1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include <linux/etherdevice.h> 5 #include <linux/of_net.h> 6 #include <linux/pci.h> 7 #include <linux/bpf.h> 8 9 /* Local includes */ 10 #include "i40e.h" 11 #include "i40e_diag.h" 12 #include "i40e_xsk.h" 13 #include <net/udp_tunnel.h> 14 #include <net/xdp_sock.h> 15 /* All i40e tracepoints are defined by the include below, which 16 * must be included exactly once across the whole kernel with 17 * CREATE_TRACE_POINTS defined 18 */ 19 #define CREATE_TRACE_POINTS 20 #include "i40e_trace.h" 21 22 const char i40e_driver_name[] = "i40e"; 23 static const char i40e_driver_string[] = 24 "Intel(R) Ethernet Connection XL710 Network Driver"; 25 26 #define DRV_KERN "-k" 27 28 #define DRV_VERSION_MAJOR 2 29 #define DRV_VERSION_MINOR 7 30 #define DRV_VERSION_BUILD 6 31 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 32 __stringify(DRV_VERSION_MINOR) "." \ 33 __stringify(DRV_VERSION_BUILD) DRV_KERN 34 const char i40e_driver_version_str[] = DRV_VERSION; 35 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; 36 37 /* a bit of forward declarations */ 38 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); 39 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired); 40 static int i40e_add_vsi(struct i40e_vsi *vsi); 41 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); 42 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); 43 static int i40e_setup_misc_vector(struct i40e_pf *pf); 44 static void i40e_determine_queue_usage(struct i40e_pf *pf); 45 static int i40e_setup_pf_filter_control(struct i40e_pf *pf); 46 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired); 47 static int i40e_reset(struct i40e_pf *pf); 48 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired); 49 static void i40e_fdir_sb_setup(struct i40e_pf *pf); 50 static int i40e_veb_get_bw_info(struct i40e_veb *veb); 51 static int i40e_get_capabilities(struct i40e_pf *pf, 52 enum i40e_admin_queue_opc list_type); 53 54 55 /* i40e_pci_tbl - PCI Device ID Table 56 * 57 * Last entry must be all 0s 58 * 59 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 60 * Class, Class Mask, private data (not used) } 61 */ 62 static const struct pci_device_id i40e_pci_tbl[] = { 63 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, 64 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, 65 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, 66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, 67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, 68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, 69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, 70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, 71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0}, 72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0}, 73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0}, 74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0}, 75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0}, 76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0}, 77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0}, 78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0}, 79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0}, 80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0}, 81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0}, 82 /* required last entry */ 83 {0, } 84 }; 85 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); 86 87 #define I40E_MAX_VF_COUNT 128 88 static int debug = -1; 89 module_param(debug, uint, 0); 90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)"); 91 92 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 93 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); 94 MODULE_LICENSE("GPL v2"); 95 MODULE_VERSION(DRV_VERSION); 96 97 static struct workqueue_struct *i40e_wq; 98 99 /** 100 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code 101 * @hw: pointer to the HW structure 102 * @mem: ptr to mem struct to fill out 103 * @size: size of memory requested 104 * @alignment: what to align the allocation to 105 **/ 106 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, 107 u64 size, u32 alignment) 108 { 109 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 110 111 mem->size = ALIGN(size, alignment); 112 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, 113 GFP_KERNEL); 114 if (!mem->va) 115 return -ENOMEM; 116 117 return 0; 118 } 119 120 /** 121 * i40e_free_dma_mem_d - OS specific memory free for shared code 122 * @hw: pointer to the HW structure 123 * @mem: ptr to mem struct to free 124 **/ 125 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) 126 { 127 struct i40e_pf *pf = (struct i40e_pf *)hw->back; 128 129 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); 130 mem->va = NULL; 131 mem->pa = 0; 132 mem->size = 0; 133 134 return 0; 135 } 136 137 /** 138 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code 139 * @hw: pointer to the HW structure 140 * @mem: ptr to mem struct to fill out 141 * @size: size of memory requested 142 **/ 143 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, 144 u32 size) 145 { 146 mem->size = size; 147 mem->va = kzalloc(size, GFP_KERNEL); 148 149 if (!mem->va) 150 return -ENOMEM; 151 152 return 0; 153 } 154 155 /** 156 * i40e_free_virt_mem_d - OS specific memory free for shared code 157 * @hw: pointer to the HW structure 158 * @mem: ptr to mem struct to free 159 **/ 160 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) 161 { 162 /* it's ok to kfree a NULL pointer */ 163 kfree(mem->va); 164 mem->va = NULL; 165 mem->size = 0; 166 167 return 0; 168 } 169 170 /** 171 * i40e_get_lump - find a lump of free generic resource 172 * @pf: board private structure 173 * @pile: the pile of resource to search 174 * @needed: the number of items needed 175 * @id: an owner id to stick on the items assigned 176 * 177 * Returns the base item index of the lump, or negative for error 178 * 179 * The search_hint trick and lack of advanced fit-finding only work 180 * because we're highly likely to have all the same size lump requests. 181 * Linear search time and any fragmentation should be minimal. 182 **/ 183 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, 184 u16 needed, u16 id) 185 { 186 int ret = -ENOMEM; 187 int i, j; 188 189 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { 190 dev_info(&pf->pdev->dev, 191 "param err: pile=%s needed=%d id=0x%04x\n", 192 pile ? "<valid>" : "<null>", needed, id); 193 return -EINVAL; 194 } 195 196 /* start the linear search with an imperfect hint */ 197 i = pile->search_hint; 198 while (i < pile->num_entries) { 199 /* skip already allocated entries */ 200 if (pile->list[i] & I40E_PILE_VALID_BIT) { 201 i++; 202 continue; 203 } 204 205 /* do we have enough in this lump? */ 206 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { 207 if (pile->list[i+j] & I40E_PILE_VALID_BIT) 208 break; 209 } 210 211 if (j == needed) { 212 /* there was enough, so assign it to the requestor */ 213 for (j = 0; j < needed; j++) 214 pile->list[i+j] = id | I40E_PILE_VALID_BIT; 215 ret = i; 216 pile->search_hint = i + j; 217 break; 218 } 219 220 /* not enough, so skip over it and continue looking */ 221 i += j; 222 } 223 224 return ret; 225 } 226 227 /** 228 * i40e_put_lump - return a lump of generic resource 229 * @pile: the pile of resource to search 230 * @index: the base item index 231 * @id: the owner id of the items assigned 232 * 233 * Returns the count of items in the lump 234 **/ 235 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) 236 { 237 int valid_id = (id | I40E_PILE_VALID_BIT); 238 int count = 0; 239 int i; 240 241 if (!pile || index >= pile->num_entries) 242 return -EINVAL; 243 244 for (i = index; 245 i < pile->num_entries && pile->list[i] == valid_id; 246 i++) { 247 pile->list[i] = 0; 248 count++; 249 } 250 251 if (count && index < pile->search_hint) 252 pile->search_hint = index; 253 254 return count; 255 } 256 257 /** 258 * i40e_find_vsi_from_id - searches for the vsi with the given id 259 * @pf: the pf structure to search for the vsi 260 * @id: id of the vsi it is searching for 261 **/ 262 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id) 263 { 264 int i; 265 266 for (i = 0; i < pf->num_alloc_vsi; i++) 267 if (pf->vsi[i] && (pf->vsi[i]->id == id)) 268 return pf->vsi[i]; 269 270 return NULL; 271 } 272 273 /** 274 * i40e_service_event_schedule - Schedule the service task to wake up 275 * @pf: board private structure 276 * 277 * If not already scheduled, this puts the task into the work queue 278 **/ 279 void i40e_service_event_schedule(struct i40e_pf *pf) 280 { 281 if (!test_bit(__I40E_DOWN, pf->state) && 282 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 283 queue_work(i40e_wq, &pf->service_task); 284 } 285 286 /** 287 * i40e_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 * 290 * If any port has noticed a Tx timeout, it is likely that the whole 291 * device is munged, not just the one netdev port, so go for the full 292 * reset. 293 **/ 294 static void i40e_tx_timeout(struct net_device *netdev) 295 { 296 struct i40e_netdev_priv *np = netdev_priv(netdev); 297 struct i40e_vsi *vsi = np->vsi; 298 struct i40e_pf *pf = vsi->back; 299 struct i40e_ring *tx_ring = NULL; 300 unsigned int i, hung_queue = 0; 301 u32 head, val; 302 303 pf->tx_timeout_count++; 304 305 /* find the stopped queue the same way the stack does */ 306 for (i = 0; i < netdev->num_tx_queues; i++) { 307 struct netdev_queue *q; 308 unsigned long trans_start; 309 310 q = netdev_get_tx_queue(netdev, i); 311 trans_start = q->trans_start; 312 if (netif_xmit_stopped(q) && 313 time_after(jiffies, 314 (trans_start + netdev->watchdog_timeo))) { 315 hung_queue = i; 316 break; 317 } 318 } 319 320 if (i == netdev->num_tx_queues) { 321 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 322 } else { 323 /* now that we have an index, find the tx_ring struct */ 324 for (i = 0; i < vsi->num_queue_pairs; i++) { 325 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) { 326 if (hung_queue == 327 vsi->tx_rings[i]->queue_index) { 328 tx_ring = vsi->tx_rings[i]; 329 break; 330 } 331 } 332 } 333 } 334 335 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) 336 pf->tx_timeout_recovery_level = 1; /* reset after some time */ 337 else if (time_before(jiffies, 338 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) 339 return; /* don't do any new action before the next timeout */ 340 341 /* don't kick off another recovery if one is already pending */ 342 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state)) 343 return; 344 345 if (tx_ring) { 346 head = i40e_get_head(tx_ring); 347 /* Read interrupt register */ 348 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 349 val = rd32(&pf->hw, 350 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx + 351 tx_ring->vsi->base_vector - 1)); 352 else 353 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0); 354 355 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n", 356 vsi->seid, hung_queue, tx_ring->next_to_clean, 357 head, tx_ring->next_to_use, 358 readl(tx_ring->tail), val); 359 } 360 361 pf->tx_timeout_last_recovery = jiffies; 362 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 363 pf->tx_timeout_recovery_level, hung_queue); 364 365 switch (pf->tx_timeout_recovery_level) { 366 case 1: 367 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 368 break; 369 case 2: 370 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 371 break; 372 case 3: 373 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 374 break; 375 default: 376 netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); 377 break; 378 } 379 380 i40e_service_event_schedule(pf); 381 pf->tx_timeout_recovery_level++; 382 } 383 384 /** 385 * i40e_get_vsi_stats_struct - Get System Network Statistics 386 * @vsi: the VSI we care about 387 * 388 * Returns the address of the device statistics structure. 389 * The statistics are actually updated from the service task. 390 **/ 391 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) 392 { 393 return &vsi->net_stats; 394 } 395 396 /** 397 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring 398 * @ring: Tx ring to get statistics from 399 * @stats: statistics entry to be updated 400 **/ 401 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring, 402 struct rtnl_link_stats64 *stats) 403 { 404 u64 bytes, packets; 405 unsigned int start; 406 407 do { 408 start = u64_stats_fetch_begin_irq(&ring->syncp); 409 packets = ring->stats.packets; 410 bytes = ring->stats.bytes; 411 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 412 413 stats->tx_packets += packets; 414 stats->tx_bytes += bytes; 415 } 416 417 /** 418 * i40e_get_netdev_stats_struct - Get statistics for netdev interface 419 * @netdev: network interface device structure 420 * @stats: data structure to store statistics 421 * 422 * Returns the address of the device statistics structure. 423 * The statistics are actually updated from the service task. 424 **/ 425 static void i40e_get_netdev_stats_struct(struct net_device *netdev, 426 struct rtnl_link_stats64 *stats) 427 { 428 struct i40e_netdev_priv *np = netdev_priv(netdev); 429 struct i40e_vsi *vsi = np->vsi; 430 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); 431 struct i40e_ring *ring; 432 int i; 433 434 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 435 return; 436 437 if (!vsi->tx_rings) 438 return; 439 440 rcu_read_lock(); 441 for (i = 0; i < vsi->num_queue_pairs; i++) { 442 u64 bytes, packets; 443 unsigned int start; 444 445 ring = READ_ONCE(vsi->tx_rings[i]); 446 if (!ring) 447 continue; 448 i40e_get_netdev_stats_struct_tx(ring, stats); 449 450 if (i40e_enabled_xdp_vsi(vsi)) { 451 ring++; 452 i40e_get_netdev_stats_struct_tx(ring, stats); 453 } 454 455 ring++; 456 do { 457 start = u64_stats_fetch_begin_irq(&ring->syncp); 458 packets = ring->stats.packets; 459 bytes = ring->stats.bytes; 460 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 461 462 stats->rx_packets += packets; 463 stats->rx_bytes += bytes; 464 465 } 466 rcu_read_unlock(); 467 468 /* following stats updated by i40e_watchdog_subtask() */ 469 stats->multicast = vsi_stats->multicast; 470 stats->tx_errors = vsi_stats->tx_errors; 471 stats->tx_dropped = vsi_stats->tx_dropped; 472 stats->rx_errors = vsi_stats->rx_errors; 473 stats->rx_dropped = vsi_stats->rx_dropped; 474 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 475 stats->rx_length_errors = vsi_stats->rx_length_errors; 476 } 477 478 /** 479 * i40e_vsi_reset_stats - Resets all stats of the given vsi 480 * @vsi: the VSI to have its stats reset 481 **/ 482 void i40e_vsi_reset_stats(struct i40e_vsi *vsi) 483 { 484 struct rtnl_link_stats64 *ns; 485 int i; 486 487 if (!vsi) 488 return; 489 490 ns = i40e_get_vsi_stats_struct(vsi); 491 memset(ns, 0, sizeof(*ns)); 492 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); 493 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); 494 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); 495 if (vsi->rx_rings && vsi->rx_rings[0]) { 496 for (i = 0; i < vsi->num_queue_pairs; i++) { 497 memset(&vsi->rx_rings[i]->stats, 0, 498 sizeof(vsi->rx_rings[i]->stats)); 499 memset(&vsi->rx_rings[i]->rx_stats, 0, 500 sizeof(vsi->rx_rings[i]->rx_stats)); 501 memset(&vsi->tx_rings[i]->stats, 0, 502 sizeof(vsi->tx_rings[i]->stats)); 503 memset(&vsi->tx_rings[i]->tx_stats, 0, 504 sizeof(vsi->tx_rings[i]->tx_stats)); 505 } 506 } 507 vsi->stat_offsets_loaded = false; 508 } 509 510 /** 511 * i40e_pf_reset_stats - Reset all of the stats for the given PF 512 * @pf: the PF to be reset 513 **/ 514 void i40e_pf_reset_stats(struct i40e_pf *pf) 515 { 516 int i; 517 518 memset(&pf->stats, 0, sizeof(pf->stats)); 519 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); 520 pf->stat_offsets_loaded = false; 521 522 for (i = 0; i < I40E_MAX_VEB; i++) { 523 if (pf->veb[i]) { 524 memset(&pf->veb[i]->stats, 0, 525 sizeof(pf->veb[i]->stats)); 526 memset(&pf->veb[i]->stats_offsets, 0, 527 sizeof(pf->veb[i]->stats_offsets)); 528 pf->veb[i]->stat_offsets_loaded = false; 529 } 530 } 531 pf->hw_csum_rx_error = 0; 532 } 533 534 /** 535 * i40e_stat_update48 - read and update a 48 bit stat from the chip 536 * @hw: ptr to the hardware info 537 * @hireg: the high 32 bit reg to read 538 * @loreg: the low 32 bit reg to read 539 * @offset_loaded: has the initial offset been loaded yet 540 * @offset: ptr to current offset value 541 * @stat: ptr to the stat 542 * 543 * Since the device stats are not reset at PFReset, they likely will not 544 * be zeroed when the driver starts. We'll save the first values read 545 * and use them as offsets to be subtracted from the raw values in order 546 * to report stats that count from zero. In the process, we also manage 547 * the potential roll-over. 548 **/ 549 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, 550 bool offset_loaded, u64 *offset, u64 *stat) 551 { 552 u64 new_data; 553 554 if (hw->device_id == I40E_DEV_ID_QEMU) { 555 new_data = rd32(hw, loreg); 556 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; 557 } else { 558 new_data = rd64(hw, loreg); 559 } 560 if (!offset_loaded) 561 *offset = new_data; 562 if (likely(new_data >= *offset)) 563 *stat = new_data - *offset; 564 else 565 *stat = (new_data + BIT_ULL(48)) - *offset; 566 *stat &= 0xFFFFFFFFFFFFULL; 567 } 568 569 /** 570 * i40e_stat_update32 - read and update a 32 bit stat from the chip 571 * @hw: ptr to the hardware info 572 * @reg: the hw reg to read 573 * @offset_loaded: has the initial offset been loaded yet 574 * @offset: ptr to current offset value 575 * @stat: ptr to the stat 576 **/ 577 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, 578 bool offset_loaded, u64 *offset, u64 *stat) 579 { 580 u32 new_data; 581 582 new_data = rd32(hw, reg); 583 if (!offset_loaded) 584 *offset = new_data; 585 if (likely(new_data >= *offset)) 586 *stat = (u32)(new_data - *offset); 587 else 588 *stat = (u32)((new_data + BIT_ULL(32)) - *offset); 589 } 590 591 /** 592 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat 593 * @hw: ptr to the hardware info 594 * @reg: the hw reg to read and clear 595 * @stat: ptr to the stat 596 **/ 597 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat) 598 { 599 u32 new_data = rd32(hw, reg); 600 601 wr32(hw, reg, 1); /* must write a nonzero value to clear register */ 602 *stat += new_data; 603 } 604 605 /** 606 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. 607 * @vsi: the VSI to be updated 608 **/ 609 void i40e_update_eth_stats(struct i40e_vsi *vsi) 610 { 611 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); 612 struct i40e_pf *pf = vsi->back; 613 struct i40e_hw *hw = &pf->hw; 614 struct i40e_eth_stats *oes; 615 struct i40e_eth_stats *es; /* device's eth stats */ 616 617 es = &vsi->eth_stats; 618 oes = &vsi->eth_stats_offsets; 619 620 /* Gather up the stats that the hw collects */ 621 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 622 vsi->stat_offsets_loaded, 623 &oes->tx_errors, &es->tx_errors); 624 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), 625 vsi->stat_offsets_loaded, 626 &oes->rx_discards, &es->rx_discards); 627 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), 628 vsi->stat_offsets_loaded, 629 &oes->rx_unknown_protocol, &es->rx_unknown_protocol); 630 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), 631 vsi->stat_offsets_loaded, 632 &oes->tx_errors, &es->tx_errors); 633 634 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), 635 I40E_GLV_GORCL(stat_idx), 636 vsi->stat_offsets_loaded, 637 &oes->rx_bytes, &es->rx_bytes); 638 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), 639 I40E_GLV_UPRCL(stat_idx), 640 vsi->stat_offsets_loaded, 641 &oes->rx_unicast, &es->rx_unicast); 642 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), 643 I40E_GLV_MPRCL(stat_idx), 644 vsi->stat_offsets_loaded, 645 &oes->rx_multicast, &es->rx_multicast); 646 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), 647 I40E_GLV_BPRCL(stat_idx), 648 vsi->stat_offsets_loaded, 649 &oes->rx_broadcast, &es->rx_broadcast); 650 651 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), 652 I40E_GLV_GOTCL(stat_idx), 653 vsi->stat_offsets_loaded, 654 &oes->tx_bytes, &es->tx_bytes); 655 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), 656 I40E_GLV_UPTCL(stat_idx), 657 vsi->stat_offsets_loaded, 658 &oes->tx_unicast, &es->tx_unicast); 659 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), 660 I40E_GLV_MPTCL(stat_idx), 661 vsi->stat_offsets_loaded, 662 &oes->tx_multicast, &es->tx_multicast); 663 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), 664 I40E_GLV_BPTCL(stat_idx), 665 vsi->stat_offsets_loaded, 666 &oes->tx_broadcast, &es->tx_broadcast); 667 vsi->stat_offsets_loaded = true; 668 } 669 670 /** 671 * i40e_update_veb_stats - Update Switch component statistics 672 * @veb: the VEB being updated 673 **/ 674 static void i40e_update_veb_stats(struct i40e_veb *veb) 675 { 676 struct i40e_pf *pf = veb->pf; 677 struct i40e_hw *hw = &pf->hw; 678 struct i40e_eth_stats *oes; 679 struct i40e_eth_stats *es; /* device's eth stats */ 680 struct i40e_veb_tc_stats *veb_oes; 681 struct i40e_veb_tc_stats *veb_es; 682 int i, idx = 0; 683 684 idx = veb->stats_idx; 685 es = &veb->stats; 686 oes = &veb->stats_offsets; 687 veb_es = &veb->tc_stats; 688 veb_oes = &veb->tc_stats_offsets; 689 690 /* Gather up the stats that the hw collects */ 691 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), 692 veb->stat_offsets_loaded, 693 &oes->tx_discards, &es->tx_discards); 694 if (hw->revision_id > 0) 695 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), 696 veb->stat_offsets_loaded, 697 &oes->rx_unknown_protocol, 698 &es->rx_unknown_protocol); 699 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), 700 veb->stat_offsets_loaded, 701 &oes->rx_bytes, &es->rx_bytes); 702 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), 703 veb->stat_offsets_loaded, 704 &oes->rx_unicast, &es->rx_unicast); 705 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), 706 veb->stat_offsets_loaded, 707 &oes->rx_multicast, &es->rx_multicast); 708 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), 709 veb->stat_offsets_loaded, 710 &oes->rx_broadcast, &es->rx_broadcast); 711 712 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), 713 veb->stat_offsets_loaded, 714 &oes->tx_bytes, &es->tx_bytes); 715 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), 716 veb->stat_offsets_loaded, 717 &oes->tx_unicast, &es->tx_unicast); 718 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), 719 veb->stat_offsets_loaded, 720 &oes->tx_multicast, &es->tx_multicast); 721 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), 722 veb->stat_offsets_loaded, 723 &oes->tx_broadcast, &es->tx_broadcast); 724 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 725 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx), 726 I40E_GLVEBTC_RPCL(i, idx), 727 veb->stat_offsets_loaded, 728 &veb_oes->tc_rx_packets[i], 729 &veb_es->tc_rx_packets[i]); 730 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx), 731 I40E_GLVEBTC_RBCL(i, idx), 732 veb->stat_offsets_loaded, 733 &veb_oes->tc_rx_bytes[i], 734 &veb_es->tc_rx_bytes[i]); 735 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx), 736 I40E_GLVEBTC_TPCL(i, idx), 737 veb->stat_offsets_loaded, 738 &veb_oes->tc_tx_packets[i], 739 &veb_es->tc_tx_packets[i]); 740 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx), 741 I40E_GLVEBTC_TBCL(i, idx), 742 veb->stat_offsets_loaded, 743 &veb_oes->tc_tx_bytes[i], 744 &veb_es->tc_tx_bytes[i]); 745 } 746 veb->stat_offsets_loaded = true; 747 } 748 749 /** 750 * i40e_update_vsi_stats - Update the vsi statistics counters. 751 * @vsi: the VSI to be updated 752 * 753 * There are a few instances where we store the same stat in a 754 * couple of different structs. This is partly because we have 755 * the netdev stats that need to be filled out, which is slightly 756 * different from the "eth_stats" defined by the chip and used in 757 * VF communications. We sort it out here. 758 **/ 759 static void i40e_update_vsi_stats(struct i40e_vsi *vsi) 760 { 761 struct i40e_pf *pf = vsi->back; 762 struct rtnl_link_stats64 *ons; 763 struct rtnl_link_stats64 *ns; /* netdev stats */ 764 struct i40e_eth_stats *oes; 765 struct i40e_eth_stats *es; /* device's eth stats */ 766 u32 tx_restart, tx_busy; 767 struct i40e_ring *p; 768 u32 rx_page, rx_buf; 769 u64 bytes, packets; 770 unsigned int start; 771 u64 tx_linearize; 772 u64 tx_force_wb; 773 u64 rx_p, rx_b; 774 u64 tx_p, tx_b; 775 u16 q; 776 777 if (test_bit(__I40E_VSI_DOWN, vsi->state) || 778 test_bit(__I40E_CONFIG_BUSY, pf->state)) 779 return; 780 781 ns = i40e_get_vsi_stats_struct(vsi); 782 ons = &vsi->net_stats_offsets; 783 es = &vsi->eth_stats; 784 oes = &vsi->eth_stats_offsets; 785 786 /* Gather up the netdev and vsi stats that the driver collects 787 * on the fly during packet processing 788 */ 789 rx_b = rx_p = 0; 790 tx_b = tx_p = 0; 791 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0; 792 rx_page = 0; 793 rx_buf = 0; 794 rcu_read_lock(); 795 for (q = 0; q < vsi->num_queue_pairs; q++) { 796 /* locate Tx ring */ 797 p = READ_ONCE(vsi->tx_rings[q]); 798 799 do { 800 start = u64_stats_fetch_begin_irq(&p->syncp); 801 packets = p->stats.packets; 802 bytes = p->stats.bytes; 803 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 804 tx_b += bytes; 805 tx_p += packets; 806 tx_restart += p->tx_stats.restart_queue; 807 tx_busy += p->tx_stats.tx_busy; 808 tx_linearize += p->tx_stats.tx_linearize; 809 tx_force_wb += p->tx_stats.tx_force_wb; 810 811 /* Rx queue is part of the same block as Tx queue */ 812 p = &p[1]; 813 do { 814 start = u64_stats_fetch_begin_irq(&p->syncp); 815 packets = p->stats.packets; 816 bytes = p->stats.bytes; 817 } while (u64_stats_fetch_retry_irq(&p->syncp, start)); 818 rx_b += bytes; 819 rx_p += packets; 820 rx_buf += p->rx_stats.alloc_buff_failed; 821 rx_page += p->rx_stats.alloc_page_failed; 822 } 823 rcu_read_unlock(); 824 vsi->tx_restart = tx_restart; 825 vsi->tx_busy = tx_busy; 826 vsi->tx_linearize = tx_linearize; 827 vsi->tx_force_wb = tx_force_wb; 828 vsi->rx_page_failed = rx_page; 829 vsi->rx_buf_failed = rx_buf; 830 831 ns->rx_packets = rx_p; 832 ns->rx_bytes = rx_b; 833 ns->tx_packets = tx_p; 834 ns->tx_bytes = tx_b; 835 836 /* update netdev stats from eth stats */ 837 i40e_update_eth_stats(vsi); 838 ons->tx_errors = oes->tx_errors; 839 ns->tx_errors = es->tx_errors; 840 ons->multicast = oes->rx_multicast; 841 ns->multicast = es->rx_multicast; 842 ons->rx_dropped = oes->rx_discards; 843 ns->rx_dropped = es->rx_discards; 844 ons->tx_dropped = oes->tx_discards; 845 ns->tx_dropped = es->tx_discards; 846 847 /* pull in a couple PF stats if this is the main vsi */ 848 if (vsi == pf->vsi[pf->lan_vsi]) { 849 ns->rx_crc_errors = pf->stats.crc_errors; 850 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; 851 ns->rx_length_errors = pf->stats.rx_length_errors; 852 } 853 } 854 855 /** 856 * i40e_update_pf_stats - Update the PF statistics counters. 857 * @pf: the PF to be updated 858 **/ 859 static void i40e_update_pf_stats(struct i40e_pf *pf) 860 { 861 struct i40e_hw_port_stats *osd = &pf->stats_offsets; 862 struct i40e_hw_port_stats *nsd = &pf->stats; 863 struct i40e_hw *hw = &pf->hw; 864 u32 val; 865 int i; 866 867 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), 868 I40E_GLPRT_GORCL(hw->port), 869 pf->stat_offsets_loaded, 870 &osd->eth.rx_bytes, &nsd->eth.rx_bytes); 871 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), 872 I40E_GLPRT_GOTCL(hw->port), 873 pf->stat_offsets_loaded, 874 &osd->eth.tx_bytes, &nsd->eth.tx_bytes); 875 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), 876 pf->stat_offsets_loaded, 877 &osd->eth.rx_discards, 878 &nsd->eth.rx_discards); 879 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), 880 I40E_GLPRT_UPRCL(hw->port), 881 pf->stat_offsets_loaded, 882 &osd->eth.rx_unicast, 883 &nsd->eth.rx_unicast); 884 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), 885 I40E_GLPRT_MPRCL(hw->port), 886 pf->stat_offsets_loaded, 887 &osd->eth.rx_multicast, 888 &nsd->eth.rx_multicast); 889 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), 890 I40E_GLPRT_BPRCL(hw->port), 891 pf->stat_offsets_loaded, 892 &osd->eth.rx_broadcast, 893 &nsd->eth.rx_broadcast); 894 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), 895 I40E_GLPRT_UPTCL(hw->port), 896 pf->stat_offsets_loaded, 897 &osd->eth.tx_unicast, 898 &nsd->eth.tx_unicast); 899 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), 900 I40E_GLPRT_MPTCL(hw->port), 901 pf->stat_offsets_loaded, 902 &osd->eth.tx_multicast, 903 &nsd->eth.tx_multicast); 904 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), 905 I40E_GLPRT_BPTCL(hw->port), 906 pf->stat_offsets_loaded, 907 &osd->eth.tx_broadcast, 908 &nsd->eth.tx_broadcast); 909 910 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), 911 pf->stat_offsets_loaded, 912 &osd->tx_dropped_link_down, 913 &nsd->tx_dropped_link_down); 914 915 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), 916 pf->stat_offsets_loaded, 917 &osd->crc_errors, &nsd->crc_errors); 918 919 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), 920 pf->stat_offsets_loaded, 921 &osd->illegal_bytes, &nsd->illegal_bytes); 922 923 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), 924 pf->stat_offsets_loaded, 925 &osd->mac_local_faults, 926 &nsd->mac_local_faults); 927 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), 928 pf->stat_offsets_loaded, 929 &osd->mac_remote_faults, 930 &nsd->mac_remote_faults); 931 932 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), 933 pf->stat_offsets_loaded, 934 &osd->rx_length_errors, 935 &nsd->rx_length_errors); 936 937 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), 938 pf->stat_offsets_loaded, 939 &osd->link_xon_rx, &nsd->link_xon_rx); 940 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), 941 pf->stat_offsets_loaded, 942 &osd->link_xon_tx, &nsd->link_xon_tx); 943 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), 944 pf->stat_offsets_loaded, 945 &osd->link_xoff_rx, &nsd->link_xoff_rx); 946 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), 947 pf->stat_offsets_loaded, 948 &osd->link_xoff_tx, &nsd->link_xoff_tx); 949 950 for (i = 0; i < 8; i++) { 951 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), 952 pf->stat_offsets_loaded, 953 &osd->priority_xoff_rx[i], 954 &nsd->priority_xoff_rx[i]); 955 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), 956 pf->stat_offsets_loaded, 957 &osd->priority_xon_rx[i], 958 &nsd->priority_xon_rx[i]); 959 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), 960 pf->stat_offsets_loaded, 961 &osd->priority_xon_tx[i], 962 &nsd->priority_xon_tx[i]); 963 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), 964 pf->stat_offsets_loaded, 965 &osd->priority_xoff_tx[i], 966 &nsd->priority_xoff_tx[i]); 967 i40e_stat_update32(hw, 968 I40E_GLPRT_RXON2OFFCNT(hw->port, i), 969 pf->stat_offsets_loaded, 970 &osd->priority_xon_2_xoff[i], 971 &nsd->priority_xon_2_xoff[i]); 972 } 973 974 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), 975 I40E_GLPRT_PRC64L(hw->port), 976 pf->stat_offsets_loaded, 977 &osd->rx_size_64, &nsd->rx_size_64); 978 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), 979 I40E_GLPRT_PRC127L(hw->port), 980 pf->stat_offsets_loaded, 981 &osd->rx_size_127, &nsd->rx_size_127); 982 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), 983 I40E_GLPRT_PRC255L(hw->port), 984 pf->stat_offsets_loaded, 985 &osd->rx_size_255, &nsd->rx_size_255); 986 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), 987 I40E_GLPRT_PRC511L(hw->port), 988 pf->stat_offsets_loaded, 989 &osd->rx_size_511, &nsd->rx_size_511); 990 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), 991 I40E_GLPRT_PRC1023L(hw->port), 992 pf->stat_offsets_loaded, 993 &osd->rx_size_1023, &nsd->rx_size_1023); 994 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), 995 I40E_GLPRT_PRC1522L(hw->port), 996 pf->stat_offsets_loaded, 997 &osd->rx_size_1522, &nsd->rx_size_1522); 998 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), 999 I40E_GLPRT_PRC9522L(hw->port), 1000 pf->stat_offsets_loaded, 1001 &osd->rx_size_big, &nsd->rx_size_big); 1002 1003 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), 1004 I40E_GLPRT_PTC64L(hw->port), 1005 pf->stat_offsets_loaded, 1006 &osd->tx_size_64, &nsd->tx_size_64); 1007 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), 1008 I40E_GLPRT_PTC127L(hw->port), 1009 pf->stat_offsets_loaded, 1010 &osd->tx_size_127, &nsd->tx_size_127); 1011 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), 1012 I40E_GLPRT_PTC255L(hw->port), 1013 pf->stat_offsets_loaded, 1014 &osd->tx_size_255, &nsd->tx_size_255); 1015 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), 1016 I40E_GLPRT_PTC511L(hw->port), 1017 pf->stat_offsets_loaded, 1018 &osd->tx_size_511, &nsd->tx_size_511); 1019 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), 1020 I40E_GLPRT_PTC1023L(hw->port), 1021 pf->stat_offsets_loaded, 1022 &osd->tx_size_1023, &nsd->tx_size_1023); 1023 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), 1024 I40E_GLPRT_PTC1522L(hw->port), 1025 pf->stat_offsets_loaded, 1026 &osd->tx_size_1522, &nsd->tx_size_1522); 1027 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), 1028 I40E_GLPRT_PTC9522L(hw->port), 1029 pf->stat_offsets_loaded, 1030 &osd->tx_size_big, &nsd->tx_size_big); 1031 1032 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), 1033 pf->stat_offsets_loaded, 1034 &osd->rx_undersize, &nsd->rx_undersize); 1035 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), 1036 pf->stat_offsets_loaded, 1037 &osd->rx_fragments, &nsd->rx_fragments); 1038 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), 1039 pf->stat_offsets_loaded, 1040 &osd->rx_oversize, &nsd->rx_oversize); 1041 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), 1042 pf->stat_offsets_loaded, 1043 &osd->rx_jabber, &nsd->rx_jabber); 1044 1045 /* FDIR stats */ 1046 i40e_stat_update_and_clear32(hw, 1047 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)), 1048 &nsd->fd_atr_match); 1049 i40e_stat_update_and_clear32(hw, 1050 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)), 1051 &nsd->fd_sb_match); 1052 i40e_stat_update_and_clear32(hw, 1053 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)), 1054 &nsd->fd_atr_tunnel_match); 1055 1056 val = rd32(hw, I40E_PRTPM_EEE_STAT); 1057 nsd->tx_lpi_status = 1058 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> 1059 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; 1060 nsd->rx_lpi_status = 1061 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> 1062 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; 1063 i40e_stat_update32(hw, I40E_PRTPM_TLPIC, 1064 pf->stat_offsets_loaded, 1065 &osd->tx_lpi_count, &nsd->tx_lpi_count); 1066 i40e_stat_update32(hw, I40E_PRTPM_RLPIC, 1067 pf->stat_offsets_loaded, 1068 &osd->rx_lpi_count, &nsd->rx_lpi_count); 1069 1070 if (pf->flags & I40E_FLAG_FD_SB_ENABLED && 1071 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 1072 nsd->fd_sb_status = true; 1073 else 1074 nsd->fd_sb_status = false; 1075 1076 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED && 1077 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 1078 nsd->fd_atr_status = true; 1079 else 1080 nsd->fd_atr_status = false; 1081 1082 pf->stat_offsets_loaded = true; 1083 } 1084 1085 /** 1086 * i40e_update_stats - Update the various statistics counters. 1087 * @vsi: the VSI to be updated 1088 * 1089 * Update the various stats for this VSI and its related entities. 1090 **/ 1091 void i40e_update_stats(struct i40e_vsi *vsi) 1092 { 1093 struct i40e_pf *pf = vsi->back; 1094 1095 if (vsi == pf->vsi[pf->lan_vsi]) 1096 i40e_update_pf_stats(pf); 1097 1098 i40e_update_vsi_stats(vsi); 1099 } 1100 1101 /** 1102 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter 1103 * @vsi: the VSI to be searched 1104 * @macaddr: the MAC address 1105 * @vlan: the vlan 1106 * 1107 * Returns ptr to the filter object or NULL 1108 **/ 1109 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, 1110 const u8 *macaddr, s16 vlan) 1111 { 1112 struct i40e_mac_filter *f; 1113 u64 key; 1114 1115 if (!vsi || !macaddr) 1116 return NULL; 1117 1118 key = i40e_addr_to_hkey(macaddr); 1119 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1120 if ((ether_addr_equal(macaddr, f->macaddr)) && 1121 (vlan == f->vlan)) 1122 return f; 1123 } 1124 return NULL; 1125 } 1126 1127 /** 1128 * i40e_find_mac - Find a mac addr in the macvlan filters list 1129 * @vsi: the VSI to be searched 1130 * @macaddr: the MAC address we are searching for 1131 * 1132 * Returns the first filter with the provided MAC address or NULL if 1133 * MAC address was not found 1134 **/ 1135 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr) 1136 { 1137 struct i40e_mac_filter *f; 1138 u64 key; 1139 1140 if (!vsi || !macaddr) 1141 return NULL; 1142 1143 key = i40e_addr_to_hkey(macaddr); 1144 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) { 1145 if ((ether_addr_equal(macaddr, f->macaddr))) 1146 return f; 1147 } 1148 return NULL; 1149 } 1150 1151 /** 1152 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode 1153 * @vsi: the VSI to be searched 1154 * 1155 * Returns true if VSI is in vlan mode or false otherwise 1156 **/ 1157 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) 1158 { 1159 /* If we have a PVID, always operate in VLAN mode */ 1160 if (vsi->info.pvid) 1161 return true; 1162 1163 /* We need to operate in VLAN mode whenever we have any filters with 1164 * a VLAN other than I40E_VLAN_ALL. We could check the table each 1165 * time, incurring search cost repeatedly. However, we can notice two 1166 * things: 1167 * 1168 * 1) the only place where we can gain a VLAN filter is in 1169 * i40e_add_filter. 1170 * 1171 * 2) the only place where filters are actually removed is in 1172 * i40e_sync_filters_subtask. 1173 * 1174 * Thus, we can simply use a boolean value, has_vlan_filters which we 1175 * will set to true when we add a VLAN filter in i40e_add_filter. Then 1176 * we have to perform the full search after deleting filters in 1177 * i40e_sync_filters_subtask, but we already have to search 1178 * filters here and can perform the check at the same time. This 1179 * results in avoiding embedding a loop for VLAN mode inside another 1180 * loop over all the filters, and should maintain correctness as noted 1181 * above. 1182 */ 1183 return vsi->has_vlan_filter; 1184 } 1185 1186 /** 1187 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary 1188 * @vsi: the VSI to configure 1189 * @tmp_add_list: list of filters ready to be added 1190 * @tmp_del_list: list of filters ready to be deleted 1191 * @vlan_filters: the number of active VLAN filters 1192 * 1193 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they 1194 * behave as expected. If we have any active VLAN filters remaining or about 1195 * to be added then we need to update non-VLAN filters to be marked as VLAN=0 1196 * so that they only match against untagged traffic. If we no longer have any 1197 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1 1198 * so that they match against both tagged and untagged traffic. In this way, 1199 * we ensure that we correctly receive the desired traffic. This ensures that 1200 * when we have an active VLAN we will receive only untagged traffic and 1201 * traffic matching active VLANs. If we have no active VLANs then we will 1202 * operate in non-VLAN mode and receive all traffic, tagged or untagged. 1203 * 1204 * Finally, in a similar fashion, this function also corrects filters when 1205 * there is an active PVID assigned to this VSI. 1206 * 1207 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0. 1208 * 1209 * This function is only expected to be called from within 1210 * i40e_sync_vsi_filters. 1211 * 1212 * NOTE: This function expects to be called while under the 1213 * mac_filter_hash_lock 1214 */ 1215 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi, 1216 struct hlist_head *tmp_add_list, 1217 struct hlist_head *tmp_del_list, 1218 int vlan_filters) 1219 { 1220 s16 pvid = le16_to_cpu(vsi->info.pvid); 1221 struct i40e_mac_filter *f, *add_head; 1222 struct i40e_new_mac_filter *new; 1223 struct hlist_node *h; 1224 int bkt, new_vlan; 1225 1226 /* To determine if a particular filter needs to be replaced we 1227 * have the three following conditions: 1228 * 1229 * a) if we have a PVID assigned, then all filters which are 1230 * not marked as VLAN=PVID must be replaced with filters that 1231 * are. 1232 * b) otherwise, if we have any active VLANS, all filters 1233 * which are marked as VLAN=-1 must be replaced with 1234 * filters marked as VLAN=0 1235 * c) finally, if we do not have any active VLANS, all filters 1236 * which are marked as VLAN=0 must be replaced with filters 1237 * marked as VLAN=-1 1238 */ 1239 1240 /* Update the filters about to be added in place */ 1241 hlist_for_each_entry(new, tmp_add_list, hlist) { 1242 if (pvid && new->f->vlan != pvid) 1243 new->f->vlan = pvid; 1244 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY) 1245 new->f->vlan = 0; 1246 else if (!vlan_filters && new->f->vlan == 0) 1247 new->f->vlan = I40E_VLAN_ANY; 1248 } 1249 1250 /* Update the remaining active filters */ 1251 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1252 /* Combine the checks for whether a filter needs to be changed 1253 * and then determine the new VLAN inside the if block, in 1254 * order to avoid duplicating code for adding the new filter 1255 * then deleting the old filter. 1256 */ 1257 if ((pvid && f->vlan != pvid) || 1258 (vlan_filters && f->vlan == I40E_VLAN_ANY) || 1259 (!vlan_filters && f->vlan == 0)) { 1260 /* Determine the new vlan we will be adding */ 1261 if (pvid) 1262 new_vlan = pvid; 1263 else if (vlan_filters) 1264 new_vlan = 0; 1265 else 1266 new_vlan = I40E_VLAN_ANY; 1267 1268 /* Create the new filter */ 1269 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan); 1270 if (!add_head) 1271 return -ENOMEM; 1272 1273 /* Create a temporary i40e_new_mac_filter */ 1274 new = kzalloc(sizeof(*new), GFP_ATOMIC); 1275 if (!new) 1276 return -ENOMEM; 1277 1278 new->f = add_head; 1279 new->state = add_head->state; 1280 1281 /* Add the new filter to the tmp list */ 1282 hlist_add_head(&new->hlist, tmp_add_list); 1283 1284 /* Put the original filter into the delete list */ 1285 f->state = I40E_FILTER_REMOVE; 1286 hash_del(&f->hlist); 1287 hlist_add_head(&f->hlist, tmp_del_list); 1288 } 1289 } 1290 1291 vsi->has_vlan_filter = !!vlan_filters; 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM 1298 * @vsi: the PF Main VSI - inappropriate for any other VSI 1299 * @macaddr: the MAC address 1300 * 1301 * Remove whatever filter the firmware set up so the driver can manage 1302 * its own filtering intelligently. 1303 **/ 1304 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) 1305 { 1306 struct i40e_aqc_remove_macvlan_element_data element; 1307 struct i40e_pf *pf = vsi->back; 1308 1309 /* Only appropriate for the PF main VSI */ 1310 if (vsi->type != I40E_VSI_MAIN) 1311 return; 1312 1313 memset(&element, 0, sizeof(element)); 1314 ether_addr_copy(element.mac_addr, macaddr); 1315 element.vlan_tag = 0; 1316 /* Ignore error returns, some firmware does it this way... */ 1317 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 1318 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1319 1320 memset(&element, 0, sizeof(element)); 1321 ether_addr_copy(element.mac_addr, macaddr); 1322 element.vlan_tag = 0; 1323 /* ...and some firmware does it this way. */ 1324 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | 1325 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 1326 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); 1327 } 1328 1329 /** 1330 * i40e_add_filter - Add a mac/vlan filter to the VSI 1331 * @vsi: the VSI to be searched 1332 * @macaddr: the MAC address 1333 * @vlan: the vlan 1334 * 1335 * Returns ptr to the filter object or NULL when no memory available. 1336 * 1337 * NOTE: This function is expected to be called with mac_filter_hash_lock 1338 * being held. 1339 **/ 1340 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, 1341 const u8 *macaddr, s16 vlan) 1342 { 1343 struct i40e_mac_filter *f; 1344 u64 key; 1345 1346 if (!vsi || !macaddr) 1347 return NULL; 1348 1349 f = i40e_find_filter(vsi, macaddr, vlan); 1350 if (!f) { 1351 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1352 if (!f) 1353 return NULL; 1354 1355 /* Update the boolean indicating if we need to function in 1356 * VLAN mode. 1357 */ 1358 if (vlan >= 0) 1359 vsi->has_vlan_filter = true; 1360 1361 ether_addr_copy(f->macaddr, macaddr); 1362 f->vlan = vlan; 1363 f->state = I40E_FILTER_NEW; 1364 INIT_HLIST_NODE(&f->hlist); 1365 1366 key = i40e_addr_to_hkey(macaddr); 1367 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1368 1369 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1370 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1371 } 1372 1373 /* If we're asked to add a filter that has been marked for removal, it 1374 * is safe to simply restore it to active state. __i40e_del_filter 1375 * will have simply deleted any filters which were previously marked 1376 * NEW or FAILED, so if it is currently marked REMOVE it must have 1377 * previously been ACTIVE. Since we haven't yet run the sync filters 1378 * task, just restore this filter to the ACTIVE state so that the 1379 * sync task leaves it in place 1380 */ 1381 if (f->state == I40E_FILTER_REMOVE) 1382 f->state = I40E_FILTER_ACTIVE; 1383 1384 return f; 1385 } 1386 1387 /** 1388 * __i40e_del_filter - Remove a specific filter from the VSI 1389 * @vsi: VSI to remove from 1390 * @f: the filter to remove from the list 1391 * 1392 * This function should be called instead of i40e_del_filter only if you know 1393 * the exact filter you will remove already, such as via i40e_find_filter or 1394 * i40e_find_mac. 1395 * 1396 * NOTE: This function is expected to be called with mac_filter_hash_lock 1397 * being held. 1398 * ANOTHER NOTE: This function MUST be called from within the context of 1399 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1400 * instead of list_for_each_entry(). 1401 **/ 1402 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f) 1403 { 1404 if (!f) 1405 return; 1406 1407 /* If the filter was never added to firmware then we can just delete it 1408 * directly and we don't want to set the status to remove or else an 1409 * admin queue command will unnecessarily fire. 1410 */ 1411 if ((f->state == I40E_FILTER_FAILED) || 1412 (f->state == I40E_FILTER_NEW)) { 1413 hash_del(&f->hlist); 1414 kfree(f); 1415 } else { 1416 f->state = I40E_FILTER_REMOVE; 1417 } 1418 1419 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1420 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1421 } 1422 1423 /** 1424 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI 1425 * @vsi: the VSI to be searched 1426 * @macaddr: the MAC address 1427 * @vlan: the VLAN 1428 * 1429 * NOTE: This function is expected to be called with mac_filter_hash_lock 1430 * being held. 1431 * ANOTHER NOTE: This function MUST be called from within the context of 1432 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe() 1433 * instead of list_for_each_entry(). 1434 **/ 1435 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan) 1436 { 1437 struct i40e_mac_filter *f; 1438 1439 if (!vsi || !macaddr) 1440 return; 1441 1442 f = i40e_find_filter(vsi, macaddr, vlan); 1443 __i40e_del_filter(vsi, f); 1444 } 1445 1446 /** 1447 * i40e_add_mac_filter - Add a MAC filter for all active VLANs 1448 * @vsi: the VSI to be searched 1449 * @macaddr: the mac address to be filtered 1450 * 1451 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise, 1452 * go through all the macvlan filters and add a macvlan filter for each 1453 * unique vlan that already exists. If a PVID has been assigned, instead only 1454 * add the macaddr to that VLAN. 1455 * 1456 * Returns last filter added on success, else NULL 1457 **/ 1458 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi, 1459 const u8 *macaddr) 1460 { 1461 struct i40e_mac_filter *f, *add = NULL; 1462 struct hlist_node *h; 1463 int bkt; 1464 1465 if (vsi->info.pvid) 1466 return i40e_add_filter(vsi, macaddr, 1467 le16_to_cpu(vsi->info.pvid)); 1468 1469 if (!i40e_is_vsi_in_vlan(vsi)) 1470 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY); 1471 1472 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1473 if (f->state == I40E_FILTER_REMOVE) 1474 continue; 1475 add = i40e_add_filter(vsi, macaddr, f->vlan); 1476 if (!add) 1477 return NULL; 1478 } 1479 1480 return add; 1481 } 1482 1483 /** 1484 * i40e_del_mac_filter - Remove a MAC filter from all VLANs 1485 * @vsi: the VSI to be searched 1486 * @macaddr: the mac address to be removed 1487 * 1488 * Removes a given MAC address from a VSI regardless of what VLAN it has been 1489 * associated with. 1490 * 1491 * Returns 0 for success, or error 1492 **/ 1493 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr) 1494 { 1495 struct i40e_mac_filter *f; 1496 struct hlist_node *h; 1497 bool found = false; 1498 int bkt; 1499 1500 lockdep_assert_held(&vsi->mac_filter_hash_lock); 1501 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 1502 if (ether_addr_equal(macaddr, f->macaddr)) { 1503 __i40e_del_filter(vsi, f); 1504 found = true; 1505 } 1506 } 1507 1508 if (found) 1509 return 0; 1510 else 1511 return -ENOENT; 1512 } 1513 1514 /** 1515 * i40e_set_mac - NDO callback to set mac address 1516 * @netdev: network interface device structure 1517 * @p: pointer to an address structure 1518 * 1519 * Returns 0 on success, negative on failure 1520 **/ 1521 static int i40e_set_mac(struct net_device *netdev, void *p) 1522 { 1523 struct i40e_netdev_priv *np = netdev_priv(netdev); 1524 struct i40e_vsi *vsi = np->vsi; 1525 struct i40e_pf *pf = vsi->back; 1526 struct i40e_hw *hw = &pf->hw; 1527 struct sockaddr *addr = p; 1528 1529 if (!is_valid_ether_addr(addr->sa_data)) 1530 return -EADDRNOTAVAIL; 1531 1532 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { 1533 netdev_info(netdev, "already using mac address %pM\n", 1534 addr->sa_data); 1535 return 0; 1536 } 1537 1538 if (test_bit(__I40E_DOWN, pf->state) || 1539 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 1540 return -EADDRNOTAVAIL; 1541 1542 if (ether_addr_equal(hw->mac.addr, addr->sa_data)) 1543 netdev_info(netdev, "returning to hw mac address %pM\n", 1544 hw->mac.addr); 1545 else 1546 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); 1547 1548 /* Copy the address first, so that we avoid a possible race with 1549 * .set_rx_mode(). 1550 * - Remove old address from MAC filter 1551 * - Copy new address 1552 * - Add new address to MAC filter 1553 */ 1554 spin_lock_bh(&vsi->mac_filter_hash_lock); 1555 i40e_del_mac_filter(vsi, netdev->dev_addr); 1556 ether_addr_copy(netdev->dev_addr, addr->sa_data); 1557 i40e_add_mac_filter(vsi, netdev->dev_addr); 1558 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1559 1560 if (vsi->type == I40E_VSI_MAIN) { 1561 i40e_status ret; 1562 1563 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, 1564 addr->sa_data, NULL); 1565 if (ret) 1566 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n", 1567 i40e_stat_str(hw, ret), 1568 i40e_aq_str(hw, hw->aq.asq_last_status)); 1569 } 1570 1571 /* schedule our worker thread which will take care of 1572 * applying the new filter changes 1573 */ 1574 i40e_service_event_schedule(pf); 1575 return 0; 1576 } 1577 1578 /** 1579 * i40e_config_rss_aq - Prepare for RSS using AQ commands 1580 * @vsi: vsi structure 1581 * @seed: RSS hash seed 1582 **/ 1583 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 1584 u8 *lut, u16 lut_size) 1585 { 1586 struct i40e_pf *pf = vsi->back; 1587 struct i40e_hw *hw = &pf->hw; 1588 int ret = 0; 1589 1590 if (seed) { 1591 struct i40e_aqc_get_set_rss_key_data *seed_dw = 1592 (struct i40e_aqc_get_set_rss_key_data *)seed; 1593 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw); 1594 if (ret) { 1595 dev_info(&pf->pdev->dev, 1596 "Cannot set RSS key, err %s aq_err %s\n", 1597 i40e_stat_str(hw, ret), 1598 i40e_aq_str(hw, hw->aq.asq_last_status)); 1599 return ret; 1600 } 1601 } 1602 if (lut) { 1603 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 1604 1605 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 1606 if (ret) { 1607 dev_info(&pf->pdev->dev, 1608 "Cannot set RSS lut, err %s aq_err %s\n", 1609 i40e_stat_str(hw, ret), 1610 i40e_aq_str(hw, hw->aq.asq_last_status)); 1611 return ret; 1612 } 1613 } 1614 return ret; 1615 } 1616 1617 /** 1618 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used 1619 * @vsi: VSI structure 1620 **/ 1621 static int i40e_vsi_config_rss(struct i40e_vsi *vsi) 1622 { 1623 struct i40e_pf *pf = vsi->back; 1624 u8 seed[I40E_HKEY_ARRAY_SIZE]; 1625 u8 *lut; 1626 int ret; 1627 1628 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)) 1629 return 0; 1630 if (!vsi->rss_size) 1631 vsi->rss_size = min_t(int, pf->alloc_rss_size, 1632 vsi->num_queue_pairs); 1633 if (!vsi->rss_size) 1634 return -EINVAL; 1635 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1636 if (!lut) 1637 return -ENOMEM; 1638 1639 /* Use the user configured hash keys and lookup table if there is one, 1640 * otherwise use default 1641 */ 1642 if (vsi->rss_lut_user) 1643 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1644 else 1645 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 1646 if (vsi->rss_hkey_user) 1647 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 1648 else 1649 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 1650 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size); 1651 kfree(lut); 1652 return ret; 1653 } 1654 1655 /** 1656 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config 1657 * @vsi: the VSI being configured, 1658 * @ctxt: VSI context structure 1659 * @enabled_tc: number of traffic classes to enable 1660 * 1661 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 1662 **/ 1663 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi, 1664 struct i40e_vsi_context *ctxt, 1665 u8 enabled_tc) 1666 { 1667 u16 qcount = 0, max_qcount, qmap, sections = 0; 1668 int i, override_q, pow, num_qps, ret; 1669 u8 netdev_tc = 0, offset = 0; 1670 1671 if (vsi->type != I40E_VSI_MAIN) 1672 return -EINVAL; 1673 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1674 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1675 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc; 1676 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1677 num_qps = vsi->mqprio_qopt.qopt.count[0]; 1678 1679 /* find the next higher power-of-2 of num queue pairs */ 1680 pow = ilog2(num_qps); 1681 if (!is_power_of_2(num_qps)) 1682 pow++; 1683 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1684 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1685 1686 /* Setup queue offset/count for all TCs for given VSI */ 1687 max_qcount = vsi->mqprio_qopt.qopt.count[0]; 1688 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1689 /* See if the given TC is enabled for the given VSI */ 1690 if (vsi->tc_config.enabled_tc & BIT(i)) { 1691 offset = vsi->mqprio_qopt.qopt.offset[i]; 1692 qcount = vsi->mqprio_qopt.qopt.count[i]; 1693 if (qcount > max_qcount) 1694 max_qcount = qcount; 1695 vsi->tc_config.tc_info[i].qoffset = offset; 1696 vsi->tc_config.tc_info[i].qcount = qcount; 1697 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1698 } else { 1699 /* TC is not enabled so set the offset to 1700 * default queue and allocate one queue 1701 * for the given TC. 1702 */ 1703 vsi->tc_config.tc_info[i].qoffset = 0; 1704 vsi->tc_config.tc_info[i].qcount = 1; 1705 vsi->tc_config.tc_info[i].netdev_tc = 0; 1706 } 1707 } 1708 1709 /* Set actual Tx/Rx queue pairs */ 1710 vsi->num_queue_pairs = offset + qcount; 1711 1712 /* Setup queue TC[0].qmap for given VSI context */ 1713 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1714 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1715 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1716 ctxt->info.valid_sections |= cpu_to_le16(sections); 1717 1718 /* Reconfigure RSS for main VSI with max queue count */ 1719 vsi->rss_size = max_qcount; 1720 ret = i40e_vsi_config_rss(vsi); 1721 if (ret) { 1722 dev_info(&vsi->back->pdev->dev, 1723 "Failed to reconfig rss for num_queues (%u)\n", 1724 max_qcount); 1725 return ret; 1726 } 1727 vsi->reconfig_rss = true; 1728 dev_dbg(&vsi->back->pdev->dev, 1729 "Reconfigured rss with num_queues (%u)\n", max_qcount); 1730 1731 /* Find queue count available for channel VSIs and starting offset 1732 * for channel VSIs 1733 */ 1734 override_q = vsi->mqprio_qopt.qopt.count[0]; 1735 if (override_q && override_q < vsi->num_queue_pairs) { 1736 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q; 1737 vsi->next_base_queue = override_q; 1738 } 1739 return 0; 1740 } 1741 1742 /** 1743 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc 1744 * @vsi: the VSI being setup 1745 * @ctxt: VSI context structure 1746 * @enabled_tc: Enabled TCs bitmap 1747 * @is_add: True if called before Add VSI 1748 * 1749 * Setup VSI queue mapping for enabled traffic classes. 