14710 14711 /* Set up the PF VSI associated with the PF's main VSI 14712 * that is already in the HW switch 14713 */ 14714 if (pf->lan_veb < I40E_MAX_VEB && pf->veb[pf->lan_veb]) 14715 uplink_seid = pf->veb[pf->lan_veb]->seid; 14716 else 14717 uplink_seid = pf->mac_seid; 14718 if (pf->lan_vsi == I40E_NO_VSI) 14719 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 14720 else if (reinit) 14721 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 14722 if (!vsi) { 14723 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 14724 i40e_cloud_filter_exit(pf); 14725 i40e_fdir_teardown(pf); 14726 return -EAGAIN; 14727 } 14728 } else { 14729 /* force a reset of TC and queue layout configurations */ 14730 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 14731 14732 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 14733 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 14734 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 14735 } 14736 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 14737 14738 i40e_fdir_sb_setup(pf); 14739 14740 /* Setup static PF queue filter control settings */ 14741 ret = i40e_setup_pf_filter_control(pf); 14742 if (ret) { 14743 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 14744 ret); 14745 /* Failure here should not stop continuing other steps */ 14746 } 14747 14748 /* enable RSS in the HW, even for only one queue, as the stack can use 14749 * the hash 14750 */ 14751 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 14752 i40e_pf_config_rss(pf); 14753 14754 /* fill in link information and enable LSE reporting */ 14755 i40e_link_event(pf); 14756 14757 /* Initialize user-specific link properties */ 14758 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 14759 I40E_AQ_AN_COMPLETED) ? true : false); 14760 14761 i40e_ptp_init(pf); 14762 14763 /* repopulate tunnel port filters */ 14764 udp_tunnel_nic_reset_ntf(pf->vsi[pf->lan_vsi]->netdev); 14765 14766 return ret; 14767 } 14768 14769 /** 14770 * i40e_determine_queue_usage - Work out queue distribution 14771 * @pf: board private structure 14772 **/ 14773 static void i40e_determine_queue_usage(struct i40e_pf *pf) 14774 { 14775 int queues_left; 14776 int q_max; 14777 14778 pf->num_lan_qps = 0; 14779 14780 /* Find the max queues to be put into basic use. We'll always be 14781 * using TC0, whether or not DCB is running, and TC0 will get the 14782 * big RSS set. 14783 */ 14784 queues_left = pf->hw.func_caps.num_tx_qp; 14785 14786 if ((queues_left == 1) || 14787 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 14788 /* one qp for PF, no queues for anything else */ 14789 queues_left = 0; 14790 pf->alloc_rss_size = pf->num_lan_qps = 1; 14791 14792 /* make sure all the fancies are disabled */ 14793 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14794 I40E_FLAG_IWARP_ENABLED | 14795 I40E_FLAG_FD_SB_ENABLED | 14796 I40E_FLAG_FD_ATR_ENABLED | 14797 I40E_FLAG_DCB_CAPABLE | 14798 I40E_FLAG_DCB_ENABLED | 14799 I40E_FLAG_SRIOV_ENABLED | 14800 I40E_FLAG_VMDQ_ENABLED); 14801 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14802 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 14803 I40E_FLAG_FD_SB_ENABLED | 14804 I40E_FLAG_FD_ATR_ENABLED | 14805 I40E_FLAG_DCB_CAPABLE))) { 14806 /* one qp for PF */ 14807 pf->alloc_rss_size = pf->num_lan_qps = 1; 14808 queues_left -= pf->num_lan_qps; 14809 14810 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 14811 I40E_FLAG_IWARP_ENABLED | 14812 I40E_FLAG_FD_SB_ENABLED | 14813 I40E_FLAG_FD_ATR_ENABLED | 14814 I40E_FLAG_DCB_ENABLED | 14815 I40E_FLAG_VMDQ_ENABLED); 14816 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14817 } else { 14818 /* Not enough queues for all TCs */ 14819 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 14820 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 14821 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 14822 I40E_FLAG_DCB_ENABLED); 14823 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 14824 } 14825 14826 /* limit lan qps to the smaller of qps, cpus or msix */ 14827 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 14828 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 14829 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 14830 pf->num_lan_qps = q_max; 14831 14832 queues_left -= pf->num_lan_qps; 14833 } 14834 14835 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14836 if (queues_left > 1) { 14837 queues_left -= 1; /* save 1 queue for FD */ 14838 } else { 14839 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 14840 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 14841 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 14842 } 14843 } 14844 14845 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14846 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 14847 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 14848 (queues_left / pf->num_vf_qps)); 14849 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 14850 } 14851 14852 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 14853 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 14854 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 14855 (queues_left / pf->num_vmdq_qps)); 14856 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 14857 } 14858 14859 pf->queues_left = queues_left; 14860 dev_dbg(&pf->pdev->dev, 14861 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 14862 pf->hw.func_caps.num_tx_qp, 14863 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 14864 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 14865 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 14866 queues_left); 14867 } 14868 14869 /** 14870 * i40e_setup_pf_filter_control - Setup PF static filter control 14871 * @pf: PF to be setup 14872 * 14873 * i40e_setup_pf_filter_control sets up a PF's initial filter control 14874 * settings. If PE/FCoE are enabled then it will also set the per PF 14875 * based filter sizes required for them. It also enables Flow director, 14876 * ethertype and macvlan type filter settings for the pf. 14877 * 14878 * Returns 0 on success, negative on failure 14879 **/ 14880 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 14881 { 14882 struct i40e_filter_control_settings *settings = &pf->filter_settings; 14883 14884 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 14885 14886 /* Flow Director is enabled */ 14887 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 14888 settings->enable_fdir = true; 14889 14890 /* Ethtype and MACVLAN filters enabled for PF */ 14891 settings->enable_ethtype = true; 14892 settings->enable_macvlan = true; 14893 14894 if (i40e_set_filter_control(&pf->hw, settings)) 14895 return -ENOENT; 14896 14897 return 0; 14898 } 14899 14900 #define INFO_STRING_LEN 255 14901 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 14902 static void i40e_print_features(struct i40e_pf *pf) 14903 { 14904 struct i40e_hw *hw = &pf->hw; 14905 char *buf; 14906 int i; 14907 14908 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 14909 if (!buf) 14910 return; 14911 14912 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 14913 #ifdef CONFIG_PCI_IOV 14914 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 14915 #endif 14916 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 14917 pf->hw.func_caps.num_vsis, 14918 pf->vsi[pf->lan_vsi]->num_queue_pairs); 14919 if (pf->flags & I40E_FLAG_RSS_ENABLED) 14920 i += scnprintf(&buf[i], REMAIN(i), " RSS"); 14921 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 14922 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR"); 14923 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 14924 i += scnprintf(&buf[i], REMAIN(i), " FD_SB"); 14925 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE"); 14926 } 14927 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 14928 i += scnprintf(&buf[i], REMAIN(i), " DCB"); 14929 i += scnprintf(&buf[i], REMAIN(i), " VxLAN"); 14930 i += scnprintf(&buf[i], REMAIN(i), " Geneve"); 14931 if (pf->flags & I40E_FLAG_PTP) 14932 i += scnprintf(&buf[i], REMAIN(i), " PTP"); 14933 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 14934 i += scnprintf(&buf[i], REMAIN(i), " VEB"); 14935 else 14936 i += scnprintf(&buf[i], REMAIN(i), " VEPA"); 14937 14938 dev_info(&pf->pdev->dev, "%s\n", buf); 14939 kfree(buf); 14940 WARN_ON(i > INFO_STRING_LEN); 14941 } 14942 14943 /** 14944 * i40e_get_platform_mac_addr - get platform-specific MAC address 14945 * @pdev: PCI device information struct 14946 * @pf: board private structure 14947 * 14948 * Look up the MAC address for the device. First we'll try 14949 * eth_platform_get_mac_address, which will check Open Firmware, or arch 14950 * specific fallback. Otherwise, we'll default to the stored value in 14951 * firmware. 14952 **/ 14953 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 14954 { 14955 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 14956 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 14957 } 14958 14959 /** 14960 * i40e_set_fec_in_flags - helper function for setting FEC options in flags 14961 * @fec_cfg: FEC option to set in flags 14962 * @flags: ptr to flags in which we set FEC option 14963 **/ 14964 void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags) 14965 { 14966 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) 14967 *flags |= I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC; 14968 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) || 14969 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) { 14970 *flags |= I40E_FLAG_RS_FEC; 14971 *flags &= ~I40E_FLAG_BASE_R_FEC; 14972 } 14973 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) || 14974 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) { 14975 *flags |= I40E_FLAG_BASE_R_FEC; 14976 *flags &= ~I40E_FLAG_RS_FEC; 14977 } 14978 if (fec_cfg == 0) 14979 *flags &= ~(I40E_FLAG_RS_FEC | I40E_FLAG_BASE_R_FEC); 14980 } 14981 14982 /** 14983 * i40e_check_recovery_mode - check if we are running transition firmware 14984 * @pf: board private structure 14985 * 14986 * Check registers indicating the firmware runs in recovery mode. Sets the 14987 * appropriate driver state. 14988 * 14989 * Returns true if the recovery mode was detected, false otherwise 14990 **/ 14991 static bool i40e_check_recovery_mode(struct i40e_pf *pf) 14992 { 14993 u32 val = rd32(&pf->hw, I40E_GL_FWSTS); 14994 14995 if (val & I40E_GL_FWSTS_FWS1B_MASK) { 14996 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n"); 14997 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 14998 set_bit(__I40E_RECOVERY_MODE, pf->state); 14999 15000 return true; 15001 } 15002 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15003 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n"); 15004 15005 return false; 15006 } 15007 15008 /** 15009 * i40e_pf_loop_reset - perform reset in a loop. 15010 * @pf: board private structure 15011 * 15012 * This function is useful when a NIC is about to enter recovery mode. 15013 * When a NIC's internal data structures are corrupted the NIC's 15014 * firmware is going to enter recovery mode. 15015 * Right after a POR it takes about 7 minutes for firmware to enter 15016 * recovery mode. Until that time a NIC is in some kind of intermediate 15017 * state. After that time period the NIC almost surely enters 15018 * recovery mode. The only way for a driver to detect intermediate 15019 * state is to issue a series of pf-resets and check a return value. 15020 * If a PF reset returns success then the firmware could be in recovery 15021 * mode so the caller of this code needs to check for recovery mode 15022 * if this function returns success. There is a little chance that 15023 * firmware will hang in intermediate state forever. 15024 * Since waiting 7 minutes is quite a lot of time this function waits 15025 * 10 seconds and then gives up by returning an error. 15026 * 15027 * Return 0 on success, negative on failure. 15028 **/ 15029 static i40e_status i40e_pf_loop_reset(struct i40e_pf *pf) 15030 { 15031 /* wait max 10 seconds for PF reset to succeed */ 15032 const unsigned long time_end = jiffies + 10 * HZ; 15033 15034 struct i40e_hw *hw = &pf->hw; 15035 i40e_status ret; 15036 15037 ret = i40e_pf_reset(hw); 15038 while (ret != I40E_SUCCESS && time_before(jiffies, time_end)) { 15039 usleep_range(10000, 20000); 15040 ret = i40e_pf_reset(hw); 15041 } 15042 15043 if (ret == I40E_SUCCESS) 15044 pf->pfr_count++; 15045 else 15046 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret); 15047 15048 return ret; 15049 } 15050 15051 /** 15052 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset 15053 * @pf: board private structure 15054 * 15055 * Check FW registers to determine if FW issued unexpected EMP Reset. 15056 * Every time when unexpected EMP Reset occurs the FW increments 15057 * a counter of unexpected EMP Resets. When the counter reaches 10 15058 * the FW should enter the Recovery mode 15059 * 15060 * Returns true if FW issued unexpected EMP Reset 15061 **/ 15062 static bool i40e_check_fw_empr(struct i40e_pf *pf) 15063 { 15064 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) & 15065 I40E_GL_FWSTS_FWS1B_MASK; 15066 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) && 15067 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10); 15068 } 15069 15070 /** 15071 * i40e_handle_resets - handle EMP resets and PF resets 15072 * @pf: board private structure 15073 * 15074 * Handle both EMP resets and PF resets and conclude whether there are 15075 * any issues regarding these resets. If there are any issues then 15076 * generate log entry. 