1750 **/ 1751 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, 1752 struct i40e_vsi_context *ctxt, 1753 u8 enabled_tc, 1754 bool is_add) 1755 { 1756 struct i40e_pf *pf = vsi->back; 1757 u16 sections = 0; 1758 u8 netdev_tc = 0; 1759 u16 numtc = 1; 1760 u16 qcount; 1761 u8 offset; 1762 u16 qmap; 1763 int i; 1764 u16 num_tc_qps = 0; 1765 1766 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 1767 offset = 0; 1768 1769 /* Number of queues per enabled TC */ 1770 num_tc_qps = vsi->alloc_queue_pairs; 1771 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 1772 /* Find numtc from enabled TC bitmap */ 1773 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1774 if (enabled_tc & BIT(i)) /* TC is enabled */ 1775 numtc++; 1776 } 1777 if (!numtc) { 1778 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); 1779 numtc = 1; 1780 } 1781 num_tc_qps = num_tc_qps / numtc; 1782 num_tc_qps = min_t(int, num_tc_qps, 1783 i40e_pf_get_max_q_per_tc(pf)); 1784 } 1785 1786 vsi->tc_config.numtc = numtc; 1787 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; 1788 1789 /* Do not allow use more TC queue pairs than MSI-X vectors exist */ 1790 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1791 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix); 1792 1793 /* Setup queue offset/count for all TCs for given VSI */ 1794 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 1795 /* See if the given TC is enabled for the given VSI */ 1796 if (vsi->tc_config.enabled_tc & BIT(i)) { 1797 /* TC is enabled */ 1798 int pow, num_qps; 1799 1800 switch (vsi->type) { 1801 case I40E_VSI_MAIN: 1802 if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | 1803 I40E_FLAG_FD_ATR_ENABLED)) || 1804 vsi->tc_config.enabled_tc != 1) { 1805 qcount = min_t(int, pf->alloc_rss_size, 1806 num_tc_qps); 1807 break; 1808 } 1809 /* fall through */ 1810 case I40E_VSI_FDIR: 1811 case I40E_VSI_SRIOV: 1812 case I40E_VSI_VMDQ2: 1813 default: 1814 qcount = num_tc_qps; 1815 WARN_ON(i != 0); 1816 break; 1817 } 1818 vsi->tc_config.tc_info[i].qoffset = offset; 1819 vsi->tc_config.tc_info[i].qcount = qcount; 1820 1821 /* find the next higher power-of-2 of num queue pairs */ 1822 num_qps = qcount; 1823 pow = 0; 1824 while (num_qps && (BIT_ULL(pow) < qcount)) { 1825 pow++; 1826 num_qps >>= 1; 1827 } 1828 1829 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; 1830 qmap = 1831 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 1832 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 1833 1834 offset += qcount; 1835 } else { 1836 /* TC is not enabled so set the offset to 1837 * default queue and allocate one queue 1838 * for the given TC. 1839 */ 1840 vsi->tc_config.tc_info[i].qoffset = 0; 1841 vsi->tc_config.tc_info[i].qcount = 1; 1842 vsi->tc_config.tc_info[i].netdev_tc = 0; 1843 1844 qmap = 0; 1845 } 1846 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1847 } 1848 1849 /* Set actual Tx/Rx queue pairs */ 1850 vsi->num_queue_pairs = offset; 1851 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) { 1852 if (vsi->req_queue_pairs > 0) 1853 vsi->num_queue_pairs = vsi->req_queue_pairs; 1854 else if (pf->flags & I40E_FLAG_MSIX_ENABLED) 1855 vsi->num_queue_pairs = pf->num_lan_msix; 1856 } 1857 1858 /* Scheduler section valid can only be set for ADD VSI */ 1859 if (is_add) { 1860 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 1861 1862 ctxt->info.up_enable_bits = enabled_tc; 1863 } 1864 if (vsi->type == I40E_VSI_SRIOV) { 1865 ctxt->info.mapping_flags |= 1866 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); 1867 for (i = 0; i < vsi->num_queue_pairs; i++) 1868 ctxt->info.queue_mapping[i] = 1869 cpu_to_le16(vsi->base_queue + i); 1870 } else { 1871 ctxt->info.mapping_flags |= 1872 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 1873 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); 1874 } 1875 ctxt->info.valid_sections |= cpu_to_le16(sections); 1876 } 1877 1878 /** 1879 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address 1880 * @netdev: the netdevice 1881 * @addr: address to add 1882 * 1883 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1884 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1885 */ 1886 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr) 1887 { 1888 struct i40e_netdev_priv *np = netdev_priv(netdev); 1889 struct i40e_vsi *vsi = np->vsi; 1890 1891 if (i40e_add_mac_filter(vsi, addr)) 1892 return 0; 1893 else 1894 return -ENOMEM; 1895 } 1896 1897 /** 1898 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1899 * @netdev: the netdevice 1900 * @addr: address to add 1901 * 1902 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1903 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1904 */ 1905 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr) 1906 { 1907 struct i40e_netdev_priv *np = netdev_priv(netdev); 1908 struct i40e_vsi *vsi = np->vsi; 1909 1910 /* Under some circumstances, we might receive a request to delete 1911 * our own device address from our uc list. Because we store the 1912 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1913 * such requests and not delete our device address from this list. 1914 */ 1915 if (ether_addr_equal(addr, netdev->dev_addr)) 1916 return 0; 1917 1918 i40e_del_mac_filter(vsi, addr); 1919 1920 return 0; 1921 } 1922 1923 /** 1924 * i40e_set_rx_mode - NDO callback to set the netdev filters 1925 * @netdev: network interface device structure 1926 **/ 1927 static void i40e_set_rx_mode(struct net_device *netdev) 1928 { 1929 struct i40e_netdev_priv *np = netdev_priv(netdev); 1930 struct i40e_vsi *vsi = np->vsi; 1931 1932 spin_lock_bh(&vsi->mac_filter_hash_lock); 1933 1934 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1935 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync); 1936 1937 spin_unlock_bh(&vsi->mac_filter_hash_lock); 1938 1939 /* check for other flag changes */ 1940 if (vsi->current_netdev_flags != vsi->netdev->flags) { 1941 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 1942 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state); 1943 } 1944 } 1945 1946 /** 1947 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries 1948 * @vsi: Pointer to VSI struct 1949 * @from: Pointer to list which contains MAC filter entries - changes to 1950 * those entries needs to be undone. 1951 * 1952 * MAC filter entries from this list were slated for deletion. 1953 **/ 1954 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi, 1955 struct hlist_head *from) 1956 { 1957 struct i40e_mac_filter *f; 1958 struct hlist_node *h; 1959 1960 hlist_for_each_entry_safe(f, h, from, hlist) { 1961 u64 key = i40e_addr_to_hkey(f->macaddr); 1962 1963 /* Move the element back into MAC filter list*/ 1964 hlist_del(&f->hlist); 1965 hash_add(vsi->mac_filter_hash, &f->hlist, key); 1966 } 1967 } 1968 1969 /** 1970 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries 1971 * @vsi: Pointer to vsi struct 1972 * @from: Pointer to list which contains MAC filter entries - changes to 1973 * those entries needs to be undone. 1974 * 1975 * MAC filter entries from this list were slated for addition. 1976 **/ 1977 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi, 1978 struct hlist_head *from) 1979 { 1980 struct i40e_new_mac_filter *new; 1981 struct hlist_node *h; 1982 1983 hlist_for_each_entry_safe(new, h, from, hlist) { 1984 /* We can simply free the wrapper structure */ 1985 hlist_del(&new->hlist); 1986 kfree(new); 1987 } 1988 } 1989 1990 /** 1991 * i40e_next_entry - Get the next non-broadcast filter from a list 1992 * @next: pointer to filter in list 1993 * 1994 * Returns the next non-broadcast filter in the list. Required so that we 1995 * ignore broadcast filters within the list, since these are not handled via 1996 * the normal firmware update path. 1997 */ 1998 static 1999 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next) 2000 { 2001 hlist_for_each_entry_continue(next, hlist) { 2002 if (!is_broadcast_ether_addr(next->f->macaddr)) 2003 return next; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 /** 2010 * i40e_update_filter_state - Update filter state based on return data 2011 * from firmware 2012 * @count: Number of filters added 2013 * @add_list: return data from fw 2014 * @add_head: pointer to first filter in current batch 2015 * 2016 * MAC filter entries from list were slated to be added to device. Returns 2017 * number of successful filters. Note that 0 does NOT mean success! 2018 **/ 2019 static int 2020 i40e_update_filter_state(int count, 2021 struct i40e_aqc_add_macvlan_element_data *add_list, 2022 struct i40e_new_mac_filter *add_head) 2023 { 2024 int retval = 0; 2025 int i; 2026 2027 for (i = 0; i < count; i++) { 2028 /* Always check status of each filter. We don't need to check 2029 * the firmware return status because we pre-set the filter 2030 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter 2031 * request to the adminq. Thus, if it no longer matches then 2032 * we know the filter is active. 2033 */ 2034 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) { 2035 add_head->state = I40E_FILTER_FAILED; 2036 } else { 2037 add_head->state = I40E_FILTER_ACTIVE; 2038 retval++; 2039 } 2040 2041 add_head = i40e_next_filter(add_head); 2042 if (!add_head) 2043 break; 2044 } 2045 2046 return retval; 2047 } 2048 2049 /** 2050 * i40e_aqc_del_filters - Request firmware to delete a set of filters 2051 * @vsi: ptr to the VSI 2052 * @vsi_name: name to display in messages 2053 * @list: the list of filters to send to firmware 2054 * @num_del: the number of filters to delete 2055 * @retval: Set to -EIO on failure to delete 2056 * 2057 * Send a request to firmware via AdminQ to delete a set of filters. Uses 2058 * *retval instead of a return value so that success does not force ret_val to 2059 * be set to 0. This ensures that a sequence of calls to this function 2060 * preserve the previous value of *retval on successful delete. 2061 */ 2062 static 2063 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name, 2064 struct i40e_aqc_remove_macvlan_element_data *list, 2065 int num_del, int *retval) 2066 { 2067 struct i40e_hw *hw = &vsi->back->hw; 2068 i40e_status aq_ret; 2069 int aq_err; 2070 2071 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL); 2072 aq_err = hw->aq.asq_last_status; 2073 2074 /* Explicitly ignore and do not report when firmware returns ENOENT */ 2075 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) { 2076 *retval = -EIO; 2077 dev_info(&vsi->back->pdev->dev, 2078 "ignoring delete macvlan error on %s, err %s, aq_err %s\n", 2079 vsi_name, i40e_stat_str(hw, aq_ret), 2080 i40e_aq_str(hw, aq_err)); 2081 } 2082 } 2083 2084 /** 2085 * i40e_aqc_add_filters - Request firmware to add a set of filters 2086 * @vsi: ptr to the VSI 2087 * @vsi_name: name to display in messages 2088 * @list: the list of filters to send to firmware 2089 * @add_head: Position in the add hlist 2090 * @num_add: the number of filters to add 2091 * 2092 * Send a request to firmware via AdminQ to add a chunk of filters. Will set 2093 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of 2094 * space for more filters. 2095 */ 2096 static 2097 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name, 2098 struct i40e_aqc_add_macvlan_element_data *list, 2099 struct i40e_new_mac_filter *add_head, 2100 int num_add) 2101 { 2102 struct i40e_hw *hw = &vsi->back->hw; 2103 int aq_err, fcnt; 2104 2105 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL); 2106 aq_err = hw->aq.asq_last_status; 2107 fcnt = i40e_update_filter_state(num_add, list, add_head); 2108 2109 if (fcnt != num_add) { 2110 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2111 dev_warn(&vsi->back->pdev->dev, 2112 "Error %s adding RX filters on %s, promiscuous mode forced on\n", 2113 i40e_aq_str(hw, aq_err), 2114 vsi_name); 2115 } 2116 } 2117 2118 /** 2119 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags 2120 * @vsi: pointer to the VSI 2121 * @vsi_name: the VSI name 2122 * @f: filter data 2123 * 2124 * This function sets or clears the promiscuous broadcast flags for VLAN 2125 * filters in order to properly receive broadcast frames. Assumes that only 2126 * broadcast filters are passed. 2127 * 2128 * Returns status indicating success or failure; 2129 **/ 2130 static i40e_status 2131 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name, 2132 struct i40e_mac_filter *f) 2133 { 2134 bool enable = f->state == I40E_FILTER_NEW; 2135 struct i40e_hw *hw = &vsi->back->hw; 2136 i40e_status aq_ret; 2137 2138 if (f->vlan == I40E_VLAN_ANY) { 2139 aq_ret = i40e_aq_set_vsi_broadcast(hw, 2140 vsi->seid, 2141 enable, 2142 NULL); 2143 } else { 2144 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw, 2145 vsi->seid, 2146 enable, 2147 f->vlan, 2148 NULL); 2149 } 2150 2151 if (aq_ret) { 2152 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2153 dev_warn(&vsi->back->pdev->dev, 2154 "Error %s, forcing overflow promiscuous on %s\n", 2155 i40e_aq_str(hw, hw->aq.asq_last_status), 2156 vsi_name); 2157 } 2158 2159 return aq_ret; 2160 } 2161 2162 /** 2163 * i40e_set_promiscuous - set promiscuous mode 2164 * @pf: board private structure 2165 * @promisc: promisc on or off 2166 * 2167 * There are different ways of setting promiscuous mode on a PF depending on 2168 * what state/environment we're in. This identifies and sets it appropriately. 2169 * Returns 0 on success. 2170 **/ 2171 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc) 2172 { 2173 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 2174 struct i40e_hw *hw = &pf->hw; 2175 i40e_status aq_ret; 2176 2177 if (vsi->type == I40E_VSI_MAIN && 2178 pf->lan_veb != I40E_NO_VEB && 2179 !(pf->flags & I40E_FLAG_MFP_ENABLED)) { 2180 /* set defport ON for Main VSI instead of true promisc 2181 * this way we will get all unicast/multicast and VLAN 2182 * promisc behavior but will not get VF or VMDq traffic 2183 * replicated on the Main VSI. 2184 */ 2185 if (promisc) 2186 aq_ret = i40e_aq_set_default_vsi(hw, 2187 vsi->seid, 2188 NULL); 2189 else 2190 aq_ret = i40e_aq_clear_default_vsi(hw, 2191 vsi->seid, 2192 NULL); 2193 if (aq_ret) { 2194 dev_info(&pf->pdev->dev, 2195 "Set default VSI failed, err %s, aq_err %s\n", 2196 i40e_stat_str(hw, aq_ret), 2197 i40e_aq_str(hw, hw->aq.asq_last_status)); 2198 } 2199 } else { 2200 aq_ret = i40e_aq_set_vsi_unicast_promiscuous( 2201 hw, 2202 vsi->seid, 2203 promisc, NULL, 2204 true); 2205 if (aq_ret) { 2206 dev_info(&pf->pdev->dev, 2207 "set unicast promisc failed, err %s, aq_err %s\n", 2208 i40e_stat_str(hw, aq_ret), 2209 i40e_aq_str(hw, hw->aq.asq_last_status)); 2210 } 2211 aq_ret = i40e_aq_set_vsi_multicast_promiscuous( 2212 hw, 2213 vsi->seid, 2214 promisc, NULL); 2215 if (aq_ret) { 2216 dev_info(&pf->pdev->dev, 2217 "set multicast promisc failed, err %s, aq_err %s\n", 2218 i40e_stat_str(hw, aq_ret), 2219 i40e_aq_str(hw, hw->aq.asq_last_status)); 2220 } 2221 } 2222 2223 if (!aq_ret) 2224 pf->cur_promisc = promisc; 2225 2226 return aq_ret; 2227 } 2228 2229 /** 2230 * i40e_sync_vsi_filters - Update the VSI filter list to the HW 2231 * @vsi: ptr to the VSI 2232 * 2233 * Push any outstanding VSI filter changes through the AdminQ. 2234 * 2235 * Returns 0 or error value 2236 **/ 2237 int i40e_sync_vsi_filters(struct i40e_vsi *vsi) 2238 { 2239 struct hlist_head tmp_add_list, tmp_del_list; 2240 struct i40e_mac_filter *f; 2241 struct i40e_new_mac_filter *new, *add_head = NULL; 2242 struct i40e_hw *hw = &vsi->back->hw; 2243 bool old_overflow, new_overflow; 2244 unsigned int failed_filters = 0; 2245 unsigned int vlan_filters = 0; 2246 char vsi_name[16] = "PF"; 2247 int filter_list_len = 0; 2248 i40e_status aq_ret = 0; 2249 u32 changed_flags = 0; 2250 struct hlist_node *h; 2251 struct i40e_pf *pf; 2252 int num_add = 0; 2253 int num_del = 0; 2254 int retval = 0; 2255 u16 cmd_flags; 2256 int list_size; 2257 int bkt; 2258 2259 /* empty array typed pointers, kcalloc later */ 2260 struct i40e_aqc_add_macvlan_element_data *add_list; 2261 struct i40e_aqc_remove_macvlan_element_data *del_list; 2262 2263 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state)) 2264 usleep_range(1000, 2000); 2265 pf = vsi->back; 2266 2267 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2268 2269 if (vsi->netdev) { 2270 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 2271 vsi->current_netdev_flags = vsi->netdev->flags; 2272 } 2273 2274 INIT_HLIST_HEAD(&tmp_add_list); 2275 INIT_HLIST_HEAD(&tmp_del_list); 2276 2277 if (vsi->type == I40E_VSI_SRIOV) 2278 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id); 2279 else if (vsi->type != I40E_VSI_MAIN) 2280 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid); 2281 2282 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { 2283 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; 2284 2285 spin_lock_bh(&vsi->mac_filter_hash_lock); 2286 /* Create a list of filters to delete. */ 2287 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2288 if (f->state == I40E_FILTER_REMOVE) { 2289 /* Move the element into temporary del_list */ 2290 hash_del(&f->hlist); 2291 hlist_add_head(&f->hlist, &tmp_del_list); 2292 2293 /* Avoid counting removed filters */ 2294 continue; 2295 } 2296 if (f->state == I40E_FILTER_NEW) { 2297 /* Create a temporary i40e_new_mac_filter */ 2298 new = kzalloc(sizeof(*new), GFP_ATOMIC); 2299 if (!new) 2300 goto err_no_memory_locked; 2301 2302 /* Store pointer to the real filter */ 2303 new->f = f; 2304 new->state = f->state; 2305 2306 /* Add it to the hash list */ 2307 hlist_add_head(&new->hlist, &tmp_add_list); 2308 } 2309 2310 /* Count the number of active (current and new) VLAN 2311 * filters we have now. Does not count filters which 2312 * are marked for deletion. 2313 */ 2314 if (f->vlan > 0) 2315 vlan_filters++; 2316 } 2317 2318 retval = i40e_correct_mac_vlan_filters(vsi, 2319 &tmp_add_list, 2320 &tmp_del_list, 2321 vlan_filters); 2322 if (retval) 2323 goto err_no_memory_locked; 2324 2325 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2326 } 2327 2328 /* Now process 'del_list' outside the lock */ 2329 if (!hlist_empty(&tmp_del_list)) { 2330 filter_list_len = hw->aq.asq_buf_size / 2331 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2332 list_size = filter_list_len * 2333 sizeof(struct i40e_aqc_remove_macvlan_element_data); 2334 del_list = kzalloc(list_size, GFP_ATOMIC); 2335 if (!del_list) 2336 goto err_no_memory; 2337 2338 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) { 2339 cmd_flags = 0; 2340 2341 /* handle broadcast filters by updating the broadcast 2342 * promiscuous flag and release filter list. 2343 */ 2344 if (is_broadcast_ether_addr(f->macaddr)) { 2345 i40e_aqc_broadcast_filter(vsi, vsi_name, f); 2346 2347 hlist_del(&f->hlist); 2348 kfree(f); 2349 continue; 2350 } 2351 2352 /* add to delete list */ 2353 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); 2354 if (f->vlan == I40E_VLAN_ANY) { 2355 del_list[num_del].vlan_tag = 0; 2356 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; 2357 } else { 2358 del_list[num_del].vlan_tag = 2359 cpu_to_le16((u16)(f->vlan)); 2360 } 2361 2362 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; 2363 del_list[num_del].flags = cmd_flags; 2364 num_del++; 2365 2366 /* flush a full buffer */ 2367 if (num_del == filter_list_len) { 2368 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2369 num_del, &retval); 2370 memset(del_list, 0, list_size); 2371 num_del = 0; 2372 } 2373 /* Release memory for MAC filter entries which were 2374 * synced up with HW. 2375 */ 2376 hlist_del(&f->hlist); 2377 kfree(f); 2378 } 2379 2380 if (num_del) { 2381 i40e_aqc_del_filters(vsi, vsi_name, del_list, 2382 num_del, &retval); 2383 } 2384 2385 kfree(del_list); 2386 del_list = NULL; 2387 } 2388 2389 if (!hlist_empty(&tmp_add_list)) { 2390 /* Do all the adds now. */ 2391 filter_list_len = hw->aq.asq_buf_size / 2392 sizeof(struct i40e_aqc_add_macvlan_element_data); 2393 list_size = filter_list_len * 2394 sizeof(struct i40e_aqc_add_macvlan_element_data); 2395 add_list = kzalloc(list_size, GFP_ATOMIC); 2396 if (!add_list) 2397 goto err_no_memory; 2398 2399 num_add = 0; 2400 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2401 /* handle broadcast filters by updating the broadcast 2402 * promiscuous flag instead of adding a MAC filter. 2403 */ 2404 if (is_broadcast_ether_addr(new->f->macaddr)) { 2405 if (i40e_aqc_broadcast_filter(vsi, vsi_name, 2406 new->f)) 2407 new->state = I40E_FILTER_FAILED; 2408 else 2409 new->state = I40E_FILTER_ACTIVE; 2410 continue; 2411 } 2412 2413 /* add to add array */ 2414 if (num_add == 0) 2415 add_head = new; 2416 cmd_flags = 0; 2417 ether_addr_copy(add_list[num_add].mac_addr, 2418 new->f->macaddr); 2419 if (new->f->vlan == I40E_VLAN_ANY) { 2420 add_list[num_add].vlan_tag = 0; 2421 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN; 2422 } else { 2423 add_list[num_add].vlan_tag = 2424 cpu_to_le16((u16)(new->f->vlan)); 2425 } 2426 add_list[num_add].queue_number = 0; 2427 /* set invalid match method for later detection */ 2428 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES; 2429 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; 2430 add_list[num_add].flags = cpu_to_le16(cmd_flags); 2431 num_add++; 2432 2433 /* flush a full buffer */ 2434 if (num_add == filter_list_len) { 2435 i40e_aqc_add_filters(vsi, vsi_name, add_list, 2436 add_head, num_add); 2437 memset(add_list, 0, list_size); 2438 num_add = 0; 2439 } 2440 } 2441 if (num_add) { 2442 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head, 2443 num_add); 2444 } 2445 /* Now move all of the filters from the temp add list back to 2446 * the VSI's list. 2447 */ 2448 spin_lock_bh(&vsi->mac_filter_hash_lock); 2449 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) { 2450 /* Only update the state if we're still NEW */ 2451 if (new->f->state == I40E_FILTER_NEW) 2452 new->f->state = new->state; 2453 hlist_del(&new->hlist); 2454 kfree(new); 2455 } 2456 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2457 kfree(add_list); 2458 add_list = NULL; 2459 } 2460 2461 /* Determine the number of active and failed filters. */ 2462 spin_lock_bh(&vsi->mac_filter_hash_lock); 2463 vsi->active_filters = 0; 2464 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { 2465 if (f->state == I40E_FILTER_ACTIVE) 2466 vsi->active_filters++; 2467 else if (f->state == I40E_FILTER_FAILED) 2468 failed_filters++; 2469 } 2470 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2471 2472 /* Check if we are able to exit overflow promiscuous mode. We can 2473 * safely exit if we didn't just enter, we no longer have any failed 2474 * filters, and we have reduced filters below the threshold value. 2475 */ 2476 if (old_overflow && !failed_filters && 2477 vsi->active_filters < vsi->promisc_threshold) { 2478 dev_info(&pf->pdev->dev, 2479 "filter logjam cleared on %s, leaving overflow promiscuous mode\n", 2480 vsi_name); 2481 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2482 vsi->promisc_threshold = 0; 2483 } 2484 2485 /* if the VF is not trusted do not do promisc */ 2486 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) { 2487 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2488 goto out; 2489 } 2490 2491 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 2492 2493 /* If we are entering overflow promiscuous, we need to calculate a new 2494 * threshold for when we are safe to exit 2495 */ 2496 if (!old_overflow && new_overflow) 2497 vsi->promisc_threshold = (vsi->active_filters * 3) / 4; 2498 2499 /* check for changes in promiscuous modes */ 2500 if (changed_flags & IFF_ALLMULTI) { 2501 bool cur_multipromisc; 2502 2503 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); 2504 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, 2505 vsi->seid, 2506 cur_multipromisc, 2507 NULL); 2508 if (aq_ret) { 2509 retval = i40e_aq_rc_to_posix(aq_ret, 2510 hw->aq.asq_last_status); 2511 dev_info(&pf->pdev->dev, 2512 "set multi promisc failed on %s, err %s aq_err %s\n", 2513 vsi_name, 2514 i40e_stat_str(hw, aq_ret), 2515 i40e_aq_str(hw, hw->aq.asq_last_status)); 2516 } 2517 } 2518 2519 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) { 2520 bool cur_promisc; 2521 2522 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || 2523 new_overflow); 2524 aq_ret = i40e_set_promiscuous(pf, cur_promisc); 2525 if (aq_ret) { 2526 retval = i40e_aq_rc_to_posix(aq_ret, 2527 hw->aq.asq_last_status); 2528 dev_info(&pf->pdev->dev, 2529 "Setting promiscuous %s failed on %s, err %s aq_err %s\n", 2530 cur_promisc ? "on" : "off", 2531 vsi_name, 2532 i40e_stat_str(hw, aq_ret), 2533 i40e_aq_str(hw, hw->aq.asq_last_status)); 2534 } 2535 } 2536 out: 2537 /* if something went wrong then set the changed flag so we try again */ 2538 if (retval) 2539 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2540 2541 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2542 return retval; 2543 2544 err_no_memory: 2545 /* Restore elements on the temporary add and delete lists */ 2546 spin_lock_bh(&vsi->mac_filter_hash_lock); 2547 err_no_memory_locked: 2548 i40e_undo_del_filter_entries(vsi, &tmp_del_list); 2549 i40e_undo_add_filter_entries(vsi, &tmp_add_list); 2550 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2551 2552 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 2553 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state); 2554 return -ENOMEM; 2555 } 2556 2557 /** 2558 * i40e_sync_filters_subtask - Sync the VSI filter list with HW 2559 * @pf: board private structure 2560 **/ 2561 static void i40e_sync_filters_subtask(struct i40e_pf *pf) 2562 { 2563 int v; 2564 2565 if (!pf) 2566 return; 2567 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state)) 2568 return; 2569 2570 for (v = 0; v < pf->num_alloc_vsi; v++) { 2571 if (pf->vsi[v] && 2572 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) { 2573 int ret = i40e_sync_vsi_filters(pf->vsi[v]); 2574 2575 if (ret) { 2576 /* come back and try again later */ 2577 set_bit(__I40E_MACVLAN_SYNC_PENDING, 2578 pf->state); 2579 break; 2580 } 2581 } 2582 } 2583 } 2584 2585 /** 2586 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2587 * @vsi: the vsi 2588 **/ 2589 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi) 2590 { 2591 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 2592 return I40E_RXBUFFER_2048; 2593 else 2594 return I40E_RXBUFFER_3072; 2595 } 2596 2597 /** 2598 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit 2599 * @netdev: network interface device structure 2600 * @new_mtu: new value for maximum frame size 2601 * 2602 * Returns 0 on success, negative on failure 2603 **/ 2604 static int i40e_change_mtu(struct net_device *netdev, int new_mtu) 2605 { 2606 struct i40e_netdev_priv *np = netdev_priv(netdev); 2607 struct i40e_vsi *vsi = np->vsi; 2608 struct i40e_pf *pf = vsi->back; 2609 2610 if (i40e_enabled_xdp_vsi(vsi)) { 2611 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2612 2613 if (frame_size > i40e_max_xdp_frame_size(vsi)) 2614 return -EINVAL; 2615 } 2616 2617 netdev_info(netdev, "changing MTU from %d to %d\n", 2618 netdev->mtu, new_mtu); 2619 netdev->mtu = new_mtu; 2620 if (netif_running(netdev)) 2621 i40e_vsi_reinit_locked(vsi); 2622 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 2623 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 2624 return 0; 2625 } 2626 2627 /** 2628 * i40e_ioctl - Access the hwtstamp interface 2629 * @netdev: network interface device structure 2630 * @ifr: interface request data 2631 * @cmd: ioctl command 2632 **/ 2633 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2634 { 2635 struct i40e_netdev_priv *np = netdev_priv(netdev); 2636 struct i40e_pf *pf = np->vsi->back; 2637 2638 switch (cmd) { 2639 case SIOCGHWTSTAMP: 2640 return i40e_ptp_get_ts_config(pf, ifr); 2641 case SIOCSHWTSTAMP: 2642 return i40e_ptp_set_ts_config(pf, ifr); 2643 default: 2644 return -EOPNOTSUPP; 2645 } 2646 } 2647 2648 /** 2649 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI 2650 * @vsi: the vsi being adjusted 2651 **/ 2652 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) 2653 { 2654 struct i40e_vsi_context ctxt; 2655 i40e_status ret; 2656 2657 if ((vsi->info.valid_sections & 2658 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2659 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) 2660 return; /* already enabled */ 2661 2662 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2663 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2664 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; 2665 2666 ctxt.seid = vsi->seid; 2667 ctxt.info = vsi->info; 2668 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2669 if (ret) { 2670 dev_info(&vsi->back->pdev->dev, 2671 "update vlan stripping failed, err %s aq_err %s\n", 2672 i40e_stat_str(&vsi->back->hw, ret), 2673 i40e_aq_str(&vsi->back->hw, 2674 vsi->back->hw.aq.asq_last_status)); 2675 } 2676 } 2677 2678 /** 2679 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI 2680 * @vsi: the vsi being adjusted 2681 **/ 2682 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) 2683 { 2684 struct i40e_vsi_context ctxt; 2685 i40e_status ret; 2686 2687 if ((vsi->info.valid_sections & 2688 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && 2689 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == 2690 I40E_AQ_VSI_PVLAN_EMOD_MASK)) 2691 return; /* already disabled */ 2692 2693 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2694 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | 2695 I40E_AQ_VSI_PVLAN_EMOD_NOTHING; 2696 2697 ctxt.seid = vsi->seid; 2698 ctxt.info = vsi->info; 2699 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2700 if (ret) { 2701 dev_info(&vsi->back->pdev->dev, 2702 "update vlan stripping failed, err %s aq_err %s\n", 2703 i40e_stat_str(&vsi->back->hw, ret), 2704 i40e_aq_str(&vsi->back->hw, 2705 vsi->back->hw.aq.asq_last_status)); 2706 } 2707 } 2708 2709 /** 2710 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address 2711 * @vsi: the vsi being configured 2712 * @vid: vlan id to be added (0 = untagged only , -1 = any) 2713 * 2714 * This is a helper function for adding a new MAC/VLAN filter with the 2715 * specified VLAN for each existing MAC address already in the hash table. 2716 * This function does *not* perform any accounting to update filters based on 2717 * VLAN mode. 2718 * 2719 * NOTE: this function expects to be called while under the 2720 * mac_filter_hash_lock 2721 **/ 2722 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2723 { 2724 struct i40e_mac_filter *f, *add_f; 2725 struct hlist_node *h; 2726 int bkt; 2727 2728 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2729 if (f->state == I40E_FILTER_REMOVE) 2730 continue; 2731 add_f = i40e_add_filter(vsi, f->macaddr, vid); 2732 if (!add_f) { 2733 dev_info(&vsi->back->pdev->dev, 2734 "Could not add vlan filter %d for %pM\n", 2735 vid, f->macaddr); 2736 return -ENOMEM; 2737 } 2738 } 2739 2740 return 0; 2741 } 2742 2743 /** 2744 * i40e_vsi_add_vlan - Add VSI membership for given VLAN 2745 * @vsi: the VSI being configured 2746 * @vid: VLAN id to be added 2747 **/ 2748 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid) 2749 { 2750 int err; 2751 2752 if (vsi->info.pvid) 2753 return -EINVAL; 2754 2755 /* The network stack will attempt to add VID=0, with the intention to 2756 * receive priority tagged packets with a VLAN of 0. Our HW receives 2757 * these packets by default when configured to receive untagged 2758 * packets, so we don't need to add a filter for this case. 2759 * Additionally, HW interprets adding a VID=0 filter as meaning to 2760 * receive *only* tagged traffic and stops receiving untagged traffic. 2761 * Thus, we do not want to actually add a filter for VID=0 2762 */ 2763 if (!vid) 2764 return 0; 2765 2766 /* Locked once because all functions invoked below iterates list*/ 2767 spin_lock_bh(&vsi->mac_filter_hash_lock); 2768 err = i40e_add_vlan_all_mac(vsi, vid); 2769 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2770 if (err) 2771 return err; 2772 2773 /* schedule our worker thread which will take care of 2774 * applying the new filter changes 2775 */ 2776 i40e_service_event_schedule(vsi->back); 2777 return 0; 2778 } 2779 2780 /** 2781 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN 2782 * @vsi: the vsi being configured 2783 * @vid: vlan id to be removed (0 = untagged only , -1 = any) 2784 * 2785 * This function should be used to remove all VLAN filters which match the 2786 * given VID. It does not schedule the service event and does not take the 2787 * mac_filter_hash_lock so it may be combined with other operations under 2788 * a single invocation of the mac_filter_hash_lock. 2789 * 2790 * NOTE: this function expects to be called while under the 2791 * mac_filter_hash_lock 2792 */ 2793 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid) 2794 { 2795 struct i40e_mac_filter *f; 2796 struct hlist_node *h; 2797 int bkt; 2798 2799 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 2800 if (f->vlan == vid) 2801 __i40e_del_filter(vsi, f); 2802 } 2803 } 2804 2805 /** 2806 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN 2807 * @vsi: the VSI being configured 2808 * @vid: VLAN id to be removed 2809 **/ 2810 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid) 2811 { 2812 if (!vid || vsi->info.pvid) 2813 return; 2814 2815 spin_lock_bh(&vsi->mac_filter_hash_lock); 2816 i40e_rm_vlan_all_mac(vsi, vid); 2817 spin_unlock_bh(&vsi->mac_filter_hash_lock); 2818 2819 /* schedule our worker thread which will take care of 2820 * applying the new filter changes 2821 */ 2822 i40e_service_event_schedule(vsi->back); 2823 } 2824 2825 /** 2826 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload 2827 * @netdev: network interface to be adjusted 2828 * @proto: unused protocol value 2829 * @vid: vlan id to be added 2830 * 2831 * net_device_ops implementation for adding vlan ids 2832 **/ 2833 static int i40e_vlan_rx_add_vid(struct net_device *netdev, 2834 __always_unused __be16 proto, u16 vid) 2835 { 2836 struct i40e_netdev_priv *np = netdev_priv(netdev); 2837 struct i40e_vsi *vsi = np->vsi; 2838 int ret = 0; 2839 2840 if (vid >= VLAN_N_VID) 2841 return -EINVAL; 2842 2843 ret = i40e_vsi_add_vlan(vsi, vid); 2844 if (!ret) 2845 set_bit(vid, vsi->active_vlans); 2846 2847 return ret; 2848 } 2849 2850 /** 2851 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path 2852 * @netdev: network interface to be adjusted 2853 * @proto: unused protocol value 2854 * @vid: vlan id to be added 2855 **/ 2856 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev, 2857 __always_unused __be16 proto, u16 vid) 2858 { 2859 struct i40e_netdev_priv *np = netdev_priv(netdev); 2860 struct i40e_vsi *vsi = np->vsi; 2861 2862 if (vid >= VLAN_N_VID) 2863 return; 2864 set_bit(vid, vsi->active_vlans); 2865 } 2866 2867 /** 2868 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload 2869 * @netdev: network interface to be adjusted 2870 * @proto: unused protocol value 2871 * @vid: vlan id to be removed 2872 * 2873 * net_device_ops implementation for removing vlan ids 2874 **/ 2875 static int i40e_vlan_rx_kill_vid(struct net_device *netdev, 2876 __always_unused __be16 proto, u16 vid) 2877 { 2878 struct i40e_netdev_priv *np = netdev_priv(netdev); 2879 struct i40e_vsi *vsi = np->vsi; 2880 2881 /* return code is ignored as there is nothing a user 2882 * can do about failure to remove and a log message was 2883 * already printed from the other function 2884 */ 2885 i40e_vsi_kill_vlan(vsi, vid); 2886 2887 clear_bit(vid, vsi->active_vlans); 2888 2889 return 0; 2890 } 2891 2892 /** 2893 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up 2894 * @vsi: the vsi being brought back up 2895 **/ 2896 static void i40e_restore_vlan(struct i40e_vsi *vsi) 2897 { 2898 u16 vid; 2899 2900 if (!vsi->netdev) 2901 return; 2902 2903 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 2904 i40e_vlan_stripping_enable(vsi); 2905 else 2906 i40e_vlan_stripping_disable(vsi); 2907 2908 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) 2909 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q), 2910 vid); 2911 } 2912 2913 /** 2914 * i40e_vsi_add_pvid - Add pvid for the VSI 2915 * @vsi: the vsi being adjusted 2916 * @vid: the vlan id to set as a PVID 2917 **/ 2918 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) 2919 { 2920 struct i40e_vsi_context ctxt; 2921 i40e_status ret; 2922 2923 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 2924 vsi->info.pvid = cpu_to_le16(vid); 2925 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | 2926 I40E_AQ_VSI_PVLAN_INSERT_PVID | 2927 I40E_AQ_VSI_PVLAN_EMOD_STR; 2928 2929 ctxt.seid = vsi->seid; 2930 ctxt.info = vsi->info; 2931 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 2932 if (ret) { 2933 dev_info(&vsi->back->pdev->dev, 2934 "add pvid failed, err %s aq_err %s\n", 2935 i40e_stat_str(&vsi->back->hw, ret), 2936 i40e_aq_str(&vsi->back->hw, 2937 vsi->back->hw.aq.asq_last_status)); 2938 return -ENOENT; 2939 } 2940 2941 return 0; 2942 } 2943 2944 /** 2945 * i40e_vsi_remove_pvid - Remove the pvid from the VSI 2946 * @vsi: the vsi being adjusted 2947 * 2948 * Just use the vlan_rx_register() service to put it back to normal 2949 **/ 2950 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) 2951 { 2952 i40e_vlan_stripping_disable(vsi); 2953 2954 vsi->info.pvid = 0; 2955 } 2956 2957 /** 2958 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources 2959 * @vsi: ptr to the VSI 2960 * 2961 * If this function returns with an error, then it's possible one or 2962 * more of the rings is populated (while the rest are not). It is the 2963 * callers duty to clean those orphaned rings. 2964 * 2965 * Return 0 on success, negative on failure 2966 **/ 2967 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) 2968 { 2969 int i, err = 0; 2970 2971 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2972 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); 2973 2974 if (!i40e_enabled_xdp_vsi(vsi)) 2975 return err; 2976 2977 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 2978 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]); 2979 2980 return err; 2981 } 2982 2983 /** 2984 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues 2985 * @vsi: ptr to the VSI 2986 * 2987 * Free VSI's transmit software resources 2988 **/ 2989 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) 2990 { 2991 int i; 2992 2993 if (vsi->tx_rings) { 2994 for (i = 0; i < vsi->num_queue_pairs; i++) 2995 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2996 i40e_free_tx_resources(vsi->tx_rings[i]); 2997 } 2998 2999 if (vsi->xdp_rings) { 3000 for (i = 0; i < vsi->num_queue_pairs; i++) 3001 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 3002 i40e_free_tx_resources(vsi->xdp_rings[i]); 3003 } 3004 } 3005 3006 /** 3007 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources 3008 * @vsi: ptr to the VSI 3009 * 3010 * If this function returns with an error, then it's possible one or 3011 * more of the rings is populated (while the rest are not). It is the 3012 * callers duty to clean those orphaned rings. 3013 * 3014 * Return 0 on success, negative on failure 3015 **/ 3016 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) 3017 { 3018 int i, err = 0; 3019 3020 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3021 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); 3022 return err; 3023 } 3024 3025 /** 3026 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues 3027 * @vsi: ptr to the VSI 3028 * 3029 * Free all receive software resources 3030 **/ 3031 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) 3032 { 3033 int i; 3034 3035 if (!vsi->rx_rings) 3036 return; 3037 3038 for (i = 0; i < vsi->num_queue_pairs; i++) 3039 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 3040 i40e_free_rx_resources(vsi->rx_rings[i]); 3041 } 3042 3043 /** 3044 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring 3045 * @ring: The Tx ring to configure 3046 * 3047 * This enables/disables XPS for a given Tx descriptor ring 3048 * based on the TCs enabled for the VSI that ring belongs to. 3049 **/ 3050 static void i40e_config_xps_tx_ring(struct i40e_ring *ring) 3051 { 3052 int cpu; 3053 3054 if (!ring->q_vector || !ring->netdev || ring->ch) 3055 return; 3056 3057 /* We only initialize XPS once, so as not to overwrite user settings */ 3058 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state)) 3059 return; 3060 3061 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1); 3062 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu), 3063 ring->queue_index); 3064 } 3065 3066 /** 3067 * i40e_configure_tx_ring - Configure a transmit ring context and rest 3068 * @ring: The Tx ring to configure 3069 * 3070 * Configure the Tx descriptor ring in the HMC context. 3071 **/ 3072 static int i40e_configure_tx_ring(struct i40e_ring *ring) 3073 { 3074 struct i40e_vsi *vsi = ring->vsi; 3075 u16 pf_q = vsi->base_queue + ring->queue_index; 3076 struct i40e_hw *hw = &vsi->back->hw; 3077 struct i40e_hmc_obj_txq tx_ctx; 3078 i40e_status err = 0; 3079 u32 qtx_ctl = 0; 3080 3081 if (ring_is_xdp(ring)) 3082 ring->xsk_umem = i40e_xsk_umem(ring); 3083 3084 /* some ATR related tx ring init */ 3085 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { 3086 ring->atr_sample_rate = vsi->back->atr_sample_rate; 3087 ring->atr_count = 0; 3088 } else { 3089 ring->atr_sample_rate = 0; 3090 } 3091 3092 /* configure XPS */ 3093 i40e_config_xps_tx_ring(ring); 3094 3095 /* clear the context structure first */ 3096 memset(&tx_ctx, 0, sizeof(tx_ctx)); 3097 3098 tx_ctx.new_context = 1; 3099 tx_ctx.base = (ring->dma / 128); 3100 tx_ctx.qlen = ring->count; 3101 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | 3102 I40E_FLAG_FD_ATR_ENABLED)); 3103 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); 3104 /* FDIR VSI tx ring can still use RS bit and writebacks */ 3105 if (vsi->type != I40E_VSI_FDIR) 3106 tx_ctx.head_wb_ena = 1; 3107 tx_ctx.head_wb_addr = ring->dma + 3108 (ring->count * sizeof(struct i40e_tx_desc)); 3109 3110 /* As part of VSI creation/update, FW allocates certain 3111 * Tx arbitration queue sets for each TC enabled for 3112 * the VSI. The FW returns the handles to these queue 3113 * sets as part of the response buffer to Add VSI, 3114 * Update VSI, etc. AQ commands. It is expected that 3115 * these queue set handles be associated with the Tx 3116 * queues by the driver as part of the TX queue context 3117 * initialization. This has to be done regardless of 3118 * DCB as by default everything is mapped to TC0. 3119 */ 3120 3121 if (ring->ch) 3122 tx_ctx.rdylist = 3123 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]); 3124 3125 else 3126 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); 3127 3128 tx_ctx.rdylist_act = 0; 3129 3130 /* clear the context in the HMC */ 3131 err = i40e_clear_lan_tx_queue_context(hw, pf_q); 3132 if (err) { 3133 dev_info(&vsi->back->pdev->dev, 3134 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", 3135 ring->queue_index, pf_q, err); 3136 return -ENOMEM; 3137 } 3138 3139 /* set the context in the HMC */ 3140 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); 3141 if (err) { 3142 dev_info(&vsi->back->pdev->dev, 3143 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", 3144 ring->queue_index, pf_q, err); 3145 return -ENOMEM; 3146 } 3147 3148 /* Now associate this queue with this PCI function */ 3149 if (ring->ch) { 3150 if (ring->ch->type == I40E_VSI_VMDQ2) 3151 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3152 else 3153 return -EINVAL; 3154 3155 qtx_ctl |= (ring->ch->vsi_number << 3156 I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3157 I40E_QTX_CTL_VFVM_INDX_MASK; 3158 } else { 3159 if (vsi->type == I40E_VSI_VMDQ2) { 3160 qtx_ctl = I40E_QTX_CTL_VM_QUEUE; 3161 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & 3162 I40E_QTX_CTL_VFVM_INDX_MASK; 3163 } else { 3164 qtx_ctl = I40E_QTX_CTL_PF_QUEUE; 3165 } 3166 } 3167 3168 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & 3169 I40E_QTX_CTL_PF_INDX_MASK); 3170 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); 3171 i40e_flush(hw); 3172 3173 /* cache tail off for easier writes later */ 3174 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); 3175 3176 return 0; 3177 } 3178 3179 /** 3180 * i40e_configure_rx_ring - Configure a receive ring context 3181 * @ring: The Rx ring to configure 3182 * 3183 * Configure the Rx descriptor ring in the HMC context. 3184 **/ 3185 static int i40e_configure_rx_ring(struct i40e_ring *ring) 3186 { 3187 struct i40e_vsi *vsi = ring->vsi; 3188 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; 3189 u16 pf_q = vsi->base_queue + ring->queue_index; 3190 struct i40e_hw *hw = &vsi->back->hw; 3191 struct i40e_hmc_obj_rxq rx_ctx; 3192 i40e_status err = 0; 3193 bool ok; 3194 int ret; 3195 3196 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS); 3197 3198 /* clear the context structure first */ 3199 memset(&rx_ctx, 0, sizeof(rx_ctx)); 3200 3201 if (ring->vsi->type == I40E_VSI_MAIN) 3202 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); 3203 3204 ring->xsk_umem = i40e_xsk_umem(ring); 3205 if (ring->xsk_umem) { 3206 ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - 3207 XDP_PACKET_HEADROOM; 3208 /* For AF_XDP ZC, we disallow packets to span on 3209 * multiple buffers, thus letting us skip that 3210 * handling in the fast-path. 3211 */ 3212 chain_len = 1; 3213 ring->zca.free = i40e_zca_free; 3214 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3215 MEM_TYPE_ZERO_COPY, 3216 &ring->zca); 3217 if (ret) 3218 return ret; 3219 dev_info(&vsi->back->pdev->dev, 3220 "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", 3221 ring->queue_index); 3222 3223 } else { 3224 ring->rx_buf_len = vsi->rx_buf_len; 3225 if (ring->vsi->type == I40E_VSI_MAIN) { 3226 ret = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, 3227 MEM_TYPE_PAGE_SHARED, 3228 NULL); 3229 if (ret) 3230 return ret; 3231 } 3232 } 3233 3234 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len, 3235 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT)); 3236 3237 rx_ctx.base = (ring->dma / 128); 3238 rx_ctx.qlen = ring->count; 3239 3240 /* use 32 byte descriptors */ 3241 rx_ctx.dsize = 1; 3242 3243 /* descriptor type is always zero 3244 * rx_ctx.dtype = 0; 3245 */ 3246 rx_ctx.hsplit_0 = 0; 3247 3248 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); 3249 if (hw->revision_id == 0) 3250 rx_ctx.lrxqthresh = 0; 3251 else 3252 rx_ctx.lrxqthresh = 1; 3253 rx_ctx.crcstrip = 1; 3254 rx_ctx.l2tsel = 1; 3255 /* this controls whether VLAN is stripped from inner headers */ 3256 rx_ctx.showiv = 0; 3257 /* set the prefena field to 1 because the manual says to */ 3258 rx_ctx.prefena = 1; 3259 3260 /* clear the context in the HMC */ 3261 err = i40e_clear_lan_rx_queue_context(hw, pf_q); 3262 if (err) { 3263 dev_info(&vsi->back->pdev->dev, 3264 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3265 ring->queue_index, pf_q, err); 3266 return -ENOMEM; 3267 } 3268 3269 /* set the context in the HMC */ 3270 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); 3271 if (err) { 3272 dev_info(&vsi->back->pdev->dev, 3273 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", 3274 ring->queue_index, pf_q, err); 3275 return -ENOMEM; 3276 } 3277 3278 /* configure Rx buffer alignment */ 3279 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) 3280 clear_ring_build_skb_enabled(ring); 3281 else 3282 set_ring_build_skb_enabled(ring); 3283 3284 /* cache tail for quicker writes, and clear the reg before use */ 3285 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); 3286 writel(0, ring->tail); 3287 3288 ok = ring->xsk_umem ? 3289 i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring)) : 3290 !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); 3291 if (!ok) { 3292 /* Log this in case the user has forgotten to give the kernel 3293 * any buffers, even later in the application. 3294 */ 3295 dev_info(&vsi->back->pdev->dev, 3296 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n", 3297 ring->xsk_umem ? "UMEM enabled " : "", 3298 ring->queue_index, pf_q); 3299 } 3300 3301 return 0; 3302 } 3303 3304 /** 3305 * i40e_vsi_configure_tx - Configure the VSI for Tx 3306 * @vsi: VSI structure describing this set of rings and resources 3307 * 3308 * Configure the Tx VSI for operation. 3309 **/ 3310 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) 3311 { 3312 int err = 0; 3313 u16 i; 3314 3315 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3316 err = i40e_configure_tx_ring(vsi->tx_rings[i]); 3317 3318 if (!i40e_enabled_xdp_vsi(vsi)) 3319 return err; 3320 3321 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) 3322 err = i40e_configure_tx_ring(vsi->xdp_rings[i]); 3323 3324 return err; 3325 } 3326 3327 /** 3328 * i40e_vsi_configure_rx - Configure the VSI for Rx 3329 * @vsi: the VSI being configured 3330 * 3331 * Configure the Rx VSI for operation. 3332 **/ 3333 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) 3334 { 3335 int err = 0; 3336 u16 i; 3337 3338 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) { 3339 vsi->max_frame = I40E_MAX_RXBUFFER; 3340 vsi->rx_buf_len = I40E_RXBUFFER_2048; 3341 #if (PAGE_SIZE < 8192) 3342 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING && 3343 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 3344 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3345 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN; 3346 #endif 3347 } else { 3348 vsi->max_frame = I40E_MAX_RXBUFFER; 3349 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 : 3350 I40E_RXBUFFER_2048; 3351 } 3352 3353 /* set up individual rings */ 3354 for (i = 0; i < vsi->num_queue_pairs && !err; i++) 3355 err = i40e_configure_rx_ring(vsi->rx_rings[i]); 3356 3357 return err; 3358 } 3359 3360 /** 3361 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC 3362 * @vsi: ptr to the VSI 3363 **/ 3364 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) 3365 { 3366 struct i40e_ring *tx_ring, *rx_ring; 3367 u16 qoffset, qcount; 3368 int i, n; 3369 3370 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { 3371 /* Reset the TC information */ 3372 for (i = 0; i < vsi->num_queue_pairs; i++) { 3373 rx_ring = vsi->rx_rings[i]; 3374 tx_ring = vsi->tx_rings[i]; 3375 rx_ring->dcb_tc = 0; 3376 tx_ring->dcb_tc = 0; 3377 } 3378 return; 3379 } 3380 3381 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { 3382 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n))) 3383 continue; 3384 3385 qoffset = vsi->tc_config.tc_info[n].qoffset; 3386 qcount = vsi->tc_config.tc_info[n].qcount; 3387 for (i = qoffset; i < (qoffset + qcount); i++) { 3388 rx_ring = vsi->rx_rings[i]; 3389 tx_ring = vsi->tx_rings[i]; 3390 rx_ring->dcb_tc = n; 3391 tx_ring->dcb_tc = n; 3392 } 3393 } 3394 } 3395 3396 /** 3397 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI 3398 * @vsi: ptr to the VSI 3399 **/ 3400 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) 3401 { 3402 if (vsi->netdev) 3403 i40e_set_rx_mode(vsi->netdev); 3404 } 3405 3406 /** 3407 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters 3408 * @vsi: Pointer to the targeted VSI 3409 * 3410 * This function replays the hlist on the hw where all the SB Flow Director 3411 * filters were saved. 3412 **/ 3413 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) 3414 { 3415 struct i40e_fdir_filter *filter; 3416 struct i40e_pf *pf = vsi->back; 3417 struct hlist_node *node; 3418 3419 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 3420 return; 3421 3422 /* Reset FDir counters as we're replaying all existing filters */ 3423 pf->fd_tcp4_filter_cnt = 0; 3424 pf->fd_udp4_filter_cnt = 0; 3425 pf->fd_sctp4_filter_cnt = 0; 3426 pf->fd_ip4_filter_cnt = 0; 3427 3428 hlist_for_each_entry_safe(filter, node, 3429 &pf->fdir_filter_list, fdir_node) { 3430 i40e_add_del_fdir(vsi, filter, true); 3431 } 3432 } 3433 3434 /** 3435 * i40e_vsi_configure - Set up the VSI for action 3436 * @vsi: the VSI being configured 3437 **/ 3438 static int i40e_vsi_configure(struct i40e_vsi *vsi) 3439 { 3440 int err; 3441 3442 i40e_set_vsi_rx_mode(vsi); 3443 i40e_restore_vlan(vsi); 3444 i40e_vsi_config_dcb_rings(vsi); 3445 err = i40e_vsi_configure_tx(vsi); 3446 if (!err) 3447 err = i40e_vsi_configure_rx(vsi); 3448 3449 return err; 3450 } 3451 3452 /** 3453 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW 3454 * @vsi: the VSI being configured 3455 **/ 3456 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) 3457 { 3458 bool has_xdp = i40e_enabled_xdp_vsi(vsi); 3459 struct i40e_pf *pf = vsi->back; 3460 struct i40e_hw *hw = &pf->hw; 3461 u16 vector; 3462 int i, q; 3463 u32 qp; 3464 3465 /* The interrupt indexing is offset by 1 in the PFINT_ITRn 3466 * and PFINT_LNKLSTn registers, e.g.: 3467 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) 3468 */ 3469 qp = vsi->base_queue; 3470 vector = vsi->base_vector; 3471 for (i = 0; i < vsi->num_q_vectors; i++, vector++) { 3472 struct i40e_q_vector *q_vector = vsi->q_vectors[i]; 3473 3474 q_vector->rx.next_update = jiffies + 1; 3475 q_vector->rx.target_itr = 3476 ITR_TO_REG(vsi->rx_rings[i]->itr_setting); 3477 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), 3478 q_vector->rx.target_itr); 3479 q_vector->rx.current_itr = q_vector->rx.target_itr; 3480 3481 q_vector->tx.next_update = jiffies + 1; 3482 q_vector->tx.target_itr = 3483 ITR_TO_REG(vsi->tx_rings[i]->itr_setting); 3484 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), 3485 q_vector->tx.target_itr); 3486 q_vector->tx.current_itr = q_vector->tx.target_itr; 3487 3488 wr32(hw, I40E_PFINT_RATEN(vector - 1), 3489 i40e_intrl_usec_to_reg(vsi->int_rate_limit)); 3490 3491 /* Linked list for the queuepairs assigned to this vector */ 3492 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); 3493 for (q = 0; q < q_vector->num_ringpairs; q++) { 3494 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp; 3495 u32 val; 3496 3497 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3498 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3499 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | 3500 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | 3501 (I40E_QUEUE_TYPE_TX << 3502 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); 3503 3504 wr32(hw, I40E_QINT_RQCTL(qp), val); 3505 3506 if (has_xdp) { 3507 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3508 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3509 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3510 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3511 (I40E_QUEUE_TYPE_TX << 3512 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3513 3514 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3515 } 3516 3517 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3518 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3519 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | 3520 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) | 3521 (I40E_QUEUE_TYPE_RX << 3522 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3523 3524 /* Terminate the linked list */ 3525 if (q == (q_vector->num_ringpairs - 1)) 3526 val |= (I40E_QUEUE_END_OF_LIST << 3527 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3528 3529 wr32(hw, I40E_QINT_TQCTL(qp), val); 3530 qp++; 3531 } 3532 } 3533 3534 i40e_flush(hw); 3535 } 3536 3537 /** 3538 * i40e_enable_misc_int_causes - enable the non-queue interrupts 3539 * @pf: pointer to private device data structure 3540 **/ 3541 static void i40e_enable_misc_int_causes(struct i40e_pf *pf) 3542 { 3543 struct i40e_hw *hw = &pf->hw; 3544 u32 val; 3545 3546 /* clear things first */ 3547 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ 3548 rd32(hw, I40E_PFINT_ICR0); /* read to clear */ 3549 3550 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | 3551 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | 3552 I40E_PFINT_ICR0_ENA_GRST_MASK | 3553 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | 3554 I40E_PFINT_ICR0_ENA_GPIO_MASK | 3555 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | 3556 I40E_PFINT_ICR0_ENA_VFLR_MASK | 3557 I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3558 3559 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 3560 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3561 3562 if (pf->flags & I40E_FLAG_PTP) 3563 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3564 3565 wr32(hw, I40E_PFINT_ICR0_ENA, val); 3566 3567 /* SW_ITR_IDX = 0, but don't change INTENA */ 3568 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | 3569 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); 3570 3571 /* OTHER_ITR_IDX = 0 */ 3572 wr32(hw, I40E_PFINT_STAT_CTL0, 0); 3573 } 3574 3575 /** 3576 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW 3577 * @vsi: the VSI being configured 3578 **/ 3579 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) 3580 { 3581 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0; 3582 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3583 struct i40e_pf *pf = vsi->back; 3584 struct i40e_hw *hw = &pf->hw; 3585 u32 val; 3586 3587 /* set the ITR configuration */ 3588 q_vector->rx.next_update = jiffies + 1; 3589 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting); 3590 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr); 3591 q_vector->rx.current_itr = q_vector->rx.target_itr; 3592 q_vector->tx.next_update = jiffies + 1; 3593 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting); 3594 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr); 3595 q_vector->tx.current_itr = q_vector->tx.target_itr; 3596 3597 i40e_enable_misc_int_causes(pf); 3598 3599 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ 3600 wr32(hw, I40E_PFINT_LNKLST0, 0); 3601 3602 /* Associate the queue pair to the vector and enable the queue int */ 3603 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | 3604 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | 3605 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| 3606 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3607 3608 wr32(hw, I40E_QINT_RQCTL(0), val); 3609 3610 if (i40e_enabled_xdp_vsi(vsi)) { 3611 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3612 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)| 3613 (I40E_QUEUE_TYPE_TX 3614 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); 3615 3616 wr32(hw, I40E_QINT_TQCTL(nextqp), val); 3617 } 3618 3619 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | 3620 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | 3621 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); 3622 3623 wr32(hw, I40E_QINT_TQCTL(0), val); 3624 i40e_flush(hw); 3625 } 3626 3627 /** 3628 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 3629 * @pf: board private structure 3630 **/ 3631 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) 3632 { 3633 struct i40e_hw *hw = &pf->hw; 3634 3635 wr32(hw, I40E_PFINT_DYN_CTL0, 3636 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); 3637 i40e_flush(hw); 3638 } 3639 3640 /** 3641 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 3642 * @pf: board private structure 3643 **/ 3644 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) 3645 { 3646 struct i40e_hw *hw = &pf->hw; 3647 u32 val; 3648 3649 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | 3650 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | 3651 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); 3652 3653 wr32(hw, I40E_PFINT_DYN_CTL0, val); 3654 i40e_flush(hw); 3655 } 3656 3657 /** 3658 * i40e_msix_clean_rings - MSIX mode Interrupt Handler 3659 * @irq: interrupt number 3660 * @data: pointer to a q_vector 3661 **/ 3662 static irqreturn_t i40e_msix_clean_rings(int irq, void *data) 3663 { 3664 struct i40e_q_vector *q_vector = data; 3665 3666 if (!q_vector->tx.ring && !q_vector->rx.ring) 3667 return IRQ_HANDLED; 3668 3669 napi_schedule_irqoff(&q_vector->napi); 3670 3671 return IRQ_HANDLED; 3672 } 3673 3674 /** 3675 * i40e_irq_affinity_notify - Callback for affinity changes 3676 * @notify: context as to what irq was changed 3677 * @mask: the new affinity mask 3678 * 3679 * This is a callback function used by the irq_set_affinity_notifier function 3680 * so that we may register to receive changes to the irq affinity masks. 3681 **/ 3682 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify, 3683 const cpumask_t *mask) 3684 { 3685 struct i40e_q_vector *q_vector = 3686 container_of(notify, struct i40e_q_vector, affinity_notify); 3687 3688 cpumask_copy(&q_vector->affinity_mask, mask); 3689 } 3690 3691 /** 3692 * i40e_irq_affinity_release - Callback for affinity notifier release 3693 * @ref: internal core kernel usage 3694 * 3695 * This is a callback function used by the irq_set_affinity_notifier function 3696 * to inform the current notification subscriber that they will no longer 3697 * receive notifications. 3698 **/ 3699 static void i40e_irq_affinity_release(struct kref *ref) {} 3700 3701 /** 3702 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts 3703 * @vsi: the VSI being configured 3704 * @basename: name for the vector 3705 * 3706 * Allocates MSI-X vectors and requests interrupts from the kernel. 3707 **/ 3708 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) 3709 { 3710 int q_vectors = vsi->num_q_vectors; 3711 struct i40e_pf *pf = vsi->back; 3712 int base = vsi->base_vector; 3713 int rx_int_idx = 0; 3714 int tx_int_idx = 0; 3715 int vector, err; 3716 int irq_num; 3717 int cpu; 3718 3719 for (vector = 0; vector < q_vectors; vector++) { 3720 struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; 3721 3722 irq_num = pf->msix_entries[base + vector].vector; 3723 3724 if (q_vector->tx.ring && q_vector->rx.ring) { 3725 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3726 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 3727 tx_int_idx++; 3728 } else if (q_vector->rx.ring) { 3729 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3730 "%s-%s-%d", basename, "rx", rx_int_idx++); 3731 } else if (q_vector->tx.ring) { 3732 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 3733 "%s-%s-%d", basename, "tx", tx_int_idx++); 3734 } else { 3735 /* skip this unused q_vector */ 3736 continue; 3737 } 3738 err = request_irq(irq_num, 3739 vsi->irq_handler, 3740 0, 3741 q_vector->name, 3742 q_vector); 3743 if (err) { 3744 dev_info(&pf->pdev->dev, 3745 "MSIX request_irq failed, error: %d\n", err); 3746 goto free_queue_irqs; 3747 } 3748 3749 /* register for affinity change notifications */ 3750 q_vector->affinity_notify.notify = i40e_irq_affinity_notify; 3751 q_vector->affinity_notify.release = i40e_irq_affinity_release; 3752 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 3753 /* Spread affinity hints out across online CPUs. 3754 * 3755 * get_cpu_mask returns a static constant mask with 3756 * a permanent lifetime so it's ok to pass to 3757 * irq_set_affinity_hint without making a copy. 3758 */ 3759 cpu = cpumask_local_spread(q_vector->v_idx, -1); 3760 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu)); 3761 } 3762 3763 vsi->irqs_ready = true; 3764 return 0; 3765 3766 free_queue_irqs: 3767 while (vector) { 3768 vector--; 3769 irq_num = pf->msix_entries[base + vector].vector; 3770 irq_set_affinity_notifier(irq_num, NULL); 3771 irq_set_affinity_hint(irq_num, NULL); 3772 free_irq(irq_num, &vsi->q_vectors[vector]); 3773 } 3774 return err; 3775 } 3776 3777 /** 3778 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI 3779 * @vsi: the VSI being un-configured 3780 **/ 3781 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) 3782 { 3783 struct i40e_pf *pf = vsi->back; 3784 struct i40e_hw *hw = &pf->hw; 3785 int base = vsi->base_vector; 3786 int i; 3787 3788 /* disable interrupt causation from each queue */ 3789 for (i = 0; i < vsi->num_queue_pairs; i++) { 3790 u32 val; 3791 3792 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx)); 3793 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; 3794 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val); 3795 3796 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx)); 3797 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; 3798 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val); 3799 3800 if (!i40e_enabled_xdp_vsi(vsi)) 3801 continue; 3802 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0); 3803 } 3804 3805 /* disable each interrupt */ 3806 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3807 for (i = vsi->base_vector; 3808 i < (vsi->num_q_vectors + vsi->base_vector); i++) 3809 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); 3810 3811 i40e_flush(hw); 3812 for (i = 0; i < vsi->num_q_vectors; i++) 3813 synchronize_irq(pf->msix_entries[i + base].vector); 3814 } else { 3815 /* Legacy and MSI mode - this stops all interrupt handling */ 3816 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 3817 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 3818 i40e_flush(hw); 3819 synchronize_irq(pf->pdev->irq); 3820 } 3821 } 3822 3823 /** 3824 * i40e_vsi_enable_irq - Enable IRQ for the given VSI 3825 * @vsi: the VSI being configured 3826 **/ 3827 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) 3828 { 3829 struct i40e_pf *pf = vsi->back; 3830 int i; 3831 3832 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 3833 for (i = 0; i < vsi->num_q_vectors; i++) 3834 i40e_irq_dynamic_enable(vsi, i); 3835 } else { 3836 i40e_irq_dynamic_enable_icr0(pf); 3837 } 3838 3839 i40e_flush(&pf->hw); 3840 return 0; 3841 } 3842 3843 /** 3844 * i40e_free_misc_vector - Free the vector that handles non-queue events 3845 * @pf: board private structure 3846 **/ 3847 static void i40e_free_misc_vector(struct i40e_pf *pf) 3848 { 3849 /* Disable ICR 0 */ 3850 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); 3851 i40e_flush(&pf->hw); 3852 3853 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) { 3854 synchronize_irq(pf->msix_entries[0].vector); 3855 free_irq(pf->msix_entries[0].vector, pf); 3856 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 3857 } 3858 } 3859 3860 /** 3861 * i40e_intr - MSI/Legacy and non-queue interrupt handler 3862 * @irq: interrupt number 3863 * @data: pointer to a q_vector 3864 * 3865 * This is the handler used for all MSI/Legacy interrupts, and deals 3866 * with both queue and non-queue interrupts. This is also used in 3867 * MSIX mode to handle the non-queue interrupts. 3868 **/ 3869 static irqreturn_t i40e_intr(int irq, void *data) 3870 { 3871 struct i40e_pf *pf = (struct i40e_pf *)data; 3872 struct i40e_hw *hw = &pf->hw; 3873 irqreturn_t ret = IRQ_NONE; 3874 u32 icr0, icr0_remaining; 3875 u32 val, ena_mask; 3876 3877 icr0 = rd32(hw, I40E_PFINT_ICR0); 3878 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); 3879 3880 /* if sharing a legacy IRQ, we might get called w/o an intr pending */ 3881 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) 3882 goto enable_intr; 3883 3884 /* if interrupt but no bits showing, must be SWINT */ 3885 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || 3886 (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) 3887 pf->sw_int_count++; 3888 3889 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 3890 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) { 3891 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK; 3892 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n"); 3893 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 3894 } 3895 3896 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ 3897 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { 3898 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 3899 struct i40e_q_vector *q_vector = vsi->q_vectors[0]; 3900 3901 /* We do not have a way to disarm Queue causes while leaving 3902 * interrupt enabled for all other causes, ideally 3903 * interrupt should be disabled while we are in NAPI but 3904 * this is not a performance path and napi_schedule() 3905 * can deal with rescheduling. 3906 */ 3907 if (!test_bit(__I40E_DOWN, pf->state)) 3908 napi_schedule_irqoff(&q_vector->napi); 3909 } 3910 3911 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { 3912 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 3913 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 3914 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n"); 3915 } 3916 3917 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { 3918 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 3919 set_bit(__I40E_MDD_EVENT_PENDING, pf->state); 3920 } 3921 3922 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { 3923 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; 3924 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state); 3925 } 3926 3927 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { 3928 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 3929 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 3930 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; 3931 val = rd32(hw, I40E_GLGEN_RSTAT); 3932 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) 3933 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; 3934 if (val == I40E_RESET_CORER) { 3935 pf->corer_count++; 3936 } else if (val == I40E_RESET_GLOBR) { 3937 pf->globr_count++; 3938 } else if (val == I40E_RESET_EMPR) { 3939 pf->empr_count++; 3940 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state); 3941 } 3942 } 3943 3944 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { 3945 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; 3946 dev_info(&pf->pdev->dev, "HMC error interrupt\n"); 3947 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n", 3948 rd32(hw, I40E_PFHMC_ERRORINFO), 3949 rd32(hw, I40E_PFHMC_ERRORDATA)); 3950 } 3951 3952 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { 3953 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); 3954 3955 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { 3956 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; 3957 i40e_ptp_tx_hwtstamp(pf); 3958 } 3959 } 3960 3961 /* If a critical error is pending we have no choice but to reset the 3962 * device. 3963 * Report and mask out any remaining unexpected interrupts. 3964 */ 3965 icr0_remaining = icr0 & ena_mask; 3966 if (icr0_remaining) { 3967 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", 3968 icr0_remaining); 3969 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || 3970 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || 3971 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { 3972 dev_info(&pf->pdev->dev, "device will be reset\n"); 3973 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 3974 i40e_service_event_schedule(pf); 3975 } 3976 ena_mask &= ~icr0_remaining; 3977 } 3978 ret = IRQ_HANDLED; 3979 3980 enable_intr: 3981 /* re-enable interrupt causes */ 3982 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); 3983 if (!test_bit(__I40E_DOWN, pf->state)) { 3984 i40e_service_event_schedule(pf); 3985 i40e_irq_dynamic_enable_icr0(pf); 3986 } 3987 3988 return ret; 3989 } 3990 3991 /** 3992 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes 3993 * @tx_ring: tx ring to clean 3994 * @budget: how many cleans we're allowed 3995 * 3996 * Returns true if there's any budget left (e.g. the clean is finished) 3997 **/ 3998 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) 3999 { 4000 struct i40e_vsi *vsi = tx_ring->vsi; 4001 u16 i = tx_ring->next_to_clean; 4002 struct i40e_tx_buffer *tx_buf; 4003 struct i40e_tx_desc *tx_desc; 4004 4005 tx_buf = &tx_ring->tx_bi[i]; 4006 tx_desc = I40E_TX_DESC(tx_ring, i); 4007 i -= tx_ring->count; 4008 4009 do { 4010 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; 4011 4012 /* if next_to_watch is not set then there is no work pending */ 4013 if (!eop_desc) 4014 break; 4015 4016 /* prevent any other reads prior to eop_desc */ 4017 smp_rmb(); 4018 4019 /* if the descriptor isn't done, no work yet to do */ 4020 if (!(eop_desc->cmd_type_offset_bsz & 4021 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) 4022 break; 4023 4024 /* clear next_to_watch to prevent false hangs */ 4025 tx_buf->next_to_watch = NULL; 4026 4027 tx_desc->buffer_addr = 0; 4028 tx_desc->cmd_type_offset_bsz = 0; 4029 /* move past filter desc */ 4030 tx_buf++; 4031 tx_desc++; 4032 i++; 4033 if (unlikely(!i)) { 4034 i -= tx_ring->count; 4035 tx_buf = tx_ring->tx_bi; 4036 tx_desc = I40E_TX_DESC(tx_ring, 0); 4037 } 4038 /* unmap skb header data */ 4039 dma_unmap_single(tx_ring->dev, 4040 dma_unmap_addr(tx_buf, dma), 4041 dma_unmap_len(tx_buf, len), 4042 DMA_TO_DEVICE); 4043 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) 4044 kfree(tx_buf->raw_buf); 4045 4046 tx_buf->raw_buf = NULL; 4047 tx_buf->tx_flags = 0; 4048 tx_buf->next_to_watch = NULL; 4049 dma_unmap_len_set(tx_buf, len, 0); 4050 tx_desc->buffer_addr = 0; 4051 tx_desc->cmd_type_offset_bsz = 0; 4052 4053 /* move us past the eop_desc for start of next FD desc */ 4054 tx_buf++; 4055 tx_desc++; 4056 i++; 4057 if (unlikely(!i)) { 4058 i -= tx_ring->count; 4059 tx_buf = tx_ring->tx_bi; 4060 tx_desc = I40E_TX_DESC(tx_ring, 0); 4061 } 4062 4063 /* update budget accounting */ 4064 budget--; 4065 } while (likely(budget)); 4066 4067 i += tx_ring->count; 4068 tx_ring->next_to_clean = i; 4069 4070 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) 4071 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx); 4072 4073 return budget > 0; 4074 } 4075 4076 /** 4077 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring 4078 * @irq: interrupt number 4079 * @data: pointer to a q_vector 4080 **/ 4081 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) 4082 { 4083 struct i40e_q_vector *q_vector = data; 4084 struct i40e_vsi *vsi; 4085 4086 if (!q_vector->tx.ring) 4087 return IRQ_HANDLED; 4088 4089 vsi = q_vector->tx.ring->vsi; 4090 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); 4091 4092 return IRQ_HANDLED; 4093 } 4094 4095 /** 4096 * i40e_map_vector_to_qp - Assigns the queue pair to the vector 4097 * @vsi: the VSI being configured 4098 * @v_idx: vector index 4099 * @qp_idx: queue pair index 4100 **/ 4101 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) 4102 { 4103 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4104 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; 4105 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; 4106 4107 tx_ring->q_vector = q_vector; 4108 tx_ring->next = q_vector->tx.ring; 4109 q_vector->tx.ring = tx_ring; 4110 q_vector->tx.count++; 4111 4112 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */ 4113 if (i40e_enabled_xdp_vsi(vsi)) { 4114 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx]; 4115 4116 xdp_ring->q_vector = q_vector; 4117 xdp_ring->next = q_vector->tx.ring; 4118 q_vector->tx.ring = xdp_ring; 4119 q_vector->tx.count++; 4120 } 4121 4122 rx_ring->q_vector = q_vector; 4123 rx_ring->next = q_vector->rx.ring; 4124 q_vector->rx.ring = rx_ring; 4125 q_vector->rx.count++; 4126 } 4127 4128 /** 4129 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors 4130 * @vsi: the VSI being configured 4131 * 4132 * This function maps descriptor rings to the queue-specific vectors 4133 * we were allotted through the MSI-X enabling code. Ideally, we'd have 4134 * one vector per queue pair, but on a constrained vector budget, we 4135 * group the queue pairs as "efficiently" as possible. 4136 **/ 4137 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) 4138 { 4139 int qp_remaining = vsi->num_queue_pairs; 4140 int q_vectors = vsi->num_q_vectors; 4141 int num_ringpairs; 4142 int v_start = 0; 4143 int qp_idx = 0; 4144 4145 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to 4146 * group them so there are multiple queues per vector. 4147 * It is also important to go through all the vectors available to be 4148 * sure that if we don't use all the vectors, that the remaining vectors 4149 * are cleared. This is especially important when decreasing the 4150 * number of queues in use. 4151 */ 4152 for (; v_start < q_vectors; v_start++) { 4153 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; 4154 4155 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); 4156 4157 q_vector->num_ringpairs = num_ringpairs; 4158 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1; 4159 4160 q_vector->rx.count = 0; 4161 q_vector->tx.count = 0; 4162 q_vector->rx.ring = NULL; 4163 q_vector->tx.ring = NULL; 4164 4165 while (num_ringpairs--) { 4166 i40e_map_vector_to_qp(vsi, v_start, qp_idx); 4167 qp_idx++; 4168 qp_remaining--; 4169 } 4170 } 4171 } 4172 4173 /** 4174 * i40e_vsi_request_irq - Request IRQ from the OS 4175 * @vsi: the VSI being configured 4176 * @basename: name for the vector 4177 **/ 4178 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) 4179 { 4180 struct i40e_pf *pf = vsi->back; 4181 int err; 4182 4183 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 4184 err = i40e_vsi_request_irq_msix(vsi, basename); 4185 else if (pf->flags & I40E_FLAG_MSI_ENABLED) 4186 err = request_irq(pf->pdev->irq, i40e_intr, 0, 4187 pf->int_name, pf); 4188 else 4189 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, 4190 pf->int_name, pf); 4191 4192 if (err) 4193 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); 4194 4195 return err; 4196 } 4197 4198 #ifdef CONFIG_NET_POLL_CONTROLLER 4199 /** 4200 * i40e_netpoll - A Polling 'interrupt' handler 4201 * @netdev: network interface device structure 4202 * 4203 * This is used by netconsole to send skbs without having to re-enable 4204 * interrupts. It's not called while the normal interrupt routine is executing. 4205 **/ 4206 static void i40e_netpoll(struct net_device *netdev) 4207 { 4208 struct i40e_netdev_priv *np = netdev_priv(netdev); 4209 struct i40e_vsi *vsi = np->vsi; 4210 struct i40e_pf *pf = vsi->back; 4211 int i; 4212 4213 /* if interface is down do nothing */ 4214 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4215 return; 4216 4217 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4218 for (i = 0; i < vsi->num_q_vectors; i++) 4219 i40e_msix_clean_rings(0, vsi->q_vectors[i]); 4220 } else { 4221 i40e_intr(pf->pdev->irq, netdev); 4222 } 4223 } 4224 #endif 4225 4226 #define I40E_QTX_ENA_WAIT_COUNT 50 4227 4228 /** 4229 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled 4230 * @pf: the PF being configured 4231 * @pf_q: the PF queue 4232 * @enable: enable or disable state of the queue 4233 * 4234 * This routine will wait for the given Tx queue of the PF to reach the 4235 * enabled or disabled state. 4236 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4237 * multiple retries; else will return 0 in case of success. 4238 **/ 4239 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4240 { 4241 int i; 4242 u32 tx_reg; 4243 4244 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4245 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); 4246 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4247 break; 4248 4249 usleep_range(10, 20); 4250 } 4251 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4252 return -ETIMEDOUT; 4253 4254 return 0; 4255 } 4256 4257 /** 4258 * i40e_control_tx_q - Start or stop a particular Tx queue 4259 * @pf: the PF structure 4260 * @pf_q: the PF queue to configure 4261 * @enable: start or stop the queue 4262 * 4263 * This function enables or disables a single queue. Note that any delay 4264 * required after the operation is expected to be handled by the caller of 4265 * this function. 4266 **/ 4267 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable) 4268 { 4269 struct i40e_hw *hw = &pf->hw; 4270 u32 tx_reg; 4271 int i; 4272 4273 /* warn the TX unit of coming changes */ 4274 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); 4275 if (!enable) 4276 usleep_range(10, 20); 4277 4278 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4279 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); 4280 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == 4281 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) 4282 break; 4283 usleep_range(1000, 2000); 4284 } 4285 4286 /* Skip if the queue is already in the requested state */ 4287 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) 4288 return; 4289 4290 /* turn on/off the queue */ 4291 if (enable) { 4292 wr32(hw, I40E_QTX_HEAD(pf_q), 0); 4293 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; 4294 } else { 4295 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; 4296 } 4297 4298 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); 4299 } 4300 4301 /** 4302 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion 4303 * @seid: VSI SEID 4304 * @pf: the PF structure 4305 * @pf_q: the PF queue to configure 4306 * @is_xdp: true if the queue is used for XDP 4307 * @enable: start or stop the queue 4308 **/ 4309 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, 4310 bool is_xdp, bool enable) 4311 { 4312 int ret; 4313 4314 i40e_control_tx_q(pf, pf_q, enable); 4315 4316 /* wait for the change to finish */ 4317 ret = i40e_pf_txq_wait(pf, pf_q, enable); 4318 if (ret) { 4319 dev_info(&pf->pdev->dev, 4320 "VSI seid %d %sTx ring %d %sable timeout\n", 4321 seid, (is_xdp ? "XDP " : ""), pf_q, 4322 (enable ? "en" : "dis")); 4323 } 4324 4325 return ret; 4326 } 4327 4328 /** 4329 * i40e_vsi_control_tx - Start or stop a VSI's rings 4330 * @vsi: the VSI being configured 4331 * @enable: start or stop the rings 4332 **/ 4333 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) 4334 { 4335 struct i40e_pf *pf = vsi->back; 4336 int i, pf_q, ret = 0; 4337 4338 pf_q = vsi->base_queue; 4339 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4340 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4341 pf_q, 4342 false /*is xdp*/, enable); 4343 if (ret) 4344 break; 4345 4346 if (!i40e_enabled_xdp_vsi(vsi)) 4347 continue; 4348 4349 ret = i40e_control_wait_tx_q(vsi->seid, pf, 4350 pf_q + vsi->alloc_queue_pairs, 4351 true /*is xdp*/, enable); 4352 if (ret) 4353 break; 4354 } 4355 return ret; 4356 } 4357 4358 /** 4359 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled 4360 * @pf: the PF being configured 4361 * @pf_q: the PF queue 4362 * @enable: enable or disable state of the queue 4363 * 4364 * This routine will wait for the given Rx queue of the PF to reach the 4365 * enabled or disabled state. 4366 * Returns -ETIMEDOUT in case of failing to reach the requested state after 4367 * multiple retries; else will return 0 in case of success. 4368 **/ 4369 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) 4370 { 4371 int i; 4372 u32 rx_reg; 4373 4374 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { 4375 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); 4376 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4377 break; 4378 4379 usleep_range(10, 20); 4380 } 4381 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) 4382 return -ETIMEDOUT; 4383 4384 return 0; 4385 } 4386 4387 /** 4388 * i40e_control_rx_q - Start or stop a particular Rx queue 4389 * @pf: the PF structure 4390 * @pf_q: the PF queue to configure 4391 * @enable: start or stop the queue 4392 * 4393 * This function enables or disables a single queue. Note that 4394 * any delay required after the operation is expected to be 4395 * handled by the caller of this function. 4396 **/ 4397 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4398 { 4399 struct i40e_hw *hw = &pf->hw; 4400 u32 rx_reg; 4401 int i; 4402 4403 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) { 4404 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); 4405 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == 4406 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) 4407 break; 4408 usleep_range(1000, 2000); 4409 } 4410 4411 /* Skip if the queue is already in the requested state */ 4412 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) 4413 return; 4414 4415 /* turn on/off the queue */ 4416 if (enable) 4417 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; 4418 else 4419 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; 4420 4421 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); 4422 } 4423 4424 /** 4425 * i40e_control_wait_rx_q 4426 * @pf: the PF structure 4427 * @pf_q: queue being configured 4428 * @enable: start or stop the rings 4429 * 4430 * This function enables or disables a single queue along with waiting 4431 * for the change to finish. The caller of this function should handle 4432 * the delays needed in the case of disabling queues. 4433 **/ 4434 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable) 4435 { 4436 int ret = 0; 4437 4438 i40e_control_rx_q(pf, pf_q, enable); 4439 4440 /* wait for the change to finish */ 4441 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 4442 if (ret) 4443 return ret; 4444 4445 return ret; 4446 } 4447 4448 /** 4449 * i40e_vsi_control_rx - Start or stop a VSI's rings 4450 * @vsi: the VSI being configured 4451 * @enable: start or stop the rings 4452 **/ 4453 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) 4454 { 4455 struct i40e_pf *pf = vsi->back; 4456 int i, pf_q, ret = 0; 4457 4458 pf_q = vsi->base_queue; 4459 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4460 ret = i40e_control_wait_rx_q(pf, pf_q, enable); 4461 if (ret) { 4462 dev_info(&pf->pdev->dev, 4463 "VSI seid %d Rx ring %d %sable timeout\n", 4464 vsi->seid, pf_q, (enable ? "en" : "dis")); 4465 break; 4466 } 4467 } 4468 4469 /* Due to HW errata, on Rx disable only, the register can indicate done 4470 * before it really is. Needs 50ms to be sure 4471 */ 4472 if (!enable) 4473 mdelay(50); 4474 4475 return ret; 4476 } 4477 4478 /** 4479 * i40e_vsi_start_rings - Start a VSI's rings 4480 * @vsi: the VSI being configured 4481 **/ 4482 int i40e_vsi_start_rings(struct i40e_vsi *vsi) 4483 { 4484 int ret = 0; 4485 4486 /* do rx first for enable and last for disable */ 4487 ret = i40e_vsi_control_rx(vsi, true); 4488 if (ret) 4489 return ret; 4490 ret = i40e_vsi_control_tx(vsi, true); 4491 4492 return ret; 4493 } 4494 4495 /** 4496 * i40e_vsi_stop_rings - Stop a VSI's rings 4497 * @vsi: the VSI being configured 4498 **/ 4499 void i40e_vsi_stop_rings(struct i40e_vsi *vsi) 4500 { 4501 /* When port TX is suspended, don't wait */ 4502 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state)) 4503 return i40e_vsi_stop_rings_no_wait(vsi); 4504 4505 /* do rx first for enable and last for disable 4506 * Ignore return value, we need to shutdown whatever we can 4507 */ 4508 i40e_vsi_control_tx(vsi, false); 4509 i40e_vsi_control_rx(vsi, false); 4510 } 4511 4512 /** 4513 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay 4514 * @vsi: the VSI being shutdown 4515 * 4516 * This function stops all the rings for a VSI but does not delay to verify 4517 * that rings have been disabled. It is expected that the caller is shutting 4518 * down multiple VSIs at once and will delay together for all the VSIs after 4519 * initiating the shutdown. This is particularly useful for shutting down lots 4520 * of VFs together. Otherwise, a large delay can be incurred while configuring 4521 * each VSI in serial. 4522 **/ 4523 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi) 4524 { 4525 struct i40e_pf *pf = vsi->back; 4526 int i, pf_q; 4527 4528 pf_q = vsi->base_queue; 4529 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4530 i40e_control_tx_q(pf, pf_q, false); 4531 i40e_control_rx_q(pf, pf_q, false); 4532 } 4533 } 4534 4535 /** 4536 * i40e_vsi_free_irq - Free the irq association with the OS 4537 * @vsi: the VSI being configured 4538 **/ 4539 static void i40e_vsi_free_irq(struct i40e_vsi *vsi) 4540 { 4541 struct i40e_pf *pf = vsi->back; 4542 struct i40e_hw *hw = &pf->hw; 4543 int base = vsi->base_vector; 4544 u32 val, qp; 4545 int i; 4546 4547 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4548 if (!vsi->q_vectors) 4549 return; 4550 4551 if (!vsi->irqs_ready) 4552 return; 4553 4554 vsi->irqs_ready = false; 4555 for (i = 0; i < vsi->num_q_vectors; i++) { 4556 int irq_num; 4557 u16 vector; 4558 4559 vector = i + base; 4560 irq_num = pf->msix_entries[vector].vector; 4561 4562 /* free only the irqs that were actually requested */ 4563 if (!vsi->q_vectors[i] || 4564 !vsi->q_vectors[i]->num_ringpairs) 4565 continue; 4566 4567 /* clear the affinity notifier in the IRQ descriptor */ 4568 irq_set_affinity_notifier(irq_num, NULL); 4569 /* remove our suggested affinity mask for this IRQ */ 4570 irq_set_affinity_hint(irq_num, NULL); 4571 synchronize_irq(irq_num); 4572 free_irq(irq_num, vsi->q_vectors[i]); 4573 4574 /* Tear down the interrupt queue link list 4575 * 4576 * We know that they come in pairs and always 4577 * the Rx first, then the Tx. To clear the 4578 * link list, stick the EOL value into the 4579 * next_q field of the registers. 4580 */ 4581 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); 4582 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4583 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4584 val |= I40E_QUEUE_END_OF_LIST 4585 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4586 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); 4587 4588 while (qp != I40E_QUEUE_END_OF_LIST) { 4589 u32 next; 4590 4591 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4592 4593 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4594 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4595 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4596 I40E_QINT_RQCTL_INTEVENT_MASK); 4597 4598 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4599 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4600 4601 wr32(hw, I40E_QINT_RQCTL(qp), val); 4602 4603 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4604 4605 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) 4606 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; 4607 4608 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4609 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4610 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4611 I40E_QINT_TQCTL_INTEVENT_MASK); 4612 4613 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4614 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4615 4616 wr32(hw, I40E_QINT_TQCTL(qp), val); 4617 qp = next; 4618 } 4619 } 4620 } else { 4621 free_irq(pf->pdev->irq, pf); 4622 4623 val = rd32(hw, I40E_PFINT_LNKLST0); 4624 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) 4625 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; 4626 val |= I40E_QUEUE_END_OF_LIST 4627 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; 4628 wr32(hw, I40E_PFINT_LNKLST0, val); 4629 4630 val = rd32(hw, I40E_QINT_RQCTL(qp)); 4631 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | 4632 I40E_QINT_RQCTL_MSIX0_INDX_MASK | 4633 I40E_QINT_RQCTL_CAUSE_ENA_MASK | 4634 I40E_QINT_RQCTL_INTEVENT_MASK); 4635 4636 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | 4637 I40E_QINT_RQCTL_NEXTQ_INDX_MASK); 4638 4639 wr32(hw, I40E_QINT_RQCTL(qp), val); 4640 4641 val = rd32(hw, I40E_QINT_TQCTL(qp)); 4642 4643 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | 4644 I40E_QINT_TQCTL_MSIX0_INDX_MASK | 4645 I40E_QINT_TQCTL_CAUSE_ENA_MASK | 4646 I40E_QINT_TQCTL_INTEVENT_MASK); 4647 4648 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | 4649 I40E_QINT_TQCTL_NEXTQ_INDX_MASK); 4650 4651 wr32(hw, I40E_QINT_TQCTL(qp), val); 4652 } 4653 } 4654 4655 /** 4656 * i40e_free_q_vector - Free memory allocated for specific interrupt vector 4657 * @vsi: the VSI being configured 4658 * @v_idx: Index of vector to be freed 4659 * 4660 * This function frees the memory allocated to the q_vector. In addition if 4661 * NAPI is enabled it will delete any references to the NAPI struct prior 4662 * to freeing the q_vector. 4663 **/ 4664 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) 4665 { 4666 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; 4667 struct i40e_ring *ring; 4668 4669 if (!q_vector) 4670 return; 4671 4672 /* disassociate q_vector from rings */ 4673 i40e_for_each_ring(ring, q_vector->tx) 4674 ring->q_vector = NULL; 4675 4676 i40e_for_each_ring(ring, q_vector->rx) 4677 ring->q_vector = NULL; 4678 4679 /* only VSI w/ an associated netdev is set up w/ NAPI */ 4680 if (vsi->netdev) 4681 netif_napi_del(&q_vector->napi); 4682 4683 vsi->q_vectors[v_idx] = NULL; 4684 4685 kfree_rcu(q_vector, rcu); 4686 } 4687 4688 /** 4689 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors 4690 * @vsi: the VSI being un-configured 4691 * 4692 * This frees the memory allocated to the q_vectors and 4693 * deletes references to the NAPI struct. 4694 **/ 4695 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) 4696 { 4697 int v_idx; 4698 4699 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) 4700 i40e_free_q_vector(vsi, v_idx); 4701 } 4702 4703 /** 4704 * i40e_reset_interrupt_capability - Disable interrupt setup in OS 4705 * @pf: board private structure 4706 **/ 4707 static void i40e_reset_interrupt_capability(struct i40e_pf *pf) 4708 { 4709 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ 4710 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 4711 pci_disable_msix(pf->pdev); 4712 kfree(pf->msix_entries); 4713 pf->msix_entries = NULL; 4714 kfree(pf->irq_pile); 4715 pf->irq_pile = NULL; 4716 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { 4717 pci_disable_msi(pf->pdev); 4718 } 4719 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 4720 } 4721 4722 /** 4723 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings 4724 * @pf: board private structure 4725 * 4726 * We go through and clear interrupt specific resources and reset the structure 4727 * to pre-load conditions 4728 **/ 4729 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) 4730 { 4731 int i; 4732 4733 i40e_free_misc_vector(pf); 4734 4735 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector, 4736 I40E_IWARP_IRQ_PILE_ID); 4737 4738 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); 4739 for (i = 0; i < pf->num_alloc_vsi; i++) 4740 if (pf->vsi[i]) 4741 i40e_vsi_free_q_vectors(pf->vsi[i]); 4742 i40e_reset_interrupt_capability(pf); 4743 } 4744 4745 /** 4746 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI 4747 * @vsi: the VSI being configured 4748 **/ 4749 static void i40e_napi_enable_all(struct i40e_vsi *vsi) 4750 { 4751 int q_idx; 4752 4753 if (!vsi->netdev) 4754 return; 4755 4756 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4757 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4758 4759 if (q_vector->rx.ring || q_vector->tx.ring) 4760 napi_enable(&q_vector->napi); 4761 } 4762 } 4763 4764 /** 4765 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4766 * @vsi: the VSI being configured 4767 **/ 4768 static void i40e_napi_disable_all(struct i40e_vsi *vsi) 4769 { 4770 int q_idx; 4771 4772 if (!vsi->netdev) 4773 return; 4774 4775 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) { 4776 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx]; 4777 4778 if (q_vector->rx.ring || q_vector->tx.ring) 4779 napi_disable(&q_vector->napi); 4780 } 4781 } 4782 4783 /** 4784 * i40e_vsi_close - Shut down a VSI 4785 * @vsi: the vsi to be quelled 4786 **/ 4787 static void i40e_vsi_close(struct i40e_vsi *vsi) 4788 { 4789 struct i40e_pf *pf = vsi->back; 4790 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state)) 4791 i40e_down(vsi); 4792 i40e_vsi_free_irq(vsi); 4793 i40e_vsi_free_tx_resources(vsi); 4794 i40e_vsi_free_rx_resources(vsi); 4795 vsi->current_netdev_flags = 0; 4796 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 4797 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 4798 set_bit(__I40E_CLIENT_RESET, pf->state); 4799 } 4800 4801 /** 4802 * i40e_quiesce_vsi - Pause a given VSI 4803 * @vsi: the VSI being paused 4804 **/ 4805 static void i40e_quiesce_vsi(struct i40e_vsi *vsi) 4806 { 4807 if (test_bit(__I40E_VSI_DOWN, vsi->state)) 4808 return; 4809 4810 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state); 4811 if (vsi->netdev && netif_running(vsi->netdev)) 4812 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); 4813 else 4814 i40e_vsi_close(vsi); 4815 } 4816 4817 /** 4818 * i40e_unquiesce_vsi - Resume a given VSI 4819 * @vsi: the VSI being resumed 4820 **/ 4821 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) 4822 { 4823 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state)) 4824 return; 4825 4826 if (vsi->netdev && netif_running(vsi->netdev)) 4827 vsi->netdev->netdev_ops->ndo_open(vsi->netdev); 4828 else 4829 i40e_vsi_open(vsi); /* this clears the DOWN bit */ 4830 } 4831 4832 /** 4833 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF 4834 * @pf: the PF 4835 **/ 4836 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) 4837 { 4838 int v; 4839 4840 for (v = 0; v < pf->num_alloc_vsi; v++) { 4841 if (pf->vsi[v]) 4842 i40e_quiesce_vsi(pf->vsi[v]); 4843 } 4844 } 4845 4846 /** 4847 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF 4848 * @pf: the PF 4849 **/ 4850 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) 4851 { 4852 int v; 4853 4854 for (v = 0; v < pf->num_alloc_vsi; v++) { 4855 if (pf->vsi[v]) 4856 i40e_unquiesce_vsi(pf->vsi[v]); 4857 } 4858 } 4859 4860 /** 4861 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled 4862 * @vsi: the VSI being configured 4863 * 4864 * Wait until all queues on a given VSI have been disabled. 4865 **/ 4866 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi) 4867 { 4868 struct i40e_pf *pf = vsi->back; 4869 int i, pf_q, ret; 4870 4871 pf_q = vsi->base_queue; 4872 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { 4873 /* Check and wait for the Tx queue */ 4874 ret = i40e_pf_txq_wait(pf, pf_q, false); 4875 if (ret) { 4876 dev_info(&pf->pdev->dev, 4877 "VSI seid %d Tx ring %d disable timeout\n", 4878 vsi->seid, pf_q); 4879 return ret; 4880 } 4881 4882 if (!i40e_enabled_xdp_vsi(vsi)) 4883 goto wait_rx; 4884 4885 /* Check and wait for the XDP Tx queue */ 4886 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs, 4887 false); 4888 if (ret) { 4889 dev_info(&pf->pdev->dev, 4890 "VSI seid %d XDP Tx ring %d disable timeout\n", 4891 vsi->seid, pf_q); 4892 return ret; 4893 } 4894 wait_rx: 4895 /* Check and wait for the Rx queue */ 4896 ret = i40e_pf_rxq_wait(pf, pf_q, false); 4897 if (ret) { 4898 dev_info(&pf->pdev->dev, 4899 "VSI seid %d Rx ring %d disable timeout\n", 4900 vsi->seid, pf_q); 4901 return ret; 4902 } 4903 } 4904 4905 return 0; 4906 } 4907 4908 #ifdef CONFIG_I40E_DCB 4909 /** 4910 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled 4911 * @pf: the PF 4912 * 4913 * This function waits for the queues to be in disabled state for all the 4914 * VSIs that are managed by this PF. 4915 **/ 4916 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf) 4917 { 4918 int v, ret = 0; 4919 4920 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { 4921 if (pf->vsi[v]) { 4922 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]); 4923 if (ret) 4924 break; 4925 } 4926 } 4927 4928 return ret; 4929 } 4930 4931 #endif 4932 4933 /** 4934 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP 4935 * @pf: pointer to PF 4936 * 4937 * Get TC map for ISCSI PF type that will include iSCSI TC 4938 * and LAN TC. 4939 **/ 4940 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) 4941 { 4942 struct i40e_dcb_app_priority_table app; 4943 struct i40e_hw *hw = &pf->hw; 4944 u8 enabled_tc = 1; /* TC0 is always enabled */ 4945 u8 tc, i; 4946 /* Get the iSCSI APP TLV */ 4947 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 4948 4949 for (i = 0; i < dcbcfg->numapps; i++) { 4950 app = dcbcfg->app[i]; 4951 if (app.selector == I40E_APP_SEL_TCPIP && 4952 app.protocolid == I40E_APP_PROTOID_ISCSI) { 4953 tc = dcbcfg->etscfg.prioritytable[app.priority]; 4954 enabled_tc |= BIT(tc); 4955 break; 4956 } 4957 } 4958 4959 return enabled_tc; 4960 } 4961 4962 /** 4963 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config 4964 * @dcbcfg: the corresponding DCBx configuration structure 4965 * 4966 * Return the number of TCs from given DCBx configuration 4967 **/ 4968 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) 4969 { 4970 int i, tc_unused = 0; 4971 u8 num_tc = 0; 4972 u8 ret = 0; 4973 4974 /* Scan the ETS Config Priority Table to find 4975 * traffic class enabled for a given priority 4976 * and create a bitmask of enabled TCs 4977 */ 4978 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) 4979 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]); 4980 4981 /* Now scan the bitmask to check for 4982 * contiguous TCs starting with TC0 4983 */ 4984 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 4985 if (num_tc & BIT(i)) { 4986 if (!tc_unused) { 4987 ret++; 4988 } else { 4989 pr_err("Non-contiguous TC - Disabling DCB\n"); 4990 return 1; 4991 } 4992 } else { 4993 tc_unused = 1; 4994 } 4995 } 4996 4997 /* There is always at least TC0 */ 4998 if (!ret) 4999 ret = 1; 5000 5001 return ret; 5002 } 5003 5004 /** 5005 * i40e_dcb_get_enabled_tc - Get enabled traffic classes 5006 * @dcbcfg: the corresponding DCBx configuration structure 5007 * 5008 * Query the current DCB configuration and return the number of 5009 * traffic classes enabled from the given DCBX config 5010 **/ 5011 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) 5012 { 5013 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); 5014 u8 enabled_tc = 1; 5015 u8 i; 5016 5017 for (i = 0; i < num_tc; i++) 5018 enabled_tc |= BIT(i); 5019 5020 return enabled_tc; 5021 } 5022 5023 /** 5024 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes 5025 * @pf: PF being queried 5026 * 5027 * Query the current MQPRIO configuration and return the number of 5028 * traffic classes enabled. 5029 **/ 5030 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf) 5031 { 5032 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 5033 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc; 5034 u8 enabled_tc = 1, i; 5035 5036 for (i = 1; i < num_tc; i++) 5037 enabled_tc |= BIT(i); 5038 return enabled_tc; 5039 } 5040 5041 /** 5042 * i40e_pf_get_num_tc - Get enabled traffic classes for PF 5043 * @pf: PF being queried 5044 * 5045 * Return number of traffic classes enabled for the given PF 5046 **/ 5047 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) 5048 { 5049 struct i40e_hw *hw = &pf->hw; 5050 u8 i, enabled_tc = 1; 5051 u8 num_tc = 0; 5052 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5053 5054 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5055 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc; 5056 5057 /* If neither MQPRIO nor DCB is enabled, then always use single TC */ 5058 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5059 return 1; 5060 5061 /* SFP mode will be enabled for all TCs on port */ 5062 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5063 return i40e_dcb_get_num_tc(dcbcfg); 5064 5065 /* MFP mode return count of enabled TCs for this PF */ 5066 if (pf->hw.func_caps.iscsi) 5067 enabled_tc = i40e_get_iscsi_tc_map(pf); 5068 else 5069 return 1; /* Only TC0 */ 5070 5071 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5072 if (enabled_tc & BIT(i)) 5073 num_tc++; 5074 } 5075 return num_tc; 5076 } 5077 5078 /** 5079 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes 5080 * @pf: PF being queried 5081 * 5082 * Return a bitmap for enabled traffic classes for this PF. 5083 **/ 5084 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) 5085 { 5086 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5087 return i40e_mqprio_get_enabled_tc(pf); 5088 5089 /* If neither MQPRIO nor DCB is enabled for this PF then just return 5090 * default TC 5091 */ 5092 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) 5093 return I40E_DEFAULT_TRAFFIC_CLASS; 5094 5095 /* SFP mode we want PF to be enabled for all TCs */ 5096 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 5097 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); 5098 5099 /* MFP enabled and iSCSI PF type */ 5100 if (pf->hw.func_caps.iscsi) 5101 return i40e_get_iscsi_tc_map(pf); 5102 else 5103 return I40E_DEFAULT_TRAFFIC_CLASS; 5104 } 5105 5106 /** 5107 * i40e_vsi_get_bw_info - Query VSI BW Information 5108 * @vsi: the VSI being queried 5109 * 5110 * Returns 0 on success, negative value on failure 5111 **/ 5112 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) 5113 { 5114 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; 5115 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5116 struct i40e_pf *pf = vsi->back; 5117 struct i40e_hw *hw = &pf->hw; 5118 i40e_status ret; 5119 u32 tc_bw_max; 5120 int i; 5121 5122 /* Get the VSI level BW configuration */ 5123 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); 5124 if (ret) { 5125 dev_info(&pf->pdev->dev, 5126 "couldn't get PF vsi bw config, err %s aq_err %s\n", 5127 i40e_stat_str(&pf->hw, ret), 5128 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5129 return -EINVAL; 5130 } 5131 5132 /* Get the VSI level BW configuration per TC */ 5133 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, 5134 NULL); 5135 if (ret) { 5136 dev_info(&pf->pdev->dev, 5137 "couldn't get PF vsi ets bw config, err %s aq_err %s\n", 5138 i40e_stat_str(&pf->hw, ret), 5139 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5140 return -EINVAL; 5141 } 5142 5143 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { 5144 dev_info(&pf->pdev->dev, 5145 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", 5146 bw_config.tc_valid_bits, 5147 bw_ets_config.tc_valid_bits); 5148 /* Still continuing */ 5149 } 5150 5151 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); 5152 vsi->bw_max_quanta = bw_config.max_bw; 5153 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | 5154 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); 5155 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5156 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; 5157 vsi->bw_ets_limit_credits[i] = 5158 le16_to_cpu(bw_ets_config.credits[i]); 5159 /* 3 bits out of 4 for each TC */ 5160 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); 5161 } 5162 5163 return 0; 5164 } 5165 5166 /** 5167 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC 5168 * @vsi: the VSI being configured 5169 * @enabled_tc: TC bitmap 5170 * @bw_share: BW shared credits per TC 5171 * 5172 * Returns 0 on success, negative value on failure 5173 **/ 5174 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, 5175 u8 *bw_share) 5176 { 5177 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5178 struct i40e_pf *pf = vsi->back; 5179 i40e_status ret; 5180 int i; 5181 5182 /* There is no need to reset BW when mqprio mode is on. */ 5183 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5184 return 0; 5185 if (!vsi->mqprio_qopt.qopt.hw && !(pf->flags & I40E_FLAG_DCB_ENABLED)) { 5186 ret = i40e_set_bw_limit(vsi, vsi->seid, 0); 5187 if (ret) 5188 dev_info(&pf->pdev->dev, 5189 "Failed to reset tx rate for vsi->seid %u\n", 5190 vsi->seid); 5191 return ret; 5192 } 5193 bw_data.tc_valid_bits = enabled_tc; 5194 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5195 bw_data.tc_bw_credits[i] = bw_share[i]; 5196 5197 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL); 5198 if (ret) { 5199 dev_info(&pf->pdev->dev, 5200 "AQ command Config VSI BW allocation per TC failed = %d\n", 5201 pf->hw.aq.asq_last_status); 5202 return -EINVAL; 5203 } 5204 5205 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5206 vsi->info.qs_handle[i] = bw_data.qs_handles[i]; 5207 5208 return 0; 5209 } 5210 5211 /** 5212 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration 5213 * @vsi: the VSI being configured 5214 * @enabled_tc: TC map to be enabled 5215 * 5216 **/ 5217 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5218 { 5219 struct net_device *netdev = vsi->netdev; 5220 struct i40e_pf *pf = vsi->back; 5221 struct i40e_hw *hw = &pf->hw; 5222 u8 netdev_tc = 0; 5223 int i; 5224 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; 5225 5226 if (!netdev) 5227 return; 5228 5229 if (!enabled_tc) { 5230 netdev_reset_tc(netdev); 5231 return; 5232 } 5233 5234 /* Set up actual enabled TCs on the VSI */ 5235 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) 5236 return; 5237 5238 /* set per TC queues for the VSI */ 5239 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5240 /* Only set TC queues for enabled tcs 5241 * 5242 * e.g. For a VSI that has TC0 and TC3 enabled the 5243 * enabled_tc bitmap would be 0x00001001; the driver 5244 * will set the numtc for netdev as 2 that will be 5245 * referenced by the netdev layer as TC 0 and 1. 5246 */ 5247 if (vsi->tc_config.enabled_tc & BIT(i)) 5248 netdev_set_tc_queue(netdev, 5249 vsi->tc_config.tc_info[i].netdev_tc, 5250 vsi->tc_config.tc_info[i].qcount, 5251 vsi->tc_config.tc_info[i].qoffset); 5252 } 5253 5254 if (pf->flags & I40E_FLAG_TC_MQPRIO) 5255 return; 5256 5257 /* Assign UP2TC map for the VSI */ 5258 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { 5259 /* Get the actual TC# for the UP */ 5260 u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; 5261 /* Get the mapped netdev TC# for the UP */ 5262 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; 5263 netdev_set_prio_tc_map(netdev, i, netdev_tc); 5264 } 5265 } 5266 5267 /** 5268 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map 5269 * @vsi: the VSI being configured 5270 * @ctxt: the ctxt buffer returned from AQ VSI update param command 5271 **/ 5272 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, 5273 struct i40e_vsi_context *ctxt) 5274 { 5275 /* copy just the sections touched not the entire info 5276 * since not all sections are valid as returned by 5277 * update vsi params 5278 */ 5279 vsi->info.mapping_flags = ctxt->info.mapping_flags; 5280 memcpy(&vsi->info.queue_mapping, 5281 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); 5282 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, 5283 sizeof(vsi->info.tc_mapping)); 5284 } 5285 5286 /** 5287 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map 5288 * @vsi: VSI to be configured 5289 * @enabled_tc: TC bitmap 5290 * 5291 * This configures a particular VSI for TCs that are mapped to the 5292 * given TC bitmap. It uses default bandwidth share for TCs across 5293 * VSIs to configure TC for a particular VSI. 5294 * 5295 * NOTE: 5296 * It is expected that the VSI queues have been quisced before calling 5297 * this function. 5298 **/ 5299 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) 5300 { 5301 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5302 struct i40e_pf *pf = vsi->back; 5303 struct i40e_hw *hw = &pf->hw; 5304 struct i40e_vsi_context ctxt; 5305 int ret = 0; 5306 int i; 5307 5308 /* Check if enabled_tc is same as existing or new TCs */ 5309 if (vsi->tc_config.enabled_tc == enabled_tc && 5310 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 5311 return ret; 5312 5313 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5314 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5315 if (enabled_tc & BIT(i)) 5316 bw_share[i] = 1; 5317 } 5318 5319 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5320 if (ret) { 5321 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; 5322 5323 dev_info(&pf->pdev->dev, 5324 "Failed configuring TC map %d for VSI %d\n", 5325 enabled_tc, vsi->seid); 5326 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, 5327 &bw_config, NULL); 5328 if (ret) { 5329 dev_info(&pf->pdev->dev, 5330 "Failed querying vsi bw info, err %s aq_err %s\n", 5331 i40e_stat_str(hw, ret), 5332 i40e_aq_str(hw, hw->aq.asq_last_status)); 5333 goto out; 5334 } 5335 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) { 5336 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc; 5337 5338 if (!valid_tc) 5339 valid_tc = bw_config.tc_valid_bits; 5340 /* Always enable TC0, no matter what */ 5341 valid_tc |= 1; 5342 dev_info(&pf->pdev->dev, 5343 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n", 5344 enabled_tc, bw_config.tc_valid_bits, valid_tc); 5345 enabled_tc = valid_tc; 5346 } 5347 5348 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); 5349 if (ret) { 5350 dev_err(&pf->pdev->dev, 5351 "Unable to configure TC map %d for VSI %d\n", 5352 enabled_tc, vsi->seid); 5353 goto out; 5354 } 5355 } 5356 5357 /* Update Queue Pairs Mapping for currently enabled UPs */ 5358 ctxt.seid = vsi->seid; 5359 ctxt.pf_num = vsi->back->hw.pf_id; 5360 ctxt.vf_num = 0; 5361 ctxt.uplink_seid = vsi->uplink_seid; 5362 ctxt.info = vsi->info; 5363 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) { 5364 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc); 5365 if (ret) 5366 goto out; 5367 } else { 5368 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 5369 } 5370 5371 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled 5372 * queues changed. 