15077 * 15078 * Return 0 if NIC is healthy or negative value when there are issues 15079 * with resets 15080 **/ 15081 static i40e_status i40e_handle_resets(struct i40e_pf *pf) 15082 { 15083 const i40e_status pfr = i40e_pf_loop_reset(pf); 15084 const bool is_empr = i40e_check_fw_empr(pf); 15085 15086 if (is_empr || pfr != I40E_SUCCESS) 15087 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n"); 15088 15089 return is_empr ? I40E_ERR_RESET_FAILED : pfr; 15090 } 15091 15092 /** 15093 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode 15094 * @pf: board private structure 15095 * @hw: ptr to the hardware info 15096 * 15097 * This function does a minimal setup of all subsystems needed for running 15098 * recovery mode. 15099 * 15100 * Returns 0 on success, negative on failure 15101 **/ 15102 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw) 15103 { 15104 struct i40e_vsi *vsi; 15105 int err; 15106 int v_idx; 15107 15108 pci_save_state(pf->pdev); 15109 15110 /* set up periodic task facility */ 15111 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15112 pf->service_timer_period = HZ; 15113 15114 INIT_WORK(&pf->service_task, i40e_service_task); 15115 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15116 15117 err = i40e_init_interrupt_scheme(pf); 15118 if (err) 15119 goto err_switch_setup; 15120 15121 /* The number of VSIs reported by the FW is the minimum guaranteed 15122 * to us; HW supports far more and we share the remaining pool with 15123 * the other PFs. We allocate space for more than the guarantee with 15124 * the understanding that we might not get them all later. 15125 */ 15126 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15127 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15128 else 15129 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15130 15131 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */ 15132 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15133 GFP_KERNEL); 15134 if (!pf->vsi) { 15135 err = -ENOMEM; 15136 goto err_switch_setup; 15137 } 15138 15139 /* We allocate one VSI which is needed as absolute minimum 15140 * in order to register the netdev 15141 */ 15142 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN); 15143 if (v_idx < 0) 15144 goto err_switch_setup; 15145 pf->lan_vsi = v_idx; 15146 vsi = pf->vsi[v_idx]; 15147 if (!vsi) 15148 goto err_switch_setup; 15149 vsi->alloc_queue_pairs = 1; 15150 err = i40e_config_netdev(vsi); 15151 if (err) 15152 goto err_switch_setup; 15153 err = register_netdev(vsi->netdev); 15154 if (err) 15155 goto err_switch_setup; 15156 vsi->netdev_registered = true; 15157 i40e_dbg_pf_init(pf); 15158 15159 err = i40e_setup_misc_vector_for_recovery_mode(pf); 15160 if (err) 15161 goto err_switch_setup; 15162 15163 /* tell the firmware that we're starting */ 15164 i40e_send_version(pf); 15165 15166 /* since everything's happy, start the service_task timer */ 15167 mod_timer(&pf->service_timer, 15168 round_jiffies(jiffies + pf->service_timer_period)); 15169 15170 return 0; 15171 15172 err_switch_setup: 15173 i40e_reset_interrupt_capability(pf); 15174 del_timer_sync(&pf->service_timer); 15175 i40e_shutdown_adminq(hw); 15176 iounmap(hw->hw_addr); 15177 pci_disable_pcie_error_reporting(pf->pdev); 15178 pci_release_mem_regions(pf->pdev); 15179 pci_disable_device(pf->pdev); 15180 kfree(pf); 15181 15182 return err; 15183 } 15184 15185 /** 15186 * i40e_probe - Device initialization routine 15187 * @pdev: PCI device information struct 15188 * @ent: entry in i40e_pci_tbl 15189 * 15190 * i40e_probe initializes a PF identified by a pci_dev structure. 15191 * The OS initialization, configuring of the PF private structure, 15192 * and a hardware reset occur. 15193 * 15194 * Returns 0 on success, negative on failure 15195 **/ 15196 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 15197 { 15198 struct i40e_aq_get_phy_abilities_resp abilities; 15199 #ifdef CONFIG_I40E_DCB 15200 enum i40e_get_fw_lldp_status_resp lldp_status; 15201 i40e_status status; 15202 #endif /* CONFIG_I40E_DCB */ 15203 struct i40e_pf *pf; 15204 struct i40e_hw *hw; 15205 static u16 pfs_found; 15206 u16 wol_nvm_bits; 15207 u16 link_status; 15208 int err; 15209 u32 val; 15210 u32 i; 15211 15212 err = pci_enable_device_mem(pdev); 15213 if (err) 15214 return err; 15215 15216 /* set up for high or low dma */ 15217 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 15218 if (err) { 15219 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 15220 if (err) { 15221 dev_err(&pdev->dev, 15222 "DMA configuration failed: 0x%x\n", err); 15223 goto err_dma; 15224 } 15225 } 15226 15227 /* set up pci connections */ 15228 err = pci_request_mem_regions(pdev, i40e_driver_name); 15229 if (err) { 15230 dev_info(&pdev->dev, 15231 "pci_request_selected_regions failed %d\n", err); 15232 goto err_pci_reg; 15233 } 15234 15235 pci_enable_pcie_error_reporting(pdev); 15236 pci_set_master(pdev); 15237 15238 /* Now that we have a PCI connection, we need to do the 15239 * low level device setup. This is primarily setting up 15240 * the Admin Queue structures and then querying for the 15241 * device's current profile information. 15242 */ 15243 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 15244 if (!pf) { 15245 err = -ENOMEM; 15246 goto err_pf_alloc; 15247 } 15248 pf->next_vsi = 0; 15249 pf->pdev = pdev; 15250 set_bit(__I40E_DOWN, pf->state); 15251 15252 hw = &pf->hw; 15253 hw->back = pf; 15254 15255 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 15256 I40E_MAX_CSR_SPACE); 15257 /* We believe that the highest register to read is 15258 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size 15259 * is not less than that before mapping to prevent a 15260 * kernel panic. 15261 */ 15262 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) { 15263 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n", 15264 pf->ioremap_len); 15265 err = -ENOMEM; 15266 goto err_ioremap; 15267 } 15268 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 15269 if (!hw->hw_addr) { 15270 err = -EIO; 15271 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 15272 (unsigned int)pci_resource_start(pdev, 0), 15273 pf->ioremap_len, err); 15274 goto err_ioremap; 15275 } 15276 hw->vendor_id = pdev->vendor; 15277 hw->device_id = pdev->device; 15278 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 15279 hw->subsystem_vendor_id = pdev->subsystem_vendor; 15280 hw->subsystem_device_id = pdev->subsystem_device; 15281 hw->bus.device = PCI_SLOT(pdev->devfn); 15282 hw->bus.func = PCI_FUNC(pdev->devfn); 15283 hw->bus.bus_id = pdev->bus->number; 15284 pf->instance = pfs_found; 15285 15286 /* Select something other than the 802.1ad ethertype for the 15287 * switch to use internally and drop on ingress. 15288 */ 15289 hw->switch_tag = 0xffff; 15290 hw->first_tag = ETH_P_8021AD; 15291 hw->second_tag = ETH_P_8021Q; 15292 15293 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 15294 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 15295 INIT_LIST_HEAD(&pf->ddp_old_prof); 15296 15297 /* set up the locks for the AQ, do this only once in probe 15298 * and destroy them only once in remove 15299 */ 15300 mutex_init(&hw->aq.asq_mutex); 15301 mutex_init(&hw->aq.arq_mutex); 15302 15303 pf->msg_enable = netif_msg_init(debug, 15304 NETIF_MSG_DRV | 15305 NETIF_MSG_PROBE | 15306 NETIF_MSG_LINK); 15307 if (debug < -1) 15308 pf->hw.debug_mask = debug; 15309 15310 /* do a special CORER for clearing PXE mode once at init */ 15311 if (hw->revision_id == 0 && 15312 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 15313 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 15314 i40e_flush(hw); 15315 msleep(200); 15316 pf->corer_count++; 15317 15318 i40e_clear_pxe_mode(hw); 15319 } 15320 15321 /* Reset here to make sure all is clean and to define PF 'n' */ 15322 i40e_clear_hw(hw); 15323 15324 err = i40e_set_mac_type(hw); 15325 if (err) { 15326 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15327 err); 15328 goto err_pf_reset; 15329 } 15330 15331 err = i40e_handle_resets(pf); 15332 if (err) 15333 goto err_pf_reset; 15334 15335 i40e_check_recovery_mode(pf); 15336 15337 hw->aq.num_arq_entries = I40E_AQ_LEN; 15338 hw->aq.num_asq_entries = I40E_AQ_LEN; 15339 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15340 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 15341 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 15342 15343 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 15344 "%s-%s:misc", 15345 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 15346 15347 err = i40e_init_shared_code(hw); 15348 if (err) { 15349 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 15350 err); 15351 goto err_pf_reset; 15352 } 15353 15354 /* set up a default setting for link flow control */ 15355 pf->hw.fc.requested_mode = I40E_FC_NONE; 15356 15357 err = i40e_init_adminq(hw); 15358 if (err) { 15359 if (err == I40E_ERR_FIRMWARE_API_VERSION) 15360 dev_info(&pdev->dev, 15361 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n", 15362 hw->aq.api_maj_ver, 15363 hw->aq.api_min_ver, 15364 I40E_FW_API_VERSION_MAJOR, 15365 I40E_FW_MINOR_VERSION(hw)); 15366 else 15367 dev_info(&pdev->dev, 15368 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 15369 15370 goto err_pf_reset; 15371 } 15372 i40e_get_oem_version(hw); 15373 15374 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */ 15375 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n", 15376 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 15377 hw->aq.api_maj_ver, hw->aq.api_min_ver, 15378 i40e_nvm_version_str(hw), hw->vendor_id, hw->device_id, 15379 hw->subsystem_vendor_id, hw->subsystem_device_id); 15380 15381 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 15382 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 15383 dev_info(&pdev->dev, 15384 "The driver for the device detected a newer version of the NVM image v%u.%u than expected v%u.%u. Please install the most recent version of the network driver.\n", 15385 hw->aq.api_maj_ver, 15386 hw->aq.api_min_ver, 15387 I40E_FW_API_VERSION_MAJOR, 15388 I40E_FW_MINOR_VERSION(hw)); 15389 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 15390 dev_info(&pdev->dev, 15391 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n", 15392 hw->aq.api_maj_ver, 15393 hw->aq.api_min_ver, 15394 I40E_FW_API_VERSION_MAJOR, 15395 I40E_FW_MINOR_VERSION(hw)); 15396 15397 i40e_verify_eeprom(pf); 15398 15399 /* Rev 0 hardware was never productized */ 15400 if (hw->revision_id < 1) 15401 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 15402 15403 i40e_clear_pxe_mode(hw); 15404 15405 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 15406 if (err) 15407 goto err_adminq_setup; 15408 15409 err = i40e_sw_init(pf); 15410 if (err) { 15411 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 15412 goto err_sw_init; 15413 } 15414 15415 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) 15416 return i40e_init_recovery_mode(pf, hw); 15417 15418 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 15419 hw->func_caps.num_rx_qp, 0, 0); 15420 if (err) { 15421 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 15422 goto err_init_lan_hmc; 15423 } 15424 15425 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 15426 if (err) { 15427 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 15428 err = -ENOENT; 15429 goto err_configure_lan_hmc; 15430 } 15431 15432 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 15433 * Ignore error return codes because if it was already disabled via 15434 * hardware settings this will fail 15435 */ 15436 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 15437 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 15438 i40e_aq_stop_lldp(hw, true, false, NULL); 15439 } 15440 15441 /* allow a platform config to override the HW addr */ 15442 i40e_get_platform_mac_addr(pdev, pf); 15443 15444 if (!is_valid_ether_addr(hw->mac.addr)) { 15445 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 15446 err = -EIO; 15447 goto err_mac_addr; 15448 } 15449 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 15450 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 15451 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 15452 if (is_valid_ether_addr(hw->mac.port_addr)) 15453 pf->hw_features |= I40E_HW_PORT_ID_VALID; 15454 15455 pci_set_drvdata(pdev, pf); 15456 pci_save_state(pdev); 15457 15458 #ifdef CONFIG_I40E_DCB 15459 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status); 15460 (!status && 15461 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ? 15462 (pf->flags &= ~I40E_FLAG_DISABLE_FW_LLDP) : 15463 (pf->flags |= I40E_FLAG_DISABLE_FW_LLDP); 15464 dev_info(&pdev->dev, 15465 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) ? 