5373 */ 5374 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) { 5375 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size, 5376 vsi->num_queue_pairs); 5377 ret = i40e_vsi_config_rss(vsi); 5378 if (ret) { 5379 dev_info(&vsi->back->pdev->dev, 5380 "Failed to reconfig rss for num_queues\n"); 5381 return ret; 5382 } 5383 vsi->reconfig_rss = false; 5384 } 5385 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 5386 ctxt.info.valid_sections |= 5387 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 5388 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA; 5389 } 5390 5391 /* Update the VSI after updating the VSI queue-mapping 5392 * information 5393 */ 5394 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 5395 if (ret) { 5396 dev_info(&pf->pdev->dev, 5397 "Update vsi tc config failed, err %s aq_err %s\n", 5398 i40e_stat_str(hw, ret), 5399 i40e_aq_str(hw, hw->aq.asq_last_status)); 5400 goto out; 5401 } 5402 /* update the local VSI info with updated queue map */ 5403 i40e_vsi_update_queue_map(vsi, &ctxt); 5404 vsi->info.valid_sections = 0; 5405 5406 /* Update current VSI BW information */ 5407 ret = i40e_vsi_get_bw_info(vsi); 5408 if (ret) { 5409 dev_info(&pf->pdev->dev, 5410 "Failed updating vsi bw info, err %s aq_err %s\n", 5411 i40e_stat_str(hw, ret), 5412 i40e_aq_str(hw, hw->aq.asq_last_status)); 5413 goto out; 5414 } 5415 5416 /* Update the netdev TC setup */ 5417 i40e_vsi_config_netdev_tc(vsi, enabled_tc); 5418 out: 5419 return ret; 5420 } 5421 5422 /** 5423 * i40e_get_link_speed - Returns link speed for the interface 5424 * @vsi: VSI to be configured 5425 * 5426 **/ 5427 static int i40e_get_link_speed(struct i40e_vsi *vsi) 5428 { 5429 struct i40e_pf *pf = vsi->back; 5430 5431 switch (pf->hw.phy.link_info.link_speed) { 5432 case I40E_LINK_SPEED_40GB: 5433 return 40000; 5434 case I40E_LINK_SPEED_25GB: 5435 return 25000; 5436 case I40E_LINK_SPEED_20GB: 5437 return 20000; 5438 case I40E_LINK_SPEED_10GB: 5439 return 10000; 5440 case I40E_LINK_SPEED_1GB: 5441 return 1000; 5442 default: 5443 return -EINVAL; 5444 } 5445 } 5446 5447 /** 5448 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 5449 * @vsi: VSI to be configured 5450 * @seid: seid of the channel/VSI 5451 * @max_tx_rate: max TX rate to be configured as BW limit 5452 * 5453 * Helper function to set BW limit for a given VSI 5454 **/ 5455 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate) 5456 { 5457 struct i40e_pf *pf = vsi->back; 5458 u64 credits = 0; 5459 int speed = 0; 5460 int ret = 0; 5461 5462 speed = i40e_get_link_speed(vsi); 5463 if (max_tx_rate > speed) { 5464 dev_err(&pf->pdev->dev, 5465 "Invalid max tx rate %llu specified for VSI seid %d.", 5466 max_tx_rate, seid); 5467 return -EINVAL; 5468 } 5469 if (max_tx_rate && max_tx_rate < 50) { 5470 dev_warn(&pf->pdev->dev, 5471 "Setting max tx rate to minimum usable value of 50Mbps.\n"); 5472 max_tx_rate = 50; 5473 } 5474 5475 /* Tx rate credits are in values of 50Mbps, 0 is disabled */ 5476 credits = max_tx_rate; 5477 do_div(credits, I40E_BW_CREDIT_DIVISOR); 5478 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits, 5479 I40E_MAX_BW_INACTIVE_ACCUM, NULL); 5480 if (ret) 5481 dev_err(&pf->pdev->dev, 5482 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n", 5483 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret), 5484 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 5485 return ret; 5486 } 5487 5488 /** 5489 * i40e_remove_queue_channels - Remove queue channels for the TCs 5490 * @vsi: VSI to be configured 5491 * 5492 * Remove queue channels for the TCs 5493 **/ 5494 static void i40e_remove_queue_channels(struct i40e_vsi *vsi) 5495 { 5496 enum i40e_admin_queue_err last_aq_status; 5497 struct i40e_cloud_filter *cfilter; 5498 struct i40e_channel *ch, *ch_tmp; 5499 struct i40e_pf *pf = vsi->back; 5500 struct hlist_node *node; 5501 int ret, i; 5502 5503 /* Reset rss size that was stored when reconfiguring rss for 5504 * channel VSIs with non-power-of-2 queue count. 5505 */ 5506 vsi->current_rss_size = 0; 5507 5508 /* perform cleanup for channels if they exist */ 5509 if (list_empty(&vsi->ch_list)) 5510 return; 5511 5512 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5513 struct i40e_vsi *p_vsi; 5514 5515 list_del(&ch->list); 5516 p_vsi = ch->parent_vsi; 5517 if (!p_vsi || !ch->initialized) { 5518 kfree(ch); 5519 continue; 5520 } 5521 /* Reset queue contexts */ 5522 for (i = 0; i < ch->num_queue_pairs; i++) { 5523 struct i40e_ring *tx_ring, *rx_ring; 5524 u16 pf_q; 5525 5526 pf_q = ch->base_queue + i; 5527 tx_ring = vsi->tx_rings[pf_q]; 5528 tx_ring->ch = NULL; 5529 5530 rx_ring = vsi->rx_rings[pf_q]; 5531 rx_ring->ch = NULL; 5532 } 5533 5534 /* Reset BW configured for this VSI via mqprio */ 5535 ret = i40e_set_bw_limit(vsi, ch->seid, 0); 5536 if (ret) 5537 dev_info(&vsi->back->pdev->dev, 5538 "Failed to reset tx rate for ch->seid %u\n", 5539 ch->seid); 5540 5541 /* delete cloud filters associated with this channel */ 5542 hlist_for_each_entry_safe(cfilter, node, 5543 &pf->cloud_filter_list, cloud_node) { 5544 if (cfilter->seid != ch->seid) 5545 continue; 5546 5547 hash_del(&cfilter->cloud_node); 5548 if (cfilter->dst_port) 5549 ret = i40e_add_del_cloud_filter_big_buf(vsi, 5550 cfilter, 5551 false); 5552 else 5553 ret = i40e_add_del_cloud_filter(vsi, cfilter, 5554 false); 5555 last_aq_status = pf->hw.aq.asq_last_status; 5556 if (ret) 5557 dev_info(&pf->pdev->dev, 5558 "Failed to delete cloud filter, err %s aq_err %s\n", 5559 i40e_stat_str(&pf->hw, ret), 5560 i40e_aq_str(&pf->hw, last_aq_status)); 5561 kfree(cfilter); 5562 } 5563 5564 /* delete VSI from FW */ 5565 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid, 5566 NULL); 5567 if (ret) 5568 dev_err(&vsi->back->pdev->dev, 5569 "unable to remove channel (%d) for parent VSI(%d)\n", 5570 ch->seid, p_vsi->seid); 5571 kfree(ch); 5572 } 5573 INIT_LIST_HEAD(&vsi->ch_list); 5574 } 5575 5576 /** 5577 * i40e_is_any_channel - channel exist or not 5578 * @vsi: ptr to VSI to which channels are associated with 5579 * 5580 * Returns true or false if channel(s) exist for associated VSI or not 5581 **/ 5582 static bool i40e_is_any_channel(struct i40e_vsi *vsi) 5583 { 5584 struct i40e_channel *ch, *ch_tmp; 5585 5586 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5587 if (ch->initialized) 5588 return true; 5589 } 5590 5591 return false; 5592 } 5593 5594 /** 5595 * i40e_get_max_queues_for_channel 5596 * @vsi: ptr to VSI to which channels are associated with 5597 * 5598 * Helper function which returns max value among the queue counts set on the 5599 * channels/TCs created. 5600 **/ 5601 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi) 5602 { 5603 struct i40e_channel *ch, *ch_tmp; 5604 int max = 0; 5605 5606 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 5607 if (!ch->initialized) 5608 continue; 5609 if (ch->num_queue_pairs > max) 5610 max = ch->num_queue_pairs; 5611 } 5612 5613 return max; 5614 } 5615 5616 /** 5617 * i40e_validate_num_queues - validate num_queues w.r.t channel 5618 * @pf: ptr to PF device 5619 * @num_queues: number of queues 5620 * @vsi: the parent VSI 5621 * @reconfig_rss: indicates should the RSS be reconfigured or not 5622 * 5623 * This function validates number of queues in the context of new channel 5624 * which is being established and determines if RSS should be reconfigured 5625 * or not for parent VSI. 5626 **/ 5627 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues, 5628 struct i40e_vsi *vsi, bool *reconfig_rss) 5629 { 5630 int max_ch_queues; 5631 5632 if (!reconfig_rss) 5633 return -EINVAL; 5634 5635 *reconfig_rss = false; 5636 if (vsi->current_rss_size) { 5637 if (num_queues > vsi->current_rss_size) { 5638 dev_dbg(&pf->pdev->dev, 5639 "Error: num_queues (%d) > vsi's current_size(%d)\n", 5640 num_queues, vsi->current_rss_size); 5641 return -EINVAL; 5642 } else if ((num_queues < vsi->current_rss_size) && 5643 (!is_power_of_2(num_queues))) { 5644 dev_dbg(&pf->pdev->dev, 5645 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n", 5646 num_queues, vsi->current_rss_size); 5647 return -EINVAL; 5648 } 5649 } 5650 5651 if (!is_power_of_2(num_queues)) { 5652 /* Find the max num_queues configured for channel if channel 5653 * exist. 5654 * if channel exist, then enforce 'num_queues' to be more than 5655 * max ever queues configured for channel. 5656 */ 5657 max_ch_queues = i40e_get_max_queues_for_channel(vsi); 5658 if (num_queues < max_ch_queues) { 5659 dev_dbg(&pf->pdev->dev, 5660 "Error: num_queues (%d) < max queues configured for channel(%d)\n", 5661 num_queues, max_ch_queues); 5662 return -EINVAL; 5663 } 5664 *reconfig_rss = true; 5665 } 5666 5667 return 0; 5668 } 5669 5670 /** 5671 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size 5672 * @vsi: the VSI being setup 5673 * @rss_size: size of RSS, accordingly LUT gets reprogrammed 5674 * 5675 * This function reconfigures RSS by reprogramming LUTs using 'rss_size' 5676 **/ 5677 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size) 5678 { 5679 struct i40e_pf *pf = vsi->back; 5680 u8 seed[I40E_HKEY_ARRAY_SIZE]; 5681 struct i40e_hw *hw = &pf->hw; 5682 int local_rss_size; 5683 u8 *lut; 5684 int ret; 5685 5686 if (!vsi->rss_size) 5687 return -EINVAL; 5688 5689 if (rss_size > vsi->rss_size) 5690 return -EINVAL; 5691 5692 local_rss_size = min_t(int, vsi->rss_size, rss_size); 5693 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 5694 if (!lut) 5695 return -ENOMEM; 5696 5697 /* Ignoring user configured lut if there is one */ 5698 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size); 5699 5700 /* Use user configured hash key if there is one, otherwise 5701 * use default. 5702 */ 5703 if (vsi->rss_hkey_user) 5704 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 5705 else 5706 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 5707 5708 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 5709 if (ret) { 5710 dev_info(&pf->pdev->dev, 5711 "Cannot set RSS lut, err %s aq_err %s\n", 5712 i40e_stat_str(hw, ret), 5713 i40e_aq_str(hw, hw->aq.asq_last_status)); 5714 kfree(lut); 5715 return ret; 5716 } 5717 kfree(lut); 5718 5719 /* Do the update w.r.t. storing rss_size */ 5720 if (!vsi->orig_rss_size) 5721 vsi->orig_rss_size = vsi->rss_size; 5722 vsi->current_rss_size = local_rss_size; 5723 5724 return ret; 5725 } 5726 5727 /** 5728 * i40e_channel_setup_queue_map - Setup a channel queue map 5729 * @pf: ptr to PF device 5730 * @vsi: the VSI being setup 5731 * @ctxt: VSI context structure 5732 * @ch: ptr to channel structure 5733 * 5734 * Setup queue map for a specific channel 5735 **/ 5736 static void i40e_channel_setup_queue_map(struct i40e_pf *pf, 5737 struct i40e_vsi_context *ctxt, 5738 struct i40e_channel *ch) 5739 { 5740 u16 qcount, qmap, sections = 0; 5741 u8 offset = 0; 5742 int pow; 5743 5744 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; 5745 sections |= I40E_AQ_VSI_PROP_SCHED_VALID; 5746 5747 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix); 5748 ch->num_queue_pairs = qcount; 5749 5750 /* find the next higher power-of-2 of num queue pairs */ 5751 pow = ilog2(qcount); 5752 if (!is_power_of_2(qcount)) 5753 pow++; 5754 5755 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | 5756 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); 5757 5758 /* Setup queue TC[0].qmap for given VSI context */ 5759 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 5760 5761 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */ 5762 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); 5763 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue); 5764 ctxt->info.valid_sections |= cpu_to_le16(sections); 5765 } 5766 5767 /** 5768 * i40e_add_channel - add a channel by adding VSI 5769 * @pf: ptr to PF device 5770 * @uplink_seid: underlying HW switching element (VEB) ID 5771 * @ch: ptr to channel structure 5772 * 5773 * Add a channel (VSI) using add_vsi and queue_map 5774 **/ 5775 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid, 5776 struct i40e_channel *ch) 5777 { 5778 struct i40e_hw *hw = &pf->hw; 5779 struct i40e_vsi_context ctxt; 5780 u8 enabled_tc = 0x1; /* TC0 enabled */ 5781 int ret; 5782 5783 if (ch->type != I40E_VSI_VMDQ2) { 5784 dev_info(&pf->pdev->dev, 5785 "add new vsi failed, ch->type %d\n", ch->type); 5786 return -EINVAL; 5787 } 5788 5789 memset(&ctxt, 0, sizeof(ctxt)); 5790 ctxt.pf_num = hw->pf_id; 5791 ctxt.vf_num = 0; 5792 ctxt.uplink_seid = uplink_seid; 5793 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 5794 if (ch->type == I40E_VSI_VMDQ2) 5795 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 5796 5797 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) { 5798 ctxt.info.valid_sections |= 5799 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 5800 ctxt.info.switch_id = 5801 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 5802 } 5803 5804 /* Set queue map for a given VSI context */ 5805 i40e_channel_setup_queue_map(pf, &ctxt, ch); 5806 5807 /* Now time to create VSI */ 5808 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 5809 if (ret) { 5810 dev_info(&pf->pdev->dev, 5811 "add new vsi failed, err %s aq_err %s\n", 5812 i40e_stat_str(&pf->hw, ret), 5813 i40e_aq_str(&pf->hw, 5814 pf->hw.aq.asq_last_status)); 5815 return -ENOENT; 5816 } 5817 5818 /* Success, update channel */ 5819 ch->enabled_tc = enabled_tc; 5820 ch->seid = ctxt.seid; 5821 ch->vsi_number = ctxt.vsi_number; 5822 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx); 5823 5824 /* copy just the sections touched not the entire info 5825 * since not all sections are valid as returned by 5826 * update vsi params 5827 */ 5828 ch->info.mapping_flags = ctxt.info.mapping_flags; 5829 memcpy(&ch->info.queue_mapping, 5830 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping)); 5831 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping, 5832 sizeof(ctxt.info.tc_mapping)); 5833 5834 return 0; 5835 } 5836 5837 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch, 5838 u8 *bw_share) 5839 { 5840 struct i40e_aqc_configure_vsi_tc_bw_data bw_data; 5841 i40e_status ret; 5842 int i; 5843 5844 bw_data.tc_valid_bits = ch->enabled_tc; 5845 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5846 bw_data.tc_bw_credits[i] = bw_share[i]; 5847 5848 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid, 5849 &bw_data, NULL); 5850 if (ret) { 5851 dev_info(&vsi->back->pdev->dev, 5852 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n", 5853 vsi->back->hw.aq.asq_last_status, ch->seid); 5854 return -EINVAL; 5855 } 5856 5857 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) 5858 ch->info.qs_handle[i] = bw_data.qs_handles[i]; 5859 5860 return 0; 5861 } 5862 5863 /** 5864 * i40e_channel_config_tx_ring - config TX ring associated with new channel 5865 * @pf: ptr to PF device 5866 * @vsi: the VSI being setup 5867 * @ch: ptr to channel structure 5868 * 5869 * Configure TX rings associated with channel (VSI) since queues are being 5870 * from parent VSI. 5871 **/ 5872 static int i40e_channel_config_tx_ring(struct i40e_pf *pf, 5873 struct i40e_vsi *vsi, 5874 struct i40e_channel *ch) 5875 { 5876 i40e_status ret; 5877 int i; 5878 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; 5879 5880 /* Enable ETS TCs with equal BW Share for now across all VSIs */ 5881 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 5882 if (ch->enabled_tc & BIT(i)) 5883 bw_share[i] = 1; 5884 } 5885 5886 /* configure BW for new VSI */ 5887 ret = i40e_channel_config_bw(vsi, ch, bw_share); 5888 if (ret) { 5889 dev_info(&vsi->back->pdev->dev, 5890 "Failed configuring TC map %d for channel (seid %u)\n", 5891 ch->enabled_tc, ch->seid); 5892 return ret; 5893 } 5894 5895 for (i = 0; i < ch->num_queue_pairs; i++) { 5896 struct i40e_ring *tx_ring, *rx_ring; 5897 u16 pf_q; 5898 5899 pf_q = ch->base_queue + i; 5900 5901 /* Get to TX ring ptr of main VSI, for re-setup TX queue 5902 * context 5903 */ 5904 tx_ring = vsi->tx_rings[pf_q]; 5905 tx_ring->ch = ch; 5906 5907 /* Get the RX ring ptr */ 5908 rx_ring = vsi->rx_rings[pf_q]; 5909 rx_ring->ch = ch; 5910 } 5911 5912 return 0; 5913 } 5914 5915 /** 5916 * i40e_setup_hw_channel - setup new channel 5917 * @pf: ptr to PF device 5918 * @vsi: the VSI being setup 5919 * @ch: ptr to channel structure 5920 * @uplink_seid: underlying HW switching element (VEB) ID 5921 * @type: type of channel to be created (VMDq2/VF) 5922 * 5923 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5924 * and configures TX rings accordingly 5925 **/ 5926 static inline int i40e_setup_hw_channel(struct i40e_pf *pf, 5927 struct i40e_vsi *vsi, 5928 struct i40e_channel *ch, 5929 u16 uplink_seid, u8 type) 5930 { 5931 int ret; 5932 5933 ch->initialized = false; 5934 ch->base_queue = vsi->next_base_queue; 5935 ch->type = type; 5936 5937 /* Proceed with creation of channel (VMDq2) VSI */ 5938 ret = i40e_add_channel(pf, uplink_seid, ch); 5939 if (ret) { 5940 dev_info(&pf->pdev->dev, 5941 "failed to add_channel using uplink_seid %u\n", 5942 uplink_seid); 5943 return ret; 5944 } 5945 5946 /* Mark the successful creation of channel */ 5947 ch->initialized = true; 5948 5949 /* Reconfigure TX queues using QTX_CTL register */ 5950 ret = i40e_channel_config_tx_ring(pf, vsi, ch); 5951 if (ret) { 5952 dev_info(&pf->pdev->dev, 5953 "failed to configure TX rings for channel %u\n", 5954 ch->seid); 5955 return ret; 5956 } 5957 5958 /* update 'next_base_queue' */ 5959 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs; 5960 dev_dbg(&pf->pdev->dev, 5961 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n", 5962 ch->seid, ch->vsi_number, ch->stat_counter_idx, 5963 ch->num_queue_pairs, 5964 vsi->next_base_queue); 5965 return ret; 5966 } 5967 5968 /** 5969 * i40e_setup_channel - setup new channel using uplink element 5970 * @pf: ptr to PF device 5971 * @type: type of channel to be created (VMDq2/VF) 5972 * @uplink_seid: underlying HW switching element (VEB) ID 5973 * @ch: ptr to channel structure 5974 * 5975 * Setup new channel (VSI) based on specified type (VMDq2/VF) 5976 * and uplink switching element (uplink_seid) 5977 **/ 5978 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi, 5979 struct i40e_channel *ch) 5980 { 5981 u8 vsi_type; 5982 u16 seid; 5983 int ret; 5984 5985 if (vsi->type == I40E_VSI_MAIN) { 5986 vsi_type = I40E_VSI_VMDQ2; 5987 } else { 5988 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n", 5989 vsi->type); 5990 return false; 5991 } 5992 5993 /* underlying switching element */ 5994 seid = pf->vsi[pf->lan_vsi]->uplink_seid; 5995 5996 /* create channel (VSI), configure TX rings */ 5997 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type); 5998 if (ret) { 5999 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n"); 6000 return false; 6001 } 6002 6003 return ch->initialized ? true : false; 6004 } 6005 6006 /** 6007 * i40e_validate_and_set_switch_mode - sets up switch mode correctly 6008 * @vsi: ptr to VSI which has PF backing 6009 * 6010 * Sets up switch mode correctly if it needs to be changed and perform 6011 * what are allowed modes. 6012 **/ 6013 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi) 6014 { 6015 u8 mode; 6016 struct i40e_pf *pf = vsi->back; 6017 struct i40e_hw *hw = &pf->hw; 6018 int ret; 6019 6020 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities); 6021 if (ret) 6022 return -EINVAL; 6023 6024 if (hw->dev_caps.switch_mode) { 6025 /* if switch mode is set, support mode2 (non-tunneled for 6026 * cloud filter) for now 6027 */ 6028 u32 switch_mode = hw->dev_caps.switch_mode & 6029 I40E_SWITCH_MODE_MASK; 6030 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) { 6031 if (switch_mode == I40E_CLOUD_FILTER_MODE2) 6032 return 0; 6033 dev_err(&pf->pdev->dev, 6034 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n", 6035 hw->dev_caps.switch_mode); 6036 return -EINVAL; 6037 } 6038 } 6039 6040 /* Set Bit 7 to be valid */ 6041 mode = I40E_AQ_SET_SWITCH_BIT7_VALID; 6042 6043 /* Set L4type for TCP support */ 6044 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP; 6045 6046 /* Set cloud filter mode */ 6047 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL; 6048 6049 /* Prep mode field for set_switch_config */ 6050 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags, 6051 pf->last_sw_conf_valid_flags, 6052 mode, NULL); 6053 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH) 6054 dev_err(&pf->pdev->dev, 6055 "couldn't set switch config bits, err %s aq_err %s\n", 6056 i40e_stat_str(hw, ret), 6057 i40e_aq_str(hw, 6058 hw->aq.asq_last_status)); 6059 6060 return ret; 6061 } 6062 6063 /** 6064 * i40e_create_queue_channel - function to create channel 6065 * @vsi: VSI to be configured 6066 * @ch: ptr to channel (it contains channel specific params) 6067 * 6068 * This function creates channel (VSI) using num_queues specified by user, 6069 * reconfigs RSS if needed. 6070 **/ 6071 int i40e_create_queue_channel(struct i40e_vsi *vsi, 6072 struct i40e_channel *ch) 6073 { 6074 struct i40e_pf *pf = vsi->back; 6075 bool reconfig_rss; 6076 int err; 6077 6078 if (!ch) 6079 return -EINVAL; 6080 6081 if (!ch->num_queue_pairs) { 6082 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n", 6083 ch->num_queue_pairs); 6084 return -EINVAL; 6085 } 6086 6087 /* validate user requested num_queues for channel */ 6088 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi, 6089 &reconfig_rss); 6090 if (err) { 6091 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n", 6092 ch->num_queue_pairs); 6093 return -EINVAL; 6094 } 6095 6096 /* By default we are in VEPA mode, if this is the first VF/VMDq 6097 * VSI to be added switch to VEB mode. 6098 */ 6099 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) || 6100 (!i40e_is_any_channel(vsi))) { 6101 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) { 6102 dev_dbg(&pf->pdev->dev, 6103 "Failed to create channel. Override queues (%u) not power of 2\n", 6104 vsi->tc_config.tc_info[0].qcount); 6105 return -EINVAL; 6106 } 6107 6108 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 6109 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 6110 6111 if (vsi->type == I40E_VSI_MAIN) { 6112 if (pf->flags & I40E_FLAG_TC_MQPRIO) 6113 i40e_do_reset(pf, I40E_PF_RESET_FLAG, 6114 true); 6115 else 6116 i40e_do_reset_safe(pf, 6117 I40E_PF_RESET_FLAG); 6118 } 6119 } 6120 /* now onwards for main VSI, number of queues will be value 6121 * of TC0's queue count 6122 */ 6123 } 6124 6125 /* By this time, vsi->cnt_q_avail shall be set to non-zero and 6126 * it should be more than num_queues 6127 */ 6128 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) { 6129 dev_dbg(&pf->pdev->dev, 6130 "Error: cnt_q_avail (%u) less than num_queues %d\n", 6131 vsi->cnt_q_avail, ch->num_queue_pairs); 6132 return -EINVAL; 6133 } 6134 6135 /* reconfig_rss only if vsi type is MAIN_VSI */ 6136 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) { 6137 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs); 6138 if (err) { 6139 dev_info(&pf->pdev->dev, 6140 "Error: unable to reconfig rss for num_queues (%u)\n", 6141 ch->num_queue_pairs); 6142 return -EINVAL; 6143 } 6144 } 6145 6146 if (!i40e_setup_channel(pf, vsi, ch)) { 6147 dev_info(&pf->pdev->dev, "Failed to setup channel\n"); 6148 return -EINVAL; 6149 } 6150 6151 dev_info(&pf->pdev->dev, 6152 "Setup channel (id:%u) utilizing num_queues %d\n", 6153 ch->seid, ch->num_queue_pairs); 6154 6155 /* configure VSI for BW limit */ 6156 if (ch->max_tx_rate) { 6157 u64 credits = ch->max_tx_rate; 6158 6159 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate)) 6160 return -EINVAL; 6161 6162 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6163 dev_dbg(&pf->pdev->dev, 6164 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6165 ch->max_tx_rate, 6166 credits, 6167 ch->seid); 6168 } 6169 6170 /* in case of VF, this will be main SRIOV VSI */ 6171 ch->parent_vsi = vsi; 6172 6173 /* and update main_vsi's count for queue_available to use */ 6174 vsi->cnt_q_avail -= ch->num_queue_pairs; 6175 6176 return 0; 6177 } 6178 6179 /** 6180 * i40e_configure_queue_channels - Add queue channel for the given TCs 6181 * @vsi: VSI to be configured 6182 * 6183 * Configures queue channel mapping to the given TCs 6184 **/ 6185 static int i40e_configure_queue_channels(struct i40e_vsi *vsi) 6186 { 6187 struct i40e_channel *ch; 6188 u64 max_rate = 0; 6189 int ret = 0, i; 6190 6191 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */ 6192 vsi->tc_seid_map[0] = vsi->seid; 6193 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6194 if (vsi->tc_config.enabled_tc & BIT(i)) { 6195 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 6196 if (!ch) { 6197 ret = -ENOMEM; 6198 goto err_free; 6199 } 6200 6201 INIT_LIST_HEAD(&ch->list); 6202 ch->num_queue_pairs = 6203 vsi->tc_config.tc_info[i].qcount; 6204 ch->base_queue = 6205 vsi->tc_config.tc_info[i].qoffset; 6206 6207 /* Bandwidth limit through tc interface is in bytes/s, 6208 * change to Mbit/s 6209 */ 6210 max_rate = vsi->mqprio_qopt.max_rate[i]; 6211 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6212 ch->max_tx_rate = max_rate; 6213 6214 list_add_tail(&ch->list, &vsi->ch_list); 6215 6216 ret = i40e_create_queue_channel(vsi, ch); 6217 if (ret) { 6218 dev_err(&vsi->back->pdev->dev, 6219 "Failed creating queue channel with TC%d: queues %d\n", 6220 i, ch->num_queue_pairs); 6221 goto err_free; 6222 } 6223 vsi->tc_seid_map[i] = ch->seid; 6224 } 6225 } 6226 return ret; 6227 6228 err_free: 6229 i40e_remove_queue_channels(vsi); 6230 return ret; 6231 } 6232 6233 /** 6234 * i40e_veb_config_tc - Configure TCs for given VEB 6235 * @veb: given VEB 6236 * @enabled_tc: TC bitmap 6237 * 6238 * Configures given TC bitmap for VEB (switching) element 6239 **/ 6240 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) 6241 { 6242 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; 6243 struct i40e_pf *pf = veb->pf; 6244 int ret = 0; 6245 int i; 6246 6247 /* No TCs or already enabled TCs just return */ 6248 if (!enabled_tc || veb->enabled_tc == enabled_tc) 6249 return ret; 6250 6251 bw_data.tc_valid_bits = enabled_tc; 6252 /* bw_data.absolute_credits is not set (relative) */ 6253 6254 /* Enable ETS TCs with equal BW Share for now */ 6255 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6256 if (enabled_tc & BIT(i)) 6257 bw_data.tc_bw_share_credits[i] = 1; 6258 } 6259 6260 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, 6261 &bw_data, NULL); 6262 if (ret) { 6263 dev_info(&pf->pdev->dev, 6264 "VEB bw config failed, err %s aq_err %s\n", 6265 i40e_stat_str(&pf->hw, ret), 6266 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6267 goto out; 6268 } 6269 6270 /* Update the BW information */ 6271 ret = i40e_veb_get_bw_info(veb); 6272 if (ret) { 6273 dev_info(&pf->pdev->dev, 6274 "Failed getting veb bw config, err %s aq_err %s\n", 6275 i40e_stat_str(&pf->hw, ret), 6276 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6277 } 6278 6279 out: 6280 return ret; 6281 } 6282 6283 #ifdef CONFIG_I40E_DCB 6284 /** 6285 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs 6286 * @pf: PF struct 6287 * 6288 * Reconfigure VEB/VSIs on a given PF; it is assumed that 6289 * the caller would've quiesce all the VSIs before calling 6290 * this function 6291 **/ 6292 static void i40e_dcb_reconfigure(struct i40e_pf *pf) 6293 { 6294 u8 tc_map = 0; 6295 int ret; 6296 u8 v; 6297 6298 /* Enable the TCs available on PF to all VEBs */ 6299 tc_map = i40e_pf_get_tc_map(pf); 6300 for (v = 0; v < I40E_MAX_VEB; v++) { 6301 if (!pf->veb[v]) 6302 continue; 6303 ret = i40e_veb_config_tc(pf->veb[v], tc_map); 6304 if (ret) { 6305 dev_info(&pf->pdev->dev, 6306 "Failed configuring TC for VEB seid=%d\n", 6307 pf->veb[v]->seid); 6308 /* Will try to configure as many components */ 6309 } 6310 } 6311 6312 /* Update each VSI */ 6313 for (v = 0; v < pf->num_alloc_vsi; v++) { 6314 if (!pf->vsi[v]) 6315 continue; 6316 6317 /* - Enable all TCs for the LAN VSI 6318 * - For all others keep them at TC0 for now 6319 */ 6320 if (v == pf->lan_vsi) 6321 tc_map = i40e_pf_get_tc_map(pf); 6322 else 6323 tc_map = I40E_DEFAULT_TRAFFIC_CLASS; 6324 6325 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); 6326 if (ret) { 6327 dev_info(&pf->pdev->dev, 6328 "Failed configuring TC for VSI seid=%d\n", 6329 pf->vsi[v]->seid); 6330 /* Will try to configure as many components */ 6331 } else { 6332 /* Re-configure VSI vectors based on updated TC map */ 6333 i40e_vsi_map_rings_to_vectors(pf->vsi[v]); 6334 if (pf->vsi[v]->netdev) 6335 i40e_dcbnl_set_all(pf->vsi[v]); 6336 } 6337 } 6338 } 6339 6340 /** 6341 * i40e_resume_port_tx - Resume port Tx 6342 * @pf: PF struct 6343 * 6344 * Resume a port's Tx and issue a PF reset in case of failure to 6345 * resume. 6346 **/ 6347 static int i40e_resume_port_tx(struct i40e_pf *pf) 6348 { 6349 struct i40e_hw *hw = &pf->hw; 6350 int ret; 6351 6352 ret = i40e_aq_resume_port_tx(hw, NULL); 6353 if (ret) { 6354 dev_info(&pf->pdev->dev, 6355 "Resume Port Tx failed, err %s aq_err %s\n", 6356 i40e_stat_str(&pf->hw, ret), 6357 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6358 /* Schedule PF reset to recover */ 6359 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 6360 i40e_service_event_schedule(pf); 6361 } 6362 6363 return ret; 6364 } 6365 6366 /** 6367 * i40e_init_pf_dcb - Initialize DCB configuration 6368 * @pf: PF being configured 6369 * 6370 * Query the current DCB configuration and cache it 6371 * in the hardware structure 6372 **/ 6373 static int i40e_init_pf_dcb(struct i40e_pf *pf) 6374 { 6375 struct i40e_hw *hw = &pf->hw; 6376 int err = 0; 6377 6378 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable 6379 * Also do not enable DCBx if FW LLDP agent is disabled 6380 */ 6381 if ((pf->hw_features & I40E_HW_NO_DCB_SUPPORT) || 6382 (pf->flags & I40E_FLAG_DISABLE_FW_LLDP)) 6383 goto out; 6384 6385 /* Get the initial DCB configuration */ 6386 err = i40e_init_dcb(hw); 6387 if (!err) { 6388 /* Device/Function is not DCBX capable */ 6389 if ((!hw->func_caps.dcb) || 6390 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { 6391 dev_info(&pf->pdev->dev, 6392 "DCBX offload is not supported or is disabled for this PF.\n"); 6393 } else { 6394 /* When status is not DISABLED then DCBX in FW */ 6395 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | 6396 DCB_CAP_DCBX_VER_IEEE; 6397 6398 pf->flags |= I40E_FLAG_DCB_CAPABLE; 6399 /* Enable DCB tagging only when more than one TC 6400 * or explicitly disable if only one TC 6401 */ 6402 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 6403 pf->flags |= I40E_FLAG_DCB_ENABLED; 6404 else 6405 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6406 dev_dbg(&pf->pdev->dev, 6407 "DCBX offload is supported for this PF.\n"); 6408 } 6409 } else if (pf->hw.aq.asq_last_status == I40E_AQ_RC_EPERM) { 6410 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n"); 6411 pf->flags |= I40E_FLAG_DISABLE_FW_LLDP; 6412 } else { 6413 dev_info(&pf->pdev->dev, 6414 "Query for DCB configuration failed, err %s aq_err %s\n", 6415 i40e_stat_str(&pf->hw, err), 6416 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6417 } 6418 6419 out: 6420 return err; 6421 } 6422 #endif /* CONFIG_I40E_DCB */ 6423 #define SPEED_SIZE 14 6424 #define FC_SIZE 8 6425 /** 6426 * i40e_print_link_message - print link up or down 6427 * @vsi: the VSI for which link needs a message 6428 * @isup: true of link is up, false otherwise 6429 */ 6430 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) 6431 { 6432 enum i40e_aq_link_speed new_speed; 6433 struct i40e_pf *pf = vsi->back; 6434 char *speed = "Unknown"; 6435 char *fc = "Unknown"; 6436 char *fec = ""; 6437 char *req_fec = ""; 6438 char *an = ""; 6439 6440 if (isup) 6441 new_speed = pf->hw.phy.link_info.link_speed; 6442 else 6443 new_speed = I40E_LINK_SPEED_UNKNOWN; 6444 6445 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed)) 6446 return; 6447 vsi->current_isup = isup; 6448 vsi->current_speed = new_speed; 6449 if (!isup) { 6450 netdev_info(vsi->netdev, "NIC Link is Down\n"); 6451 return; 6452 } 6453 6454 /* Warn user if link speed on NPAR enabled partition is not at 6455 * least 10GB 6456 */ 6457 if (pf->hw.func_caps.npar_enable && 6458 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || 6459 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) 6460 netdev_warn(vsi->netdev, 6461 "The partition detected link speed that is less than 10Gbps\n"); 6462 6463 switch (pf->hw.phy.link_info.link_speed) { 6464 case I40E_LINK_SPEED_40GB: 6465 speed = "40 G"; 6466 break; 6467 case I40E_LINK_SPEED_20GB: 6468 speed = "20 G"; 6469 break; 6470 case I40E_LINK_SPEED_25GB: 6471 speed = "25 G"; 6472 break; 6473 case I40E_LINK_SPEED_10GB: 6474 speed = "10 G"; 6475 break; 6476 case I40E_LINK_SPEED_1GB: 6477 speed = "1000 M"; 6478 break; 6479 case I40E_LINK_SPEED_100MB: 6480 speed = "100 M"; 6481 break; 6482 default: 6483 break; 6484 } 6485 6486 switch (pf->hw.fc.current_mode) { 6487 case I40E_FC_FULL: 6488 fc = "RX/TX"; 6489 break; 6490 case I40E_FC_TX_PAUSE: 6491 fc = "TX"; 6492 break; 6493 case I40E_FC_RX_PAUSE: 6494 fc = "RX"; 6495 break; 6496 default: 6497 fc = "None"; 6498 break; 6499 } 6500 6501 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) { 6502 req_fec = ", Requested FEC: None"; 6503 fec = ", FEC: None"; 6504 an = ", Autoneg: False"; 6505 6506 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) 6507 an = ", Autoneg: True"; 6508 6509 if (pf->hw.phy.link_info.fec_info & 6510 I40E_AQ_CONFIG_FEC_KR_ENA) 6511 fec = ", FEC: CL74 FC-FEC/BASE-R"; 6512 else if (pf->hw.phy.link_info.fec_info & 6513 I40E_AQ_CONFIG_FEC_RS_ENA) 6514 fec = ", FEC: CL108 RS-FEC"; 6515 6516 /* 'CL108 RS-FEC' should be displayed when RS is requested, or 6517 * both RS and FC are requested 6518 */ 6519 if (vsi->back->hw.phy.link_info.req_fec_info & 6520 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) { 6521 if (vsi->back->hw.phy.link_info.req_fec_info & 6522 I40E_AQ_REQUEST_FEC_RS) 6523 req_fec = ", Requested FEC: CL108 RS-FEC"; 6524 else 6525 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R"; 6526 } 6527 } 6528 6529 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n", 6530 speed, req_fec, fec, an, fc); 6531 } 6532 6533 /** 6534 * i40e_up_complete - Finish the last steps of bringing up a connection 6535 * @vsi: the VSI being configured 6536 **/ 6537 static int i40e_up_complete(struct i40e_vsi *vsi) 6538 { 6539 struct i40e_pf *pf = vsi->back; 6540 int err; 6541 6542 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 6543 i40e_vsi_configure_msix(vsi); 6544 else 6545 i40e_configure_msi_and_legacy(vsi); 6546 6547 /* start rings */ 6548 err = i40e_vsi_start_rings(vsi); 6549 if (err) 6550 return err; 6551 6552 clear_bit(__I40E_VSI_DOWN, vsi->state); 6553 i40e_napi_enable_all(vsi); 6554 i40e_vsi_enable_irq(vsi); 6555 6556 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && 6557 (vsi->netdev)) { 6558 i40e_print_link_message(vsi, true); 6559 netif_tx_start_all_queues(vsi->netdev); 6560 netif_carrier_on(vsi->netdev); 6561 } 6562 6563 /* replay FDIR SB filters */ 6564 if (vsi->type == I40E_VSI_FDIR) { 6565 /* reset fd counters */ 6566 pf->fd_add_err = 0; 6567 pf->fd_atr_cnt = 0; 6568 i40e_fdir_filter_restore(vsi); 6569 } 6570 6571 /* On the next run of the service_task, notify any clients of the new 6572 * opened netdev 6573 */ 6574 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 6575 i40e_service_event_schedule(pf); 6576 6577 return 0; 6578 } 6579 6580 /** 6581 * i40e_vsi_reinit_locked - Reset the VSI 6582 * @vsi: the VSI being configured 6583 * 6584 * Rebuild the ring structs after some configuration 6585 * has changed, e.g. MTU size. 6586 **/ 6587 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) 6588 { 6589 struct i40e_pf *pf = vsi->back; 6590 6591 WARN_ON(in_interrupt()); 6592 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) 6593 usleep_range(1000, 2000); 6594 i40e_down(vsi); 6595 6596 i40e_up(vsi); 6597 clear_bit(__I40E_CONFIG_BUSY, pf->state); 6598 } 6599 6600 /** 6601 * i40e_up - Bring the connection back up after being down 6602 * @vsi: the VSI being configured 6603 **/ 6604 int i40e_up(struct i40e_vsi *vsi) 6605 { 6606 int err; 6607 6608 err = i40e_vsi_configure(vsi); 6609 if (!err) 6610 err = i40e_up_complete(vsi); 6611 6612 return err; 6613 } 6614 6615 /** 6616 * i40e_force_link_state - Force the link status 6617 * @pf: board private structure 6618 * @is_up: whether the link state should be forced up or down 6619 **/ 6620 static i40e_status i40e_force_link_state(struct i40e_pf *pf, bool is_up) 6621 { 6622 struct i40e_aq_get_phy_abilities_resp abilities; 6623 struct i40e_aq_set_phy_config config = {0}; 6624 struct i40e_hw *hw = &pf->hw; 6625 i40e_status err; 6626 u64 mask; 6627 u8 speed; 6628 6629 /* Card might've been put in an unstable state by other drivers 6630 * and applications, which causes incorrect speed values being 6631 * set on startup. In order to clear speed registers, we call 6632 * get_phy_capabilities twice, once to get initial state of 6633 * available speeds, and once to get current PHY config. 6634 */ 6635 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, 6636 NULL); 6637 if (err) { 6638 dev_err(&pf->pdev->dev, 6639 "failed to get phy cap., ret = %s last_status = %s\n", 6640 i40e_stat_str(hw, err), 6641 i40e_aq_str(hw, hw->aq.asq_last_status)); 6642 return err; 6643 } 6644 speed = abilities.link_speed; 6645 6646 /* Get the current phy config */ 6647 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, 6648 NULL); 6649 if (err) { 6650 dev_err(&pf->pdev->dev, 6651 "failed to get phy cap., ret = %s last_status = %s\n", 6652 i40e_stat_str(hw, err), 6653 i40e_aq_str(hw, hw->aq.asq_last_status)); 6654 return err; 6655 } 6656 6657 /* If link needs to go up, but was not forced to go down, 6658 * and its speed values are OK, no need for a flap 6659 */ 6660 if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0) 6661 return I40E_SUCCESS; 6662 6663 /* To force link we need to set bits for all supported PHY types, 6664 * but there are now more than 32, so we need to split the bitmap 6665 * across two fields. 6666 */ 6667 mask = I40E_PHY_TYPES_BITMASK; 6668 config.phy_type = is_up ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0; 6669 config.phy_type_ext = is_up ? (u8)((mask >> 32) & 0xff) : 0; 6670 /* Copy the old settings, except of phy_type */ 6671 config.abilities = abilities.abilities; 6672 if (abilities.link_speed != 0) 6673 config.link_speed = abilities.link_speed; 6674 else 6675 config.link_speed = speed; 6676 config.eee_capability = abilities.eee_capability; 6677 config.eeer = abilities.eeer_val; 6678 config.low_power_ctrl = abilities.d3_lpan; 6679 config.fec_config = abilities.fec_cfg_curr_mod_ext_info & 6680 I40E_AQ_PHY_FEC_CONFIG_MASK; 6681 err = i40e_aq_set_phy_config(hw, &config, NULL); 6682 6683 if (err) { 6684 dev_err(&pf->pdev->dev, 6685 "set phy config ret = %s last_status = %s\n", 6686 i40e_stat_str(&pf->hw, err), 6687 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 6688 return err; 6689 } 6690 6691 /* Update the link info */ 6692 err = i40e_update_link_info(hw); 6693 if (err) { 6694 /* Wait a little bit (on 40G cards it sometimes takes a really 6695 * long time for link to come back from the atomic reset) 6696 * and try once more 6697 */ 6698 msleep(1000); 6699 i40e_update_link_info(hw); 6700 } 6701 6702 i40e_aq_set_link_restart_an(hw, true, NULL); 6703 6704 return I40E_SUCCESS; 6705 } 6706 6707 /** 6708 * i40e_down - Shutdown the connection processing 6709 * @vsi: the VSI being stopped 6710 **/ 6711 void i40e_down(struct i40e_vsi *vsi) 6712 { 6713 int i; 6714 6715 /* It is assumed that the caller of this function 6716 * sets the vsi->state __I40E_VSI_DOWN bit. 6717 */ 6718 if (vsi->netdev) { 6719 netif_carrier_off(vsi->netdev); 6720 netif_tx_disable(vsi->netdev); 6721 } 6722 i40e_vsi_disable_irq(vsi); 6723 i40e_vsi_stop_rings(vsi); 6724 if (vsi->type == I40E_VSI_MAIN && 6725 vsi->back->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED) 6726 i40e_force_link_state(vsi->back, false); 6727 i40e_napi_disable_all(vsi); 6728 6729 for (i = 0; i < vsi->num_queue_pairs; i++) { 6730 i40e_clean_tx_ring(vsi->tx_rings[i]); 6731 if (i40e_enabled_xdp_vsi(vsi)) { 6732 /* Make sure that in-progress ndo_xdp_xmit 6733 * calls are completed. 6734 */ 6735 synchronize_rcu(); 6736 i40e_clean_tx_ring(vsi->xdp_rings[i]); 6737 } 6738 i40e_clean_rx_ring(vsi->rx_rings[i]); 6739 } 6740 6741 } 6742 6743 /** 6744 * i40e_validate_mqprio_qopt- validate queue mapping info 6745 * @vsi: the VSI being configured 6746 * @mqprio_qopt: queue parametrs 6747 **/ 6748 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi, 6749 struct tc_mqprio_qopt_offload *mqprio_qopt) 6750 { 6751 u64 sum_max_rate = 0; 6752 u64 max_rate = 0; 6753 int i; 6754 6755 if (mqprio_qopt->qopt.offset[0] != 0 || 6756 mqprio_qopt->qopt.num_tc < 1 || 6757 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS) 6758 return -EINVAL; 6759 for (i = 0; ; i++) { 6760 if (!mqprio_qopt->qopt.count[i]) 6761 return -EINVAL; 6762 if (mqprio_qopt->min_rate[i]) { 6763 dev_err(&vsi->back->pdev->dev, 6764 "Invalid min tx rate (greater than 0) specified\n"); 6765 return -EINVAL; 6766 } 6767 max_rate = mqprio_qopt->max_rate[i]; 6768 do_div(max_rate, I40E_BW_MBPS_DIVISOR); 6769 sum_max_rate += max_rate; 6770 6771 if (i >= mqprio_qopt->qopt.num_tc - 1) 6772 break; 6773 if (mqprio_qopt->qopt.offset[i + 1] != 6774 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 6775 return -EINVAL; 6776 } 6777 if (vsi->num_queue_pairs < 6778 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) { 6779 return -EINVAL; 6780 } 6781 if (sum_max_rate > i40e_get_link_speed(vsi)) { 6782 dev_err(&vsi->back->pdev->dev, 6783 "Invalid max tx rate specified\n"); 6784 return -EINVAL; 6785 } 6786 return 0; 6787 } 6788 6789 /** 6790 * i40e_vsi_set_default_tc_config - set default values for tc configuration 6791 * @vsi: the VSI being configured 6792 **/ 6793 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi) 6794 { 6795 u16 qcount; 6796 int i; 6797 6798 /* Only TC0 is enabled */ 6799 vsi->tc_config.numtc = 1; 6800 vsi->tc_config.enabled_tc = 1; 6801 qcount = min_t(int, vsi->alloc_queue_pairs, 6802 i40e_pf_get_max_q_per_tc(vsi->back)); 6803 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 6804 /* For the TC that is not enabled set the offset to to default 6805 * queue and allocate one queue for the given TC. 6806 */ 6807 vsi->tc_config.tc_info[i].qoffset = 0; 6808 if (i == 0) 6809 vsi->tc_config.tc_info[i].qcount = qcount; 6810 else 6811 vsi->tc_config.tc_info[i].qcount = 1; 6812 vsi->tc_config.tc_info[i].netdev_tc = 0; 6813 } 6814 } 6815 6816 /** 6817 * i40e_setup_tc - configure multiple traffic classes 6818 * @netdev: net device to configure 6819 * @type_data: tc offload data 6820 **/ 6821 static int i40e_setup_tc(struct net_device *netdev, void *type_data) 6822 { 6823 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 6824 struct i40e_netdev_priv *np = netdev_priv(netdev); 6825 struct i40e_vsi *vsi = np->vsi; 6826 struct i40e_pf *pf = vsi->back; 6827 u8 enabled_tc = 0, num_tc, hw; 6828 bool need_reset = false; 6829 int ret = -EINVAL; 6830 u16 mode; 6831 int i; 6832 6833 num_tc = mqprio_qopt->qopt.num_tc; 6834 hw = mqprio_qopt->qopt.hw; 6835 mode = mqprio_qopt->mode; 6836 if (!hw) { 6837 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6838 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 6839 goto config_tc; 6840 } 6841 6842 /* Check if MFP enabled */ 6843 if (pf->flags & I40E_FLAG_MFP_ENABLED) { 6844 netdev_info(netdev, 6845 "Configuring TC not supported in MFP mode\n"); 6846 return ret; 6847 } 6848 switch (mode) { 6849 case TC_MQPRIO_MODE_DCB: 6850 pf->flags &= ~I40E_FLAG_TC_MQPRIO; 6851 6852 /* Check if DCB enabled to continue */ 6853 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { 6854 netdev_info(netdev, 6855 "DCB is not enabled for adapter\n"); 6856 return ret; 6857 } 6858 6859 /* Check whether tc count is within enabled limit */ 6860 if (num_tc > i40e_pf_get_num_tc(pf)) { 6861 netdev_info(netdev, 6862 "TC count greater than enabled on link for adapter\n"); 6863 return ret; 6864 } 6865 break; 6866 case TC_MQPRIO_MODE_CHANNEL: 6867 if (pf->flags & I40E_FLAG_DCB_ENABLED) { 6868 netdev_info(netdev, 6869 "Full offload of TC Mqprio options is not supported when DCB is enabled\n"); 6870 return ret; 6871 } 6872 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 6873 return ret; 6874 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt); 6875 if (ret) 6876 return ret; 6877 memcpy(&vsi->mqprio_qopt, mqprio_qopt, 6878 sizeof(*mqprio_qopt)); 6879 pf->flags |= I40E_FLAG_TC_MQPRIO; 6880 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 6881 break; 6882 default: 6883 return -EINVAL; 6884 } 6885 6886 config_tc: 6887 /* Generate TC map for number of tc requested */ 6888 for (i = 0; i < num_tc; i++) 6889 enabled_tc |= BIT(i); 6890 6891 /* Requesting same TC configuration as already enabled */ 6892 if (enabled_tc == vsi->tc_config.enabled_tc && 6893 mode != TC_MQPRIO_MODE_CHANNEL) 6894 return 0; 6895 6896 /* Quiesce VSI queues */ 6897 i40e_quiesce_vsi(vsi); 6898 6899 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO)) 6900 i40e_remove_queue_channels(vsi); 6901 6902 /* Configure VSI for enabled TCs */ 6903 ret = i40e_vsi_config_tc(vsi, enabled_tc); 6904 if (ret) { 6905 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", 6906 vsi->seid); 6907 need_reset = true; 6908 goto exit; 6909 } 6910 6911 if (pf->flags & I40E_FLAG_TC_MQPRIO) { 6912 if (vsi->mqprio_qopt.max_rate[0]) { 6913 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 6914 6915 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 6916 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 6917 if (!ret) { 6918 u64 credits = max_tx_rate; 6919 6920 do_div(credits, I40E_BW_CREDIT_DIVISOR); 6921 dev_dbg(&vsi->back->pdev->dev, 6922 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 6923 max_tx_rate, 6924 credits, 6925 vsi->seid); 6926 } else { 6927 need_reset = true; 6928 goto exit; 6929 } 6930 } 6931 ret = i40e_configure_queue_channels(vsi); 6932 if (ret) { 6933 netdev_info(netdev, 6934 "Failed configuring queue channels\n"); 6935 need_reset = true; 6936 goto exit; 6937 } 6938 } 6939 6940 exit: 6941 /* Reset the configuration data to defaults, only TC0 is enabled */ 6942 if (need_reset) { 6943 i40e_vsi_set_default_tc_config(vsi); 6944 need_reset = false; 6945 } 6946 6947 /* Unquiesce VSI */ 6948 i40e_unquiesce_vsi(vsi); 6949 return ret; 6950 } 6951 6952 /** 6953 * i40e_set_cld_element - sets cloud filter element data 6954 * @filter: cloud filter rule 6955 * @cld: ptr to cloud filter element data 6956 * 6957 * This is helper function to copy data into cloud filter element 6958 **/ 6959 static inline void 6960 i40e_set_cld_element(struct i40e_cloud_filter *filter, 6961 struct i40e_aqc_cloud_filters_element_data *cld) 6962 { 6963 int i, j; 6964 u32 ipa; 6965 6966 memset(cld, 0, sizeof(*cld)); 6967 ether_addr_copy(cld->outer_mac, filter->dst_mac); 6968 ether_addr_copy(cld->inner_mac, filter->src_mac); 6969 6970 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6) 6971 return; 6972 6973 if (filter->n_proto == ETH_P_IPV6) { 6974 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1) 6975 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6); 6976 i++, j += 2) { 6977 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]); 6978 ipa = cpu_to_le32(ipa); 6979 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa)); 6980 } 6981 } else { 6982 ipa = be32_to_cpu(filter->dst_ipv4); 6983 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa)); 6984 } 6985 6986 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id)); 6987 6988 /* tenant_id is not supported by FW now, once the support is enabled 6989 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id) 6990 */ 6991 if (filter->tenant_id) 6992 return; 6993 } 6994 6995 /** 6996 * i40e_add_del_cloud_filter - Add/del cloud filter 6997 * @vsi: pointer to VSI 6998 * @filter: cloud filter rule 6999 * @add: if true, add, if false, delete 7000 * 7001 * Add or delete a cloud filter for a specific flow spec. 7002 * Returns 0 if the filter were successfully added. 7003 **/ 7004 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi, 7005 struct i40e_cloud_filter *filter, bool add) 7006 { 7007 struct i40e_aqc_cloud_filters_element_data cld_filter; 7008 struct i40e_pf *pf = vsi->back; 7009 int ret; 7010 static const u16 flag_table[128] = { 7011 [I40E_CLOUD_FILTER_FLAGS_OMAC] = 7012 I40E_AQC_ADD_CLOUD_FILTER_OMAC, 7013 [I40E_CLOUD_FILTER_FLAGS_IMAC] = 7014 I40E_AQC_ADD_CLOUD_FILTER_IMAC, 7015 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] = 7016 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN, 7017 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] = 7018 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID, 7019 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] = 7020 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC, 7021 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] = 7022 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID, 7023 [I40E_CLOUD_FILTER_FLAGS_IIP] = 7024 I40E_AQC_ADD_CLOUD_FILTER_IIP, 7025 }; 7026 7027 if (filter->flags >= ARRAY_SIZE(flag_table)) 7028 return I40E_ERR_CONFIG; 7029 7030 /* copy element needed to add cloud filter from filter */ 7031 i40e_set_cld_element(filter, &cld_filter); 7032 7033 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE) 7034 cld_filter.flags = cpu_to_le16(filter->tunnel_type << 7035 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT); 7036 7037 if (filter->n_proto == ETH_P_IPV6) 7038 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7039 I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7040 else 7041 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] | 7042 I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7043 7044 if (add) 7045 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid, 7046 &cld_filter, 1); 7047 else 7048 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid, 7049 &cld_filter, 1); 7050 if (ret) 7051 dev_dbg(&pf->pdev->dev, 7052 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n", 7053 add ? "add" : "delete", filter->dst_port, ret, 7054 pf->hw.aq.asq_last_status); 7055 else 7056 dev_info(&pf->pdev->dev, 7057 "%s cloud filter for VSI: %d\n", 7058 add ? "Added" : "Deleted", filter->seid); 7059 return ret; 7060 } 7061 7062 /** 7063 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf 7064 * @vsi: pointer to VSI 7065 * @filter: cloud filter rule 7066 * @add: if true, add, if false, delete 7067 * 7068 * Add or delete a cloud filter for a specific flow spec using big buffer. 7069 * Returns 0 if the filter were successfully added. 7070 **/ 7071 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi, 7072 struct i40e_cloud_filter *filter, 7073 bool add) 7074 { 7075 struct i40e_aqc_cloud_filters_element_bb cld_filter; 7076 struct i40e_pf *pf = vsi->back; 7077 int ret; 7078 7079 /* Both (src/dst) valid mac_addr are not supported */ 7080 if ((is_valid_ether_addr(filter->dst_mac) && 7081 is_valid_ether_addr(filter->src_mac)) || 7082 (is_multicast_ether_addr(filter->dst_mac) && 7083 is_multicast_ether_addr(filter->src_mac))) 7084 return -EOPNOTSUPP; 7085 7086 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP 7087 * ports are not supported via big buffer now. 7088 */ 7089 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP) 7090 return -EOPNOTSUPP; 7091 7092 /* adding filter using src_port/src_ip is not supported at this stage */ 7093 if (filter->src_port || filter->src_ipv4 || 7094 !ipv6_addr_any(&filter->ip.v6.src_ip6)) 7095 return -EOPNOTSUPP; 7096 7097 /* copy element needed to add cloud filter from filter */ 7098 i40e_set_cld_element(filter, &cld_filter.element); 7099 7100 if (is_valid_ether_addr(filter->dst_mac) || 7101 is_valid_ether_addr(filter->src_mac) || 7102 is_multicast_ether_addr(filter->dst_mac) || 7103 is_multicast_ether_addr(filter->src_mac)) { 7104 /* MAC + IP : unsupported mode */ 7105 if (filter->dst_ipv4) 7106 return -EOPNOTSUPP; 7107 7108 /* since we validated that L4 port must be valid before 7109 * we get here, start with respective "flags" value 7110 * and update if vlan is present or not 7111 */ 7112 cld_filter.element.flags = 7113 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT); 7114 7115 if (filter->vlan_id) { 7116 cld_filter.element.flags = 7117 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT); 7118 } 7119 7120 } else if (filter->dst_ipv4 || 7121 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) { 7122 cld_filter.element.flags = 7123 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT); 7124 if (filter->n_proto == ETH_P_IPV6) 7125 cld_filter.element.flags |= 7126 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6); 7127 else 7128 cld_filter.element.flags |= 7129 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4); 7130 } else { 7131 dev_err(&pf->pdev->dev, 7132 "either mac or ip has to be valid for cloud filter\n"); 7133 return -EINVAL; 7134 } 7135 7136 /* Now copy L4 port in Byte 6..7 in general fields */ 7137 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] = 7138 be16_to_cpu(filter->dst_port); 7139 7140 if (add) { 7141 /* Validate current device switch mode, change if necessary */ 7142 ret = i40e_validate_and_set_switch_mode(vsi); 7143 if (ret) { 7144 dev_err(&pf->pdev->dev, 7145 "failed to set switch mode, ret %d\n", 7146 ret); 7147 return ret; 7148 } 7149 7150 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid, 7151 &cld_filter, 1); 7152 } else { 7153 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid, 7154 &cld_filter, 1); 7155 } 7156 7157 if (ret) 7158 dev_dbg(&pf->pdev->dev, 7159 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n", 7160 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status); 7161 else 7162 dev_info(&pf->pdev->dev, 7163 "%s cloud filter for VSI: %d, L4 port: %d\n", 7164 add ? "add" : "delete", filter->seid, 7165 ntohs(filter->dst_port)); 7166 return ret; 7167 } 7168 7169 /** 7170 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel 7171 * @vsi: Pointer to VSI 7172 * @cls_flower: Pointer to struct tc_cls_flower_offload 7173 * @filter: Pointer to cloud filter structure 7174 * 7175 **/ 7176 static int i40e_parse_cls_flower(struct i40e_vsi *vsi, 7177 struct tc_cls_flower_offload *f, 7178 struct i40e_cloud_filter *filter) 7179 { 7180 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0; 7181 struct i40e_pf *pf = vsi->back; 7182 u8 field_flags = 0; 7183 7184 if (f->dissector->used_keys & 7185 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7186 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7187 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7188 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7189 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7190 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7191 BIT(FLOW_DISSECTOR_KEY_PORTS) | 7192 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 7193 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n", 7194 f->dissector->used_keys); 7195 return -EOPNOTSUPP; 7196 } 7197 7198 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 7199 struct flow_dissector_key_keyid *key = 7200 skb_flow_dissector_target(f->dissector, 7201 FLOW_DISSECTOR_KEY_ENC_KEYID, 7202 f->key); 7203 7204 struct flow_dissector_key_keyid *mask = 7205 skb_flow_dissector_target(f->dissector, 7206 FLOW_DISSECTOR_KEY_ENC_KEYID, 7207 f->mask); 7208 7209 if (mask->keyid != 0) 7210 field_flags |= I40E_CLOUD_FIELD_TEN_ID; 7211 7212 filter->tenant_id = be32_to_cpu(key->keyid); 7213 } 7214 7215 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) { 7216 struct flow_dissector_key_basic *key = 7217 skb_flow_dissector_target(f->dissector, 7218 FLOW_DISSECTOR_KEY_BASIC, 7219 f->key); 7220 7221 struct flow_dissector_key_basic *mask = 7222 skb_flow_dissector_target(f->dissector, 7223 FLOW_DISSECTOR_KEY_BASIC, 7224 f->mask); 7225 7226 n_proto_key = ntohs(key->n_proto); 7227 n_proto_mask = ntohs(mask->n_proto); 7228 7229 if (n_proto_key == ETH_P_ALL) { 7230 n_proto_key = 0; 7231 n_proto_mask = 0; 7232 } 7233 filter->n_proto = n_proto_key & n_proto_mask; 7234 filter->ip_proto = key->ip_proto; 7235 } 7236 7237 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7238 struct flow_dissector_key_eth_addrs *key = 7239 skb_flow_dissector_target(f->dissector, 7240 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7241 f->key); 7242 7243 struct flow_dissector_key_eth_addrs *mask = 7244 skb_flow_dissector_target(f->dissector, 7245 FLOW_DISSECTOR_KEY_ETH_ADDRS, 7246 f->mask); 7247 7248 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 7249 if (!is_zero_ether_addr(mask->dst)) { 7250 if (is_broadcast_ether_addr(mask->dst)) { 7251 field_flags |= I40E_CLOUD_FIELD_OMAC; 7252 } else { 7253 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n", 7254 mask->dst); 7255 return I40E_ERR_CONFIG; 7256 } 7257 } 7258 7259 if (!is_zero_ether_addr(mask->src)) { 7260 if (is_broadcast_ether_addr(mask->src)) { 7261 field_flags |= I40E_CLOUD_FIELD_IMAC; 7262 } else { 7263 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n", 7264 mask->src); 7265 return I40E_ERR_CONFIG; 7266 } 7267 } 7268 ether_addr_copy(filter->dst_mac, key->dst); 7269 ether_addr_copy(filter->src_mac, key->src); 7270 } 7271 7272 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) { 7273 struct flow_dissector_key_vlan *key = 7274 skb_flow_dissector_target(f->dissector, 7275 FLOW_DISSECTOR_KEY_VLAN, 7276 f->key); 7277 struct flow_dissector_key_vlan *mask = 7278 skb_flow_dissector_target(f->dissector, 7279 FLOW_DISSECTOR_KEY_VLAN, 7280 f->mask); 7281 7282 if (mask->vlan_id) { 7283 if (mask->vlan_id == VLAN_VID_MASK) { 7284 field_flags |= I40E_CLOUD_FIELD_IVLAN; 7285 7286 } else { 7287 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n", 7288 mask->vlan_id); 7289 return I40E_ERR_CONFIG; 7290 } 7291 } 7292 7293 filter->vlan_id = cpu_to_be16(key->vlan_id); 7294 } 7295 7296 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { 7297 struct flow_dissector_key_control *key = 7298 skb_flow_dissector_target(f->dissector, 7299 FLOW_DISSECTOR_KEY_CONTROL, 7300 f->key); 7301 7302 addr_type = key->addr_type; 7303 } 7304 7305 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7306 struct flow_dissector_key_ipv4_addrs *key = 7307 skb_flow_dissector_target(f->dissector, 7308 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7309 f->key); 7310 struct flow_dissector_key_ipv4_addrs *mask = 7311 skb_flow_dissector_target(f->dissector, 7312 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 7313 f->mask); 7314 7315 if (mask->dst) { 7316 if (mask->dst == cpu_to_be32(0xffffffff)) { 7317 field_flags |= I40E_CLOUD_FIELD_IIP; 7318 } else { 7319 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n", 7320 &mask->dst); 7321 return I40E_ERR_CONFIG; 7322 } 7323 } 7324 7325 if (mask->src) { 7326 if (mask->src == cpu_to_be32(0xffffffff)) { 7327 field_flags |= I40E_CLOUD_FIELD_IIP; 7328 } else { 7329 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n", 7330 &mask->src); 7331 return I40E_ERR_CONFIG; 7332 } 7333 } 7334 7335 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) { 7336 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n"); 7337 return I40E_ERR_CONFIG; 7338 } 7339 filter->dst_ipv4 = key->dst; 7340 filter->src_ipv4 = key->src; 7341 } 7342 7343 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7344 struct flow_dissector_key_ipv6_addrs *key = 7345 skb_flow_dissector_target(f->dissector, 7346 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7347 f->key); 7348 struct flow_dissector_key_ipv6_addrs *mask = 7349 skb_flow_dissector_target(f->dissector, 7350 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 7351 f->mask); 7352 7353 /* src and dest IPV6 address should not be LOOPBACK 7354 * (0:0:0:0:0:0:0:1), which can be represented as ::1 7355 */ 7356 if (ipv6_addr_loopback(&key->dst) || 7357 ipv6_addr_loopback(&key->src)) { 7358 dev_err(&pf->pdev->dev, 7359 "Bad ipv6, addr is LOOPBACK\n"); 7360 return I40E_ERR_CONFIG; 7361 } 7362 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src)) 7363 field_flags |= I40E_CLOUD_FIELD_IIP; 7364 7365 memcpy(&filter->src_ipv6, &key->src.s6_addr32, 7366 sizeof(filter->src_ipv6)); 7367 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32, 7368 sizeof(filter->dst_ipv6)); 7369 } 7370 7371 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) { 7372 struct flow_dissector_key_ports *key = 7373 skb_flow_dissector_target(f->dissector, 7374 FLOW_DISSECTOR_KEY_PORTS, 7375 f->key); 7376 struct flow_dissector_key_ports *mask = 7377 skb_flow_dissector_target(f->dissector, 7378 FLOW_DISSECTOR_KEY_PORTS, 7379 f->mask); 7380 7381 if (mask->src) { 7382 if (mask->src == cpu_to_be16(0xffff)) { 7383 field_flags |= I40E_CLOUD_FIELD_IIP; 7384 } else { 7385 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n", 7386 be16_to_cpu(mask->src)); 7387 return I40E_ERR_CONFIG; 7388 } 7389 } 7390 7391 if (mask->dst) { 7392 if (mask->dst == cpu_to_be16(0xffff)) { 7393 field_flags |= I40E_CLOUD_FIELD_IIP; 7394 } else { 7395 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n", 7396 be16_to_cpu(mask->dst)); 7397 return I40E_ERR_CONFIG; 7398 } 7399 } 7400 7401 filter->dst_port = key->dst; 7402 filter->src_port = key->src; 7403 7404 switch (filter->ip_proto) { 7405 case IPPROTO_TCP: 7406 case IPPROTO_UDP: 7407 break; 7408 default: 7409 dev_err(&pf->pdev->dev, 7410 "Only UDP and TCP transport are supported\n"); 7411 return -EINVAL; 7412 } 7413 } 7414 filter->flags = field_flags; 7415 return 0; 7416 } 7417 7418 /** 7419 * i40e_handle_tclass: Forward to a traffic class on the device 7420 * @vsi: Pointer to VSI 7421 * @tc: traffic class index on the device 7422 * @filter: Pointer to cloud filter structure 7423 * 7424 **/ 7425 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc, 7426 struct i40e_cloud_filter *filter) 7427 { 7428 struct i40e_channel *ch, *ch_tmp; 7429 7430 /* direct to a traffic class on the same device */ 7431 if (tc == 0) { 7432 filter->seid = vsi->seid; 7433 return 0; 7434 } else if (vsi->tc_config.enabled_tc & BIT(tc)) { 7435 if (!filter->dst_port) { 7436 dev_err(&vsi->back->pdev->dev, 7437 "Specify destination port to direct to traffic class that is not default\n"); 7438 return -EINVAL; 7439 } 7440 if (list_empty(&vsi->ch_list)) 7441 return -EINVAL; 7442 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, 7443 list) { 7444 if (ch->seid == vsi->tc_seid_map[tc]) 7445 filter->seid = ch->seid; 7446 } 7447 return 0; 7448 } 7449 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n"); 7450 return -EINVAL; 7451 } 7452 7453 /** 7454 * i40e_configure_clsflower - Configure tc flower filters 7455 * @vsi: Pointer to VSI 7456 * @cls_flower: Pointer to struct tc_cls_flower_offload 7457 * 7458 **/ 7459 static int i40e_configure_clsflower(struct i40e_vsi *vsi, 7460 struct tc_cls_flower_offload *cls_flower) 7461 { 7462 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid); 7463 struct i40e_cloud_filter *filter = NULL; 7464 struct i40e_pf *pf = vsi->back; 7465 int err = 0; 7466 7467 if (tc < 0) { 7468 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n"); 7469 return -EOPNOTSUPP; 7470 } 7471 7472 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) || 7473 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) 7474 return -EBUSY; 7475 7476 if (pf->fdir_pf_active_filters || 7477 (!hlist_empty(&pf->fdir_filter_list))) { 7478 dev_err(&vsi->back->pdev->dev, 7479 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n"); 7480 return -EINVAL; 7481 } 7482 7483 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) { 7484 dev_err(&vsi->back->pdev->dev, 7485 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n"); 7486 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED; 7487 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7488 } 7489 7490 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 7491 if (!filter) 7492 return -ENOMEM; 7493 7494 filter->cookie = cls_flower->cookie; 7495 7496 err = i40e_parse_cls_flower(vsi, cls_flower, filter); 7497 if (err < 0) 7498 goto err; 7499 7500 err = i40e_handle_tclass(vsi, tc, filter); 7501 if (err < 0) 7502 goto err; 7503 7504 /* Add cloud filter */ 7505 if (filter->dst_port) 7506 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true); 7507 else 7508 err = i40e_add_del_cloud_filter(vsi, filter, true); 7509 7510 if (err) { 7511 dev_err(&pf->pdev->dev, 7512 "Failed to add cloud filter, err %s\n", 7513 i40e_stat_str(&pf->hw, err)); 7514 goto err; 7515 } 7516 7517 /* add filter to the ordered list */ 7518 INIT_HLIST_NODE(&filter->cloud_node); 7519 7520 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list); 7521 7522 pf->num_cloud_filters++; 7523 7524 return err; 7525 err: 7526 kfree(filter); 7527 return err; 7528 } 7529 7530 /** 7531 * i40e_find_cloud_filter - Find the could filter in the list 7532 * @vsi: Pointer to VSI 7533 * @cookie: filter specific cookie 7534 * 7535 **/ 7536 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi, 7537 unsigned long *cookie) 7538 { 7539 struct i40e_cloud_filter *filter = NULL; 7540 struct hlist_node *node2; 7541 7542 hlist_for_each_entry_safe(filter, node2, 7543 &vsi->back->cloud_filter_list, cloud_node) 7544 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 7545 return filter; 7546 return NULL; 7547 } 7548 7549 /** 7550 * i40e_delete_clsflower - Remove tc flower filters 7551 * @vsi: Pointer to VSI 7552 * @cls_flower: Pointer to struct tc_cls_flower_offload 7553 * 7554 **/ 7555 static int i40e_delete_clsflower(struct i40e_vsi *vsi, 7556 struct tc_cls_flower_offload *cls_flower) 7557 { 7558 struct i40e_cloud_filter *filter = NULL; 7559 struct i40e_pf *pf = vsi->back; 7560 int err = 0; 7561 7562 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie); 7563 7564 if (!filter) 7565 return -EINVAL; 7566 7567 hash_del(&filter->cloud_node); 7568 7569 if (filter->dst_port) 7570 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false); 7571 else 7572 err = i40e_add_del_cloud_filter(vsi, filter, false); 7573 7574 kfree(filter); 7575 if (err) { 7576 dev_err(&pf->pdev->dev, 7577 "Failed to delete cloud filter, err %s\n", 7578 i40e_stat_str(&pf->hw, err)); 7579 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status); 7580 } 7581 7582 pf->num_cloud_filters--; 7583 if (!pf->num_cloud_filters) 7584 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7585 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7586 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7587 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7588 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7589 } 7590 return 0; 7591 } 7592 7593 /** 7594 * i40e_setup_tc_cls_flower - flower classifier offloads 7595 * @netdev: net device to configure 7596 * @type_data: offload data 7597 **/ 7598 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np, 7599 struct tc_cls_flower_offload *cls_flower) 7600 { 7601 struct i40e_vsi *vsi = np->vsi; 7602 7603 switch (cls_flower->command) { 7604 case TC_CLSFLOWER_REPLACE: 7605 return i40e_configure_clsflower(vsi, cls_flower); 7606 case TC_CLSFLOWER_DESTROY: 7607 return i40e_delete_clsflower(vsi, cls_flower); 7608 case TC_CLSFLOWER_STATS: 7609 return -EOPNOTSUPP; 7610 default: 7611 return -EOPNOTSUPP; 7612 } 7613 } 7614 7615 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 7616 void *cb_priv) 7617 { 7618 struct i40e_netdev_priv *np = cb_priv; 7619 7620 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data)) 7621 return -EOPNOTSUPP; 7622 7623 switch (type) { 7624 case TC_SETUP_CLSFLOWER: 7625 return i40e_setup_tc_cls_flower(np, type_data); 7626 7627 default: 7628 return -EOPNOTSUPP; 7629 } 7630 } 7631 7632 static int i40e_setup_tc_block(struct net_device *dev, 7633 struct tc_block_offload *f) 7634 { 7635 struct i40e_netdev_priv *np = netdev_priv(dev); 7636 7637 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 7638 return -EOPNOTSUPP; 7639 7640 switch (f->command) { 7641 case TC_BLOCK_BIND: 7642 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb, 7643 np, np, f->extack); 7644 case TC_BLOCK_UNBIND: 7645 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np); 7646 return 0; 7647 default: 7648 return -EOPNOTSUPP; 7649 } 7650 } 7651 7652 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type, 7653 void *type_data) 7654 { 7655 switch (type) { 7656 case TC_SETUP_QDISC_MQPRIO: 7657 return i40e_setup_tc(netdev, type_data); 7658 case TC_SETUP_BLOCK: 7659 return i40e_setup_tc_block(netdev, type_data); 7660 default: 7661 return -EOPNOTSUPP; 7662 } 7663 } 7664 7665 /** 7666 * i40e_open - Called when a network interface is made active 7667 * @netdev: network interface device structure 7668 * 7669 * The open entry point is called when a network interface is made 7670 * active by the system (IFF_UP). At this point all resources needed 7671 * for transmit and receive operations are allocated, the interrupt 7672 * handler is registered with the OS, the netdev watchdog subtask is 7673 * enabled, and the stack is notified that the interface is ready. 7674 * 7675 * Returns 0 on success, negative value on failure 7676 **/ 7677 int i40e_open(struct net_device *netdev) 7678 { 7679 struct i40e_netdev_priv *np = netdev_priv(netdev); 7680 struct i40e_vsi *vsi = np->vsi; 7681 struct i40e_pf *pf = vsi->back; 7682 int err; 7683 7684 /* disallow open during test or if eeprom is broken */ 7685 if (test_bit(__I40E_TESTING, pf->state) || 7686 test_bit(__I40E_BAD_EEPROM, pf->state)) 7687 return -EBUSY; 7688 7689 netif_carrier_off(netdev); 7690 7691 if (i40e_force_link_state(pf, true)) 7692 return -EAGAIN; 7693 7694 err = i40e_vsi_open(vsi); 7695 if (err) 7696 return err; 7697 7698 /* configure global TSO hardware offload settings */ 7699 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | 7700 TCP_FLAG_FIN) >> 16); 7701 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | 7702 TCP_FLAG_FIN | 7703 TCP_FLAG_CWR) >> 16); 7704 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); 7705 7706 udp_tunnel_get_rx_info(netdev); 7707 7708 return 0; 7709 } 7710 7711 /** 7712 * i40e_vsi_open - 7713 * @vsi: the VSI to open 7714 * 7715 * Finish initialization of the VSI. 7716 * 7717 * Returns 0 on success, negative value on failure 7718 * 7719 * Note: expects to be called while under rtnl_lock() 7720 **/ 7721 int i40e_vsi_open(struct i40e_vsi *vsi) 7722 { 7723 struct i40e_pf *pf = vsi->back; 7724 char int_name[I40E_INT_NAME_STR_LEN]; 7725 int err; 7726 7727 /* allocate descriptors */ 7728 err = i40e_vsi_setup_tx_resources(vsi); 7729 if (err) 7730 goto err_setup_tx; 7731 err = i40e_vsi_setup_rx_resources(vsi); 7732 if (err) 7733 goto err_setup_rx; 7734 7735 err = i40e_vsi_configure(vsi); 7736 if (err) 7737 goto err_setup_rx; 7738 7739 if (vsi->netdev) { 7740 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7741 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 7742 err = i40e_vsi_request_irq(vsi, int_name); 7743 if (err) 7744 goto err_setup_rx; 7745 7746 /* Notify the stack of the actual queue counts. */ 7747 err = netif_set_real_num_tx_queues(vsi->netdev, 7748 vsi->num_queue_pairs); 7749 if (err) 7750 goto err_set_queues; 7751 7752 err = netif_set_real_num_rx_queues(vsi->netdev, 7753 vsi->num_queue_pairs); 7754 if (err) 7755 goto err_set_queues; 7756 7757 } else if (vsi->type == I40E_VSI_FDIR) { 7758 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", 7759 dev_driver_string(&pf->pdev->dev), 7760 dev_name(&pf->pdev->dev)); 7761 err = i40e_vsi_request_irq(vsi, int_name); 7762 7763 } else { 7764 err = -EINVAL; 7765 goto err_setup_rx; 7766 } 7767 7768 err = i40e_up_complete(vsi); 7769 if (err) 7770 goto err_up_complete; 7771 7772 return 0; 7773 7774 err_up_complete: 7775 i40e_down(vsi); 7776 err_set_queues: 7777 i40e_vsi_free_irq(vsi); 7778 err_setup_rx: 7779 i40e_vsi_free_rx_resources(vsi); 7780 err_setup_tx: 7781 i40e_vsi_free_tx_resources(vsi); 7782 if (vsi == pf->vsi[pf->lan_vsi]) 7783 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 7784 7785 return err; 7786 } 7787 7788 /** 7789 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting 7790 * @pf: Pointer to PF 7791 * 7792 * This function destroys the hlist where all the Flow Director 7793 * filters were saved. 7794 **/ 7795 static void i40e_fdir_filter_exit(struct i40e_pf *pf) 7796 { 7797 struct i40e_fdir_filter *filter; 7798 struct i40e_flex_pit *pit_entry, *tmp; 7799 struct hlist_node *node2; 7800 7801 hlist_for_each_entry_safe(filter, node2, 7802 &pf->fdir_filter_list, fdir_node) { 7803 hlist_del(&filter->fdir_node); 7804 kfree(filter); 7805 } 7806 7807 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) { 7808 list_del(&pit_entry->list); 7809 kfree(pit_entry); 7810 } 7811 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 7812 7813 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) { 7814 list_del(&pit_entry->list); 7815 kfree(pit_entry); 7816 } 7817 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 7818 7819 pf->fdir_pf_active_filters = 0; 7820 pf->fd_tcp4_filter_cnt = 0; 7821 pf->fd_udp4_filter_cnt = 0; 7822 pf->fd_sctp4_filter_cnt = 0; 7823 pf->fd_ip4_filter_cnt = 0; 7824 7825 /* Reprogram the default input set for TCP/IPv4 */ 7826 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 7827 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7828 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7829 7830 /* Reprogram the default input set for UDP/IPv4 */ 7831 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP, 7832 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7833 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7834 7835 /* Reprogram the default input set for SCTP/IPv4 */ 7836 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP, 7837 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 7838 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 7839 7840 /* Reprogram the default input set for Other/IPv4 */ 7841 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER, 7842 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7843 7844 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_FRAG_IPV4, 7845 I40E_L3_SRC_MASK | I40E_L3_DST_MASK); 7846 } 7847 7848 /** 7849 * i40e_cloud_filter_exit - Cleans up the cloud filters 7850 * @pf: Pointer to PF 7851 * 7852 * This function destroys the hlist where all the cloud filters 7853 * were saved. 7854 **/ 7855 static void i40e_cloud_filter_exit(struct i40e_pf *pf) 7856 { 7857 struct i40e_cloud_filter *cfilter; 7858 struct hlist_node *node; 7859 7860 hlist_for_each_entry_safe(cfilter, node, 7861 &pf->cloud_filter_list, cloud_node) { 7862 hlist_del(&cfilter->cloud_node); 7863 kfree(cfilter); 7864 } 7865 pf->num_cloud_filters = 0; 7866 7867 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) && 7868 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) { 7869 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 7870 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER; 7871 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 7872 } 7873 } 7874 7875 /** 7876 * i40e_close - Disables a network interface 7877 * @netdev: network interface device structure 7878 * 7879 * The close entry point is called when an interface is de-activated 7880 * by the OS. The hardware is still under the driver's control, but 7881 * this netdev interface is disabled. 7882 * 7883 * Returns 0, this is not allowed to fail 7884 **/ 7885 int i40e_close(struct net_device *netdev) 7886 { 7887 struct i40e_netdev_priv *np = netdev_priv(netdev); 7888 struct i40e_vsi *vsi = np->vsi; 7889 7890 i40e_vsi_close(vsi); 7891 7892 return 0; 7893 } 7894 7895 /** 7896 * i40e_do_reset - Start a PF or Core Reset sequence 7897 * @pf: board private structure 7898 * @reset_flags: which reset is requested 7899 * @lock_acquired: indicates whether or not the lock has been acquired 7900 * before this function was called. 7901 * 7902 * The essential difference in resets is that the PF Reset 7903 * doesn't clear the packet buffers, doesn't reset the PE 7904 * firmware, and doesn't bother the other PFs on the chip. 7905 **/ 7906 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired) 7907 { 7908 u32 val; 7909 7910 WARN_ON(in_interrupt()); 7911 7912 7913 /* do the biggest reset indicated */ 7914 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) { 7915 7916 /* Request a Global Reset 7917 * 7918 * This will start the chip's countdown to the actual full 7919 * chip reset event, and a warning interrupt to be sent 7920 * to all PFs, including the requestor. Our handler 7921 * for the warning interrupt will deal with the shutdown 7922 * and recovery of the switch setup. 7923 */ 7924 dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); 7925 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7926 val |= I40E_GLGEN_RTRIG_GLOBR_MASK; 7927 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7928 7929 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) { 7930 7931 /* Request a Core Reset 7932 * 7933 * Same as Global Reset, except does *not* include the MAC/PHY 7934 */ 7935 dev_dbg(&pf->pdev->dev, "CoreR requested\n"); 7936 val = rd32(&pf->hw, I40E_GLGEN_RTRIG); 7937 val |= I40E_GLGEN_RTRIG_CORER_MASK; 7938 wr32(&pf->hw, I40E_GLGEN_RTRIG, val); 7939 i40e_flush(&pf->hw); 7940 7941 } else if (reset_flags & I40E_PF_RESET_FLAG) { 7942 7943 /* Request a PF Reset 7944 * 7945 * Resets only the PF-specific registers 7946 * 7947 * This goes directly to the tear-down and rebuild of 7948 * the switch, since we need to do all the recovery as 7949 * for the Core Reset. 7950 */ 7951 dev_dbg(&pf->pdev->dev, "PFR requested\n"); 7952 i40e_handle_reset_warning(pf, lock_acquired); 7953 7954 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) { 7955 int v; 7956 7957 /* Find the VSI(s) that requested a re-init */ 7958 dev_info(&pf->pdev->dev, 7959 "VSI reinit requested\n"); 7960 for (v = 0; v < pf->num_alloc_vsi; v++) { 7961 struct i40e_vsi *vsi = pf->vsi[v]; 7962 7963 if (vsi != NULL && 7964 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED, 7965 vsi->state)) 7966 i40e_vsi_reinit_locked(pf->vsi[v]); 7967 } 7968 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) { 7969 int v; 7970 7971 /* Find the VSI(s) that needs to be brought down */ 7972 dev_info(&pf->pdev->dev, "VSI down requested\n"); 7973 for (v = 0; v < pf->num_alloc_vsi; v++) { 7974 struct i40e_vsi *vsi = pf->vsi[v]; 7975 7976 if (vsi != NULL && 7977 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED, 7978 vsi->state)) { 7979 set_bit(__I40E_VSI_DOWN, vsi->state); 7980 i40e_down(vsi); 7981 } 7982 } 7983 } else { 7984 dev_info(&pf->pdev->dev, 7985 "bad reset request 0x%08x\n", reset_flags); 7986 } 7987 } 7988 7989 #ifdef CONFIG_I40E_DCB 7990 /** 7991 * i40e_dcb_need_reconfig - Check if DCB needs reconfig 7992 * @pf: board private structure 7993 * @old_cfg: current DCB config 7994 * @new_cfg: new DCB config 7995 **/ 7996 bool i40e_dcb_need_reconfig(struct i40e_pf *pf, 7997 struct i40e_dcbx_config *old_cfg, 7998 struct i40e_dcbx_config *new_cfg) 7999 { 8000 bool need_reconfig = false; 8001 8002 /* Check if ETS configuration has changed */ 8003 if (memcmp(&new_cfg->etscfg, 8004 &old_cfg->etscfg, 8005 sizeof(new_cfg->etscfg))) { 8006 /* If Priority Table has changed reconfig is needed */ 8007 if (memcmp(&new_cfg->etscfg.prioritytable, 8008 &old_cfg->etscfg.prioritytable, 8009 sizeof(new_cfg->etscfg.prioritytable))) { 8010 need_reconfig = true; 8011 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); 8012 } 8013 8014 if (memcmp(&new_cfg->etscfg.tcbwtable, 8015 &old_cfg->etscfg.tcbwtable, 8016 sizeof(new_cfg->etscfg.tcbwtable))) 8017 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); 8018 8019 if (memcmp(&new_cfg->etscfg.tsatable, 8020 &old_cfg->etscfg.tsatable, 8021 sizeof(new_cfg->etscfg.tsatable))) 8022 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); 8023 } 8024 8025 /* Check if PFC configuration has changed */ 8026 if (memcmp(&new_cfg->pfc, 8027 &old_cfg->pfc, 8028 sizeof(new_cfg->pfc))) { 8029 need_reconfig = true; 8030 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); 8031 } 8032 8033 /* Check if APP Table has changed */ 8034 if (memcmp(&new_cfg->app, 8035 &old_cfg->app, 8036 sizeof(new_cfg->app))) { 8037 need_reconfig = true; 8038 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); 8039 } 8040 8041 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig); 8042 return need_reconfig; 8043 } 8044 8045 /** 8046 * i40e_handle_lldp_event - Handle LLDP Change MIB event 8047 * @pf: board private structure 8048 * @e: event info posted on ARQ 8049 **/ 8050 static int i40e_handle_lldp_event(struct i40e_pf *pf, 8051 struct i40e_arq_event_info *e) 8052 { 8053 struct i40e_aqc_lldp_get_mib *mib = 8054 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; 8055 struct i40e_hw *hw = &pf->hw; 8056 struct i40e_dcbx_config tmp_dcbx_cfg; 8057 bool need_reconfig = false; 8058 int ret = 0; 8059 u8 type; 8060 8061 /* Not DCB capable or capability disabled */ 8062 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) 8063 return ret; 8064 8065 /* Ignore if event is not for Nearest Bridge */ 8066 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) 8067 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); 8068 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type); 8069 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) 8070 return ret; 8071 8072 /* Check MIB Type and return if event for Remote MIB update */ 8073 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; 8074 dev_dbg(&pf->pdev->dev, 8075 "LLDP event mib type %s\n", type ? "remote" : "local"); 8076 if (type == I40E_AQ_LLDP_MIB_REMOTE) { 8077 /* Update the remote cached instance and return */ 8078 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, 8079 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, 8080 &hw->remote_dcbx_config); 8081 goto exit; 8082 } 8083 8084 /* Store the old configuration */ 8085 tmp_dcbx_cfg = hw->local_dcbx_config; 8086 8087 /* Reset the old DCBx configuration data */ 8088 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config)); 8089 /* Get updated DCBX data from firmware */ 8090 ret = i40e_get_dcb_config(&pf->hw); 8091 if (ret) { 8092 dev_info(&pf->pdev->dev, 8093 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n", 8094 i40e_stat_str(&pf->hw, ret), 8095 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8096 goto exit; 8097 } 8098 8099 /* No change detected in DCBX configs */ 8100 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config, 8101 sizeof(tmp_dcbx_cfg))) { 8102 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); 8103 goto exit; 8104 } 8105 8106 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, 8107 &hw->local_dcbx_config); 8108 8109 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config); 8110 8111 if (!need_reconfig) 8112 goto exit; 8113 8114 /* Enable DCB tagging only when more than one TC */ 8115 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) 8116 pf->flags |= I40E_FLAG_DCB_ENABLED; 8117 else 8118 pf->flags &= ~I40E_FLAG_DCB_ENABLED; 8119 8120 set_bit(__I40E_PORT_SUSPENDED, pf->state); 8121 /* Reconfiguration needed quiesce all VSIs */ 8122 i40e_pf_quiesce_all_vsi(pf); 8123 8124 /* Changes in configuration update VEB/VSI */ 8125 i40e_dcb_reconfigure(pf); 8126 8127 ret = i40e_resume_port_tx(pf); 8128 8129 clear_bit(__I40E_PORT_SUSPENDED, pf->state); 8130 /* In case of error no point in resuming VSIs */ 8131 if (ret) 8132 goto exit; 8133 8134 /* Wait for the PF's queues to be disabled */ 8135 ret = i40e_pf_wait_queues_disabled(pf); 8136 if (ret) { 8137 /* Schedule PF reset to recover */ 8138 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8139 i40e_service_event_schedule(pf); 8140 } else { 8141 i40e_pf_unquiesce_all_vsi(pf); 8142 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state); 8143 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state); 8144 } 8145 8146 exit: 8147 return ret; 8148 } 8149 #endif /* CONFIG_I40E_DCB */ 8150 8151 /** 8152 * i40e_do_reset_safe - Protected reset path for userland calls. 8153 * @pf: board private structure 8154 * @reset_flags: which reset is requested 8155 * 8156 **/ 8157 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) 8158 { 8159 rtnl_lock(); 8160 i40e_do_reset(pf, reset_flags, true); 8161 rtnl_unlock(); 8162 } 8163 8164 /** 8165 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event 8166 * @pf: board private structure 8167 * @e: event info posted on ARQ 8168 * 8169 * Handler for LAN Queue Overflow Event generated by the firmware for PF 8170 * and VF queues 8171 **/ 8172 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, 8173 struct i40e_arq_event_info *e) 8174 { 8175 struct i40e_aqc_lan_overflow *data = 8176 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; 8177 u32 queue = le32_to_cpu(data->prtdcb_rupto); 8178 u32 qtx_ctl = le32_to_cpu(data->otx_ctl); 8179 struct i40e_hw *hw = &pf->hw; 8180 struct i40e_vf *vf; 8181 u16 vf_id; 8182 8183 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", 8184 queue, qtx_ctl); 8185 8186 /* Queue belongs to VF, find the VF and issue VF reset */ 8187 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) 8188 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { 8189 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) 8190 >> I40E_QTX_CTL_VFVM_INDX_SHIFT); 8191 vf_id -= hw->func_caps.vf_base_id; 8192 vf = &pf->vf[vf_id]; 8193 i40e_vc_notify_vf_reset(vf); 8194 /* Allow VF to process pending reset notification */ 8195 msleep(20); 8196 i40e_reset_vf(vf, false); 8197 } 8198 } 8199 8200 /** 8201 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters 8202 * @pf: board private structure 8203 **/ 8204 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) 8205 { 8206 u32 val, fcnt_prog; 8207 8208 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8209 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); 8210 return fcnt_prog; 8211 } 8212 8213 /** 8214 * i40e_get_current_fd_count - Get total FD filters programmed for this PF 8215 * @pf: board private structure 8216 **/ 8217 u32 i40e_get_current_fd_count(struct i40e_pf *pf) 8218 { 8219 u32 val, fcnt_prog; 8220 8221 val = rd32(&pf->hw, I40E_PFQF_FDSTAT); 8222 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + 8223 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> 8224 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); 8225 return fcnt_prog; 8226 } 8227 8228 /** 8229 * i40e_get_global_fd_count - Get total FD filters programmed on device 8230 * @pf: board private structure 8231 **/ 8232 u32 i40e_get_global_fd_count(struct i40e_pf *pf) 8233 { 8234 u32 val, fcnt_prog; 8235 8236 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0); 8237 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) + 8238 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >> 8239 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT); 8240 return fcnt_prog; 8241 } 8242 8243 /** 8244 * i40e_reenable_fdir_sb - Restore FDir SB capability 8245 * @pf: board private structure 8246 **/ 8247 static void i40e_reenable_fdir_sb(struct i40e_pf *pf) 8248 { 8249 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) 8250 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 8251 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8252 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); 8253 } 8254 8255 /** 8256 * i40e_reenable_fdir_atr - Restore FDir ATR capability 8257 * @pf: board private structure 8258 **/ 8259 static void i40e_reenable_fdir_atr(struct i40e_pf *pf) 8260 { 8261 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) { 8262 /* ATR uses the same filtering logic as SB rules. It only 8263 * functions properly if the input set mask is at the default 8264 * settings. It is safe to restore the default input set 8265 * because there are no active TCPv4 filter rules. 8266 */ 8267 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP, 8268 I40E_L3_SRC_MASK | I40E_L3_DST_MASK | 8269 I40E_L4_SRC_MASK | I40E_L4_DST_MASK); 8270 8271 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 8272 (I40E_DEBUG_FD & pf->hw.debug_mask)) 8273 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n"); 8274 } 8275 } 8276 8277 /** 8278 * i40e_delete_invalid_filter - Delete an invalid FDIR filter 8279 * @pf: board private structure 8280 * @filter: FDir filter to remove 8281 */ 8282 static void i40e_delete_invalid_filter(struct i40e_pf *pf, 8283 struct i40e_fdir_filter *filter) 8284 { 8285 /* Update counters */ 8286 pf->fdir_pf_active_filters--; 8287 pf->fd_inv = 0; 8288 8289 switch (filter->flow_type) { 8290 case TCP_V4_FLOW: 8291 pf->fd_tcp4_filter_cnt--; 8292 break; 8293 case UDP_V4_FLOW: 8294 pf->fd_udp4_filter_cnt--; 8295 break; 8296 case SCTP_V4_FLOW: 8297 pf->fd_sctp4_filter_cnt--; 8298 break; 8299 case IP_USER_FLOW: 8300 switch (filter->ip4_proto) { 8301 case IPPROTO_TCP: 8302 pf->fd_tcp4_filter_cnt--; 8303 break; 8304 case IPPROTO_UDP: 8305 pf->fd_udp4_filter_cnt--; 8306 break; 8307 case IPPROTO_SCTP: 8308 pf->fd_sctp4_filter_cnt--; 8309 break; 8310 case IPPROTO_IP: 8311 pf->fd_ip4_filter_cnt--; 8312 break; 8313 } 8314 break; 8315 } 8316 8317 /* Remove the filter from the list and free memory */ 8318 hlist_del(&filter->fdir_node); 8319 kfree(filter); 8320 } 8321 8322 /** 8323 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled 8324 * @pf: board private structure 8325 **/ 8326 void i40e_fdir_check_and_reenable(struct i40e_pf *pf) 8327 { 8328 struct i40e_fdir_filter *filter; 8329 u32 fcnt_prog, fcnt_avail; 8330 struct hlist_node *node; 8331 8332 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8333 return; 8334 8335 /* Check if we have enough room to re-enable FDir SB capability. */ 8336 fcnt_prog = i40e_get_global_fd_count(pf); 8337 fcnt_avail = pf->fdir_pf_filter_count; 8338 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || 8339 (pf->fd_add_err == 0) || 8340 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) 8341 i40e_reenable_fdir_sb(pf); 8342 8343 /* We should wait for even more space before re-enabling ATR. 8344 * Additionally, we cannot enable ATR as long as we still have TCP SB 8345 * rules active. 8346 */ 8347 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) && 8348 (pf->fd_tcp4_filter_cnt == 0)) 8349 i40e_reenable_fdir_atr(pf); 8350 8351 /* if hw had a problem adding a filter, delete it */ 8352 if (pf->fd_inv > 0) { 8353 hlist_for_each_entry_safe(filter, node, 8354 &pf->fdir_filter_list, fdir_node) 8355 if (filter->fd_id == pf->fd_inv) 8356 i40e_delete_invalid_filter(pf, filter); 8357 } 8358 } 8359 8360 #define I40E_MIN_FD_FLUSH_INTERVAL 10 8361 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30 8362 /** 8363 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB 8364 * @pf: board private structure 8365 **/ 8366 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) 8367 { 8368 unsigned long min_flush_time; 8369 int flush_wait_retry = 50; 8370 bool disable_atr = false; 8371 int fd_room; 8372 int reg; 8373 8374 if (!time_after(jiffies, pf->fd_flush_timestamp + 8375 (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) 8376 return; 8377 8378 /* If the flush is happening too quick and we have mostly SB rules we 8379 * should not re-enable ATR for some time. 8380 */ 8381 min_flush_time = pf->fd_flush_timestamp + 8382 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ); 8383 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters; 8384 8385 if (!(time_after(jiffies, min_flush_time)) && 8386 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) { 8387 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8388 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n"); 8389 disable_atr = true; 8390 } 8391 8392 pf->fd_flush_timestamp = jiffies; 8393 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8394 /* flush all filters */ 8395 wr32(&pf->hw, I40E_PFQF_CTL_1, 8396 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); 8397 i40e_flush(&pf->hw); 8398 pf->fd_flush_cnt++; 8399 pf->fd_add_err = 0; 8400 do { 8401 /* Check FD flush status every 5-6msec */ 8402 usleep_range(5000, 6000); 8403 reg = rd32(&pf->hw, I40E_PFQF_CTL_1); 8404 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) 8405 break; 8406 } while (flush_wait_retry--); 8407 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { 8408 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); 8409 } else { 8410 /* replay sideband filters */ 8411 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); 8412 if (!disable_atr && !pf->fd_tcp4_filter_cnt) 8413 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); 8414 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); 8415 if (I40E_DEBUG_FD & pf->hw.debug_mask) 8416 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); 8417 } 8418 } 8419 8420 /** 8421 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed 8422 * @pf: board private structure 8423 **/ 8424 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf) 8425 { 8426 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; 8427 } 8428 8429 /* We can see up to 256 filter programming desc in transit if the filters are 8430 * being applied really fast; before we see the first 8431 * filter miss error on Rx queue 0. Accumulating enough error messages before 8432 * reacting will make sure we don't cause flush too often. 8433 */ 8434 #define I40E_MAX_FD_PROGRAM_ERROR 256 8435 8436 /** 8437 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table 8438 * @pf: board private structure 8439 **/ 8440 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) 8441 { 8442 8443 /* if interface is down do nothing */ 8444 if (test_bit(__I40E_DOWN, pf->state)) 8445 return; 8446 8447 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) 8448 i40e_fdir_flush_and_replay(pf); 8449 8450 i40e_fdir_check_and_reenable(pf); 8451 8452 } 8453 8454 /** 8455 * i40e_vsi_link_event - notify VSI of a link event 8456 * @vsi: vsi to be notified 8457 * @link_up: link up or down 8458 **/ 8459 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) 8460 { 8461 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state)) 8462 return; 8463 8464 switch (vsi->type) { 8465 case I40E_VSI_MAIN: 8466 if (!vsi->netdev || !vsi->netdev_registered) 8467 break; 8468 8469 if (link_up) { 8470 netif_carrier_on(vsi->netdev); 8471 netif_tx_wake_all_queues(vsi->netdev); 8472 } else { 8473 netif_carrier_off(vsi->netdev); 8474 netif_tx_stop_all_queues(vsi->netdev); 8475 } 8476 break; 8477 8478 case I40E_VSI_SRIOV: 8479 case I40E_VSI_VMDQ2: 8480 case I40E_VSI_CTRL: 8481 case I40E_VSI_IWARP: 8482 case I40E_VSI_MIRROR: 8483 default: 8484 /* there is no notification for other VSIs */ 8485 break; 8486 } 8487 } 8488 8489 /** 8490 * i40e_veb_link_event - notify elements on the veb of a link event 8491 * @veb: veb to be notified 8492 * @link_up: link up or down 8493 **/ 8494 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) 8495 { 8496 struct i40e_pf *pf; 8497 int i; 8498 8499 if (!veb || !veb->pf) 8500 return; 8501 pf = veb->pf; 8502 8503 /* depth first... */ 8504 for (i = 0; i < I40E_MAX_VEB; i++) 8505 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) 8506 i40e_veb_link_event(pf->veb[i], link_up); 8507 8508 /* ... now the local VSIs */ 8509 for (i = 0; i < pf->num_alloc_vsi; i++) 8510 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) 8511 i40e_vsi_link_event(pf->vsi[i], link_up); 8512 } 8513 8514 /** 8515 * i40e_link_event - Update netif_carrier status 8516 * @pf: board private structure 8517 **/ 8518 static void i40e_link_event(struct i40e_pf *pf) 8519 { 8520 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8521 u8 new_link_speed, old_link_speed; 8522 i40e_status status; 8523 bool new_link, old_link; 8524 8525 /* set this to force the get_link_status call to refresh state */ 8526 pf->hw.phy.get_link_info = true; 8527 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); 8528 status = i40e_get_link_status(&pf->hw, &new_link); 8529 8530 /* On success, disable temp link polling */ 8531 if (status == I40E_SUCCESS) { 8532 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8533 } else { 8534 /* Enable link polling temporarily until i40e_get_link_status 8535 * returns I40E_SUCCESS 8536 */ 8537 set_bit(__I40E_TEMP_LINK_POLLING, pf->state); 8538 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n", 8539 status); 8540 return; 8541 } 8542 8543 old_link_speed = pf->hw.phy.link_info_old.link_speed; 8544 new_link_speed = pf->hw.phy.link_info.link_speed; 8545 8546 if (new_link == old_link && 8547 new_link_speed == old_link_speed && 8548 (test_bit(__I40E_VSI_DOWN, vsi->state) || 8549 new_link == netif_carrier_ok(vsi->netdev))) 8550 return; 8551 8552 i40e_print_link_message(vsi, new_link); 8553 8554 /* Notify the base of the switch tree connected to 8555 * the link. Floating VEBs are not notified. 8556 */ 8557 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 8558 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); 8559 else 8560 i40e_vsi_link_event(vsi, new_link); 8561 8562 if (pf->vf) 8563 i40e_vc_notify_link_state(pf); 8564 8565 if (pf->flags & I40E_FLAG_PTP) 8566 i40e_ptp_set_increment(pf); 8567 } 8568 8569 /** 8570 * i40e_watchdog_subtask - periodic checks not using event driven response 8571 * @pf: board private structure 8572 **/ 8573 static void i40e_watchdog_subtask(struct i40e_pf *pf) 8574 { 8575 int i; 8576 8577 /* if interface is down do nothing */ 8578 if (test_bit(__I40E_DOWN, pf->state) || 8579 test_bit(__I40E_CONFIG_BUSY, pf->state)) 8580 return; 8581 8582 /* make sure we don't do these things too often */ 8583 if (time_before(jiffies, (pf->service_timer_previous + 8584 pf->service_timer_period))) 8585 return; 8586 pf->service_timer_previous = jiffies; 8587 8588 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) || 8589 test_bit(__I40E_TEMP_LINK_POLLING, pf->state)) 8590 i40e_link_event(pf); 8591 8592 /* Update the stats for active netdevs so the network stack 8593 * can look at updated numbers whenever it cares to 8594 */ 8595 for (i = 0; i < pf->num_alloc_vsi; i++) 8596 if (pf->vsi[i] && pf->vsi[i]->netdev) 8597 i40e_update_stats(pf->vsi[i]); 8598 8599 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) { 8600 /* Update the stats for the active switching components */ 8601 for (i = 0; i < I40E_MAX_VEB; i++) 8602 if (pf->veb[i]) 8603 i40e_update_veb_stats(pf->veb[i]); 8604 } 8605 8606 i40e_ptp_rx_hang(pf); 8607 i40e_ptp_tx_hang(pf); 8608 } 8609 8610 /** 8611 * i40e_reset_subtask - Set up for resetting the device and driver 8612 * @pf: board private structure 8613 **/ 8614 static void i40e_reset_subtask(struct i40e_pf *pf) 8615 { 8616 u32 reset_flags = 0; 8617 8618 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) { 8619 reset_flags |= BIT(__I40E_REINIT_REQUESTED); 8620 clear_bit(__I40E_REINIT_REQUESTED, pf->state); 8621 } 8622 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) { 8623 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED); 8624 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state); 8625 } 8626 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) { 8627 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED); 8628 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state); 8629 } 8630 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) { 8631 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED); 8632 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state); 8633 } 8634 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) { 8635 reset_flags |= BIT(__I40E_DOWN_REQUESTED); 8636 clear_bit(__I40E_DOWN_REQUESTED, pf->state); 8637 } 8638 8639 /* If there's a recovery already waiting, it takes 8640 * precedence before starting a new reset sequence. 8641 */ 8642 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) { 8643 i40e_prep_for_reset(pf, false); 8644 i40e_reset(pf); 8645 i40e_rebuild(pf, false, false); 8646 } 8647 8648 /* If we're already down or resetting, just bail */ 8649 if (reset_flags && 8650 !test_bit(__I40E_DOWN, pf->state) && 8651 !test_bit(__I40E_CONFIG_BUSY, pf->state)) { 8652 i40e_do_reset(pf, reset_flags, false); 8653 } 8654 } 8655 8656 /** 8657 * i40e_handle_link_event - Handle link event 8658 * @pf: board private structure 8659 * @e: event info posted on ARQ 8660 **/ 8661 static void i40e_handle_link_event(struct i40e_pf *pf, 8662 struct i40e_arq_event_info *e) 8663 { 8664 struct i40e_aqc_get_link_status *status = 8665 (struct i40e_aqc_get_link_status *)&e->desc.params.raw; 8666 8667 /* Do a new status request to re-enable LSE reporting 8668 * and load new status information into the hw struct 8669 * This completely ignores any state information 8670 * in the ARQ event info, instead choosing to always 8671 * issue the AQ update link status command. 8672 */ 8673 i40e_link_event(pf); 8674 8675 /* Check if module meets thermal requirements */ 8676 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) { 8677 dev_err(&pf->pdev->dev, 8678 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n"); 8679 dev_err(&pf->pdev->dev, 8680 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8681 } else { 8682 /* check for unqualified module, if link is down, suppress 8683 * the message if link was forced to be down. 8684 */ 8685 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && 8686 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && 8687 (!(status->link_info & I40E_AQ_LINK_UP)) && 8688 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) { 8689 dev_err(&pf->pdev->dev, 8690 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n"); 8691 dev_err(&pf->pdev->dev, 8692 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 8693 } 8694 } 8695 } 8696 8697 /** 8698 * i40e_clean_adminq_subtask - Clean the AdminQ rings 8699 * @pf: board private structure 8700 **/ 8701 static void i40e_clean_adminq_subtask(struct i40e_pf *pf) 8702 { 8703 struct i40e_arq_event_info event; 8704 struct i40e_hw *hw = &pf->hw; 8705 u16 pending, i = 0; 8706 i40e_status ret; 8707 u16 opcode; 8708 u32 oldval; 8709 u32 val; 8710 8711 /* Do not run clean AQ when PF reset fails */ 8712 if (test_bit(__I40E_RESET_FAILED, pf->state)) 8713 return; 8714 8715 /* check for error indications */ 8716 val = rd32(&pf->hw, pf->hw.aq.arq.len); 8717 oldval = val; 8718 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { 8719 if (hw->debug_mask & I40E_DEBUG_AQ) 8720 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); 8721 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; 8722 } 8723 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { 8724 if (hw->debug_mask & I40E_DEBUG_AQ) 8725 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); 8726 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; 8727 pf->arq_overflows++; 8728 } 8729 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { 8730 if (hw->debug_mask & I40E_DEBUG_AQ) 8731 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); 8732 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; 8733 } 8734 if (oldval != val) 8735 wr32(&pf->hw, pf->hw.aq.arq.len, val); 8736 8737 val = rd32(&pf->hw, pf->hw.aq.asq.len); 8738 oldval = val; 8739 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { 8740 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8741 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); 8742 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; 8743 } 8744 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { 8745 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8746 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); 8747 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; 8748 } 8749 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { 8750 if (pf->hw.debug_mask & I40E_DEBUG_AQ) 8751 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); 8752 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; 8753 } 8754 if (oldval != val) 8755 wr32(&pf->hw, pf->hw.aq.asq.len, val); 8756 8757 event.buf_len = I40E_MAX_AQ_BUF_SIZE; 8758 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 8759 if (!event.msg_buf) 8760 return; 8761 8762 do { 8763 ret = i40e_clean_arq_element(hw, &event, &pending); 8764 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) 8765 break; 8766 else if (ret) { 8767 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); 8768 break; 8769 } 8770 8771 opcode = le16_to_cpu(event.desc.opcode); 8772 switch (opcode) { 8773 8774 case i40e_aqc_opc_get_link_status: 8775 i40e_handle_link_event(pf, &event); 8776 break; 8777 case i40e_aqc_opc_send_msg_to_pf: 8778 ret = i40e_vc_process_vf_msg(pf, 8779 le16_to_cpu(event.desc.retval), 8780 le32_to_cpu(event.desc.cookie_high), 8781 le32_to_cpu(event.desc.cookie_low), 8782 event.msg_buf, 8783 event.msg_len); 8784 break; 8785 case i40e_aqc_opc_lldp_update_mib: 8786 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); 8787 #ifdef CONFIG_I40E_DCB 8788 rtnl_lock(); 8789 ret = i40e_handle_lldp_event(pf, &event); 8790 rtnl_unlock(); 8791 #endif /* CONFIG_I40E_DCB */ 8792 break; 8793 case i40e_aqc_opc_event_lan_overflow: 8794 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); 8795 i40e_handle_lan_overflow_event(pf, &event); 8796 break; 8797 case i40e_aqc_opc_send_msg_to_peer: 8798 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); 8799 break; 8800 case i40e_aqc_opc_nvm_erase: 8801 case i40e_aqc_opc_nvm_update: 8802 case i40e_aqc_opc_oem_post_update: 8803 i40e_debug(&pf->hw, I40E_DEBUG_NVM, 8804 "ARQ NVM operation 0x%04x completed\n", 8805 opcode); 8806 break; 8807 default: 8808 dev_info(&pf->pdev->dev, 8809 "ARQ: Unknown event 0x%04x ignored\n", 8810 opcode); 8811 break; 8812 } 8813 } while (i++ < pf->adminq_work_limit); 8814 8815 if (i < pf->adminq_work_limit) 8816 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state); 8817 8818 /* re-enable Admin queue interrupt cause */ 8819 val = rd32(hw, I40E_PFINT_ICR0_ENA); 8820 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; 8821 wr32(hw, I40E_PFINT_ICR0_ENA, val); 8822 i40e_flush(hw); 8823 8824 kfree(event.msg_buf); 8825 } 8826 8827 /** 8828 * i40e_verify_eeprom - make sure eeprom is good to use 8829 * @pf: board private structure 8830 **/ 8831 static void i40e_verify_eeprom(struct i40e_pf *pf) 8832 { 8833 int err; 8834 8835 err = i40e_diag_eeprom_test(&pf->hw); 8836 if (err) { 8837 /* retry in case of garbage read */ 8838 err = i40e_diag_eeprom_test(&pf->hw); 8839 if (err) { 8840 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", 8841 err); 8842 set_bit(__I40E_BAD_EEPROM, pf->state); 8843 } 8844 } 8845 8846 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) { 8847 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); 8848 clear_bit(__I40E_BAD_EEPROM, pf->state); 8849 } 8850 } 8851 8852 /** 8853 * i40e_enable_pf_switch_lb 8854 * @pf: pointer to the PF structure 8855 * 8856 * enable switch loop back or die - no point in a return value 8857 **/ 8858 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf) 8859 { 8860 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8861 struct i40e_vsi_context ctxt; 8862 int ret; 8863 8864 ctxt.seid = pf->main_vsi_seid; 8865 ctxt.pf_num = pf->hw.pf_id; 8866 ctxt.vf_num = 0; 8867 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8868 if (ret) { 8869 dev_info(&pf->pdev->dev, 8870 "couldn't get PF vsi config, err %s aq_err %s\n", 8871 i40e_stat_str(&pf->hw, ret), 8872 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8873 return; 8874 } 8875 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8876 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8877 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8878 8879 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8880 if (ret) { 8881 dev_info(&pf->pdev->dev, 8882 "update vsi switch failed, err %s aq_err %s\n", 8883 i40e_stat_str(&pf->hw, ret), 8884 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8885 } 8886 } 8887 8888 /** 8889 * i40e_disable_pf_switch_lb 8890 * @pf: pointer to the PF structure 8891 * 8892 * disable switch loop back or die - no point in a return value 8893 **/ 8894 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf) 8895 { 8896 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 8897 struct i40e_vsi_context ctxt; 8898 int ret; 8899 8900 ctxt.seid = pf->main_vsi_seid; 8901 ctxt.pf_num = pf->hw.pf_id; 8902 ctxt.vf_num = 0; 8903 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 8904 if (ret) { 8905 dev_info(&pf->pdev->dev, 8906 "couldn't get PF vsi config, err %s aq_err %s\n", 8907 i40e_stat_str(&pf->hw, ret), 8908 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8909 return; 8910 } 8911 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 8912 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 8913 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 8914 8915 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); 8916 if (ret) { 8917 dev_info(&pf->pdev->dev, 8918 "update vsi switch failed, err %s aq_err %s\n", 8919 i40e_stat_str(&pf->hw, ret), 8920 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 8921 } 8922 } 8923 8924 /** 8925 * i40e_config_bridge_mode - Configure the HW bridge mode 8926 * @veb: pointer to the bridge instance 8927 * 8928 * Configure the loop back mode for the LAN VSI that is downlink to the 8929 * specified HW bridge instance. It is expected this function is called 8930 * when a new HW bridge is instantiated. 8931 **/ 8932 static void i40e_config_bridge_mode(struct i40e_veb *veb) 8933 { 8934 struct i40e_pf *pf = veb->pf; 8935 8936 if (pf->hw.debug_mask & I40E_DEBUG_LAN) 8937 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n", 8938 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); 8939 if (veb->bridge_mode & BRIDGE_MODE_VEPA) 8940 i40e_disable_pf_switch_lb(pf); 8941 else 8942 i40e_enable_pf_switch_lb(pf); 8943 } 8944 8945 /** 8946 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it 8947 * @veb: pointer to the VEB instance 8948 * 8949 * This is a recursive function that first builds the attached VSIs then 8950 * recurses in to build the next layer of VEB. We track the connections 8951 * through our own index numbers because the seid's from the HW could 8952 * change across the reset. 8953 **/ 8954 static int i40e_reconstitute_veb(struct i40e_veb *veb) 8955 { 8956 struct i40e_vsi *ctl_vsi = NULL; 8957 struct i40e_pf *pf = veb->pf; 8958 int v, veb_idx; 8959 int ret; 8960 8961 /* build VSI that owns this VEB, temporarily attached to base VEB */ 8962 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { 8963 if (pf->vsi[v] && 8964 pf->vsi[v]->veb_idx == veb->idx && 8965 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { 8966 ctl_vsi = pf->vsi[v]; 8967 break; 8968 } 8969 } 8970 if (!ctl_vsi) { 8971 dev_info(&pf->pdev->dev, 8972 "missing owner VSI for veb_idx %d\n", veb->idx); 8973 ret = -ENOENT; 8974 goto end_reconstitute; 8975 } 8976 if (ctl_vsi != pf->vsi[pf->lan_vsi]) 8977 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 8978 ret = i40e_add_vsi(ctl_vsi); 8979 if (ret) { 8980 dev_info(&pf->pdev->dev, 8981 "rebuild of veb_idx %d owner VSI failed: %d\n", 8982 veb->idx, ret); 8983 goto end_reconstitute; 8984 } 8985 i40e_vsi_reset_stats(ctl_vsi); 8986 8987 /* create the VEB in the switch and move the VSI onto the VEB */ 8988 ret = i40e_add_veb(veb, ctl_vsi); 8989 if (ret) 8990 goto end_reconstitute; 8991 8992 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 8993 veb->bridge_mode = BRIDGE_MODE_VEB; 8994 else 8995 veb->bridge_mode = BRIDGE_MODE_VEPA; 8996 i40e_config_bridge_mode(veb); 8997 8998 /* create the remaining VSIs attached to this VEB */ 8999 for (v = 0; v < pf->num_alloc_vsi; v++) { 9000 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) 9001 continue; 9002 9003 if (pf->vsi[v]->veb_idx == veb->idx) { 9004 struct i40e_vsi *vsi = pf->vsi[v]; 9005 9006 vsi->uplink_seid = veb->seid; 9007 ret = i40e_add_vsi(vsi); 9008 if (ret) { 9009 dev_info(&pf->pdev->dev, 9010 "rebuild of vsi_idx %d failed: %d\n", 9011 v, ret); 9012 goto end_reconstitute; 9013 } 9014 i40e_vsi_reset_stats(vsi); 9015 } 9016 } 9017 9018 /* create any VEBs attached to this VEB - RECURSION */ 9019 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 9020 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { 9021 pf->veb[veb_idx]->uplink_seid = veb->seid; 9022 ret = i40e_reconstitute_veb(pf->veb[veb_idx]); 9023 if (ret) 9024 break; 9025 } 9026 } 9027 9028 end_reconstitute: 9029 return ret; 9030 } 9031 9032 /** 9033 * i40e_get_capabilities - get info about the HW 9034 * @pf: the PF struct 9035 **/ 9036 static int i40e_get_capabilities(struct i40e_pf *pf, 9037 enum i40e_admin_queue_opc list_type) 9038 { 9039 struct i40e_aqc_list_capabilities_element_resp *cap_buf; 9040 u16 data_size; 9041 int buf_len; 9042 int err; 9043 9044 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); 9045 do { 9046 cap_buf = kzalloc(buf_len, GFP_KERNEL); 9047 if (!cap_buf) 9048 return -ENOMEM; 9049 9050 /* this loads the data into the hw struct for us */ 9051 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, 9052 &data_size, list_type, 9053 NULL); 9054 /* data loaded, buffer no longer needed */ 9055 kfree(cap_buf); 9056 9057 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { 9058 /* retry with a larger buffer */ 9059 buf_len = data_size; 9060 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { 9061 dev_info(&pf->pdev->dev, 9062 "capability discovery failed, err %s aq_err %s\n", 9063 i40e_stat_str(&pf->hw, err), 9064 i40e_aq_str(&pf->hw, 9065 pf->hw.aq.asq_last_status)); 9066 return -ENODEV; 9067 } 9068 } while (err); 9069 9070 if (pf->hw.debug_mask & I40E_DEBUG_USER) { 9071 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9072 dev_info(&pf->pdev->dev, 9073 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", 9074 pf->hw.pf_id, pf->hw.func_caps.num_vfs, 9075 pf->hw.func_caps.num_msix_vectors, 9076 pf->hw.func_caps.num_msix_vectors_vf, 9077 pf->hw.func_caps.fd_filters_guaranteed, 9078 pf->hw.func_caps.fd_filters_best_effort, 9079 pf->hw.func_caps.num_tx_qp, 9080 pf->hw.func_caps.num_vsis); 9081 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) { 9082 dev_info(&pf->pdev->dev, 9083 "switch_mode=0x%04x, function_valid=0x%08x\n", 9084 pf->hw.dev_caps.switch_mode, 9085 pf->hw.dev_caps.valid_functions); 9086 dev_info(&pf->pdev->dev, 9087 "SR-IOV=%d, num_vfs for all function=%u\n", 9088 pf->hw.dev_caps.sr_iov_1_1, 9089 pf->hw.dev_caps.num_vfs); 9090 dev_info(&pf->pdev->dev, 9091 "num_vsis=%u, num_rx:%u, num_tx=%u\n", 9092 pf->hw.dev_caps.num_vsis, 9093 pf->hw.dev_caps.num_rx_qp, 9094 pf->hw.dev_caps.num_tx_qp); 9095 } 9096 } 9097 if (list_type == i40e_aqc_opc_list_func_capabilities) { 9098 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ 9099 + pf->hw.func_caps.num_vfs) 9100 if (pf->hw.revision_id == 0 && 9101 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) { 9102 dev_info(&pf->pdev->dev, 9103 "got num_vsis %d, setting num_vsis to %d\n", 9104 pf->hw.func_caps.num_vsis, DEF_NUM_VSI); 9105 pf->hw.func_caps.num_vsis = DEF_NUM_VSI; 9106 } 9107 } 9108 return 0; 9109 } 9110 9111 static int i40e_vsi_clear(struct i40e_vsi *vsi); 9112 9113 /** 9114 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband 9115 * @pf: board private structure 9116 **/ 9117 static void i40e_fdir_sb_setup(struct i40e_pf *pf) 9118 { 9119 struct i40e_vsi *vsi; 9120 9121 /* quick workaround for an NVM issue that leaves a critical register 9122 * uninitialized 9123 */ 9124 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { 9125 static const u32 hkey[] = { 9126 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 9127 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 9128 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 9129 0x95b3a76d}; 9130 int i; 9131 9132 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) 9133 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); 9134 } 9135 9136 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 9137 return; 9138 9139 /* find existing VSI and see if it needs configuring */ 9140 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9141 9142 /* create a new VSI if none exists */ 9143 if (!vsi) { 9144 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, 9145 pf->vsi[pf->lan_vsi]->seid, 0); 9146 if (!vsi) { 9147 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); 9148 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 9149 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 9150 return; 9151 } 9152 } 9153 9154 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); 9155 } 9156 9157 /** 9158 * i40e_fdir_teardown - release the Flow Director resources 9159 * @pf: board private structure 9160 **/ 9161 static void i40e_fdir_teardown(struct i40e_pf *pf) 9162 { 9163 struct i40e_vsi *vsi; 9164 9165 i40e_fdir_filter_exit(pf); 9166 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); 9167 if (vsi) 9168 i40e_vsi_release(vsi); 9169 } 9170 9171 /** 9172 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs 9173 * @vsi: PF main vsi 9174 * @seid: seid of main or channel VSIs 9175 * 9176 * Rebuilds cloud filters associated with main VSI and channel VSIs if they 9177 * existed before reset 9178 **/ 9179 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid) 9180 { 9181 struct i40e_cloud_filter *cfilter; 9182 struct i40e_pf *pf = vsi->back; 9183 struct hlist_node *node; 9184 i40e_status ret; 9185 9186 /* Add cloud filters back if they exist */ 9187 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list, 9188 cloud_node) { 9189 if (cfilter->seid != seid) 9190 continue; 9191 9192 if (cfilter->dst_port) 9193 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, 9194 true); 9195 else 9196 ret = i40e_add_del_cloud_filter(vsi, cfilter, true); 9197 9198 if (ret) { 9199 dev_dbg(&pf->pdev->dev, 9200 "Failed to rebuild cloud filter, err %s aq_err %s\n", 9201 i40e_stat_str(&pf->hw, ret), 9202 i40e_aq_str(&pf->hw, 9203 pf->hw.aq.asq_last_status)); 9204 return ret; 9205 } 9206 } 9207 return 0; 9208 } 9209 9210 /** 9211 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset 9212 * @vsi: PF main vsi 9213 * 9214 * Rebuilds channel VSIs if they existed before reset 9215 **/ 9216 static int i40e_rebuild_channels(struct i40e_vsi *vsi) 9217 { 9218 struct i40e_channel *ch, *ch_tmp; 9219 i40e_status ret; 9220 9221 if (list_empty(&vsi->ch_list)) 9222 return 0; 9223 9224 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 9225 if (!ch->initialized) 9226 break; 9227 /* Proceed with creation of channel (VMDq2) VSI */ 9228 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch); 9229 if (ret) { 9230 dev_info(&vsi->back->pdev->dev, 9231 "failed to rebuild channels using uplink_seid %u\n", 9232 vsi->uplink_seid); 9233 return ret; 9234 } 9235 /* Reconfigure TX queues using QTX_CTL register */ 9236 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch); 9237 if (ret) { 9238 dev_info(&vsi->back->pdev->dev, 9239 "failed to configure TX rings for channel %u\n", 9240 ch->seid); 9241 return ret; 9242 } 9243 /* update 'next_base_queue' */ 9244 vsi->next_base_queue = vsi->next_base_queue + 9245 ch->num_queue_pairs; 9246 if (ch->max_tx_rate) { 9247 u64 credits = ch->max_tx_rate; 9248 9249 if (i40e_set_bw_limit(vsi, ch->seid, 9250 ch->max_tx_rate)) 9251 return -EINVAL; 9252 9253 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9254 dev_dbg(&vsi->back->pdev->dev, 9255 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9256 ch->max_tx_rate, 9257 credits, 9258 ch->seid); 9259 } 9260 ret = i40e_rebuild_cloud_filters(vsi, ch->seid); 9261 if (ret) { 9262 dev_dbg(&vsi->back->pdev->dev, 9263 "Failed to rebuild cloud filters for channel VSI %u\n", 9264 ch->seid); 9265 return ret; 9266 } 9267 } 9268 return 0; 9269 } 9270 9271 /** 9272 * i40e_prep_for_reset - prep for the core to reset 9273 * @pf: board private structure 9274 * @lock_acquired: indicates whether or not the lock has been acquired 9275 * before this function was called. 