15466 "FW LLDP is disabled\n" : 15467 "FW LLDP is enabled\n"); 15468 15469 /* Enable FW to write default DCB config on link-up */ 15470 i40e_aq_set_dcb_parameters(hw, true, NULL); 15471 15472 err = i40e_init_pf_dcb(pf); 15473 if (err) { 15474 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 15475 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 15476 /* Continue without DCB enabled */ 15477 } 15478 #endif /* CONFIG_I40E_DCB */ 15479 15480 /* set up periodic task facility */ 15481 timer_setup(&pf->service_timer, i40e_service_timer, 0); 15482 pf->service_timer_period = HZ; 15483 15484 INIT_WORK(&pf->service_task, i40e_service_task); 15485 clear_bit(__I40E_SERVICE_SCHED, pf->state); 15486 15487 /* NVM bit on means WoL disabled for the port */ 15488 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 15489 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 15490 pf->wol_en = false; 15491 else 15492 pf->wol_en = true; 15493 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 15494 15495 /* set up the main switch operations */ 15496 i40e_determine_queue_usage(pf); 15497 err = i40e_init_interrupt_scheme(pf); 15498 if (err) 15499 goto err_switch_setup; 15500 15501 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port; 15502 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port; 15503 pf->udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 15504 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared; 15505 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS; 15506 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 15507 UDP_TUNNEL_TYPE_GENEVE; 15508 15509 /* The number of VSIs reported by the FW is the minimum guaranteed 15510 * to us; HW supports far more and we share the remaining pool with 15511 * the other PFs. We allocate space for more than the guarantee with 15512 * the understanding that we might not get them all later. 15513 */ 15514 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 15515 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 15516 else 15517 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 15518 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 15519 dev_warn(&pf->pdev->dev, 15520 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 15521 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 15522 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 15523 } 15524 15525 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 15526 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 15527 GFP_KERNEL); 15528 if (!pf->vsi) { 15529 err = -ENOMEM; 15530 goto err_switch_setup; 15531 } 15532 15533 #ifdef CONFIG_PCI_IOV 15534 /* prep for VF support */ 15535 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15536 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15537 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15538 if (pci_num_vf(pdev)) 15539 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 15540 } 15541 #endif 15542 err = i40e_setup_pf_switch(pf, false); 15543 if (err) { 15544 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 15545 goto err_vsis; 15546 } 15547 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 15548 15549 /* if FDIR VSI was set up, start it now */ 15550 for (i = 0; i < pf->num_alloc_vsi; i++) { 15551 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 15552 i40e_vsi_open(pf->vsi[i]); 15553 break; 15554 } 15555 } 15556 15557 /* The driver only wants link up/down and module qualification 15558 * reports from firmware. Note the negative logic. 15559 */ 15560 err = i40e_aq_set_phy_int_mask(&pf->hw, 15561 ~(I40E_AQ_EVENT_LINK_UPDOWN | 15562 I40E_AQ_EVENT_MEDIA_NA | 15563 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 15564 if (err) 15565 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 15566 i40e_stat_str(&pf->hw, err), 15567 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15568 15569 /* Reconfigure hardware for allowing smaller MSS in the case 15570 * of TSO, so that we avoid the MDD being fired and causing 15571 * a reset in the case of small MSS+TSO. 15572 */ 15573 val = rd32(hw, I40E_REG_MSS); 15574 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 15575 val &= ~I40E_REG_MSS_MIN_MASK; 15576 val |= I40E_64BYTE_MSS; 15577 wr32(hw, I40E_REG_MSS, val); 15578 } 15579 15580 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 15581 msleep(75); 15582 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 15583 if (err) 15584 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 15585 i40e_stat_str(&pf->hw, err), 15586 i40e_aq_str(&pf->hw, 15587 pf->hw.aq.asq_last_status)); 15588 } 15589 /* The main driver is (mostly) up and happy. We need to set this state 15590 * before setting up the misc vector or we get a race and the vector 15591 * ends up disabled forever. 15592 */ 15593 clear_bit(__I40E_DOWN, pf->state); 15594 15595 /* In case of MSIX we are going to setup the misc vector right here 15596 * to handle admin queue events etc. In case of legacy and MSI 15597 * the misc functionality and queue processing is combined in 15598 * the same vector and that gets setup at open. 15599 */ 15600 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 15601 err = i40e_setup_misc_vector(pf); 15602 if (err) { 15603 dev_info(&pdev->dev, 15604 "setup of misc vector failed: %d\n", err); 15605 i40e_cloud_filter_exit(pf); 15606 i40e_fdir_teardown(pf); 15607 goto err_vsis; 15608 } 15609 } 15610 15611 #ifdef CONFIG_PCI_IOV 15612 /* prep for VF support */ 15613 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 15614 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 15615 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 15616 /* disable link interrupts for VFs */ 15617 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 15618 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 15619 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 15620 i40e_flush(hw); 15621 15622 if (pci_num_vf(pdev)) { 15623 dev_info(&pdev->dev, 15624 "Active VFs found, allocating resources.\n"); 15625 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 15626 if (err) 15627 dev_info(&pdev->dev, 15628 "Error %d allocating resources for existing VFs\n", 15629 err); 15630 } 15631 } 15632 #endif /* CONFIG_PCI_IOV */ 15633 15634 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15635 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 15636 pf->num_iwarp_msix, 15637 I40E_IWARP_IRQ_PILE_ID); 15638 if (pf->iwarp_base_vector < 0) { 15639 dev_info(&pdev->dev, 15640 "failed to get tracking for %d vectors for IWARP err=%d\n", 15641 pf->num_iwarp_msix, pf->iwarp_base_vector); 15642 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 15643 } 15644 } 15645 15646 i40e_dbg_pf_init(pf); 15647 15648 /* tell the firmware that we're starting */ 15649 i40e_send_version(pf); 15650 15651 /* since everything's happy, start the service_task timer */ 15652 mod_timer(&pf->service_timer, 15653 round_jiffies(jiffies + pf->service_timer_period)); 15654 15655 /* add this PF to client device list and launch a client service task */ 15656 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15657 err = i40e_lan_add_device(pf); 15658 if (err) 15659 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 15660 err); 15661 } 15662 15663 #define PCI_SPEED_SIZE 8 15664 #define PCI_WIDTH_SIZE 8 15665 /* Devices on the IOSF bus do not have this information 15666 * and will report PCI Gen 1 x 1 by