9276 * 9277 * Close up the VFs and other things in prep for PF Reset. 9278 **/ 9279 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired) 9280 { 9281 struct i40e_hw *hw = &pf->hw; 9282 i40e_status ret = 0; 9283 u32 v; 9284 9285 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state); 9286 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9287 return; 9288 if (i40e_check_asq_alive(&pf->hw)) 9289 i40e_vc_notify_reset(pf); 9290 9291 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); 9292 9293 /* quiesce the VSIs and their queues that are not already DOWN */ 9294 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */ 9295 if (!lock_acquired) 9296 rtnl_lock(); 9297 i40e_pf_quiesce_all_vsi(pf); 9298 if (!lock_acquired) 9299 rtnl_unlock(); 9300 9301 for (v = 0; v < pf->num_alloc_vsi; v++) { 9302 if (pf->vsi[v]) 9303 pf->vsi[v]->seid = 0; 9304 } 9305 9306 i40e_shutdown_adminq(&pf->hw); 9307 9308 /* call shutdown HMC */ 9309 if (hw->hmc.hmc_obj) { 9310 ret = i40e_shutdown_lan_hmc(hw); 9311 if (ret) 9312 dev_warn(&pf->pdev->dev, 9313 "shutdown_lan_hmc failed: %d\n", ret); 9314 } 9315 } 9316 9317 /** 9318 * i40e_send_version - update firmware with driver version 9319 * @pf: PF struct 9320 */ 9321 static void i40e_send_version(struct i40e_pf *pf) 9322 { 9323 struct i40e_driver_version dv; 9324 9325 dv.major_version = DRV_VERSION_MAJOR; 9326 dv.minor_version = DRV_VERSION_MINOR; 9327 dv.build_version = DRV_VERSION_BUILD; 9328 dv.subbuild_version = 0; 9329 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); 9330 i40e_aq_send_driver_version(&pf->hw, &dv, NULL); 9331 } 9332 9333 /** 9334 * i40e_get_oem_version - get OEM specific version information 9335 * @hw: pointer to the hardware structure 9336 **/ 9337 static void i40e_get_oem_version(struct i40e_hw *hw) 9338 { 9339 u16 block_offset = 0xffff; 9340 u16 block_length = 0; 9341 u16 capabilities = 0; 9342 u16 gen_snap = 0; 9343 u16 release = 0; 9344 9345 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B 9346 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00 9347 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01 9348 #define I40E_NVM_OEM_GEN_OFFSET 0x02 9349 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03 9350 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F 9351 #define I40E_NVM_OEM_LENGTH 3 9352 9353 /* Check if pointer to OEM version block is valid. */ 9354 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset); 9355 if (block_offset == 0xffff) 9356 return; 9357 9358 /* Check if OEM version block has correct length. */ 9359 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET, 9360 &block_length); 9361 if (block_length < I40E_NVM_OEM_LENGTH) 9362 return; 9363 9364 /* Check if OEM version format is as expected. */ 9365 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET, 9366 &capabilities); 9367 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0) 9368 return; 9369 9370 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET, 9371 &gen_snap); 9372 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET, 9373 &release); 9374 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release; 9375 hw->nvm.eetrack = I40E_OEM_EETRACK_ID; 9376 } 9377 9378 /** 9379 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen 9380 * @pf: board private structure 9381 **/ 9382 static int i40e_reset(struct i40e_pf *pf) 9383 { 9384 struct i40e_hw *hw = &pf->hw; 9385 i40e_status ret; 9386 9387 ret = i40e_pf_reset(hw); 9388 if (ret) { 9389 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); 9390 set_bit(__I40E_RESET_FAILED, pf->state); 9391 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9392 } else { 9393 pf->pfr_count++; 9394 } 9395 return ret; 9396 } 9397 9398 /** 9399 * i40e_rebuild - rebuild using a saved config 9400 * @pf: board private structure 9401 * @reinit: if the Main VSI needs to re-initialized. 9402 * @lock_acquired: indicates whether or not the lock has been acquired 9403 * before this function was called. 9404 **/ 9405 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired) 9406 { 9407 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 9408 struct i40e_hw *hw = &pf->hw; 9409 u8 set_fc_aq_fail = 0; 9410 i40e_status ret; 9411 u32 val; 9412 int v; 9413 9414 if (test_bit(__I40E_DOWN, pf->state)) 9415 goto clear_recovery; 9416 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); 9417 9418 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ 9419 ret = i40e_init_adminq(&pf->hw); 9420 if (ret) { 9421 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n", 9422 i40e_stat_str(&pf->hw, ret), 9423 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9424 goto clear_recovery; 9425 } 9426 i40e_get_oem_version(&pf->hw); 9427 9428 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) && 9429 ((hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver <= 33) || 9430 hw->aq.fw_maj_ver < 4) && hw->mac.type == I40E_MAC_XL710) { 9431 /* The following delay is necessary for 4.33 firmware and older 9432 * to recover after EMP reset. 200 ms should suffice but we 9433 * put here 300 ms to be sure that FW is ready to operate 9434 * after reset. 9435 */ 9436 mdelay(300); 9437 } 9438 9439 /* re-verify the eeprom if we just had an EMP reset */ 9440 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) 9441 i40e_verify_eeprom(pf); 9442 9443 i40e_clear_pxe_mode(hw); 9444 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 9445 if (ret) 9446 goto end_core_reset; 9447 9448 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 9449 hw->func_caps.num_rx_qp, 0, 0); 9450 if (ret) { 9451 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); 9452 goto end_core_reset; 9453 } 9454 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 9455 if (ret) { 9456 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); 9457 goto end_core_reset; 9458 } 9459 9460 /* Enable FW to write a default DCB config on link-up */ 9461 i40e_aq_set_dcb_parameters(hw, true, NULL); 9462 9463 #ifdef CONFIG_I40E_DCB 9464 ret = i40e_init_pf_dcb(pf); 9465 if (ret) { 9466 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); 9467 pf->flags &= ~I40E_FLAG_DCB_CAPABLE; 9468 /* Continue without DCB enabled */ 9469 } 9470 #endif /* CONFIG_I40E_DCB */ 9471 /* do basic switch setup */ 9472 if (!lock_acquired) 9473 rtnl_lock(); 9474 ret = i40e_setup_pf_switch(pf, reinit); 9475 if (ret) 9476 goto end_unlock; 9477 9478 /* The driver only wants link up/down and module qualification 9479 * reports from firmware. Note the negative logic. 9480 */ 9481 ret = i40e_aq_set_phy_int_mask(&pf->hw, 9482 ~(I40E_AQ_EVENT_LINK_UPDOWN | 9483 I40E_AQ_EVENT_MEDIA_NA | 9484 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 9485 if (ret) 9486 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 9487 i40e_stat_str(&pf->hw, ret), 9488 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9489 9490 /* make sure our flow control settings are restored */ 9491 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); 9492 if (ret) 9493 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n", 9494 i40e_stat_str(&pf->hw, ret), 9495 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9496 9497 /* Rebuild the VSIs and VEBs that existed before reset. 9498 * They are still in our local switch element arrays, so only 9499 * need to rebuild the switch model in the HW. 9500 * 9501 * If there were VEBs but the reconstitution failed, we'll try 9502 * try to recover minimal use by getting the basic PF VSI working. 9503 */ 9504 if (vsi->uplink_seid != pf->mac_seid) { 9505 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); 9506 /* find the one VEB connected to the MAC, and find orphans */ 9507 for (v = 0; v < I40E_MAX_VEB; v++) { 9508 if (!pf->veb[v]) 9509 continue; 9510 9511 if (pf->veb[v]->uplink_seid == pf->mac_seid || 9512 pf->veb[v]->uplink_seid == 0) { 9513 ret = i40e_reconstitute_veb(pf->veb[v]); 9514 9515 if (!ret) 9516 continue; 9517 9518 /* If Main VEB failed, we're in deep doodoo, 9519 * so give up rebuilding the switch and set up 9520 * for minimal rebuild of PF VSI. 9521 * If orphan failed, we'll report the error 9522 * but try to keep going. 9523 */ 9524 if (pf->veb[v]->uplink_seid == pf->mac_seid) { 9525 dev_info(&pf->pdev->dev, 9526 "rebuild of switch failed: %d, will try to set up simple PF connection\n", 9527 ret); 9528 vsi->uplink_seid = pf->mac_seid; 9529 break; 9530 } else if (pf->veb[v]->uplink_seid == 0) { 9531 dev_info(&pf->pdev->dev, 9532 "rebuild of orphan VEB failed: %d\n", 9533 ret); 9534 } 9535 } 9536 } 9537 } 9538 9539 if (vsi->uplink_seid == pf->mac_seid) { 9540 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); 9541 /* no VEB, so rebuild only the Main VSI */ 9542 ret = i40e_add_vsi(vsi); 9543 if (ret) { 9544 dev_info(&pf->pdev->dev, 9545 "rebuild of Main VSI failed: %d\n", ret); 9546 goto end_unlock; 9547 } 9548 } 9549 9550 if (vsi->mqprio_qopt.max_rate[0]) { 9551 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9552 u64 credits = 0; 9553 9554 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR); 9555 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); 9556 if (ret) 9557 goto end_unlock; 9558 9559 credits = max_tx_rate; 9560 do_div(credits, I40E_BW_CREDIT_DIVISOR); 9561 dev_dbg(&vsi->back->pdev->dev, 9562 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n", 9563 max_tx_rate, 9564 credits, 9565 vsi->seid); 9566 } 9567 9568 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid); 9569 if (ret) 9570 goto end_unlock; 9571 9572 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs 9573 * for this main VSI if they exist 9574 */ 9575 ret = i40e_rebuild_channels(vsi); 9576 if (ret) 9577 goto end_unlock; 9578 9579 /* Reconfigure hardware for allowing smaller MSS in the case 9580 * of TSO, so that we avoid the MDD being fired and causing 9581 * a reset in the case of small MSS+TSO. 9582 */ 9583 #define I40E_REG_MSS 0x000E64DC 9584 #define I40E_REG_MSS_MIN_MASK 0x3FF0000 9585 #define I40E_64BYTE_MSS 0x400000 9586 val = rd32(hw, I40E_REG_MSS); 9587 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 9588 val &= ~I40E_REG_MSS_MIN_MASK; 9589 val |= I40E_64BYTE_MSS; 9590 wr32(hw, I40E_REG_MSS, val); 9591 } 9592 9593 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 9594 msleep(75); 9595 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 9596 if (ret) 9597 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 9598 i40e_stat_str(&pf->hw, ret), 9599 i40e_aq_str(&pf->hw, 9600 pf->hw.aq.asq_last_status)); 9601 } 9602 /* reinit the misc interrupt */ 9603 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9604 ret = i40e_setup_misc_vector(pf); 9605 9606 /* Add a filter to drop all Flow control frames from any VSI from being 9607 * transmitted. By doing so we stop a malicious VF from sending out 9608 * PAUSE or PFC frames and potentially controlling traffic for other 9609 * PF/VF VSIs. 9610 * The FW can still send Flow control frames if enabled. 9611 */ 9612 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 9613 pf->main_vsi_seid); 9614 9615 /* restart the VSIs that were rebuilt and running before the reset */ 9616 i40e_pf_unquiesce_all_vsi(pf); 9617 9618 /* Release the RTNL lock before we start resetting VFs */ 9619 if (!lock_acquired) 9620 rtnl_unlock(); 9621 9622 /* Restore promiscuous settings */ 9623 ret = i40e_set_promiscuous(pf, pf->cur_promisc); 9624 if (ret) 9625 dev_warn(&pf->pdev->dev, 9626 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n", 9627 pf->cur_promisc ? "on" : "off", 9628 i40e_stat_str(&pf->hw, ret), 9629 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 9630 9631 i40e_reset_all_vfs(pf, true); 9632 9633 /* tell the firmware that we're starting */ 9634 i40e_send_version(pf); 9635 9636 /* We've already released the lock, so don't do it again */ 9637 goto end_core_reset; 9638 9639 end_unlock: 9640 if (!lock_acquired) 9641 rtnl_unlock(); 9642 end_core_reset: 9643 clear_bit(__I40E_RESET_FAILED, pf->state); 9644 clear_recovery: 9645 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state); 9646 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state); 9647 } 9648 9649 /** 9650 * i40e_reset_and_rebuild - reset and rebuild using a saved config 9651 * @pf: board private structure 9652 * @reinit: if the Main VSI needs to re-initialized. 9653 * @lock_acquired: indicates whether or not the lock has been acquired 9654 * before this function was called. 9655 **/ 9656 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit, 9657 bool lock_acquired) 9658 { 9659 int ret; 9660 /* Now we wait for GRST to settle out. 9661 * We don't have to delete the VEBs or VSIs from the hw switch 9662 * because the reset will make them disappear. 9663 */ 9664 ret = i40e_reset(pf); 9665 if (!ret) 9666 i40e_rebuild(pf, reinit, lock_acquired); 9667 } 9668 9669 /** 9670 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild 9671 * @pf: board private structure 9672 * 9673 * Close up the VFs and other things in prep for a Core Reset, 9674 * then get ready to rebuild the world. 9675 * @lock_acquired: indicates whether or not the lock has been acquired 9676 * before this function was called. 9677 **/ 9678 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired) 9679 { 9680 i40e_prep_for_reset(pf, lock_acquired); 9681 i40e_reset_and_rebuild(pf, false, lock_acquired); 9682 } 9683 9684 /** 9685 * i40e_handle_mdd_event 9686 * @pf: pointer to the PF structure 9687 * 9688 * Called from the MDD irq handler to identify possibly malicious vfs 9689 **/ 9690 static void i40e_handle_mdd_event(struct i40e_pf *pf) 9691 { 9692 struct i40e_hw *hw = &pf->hw; 9693 bool mdd_detected = false; 9694 bool pf_mdd_detected = false; 9695 struct i40e_vf *vf; 9696 u32 reg; 9697 int i; 9698 9699 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state)) 9700 return; 9701 9702 /* find what triggered the MDD event */ 9703 reg = rd32(hw, I40E_GL_MDET_TX); 9704 if (reg & I40E_GL_MDET_TX_VALID_MASK) { 9705 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> 9706 I40E_GL_MDET_TX_PF_NUM_SHIFT; 9707 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> 9708 I40E_GL_MDET_TX_VF_NUM_SHIFT; 9709 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> 9710 I40E_GL_MDET_TX_EVENT_SHIFT; 9711 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> 9712 I40E_GL_MDET_TX_QUEUE_SHIFT) - 9713 pf->hw.func_caps.base_queue; 9714 if (netif_msg_tx_err(pf)) 9715 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n", 9716 event, queue, pf_num, vf_num); 9717 wr32(hw, I40E_GL_MDET_TX, 0xffffffff); 9718 mdd_detected = true; 9719 } 9720 reg = rd32(hw, I40E_GL_MDET_RX); 9721 if (reg & I40E_GL_MDET_RX_VALID_MASK) { 9722 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> 9723 I40E_GL_MDET_RX_FUNCTION_SHIFT; 9724 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> 9725 I40E_GL_MDET_RX_EVENT_SHIFT; 9726 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> 9727 I40E_GL_MDET_RX_QUEUE_SHIFT) - 9728 pf->hw.func_caps.base_queue; 9729 if (netif_msg_rx_err(pf)) 9730 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", 9731 event, queue, func); 9732 wr32(hw, I40E_GL_MDET_RX, 0xffffffff); 9733 mdd_detected = true; 9734 } 9735 9736 if (mdd_detected) { 9737 reg = rd32(hw, I40E_PF_MDET_TX); 9738 if (reg & I40E_PF_MDET_TX_VALID_MASK) { 9739 wr32(hw, I40E_PF_MDET_TX, 0xFFFF); 9740 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 9741 pf_mdd_detected = true; 9742 } 9743 reg = rd32(hw, I40E_PF_MDET_RX); 9744 if (reg & I40E_PF_MDET_RX_VALID_MASK) { 9745 wr32(hw, I40E_PF_MDET_RX, 0xFFFF); 9746 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 9747 pf_mdd_detected = true; 9748 } 9749 /* Queue belongs to the PF, initiate a reset */ 9750 if (pf_mdd_detected) { 9751 set_bit(__I40E_PF_RESET_REQUESTED, pf->state); 9752 i40e_service_event_schedule(pf); 9753 } 9754 } 9755 9756 /* see if one of the VFs needs its hand slapped */ 9757 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { 9758 vf = &(pf->vf[i]); 9759 reg = rd32(hw, I40E_VP_MDET_TX(i)); 9760 if (reg & I40E_VP_MDET_TX_VALID_MASK) { 9761 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); 9762 vf->num_mdd_events++; 9763 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 9764 i); 9765 } 9766 9767 reg = rd32(hw, I40E_VP_MDET_RX(i)); 9768 if (reg & I40E_VP_MDET_RX_VALID_MASK) { 9769 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); 9770 vf->num_mdd_events++; 9771 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 9772 i); 9773 } 9774 9775 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { 9776 dev_info(&pf->pdev->dev, 9777 "Too many MDD events on VF %d, disabled\n", i); 9778 dev_info(&pf->pdev->dev, 9779 "Use PF Control I/F to re-enable the VF\n"); 9780 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); 9781 } 9782 } 9783 9784 /* re-enable mdd interrupt cause */ 9785 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state); 9786 reg = rd32(hw, I40E_PFINT_ICR0_ENA); 9787 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; 9788 wr32(hw, I40E_PFINT_ICR0_ENA, reg); 9789 i40e_flush(hw); 9790 } 9791 9792 static const char *i40e_tunnel_name(u8 type) 9793 { 9794 switch (type) { 9795 case UDP_TUNNEL_TYPE_VXLAN: 9796 return "vxlan"; 9797 case UDP_TUNNEL_TYPE_GENEVE: 9798 return "geneve"; 9799 default: 9800 return "unknown"; 9801 } 9802 } 9803 9804 /** 9805 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters 9806 * @pf: board private structure 9807 **/ 9808 static void i40e_sync_udp_filters(struct i40e_pf *pf) 9809 { 9810 int i; 9811 9812 /* loop through and set pending bit for all active UDP filters */ 9813 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9814 if (pf->udp_ports[i].port) 9815 pf->pending_udp_bitmap |= BIT_ULL(i); 9816 } 9817 9818 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 9819 } 9820 9821 /** 9822 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW 9823 * @pf: board private structure 9824 **/ 9825 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf) 9826 { 9827 struct i40e_hw *hw = &pf->hw; 9828 u8 filter_index, type; 9829 u16 port; 9830 int i; 9831 9832 if (!test_and_clear_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state)) 9833 return; 9834 9835 /* acquire RTNL to maintain state of flags and port requests */ 9836 rtnl_lock(); 9837 9838 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 9839 if (pf->pending_udp_bitmap & BIT_ULL(i)) { 9840 struct i40e_udp_port_config *udp_port; 9841 i40e_status ret = 0; 9842 9843 udp_port = &pf->udp_ports[i]; 9844 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9845 9846 port = READ_ONCE(udp_port->port); 9847 type = READ_ONCE(udp_port->type); 9848 filter_index = READ_ONCE(udp_port->filter_index); 9849 9850 /* release RTNL while we wait on AQ command */ 9851 rtnl_unlock(); 9852 9853 if (port) 9854 ret = i40e_aq_add_udp_tunnel(hw, port, 9855 type, 9856 &filter_index, 9857 NULL); 9858 else if (filter_index != I40E_UDP_PORT_INDEX_UNUSED) 9859 ret = i40e_aq_del_udp_tunnel(hw, filter_index, 9860 NULL); 9861 9862 /* reacquire RTNL so we can update filter_index */ 9863 rtnl_lock(); 9864 9865 if (ret) { 9866 dev_info(&pf->pdev->dev, 9867 "%s %s port %d, index %d failed, err %s aq_err %s\n", 9868 i40e_tunnel_name(type), 9869 port ? "add" : "delete", 9870 port, 9871 filter_index, 9872 i40e_stat_str(&pf->hw, ret), 9873 i40e_aq_str(&pf->hw, 9874 pf->hw.aq.asq_last_status)); 9875 if (port) { 9876 /* failed to add, just reset port, 9877 * drop pending bit for any deletion 9878 */ 9879 udp_port->port = 0; 9880 pf->pending_udp_bitmap &= ~BIT_ULL(i); 9881 } 9882 } else if (port) { 9883 /* record filter index on success */ 9884 udp_port->filter_index = filter_index; 9885 } 9886 } 9887 } 9888 9889 rtnl_unlock(); 9890 } 9891 9892 /** 9893 * i40e_service_task - Run the driver's async subtasks 9894 * @work: pointer to work_struct containing our data 9895 **/ 9896 static void i40e_service_task(struct work_struct *work) 9897 { 9898 struct i40e_pf *pf = container_of(work, 9899 struct i40e_pf, 9900 service_task); 9901 unsigned long start_time = jiffies; 9902 9903 /* don't bother with service tasks if a reset is in progress */ 9904 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) 9905 return; 9906 9907 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state)) 9908 return; 9909 9910 i40e_detect_recover_hung(pf->vsi[pf->lan_vsi]); 9911 i40e_sync_filters_subtask(pf); 9912 i40e_reset_subtask(pf); 9913 i40e_handle_mdd_event(pf); 9914 i40e_vc_process_vflr_event(pf); 9915 i40e_watchdog_subtask(pf); 9916 i40e_fdir_reinit_subtask(pf); 9917 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) { 9918 /* Client subtask will reopen next time through. */ 9919 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true); 9920 } else { 9921 i40e_client_subtask(pf); 9922 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE, 9923 pf->state)) 9924 i40e_notify_client_of_l2_param_changes( 9925 pf->vsi[pf->lan_vsi]); 9926 } 9927 i40e_sync_filters_subtask(pf); 9928 i40e_sync_udp_filters_subtask(pf); 9929 i40e_clean_adminq_subtask(pf); 9930 9931 /* flush memory to make sure state is correct before next watchdog */ 9932 smp_mb__before_atomic(); 9933 clear_bit(__I40E_SERVICE_SCHED, pf->state); 9934 9935 /* If the tasks have taken longer than one timer cycle or there 9936 * is more work to be done, reschedule the service task now 9937 * rather than wait for the timer to tick again. 9938 */ 9939 if (time_after(jiffies, (start_time + pf->service_timer_period)) || 9940 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) || 9941 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) || 9942 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) 9943 i40e_service_event_schedule(pf); 9944 } 9945 9946 /** 9947 * i40e_service_timer - timer callback 9948 * @data: pointer to PF struct 9949 **/ 9950 static void i40e_service_timer(struct timer_list *t) 9951 { 9952 struct i40e_pf *pf = from_timer(pf, t, service_timer); 9953 9954 mod_timer(&pf->service_timer, 9955 round_jiffies(jiffies + pf->service_timer_period)); 9956 i40e_service_event_schedule(pf); 9957 } 9958 9959 /** 9960 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI 9961 * @vsi: the VSI being configured 9962 **/ 9963 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) 9964 { 9965 struct i40e_pf *pf = vsi->back; 9966 9967 switch (vsi->type) { 9968 case I40E_VSI_MAIN: 9969 vsi->alloc_queue_pairs = pf->num_lan_qps; 9970 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9971 I40E_REQ_DESCRIPTOR_MULTIPLE); 9972 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 9973 vsi->num_q_vectors = pf->num_lan_msix; 9974 else 9975 vsi->num_q_vectors = 1; 9976 9977 break; 9978 9979 case I40E_VSI_FDIR: 9980 vsi->alloc_queue_pairs = 1; 9981 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, 9982 I40E_REQ_DESCRIPTOR_MULTIPLE); 9983 vsi->num_q_vectors = pf->num_fdsb_msix; 9984 break; 9985 9986 case I40E_VSI_VMDQ2: 9987 vsi->alloc_queue_pairs = pf->num_vmdq_qps; 9988 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9989 I40E_REQ_DESCRIPTOR_MULTIPLE); 9990 vsi->num_q_vectors = pf->num_vmdq_msix; 9991 break; 9992 9993 case I40E_VSI_SRIOV: 9994 vsi->alloc_queue_pairs = pf->num_vf_qps; 9995 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, 9996 I40E_REQ_DESCRIPTOR_MULTIPLE); 9997 break; 9998 9999 default: 10000 WARN_ON(1); 10001 return -ENODATA; 10002 } 10003 10004 return 0; 10005 } 10006 10007 /** 10008 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi 10009 * @vsi: VSI pointer 10010 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. 10011 * 10012 * On error: returns error code (negative) 10013 * On success: returns 0 10014 **/ 10015 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) 10016 { 10017 struct i40e_ring **next_rings; 10018 int size; 10019 int ret = 0; 10020 10021 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */ 10022 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 10023 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2); 10024 vsi->tx_rings = kzalloc(size, GFP_KERNEL); 10025 if (!vsi->tx_rings) 10026 return -ENOMEM; 10027 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs; 10028 if (i40e_enabled_xdp_vsi(vsi)) { 10029 vsi->xdp_rings = next_rings; 10030 next_rings += vsi->alloc_queue_pairs; 10031 } 10032 vsi->rx_rings = next_rings; 10033 10034 if (alloc_qvectors) { 10035 /* allocate memory for q_vector pointers */ 10036 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; 10037 vsi->q_vectors = kzalloc(size, GFP_KERNEL); 10038 if (!vsi->q_vectors) { 10039 ret = -ENOMEM; 10040 goto err_vectors; 10041 } 10042 } 10043 return ret; 10044 10045 err_vectors: 10046 kfree(vsi->tx_rings); 10047 return ret; 10048 } 10049 10050 /** 10051 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF 10052 * @pf: board private structure 10053 * @type: type of VSI 10054 * 10055 * On error: returns error code (negative) 10056 * On success: returns vsi index in PF (positive) 10057 **/ 10058 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) 10059 { 10060 int ret = -ENODEV; 10061 struct i40e_vsi *vsi; 10062 int vsi_idx; 10063 int i; 10064 10065 /* Need to protect the allocation of the VSIs at the PF level */ 10066 mutex_lock(&pf->switch_mutex); 10067 10068 /* VSI list may be fragmented if VSI creation/destruction has 10069 * been happening. We can afford to do a quick scan to look 10070 * for any free VSIs in the list. 10071 * 10072 * find next empty vsi slot, looping back around if necessary 10073 */ 10074 i = pf->next_vsi; 10075 while (i < pf->num_alloc_vsi && pf->vsi[i]) 10076 i++; 10077 if (i >= pf->num_alloc_vsi) { 10078 i = 0; 10079 while (i < pf->next_vsi && pf->vsi[i]) 10080 i++; 10081 } 10082 10083 if (i < pf->num_alloc_vsi && !pf->vsi[i]) { 10084 vsi_idx = i; /* Found one! */ 10085 } else { 10086 ret = -ENODEV; 10087 goto unlock_pf; /* out of VSI slots! */ 10088 } 10089 pf->next_vsi = ++i; 10090 10091 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); 10092 if (!vsi) { 10093 ret = -ENOMEM; 10094 goto unlock_pf; 10095 } 10096 vsi->type = type; 10097 vsi->back = pf; 10098 set_bit(__I40E_VSI_DOWN, vsi->state); 10099 vsi->flags = 0; 10100 vsi->idx = vsi_idx; 10101 vsi->int_rate_limit = 0; 10102 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ? 10103 pf->rss_table_size : 64; 10104 vsi->netdev_registered = false; 10105 vsi->work_limit = I40E_DEFAULT_IRQ_WORK; 10106 hash_init(vsi->mac_filter_hash); 10107 vsi->irqs_ready = false; 10108 10109 ret = i40e_set_num_rings_in_vsi(vsi); 10110 if (ret) 10111 goto err_rings; 10112 10113 ret = i40e_vsi_alloc_arrays(vsi, true); 10114 if (ret) 10115 goto err_rings; 10116 10117 /* Setup default MSIX irq handler for VSI */ 10118 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); 10119 10120 /* Initialize VSI lock */ 10121 spin_lock_init(&vsi->mac_filter_hash_lock); 10122 pf->vsi[vsi_idx] = vsi; 10123 ret = vsi_idx; 10124 goto unlock_pf; 10125 10126 err_rings: 10127 pf->next_vsi = i - 1; 10128 kfree(vsi); 10129 unlock_pf: 10130 mutex_unlock(&pf->switch_mutex); 10131 return ret; 10132 } 10133 10134 /** 10135 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI 10136 * @vsi: VSI pointer 10137 * @free_qvectors: a bool to specify if q_vectors need to be freed. 10138 * 10139 * On error: returns error code (negative) 10140 * On success: returns 0 10141 **/ 10142 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) 10143 { 10144 /* free the ring and vector containers */ 10145 if (free_qvectors) { 10146 kfree(vsi->q_vectors); 10147 vsi->q_vectors = NULL; 10148 } 10149 kfree(vsi->tx_rings); 10150 vsi->tx_rings = NULL; 10151 vsi->rx_rings = NULL; 10152 vsi->xdp_rings = NULL; 10153 } 10154 10155 /** 10156 * i40e_clear_rss_config_user - clear the user configured RSS hash keys 10157 * and lookup table 10158 * @vsi: Pointer to VSI structure 10159 */ 10160 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi) 10161 { 10162 if (!vsi) 10163 return; 10164 10165 kfree(vsi->rss_hkey_user); 10166 vsi->rss_hkey_user = NULL; 10167 10168 kfree(vsi->rss_lut_user); 10169 vsi->rss_lut_user = NULL; 10170 } 10171 10172 /** 10173 * i40e_vsi_clear - Deallocate the VSI provided 10174 * @vsi: the VSI being un-configured 10175 **/ 10176 static int i40e_vsi_clear(struct i40e_vsi *vsi) 10177 { 10178 struct i40e_pf *pf; 10179 10180 if (!vsi) 10181 return 0; 10182 10183 if (!vsi->back) 10184 goto free_vsi; 10185 pf = vsi->back; 10186 10187 mutex_lock(&pf->switch_mutex); 10188 if (!pf->vsi[vsi->idx]) { 10189 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n", 10190 vsi->idx, vsi->idx, vsi->type); 10191 goto unlock_vsi; 10192 } 10193 10194 if (pf->vsi[vsi->idx] != vsi) { 10195 dev_err(&pf->pdev->dev, 10196 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n", 10197 pf->vsi[vsi->idx]->idx, 10198 pf->vsi[vsi->idx]->type, 10199 vsi->idx, vsi->type); 10200 goto unlock_vsi; 10201 } 10202 10203 /* updates the PF for this cleared vsi */ 10204 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 10205 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); 10206 10207 i40e_vsi_free_arrays(vsi, true); 10208 i40e_clear_rss_config_user(vsi); 10209 10210 pf->vsi[vsi->idx] = NULL; 10211 if (vsi->idx < pf->next_vsi) 10212 pf->next_vsi = vsi->idx; 10213 10214 unlock_vsi: 10215 mutex_unlock(&pf->switch_mutex); 10216 free_vsi: 10217 kfree(vsi); 10218 10219 return 0; 10220 } 10221 10222 /** 10223 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI 10224 * @vsi: the VSI being cleaned 10225 **/ 10226 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) 10227 { 10228 int i; 10229 10230 if (vsi->tx_rings && vsi->tx_rings[0]) { 10231 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10232 kfree_rcu(vsi->tx_rings[i], rcu); 10233 vsi->tx_rings[i] = NULL; 10234 vsi->rx_rings[i] = NULL; 10235 if (vsi->xdp_rings) 10236 vsi->xdp_rings[i] = NULL; 10237 } 10238 } 10239 } 10240 10241 /** 10242 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI 10243 * @vsi: the VSI being configured 10244 **/ 10245 static int i40e_alloc_rings(struct i40e_vsi *vsi) 10246 { 10247 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2; 10248 struct i40e_pf *pf = vsi->back; 10249 struct i40e_ring *ring; 10250 10251 /* Set basic values in the rings to be used later during open() */ 10252 for (i = 0; i < vsi->alloc_queue_pairs; i++) { 10253 /* allocate space for both Tx and Rx in one shot */ 10254 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL); 10255 if (!ring) 10256 goto err_out; 10257 10258 ring->queue_index = i; 10259 ring->reg_idx = vsi->base_queue + i; 10260 ring->ring_active = false; 10261 ring->vsi = vsi; 10262 ring->netdev = vsi->netdev; 10263 ring->dev = &pf->pdev->dev; 10264 ring->count = vsi->num_desc; 10265 ring->size = 0; 10266 ring->dcb_tc = 0; 10267 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10268 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10269 ring->itr_setting = pf->tx_itr_default; 10270 vsi->tx_rings[i] = ring++; 10271 10272 if (!i40e_enabled_xdp_vsi(vsi)) 10273 goto setup_rx; 10274 10275 ring->queue_index = vsi->alloc_queue_pairs + i; 10276 ring->reg_idx = vsi->base_queue + ring->queue_index; 10277 ring->ring_active = false; 10278 ring->vsi = vsi; 10279 ring->netdev = NULL; 10280 ring->dev = &pf->pdev->dev; 10281 ring->count = vsi->num_desc; 10282 ring->size = 0; 10283 ring->dcb_tc = 0; 10284 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) 10285 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR; 10286 set_ring_xdp(ring); 10287 ring->itr_setting = pf->tx_itr_default; 10288 vsi->xdp_rings[i] = ring++; 10289 10290 setup_rx: 10291 ring->queue_index = i; 10292 ring->reg_idx = vsi->base_queue + i; 10293 ring->ring_active = false; 10294 ring->vsi = vsi; 10295 ring->netdev = vsi->netdev; 10296 ring->dev = &pf->pdev->dev; 10297 ring->count = vsi->num_desc; 10298 ring->size = 0; 10299 ring->dcb_tc = 0; 10300 ring->itr_setting = pf->rx_itr_default; 10301 vsi->rx_rings[i] = ring; 10302 } 10303 10304 return 0; 10305 10306 err_out: 10307 i40e_vsi_clear_rings(vsi); 10308 return -ENOMEM; 10309 } 10310 10311 /** 10312 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel 10313 * @pf: board private structure 10314 * @vectors: the number of MSI-X vectors to request 10315 * 10316 * Returns the number of vectors reserved, or error 10317 **/ 10318 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) 10319 { 10320 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, 10321 I40E_MIN_MSIX, vectors); 10322 if (vectors < 0) { 10323 dev_info(&pf->pdev->dev, 10324 "MSI-X vector reservation failed: %d\n", vectors); 10325 vectors = 0; 10326 } 10327 10328 return vectors; 10329 } 10330 10331 /** 10332 * i40e_init_msix - Setup the MSIX capability 10333 * @pf: board private structure 10334 * 10335 * Work with the OS to set up the MSIX vectors needed. 10336 * 10337 * Returns the number of vectors reserved or negative on failure 10338 **/ 10339 static int i40e_init_msix(struct i40e_pf *pf) 10340 { 10341 struct i40e_hw *hw = &pf->hw; 10342 int cpus, extra_vectors; 10343 int vectors_left; 10344 int v_budget, i; 10345 int v_actual; 10346 int iwarp_requested = 0; 10347 10348 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 10349 return -ENODEV; 10350 10351 /* The number of vectors we'll request will be comprised of: 10352 * - Add 1 for "other" cause for Admin Queue events, etc. 10353 * - The number of LAN queue pairs 10354 * - Queues being used for RSS. 10355 * We don't need as many as max_rss_size vectors. 10356 * use rss_size instead in the calculation since that 10357 * is governed by number of cpus in the system. 10358 * - assumes symmetric Tx/Rx pairing 10359 * - The number of VMDq pairs 10360 * - The CPU count within the NUMA node if iWARP is enabled 10361 * Once we count this up, try the request. 10362 * 10363 * If we can't get what we want, we'll simplify to nearly nothing 10364 * and try again. If that still fails, we punt. 10365 */ 10366 vectors_left = hw->func_caps.num_msix_vectors; 10367 v_budget = 0; 10368 10369 /* reserve one vector for miscellaneous handler */ 10370 if (vectors_left) { 10371 v_budget++; 10372 vectors_left--; 10373 } 10374 10375 /* reserve some vectors for the main PF traffic queues. Initially we 10376 * only reserve at most 50% of the available vectors, in the case that 10377 * the number of online CPUs is large. This ensures that we can enable 10378 * extra features as well. Once we've enabled the other features, we 10379 * will use any remaining vectors to reach as close as we can to the 10380 * number of online CPUs. 10381 */ 10382 cpus = num_online_cpus(); 10383 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2); 10384 vectors_left -= pf->num_lan_msix; 10385 10386 /* reserve one vector for sideband flow director */ 10387 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10388 if (vectors_left) { 10389 pf->num_fdsb_msix = 1; 10390 v_budget++; 10391 vectors_left--; 10392 } else { 10393 pf->num_fdsb_msix = 0; 10394 } 10395 } 10396 10397 /* can we reserve enough for iWARP? */ 10398 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10399 iwarp_requested = pf->num_iwarp_msix; 10400 10401 if (!vectors_left) 10402 pf->num_iwarp_msix = 0; 10403 else if (vectors_left < pf->num_iwarp_msix) 10404 pf->num_iwarp_msix = 1; 10405 v_budget += pf->num_iwarp_msix; 10406 vectors_left -= pf->num_iwarp_msix; 10407 } 10408 10409 /* any vectors left over go for VMDq support */ 10410 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) { 10411 if (!vectors_left) { 10412 pf->num_vmdq_msix = 0; 10413 pf->num_vmdq_qps = 0; 10414 } else { 10415 int vmdq_vecs_wanted = 10416 pf->num_vmdq_vsis * pf->num_vmdq_qps; 10417 int vmdq_vecs = 10418 min_t(int, vectors_left, vmdq_vecs_wanted); 10419 10420 /* if we're short on vectors for what's desired, we limit 10421 * the queues per vmdq. If this is still more than are 10422 * available, the user will need to change the number of 10423 * queues/vectors used by the PF later with the ethtool 10424 * channels command 10425 */ 10426 if (vectors_left < vmdq_vecs_wanted) { 10427 pf->num_vmdq_qps = 1; 10428 vmdq_vecs_wanted = pf->num_vmdq_vsis; 10429 vmdq_vecs = min_t(int, 10430 vectors_left, 10431 vmdq_vecs_wanted); 10432 } 10433 pf->num_vmdq_msix = pf->num_vmdq_qps; 10434 10435 v_budget += vmdq_vecs; 10436 vectors_left -= vmdq_vecs; 10437 } 10438 } 10439 10440 /* On systems with a large number of SMP cores, we previously limited 10441 * the number of vectors for num_lan_msix to be at most 50% of the 10442 * available vectors, to allow for other features. Now, we add back 10443 * the remaining vectors. However, we ensure that the total 10444 * num_lan_msix will not exceed num_online_cpus(). To do this, we 10445 * calculate the number of vectors we can add without going over the 10446 * cap of CPUs. For systems with a small number of CPUs this will be 10447 * zero. 10448 */ 10449 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left); 10450 pf->num_lan_msix += extra_vectors; 10451 vectors_left -= extra_vectors; 10452 10453 WARN(vectors_left < 0, 10454 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n"); 10455 10456 v_budget += pf->num_lan_msix; 10457 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), 10458 GFP_KERNEL); 10459 if (!pf->msix_entries) 10460 return -ENOMEM; 10461 10462 for (i = 0; i < v_budget; i++) 10463 pf->msix_entries[i].entry = i; 10464 v_actual = i40e_reserve_msix_vectors(pf, v_budget); 10465 10466 if (v_actual < I40E_MIN_MSIX) { 10467 pf->flags &= ~I40E_FLAG_MSIX_ENABLED; 10468 kfree(pf->msix_entries); 10469 pf->msix_entries = NULL; 10470 pci_disable_msix(pf->pdev); 10471 return -ENODEV; 10472 10473 } else if (v_actual == I40E_MIN_MSIX) { 10474 /* Adjust for minimal MSIX use */ 10475 pf->num_vmdq_vsis = 0; 10476 pf->num_vmdq_qps = 0; 10477 pf->num_lan_qps = 1; 10478 pf->num_lan_msix = 1; 10479 10480 } else if (v_actual != v_budget) { 10481 /* If we have limited resources, we will start with no vectors 10482 * for the special features and then allocate vectors to some 10483 * of these features based on the policy and at the end disable 10484 * the features that did not get any vectors. 10485 */ 10486 int vec; 10487 10488 dev_info(&pf->pdev->dev, 10489 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n", 10490 v_actual, v_budget); 10491 /* reserve the misc vector */ 10492 vec = v_actual - 1; 10493 10494 /* Scale vector usage down */ 10495 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ 10496 pf->num_vmdq_vsis = 1; 10497 pf->num_vmdq_qps = 1; 10498 10499 /* partition out the remaining vectors */ 10500 switch (vec) { 10501 case 2: 10502 pf->num_lan_msix = 1; 10503 break; 10504 case 3: 10505 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10506 pf->num_lan_msix = 1; 10507 pf->num_iwarp_msix = 1; 10508 } else { 10509 pf->num_lan_msix = 2; 10510 } 10511 break; 10512 default: 10513 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 10514 pf->num_iwarp_msix = min_t(int, (vec / 3), 10515 iwarp_requested); 10516 pf->num_vmdq_vsis = min_t(int, (vec / 3), 10517 I40E_DEFAULT_NUM_VMDQ_VSI); 10518 } else { 10519 pf->num_vmdq_vsis = min_t(int, (vec / 2), 10520 I40E_DEFAULT_NUM_VMDQ_VSI); 10521 } 10522 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 10523 pf->num_fdsb_msix = 1; 10524 vec--; 10525 } 10526 pf->num_lan_msix = min_t(int, 10527 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)), 10528 pf->num_lan_msix); 10529 pf->num_lan_qps = pf->num_lan_msix; 10530 break; 10531 } 10532 } 10533 10534 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && 10535 (pf->num_fdsb_msix == 0)) { 10536 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n"); 10537 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 10538 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10539 } 10540 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 10541 (pf->num_vmdq_msix == 0)) { 10542 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); 10543 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; 10544 } 10545 10546 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) && 10547 (pf->num_iwarp_msix == 0)) { 10548 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n"); 10549 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 10550 } 10551 i40e_debug(&pf->hw, I40E_DEBUG_INIT, 10552 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n", 10553 pf->num_lan_msix, 10554 pf->num_vmdq_msix * pf->num_vmdq_vsis, 10555 pf->num_fdsb_msix, 10556 pf->num_iwarp_msix); 10557 10558 return v_actual; 10559 } 10560 10561 /** 10562 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector 10563 * @vsi: the VSI being configured 10564 * @v_idx: index of the vector in the vsi struct 10565 * @cpu: cpu to be used on affinity_mask 10566 * 10567 * We allocate one q_vector. If allocation fails we return -ENOMEM. 10568 **/ 10569 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu) 10570 { 10571 struct i40e_q_vector *q_vector; 10572 10573 /* allocate q_vector */ 10574 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); 10575 if (!q_vector) 10576 return -ENOMEM; 10577 10578 q_vector->vsi = vsi; 10579 q_vector->v_idx = v_idx; 10580 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 10581 10582 if (vsi->netdev) 10583 netif_napi_add(vsi->netdev, &q_vector->napi, 10584 i40e_napi_poll, NAPI_POLL_WEIGHT); 10585 10586 /* tie q_vector and vsi together */ 10587 vsi->q_vectors[v_idx] = q_vector; 10588 10589 return 0; 10590 } 10591 10592 /** 10593 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors 10594 * @vsi: the VSI being configured 10595 * 10596 * We allocate one q_vector per queue interrupt. If allocation fails we 10597 * return -ENOMEM. 10598 **/ 10599 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) 10600 { 10601 struct i40e_pf *pf = vsi->back; 10602 int err, v_idx, num_q_vectors, current_cpu; 10603 10604 /* if not MSIX, give the one vector only to the LAN VSI */ 10605 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 10606 num_q_vectors = vsi->num_q_vectors; 10607 else if (vsi == pf->vsi[pf->lan_vsi]) 10608 num_q_vectors = 1; 10609 else 10610 return -EINVAL; 10611 10612 current_cpu = cpumask_first(cpu_online_mask); 10613 10614 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { 10615 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu); 10616 if (err) 10617 goto err_out; 10618 current_cpu = cpumask_next(current_cpu, cpu_online_mask); 10619 if (unlikely(current_cpu >= nr_cpu_ids)) 10620 current_cpu = cpumask_first(cpu_online_mask); 10621 } 10622 10623 return 0; 10624 10625 err_out: 10626 while (v_idx--) 10627 i40e_free_q_vector(vsi, v_idx); 10628 10629 return err; 10630 } 10631 10632 /** 10633 * i40e_init_interrupt_scheme - Determine proper interrupt scheme 10634 * @pf: board private structure to initialize 10635 **/ 10636 static int i40e_init_interrupt_scheme(struct i40e_pf *pf) 10637 { 10638 int vectors = 0; 10639 ssize_t size; 10640 10641 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 10642 vectors = i40e_init_msix(pf); 10643 if (vectors < 0) { 10644 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | 10645 I40E_FLAG_IWARP_ENABLED | 10646 I40E_FLAG_RSS_ENABLED | 10647 I40E_FLAG_DCB_CAPABLE | 10648 I40E_FLAG_DCB_ENABLED | 10649 I40E_FLAG_SRIOV_ENABLED | 10650 I40E_FLAG_FD_SB_ENABLED | 10651 I40E_FLAG_FD_ATR_ENABLED | 10652 I40E_FLAG_VMDQ_ENABLED); 10653 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 10654 10655 /* rework the queue expectations without MSIX */ 10656 i40e_determine_queue_usage(pf); 10657 } 10658 } 10659 10660 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && 10661 (pf->flags & I40E_FLAG_MSI_ENABLED)) { 10662 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); 10663 vectors = pci_enable_msi(pf->pdev); 10664 if (vectors < 0) { 10665 dev_info(&pf->pdev->dev, "MSI init failed - %d\n", 10666 vectors); 10667 pf->flags &= ~I40E_FLAG_MSI_ENABLED; 10668 } 10669 vectors = 1; /* one MSI or Legacy vector */ 10670 } 10671 10672 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) 10673 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); 10674 10675 /* set up vector assignment tracking */ 10676 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors); 10677 pf->irq_pile = kzalloc(size, GFP_KERNEL); 10678 if (!pf->irq_pile) 10679 return -ENOMEM; 10680 10681 pf->irq_pile->num_entries = vectors; 10682 pf->irq_pile->search_hint = 0; 10683 10684 /* track first vector for misc interrupts, ignore return */ 10685 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1); 10686 10687 return 0; 10688 } 10689 10690 /** 10691 * i40e_restore_interrupt_scheme - Restore the interrupt scheme 10692 * @pf: private board data structure 10693 * 10694 * Restore the interrupt scheme that was cleared when we suspended the 10695 * device. This should be called during resume to re-allocate the q_vectors 10696 * and reacquire IRQs. 10697 */ 10698 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf) 10699 { 10700 int err, i; 10701 10702 /* We cleared the MSI and MSI-X flags when disabling the old interrupt 10703 * scheme. We need to re-enabled them here in order to attempt to 10704 * re-acquire the MSI or MSI-X vectors 10705 */ 10706 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); 10707 10708 err = i40e_init_interrupt_scheme(pf); 10709 if (err) 10710 return err; 10711 10712 /* Now that we've re-acquired IRQs, we need to remap the vectors and 10713 * rings together again. 10714 */ 10715 for (i = 0; i < pf->num_alloc_vsi; i++) { 10716 if (pf->vsi[i]) { 10717 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]); 10718 if (err) 10719 goto err_unwind; 10720 i40e_vsi_map_rings_to_vectors(pf->vsi[i]); 10721 } 10722 } 10723 10724 err = i40e_setup_misc_vector(pf); 10725 if (err) 10726 goto err_unwind; 10727 10728 if (pf->flags & I40E_FLAG_IWARP_ENABLED) 10729 i40e_client_update_msix_info(pf); 10730 10731 return 0; 10732 10733 err_unwind: 10734 while (i--) { 10735 if (pf->vsi[i]) 10736 i40e_vsi_free_q_vectors(pf->vsi[i]); 10737 } 10738 10739 return err; 10740 } 10741 10742 /** 10743 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events 10744 * @pf: board private structure 10745 * 10746 * This sets up the handler for MSIX 0, which is used to manage the 10747 * non-queue interrupts, e.g. AdminQ and errors. This is not used 10748 * when in MSI or Legacy interrupt mode. 10749 **/ 10750 static int i40e_setup_misc_vector(struct i40e_pf *pf) 10751 { 10752 struct i40e_hw *hw = &pf->hw; 10753 int err = 0; 10754 10755 /* Only request the IRQ once, the first time through. */ 10756 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) { 10757 err = request_irq(pf->msix_entries[0].vector, 10758 i40e_intr, 0, pf->int_name, pf); 10759 if (err) { 10760 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state); 10761 dev_info(&pf->pdev->dev, 10762 "request_irq for %s failed: %d\n", 10763 pf->int_name, err); 10764 return -EFAULT; 10765 } 10766 } 10767 10768 i40e_enable_misc_int_causes(pf); 10769 10770 /* associate no queues to the misc vector */ 10771 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); 10772 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); 10773 10774 i40e_flush(hw); 10775 10776 i40e_irq_dynamic_enable_icr0(pf); 10777 10778 return err; 10779 } 10780 10781 /** 10782 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands 10783 * @vsi: Pointer to vsi structure 10784 * @seed: Buffter to store the hash keys 10785 * @lut: Buffer to store the lookup table entries 10786 * @lut_size: Size of buffer to store the lookup table entries 10787 * 10788 * Return 0 on success, negative on failure 10789 */ 10790 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed, 10791 u8 *lut, u16 lut_size) 10792 { 10793 struct i40e_pf *pf = vsi->back; 10794 struct i40e_hw *hw = &pf->hw; 10795 int ret = 0; 10796 10797 if (seed) { 10798 ret = i40e_aq_get_rss_key(hw, vsi->id, 10799 (struct i40e_aqc_get_set_rss_key_data *)seed); 10800 if (ret) { 10801 dev_info(&pf->pdev->dev, 10802 "Cannot get RSS key, err %s aq_err %s\n", 10803 i40e_stat_str(&pf->hw, ret), 10804 i40e_aq_str(&pf->hw, 10805 pf->hw.aq.asq_last_status)); 10806 return ret; 10807 } 10808 } 10809 10810 if (lut) { 10811 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false; 10812 10813 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size); 10814 if (ret) { 10815 dev_info(&pf->pdev->dev, 10816 "Cannot get RSS lut, err %s aq_err %s\n", 10817 i40e_stat_str(&pf->hw, ret), 10818 i40e_aq_str(&pf->hw, 10819 pf->hw.aq.asq_last_status)); 10820 return ret; 10821 } 10822 } 10823 10824 return ret; 10825 } 10826 10827 /** 10828 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers 10829 * @vsi: Pointer to vsi structure 10830 * @seed: RSS hash seed 10831 * @lut: Lookup table 10832 * @lut_size: Lookup table size 10833 * 10834 * Returns 0 on success, negative on failure 10835 **/ 10836 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed, 10837 const u8 *lut, u16 lut_size) 10838 { 10839 struct i40e_pf *pf = vsi->back; 10840 struct i40e_hw *hw = &pf->hw; 10841 u16 vf_id = vsi->vf_id; 10842 u8 i; 10843 10844 /* Fill out hash function seed */ 10845 if (seed) { 10846 u32 *seed_dw = (u32 *)seed; 10847 10848 if (vsi->type == I40E_VSI_MAIN) { 10849 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10850 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]); 10851 } else if (vsi->type == I40E_VSI_SRIOV) { 10852 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++) 10853 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]); 10854 } else { 10855 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n"); 10856 } 10857 } 10858 10859 if (lut) { 10860 u32 *lut_dw = (u32 *)lut; 10861 10862 if (vsi->type == I40E_VSI_MAIN) { 10863 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10864 return -EINVAL; 10865 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10866 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]); 10867 } else if (vsi->type == I40E_VSI_SRIOV) { 10868 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE) 10869 return -EINVAL; 10870 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 10871 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]); 10872 } else { 10873 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 10874 } 10875 } 10876 i40e_flush(hw); 10877 10878 return 0; 10879 } 10880 10881 /** 10882 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers 10883 * @vsi: Pointer to VSI structure 10884 * @seed: Buffer to store the keys 10885 * @lut: Buffer to store the lookup table entries 10886 * @lut_size: Size of buffer to store the lookup table entries 10887 * 10888 * Returns 0 on success, negative on failure 10889 */ 10890 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed, 10891 u8 *lut, u16 lut_size) 10892 { 10893 struct i40e_pf *pf = vsi->back; 10894 struct i40e_hw *hw = &pf->hw; 10895 u16 i; 10896 10897 if (seed) { 10898 u32 *seed_dw = (u32 *)seed; 10899 10900 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) 10901 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i)); 10902 } 10903 if (lut) { 10904 u32 *lut_dw = (u32 *)lut; 10905 10906 if (lut_size != I40E_HLUT_ARRAY_SIZE) 10907 return -EINVAL; 10908 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 10909 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i)); 10910 } 10911 10912 return 0; 10913 } 10914 10915 /** 10916 * i40e_config_rss - Configure RSS keys and lut 10917 * @vsi: Pointer to VSI structure 10918 * @seed: RSS hash seed 10919 * @lut: Lookup table 10920 * @lut_size: Lookup table size 10921 * 10922 * Returns 0 on success, negative on failure 10923 */ 10924 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10925 { 10926 struct i40e_pf *pf = vsi->back; 10927 10928 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10929 return i40e_config_rss_aq(vsi, seed, lut, lut_size); 10930 else 10931 return i40e_config_rss_reg(vsi, seed, lut, lut_size); 10932 } 10933 10934 /** 10935 * i40e_get_rss - Get RSS keys and lut 10936 * @vsi: Pointer to VSI structure 10937 * @seed: Buffer to store the keys 10938 * @lut: Buffer to store the lookup table entries 10939 * @lut_size: Size of buffer to store the lookup table entries 10940 * 10941 * Returns 0 on success, negative on failure 10942 */ 10943 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 10944 { 10945 struct i40e_pf *pf = vsi->back; 10946 10947 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) 10948 return i40e_get_rss_aq(vsi, seed, lut, lut_size); 10949 else 10950 return i40e_get_rss_reg(vsi, seed, lut, lut_size); 10951 } 10952 10953 /** 10954 * i40e_fill_rss_lut - Fill the RSS lookup table with default values 10955 * @pf: Pointer to board private structure 10956 * @lut: Lookup table 10957 * @rss_table_size: Lookup table size 10958 * @rss_size: Range of queue number for hashing 10959 */ 10960 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut, 10961 u16 rss_table_size, u16 rss_size) 10962 { 10963 u16 i; 10964 10965 for (i = 0; i < rss_table_size; i++) 10966 lut[i] = i % rss_size; 10967 } 10968 10969 /** 10970 * i40e_pf_config_rss - Prepare for RSS if used 10971 * @pf: board private structure 10972 **/ 10973 static int i40e_pf_config_rss(struct i40e_pf *pf) 10974 { 10975 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 10976 u8 seed[I40E_HKEY_ARRAY_SIZE]; 10977 u8 *lut; 10978 struct i40e_hw *hw = &pf->hw; 10979 u32 reg_val; 10980 u64 hena; 10981 int ret; 10982 10983 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ 10984 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) | 10985 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32); 10986 hena |= i40e_pf_get_default_rss_hena(pf); 10987 10988 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena); 10989 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); 10990 10991 /* Determine the RSS table size based on the hardware capabilities */ 10992 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); 10993 reg_val = (pf->rss_table_size == 512) ? 10994 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) : 10995 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512); 10996 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val); 10997 10998 /* Determine the RSS size of the VSI */ 10999 if (!vsi->rss_size) { 11000 u16 qcount; 11001 /* If the firmware does something weird during VSI init, we 11002 * could end up with zero TCs. Check for that to avoid 11003 * divide-by-zero. It probably won't pass traffic, but it also 11004 * won't panic. 11005 */ 11006 qcount = vsi->num_queue_pairs / 11007 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1); 11008 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11009 } 11010 if (!vsi->rss_size) 11011 return -EINVAL; 11012 11013 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 11014 if (!lut) 11015 return -ENOMEM; 11016 11017 /* Use user configured lut if there is one, otherwise use default */ 11018 if (vsi->rss_lut_user) 11019 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 11020 else 11021 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size); 11022 11023 /* Use user configured hash key if there is one, otherwise 11024 * use default. 11025 */ 11026 if (vsi->rss_hkey_user) 11027 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE); 11028 else 11029 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE); 11030 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size); 11031 kfree(lut); 11032 11033 return ret; 11034 } 11035 11036 /** 11037 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild 11038 * @pf: board private structure 11039 * @queue_count: the requested queue count for rss. 11040 * 11041 * returns 0 if rss is not enabled, if enabled returns the final rss queue 11042 * count which may be different from the requested queue count. 11043 * Note: expects to be called while under rtnl_lock() 11044 **/ 11045 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) 11046 { 11047 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; 11048 int new_rss_size; 11049 11050 if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) 11051 return 0; 11052 11053 new_rss_size = min_t(int, queue_count, pf->rss_size_max); 11054 11055 if (queue_count != vsi->num_queue_pairs) { 11056 u16 qcount; 11057 11058 vsi->req_queue_pairs = queue_count; 11059 i40e_prep_for_reset(pf, true); 11060 11061 pf->alloc_rss_size = new_rss_size; 11062 11063 i40e_reset_and_rebuild(pf, true, true); 11064 11065 /* Discard the user configured hash keys and lut, if less 11066 * queues are enabled. 11067 */ 11068 if (queue_count < vsi->rss_size) { 11069 i40e_clear_rss_config_user(vsi); 11070 dev_dbg(&pf->pdev->dev, 11071 "discard user configured hash keys and lut\n"); 11072 } 11073 11074 /* Reset vsi->rss_size, as number of enabled queues changed */ 11075 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc; 11076 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount); 11077 11078 i40e_pf_config_rss(pf); 11079 } 11080 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n", 11081 vsi->req_queue_pairs, pf->rss_size_max); 11082 return pf->alloc_rss_size; 11083 } 11084 11085 /** 11086 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition 11087 * @pf: board private structure 11088 **/ 11089 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf) 11090 { 11091 i40e_status status; 11092 bool min_valid, max_valid; 11093 u32 max_bw, min_bw; 11094 11095 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw, 11096 &min_valid, &max_valid); 11097 11098 if (!status) { 11099 if (min_valid) 11100 pf->min_bw = min_bw; 11101 if (max_valid) 11102 pf->max_bw = max_bw; 11103 } 11104 11105 return status; 11106 } 11107 11108 /** 11109 * i40e_set_partition_bw_setting - Set BW settings for this PF partition 11110 * @pf: board private structure 11111 **/ 11112 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf) 11113 { 11114 struct i40e_aqc_configure_partition_bw_data bw_data; 11115 i40e_status status; 11116 11117 /* Set the valid bit for this PF */ 11118 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id)); 11119 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK; 11120 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK; 11121 11122 /* Set the new bandwidths */ 11123 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL); 11124 11125 return status; 11126 } 11127 11128 /** 11129 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition 11130 * @pf: board private structure 11131 **/ 11132 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf) 11133 { 11134 /* Commit temporary BW setting to permanent NVM image */ 11135 enum i40e_admin_queue_err last_aq_status; 11136 i40e_status ret; 11137 u16 nvm_word; 11138 11139 if (pf->hw.partition_id != 1) { 11140 dev_info(&pf->pdev->dev, 11141 "Commit BW only works on partition 1! This is partition %d", 11142 pf->hw.partition_id); 11143 ret = I40E_NOT_SUPPORTED; 11144 goto bw_commit_out; 11145 } 11146 11147 /* Acquire NVM for read access */ 11148 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ); 11149 last_aq_status = pf->hw.aq.asq_last_status; 11150 if (ret) { 11151 dev_info(&pf->pdev->dev, 11152 "Cannot acquire NVM for read access, err %s aq_err %s\n", 11153 i40e_stat_str(&pf->hw, ret), 11154 i40e_aq_str(&pf->hw, last_aq_status)); 11155 goto bw_commit_out; 11156 } 11157 11158 /* Read word 0x10 of NVM - SW compatibility word 1 */ 11159 ret = i40e_aq_read_nvm(&pf->hw, 11160 I40E_SR_NVM_CONTROL_WORD, 11161 0x10, sizeof(nvm_word), &nvm_word, 11162 false, NULL); 11163 /* Save off last admin queue command status before releasing 11164 * the NVM 11165 */ 11166 last_aq_status = pf->hw.aq.asq_last_status; 11167 i40e_release_nvm(&pf->hw); 11168 if (ret) { 11169 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n", 11170 i40e_stat_str(&pf->hw, ret), 11171 i40e_aq_str(&pf->hw, last_aq_status)); 11172 goto bw_commit_out; 11173 } 11174 11175 /* Wait a bit for NVM release to complete */ 11176 msleep(50); 11177 11178 /* Acquire NVM for write access */ 11179 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE); 11180 last_aq_status = pf->hw.aq.asq_last_status; 11181 if (ret) { 11182 dev_info(&pf->pdev->dev, 11183 "Cannot acquire NVM for write access, err %s aq_err %s\n", 11184 i40e_stat_str(&pf->hw, ret), 11185 i40e_aq_str(&pf->hw, last_aq_status)); 11186 goto bw_commit_out; 11187 } 11188 /* Write it back out unchanged to initiate update NVM, 11189 * which will force a write of the shadow (alt) RAM to 11190 * the NVM - thus storing the bandwidth values permanently. 11191 */ 11192 ret = i40e_aq_update_nvm(&pf->hw, 11193 I40E_SR_NVM_CONTROL_WORD, 11194 0x10, sizeof(nvm_word), 11195 &nvm_word, true, 0, NULL); 11196 /* Save off last admin queue command status before releasing 11197 * the NVM 11198 */ 11199 last_aq_status = pf->hw.aq.asq_last_status; 11200 i40e_release_nvm(&pf->hw); 11201 if (ret) 11202 dev_info(&pf->pdev->dev, 11203 "BW settings NOT SAVED, err %s aq_err %s\n", 11204 i40e_stat_str(&pf->hw, ret), 11205 i40e_aq_str(&pf->hw, last_aq_status)); 11206 bw_commit_out: 11207 11208 return ret; 11209 } 11210 11211 /** 11212 * i40e_sw_init - Initialize general software structures (struct i40e_pf) 11213 * @pf: board private structure to initialize 11214 * 11215 * i40e_sw_init initializes the Adapter private data structure. 11216 * Fields are initialized based on PCI device information and 11217 * OS network device settings (MTU size). 11218 **/ 11219 static int i40e_sw_init(struct i40e_pf *pf) 11220 { 11221 int err = 0; 11222 int size; 11223 11224 /* Set default capability flags */ 11225 pf->flags = I40E_FLAG_RX_CSUM_ENABLED | 11226 I40E_FLAG_MSI_ENABLED | 11227 I40E_FLAG_MSIX_ENABLED; 11228 11229 /* Set default ITR */ 11230 pf->rx_itr_default = I40E_ITR_RX_DEF; 11231 pf->tx_itr_default = I40E_ITR_TX_DEF; 11232 11233 /* Depending on PF configurations, it is possible that the RSS 11234 * maximum might end up larger than the available queues 11235 */ 11236 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width); 11237 pf->alloc_rss_size = 1; 11238 pf->rss_table_size = pf->hw.func_caps.rss_table_size; 11239 pf->rss_size_max = min_t(int, pf->rss_size_max, 11240 pf->hw.func_caps.num_tx_qp); 11241 if (pf->hw.func_caps.rss) { 11242 pf->flags |= I40E_FLAG_RSS_ENABLED; 11243 pf->alloc_rss_size = min_t(int, pf->rss_size_max, 11244 num_online_cpus()); 11245 } 11246 11247 /* MFP mode enabled */ 11248 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) { 11249 pf->flags |= I40E_FLAG_MFP_ENABLED; 11250 dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); 11251 if (i40e_get_partition_bw_setting(pf)) { 11252 dev_warn(&pf->pdev->dev, 11253 "Could not get partition bw settings\n"); 11254 } else { 11255 dev_info(&pf->pdev->dev, 11256 "Partition BW Min = %8.8x, Max = %8.8x\n", 11257 pf->min_bw, pf->max_bw); 11258 11259 /* nudge the Tx scheduler */ 11260 i40e_set_partition_bw_setting(pf); 11261 } 11262 } 11263 11264 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || 11265 (pf->hw.func_caps.fd_filters_best_effort > 0)) { 11266 pf->flags |= I40E_FLAG_FD_ATR_ENABLED; 11267 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; 11268 if (pf->flags & I40E_FLAG_MFP_ENABLED && 11269 pf->hw.num_partitions > 1) 11270 dev_info(&pf->pdev->dev, 11271 "Flow Director Sideband mode Disabled in MFP mode\n"); 11272 else 11273 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11274 pf->fdir_pf_filter_count = 11275 pf->hw.func_caps.fd_filters_guaranteed; 11276 pf->hw.fdir_shared_filter_count = 11277 pf->hw.func_caps.fd_filters_best_effort; 11278 } 11279 11280 if (pf->hw.mac.type == I40E_MAC_X722) { 11281 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE | 11282 I40E_HW_128_QP_RSS_CAPABLE | 11283 I40E_HW_ATR_EVICT_CAPABLE | 11284 I40E_HW_WB_ON_ITR_CAPABLE | 11285 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE | 11286 I40E_HW_NO_PCI_LINK_CHECK | 11287 I40E_HW_USE_SET_LLDP_MIB | 11288 I40E_HW_GENEVE_OFFLOAD_CAPABLE | 11289 I40E_HW_PTP_L4_CAPABLE | 11290 I40E_HW_WOL_MC_MAGIC_PKT_WAKE | 11291 I40E_HW_OUTER_UDP_CSUM_CAPABLE); 11292 11293 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03 11294 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) != 11295 I40E_FDEVICT_PCTYPE_DEFAULT) { 11296 dev_warn(&pf->pdev->dev, 11297 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n"); 11298 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE; 11299 } 11300 } else if ((pf->hw.aq.api_maj_ver > 1) || 11301 ((pf->hw.aq.api_maj_ver == 1) && 11302 (pf->hw.aq.api_min_ver > 4))) { 11303 /* Supported in FW API version higher than 1.4 */ 11304 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE; 11305 } 11306 11307 /* Enable HW ATR eviction if possible */ 11308 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE) 11309 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED; 11310 11311 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11312 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) || 11313 (pf->hw.aq.fw_maj_ver < 4))) { 11314 pf->hw_features |= I40E_HW_RESTART_AUTONEG; 11315 /* No DCB support for FW < v4.33 */ 11316 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT; 11317 } 11318 11319 /* Disable FW LLDP if FW < v4.3 */ 11320 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11321 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || 11322 (pf->hw.aq.fw_maj_ver < 4))) 11323 pf->hw_features |= I40E_HW_STOP_FW_LLDP; 11324 11325 /* Use the FW Set LLDP MIB API if FW > v4.40 */ 11326 if ((pf->hw.mac.type == I40E_MAC_XL710) && 11327 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) || 11328 (pf->hw.aq.fw_maj_ver >= 5))) 11329 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB; 11330 11331 /* Enable PTP L4 if FW > v6.0 */ 11332 if (pf->hw.mac.type == I40E_MAC_XL710 && 11333 pf->hw.aq.fw_maj_ver >= 6) 11334 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE; 11335 11336 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) { 11337 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; 11338 pf->flags |= I40E_FLAG_VMDQ_ENABLED; 11339 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf); 11340 } 11341 11342 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) { 11343 pf->flags |= I40E_FLAG_IWARP_ENABLED; 11344 /* IWARP needs one extra vector for CQP just like MISC.*/ 11345 pf->num_iwarp_msix = (int)num_online_cpus() + 1; 11346 } 11347 /* Stopping FW LLDP engine is supported on XL710 and X722 11348 * starting from FW versions determined in i40e_init_adminq. 11349 * Stopping the FW LLDP engine is not supported on XL710 11350 * if NPAR is functioning so unset this hw flag in this case. 11351 */ 11352 if (pf->hw.mac.type == I40E_MAC_XL710 && 11353 pf->hw.func_caps.npar_enable && 11354 (pf->hw.flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) 11355 pf->hw.flags &= ~I40E_HW_FLAG_FW_LLDP_STOPPABLE; 11356 11357 #ifdef CONFIG_PCI_IOV 11358 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { 11359 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; 11360 pf->flags |= I40E_FLAG_SRIOV_ENABLED; 11361 pf->num_req_vfs = min_t(int, 11362 pf->hw.func_caps.num_vfs, 11363 I40E_MAX_VF_COUNT); 11364 } 11365 #endif /* CONFIG_PCI_IOV */ 11366 pf->eeprom_version = 0xDEAD; 11367 pf->lan_veb = I40E_NO_VEB; 11368 pf->lan_vsi = I40E_NO_VSI; 11369 11370 /* By default FW has this off for performance reasons */ 11371 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED; 11372 11373 /* set up queue assignment tracking */ 11374 size = sizeof(struct i40e_lump_tracking) 11375 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); 11376 pf->qp_pile = kzalloc(size, GFP_KERNEL); 11377 if (!pf->qp_pile) { 11378 err = -ENOMEM; 11379 goto sw_init_done; 11380 } 11381 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; 11382 pf->qp_pile->search_hint = 0; 11383 11384 pf->tx_timeout_recovery_level = 1; 11385 11386 mutex_init(&pf->switch_mutex); 11387 11388 sw_init_done: 11389 return err; 11390 } 11391 11392 /** 11393 * i40e_set_ntuple - set the ntuple feature flag and take action 11394 * @pf: board private structure to initialize 11395 * @features: the feature set that the stack is suggesting 11396 * 11397 * returns a bool to indicate if reset needs to happen 11398 **/ 11399 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) 11400 { 11401 bool need_reset = false; 11402 11403 /* Check if Flow Director n-tuple support was enabled or disabled. If 11404 * the state changed, we need to reset. 11405 */ 11406 if (features & NETIF_F_NTUPLE) { 11407 /* Enable filters and mark for reset */ 11408 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) 11409 need_reset = true; 11410 /* enable FD_SB only if there is MSI-X vector and no cloud 11411 * filters exist 11412 */ 11413 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) { 11414 pf->flags |= I40E_FLAG_FD_SB_ENABLED; 11415 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE; 11416 } 11417 } else { 11418 /* turn off filters, mark for reset and clear SW filter list */ 11419 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 11420 need_reset = true; 11421 i40e_fdir_filter_exit(pf); 11422 } 11423 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 11424 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state); 11425 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 11426 11427 /* reset fd counters */ 11428 pf->fd_add_err = 0; 11429 pf->fd_atr_cnt = 0; 11430 /* if ATR was auto disabled it can be re-enabled. */ 11431 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) 11432 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && 11433 (I40E_DEBUG_FD & pf->hw.debug_mask)) 11434 dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); 11435 } 11436 return need_reset; 11437 } 11438 11439 /** 11440 * i40e_clear_rss_lut - clear the rx hash lookup table 11441 * @vsi: the VSI being configured 11442 **/ 11443 static void i40e_clear_rss_lut(struct i40e_vsi *vsi) 11444 { 11445 struct i40e_pf *pf = vsi->back; 11446 struct i40e_hw *hw = &pf->hw; 11447 u16 vf_id = vsi->vf_id; 11448 u8 i; 11449 11450 if (vsi->type == I40E_VSI_MAIN) { 11451 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++) 11452 wr32(hw, I40E_PFQF_HLUT(i), 0); 11453 } else if (vsi->type == I40E_VSI_SRIOV) { 11454 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) 11455 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0); 11456 } else { 11457 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n"); 11458 } 11459 } 11460 11461 /** 11462 * i40e_set_features - set the netdev feature flags 11463 * @netdev: ptr to the netdev being adjusted 11464 * @features: the feature set that the stack is suggesting 11465 * Note: expects to be called while under rtnl_lock() 11466 **/ 11467 static int i40e_set_features(struct net_device *netdev, 11468 netdev_features_t features) 11469 { 11470 struct i40e_netdev_priv *np = netdev_priv(netdev); 11471 struct i40e_vsi *vsi = np->vsi; 11472 struct i40e_pf *pf = vsi->back; 11473 bool need_reset; 11474 11475 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 11476 i40e_pf_config_rss(pf); 11477 else if (!(features & NETIF_F_RXHASH) && 11478 netdev->features & NETIF_F_RXHASH) 11479 i40e_clear_rss_lut(vsi); 11480 11481 if (features & NETIF_F_HW_VLAN_CTAG_RX) 11482 i40e_vlan_stripping_enable(vsi); 11483 else 11484 i40e_vlan_stripping_disable(vsi); 11485 11486 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) { 11487 dev_err(&pf->pdev->dev, 11488 "Offloaded tc filters active, can't turn hw_tc_offload off"); 11489 return -EINVAL; 11490 } 11491 11492 need_reset = i40e_set_ntuple(pf, features); 11493 11494 if (need_reset) 11495 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11496 11497 return 0; 11498 } 11499 11500 /** 11501 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port 11502 * @pf: board private structure 11503 * @port: The UDP port to look up 11504 * 11505 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found 11506 **/ 11507 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port) 11508 { 11509 u8 i; 11510 11511 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { 11512 /* Do not report ports with pending deletions as 11513 * being available. 11514 */ 11515 if (!port && (pf->pending_udp_bitmap & BIT_ULL(i))) 11516 continue; 11517 if (pf->udp_ports[i].port == port) 11518 return i; 11519 } 11520 11521 return i; 11522 } 11523 11524 /** 11525 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up 11526 * @netdev: This physical port's netdev 11527 * @ti: Tunnel endpoint information 11528 **/ 11529 static void i40e_udp_tunnel_add(struct net_device *netdev, 11530 struct udp_tunnel_info *ti) 11531 { 11532 struct i40e_netdev_priv *np = netdev_priv(netdev); 11533 struct i40e_vsi *vsi = np->vsi; 11534 struct i40e_pf *pf = vsi->back; 11535 u16 port = ntohs(ti->port); 11536 u8 next_idx; 11537 u8 idx; 11538 11539 idx = i40e_get_udp_port_idx(pf, port); 11540 11541 /* Check if port already exists */ 11542 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11543 netdev_info(netdev, "port %d already offloaded\n", port); 11544 return; 11545 } 11546 11547 /* Now check if there is space to add the new port */ 11548 next_idx = i40e_get_udp_port_idx(pf, 0); 11549 11550 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { 11551 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n", 11552 port); 11553 return; 11554 } 11555 11556 switch (ti->type) { 11557 case UDP_TUNNEL_TYPE_VXLAN: 11558 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN; 11559 break; 11560 case UDP_TUNNEL_TYPE_GENEVE: 11561 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE)) 11562 return; 11563 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE; 11564 break; 11565 default: 11566 return; 11567 } 11568 11569 /* New port: add it and mark its index in the bitmap */ 11570 pf->udp_ports[next_idx].port = port; 11571 pf->udp_ports[next_idx].filter_index = I40E_UDP_PORT_INDEX_UNUSED; 11572 pf->pending_udp_bitmap |= BIT_ULL(next_idx); 11573 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11574 } 11575 11576 /** 11577 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away 11578 * @netdev: This physical port's netdev 11579 * @ti: Tunnel endpoint information 11580 **/ 11581 static void i40e_udp_tunnel_del(struct net_device *netdev, 11582 struct udp_tunnel_info *ti) 11583 { 11584 struct i40e_netdev_priv *np = netdev_priv(netdev); 11585 struct i40e_vsi *vsi = np->vsi; 11586 struct i40e_pf *pf = vsi->back; 11587 u16 port = ntohs(ti->port); 11588 u8 idx; 11589 11590 idx = i40e_get_udp_port_idx(pf, port); 11591 11592 /* Check if port already exists */ 11593 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS) 11594 goto not_found; 11595 11596 switch (ti->type) { 11597 case UDP_TUNNEL_TYPE_VXLAN: 11598 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN) 11599 goto not_found; 11600 break; 11601 case UDP_TUNNEL_TYPE_GENEVE: 11602 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE) 11603 goto not_found; 11604 break; 11605 default: 11606 goto not_found; 11607 } 11608 11609 /* if port exists, set it to 0 (mark for deletion) 11610 * and make it pending 11611 */ 11612 pf->udp_ports[idx].port = 0; 11613 11614 /* Toggle pending bit instead of setting it. This way if we are 11615 * deleting a port that has yet to be added we just clear the pending 11616 * bit and don't have to worry about it. 11617 */ 11618 pf->pending_udp_bitmap ^= BIT_ULL(idx); 11619 set_bit(__I40E_UDP_FILTER_SYNC_PENDING, pf->state); 11620 11621 return; 11622 not_found: 11623 netdev_warn(netdev, "UDP port %d was not found, not deleting\n", 11624 port); 11625 } 11626 11627 static int i40e_get_phys_port_id(struct net_device *netdev, 11628 struct netdev_phys_item_id *ppid) 11629 { 11630 struct i40e_netdev_priv *np = netdev_priv(netdev); 11631 struct i40e_pf *pf = np->vsi->back; 11632 struct i40e_hw *hw = &pf->hw; 11633 11634 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID)) 11635 return -EOPNOTSUPP; 11636 11637 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); 11638 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); 11639 11640 return 0; 11641 } 11642 11643 /** 11644 * i40e_ndo_fdb_add - add an entry to the hardware database 11645 * @ndm: the input from the stack 11646 * @tb: pointer to array of nladdr (unused) 11647 * @dev: the net device pointer 11648 * @addr: the MAC address entry being added 11649 * @vid: VLAN ID 11650 * @flags: instructions from stack about fdb operation 11651 */ 11652 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], 11653 struct net_device *dev, 11654 const unsigned char *addr, u16 vid, 11655 u16 flags) 11656 { 11657 struct i40e_netdev_priv *np = netdev_priv(dev); 11658 struct i40e_pf *pf = np->vsi->back; 11659 int err = 0; 11660 11661 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) 11662 return -EOPNOTSUPP; 11663 11664 if (vid) { 11665 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); 11666 return -EINVAL; 11667 } 11668 11669 /* Hardware does not support aging addresses so if a 11670 * ndm_state is given only allow permanent addresses 11671 */ 11672 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 11673 netdev_info(dev, "FDB only supports static addresses\n"); 11674 return -EINVAL; 11675 } 11676 11677 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 11678 err = dev_uc_add_excl(dev, addr); 11679 else if (is_multicast_ether_addr(addr)) 11680 err = dev_mc_add_excl(dev, addr); 11681 else 11682 err = -EINVAL; 11683 11684 /* Only return duplicate errors if NLM_F_EXCL is set */ 11685 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 11686 err = 0; 11687 11688 return err; 11689 } 11690 11691 /** 11692 * i40e_ndo_bridge_setlink - Set the hardware bridge mode 11693 * @dev: the netdev being configured 11694 * @nlh: RTNL message 11695 * @flags: bridge flags 11696 * @extack: netlink extended ack 11697 * 11698 * Inserts a new hardware bridge if not already created and 11699 * enables the bridging mode requested (VEB or VEPA). If the 11700 * hardware bridge has already been inserted and the request 11701 * is to change the mode then that requires a PF reset to 11702 * allow rebuild of the components with required hardware 11703 * bridge mode enabled. 11704 * 11705 * Note: expects to be called while under rtnl_lock() 11706 **/ 11707 static int i40e_ndo_bridge_setlink(struct net_device *dev, 11708 struct nlmsghdr *nlh, 11709 u16 flags, 11710 struct netlink_ext_ack *extack) 11711 { 11712 struct i40e_netdev_priv *np = netdev_priv(dev); 11713 struct i40e_vsi *vsi = np->vsi; 11714 struct i40e_pf *pf = vsi->back; 11715 struct i40e_veb *veb = NULL; 11716 struct nlattr *attr, *br_spec; 11717 int i, rem; 11718 11719 /* Only for PF VSI for now */ 11720 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11721 return -EOPNOTSUPP; 11722 11723 /* Find the HW bridge for PF VSI */ 11724 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11725 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11726 veb = pf->veb[i]; 11727 } 11728 11729 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 11730 11731 nla_for_each_nested(attr, br_spec, rem) { 11732 __u16 mode; 11733 11734 if (nla_type(attr) != IFLA_BRIDGE_MODE) 11735 continue; 11736 11737 mode = nla_get_u16(attr); 11738 if ((mode != BRIDGE_MODE_VEPA) && 11739 (mode != BRIDGE_MODE_VEB)) 11740 return -EINVAL; 11741 11742 /* Insert a new HW bridge */ 11743 if (!veb) { 11744 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 11745 vsi->tc_config.enabled_tc); 11746 if (veb) { 11747 veb->bridge_mode = mode; 11748 i40e_config_bridge_mode(veb); 11749 } else { 11750 /* No Bridge HW offload available */ 11751 return -ENOENT; 11752 } 11753 break; 11754 } else if (mode != veb->bridge_mode) { 11755 /* Existing HW bridge but different mode needs reset */ 11756 veb->bridge_mode = mode; 11757 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */ 11758 if (mode == BRIDGE_MODE_VEB) 11759 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 11760 else 11761 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 11762 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true); 11763 break; 11764 } 11765 } 11766 11767 return 0; 11768 } 11769 11770 /** 11771 * i40e_ndo_bridge_getlink - Get the hardware bridge mode 11772 * @skb: skb buff 11773 * @pid: process id 11774 * @seq: RTNL message seq # 11775 * @dev: the netdev being configured 11776 * @filter_mask: unused 11777 * @nlflags: netlink flags passed in 11778 * 11779 * Return the mode in which the hardware bridge is operating in 11780 * i.e VEB or VEPA. 11781 **/ 11782 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 11783 struct net_device *dev, 11784 u32 __always_unused filter_mask, 11785 int nlflags) 11786 { 11787 struct i40e_netdev_priv *np = netdev_priv(dev); 11788 struct i40e_vsi *vsi = np->vsi; 11789 struct i40e_pf *pf = vsi->back; 11790 struct i40e_veb *veb = NULL; 11791 int i; 11792 11793 /* Only for PF VSI for now */ 11794 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) 11795 return -EOPNOTSUPP; 11796 11797 /* Find the HW bridge for the PF VSI */ 11798 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 11799 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 11800 veb = pf->veb[i]; 11801 } 11802 11803 if (!veb) 11804 return 0; 11805 11806 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode, 11807 0, 0, nlflags, filter_mask, NULL); 11808 } 11809 11810 /** 11811 * i40e_features_check - Validate encapsulated packet conforms to limits 11812 * @skb: skb buff 11813 * @dev: This physical port's netdev 11814 * @features: Offload features that the stack believes apply 11815 **/ 11816 static netdev_features_t i40e_features_check(struct sk_buff *skb, 11817 struct net_device *dev, 11818 netdev_features_t features) 11819 { 11820 size_t len; 11821 11822 /* No point in doing any of this if neither checksum nor GSO are 11823 * being requested for this frame. We can rule out both by just 11824 * checking for CHECKSUM_PARTIAL 11825 */ 11826 if (skb->ip_summed != CHECKSUM_PARTIAL) 11827 return features; 11828 11829 /* We cannot support GSO if the MSS is going to be less than 11830 * 64 bytes. If it is then we need to drop support for GSO. 11831 */ 11832 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 11833 features &= ~NETIF_F_GSO_MASK; 11834 11835 /* MACLEN can support at most 63 words */ 11836 len = skb_network_header(skb) - skb->data; 11837 if (len & ~(63 * 2)) 11838 goto out_err; 11839 11840 /* IPLEN and EIPLEN can support at most 127 dwords */ 11841 len = skb_transport_header(skb) - skb_network_header(skb); 11842 if (len & ~(127 * 4)) 11843 goto out_err; 11844 11845 if (skb->encapsulation) { 11846 /* L4TUNLEN can support 127 words */ 11847 len = skb_inner_network_header(skb) - skb_transport_header(skb); 11848 if (len & ~(127 * 2)) 11849 goto out_err; 11850 11851 /* IPLEN can support at most 127 dwords */ 11852 len = skb_inner_transport_header(skb) - 11853 skb_inner_network_header(skb); 11854 if (len & ~(127 * 4)) 11855 goto out_err; 11856 } 11857 11858 /* No need to validate L4LEN as TCP is the only protocol with a 11859 * a flexible value and we support all possible values supported 11860 * by TCP, which is at most 15 dwords 11861 */ 11862 11863 return features; 11864 out_err: 11865 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 11866 } 11867 11868 /** 11869 * i40e_xdp_setup - add/remove an XDP program 11870 * @vsi: VSI to changed 11871 * @prog: XDP program 11872 **/ 11873 static int i40e_xdp_setup(struct i40e_vsi *vsi, 11874 struct bpf_prog *prog) 11875 { 11876 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 11877 struct i40e_pf *pf = vsi->back; 11878 struct bpf_prog *old_prog; 11879 bool need_reset; 11880 int i; 11881 11882 /* Don't allow frames that span over multiple buffers */ 11883 if (frame_size > vsi->rx_buf_len) 11884 return -EINVAL; 11885 11886 if (!i40e_enabled_xdp_vsi(vsi) && !prog) 11887 return 0; 11888 11889 /* When turning XDP on->off/off->on we reset and rebuild the rings. */ 11890 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog); 11891 11892 if (need_reset) 11893 i40e_prep_for_reset(pf, true); 11894 11895 old_prog = xchg(&vsi->xdp_prog, prog); 11896 11897 if (need_reset) 11898 i40e_reset_and_rebuild(pf, true, true); 11899 11900 for (i = 0; i < vsi->num_queue_pairs; i++) 11901 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 11902 11903 if (old_prog) 11904 bpf_prog_put(old_prog); 11905 11906 /* Kick start the NAPI context if there is an AF_XDP socket open 11907 * on that queue id. This so that receiving will start. 11908 */ 11909 if (need_reset && prog) 11910 for (i = 0; i < vsi->num_queue_pairs; i++) 11911 if (vsi->xdp_rings[i]->xsk_umem) 11912 (void)i40e_xsk_async_xmit(vsi->netdev, i); 11913 11914 return 0; 11915 } 11916 11917 /** 11918 * i40e_enter_busy_conf - Enters busy config state 11919 * @vsi: vsi 11920 * 11921 * Returns 0 on success, <0 for failure. 11922 **/ 11923 static int i40e_enter_busy_conf(struct i40e_vsi *vsi) 11924 { 11925 struct i40e_pf *pf = vsi->back; 11926 int timeout = 50; 11927 11928 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) { 11929 timeout--; 11930 if (!timeout) 11931 return -EBUSY; 11932 usleep_range(1000, 2000); 11933 } 11934 11935 return 0; 11936 } 11937 11938 /** 11939 * i40e_exit_busy_conf - Exits busy config state 11940 * @vsi: vsi 11941 **/ 11942 static void i40e_exit_busy_conf(struct i40e_vsi *vsi) 11943 { 11944 struct i40e_pf *pf = vsi->back; 11945 11946 clear_bit(__I40E_CONFIG_BUSY, pf->state); 11947 } 11948 11949 /** 11950 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair 11951 * @vsi: vsi 11952 * @queue_pair: queue pair 11953 **/ 11954 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair) 11955 { 11956 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0, 11957 sizeof(vsi->rx_rings[queue_pair]->rx_stats)); 11958 memset(&vsi->tx_rings[queue_pair]->stats, 0, 11959 sizeof(vsi->tx_rings[queue_pair]->stats)); 11960 if (i40e_enabled_xdp_vsi(vsi)) { 11961 memset(&vsi->xdp_rings[queue_pair]->stats, 0, 11962 sizeof(vsi->xdp_rings[queue_pair]->stats)); 11963 } 11964 } 11965 11966 /** 11967 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair 11968 * @vsi: vsi 11969 * @queue_pair: queue pair 11970 **/ 11971 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair) 11972 { 11973 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]); 11974 if (i40e_enabled_xdp_vsi(vsi)) { 11975 /* Make sure that in-progress ndo_xdp_xmit calls are 11976 * completed. 11977 */ 11978 synchronize_rcu(); 11979 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]); 11980 } 11981 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]); 11982 } 11983 11984 /** 11985 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair 11986 * @vsi: vsi 11987 * @queue_pair: queue pair 11988 * @enable: true for enable, false for disable 11989 **/ 11990 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair, 11991 bool enable) 11992 { 11993 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 11994 struct i40e_q_vector *q_vector = rxr->q_vector; 11995 11996 if (!vsi->netdev) 11997 return; 11998 11999 /* All rings in a qp belong to the same qvector. */ 12000 if (q_vector->rx.ring || q_vector->tx.ring) { 12001 if (enable) 12002 napi_enable(&q_vector->napi); 12003 else 12004 napi_disable(&q_vector->napi); 12005 } 12006 } 12007 12008 /** 12009 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair 12010 * @vsi: vsi 12011 * @queue_pair: queue pair 12012 * @enable: true for enable, false for disable 12013 * 12014 * Returns 0 on success, <0 on failure. 12015 **/ 12016 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair, 12017 bool enable) 12018 { 12019 struct i40e_pf *pf = vsi->back; 12020 int pf_q, ret = 0; 12021 12022 pf_q = vsi->base_queue + queue_pair; 12023 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q, 12024 false /*is xdp*/, enable); 12025 if (ret) { 12026 dev_info(&pf->pdev->dev, 12027 "VSI seid %d Tx ring %d %sable timeout\n", 12028 vsi->seid, pf_q, (enable ? "en" : "dis")); 12029 return ret; 12030 } 12031 12032 i40e_control_rx_q(pf, pf_q, enable); 12033 ret = i40e_pf_rxq_wait(pf, pf_q, enable); 12034 if (ret) { 12035 dev_info(&pf->pdev->dev, 12036 "VSI seid %d Rx ring %d %sable timeout\n", 12037 vsi->seid, pf_q, (enable ? "en" : "dis")); 12038 return ret; 12039 } 12040 12041 /* Due to HW errata, on Rx disable only, the register can 12042 * indicate done before it really is. Needs 50ms to be sure 12043 */ 12044 if (!enable) 12045 mdelay(50); 12046 12047 if (!i40e_enabled_xdp_vsi(vsi)) 12048 return ret; 12049 12050 ret = i40e_control_wait_tx_q(vsi->seid, pf, 12051 pf_q + vsi->alloc_queue_pairs, 12052 true /*is xdp*/, enable); 12053 if (ret) { 12054 dev_info(&pf->pdev->dev, 12055 "VSI seid %d XDP Tx ring %d %sable timeout\n", 12056 vsi->seid, pf_q, (enable ? "en" : "dis")); 12057 } 12058 12059 return ret; 12060 } 12061 12062 /** 12063 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair 12064 * @vsi: vsi 12065 * @queue_pair: queue_pair 12066 **/ 12067 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair) 12068 { 12069 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12070 struct i40e_pf *pf = vsi->back; 12071 struct i40e_hw *hw = &pf->hw; 12072 12073 /* All rings in a qp belong to the same qvector. */ 12074 if (pf->flags & I40E_FLAG_MSIX_ENABLED) 12075 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx); 12076 else 12077 i40e_irq_dynamic_enable_icr0(pf); 12078 12079 i40e_flush(hw); 12080 } 12081 12082 /** 12083 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair 12084 * @vsi: vsi 12085 * @queue_pair: queue_pair 12086 **/ 12087 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair) 12088 { 12089 struct i40e_ring *rxr = vsi->rx_rings[queue_pair]; 12090 struct i40e_pf *pf = vsi->back; 12091 struct i40e_hw *hw = &pf->hw; 12092 12093 /* For simplicity, instead of removing the qp interrupt causes 12094 * from the interrupt linked list, we simply disable the interrupt, and 12095 * leave the list intact. 12096 * 12097 * All rings in a qp belong to the same qvector. 12098 */ 12099 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 12100 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx; 12101 12102 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0); 12103 i40e_flush(hw); 12104 synchronize_irq(pf->msix_entries[intpf].vector); 12105 } else { 12106 /* Legacy and MSI mode - this stops all interrupt handling */ 12107 wr32(hw, I40E_PFINT_ICR0_ENA, 0); 12108 wr32(hw, I40E_PFINT_DYN_CTL0, 0); 12109 i40e_flush(hw); 12110 synchronize_irq(pf->pdev->irq); 12111 } 12112 } 12113 12114 /** 12115 * i40e_queue_pair_disable - Disables a queue pair 12116 * @vsi: vsi 12117 * @queue_pair: queue pair 12118 * 12119 * Returns 0 on success, <0 on failure. 12120 **/ 12121 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair) 12122 { 12123 int err; 12124 12125 err = i40e_enter_busy_conf(vsi); 12126 if (err) 12127 return err; 12128 12129 i40e_queue_pair_disable_irq(vsi, queue_pair); 12130 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */); 12131 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */); 12132 i40e_queue_pair_clean_rings(vsi, queue_pair); 12133 i40e_queue_pair_reset_stats(vsi, queue_pair); 12134 12135 return err; 12136 } 12137 12138 /** 12139 * i40e_queue_pair_enable - Enables a queue pair 12140 * @vsi: vsi 12141 * @queue_pair: queue pair 12142 * 12143 * Returns 0 on success, <0 on failure. 12144 **/ 12145 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair) 12146 { 12147 int err; 12148 12149 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]); 12150 if (err) 12151 return err; 12152 12153 if (i40e_enabled_xdp_vsi(vsi)) { 12154 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]); 12155 if (err) 12156 return err; 12157 } 12158 12159 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]); 12160 if (err) 12161 return err; 12162 12163 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */); 12164 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */); 12165 i40e_queue_pair_enable_irq(vsi, queue_pair); 12166 12167 i40e_exit_busy_conf(vsi); 12168 12169 return err; 12170 } 12171 12172 /** 12173 * i40e_xdp - implements ndo_bpf for i40e 12174 * @dev: netdevice 12175 * @xdp: XDP command 12176 **/ 12177 static int i40e_xdp(struct net_device *dev, 12178 struct netdev_bpf *xdp) 12179 { 12180 struct i40e_netdev_priv *np = netdev_priv(dev); 12181 struct i40e_vsi *vsi = np->vsi; 12182 12183 if (vsi->type != I40E_VSI_MAIN) 12184 return -EINVAL; 12185 12186 switch (xdp->command) { 12187 case XDP_SETUP_PROG: 12188 return i40e_xdp_setup(vsi, xdp->prog); 12189 case XDP_QUERY_PROG: 12190 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 12191 return 0; 12192 case XDP_QUERY_XSK_UMEM: 12193 return i40e_xsk_umem_query(vsi, &xdp->xsk.umem, 12194 xdp->xsk.queue_id); 12195 case XDP_SETUP_XSK_UMEM: 12196 return i40e_xsk_umem_setup(vsi, xdp->xsk.umem, 12197 xdp->xsk.queue_id); 12198 default: 12199 return -EINVAL; 12200 } 12201 } 12202 12203 static const struct net_device_ops i40e_netdev_ops = { 12204 .ndo_open = i40e_open, 12205 .ndo_stop = i40e_close, 12206 .ndo_start_xmit = i40e_lan_xmit_frame, 12207 .ndo_get_stats64 = i40e_get_netdev_stats_struct, 12208 .ndo_set_rx_mode = i40e_set_rx_mode, 12209 .ndo_validate_addr = eth_validate_addr, 12210 .ndo_set_mac_address = i40e_set_mac, 12211 .ndo_change_mtu = i40e_change_mtu, 12212 .ndo_do_ioctl = i40e_ioctl, 12213 .ndo_tx_timeout = i40e_tx_timeout, 12214 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, 12215 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, 12216 #ifdef CONFIG_NET_POLL_CONTROLLER 12217 .ndo_poll_controller = i40e_netpoll, 12218 #endif 12219 .ndo_setup_tc = __i40e_setup_tc, 12220 .ndo_set_features = i40e_set_features, 12221 .ndo_set_vf_mac = i40e_ndo_set_vf_mac, 12222 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, 12223 .ndo_set_vf_rate = i40e_ndo_set_vf_bw, 12224 .ndo_get_vf_config = i40e_ndo_get_vf_config, 12225 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, 12226 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, 12227 .ndo_set_vf_trust = i40e_ndo_set_vf_trust, 12228 .ndo_udp_tunnel_add = i40e_udp_tunnel_add, 12229 .ndo_udp_tunnel_del = i40e_udp_tunnel_del, 12230 .ndo_get_phys_port_id = i40e_get_phys_port_id, 12231 .ndo_fdb_add = i40e_ndo_fdb_add, 12232 .ndo_features_check = i40e_features_check, 12233 .ndo_bridge_getlink = i40e_ndo_bridge_getlink, 12234 .ndo_bridge_setlink = i40e_ndo_bridge_setlink, 12235 .ndo_bpf = i40e_xdp, 12236 .ndo_xdp_xmit = i40e_xdp_xmit, 12237 .ndo_xsk_async_xmit = i40e_xsk_async_xmit, 12238 }; 12239 12240 /** 12241 * i40e_config_netdev - Setup the netdev flags 12242 * @vsi: the VSI being configured 12243 * 12244 * Returns 0 on success, negative value on failure 12245 **/ 12246 static int i40e_config_netdev(struct i40e_vsi *vsi) 12247 { 12248 struct i40e_pf *pf = vsi->back; 12249 struct i40e_hw *hw = &pf->hw; 12250 struct i40e_netdev_priv *np; 12251 struct net_device *netdev; 12252 u8 broadcast[ETH_ALEN]; 12253 u8 mac_addr[ETH_ALEN]; 12254 int etherdev_size; 12255 netdev_features_t hw_enc_features; 12256 netdev_features_t hw_features; 12257 12258 etherdev_size = sizeof(struct i40e_netdev_priv); 12259 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); 12260 if (!netdev) 12261 return -ENOMEM; 12262 12263 vsi->netdev = netdev; 12264 np = netdev_priv(netdev); 12265 np->vsi = vsi; 12266 12267 hw_enc_features = NETIF_F_SG | 12268 NETIF_F_IP_CSUM | 12269 NETIF_F_IPV6_CSUM | 12270 NETIF_F_HIGHDMA | 12271 NETIF_F_SOFT_FEATURES | 12272 NETIF_F_TSO | 12273 NETIF_F_TSO_ECN | 12274 NETIF_F_TSO6 | 12275 NETIF_F_GSO_GRE | 12276 NETIF_F_GSO_GRE_CSUM | 12277 NETIF_F_GSO_PARTIAL | 12278 NETIF_F_GSO_IPXIP4 | 12279 NETIF_F_GSO_IPXIP6 | 12280 NETIF_F_GSO_UDP_TUNNEL | 12281 NETIF_F_GSO_UDP_TUNNEL_CSUM | 12282 NETIF_F_SCTP_CRC | 12283 NETIF_F_RXHASH | 12284 NETIF_F_RXCSUM | 12285 0; 12286 12287 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE)) 12288 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 12289 12290 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 12291 12292 netdev->hw_enc_features |= hw_enc_features; 12293 12294 /* record features VLANs can make use of */ 12295 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 12296 12297 hw_features = hw_enc_features | 12298 NETIF_F_HW_VLAN_CTAG_TX | 12299 NETIF_F_HW_VLAN_CTAG_RX; 12300 12301 if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) 12302 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC; 12303 12304 netdev->hw_features |= hw_features; 12305 12306 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 12307 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 12308 12309 if (vsi->type == I40E_VSI_MAIN) { 12310 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 12311 ether_addr_copy(mac_addr, hw->mac.perm_addr); 12312 /* The following steps are necessary for two reasons. First, 12313 * some older NVM configurations load a default MAC-VLAN 12314 * filter that will accept any tagged packet, and we want to 12315 * replace this with a normal filter. Additionally, it is 12316 * possible our MAC address was provided by the platform using 12317 * Open Firmware or similar. 12318 * 12319 * Thus, we need to remove the default filter and install one 12320 * specific to the MAC address. 12321 */ 12322 i40e_rm_default_mac_filter(vsi, mac_addr); 12323 spin_lock_bh(&vsi->mac_filter_hash_lock); 12324 i40e_add_mac_filter(vsi, mac_addr); 12325 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12326 } else { 12327 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we 12328 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to 12329 * the end, which is 4 bytes long, so force truncation of the 12330 * original name by IFNAMSIZ - 4 12331 */ 12332 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", 12333 IFNAMSIZ - 4, 12334 pf->vsi[pf->lan_vsi]->netdev->name); 12335 eth_random_addr(mac_addr); 12336 12337 spin_lock_bh(&vsi->mac_filter_hash_lock); 12338 i40e_add_mac_filter(vsi, mac_addr); 12339 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12340 } 12341 12342 /* Add the broadcast filter so that we initially will receive 12343 * broadcast packets. Note that when a new VLAN is first added the 12344 * driver will convert all filters marked I40E_VLAN_ANY into VLAN 12345 * specific filters as part of transitioning into "vlan" operation. 12346 * When more VLANs are added, the driver will copy each existing MAC 12347 * filter and add it for the new VLAN. 12348 * 12349 * Broadcast filters are handled specially by 12350 * i40e_sync_filters_subtask, as the driver must to set the broadcast 12351 * promiscuous bit instead of adding this directly as a MAC/VLAN 12352 * filter. The subtask will update the correct broadcast promiscuous 12353 * bits as VLANs become active or inactive. 12354 */ 12355 eth_broadcast_addr(broadcast); 12356 spin_lock_bh(&vsi->mac_filter_hash_lock); 12357 i40e_add_mac_filter(vsi, broadcast); 12358 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12359 12360 ether_addr_copy(netdev->dev_addr, mac_addr); 12361 ether_addr_copy(netdev->perm_addr, mac_addr); 12362 12363 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */ 12364 netdev->neigh_priv_len = sizeof(u32) * 4; 12365 12366 netdev->priv_flags |= IFF_UNICAST_FLT; 12367 netdev->priv_flags |= IFF_SUPP_NOFCS; 12368 /* Setup netdev TC information */ 12369 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); 12370 12371 netdev->netdev_ops = &i40e_netdev_ops; 12372 netdev->watchdog_timeo = 5 * HZ; 12373 i40e_set_ethtool_ops(netdev); 12374 12375 /* MTU range: 68 - 9706 */ 12376 netdev->min_mtu = ETH_MIN_MTU; 12377 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD; 12378 12379 return 0; 12380 } 12381 12382 /** 12383 * i40e_vsi_delete - Delete a VSI from the switch 12384 * @vsi: the VSI being removed 12385 * 12386 * Returns 0 on success, negative value on failure 12387 **/ 12388 static void i40e_vsi_delete(struct i40e_vsi *vsi) 12389 { 12390 /* remove default VSI is not allowed */ 12391 if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) 12392 return; 12393 12394 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); 12395 } 12396 12397 /** 12398 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB 12399 * @vsi: the VSI being queried 12400 * 12401 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode 12402 **/ 12403 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi) 12404 { 12405 struct i40e_veb *veb; 12406 struct i40e_pf *pf = vsi->back; 12407 12408 /* Uplink is not a bridge so default to VEB */ 12409 if (vsi->veb_idx == I40E_NO_VEB) 12410 return 1; 12411 12412 veb = pf->veb[vsi->veb_idx]; 12413 if (!veb) { 12414 dev_info(&pf->pdev->dev, 12415 "There is no veb associated with the bridge\n"); 12416 return -ENOENT; 12417 } 12418 12419 /* Uplink is a bridge in VEPA mode */ 12420 if (veb->bridge_mode & BRIDGE_MODE_VEPA) { 12421 return 0; 12422 } else { 12423 /* Uplink is a bridge in VEB mode */ 12424 return 1; 12425 } 12426 12427 /* VEPA is now default bridge, so return 0 */ 12428 return 0; 12429 } 12430 12431 /** 12432 * i40e_add_vsi - Add a VSI to the switch 12433 * @vsi: the VSI being configured 12434 * 12435 * This initializes a VSI context depending on the VSI type to be added and 12436 * passes it down to the add_vsi aq command. 12437 **/ 12438 static int i40e_add_vsi(struct i40e_vsi *vsi) 12439 { 12440 int ret = -ENODEV; 12441 struct i40e_pf *pf = vsi->back; 12442 struct i40e_hw *hw = &pf->hw; 12443 struct i40e_vsi_context ctxt; 12444 struct i40e_mac_filter *f; 12445 struct hlist_node *h; 12446 int bkt; 12447 12448 u8 enabled_tc = 0x1; /* TC0 enabled */ 12449 int f_count = 0; 12450 12451 memset(&ctxt, 0, sizeof(ctxt)); 12452 switch (vsi->type) { 12453 case I40E_VSI_MAIN: 12454 /* The PF's main VSI is already setup as part of the 12455 * device initialization, so we'll not bother with 12456 * the add_vsi call, but we will retrieve the current 12457 * VSI context. 12458 */ 12459 ctxt.seid = pf->main_vsi_seid; 12460 ctxt.pf_num = pf->hw.pf_id; 12461 ctxt.vf_num = 0; 12462 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); 12463 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12464 if (ret) { 12465 dev_info(&pf->pdev->dev, 12466 "couldn't get PF vsi config, err %s aq_err %s\n", 12467 i40e_stat_str(&pf->hw, ret), 12468 i40e_aq_str(&pf->hw, 12469 pf->hw.aq.asq_last_status)); 12470 return -ENOENT; 12471 } 12472 vsi->info = ctxt.info; 12473 vsi->info.valid_sections = 0; 12474 12475 vsi->seid = ctxt.seid; 12476 vsi->id = ctxt.vsi_number; 12477 12478 enabled_tc = i40e_pf_get_tc_map(pf); 12479 12480 /* Source pruning is enabled by default, so the flag is 12481 * negative logic - if it's set, we need to fiddle with 12482 * the VSI to disable source pruning. 12483 */ 12484 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) { 12485 memset(&ctxt, 0, sizeof(ctxt)); 12486 ctxt.seid = pf->main_vsi_seid; 12487 ctxt.pf_num = pf->hw.pf_id; 12488 ctxt.vf_num = 0; 12489 ctxt.info.valid_sections |= 12490 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12491 ctxt.info.switch_id = 12492 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB); 12493 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12494 if (ret) { 12495 dev_info(&pf->pdev->dev, 12496 "update vsi failed, err %s aq_err %s\n", 12497 i40e_stat_str(&pf->hw, ret), 12498 i40e_aq_str(&pf->hw, 12499 pf->hw.aq.asq_last_status)); 12500 ret = -ENOENT; 12501 goto err; 12502 } 12503 } 12504 12505 /* MFP mode setup queue map and update VSI */ 12506 if ((pf->flags & I40E_FLAG_MFP_ENABLED) && 12507 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ 12508 memset(&ctxt, 0, sizeof(ctxt)); 12509 ctxt.seid = pf->main_vsi_seid; 12510 ctxt.pf_num = pf->hw.pf_id; 12511 ctxt.vf_num = 0; 12512 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); 12513 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); 12514 if (ret) { 12515 dev_info(&pf->pdev->dev, 12516 "update vsi failed, err %s aq_err %s\n", 12517 i40e_stat_str(&pf->hw, ret), 12518 i40e_aq_str(&pf->hw, 12519 pf->hw.aq.asq_last_status)); 12520 ret = -ENOENT; 12521 goto err; 12522 } 12523 /* update the local VSI info queue map */ 12524 i40e_vsi_update_queue_map(vsi, &ctxt); 12525 vsi->info.valid_sections = 0; 12526 } else { 12527 /* Default/Main VSI is only enabled for TC0 12528 * reconfigure it to enable all TCs that are 12529 * available on the port in SFP mode. 12530 * For MFP case the iSCSI PF would use this 12531 * flow to enable LAN+iSCSI TC. 12532 */ 12533 ret = i40e_vsi_config_tc(vsi, enabled_tc); 12534 if (ret) { 12535 /* Single TC condition is not fatal, 12536 * message and continue 12537 */ 12538 dev_info(&pf->pdev->dev, 12539 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n", 12540 enabled_tc, 12541 i40e_stat_str(&pf->hw, ret), 12542 i40e_aq_str(&pf->hw, 12543 pf->hw.aq.asq_last_status)); 12544 } 12545 } 12546 break; 12547 12548 case I40E_VSI_FDIR: 12549 ctxt.pf_num = hw->pf_id; 12550 ctxt.vf_num = 0; 12551 ctxt.uplink_seid = vsi->uplink_seid; 12552 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12553 ctxt.flags = I40E_AQ_VSI_TYPE_PF; 12554 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) && 12555 (i40e_is_vsi_uplink_mode_veb(vsi))) { 12556 ctxt.info.valid_sections |= 12557 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12558 ctxt.info.switch_id = 12559 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12560 } 12561 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12562 break; 12563 12564 case I40E_VSI_VMDQ2: 12565 ctxt.pf_num = hw->pf_id; 12566 ctxt.vf_num = 0; 12567 ctxt.uplink_seid = vsi->uplink_seid; 12568 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12569 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; 12570 12571 /* This VSI is connected to VEB so the switch_id 12572 * should be set to zero by default. 12573 */ 12574 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12575 ctxt.info.valid_sections |= 12576 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12577 ctxt.info.switch_id = 12578 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12579 } 12580 12581 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12582 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12583 break; 12584 12585 case I40E_VSI_SRIOV: 12586 ctxt.pf_num = hw->pf_id; 12587 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 12588 ctxt.uplink_seid = vsi->uplink_seid; 12589 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; 12590 ctxt.flags = I40E_AQ_VSI_TYPE_VF; 12591 12592 /* This VSI is connected to VEB so the switch_id 12593 * should be set to zero by default. 12594 */ 12595 if (i40e_is_vsi_uplink_mode_veb(vsi)) { 12596 ctxt.info.valid_sections |= 12597 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); 12598 ctxt.info.switch_id = 12599 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); 12600 } 12601 12602 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) { 12603 ctxt.info.valid_sections |= 12604 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID); 12605 ctxt.info.queueing_opt_flags |= 12606 (I40E_AQ_VSI_QUE_OPT_TCP_ENA | 12607 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI); 12608 } 12609 12610 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); 12611 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; 12612 if (pf->vf[vsi->vf_id].spoofchk) { 12613 ctxt.info.valid_sections |= 12614 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); 12615 ctxt.info.sec_flags |= 12616 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | 12617 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); 12618 } 12619 /* Setup the VSI tx/rx queue map for TC0 only for now */ 12620 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); 12621 break; 12622 12623 case I40E_VSI_IWARP: 12624 /* send down message to iWARP */ 12625 break; 12626 12627 default: 12628 return -ENODEV; 12629 } 12630 12631 if (vsi->type != I40E_VSI_MAIN) { 12632 ret = i40e_aq_add_vsi(hw, &ctxt, NULL); 12633 if (ret) { 12634 dev_info(&vsi->back->pdev->dev, 12635 "add vsi failed, err %s aq_err %s\n", 12636 i40e_stat_str(&pf->hw, ret), 12637 i40e_aq_str(&pf->hw, 12638 pf->hw.aq.asq_last_status)); 12639 ret = -ENOENT; 12640 goto err; 12641 } 12642 vsi->info = ctxt.info; 12643 vsi->info.valid_sections = 0; 12644 vsi->seid = ctxt.seid; 12645 vsi->id = ctxt.vsi_number; 12646 } 12647 12648 vsi->active_filters = 0; 12649 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state); 12650 spin_lock_bh(&vsi->mac_filter_hash_lock); 12651 /* If macvlan filters already exist, force them to get loaded */ 12652 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { 12653 f->state = I40E_FILTER_NEW; 12654 f_count++; 12655 } 12656 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12657 12658 if (f_count) { 12659 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; 12660 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state); 12661 } 12662 12663 /* Update VSI BW information */ 12664 ret = i40e_vsi_get_bw_info(vsi); 12665 if (ret) { 12666 dev_info(&pf->pdev->dev, 12667 "couldn't get vsi bw info, err %s aq_err %s\n", 12668 i40e_stat_str(&pf->hw, ret), 12669 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 12670 /* VSI is already added so not tearing that up */ 12671 ret = 0; 12672 } 12673 12674 err: 12675 return ret; 12676 } 12677 12678 /** 12679 * i40e_vsi_release - Delete a VSI and free its resources 12680 * @vsi: the VSI being removed 12681 * 12682 * Returns 0 on success or < 0 on error 12683 **/ 12684 int i40e_vsi_release(struct i40e_vsi *vsi) 12685 { 12686 struct i40e_mac_filter *f; 12687 struct hlist_node *h; 12688 struct i40e_veb *veb = NULL; 12689 struct i40e_pf *pf; 12690 u16 uplink_seid; 12691 int i, n, bkt; 12692 12693 pf = vsi->back; 12694 12695 /* release of a VEB-owner or last VSI is not allowed */ 12696 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { 12697 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", 12698 vsi->seid, vsi->uplink_seid); 12699 return -ENODEV; 12700 } 12701 if (vsi == pf->vsi[pf->lan_vsi] && 12702 !test_bit(__I40E_DOWN, pf->state)) { 12703 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); 12704 return -ENODEV; 12705 } 12706 12707 uplink_seid = vsi->uplink_seid; 12708 if (vsi->type != I40E_VSI_SRIOV) { 12709 if (vsi->netdev_registered) { 12710 vsi->netdev_registered = false; 12711 if (vsi->netdev) { 12712 /* results in a call to i40e_close() */ 12713 unregister_netdev(vsi->netdev); 12714 } 12715 } else { 12716 i40e_vsi_close(vsi); 12717 } 12718 i40e_vsi_disable_irq(vsi); 12719 } 12720 12721 spin_lock_bh(&vsi->mac_filter_hash_lock); 12722 12723 /* clear the sync flag on all filters */ 12724 if (vsi->netdev) { 12725 __dev_uc_unsync(vsi->netdev, NULL); 12726 __dev_mc_unsync(vsi->netdev, NULL); 12727 } 12728 12729 /* make sure any remaining filters are marked for deletion */ 12730 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) 12731 __i40e_del_filter(vsi, f); 12732 12733 spin_unlock_bh(&vsi->mac_filter_hash_lock); 12734 12735 i40e_sync_vsi_filters(vsi); 12736 12737 i40e_vsi_delete(vsi); 12738 i40e_vsi_free_q_vectors(vsi); 12739 if (vsi->netdev) { 12740 free_netdev(vsi->netdev); 12741 vsi->netdev = NULL; 12742 } 12743 i40e_vsi_clear_rings(vsi); 12744 i40e_vsi_clear(vsi); 12745 12746 /* If this was the last thing on the VEB, except for the 12747 * controlling VSI, remove the VEB, which puts the controlling 12748 * VSI onto the next level down in the switch. 