default so don't bother 15667 * checking them. 15668 */ 15669 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 15670 char speed[PCI_SPEED_SIZE] = "Unknown"; 15671 char width[PCI_WIDTH_SIZE] = "Unknown"; 15672 15673 /* Get the negotiated link width and speed from PCI config 15674 * space 15675 */ 15676 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 15677 &link_status); 15678 15679 i40e_set_pci_config_data(hw, link_status); 15680 15681 switch (hw->bus.speed) { 15682 case i40e_bus_speed_8000: 15683 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 15684 case i40e_bus_speed_5000: 15685 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 15686 case i40e_bus_speed_2500: 15687 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 15688 default: 15689 break; 15690 } 15691 switch (hw->bus.width) { 15692 case i40e_bus_width_pcie_x8: 15693 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 15694 case i40e_bus_width_pcie_x4: 15695 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 15696 case i40e_bus_width_pcie_x2: 15697 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 15698 case i40e_bus_width_pcie_x1: 15699 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 15700 default: 15701 break; 15702 } 15703 15704 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 15705 speed, width); 15706 15707 if (hw->bus.width < i40e_bus_width_pcie_x8 || 15708 hw->bus.speed < i40e_bus_speed_8000) { 15709 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 15710 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 15711 } 15712 } 15713 15714 /* get the requested speeds from the fw */ 15715 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 15716 if (err) 15717 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 15718 i40e_stat_str(&pf->hw, err), 15719 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15720 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 15721 15722 /* set the FEC config due to the board capabilities */ 15723 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, &pf->flags); 15724 15725 /* get the supported phy types from the fw */ 15726 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 15727 if (err) 15728 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 15729 i40e_stat_str(&pf->hw, err), 15730 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 15731 15732 /* make sure the MFS hasn't been set lower than the default */ 15733 #define MAX_FRAME_SIZE_DEFAULT 0x2600 15734 val = (rd32(&pf->hw, I40E_PRTGL_SAH) & 15735 I40E_PRTGL_SAH_MFS_MASK) >> I40E_PRTGL_SAH_MFS_SHIFT; 15736 if (val < MAX_FRAME_SIZE_DEFAULT) 15737 dev_warn(&pdev->dev, "MFS for port %x has been set below the default: %x\n", 15738 i, val); 15739 15740 /* Add a filter to drop all Flow control frames from any VSI from being 15741 * transmitted. By doing so we stop a malicious VF from sending out 15742 * PAUSE or PFC frames and potentially controlling traffic for other 15743 * PF/VF VSIs. 15744 * The FW can still send Flow control frames if enabled. 15745 */ 15746 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 15747 pf->main_vsi_seid); 15748 #ifdef CONFIG_I40E_DCB 15749 if (pf->flags & I40E_FLAG_DISABLE_FW_LLDP) 15750 i40e_set_lldp_forwarding(pf, true); 15751 #endif /* CONFIG_I40E_DCB */ 15752 15753 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 15754 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 15755 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 15756 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 15757 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 15758 /* print a string summarizing features */ 15759 i40e_print_features(pf); 15760 15761 return 0; 15762 15763 /* Unwind what we've done if something failed in the setup */ 15764 err_vsis: 15765 set_bit(__I40E_DOWN, pf->state); 15766 i40e_clear_interrupt_scheme(pf); 15767 kfree(pf->vsi); 15768 err_switch_setup: 15769 i40e_reset_interrupt_capability(pf); 15770 del_timer_sync(&pf->service_timer); 15771 err_mac_addr: 15772 err_configure_lan_hmc: 15773 (void)i40e_shutdown_lan_hmc(hw); 15774 err_init_lan_hmc: 15775 kfree(pf->qp_pile); 15776 err_sw_init: 15777 err_adminq_setup: 15778 err_pf_reset: 15779 iounmap(hw->hw_addr); 15780 err_ioremap: 15781 kfree(pf); 15782 err_pf_alloc: 15783 pci_disable_pcie_error_reporting(pdev); 15784 pci_release_mem_regions(pdev); 15785 err_pci_reg: 15786 err_dma: 15787 pci_disable_device(pdev); 15788 return err; 15789 } 15790 15791 /** 15792 * i40e_remove - Device removal routine 15793 * @pdev: PCI device information struct 15794 * 15795 * i40e_remove is called by the PCI subsystem to alert the driver 15796 * that is should release a PCI device. This could be caused by a 15797 * Hot-Plug event, or because the driver is going to be removed from 15798 * memory. 15799 **/ 15800 static void i40e_remove(struct pci_dev *pdev) 15801 { 15802 struct i40e_pf *pf = pci_get_drvdata(pdev); 15803 struct i40e_hw *hw = &pf->hw; 15804 i40e_status ret_code; 15805 int i; 15806 15807 i40e_dbg_pf_exit(pf); 15808 15809 i40e_ptp_stop(pf); 15810 15811 /* Disable RSS in hw */ 15812 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 15813 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 15814 15815 while (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 15816 usleep_range(1000, 2000); 15817 15818 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 15819 set_bit(__I40E_VF_RESETS_DISABLED, pf->state); 15820 i40e_free_vfs(pf); 15821 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 15822 } 15823 /* no more scheduling of any task */ 15824 set_bit(__I40E_SUSPENDED, pf->state); 15825 set_bit(__I40E_DOWN, pf->state); 15826 if (pf->service_timer.function) 15827 del_timer_sync(&pf->service_timer); 15828 if (pf->service_task.func) 15829 cancel_work_sync(&pf->service_task); 15830 15831 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) { 15832 struct i40e_vsi *vsi = pf->vsi[0]; 15833 15834 /* We know that we have allocated only one vsi for this PF, 15835 * it was just for registering netdevice, so the interface 15836 * could be visible in the 'ifconfig' output 15837 */ 15838 unregister_netdev(vsi->netdev); 15839 free_netdev(vsi->netdev); 15840 15841 goto unmap; 15842 } 15843 15844 /* Client close must be called explicitly here because the timer 15845 * has been stopped. 15846 */ 15847 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 15848 15849 i40e_fdir_teardown(pf); 15850 15851 /* If there is a switch structure or any orphans, remove them. 15852 * This will leave only the PF's VSI remaining. 15853 */ 15854 for (i = 0; i < I40E_MAX_VEB; i++) { 15855 if (!pf->veb[i]) 15856 continue; 15857 15858 if (pf->veb[i]->uplink_seid == pf->mac_seid || 15859 pf->veb[i]->uplink_seid == 0) 15860 i40e_switch_branch_release(pf->veb[i]); 15861 } 15862 15863 /* Now we can shutdown the PF's VSI, just before we kill 15864 * adminq and hmc. 15865 */ 15866 if (pf->vsi[pf->lan_vsi]) 15867 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 15868 15869 i40e_cloud_filter_exit(pf); 15870 15871 /* remove attached clients */ 15872 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 15873 ret_code = i40e_lan_del_device(pf); 15874 if (ret_code) 15875 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 15876 ret_code); 15877 } 15878 15879 /* shutdown and destroy the HMC */ 15880 if (hw->hmc.hmc_obj) { 15881 ret_code = i40e_shutdown_lan_hmc(hw); 15882 if (ret_code) 15883 dev_warn(&pdev->dev, 15884 "Failed to destroy the HMC resources: %d\n", 15885 ret_code); 15886 } 15887 15888 unmap: 15889 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 15890 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 15891 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 15892 free_irq(pf->pdev->irq, pf); 15893 15894 /* shutdown the adminq */ 15895 i40e_shutdown_adminq(hw); 15896 15897 /* destroy the locks only once, here */ 15898 mutex_destroy(&hw->aq.arq_mutex); 15899 mutex_destroy(&hw->aq.asq_mutex); 15900 15901 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 15902 rtnl_lock(); 15903 i40e_clear_interrupt_scheme(pf); 15904 for (i = 0; i < pf->num_alloc_vsi; i++) { 15905 if (pf->vsi[i]) { 15906 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) 15907 i40e_vsi_clear_rings(pf->vsi[i]); 15908 i40e_vsi_clear(pf->vsi[i]); 15909 pf->vsi[i] = NULL; 15910 } 15911 } 15912 rtnl_unlock(); 15913 15914 for (i = 0; i < I40E_MAX_VEB; i++) { 15915 kfree(pf->veb[i]); 15916 pf->veb[i] = NULL; 15917 } 15918 15919 kfree(pf->qp_pile); 15920 kfree(pf->vsi); 15921 15922 iounmap(hw->hw_addr); 15923 kfree(pf); 15924 pci_release_mem_regions(pdev); 15925 15926 pci_disable_pcie_error_reporting(pdev); 15927 pci_disable_device(pdev); 15928 } 15929 15930 /** 15931 * i40e_pci_error_detected - warning that something funky happened in PCI land 15932 * @pdev: PCI device information struct 15933 * @error: the type of PCI error 15934 * 15935 * Called to warn that something happened and the error handling steps 15936 * are in progress. Allows the driver to quiesce things, be ready for 15937 * remediation. 15938 **/ 15939 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 15940 pci_channel_state_t error) 15941 { 15942 struct i40e_pf *pf = pci_get_drvdata(pdev); 15943 15944 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 15945 15946 if (!pf) { 15947 dev_info(&pdev->dev, 15948 "Cannot recover - error happened during device probe\n"); 15949 return PCI_ERS_RESULT_DISCONNECT; 15950 } 15951 15952 /* shutdown all operations */ 15953 if (!test_bit(__I40E_SUSPENDED, pf->state)) 15954 i40e_prep_for_reset(pf); 15955 15956 /* Request a slot reset */ 15957 return PCI_ERS_RESULT_NEED_RESET; 15958 } 15959 15960 /** 15961 * i40e_pci_error_slot_reset - a PCI slot reset just happened 15962 * @pdev: PCI device information struct 15963 * 15964 * Called to find if the driver can work with the device now that 15965 * the pci slot has been reset. If a basic connection seems good 15966 * (registers are readable and have sane content) then return a 15967 * happy little PCI_ERS_RESULT_xxx. 15968 **/ 15969 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 15970 { 15971 struct i40e_pf *pf = pci_get_drvdata(pdev); 15972 pci_ers_result_t result; 15973 u32 reg; 15974 15975 dev_dbg(&pdev->dev, "%s\n", __func__); 15976 if (pci_enable_device_mem(pdev)) { 15977 dev_info(&pdev->dev, 15978 "Cannot re-enable PCI device after reset.\n"); 15979 result = PCI_ERS_RESULT_DISCONNECT; 15980 } else { 15981 pci_set_master(pdev); 15982 pci_restore_state(pdev); 15983 pci_save_state(pdev); 15984 pci_wake_from_d3(pdev, false); 15985 15986 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 15987 if (reg == 0) 15988 result = PCI_ERS_RESULT_RECOVERED; 15989 else 15990 result = PCI_ERS_RESULT_DISCONNECT; 15991 } 15992 15993 return result; 15994 } 15995 15996 /** 15997 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 15998 * @pdev: PCI device information struct 15999 */ 16000 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 16001 { 16002 struct i40e_pf *pf = pci_get_drvdata(pdev); 16003 16004 i40e_prep_for_reset(pf); 16005 } 16006 16007 /** 16008 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 16009 * @pdev: PCI device information struct 16010 */ 16011 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 16012 { 16013 struct i40e_pf *pf = pci_get_drvdata(pdev); 16014 16015 i40e_reset_and_rebuild(pf, false, false); 16016 } 16017 16018 /** 16019 * i40e_pci_error_resume - restart operations after PCI error recovery 16020 * @pdev: PCI device information struct 16021 * 16022 * Called to allow the driver to bring things back up after PCI error 16023 * and/or reset recovery has finished. 16024 **/ 16025 static void i40e_pci_error_resume(struct pci_dev *pdev) 16026 { 16027 struct i40e_pf *pf = pci_get_drvdata(pdev); 16028 16029 dev_dbg(&pdev->dev, "%s\n", __func__); 16030 if (test_bit(__I40E_SUSPENDED, pf->state)) 16031 return; 16032 16033 i40e_handle_reset_warning(pf, false); 16034 } 16035 16036 /** 16037 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 16038 * using the mac_address_write admin q function 16039 * @pf: pointer to i40e_pf struct 16040 **/ 16041 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 16042 { 16043 struct i40e_hw *hw = &pf->hw; 16044 i40e_status ret; 16045 u8 mac_addr[6]; 16046 u16 flags = 0; 16047 16048 /* Get current MAC address in case it's an LAA */ 16049 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 16050 ether_addr_copy(mac_addr, 16051 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 16052 } else { 16053 dev_err(&pf->pdev->dev, 16054 "Failed to retrieve MAC address; using default\n"); 16055 ether_addr_copy(mac_addr, hw->mac.addr); 16056 } 16057 16058 /* The FW expects the mac address write cmd to first be called with 16059 * one of these flags before calling it again with the multicast 16060 * enable flags. 16061 */ 16062 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 16063 16064 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 16065 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 16066 16067 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16068 if (ret) { 16069 dev_err(&pf->pdev->dev, 16070 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 16071 return; 16072 } 16073 16074 flags = I40E_AQC_MC_MAG_EN 16075 | I40E_AQC_WOL_PRESERVE_ON_PFR 16076 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 16077 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 16078 if (ret) 16079 dev_err(&pf->pdev->dev, 16080 "Failed to enable Multicast Magic Packet wake up\n"); 16081 } 16082 16083 /** 16084 * i40e_shutdown - PCI callback for shutting down 16085 * @pdev: PCI device information struct 16086 **/ 16087 static void i40e_shutdown(struct pci_dev *pdev) 16088 { 16089 struct i40e_pf *pf = pci_get_drvdata(pdev); 16090 struct i40e_hw *hw = &pf->hw; 16091 16092 set_bit(__I40E_SUSPENDED, pf->state); 16093 set_bit(__I40E_DOWN, pf->state); 16094 16095 del_timer_sync(&pf->service_timer); 16096 cancel_work_sync(&pf->service_task); 16097 i40e_cloud_filter_exit(pf); 16098 i40e_fdir_teardown(pf); 16099 16100 /* Client close must be called explicitly here because the timer 16101 * has been stopped. 16102 */ 16103 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16104 16105 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16106 i40e_enable_mc_magic_wake(pf); 16107 16108 i40e_prep_for_reset(pf); 16109 16110 wr32(hw, I40E_PFPM_APM, 16111 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16112 wr32(hw, I40E_PFPM_WUFC, 16113 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16114 16115 /* Free MSI/legacy interrupt 0 when in recovery mode. */ 16116 if (test_bit(__I40E_RECOVERY_MODE, pf->state) && 16117 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) 16118 free_irq(pf->pdev->irq, pf); 16119 16120 /* Since we're going to destroy queues during the 16121 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16122 * whole section 16123 */ 16124 rtnl_lock(); 16125 i40e_clear_interrupt_scheme(pf); 16126 rtnl_unlock(); 16127 16128 if (system_state == SYSTEM_POWER_OFF) { 16129 pci_wake_from_d3(pdev, pf->wol_en); 16130 pci_set_power_state(pdev, PCI_D3hot); 16131 } 16132 } 16133 16134 /** 16135 * i40e_suspend - PM callback for moving to D3 16136 * @dev: generic device information structure 16137 **/ 16138 static int __maybe_unused i40e_suspend(struct device *dev) 16139 { 16140 struct i40e_pf *pf = dev_get_drvdata(dev); 16141 struct i40e_hw *hw = &pf->hw; 16142 16143 /* If we're already suspended, then there is nothing to do */ 16144 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 16145 return 0; 16146 16147 set_bit(__I40E_DOWN, pf->state); 16148 16149 /* Ensure service task will not be running */ 16150 del_timer_sync(&pf->service_timer); 16151 cancel_work_sync(&pf->service_task); 16152 16153 /* Client close must be called explicitly here because the timer 16154 * has been stopped. 16155 */ 16156 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 16157 16158 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 16159 i40e_enable_mc_magic_wake(pf); 16160 16161 /* Since we're going to destroy queues during the 16162 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 16163 * whole section 16164 */ 16165 rtnl_lock(); 16166 16167 i40e_prep_for_reset(pf); 16168 16169 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 16170 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 16171 16172 /* Clear the interrupt scheme and release our IRQs so that the system 16173 * can safely hibernate even when there are a large number of CPUs. 16174 * Otherwise hibernation might fail when mapping all the vectors back 16175 * to CPU0. 16176 */ 16177 i40e_clear_interrupt_scheme(pf); 16178 16179 rtnl_unlock(); 16180 16181 return 0; 16182 } 16183 16184 /** 16185 * i40e_resume - PM callback for waking up from D3 16186 * @dev: generic device information structure 16187 **/ 16188 static int __maybe_unused i40e_resume(struct device *dev) 16189 { 16190 struct i40e_pf *pf = dev_get_drvdata(dev); 16191 int err; 16192 16193 /* If we're not suspended, then there is nothing to do */ 16194 if (!test_bit(__I40E_SUSPENDED, pf->state)) 16195 return 0; 16196 16197 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 16198 * since we're going to be restoring queues 16199 */ 16200 rtnl_lock(); 16201 16202 /* We cleared the interrupt scheme when we suspended, so we need to 16203 * restore it now to resume device functionality. 16204 */ 16205 err = i40e_restore_interrupt_scheme(pf); 16206 if (err) { 16207 dev_err(dev, "Cannot restore interrupt scheme: %d\n", 16208 err); 16209 } 16210 16211 clear_bit(__I40E_DOWN, pf->state); 16212 i40e_reset_and_rebuild(pf, false, true); 16213 16214 rtnl_unlock(); 16215 16216 /* Clear suspended state last after everything is recovered */ 16217 clear_bit(__I40E_SUSPENDED, pf->state); 16218 16219 /* Restart the service task */ 16220 mod_timer(&pf->service_timer, 16221 round_jiffies(jiffies + pf->service_timer_period)); 16222 16223 return 0; 16224 } 16225 16226 static const struct pci_error_handlers i40e_err_handler = { 16227 .error_detected = i40e_pci_error_detected, 16228 .slot_reset = i40e_pci_error_slot_reset, 16229 .reset_prepare = i40e_pci_error_reset_prepare, 16230 .reset_done = i40e_pci_error_reset_done, 16231 .resume = i40e_pci_error_resume, 16232 }; 16233 16234 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 16235 16236 static struct pci_driver i40e_driver = { 16237 .name = i40e_driver_name, 16238 .id_table = i40e_pci_tbl, 16239 .probe = i40e_probe, 16240 .remove = i40e_remove, 16241 .driver = { 16242 .pm = &i40e_pm_ops, 16243 }, 16244 .shutdown = i40e_shutdown, 16245 .err_handler = &i40e_err_handler, 16246 .sriov_configure = i40e_pci_sriov_configure, 16247 }; 16248 16249 /** 16250 * i40e_init_module - Driver registration routine 16251 * 16252 * i40e_init_module is the first routine called when the driver is 16253 * loaded. All it does is register with the PCI subsystem. 16254 **/ 16255 static int __init i40e_init_module(void) 16256 { 16257 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string); 16258 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 16259 16260 /* There is no need to throttle the number of active tasks because 16261 * each device limits its own task using a state bit for scheduling 16262 * the service task, and the device tasks do not interfere with each 16263 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 16264 * since we need to be able to guarantee forward progress even under 16265 * memory pressure. 16266 */ 16267 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 16268 if (!i40e_wq) { 16269 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 16270 return -ENOMEM; 16271 } 16272 16273 i40e_dbg_init(); 16274 return pci_register_driver(&i40e_driver); 16275 } 16276 module_init(i40e_init_module); 16277 16278 /** 16279 * i40e_exit_module - Driver exit cleanup routine 16280 * 16281 * i40e_exit_module is called just before the driver is removed 16282 * from memory. 16283 **/ 16284 static void __exit i40e_exit_module(void) 16285 { 16286 pci_unregister_driver(&i40e_driver); 16287 destroy_workqueue(i40e_wq); 16288 i40e_dbg_exit(); 16289 } 16290 module_exit(i40e_exit_module); 16291