12749 * 12750 * Well, okay, there's one more exception here: don't remove 12751 * the orphan VEBs yet. We'll wait for an explicit remove request 12752 * from up the network stack. 12753 */ 12754 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { 12755 if (pf->vsi[i] && 12756 pf->vsi[i]->uplink_seid == uplink_seid && 12757 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 12758 n++; /* count the VSIs */ 12759 } 12760 } 12761 for (i = 0; i < I40E_MAX_VEB; i++) { 12762 if (!pf->veb[i]) 12763 continue; 12764 if (pf->veb[i]->uplink_seid == uplink_seid) 12765 n++; /* count the VEBs */ 12766 if (pf->veb[i]->seid == uplink_seid) 12767 veb = pf->veb[i]; 12768 } 12769 if (n == 0 && veb && veb->uplink_seid != 0) 12770 i40e_veb_release(veb); 12771 12772 return 0; 12773 } 12774 12775 /** 12776 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI 12777 * @vsi: ptr to the VSI 12778 * 12779 * This should only be called after i40e_vsi_mem_alloc() which allocates the 12780 * corresponding SW VSI structure and initializes num_queue_pairs for the 12781 * newly allocated VSI. 12782 * 12783 * Returns 0 on success or negative on failure 12784 **/ 12785 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) 12786 { 12787 int ret = -ENOENT; 12788 struct i40e_pf *pf = vsi->back; 12789 12790 if (vsi->q_vectors[0]) { 12791 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", 12792 vsi->seid); 12793 return -EEXIST; 12794 } 12795 12796 if (vsi->base_vector) { 12797 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", 12798 vsi->seid, vsi->base_vector); 12799 return -EEXIST; 12800 } 12801 12802 ret = i40e_vsi_alloc_q_vectors(vsi); 12803 if (ret) { 12804 dev_info(&pf->pdev->dev, 12805 "failed to allocate %d q_vector for VSI %d, ret=%d\n", 12806 vsi->num_q_vectors, vsi->seid, ret); 12807 vsi->num_q_vectors = 0; 12808 goto vector_setup_out; 12809 } 12810 12811 /* In Legacy mode, we do not have to get any other vector since we 12812 * piggyback on the misc/ICR0 for queue interrupts. 12813 */ 12814 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) 12815 return ret; 12816 if (vsi->num_q_vectors) 12817 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, 12818 vsi->num_q_vectors, vsi->idx); 12819 if (vsi->base_vector < 0) { 12820 dev_info(&pf->pdev->dev, 12821 "failed to get tracking for %d vectors for VSI %d, err=%d\n", 12822 vsi->num_q_vectors, vsi->seid, vsi->base_vector); 12823 i40e_vsi_free_q_vectors(vsi); 12824 ret = -ENOENT; 12825 goto vector_setup_out; 12826 } 12827 12828 vector_setup_out: 12829 return ret; 12830 } 12831 12832 /** 12833 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI 12834 * @vsi: pointer to the vsi. 12835 * 12836 * This re-allocates a vsi's queue resources. 12837 * 12838 * Returns pointer to the successfully allocated and configured VSI sw struct 12839 * on success, otherwise returns NULL on failure. 12840 **/ 12841 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) 12842 { 12843 u16 alloc_queue_pairs; 12844 struct i40e_pf *pf; 12845 u8 enabled_tc; 12846 int ret; 12847 12848 if (!vsi) 12849 return NULL; 12850 12851 pf = vsi->back; 12852 12853 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); 12854 i40e_vsi_clear_rings(vsi); 12855 12856 i40e_vsi_free_arrays(vsi, false); 12857 i40e_set_num_rings_in_vsi(vsi); 12858 ret = i40e_vsi_alloc_arrays(vsi, false); 12859 if (ret) 12860 goto err_vsi; 12861 12862 alloc_queue_pairs = vsi->alloc_queue_pairs * 12863 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 12864 12865 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 12866 if (ret < 0) { 12867 dev_info(&pf->pdev->dev, 12868 "failed to get tracking for %d queues for VSI %d err %d\n", 12869 alloc_queue_pairs, vsi->seid, ret); 12870 goto err_vsi; 12871 } 12872 vsi->base_queue = ret; 12873 12874 /* Update the FW view of the VSI. Force a reset of TC and queue 12875 * layout configurations. 12876 */ 12877 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 12878 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 12879 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 12880 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 12881 if (vsi->type == I40E_VSI_MAIN) 12882 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr); 12883 12884 /* assign it some queues */ 12885 ret = i40e_alloc_rings(vsi); 12886 if (ret) 12887 goto err_rings; 12888 12889 /* map all of the rings to the q_vectors */ 12890 i40e_vsi_map_rings_to_vectors(vsi); 12891 return vsi; 12892 12893 err_rings: 12894 i40e_vsi_free_q_vectors(vsi); 12895 if (vsi->netdev_registered) { 12896 vsi->netdev_registered = false; 12897 unregister_netdev(vsi->netdev); 12898 free_netdev(vsi->netdev); 12899 vsi->netdev = NULL; 12900 } 12901 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 12902 err_vsi: 12903 i40e_vsi_clear(vsi); 12904 return NULL; 12905 } 12906 12907 /** 12908 * i40e_vsi_setup - Set up a VSI by a given type 12909 * @pf: board private structure 12910 * @type: VSI type 12911 * @uplink_seid: the switch element to link to 12912 * @param1: usage depends upon VSI type. For VF types, indicates VF id 12913 * 12914 * This allocates the sw VSI structure and its queue resources, then add a VSI 12915 * to the identified VEB. 12916 * 12917 * Returns pointer to the successfully allocated and configure VSI sw struct on 12918 * success, otherwise returns NULL on failure. 12919 **/ 12920 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, 12921 u16 uplink_seid, u32 param1) 12922 { 12923 struct i40e_vsi *vsi = NULL; 12924 struct i40e_veb *veb = NULL; 12925 u16 alloc_queue_pairs; 12926 int ret, i; 12927 int v_idx; 12928 12929 /* The requested uplink_seid must be either 12930 * - the PF's port seid 12931 * no VEB is needed because this is the PF 12932 * or this is a Flow Director special case VSI 12933 * - seid of an existing VEB 12934 * - seid of a VSI that owns an existing VEB 12935 * - seid of a VSI that doesn't own a VEB 12936 * a new VEB is created and the VSI becomes the owner 12937 * - seid of the PF VSI, which is what creates the first VEB 12938 * this is a special case of the previous 12939 * 12940 * Find which uplink_seid we were given and create a new VEB if needed 12941 */ 12942 for (i = 0; i < I40E_MAX_VEB; i++) { 12943 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { 12944 veb = pf->veb[i]; 12945 break; 12946 } 12947 } 12948 12949 if (!veb && uplink_seid != pf->mac_seid) { 12950 12951 for (i = 0; i < pf->num_alloc_vsi; i++) { 12952 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { 12953 vsi = pf->vsi[i]; 12954 break; 12955 } 12956 } 12957 if (!vsi) { 12958 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", 12959 uplink_seid); 12960 return NULL; 12961 } 12962 12963 if (vsi->uplink_seid == pf->mac_seid) 12964 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, 12965 vsi->tc_config.enabled_tc); 12966 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) 12967 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, 12968 vsi->tc_config.enabled_tc); 12969 if (veb) { 12970 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { 12971 dev_info(&vsi->back->pdev->dev, 12972 "New VSI creation error, uplink seid of LAN VSI expected.\n"); 12973 return NULL; 12974 } 12975 /* We come up by default in VEPA mode if SRIOV is not 12976 * already enabled, in which case we can't force VEPA 12977 * mode. 12978 */ 12979 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { 12980 veb->bridge_mode = BRIDGE_MODE_VEPA; 12981 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; 12982 } 12983 i40e_config_bridge_mode(veb); 12984 } 12985 for (i = 0; i < I40E_MAX_VEB && !veb; i++) { 12986 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) 12987 veb = pf->veb[i]; 12988 } 12989 if (!veb) { 12990 dev_info(&pf->pdev->dev, "couldn't add VEB\n"); 12991 return NULL; 12992 } 12993 12994 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 12995 uplink_seid = veb->seid; 12996 } 12997 12998 /* get vsi sw struct */ 12999 v_idx = i40e_vsi_mem_alloc(pf, type); 13000 if (v_idx < 0) 13001 goto err_alloc; 13002 vsi = pf->vsi[v_idx]; 13003 if (!vsi) 13004 goto err_alloc; 13005 vsi->type = type; 13006 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); 13007 13008 if (type == I40E_VSI_MAIN) 13009 pf->lan_vsi = v_idx; 13010 else if (type == I40E_VSI_SRIOV) 13011 vsi->vf_id = param1; 13012 /* assign it some queues */ 13013 alloc_queue_pairs = vsi->alloc_queue_pairs * 13014 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1); 13015 13016 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx); 13017 if (ret < 0) { 13018 dev_info(&pf->pdev->dev, 13019 "failed to get tracking for %d queues for VSI %d err=%d\n", 13020 alloc_queue_pairs, vsi->seid, ret); 13021 goto err_vsi; 13022 } 13023 vsi->base_queue = ret; 13024 13025 /* get a VSI from the hardware */ 13026 vsi->uplink_seid = uplink_seid; 13027 ret = i40e_add_vsi(vsi); 13028 if (ret) 13029 goto err_vsi; 13030 13031 switch (vsi->type) { 13032 /* setup the netdev if needed */ 13033 case I40E_VSI_MAIN: 13034 case I40E_VSI_VMDQ2: 13035 ret = i40e_config_netdev(vsi); 13036 if (ret) 13037 goto err_netdev; 13038 ret = register_netdev(vsi->netdev); 13039 if (ret) 13040 goto err_netdev; 13041 vsi->netdev_registered = true; 13042 netif_carrier_off(vsi->netdev); 13043 #ifdef CONFIG_I40E_DCB 13044 /* Setup DCB netlink interface */ 13045 i40e_dcbnl_setup(vsi); 13046 #endif /* CONFIG_I40E_DCB */ 13047 /* fall through */ 13048 13049 case I40E_VSI_FDIR: 13050 /* set up vectors and rings if needed */ 13051 ret = i40e_vsi_setup_vectors(vsi); 13052 if (ret) 13053 goto err_msix; 13054 13055 ret = i40e_alloc_rings(vsi); 13056 if (ret) 13057 goto err_rings; 13058 13059 /* map all of the rings to the q_vectors */ 13060 i40e_vsi_map_rings_to_vectors(vsi); 13061 13062 i40e_vsi_reset_stats(vsi); 13063 break; 13064 13065 default: 13066 /* no netdev or rings for the other VSI types */ 13067 break; 13068 } 13069 13070 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && 13071 (vsi->type == I40E_VSI_VMDQ2)) { 13072 ret = i40e_vsi_config_rss(vsi); 13073 } 13074 return vsi; 13075 13076 err_rings: 13077 i40e_vsi_free_q_vectors(vsi); 13078 err_msix: 13079 if (vsi->netdev_registered) { 13080 vsi->netdev_registered = false; 13081 unregister_netdev(vsi->netdev); 13082 free_netdev(vsi->netdev); 13083 vsi->netdev = NULL; 13084 } 13085 err_netdev: 13086 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); 13087 err_vsi: 13088 i40e_vsi_clear(vsi); 13089 err_alloc: 13090 return NULL; 13091 } 13092 13093 /** 13094 * i40e_veb_get_bw_info - Query VEB BW information 13095 * @veb: the veb to query 13096 * 13097 * Query the Tx scheduler BW configuration data for given VEB 13098 **/ 13099 static int i40e_veb_get_bw_info(struct i40e_veb *veb) 13100 { 13101 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; 13102 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; 13103 struct i40e_pf *pf = veb->pf; 13104 struct i40e_hw *hw = &pf->hw; 13105 u32 tc_bw_max; 13106 int ret = 0; 13107 int i; 13108 13109 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, 13110 &bw_data, NULL); 13111 if (ret) { 13112 dev_info(&pf->pdev->dev, 13113 "query veb bw config failed, err %s aq_err %s\n", 13114 i40e_stat_str(&pf->hw, ret), 13115 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13116 goto out; 13117 } 13118 13119 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, 13120 &ets_data, NULL); 13121 if (ret) { 13122 dev_info(&pf->pdev->dev, 13123 "query veb bw ets config failed, err %s aq_err %s\n", 13124 i40e_stat_str(&pf->hw, ret), 13125 i40e_aq_str(&pf->hw, hw->aq.asq_last_status)); 13126 goto out; 13127 } 13128 13129 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); 13130 veb->bw_max_quanta = ets_data.tc_bw_max; 13131 veb->is_abs_credits = bw_data.absolute_credits_enable; 13132 veb->enabled_tc = ets_data.tc_valid_bits; 13133 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | 13134 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); 13135 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { 13136 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; 13137 veb->bw_tc_limit_credits[i] = 13138 le16_to_cpu(bw_data.tc_bw_limits[i]); 13139 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); 13140 } 13141 13142 out: 13143 return ret; 13144 } 13145 13146 /** 13147 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF 13148 * @pf: board private structure 13149 * 13150 * On error: returns error code (negative) 13151 * On success: returns vsi index in PF (positive) 13152 **/ 13153 static int i40e_veb_mem_alloc(struct i40e_pf *pf) 13154 { 13155 int ret = -ENOENT; 13156 struct i40e_veb *veb; 13157 int i; 13158 13159 /* Need to protect the allocation of switch elements at the PF level */ 13160 mutex_lock(&pf->switch_mutex); 13161 13162 /* VEB list may be fragmented if VEB creation/destruction has 13163 * been happening. We can afford to do a quick scan to look 13164 * for any free slots in the list. 13165 * 13166 * find next empty veb slot, looping back around if necessary 13167 */ 13168 i = 0; 13169 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) 13170 i++; 13171 if (i >= I40E_MAX_VEB) { 13172 ret = -ENOMEM; 13173 goto err_alloc_veb; /* out of VEB slots! */ 13174 } 13175 13176 veb = kzalloc(sizeof(*veb), GFP_KERNEL); 13177 if (!veb) { 13178 ret = -ENOMEM; 13179 goto err_alloc_veb; 13180 } 13181 veb->pf = pf; 13182 veb->idx = i; 13183 veb->enabled_tc = 1; 13184 13185 pf->veb[i] = veb; 13186 ret = i; 13187 err_alloc_veb: 13188 mutex_unlock(&pf->switch_mutex); 13189 return ret; 13190 } 13191 13192 /** 13193 * i40e_switch_branch_release - Delete a branch of the switch tree 13194 * @branch: where to start deleting 13195 * 13196 * This uses recursion to find the tips of the branch to be 13197 * removed, deleting until we get back to and can delete this VEB. 13198 **/ 13199 static void i40e_switch_branch_release(struct i40e_veb *branch) 13200 { 13201 struct i40e_pf *pf = branch->pf; 13202 u16 branch_seid = branch->seid; 13203 u16 veb_idx = branch->idx; 13204 int i; 13205 13206 /* release any VEBs on this VEB - RECURSION */ 13207 for (i = 0; i < I40E_MAX_VEB; i++) { 13208 if (!pf->veb[i]) 13209 continue; 13210 if (pf->veb[i]->uplink_seid == branch->seid) 13211 i40e_switch_branch_release(pf->veb[i]); 13212 } 13213 13214 /* Release the VSIs on this VEB, but not the owner VSI. 13215 * 13216 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing 13217 * the VEB itself, so don't use (*branch) after this loop. 13218 */ 13219 for (i = 0; i < pf->num_alloc_vsi; i++) { 13220 if (!pf->vsi[i]) 13221 continue; 13222 if (pf->vsi[i]->uplink_seid == branch_seid && 13223 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { 13224 i40e_vsi_release(pf->vsi[i]); 13225 } 13226 } 13227 13228 /* There's one corner case where the VEB might not have been 13229 * removed, so double check it here and remove it if needed. 13230 * This case happens if the veb was created from the debugfs 13231 * commands and no VSIs were added to it. 13232 */ 13233 if (pf->veb[veb_idx]) 13234 i40e_veb_release(pf->veb[veb_idx]); 13235 } 13236 13237 /** 13238 * i40e_veb_clear - remove veb struct 13239 * @veb: the veb to remove 13240 **/ 13241 static void i40e_veb_clear(struct i40e_veb *veb) 13242 { 13243 if (!veb) 13244 return; 13245 13246 if (veb->pf) { 13247 struct i40e_pf *pf = veb->pf; 13248 13249 mutex_lock(&pf->switch_mutex); 13250 if (pf->veb[veb->idx] == veb) 13251 pf->veb[veb->idx] = NULL; 13252 mutex_unlock(&pf->switch_mutex); 13253 } 13254 13255 kfree(veb); 13256 } 13257 13258 /** 13259 * i40e_veb_release - Delete a VEB and free its resources 13260 * @veb: the VEB being removed 13261 **/ 13262 void i40e_veb_release(struct i40e_veb *veb) 13263 { 13264 struct i40e_vsi *vsi = NULL; 13265 struct i40e_pf *pf; 13266 int i, n = 0; 13267 13268 pf = veb->pf; 13269 13270 /* find the remaining VSI and check for extras */ 13271 for (i = 0; i < pf->num_alloc_vsi; i++) { 13272 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { 13273 n++; 13274 vsi = pf->vsi[i]; 13275 } 13276 } 13277 if (n != 1) { 13278 dev_info(&pf->pdev->dev, 13279 "can't remove VEB %d with %d VSIs left\n", 13280 veb->seid, n); 13281 return; 13282 } 13283 13284 /* move the remaining VSI to uplink veb */ 13285 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; 13286 if (veb->uplink_seid) { 13287 vsi->uplink_seid = veb->uplink_seid; 13288 if (veb->uplink_seid == pf->mac_seid) 13289 vsi->veb_idx = I40E_NO_VEB; 13290 else 13291 vsi->veb_idx = veb->veb_idx; 13292 } else { 13293 /* floating VEB */ 13294 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; 13295 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; 13296 } 13297 13298 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13299 i40e_veb_clear(veb); 13300 } 13301 13302 /** 13303 * i40e_add_veb - create the VEB in the switch 13304 * @veb: the VEB to be instantiated 13305 * @vsi: the controlling VSI 13306 **/ 13307 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) 13308 { 13309 struct i40e_pf *pf = veb->pf; 13310 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED); 13311 int ret; 13312 13313 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid, 13314 veb->enabled_tc, false, 13315 &veb->seid, enable_stats, NULL); 13316 13317 /* get a VEB from the hardware */ 13318 if (ret) { 13319 dev_info(&pf->pdev->dev, 13320 "couldn't add VEB, err %s aq_err %s\n", 13321 i40e_stat_str(&pf->hw, ret), 13322 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13323 return -EPERM; 13324 } 13325 13326 /* get statistics counter */ 13327 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL, 13328 &veb->stats_idx, NULL, NULL, NULL); 13329 if (ret) { 13330 dev_info(&pf->pdev->dev, 13331 "couldn't get VEB statistics idx, err %s aq_err %s\n", 13332 i40e_stat_str(&pf->hw, ret), 13333 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13334 return -EPERM; 13335 } 13336 ret = i40e_veb_get_bw_info(veb); 13337 if (ret) { 13338 dev_info(&pf->pdev->dev, 13339 "couldn't get VEB bw info, err %s aq_err %s\n", 13340 i40e_stat_str(&pf->hw, ret), 13341 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13342 i40e_aq_delete_element(&pf->hw, veb->seid, NULL); 13343 return -ENOENT; 13344 } 13345 13346 vsi->uplink_seid = veb->seid; 13347 vsi->veb_idx = veb->idx; 13348 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; 13349 13350 return 0; 13351 } 13352 13353 /** 13354 * i40e_veb_setup - Set up a VEB 13355 * @pf: board private structure 13356 * @flags: VEB setup flags 13357 * @uplink_seid: the switch element to link to 13358 * @vsi_seid: the initial VSI seid 13359 * @enabled_tc: Enabled TC bit-map 13360 * 13361 * This allocates the sw VEB structure and links it into the switch 13362 * It is possible and legal for this to be a duplicate of an already 13363 * existing VEB. It is also possible for both uplink and vsi seids 13364 * to be zero, in order to create a floating VEB. 13365 * 13366 * Returns pointer to the successfully allocated VEB sw struct on 13367 * success, otherwise returns NULL on failure. 13368 **/ 13369 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, 13370 u16 uplink_seid, u16 vsi_seid, 13371 u8 enabled_tc) 13372 { 13373 struct i40e_veb *veb, *uplink_veb = NULL; 13374 int vsi_idx, veb_idx; 13375 int ret; 13376 13377 /* if one seid is 0, the other must be 0 to create a floating relay */ 13378 if ((uplink_seid == 0 || vsi_seid == 0) && 13379 (uplink_seid + vsi_seid != 0)) { 13380 dev_info(&pf->pdev->dev, 13381 "one, not both seid's are 0: uplink=%d vsi=%d\n", 13382 uplink_seid, vsi_seid); 13383 return NULL; 13384 } 13385 13386 /* make sure there is such a vsi and uplink */ 13387 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) 13388 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) 13389 break; 13390 if (vsi_idx == pf->num_alloc_vsi && vsi_seid != 0) { 13391 dev_info(&pf->pdev->dev, "vsi seid %d not found\n", 13392 vsi_seid); 13393 return NULL; 13394 } 13395 13396 if (uplink_seid && uplink_seid != pf->mac_seid) { 13397 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { 13398 if (pf->veb[veb_idx] && 13399 pf->veb[veb_idx]->seid == uplink_seid) { 13400 uplink_veb = pf->veb[veb_idx]; 13401 break; 13402 } 13403 } 13404 if (!uplink_veb) { 13405 dev_info(&pf->pdev->dev, 13406 "uplink seid %d not found\n", uplink_seid); 13407 return NULL; 13408 } 13409 } 13410 13411 /* get veb sw struct */ 13412 veb_idx = i40e_veb_mem_alloc(pf); 13413 if (veb_idx < 0) 13414 goto err_alloc; 13415 veb = pf->veb[veb_idx]; 13416 veb->flags = flags; 13417 veb->uplink_seid = uplink_seid; 13418 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); 13419 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); 13420 13421 /* create the VEB in the switch */ 13422 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); 13423 if (ret) 13424 goto err_veb; 13425 if (vsi_idx == pf->lan_vsi) 13426 pf->lan_veb = veb->idx; 13427 13428 return veb; 13429 13430 err_veb: 13431 i40e_veb_clear(veb); 13432 err_alloc: 13433 return NULL; 13434 } 13435 13436 /** 13437 * i40e_setup_pf_switch_element - set PF vars based on switch type 13438 * @pf: board private structure 13439 * @ele: element we are building info from 13440 * @num_reported: total number of elements 13441 * @printconfig: should we print the contents 13442 * 13443 * helper function to assist in extracting a few useful SEID values. 13444 **/ 13445 static void i40e_setup_pf_switch_element(struct i40e_pf *pf, 13446 struct i40e_aqc_switch_config_element_resp *ele, 13447 u16 num_reported, bool printconfig) 13448 { 13449 u16 downlink_seid = le16_to_cpu(ele->downlink_seid); 13450 u16 uplink_seid = le16_to_cpu(ele->uplink_seid); 13451 u8 element_type = ele->element_type; 13452 u16 seid = le16_to_cpu(ele->seid); 13453 13454 if (printconfig) 13455 dev_info(&pf->pdev->dev, 13456 "type=%d seid=%d uplink=%d downlink=%d\n", 13457 element_type, seid, uplink_seid, downlink_seid); 13458 13459 switch (element_type) { 13460 case I40E_SWITCH_ELEMENT_TYPE_MAC: 13461 pf->mac_seid = seid; 13462 break; 13463 case I40E_SWITCH_ELEMENT_TYPE_VEB: 13464 /* Main VEB? */ 13465 if (uplink_seid != pf->mac_seid) 13466 break; 13467 if (pf->lan_veb == I40E_NO_VEB) { 13468 int v; 13469 13470 /* find existing or else empty VEB */ 13471 for (v = 0; v < I40E_MAX_VEB; v++) { 13472 if (pf->veb[v] && (pf->veb[v]->seid == seid)) { 13473 pf->lan_veb = v; 13474 break; 13475 } 13476 } 13477 if (pf->lan_veb == I40E_NO_VEB) { 13478 v = i40e_veb_mem_alloc(pf); 13479 if (v < 0) 13480 break; 13481 pf->lan_veb = v; 13482 } 13483 } 13484 13485 pf->veb[pf->lan_veb]->seid = seid; 13486 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; 13487 pf->veb[pf->lan_veb]->pf = pf; 13488 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; 13489 break; 13490 case I40E_SWITCH_ELEMENT_TYPE_VSI: 13491 if (num_reported != 1) 13492 break; 13493 /* This is immediately after a reset so we can assume this is 13494 * the PF's VSI 13495 */ 13496 pf->mac_seid = uplink_seid; 13497 pf->pf_seid = downlink_seid; 13498 pf->main_vsi_seid = seid; 13499 if (printconfig) 13500 dev_info(&pf->pdev->dev, 13501 "pf_seid=%d main_vsi_seid=%d\n", 13502 pf->pf_seid, pf->main_vsi_seid); 13503 break; 13504 case I40E_SWITCH_ELEMENT_TYPE_PF: 13505 case I40E_SWITCH_ELEMENT_TYPE_VF: 13506 case I40E_SWITCH_ELEMENT_TYPE_EMP: 13507 case I40E_SWITCH_ELEMENT_TYPE_BMC: 13508 case I40E_SWITCH_ELEMENT_TYPE_PE: 13509 case I40E_SWITCH_ELEMENT_TYPE_PA: 13510 /* ignore these for now */ 13511 break; 13512 default: 13513 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", 13514 element_type, seid); 13515 break; 13516 } 13517 } 13518 13519 /** 13520 * i40e_fetch_switch_configuration - Get switch config from firmware 13521 * @pf: board private structure 13522 * @printconfig: should we print the contents 13523 * 13524 * Get the current switch configuration from the device and 13525 * extract a few useful SEID values. 13526 **/ 13527 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) 13528 { 13529 struct i40e_aqc_get_switch_config_resp *sw_config; 13530 u16 next_seid = 0; 13531 int ret = 0; 13532 u8 *aq_buf; 13533 int i; 13534 13535 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); 13536 if (!aq_buf) 13537 return -ENOMEM; 13538 13539 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; 13540 do { 13541 u16 num_reported, num_total; 13542 13543 ret = i40e_aq_get_switch_config(&pf->hw, sw_config, 13544 I40E_AQ_LARGE_BUF, 13545 &next_seid, NULL); 13546 if (ret) { 13547 dev_info(&pf->pdev->dev, 13548 "get switch config failed err %s aq_err %s\n", 13549 i40e_stat_str(&pf->hw, ret), 13550 i40e_aq_str(&pf->hw, 13551 pf->hw.aq.asq_last_status)); 13552 kfree(aq_buf); 13553 return -ENOENT; 13554 } 13555 13556 num_reported = le16_to_cpu(sw_config->header.num_reported); 13557 num_total = le16_to_cpu(sw_config->header.num_total); 13558 13559 if (printconfig) 13560 dev_info(&pf->pdev->dev, 13561 "header: %d reported %d total\n", 13562 num_reported, num_total); 13563 13564 for (i = 0; i < num_reported; i++) { 13565 struct i40e_aqc_switch_config_element_resp *ele = 13566 &sw_config->element[i]; 13567 13568 i40e_setup_pf_switch_element(pf, ele, num_reported, 13569 printconfig); 13570 } 13571 } while (next_seid != 0); 13572 13573 kfree(aq_buf); 13574 return ret; 13575 } 13576 13577 /** 13578 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset 13579 * @pf: board private structure 13580 * @reinit: if the Main VSI needs to re-initialized. 13581 * 13582 * Returns 0 on success, negative value on failure 13583 **/ 13584 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) 13585 { 13586 u16 flags = 0; 13587 int ret; 13588 13589 /* find out what's out there already */ 13590 ret = i40e_fetch_switch_configuration(pf, false); 13591 if (ret) { 13592 dev_info(&pf->pdev->dev, 13593 "couldn't fetch switch config, err %s aq_err %s\n", 13594 i40e_stat_str(&pf->hw, ret), 13595 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 13596 return ret; 13597 } 13598 i40e_pf_reset_stats(pf); 13599 13600 /* set the switch config bit for the whole device to 13601 * support limited promisc or true promisc 13602 * when user requests promisc. The default is limited 13603 * promisc. 13604 */ 13605 13606 if ((pf->hw.pf_id == 0) && 13607 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) { 13608 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13609 pf->last_sw_conf_flags = flags; 13610 } 13611 13612 if (pf->hw.pf_id == 0) { 13613 u16 valid_flags; 13614 13615 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC; 13616 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0, 13617 NULL); 13618 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) { 13619 dev_info(&pf->pdev->dev, 13620 "couldn't set switch config bits, err %s aq_err %s\n", 13621 i40e_stat_str(&pf->hw, ret), 13622 i40e_aq_str(&pf->hw, 13623 pf->hw.aq.asq_last_status)); 13624 /* not a fatal problem, just keep going */ 13625 } 13626 pf->last_sw_conf_valid_flags = valid_flags; 13627 } 13628 13629 /* first time setup */ 13630 if (pf->lan_vsi == I40E_NO_VSI || reinit) { 13631 struct i40e_vsi *vsi = NULL; 13632 u16 uplink_seid; 13633 13634 /* Set up the PF VSI associated with the PF's main VSI 13635 * that is already in the HW switch 13636 */ 13637 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) 13638 uplink_seid = pf->veb[pf->lan_veb]->seid; 13639 else 13640 uplink_seid = pf->mac_seid; 13641 if (pf->lan_vsi == I40E_NO_VSI) 13642 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); 13643 else if (reinit) 13644 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); 13645 if (!vsi) { 13646 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); 13647 i40e_cloud_filter_exit(pf); 13648 i40e_fdir_teardown(pf); 13649 return -EAGAIN; 13650 } 13651 } else { 13652 /* force a reset of TC and queue layout configurations */ 13653 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; 13654 13655 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; 13656 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; 13657 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); 13658 } 13659 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); 13660 13661 i40e_fdir_sb_setup(pf); 13662 13663 /* Setup static PF queue filter control settings */ 13664 ret = i40e_setup_pf_filter_control(pf); 13665 if (ret) { 13666 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", 13667 ret); 13668 /* Failure here should not stop continuing other steps */ 13669 } 13670 13671 /* enable RSS in the HW, even for only one queue, as the stack can use 13672 * the hash 13673 */ 13674 if ((pf->flags & I40E_FLAG_RSS_ENABLED)) 13675 i40e_pf_config_rss(pf); 13676 13677 /* fill in link information and enable LSE reporting */ 13678 i40e_link_event(pf); 13679 13680 /* Initialize user-specific link properties */ 13681 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & 13682 I40E_AQ_AN_COMPLETED) ? true : false); 13683 13684 i40e_ptp_init(pf); 13685 13686 /* repopulate tunnel port filters */ 13687 i40e_sync_udp_filters(pf); 13688 13689 return ret; 13690 } 13691 13692 /** 13693 * i40e_determine_queue_usage - Work out queue distribution 13694 * @pf: board private structure 13695 **/ 13696 static void i40e_determine_queue_usage(struct i40e_pf *pf) 13697 { 13698 int queues_left; 13699 int q_max; 13700 13701 pf->num_lan_qps = 0; 13702 13703 /* Find the max queues to be put into basic use. We'll always be 13704 * using TC0, whether or not DCB is running, and TC0 will get the 13705 * big RSS set. 13706 */ 13707 queues_left = pf->hw.func_caps.num_tx_qp; 13708 13709 if ((queues_left == 1) || 13710 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { 13711 /* one qp for PF, no queues for anything else */ 13712 queues_left = 0; 13713 pf->alloc_rss_size = pf->num_lan_qps = 1; 13714 13715 /* make sure all the fancies are disabled */ 13716 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13717 I40E_FLAG_IWARP_ENABLED | 13718 I40E_FLAG_FD_SB_ENABLED | 13719 I40E_FLAG_FD_ATR_ENABLED | 13720 I40E_FLAG_DCB_CAPABLE | 13721 I40E_FLAG_DCB_ENABLED | 13722 I40E_FLAG_SRIOV_ENABLED | 13723 I40E_FLAG_VMDQ_ENABLED); 13724 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13725 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | 13726 I40E_FLAG_FD_SB_ENABLED | 13727 I40E_FLAG_FD_ATR_ENABLED | 13728 I40E_FLAG_DCB_CAPABLE))) { 13729 /* one qp for PF */ 13730 pf->alloc_rss_size = pf->num_lan_qps = 1; 13731 queues_left -= pf->num_lan_qps; 13732 13733 pf->flags &= ~(I40E_FLAG_RSS_ENABLED | 13734 I40E_FLAG_IWARP_ENABLED | 13735 I40E_FLAG_FD_SB_ENABLED | 13736 I40E_FLAG_FD_ATR_ENABLED | 13737 I40E_FLAG_DCB_ENABLED | 13738 I40E_FLAG_VMDQ_ENABLED); 13739 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13740 } else { 13741 /* Not enough queues for all TCs */ 13742 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && 13743 (queues_left < I40E_MAX_TRAFFIC_CLASS)) { 13744 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | 13745 I40E_FLAG_DCB_ENABLED); 13746 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); 13747 } 13748 13749 /* limit lan qps to the smaller of qps, cpus or msix */ 13750 q_max = max_t(int, pf->rss_size_max, num_online_cpus()); 13751 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp); 13752 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors); 13753 pf->num_lan_qps = q_max; 13754 13755 queues_left -= pf->num_lan_qps; 13756 } 13757 13758 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13759 if (queues_left > 1) { 13760 queues_left -= 1; /* save 1 queue for FD */ 13761 } else { 13762 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; 13763 pf->flags |= I40E_FLAG_FD_SB_INACTIVE; 13764 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); 13765 } 13766 } 13767 13768 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 13769 pf->num_vf_qps && pf->num_req_vfs && queues_left) { 13770 pf->num_req_vfs = min_t(int, pf->num_req_vfs, 13771 (queues_left / pf->num_vf_qps)); 13772 queues_left -= (pf->num_req_vfs * pf->num_vf_qps); 13773 } 13774 13775 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && 13776 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { 13777 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, 13778 (queues_left / pf->num_vmdq_qps)); 13779 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); 13780 } 13781 13782 pf->queues_left = queues_left; 13783 dev_dbg(&pf->pdev->dev, 13784 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n", 13785 pf->hw.func_caps.num_tx_qp, 13786 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED), 13787 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs, 13788 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps, 13789 queues_left); 13790 } 13791 13792 /** 13793 * i40e_setup_pf_filter_control - Setup PF static filter control 13794 * @pf: PF to be setup 13795 * 13796 * i40e_setup_pf_filter_control sets up a PF's initial filter control 13797 * settings. If PE/FCoE are enabled then it will also set the per PF 13798 * based filter sizes required for them. It also enables Flow director, 13799 * ethertype and macvlan type filter settings for the pf. 13800 * 13801 * Returns 0 on success, negative on failure 13802 **/ 13803 static int i40e_setup_pf_filter_control(struct i40e_pf *pf) 13804 { 13805 struct i40e_filter_control_settings *settings = &pf->filter_settings; 13806 13807 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; 13808 13809 /* Flow Director is enabled */ 13810 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) 13811 settings->enable_fdir = true; 13812 13813 /* Ethtype and MACVLAN filters enabled for PF */ 13814 settings->enable_ethtype = true; 13815 settings->enable_macvlan = true; 13816 13817 if (i40e_set_filter_control(&pf->hw, settings)) 13818 return -ENOENT; 13819 13820 return 0; 13821 } 13822 13823 #define INFO_STRING_LEN 255 13824 #define REMAIN(__x) (INFO_STRING_LEN - (__x)) 13825 static void i40e_print_features(struct i40e_pf *pf) 13826 { 13827 struct i40e_hw *hw = &pf->hw; 13828 char *buf; 13829 int i; 13830 13831 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL); 13832 if (!buf) 13833 return; 13834 13835 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id); 13836 #ifdef CONFIG_PCI_IOV 13837 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs); 13838 #endif 13839 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d", 13840 pf->hw.func_caps.num_vsis, 13841 pf->vsi[pf->lan_vsi]->num_queue_pairs); 13842 if (pf->flags & I40E_FLAG_RSS_ENABLED) 13843 i += snprintf(&buf[i], REMAIN(i), " RSS"); 13844 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) 13845 i += snprintf(&buf[i], REMAIN(i), " FD_ATR"); 13846 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { 13847 i += snprintf(&buf[i], REMAIN(i), " FD_SB"); 13848 i += snprintf(&buf[i], REMAIN(i), " NTUPLE"); 13849 } 13850 if (pf->flags & I40E_FLAG_DCB_CAPABLE) 13851 i += snprintf(&buf[i], REMAIN(i), " DCB"); 13852 i += snprintf(&buf[i], REMAIN(i), " VxLAN"); 13853 i += snprintf(&buf[i], REMAIN(i), " Geneve"); 13854 if (pf->flags & I40E_FLAG_PTP) 13855 i += snprintf(&buf[i], REMAIN(i), " PTP"); 13856 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) 13857 i += snprintf(&buf[i], REMAIN(i), " VEB"); 13858 else 13859 i += snprintf(&buf[i], REMAIN(i), " VEPA"); 13860 13861 dev_info(&pf->pdev->dev, "%s\n", buf); 13862 kfree(buf); 13863 WARN_ON(i > INFO_STRING_LEN); 13864 } 13865 13866 /** 13867 * i40e_get_platform_mac_addr - get platform-specific MAC address 13868 * @pdev: PCI device information struct 13869 * @pf: board private structure 13870 * 13871 * Look up the MAC address for the device. First we'll try 13872 * eth_platform_get_mac_address, which will check Open Firmware, or arch 13873 * specific fallback. Otherwise, we'll default to the stored value in 13874 * firmware. 13875 **/ 13876 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf) 13877 { 13878 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr)) 13879 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr); 13880 } 13881 13882 /** 13883 * i40e_probe - Device initialization routine 13884 * @pdev: PCI device information struct 13885 * @ent: entry in i40e_pci_tbl 13886 * 13887 * i40e_probe initializes a PF identified by a pci_dev structure. 13888 * The OS initialization, configuring of the PF private structure, 13889 * and a hardware reset occur. 13890 * 13891 * Returns 0 on success, negative on failure 13892 **/ 13893 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 13894 { 13895 struct i40e_aq_get_phy_abilities_resp abilities; 13896 struct i40e_pf *pf; 13897 struct i40e_hw *hw; 13898 static u16 pfs_found; 13899 u16 wol_nvm_bits; 13900 u16 link_status; 13901 int err; 13902 u32 val; 13903 u32 i; 13904 u8 set_fc_aq_fail; 13905 13906 err = pci_enable_device_mem(pdev); 13907 if (err) 13908 return err; 13909 13910 /* set up for high or low dma */ 13911 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 13912 if (err) { 13913 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 13914 if (err) { 13915 dev_err(&pdev->dev, 13916 "DMA configuration failed: 0x%x\n", err); 13917 goto err_dma; 13918 } 13919 } 13920 13921 /* set up pci connections */ 13922 err = pci_request_mem_regions(pdev, i40e_driver_name); 13923 if (err) { 13924 dev_info(&pdev->dev, 13925 "pci_request_selected_regions failed %d\n", err); 13926 goto err_pci_reg; 13927 } 13928 13929 pci_enable_pcie_error_reporting(pdev); 13930 pci_set_master(pdev); 13931 13932 /* Now that we have a PCI connection, we need to do the 13933 * low level device setup. This is primarily setting up 13934 * the Admin Queue structures and then querying for the 13935 * device's current profile information. 13936 */ 13937 pf = kzalloc(sizeof(*pf), GFP_KERNEL); 13938 if (!pf) { 13939 err = -ENOMEM; 13940 goto err_pf_alloc; 13941 } 13942 pf->next_vsi = 0; 13943 pf->pdev = pdev; 13944 set_bit(__I40E_DOWN, pf->state); 13945 13946 hw = &pf->hw; 13947 hw->back = pf; 13948 13949 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0), 13950 I40E_MAX_CSR_SPACE); 13951 13952 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len); 13953 if (!hw->hw_addr) { 13954 err = -EIO; 13955 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", 13956 (unsigned int)pci_resource_start(pdev, 0), 13957 pf->ioremap_len, err); 13958 goto err_ioremap; 13959 } 13960 hw->vendor_id = pdev->vendor; 13961 hw->device_id = pdev->device; 13962 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 13963 hw->subsystem_vendor_id = pdev->subsystem_vendor; 13964 hw->subsystem_device_id = pdev->subsystem_device; 13965 hw->bus.device = PCI_SLOT(pdev->devfn); 13966 hw->bus.func = PCI_FUNC(pdev->devfn); 13967 hw->bus.bus_id = pdev->bus->number; 13968 pf->instance = pfs_found; 13969 13970 /* Select something other than the 802.1ad ethertype for the 13971 * switch to use internally and drop on ingress. 13972 */ 13973 hw->switch_tag = 0xffff; 13974 hw->first_tag = ETH_P_8021AD; 13975 hw->second_tag = ETH_P_8021Q; 13976 13977 INIT_LIST_HEAD(&pf->l3_flex_pit_list); 13978 INIT_LIST_HEAD(&pf->l4_flex_pit_list); 13979 13980 /* set up the locks for the AQ, do this only once in probe 13981 * and destroy them only once in remove 13982 */ 13983 mutex_init(&hw->aq.asq_mutex); 13984 mutex_init(&hw->aq.arq_mutex); 13985 13986 pf->msg_enable = netif_msg_init(debug, 13987 NETIF_MSG_DRV | 13988 NETIF_MSG_PROBE | 13989 NETIF_MSG_LINK); 13990 if (debug < -1) 13991 pf->hw.debug_mask = debug; 13992 13993 /* do a special CORER for clearing PXE mode once at init */ 13994 if (hw->revision_id == 0 && 13995 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { 13996 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); 13997 i40e_flush(hw); 13998 msleep(200); 13999 pf->corer_count++; 14000 14001 i40e_clear_pxe_mode(hw); 14002 } 14003 14004 /* Reset here to make sure all is clean and to define PF 'n' */ 14005 i40e_clear_hw(hw); 14006 err = i40e_pf_reset(hw); 14007 if (err) { 14008 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); 14009 goto err_pf_reset; 14010 } 14011 pf->pfr_count++; 14012 14013 hw->aq.num_arq_entries = I40E_AQ_LEN; 14014 hw->aq.num_asq_entries = I40E_AQ_LEN; 14015 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14016 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; 14017 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; 14018 14019 snprintf(pf->int_name, sizeof(pf->int_name) - 1, 14020 "%s-%s:misc", 14021 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); 14022 14023 err = i40e_init_shared_code(hw); 14024 if (err) { 14025 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n", 14026 err); 14027 goto err_pf_reset; 14028 } 14029 14030 /* set up a default setting for link flow control */ 14031 pf->hw.fc.requested_mode = I40E_FC_NONE; 14032 14033 err = i40e_init_adminq(hw); 14034 if (err) { 14035 if (err == I40E_ERR_FIRMWARE_API_VERSION) 14036 dev_info(&pdev->dev, 14037 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); 14038 else 14039 dev_info(&pdev->dev, 14040 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n"); 14041 14042 goto err_pf_reset; 14043 } 14044 i40e_get_oem_version(hw); 14045 14046 /* provide nvm, fw, api versions */ 14047 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n", 14048 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build, 14049 hw->aq.api_maj_ver, hw->aq.api_min_ver, 14050 i40e_nvm_version_str(hw)); 14051 14052 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && 14053 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) 14054 dev_info(&pdev->dev, 14055 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); 14056 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4) 14057 dev_info(&pdev->dev, 14058 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); 14059 14060 i40e_verify_eeprom(pf); 14061 14062 /* Rev 0 hardware was never productized */ 14063 if (hw->revision_id < 1) 14064 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); 14065 14066 i40e_clear_pxe_mode(hw); 14067 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities); 14068 if (err) 14069 goto err_adminq_setup; 14070 14071 err = i40e_sw_init(pf); 14072 if (err) { 14073 dev_info(&pdev->dev, "sw_init failed: %d\n", err); 14074 goto err_sw_init; 14075 } 14076 14077 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, 14078 hw->func_caps.num_rx_qp, 0, 0); 14079 if (err) { 14080 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); 14081 goto err_init_lan_hmc; 14082 } 14083 14084 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); 14085 if (err) { 14086 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); 14087 err = -ENOENT; 14088 goto err_configure_lan_hmc; 14089 } 14090 14091 /* Disable LLDP for NICs that have firmware versions lower than v4.3. 14092 * Ignore error return codes because if it was already disabled via 14093 * hardware settings this will fail 14094 */ 14095 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) { 14096 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); 14097 i40e_aq_stop_lldp(hw, true, NULL); 14098 } 14099 14100 /* allow a platform config to override the HW addr */ 14101 i40e_get_platform_mac_addr(pdev, pf); 14102 14103 if (!is_valid_ether_addr(hw->mac.addr)) { 14104 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); 14105 err = -EIO; 14106 goto err_mac_addr; 14107 } 14108 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); 14109 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); 14110 i40e_get_port_mac_addr(hw, hw->mac.port_addr); 14111 if (is_valid_ether_addr(hw->mac.port_addr)) 14112 pf->hw_features |= I40E_HW_PORT_ID_VALID; 14113 14114 pci_set_drvdata(pdev, pf); 14115 pci_save_state(pdev); 14116 14117 /* Enable FW to write default DCB config on link-up */ 14118 i40e_aq_set_dcb_parameters(hw, true, NULL); 14119 14120 #ifdef CONFIG_I40E_DCB 14121 err = i40e_init_pf_dcb(pf); 14122 if (err) { 14123 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); 14124 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED); 14125 /* Continue without DCB enabled */ 14126 } 14127 #endif /* CONFIG_I40E_DCB */ 14128 14129 /* set up periodic task facility */ 14130 timer_setup(&pf->service_timer, i40e_service_timer, 0); 14131 pf->service_timer_period = HZ; 14132 14133 INIT_WORK(&pf->service_task, i40e_service_task); 14134 clear_bit(__I40E_SERVICE_SCHED, pf->state); 14135 14136 /* NVM bit on means WoL disabled for the port */ 14137 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits); 14138 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1) 14139 pf->wol_en = false; 14140 else 14141 pf->wol_en = true; 14142 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); 14143 14144 /* set up the main switch operations */ 14145 i40e_determine_queue_usage(pf); 14146 err = i40e_init_interrupt_scheme(pf); 14147 if (err) 14148 goto err_switch_setup; 14149 14150 /* The number of VSIs reported by the FW is the minimum guaranteed 14151 * to us; HW supports far more and we share the remaining pool with 14152 * the other PFs. We allocate space for more than the guarantee with 14153 * the understanding that we might not get them all later. 14154 */ 14155 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) 14156 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; 14157 else 14158 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; 14159 14160 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ 14161 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *), 14162 GFP_KERNEL); 14163 if (!pf->vsi) { 14164 err = -ENOMEM; 14165 goto err_switch_setup; 14166 } 14167 14168 #ifdef CONFIG_PCI_IOV 14169 /* prep for VF support */ 14170 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14171 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14172 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14173 if (pci_num_vf(pdev)) 14174 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; 14175 } 14176 #endif 14177 err = i40e_setup_pf_switch(pf, false); 14178 if (err) { 14179 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); 14180 goto err_vsis; 14181 } 14182 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list); 14183 14184 /* Make sure flow control is set according to current settings */ 14185 err = i40e_set_fc(hw, &set_fc_aq_fail, true); 14186 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET) 14187 dev_dbg(&pf->pdev->dev, 14188 "Set fc with err %s aq_err %s on get_phy_cap\n", 14189 i40e_stat_str(hw, err), 14190 i40e_aq_str(hw, hw->aq.asq_last_status)); 14191 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET) 14192 dev_dbg(&pf->pdev->dev, 14193 "Set fc with err %s aq_err %s on set_phy_config\n", 14194 i40e_stat_str(hw, err), 14195 i40e_aq_str(hw, hw->aq.asq_last_status)); 14196 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE) 14197 dev_dbg(&pf->pdev->dev, 14198 "Set fc with err %s aq_err %s on get_link_info\n", 14199 i40e_stat_str(hw, err), 14200 i40e_aq_str(hw, hw->aq.asq_last_status)); 14201 14202 /* if FDIR VSI was set up, start it now */ 14203 for (i = 0; i < pf->num_alloc_vsi; i++) { 14204 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { 14205 i40e_vsi_open(pf->vsi[i]); 14206 break; 14207 } 14208 } 14209 14210 /* The driver only wants link up/down and module qualification 14211 * reports from firmware. Note the negative logic. 14212 */ 14213 err = i40e_aq_set_phy_int_mask(&pf->hw, 14214 ~(I40E_AQ_EVENT_LINK_UPDOWN | 14215 I40E_AQ_EVENT_MEDIA_NA | 14216 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL); 14217 if (err) 14218 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n", 14219 i40e_stat_str(&pf->hw, err), 14220 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14221 14222 /* Reconfigure hardware for allowing smaller MSS in the case 14223 * of TSO, so that we avoid the MDD being fired and causing 14224 * a reset in the case of small MSS+TSO. 14225 */ 14226 val = rd32(hw, I40E_REG_MSS); 14227 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) { 14228 val &= ~I40E_REG_MSS_MIN_MASK; 14229 val |= I40E_64BYTE_MSS; 14230 wr32(hw, I40E_REG_MSS, val); 14231 } 14232 14233 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) { 14234 msleep(75); 14235 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); 14236 if (err) 14237 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n", 14238 i40e_stat_str(&pf->hw, err), 14239 i40e_aq_str(&pf->hw, 14240 pf->hw.aq.asq_last_status)); 14241 } 14242 /* The main driver is (mostly) up and happy. We need to set this state 14243 * before setting up the misc vector or we get a race and the vector 14244 * ends up disabled forever. 14245 */ 14246 clear_bit(__I40E_DOWN, pf->state); 14247 14248 /* In case of MSIX we are going to setup the misc vector right here 14249 * to handle admin queue events etc. In case of legacy and MSI 14250 * the misc functionality and queue processing is combined in 14251 * the same vector and that gets setup at open. 14252 */ 14253 if (pf->flags & I40E_FLAG_MSIX_ENABLED) { 14254 err = i40e_setup_misc_vector(pf); 14255 if (err) { 14256 dev_info(&pdev->dev, 14257 "setup of misc vector failed: %d\n", err); 14258 goto err_vsis; 14259 } 14260 } 14261 14262 #ifdef CONFIG_PCI_IOV 14263 /* prep for VF support */ 14264 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && 14265 (pf->flags & I40E_FLAG_MSIX_ENABLED) && 14266 !test_bit(__I40E_BAD_EEPROM, pf->state)) { 14267 /* disable link interrupts for VFs */ 14268 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); 14269 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; 14270 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); 14271 i40e_flush(hw); 14272 14273 if (pci_num_vf(pdev)) { 14274 dev_info(&pdev->dev, 14275 "Active VFs found, allocating resources.\n"); 14276 err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); 14277 if (err) 14278 dev_info(&pdev->dev, 14279 "Error %d allocating resources for existing VFs\n", 14280 err); 14281 } 14282 } 14283 #endif /* CONFIG_PCI_IOV */ 14284 14285 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14286 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile, 14287 pf->num_iwarp_msix, 14288 I40E_IWARP_IRQ_PILE_ID); 14289 if (pf->iwarp_base_vector < 0) { 14290 dev_info(&pdev->dev, 14291 "failed to get tracking for %d vectors for IWARP err=%d\n", 14292 pf->num_iwarp_msix, pf->iwarp_base_vector); 14293 pf->flags &= ~I40E_FLAG_IWARP_ENABLED; 14294 } 14295 } 14296 14297 i40e_dbg_pf_init(pf); 14298 14299 /* tell the firmware that we're starting */ 14300 i40e_send_version(pf); 14301 14302 /* since everything's happy, start the service_task timer */ 14303 mod_timer(&pf->service_timer, 14304 round_jiffies(jiffies + pf->service_timer_period)); 14305 14306 /* add this PF to client device list and launch a client service task */ 14307 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14308 err = i40e_lan_add_device(pf); 14309 if (err) 14310 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n", 14311 err); 14312 } 14313 14314 #define PCI_SPEED_SIZE 8 14315 #define PCI_WIDTH_SIZE 8 14316 /* Devices on the IOSF bus do not have this information 14317 * and will report PCI Gen 1 x 1 by default so don't bother 14318 * checking them. 14319 */ 14320 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) { 14321 char speed[PCI_SPEED_SIZE] = "Unknown"; 14322 char width[PCI_WIDTH_SIZE] = "Unknown"; 14323 14324 /* Get the negotiated link width and speed from PCI config 14325 * space 14326 */ 14327 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, 14328 &link_status); 14329 14330 i40e_set_pci_config_data(hw, link_status); 14331 14332 switch (hw->bus.speed) { 14333 case i40e_bus_speed_8000: 14334 strlcpy(speed, "8.0", PCI_SPEED_SIZE); break; 14335 case i40e_bus_speed_5000: 14336 strlcpy(speed, "5.0", PCI_SPEED_SIZE); break; 14337 case i40e_bus_speed_2500: 14338 strlcpy(speed, "2.5", PCI_SPEED_SIZE); break; 14339 default: 14340 break; 14341 } 14342 switch (hw->bus.width) { 14343 case i40e_bus_width_pcie_x8: 14344 strlcpy(width, "8", PCI_WIDTH_SIZE); break; 14345 case i40e_bus_width_pcie_x4: 14346 strlcpy(width, "4", PCI_WIDTH_SIZE); break; 14347 case i40e_bus_width_pcie_x2: 14348 strlcpy(width, "2", PCI_WIDTH_SIZE); break; 14349 case i40e_bus_width_pcie_x1: 14350 strlcpy(width, "1", PCI_WIDTH_SIZE); break; 14351 default: 14352 break; 14353 } 14354 14355 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n", 14356 speed, width); 14357 14358 if (hw->bus.width < i40e_bus_width_pcie_x8 || 14359 hw->bus.speed < i40e_bus_speed_8000) { 14360 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); 14361 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); 14362 } 14363 } 14364 14365 /* get the requested speeds from the fw */ 14366 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); 14367 if (err) 14368 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n", 14369 i40e_stat_str(&pf->hw, err), 14370 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14371 pf->hw.phy.link_info.requested_speeds = abilities.link_speed; 14372 14373 /* get the supported phy types from the fw */ 14374 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL); 14375 if (err) 14376 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n", 14377 i40e_stat_str(&pf->hw, err), 14378 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); 14379 14380 /* Add a filter to drop all Flow control frames from any VSI from being 14381 * transmitted. By doing so we stop a malicious VF from sending out 14382 * PAUSE or PFC frames and potentially controlling traffic for other 14383 * PF/VF VSIs. 14384 * The FW can still send Flow control frames if enabled. 14385 */ 14386 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw, 14387 pf->main_vsi_seid); 14388 14389 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) || 14390 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4)) 14391 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS; 14392 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722) 14393 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER; 14394 /* print a string summarizing features */ 14395 i40e_print_features(pf); 14396 14397 return 0; 14398 14399 /* Unwind what we've done if something failed in the setup */ 14400 err_vsis: 14401 set_bit(__I40E_DOWN, pf->state); 14402 i40e_clear_interrupt_scheme(pf); 14403 kfree(pf->vsi); 14404 err_switch_setup: 14405 i40e_reset_interrupt_capability(pf); 14406 del_timer_sync(&pf->service_timer); 14407 err_mac_addr: 14408 err_configure_lan_hmc: 14409 (void)i40e_shutdown_lan_hmc(hw); 14410 err_init_lan_hmc: 14411 kfree(pf->qp_pile); 14412 err_sw_init: 14413 err_adminq_setup: 14414 err_pf_reset: 14415 iounmap(hw->hw_addr); 14416 err_ioremap: 14417 kfree(pf); 14418 err_pf_alloc: 14419 pci_disable_pcie_error_reporting(pdev); 14420 pci_release_mem_regions(pdev); 14421 err_pci_reg: 14422 err_dma: 14423 pci_disable_device(pdev); 14424 return err; 14425 } 14426 14427 /** 14428 * i40e_remove - Device removal routine 14429 * @pdev: PCI device information struct 14430 * 14431 * i40e_remove is called by the PCI subsystem to alert the driver 14432 * that is should release a PCI device. This could be caused by a 14433 * Hot-Plug event, or because the driver is going to be removed from 14434 * memory. 14435 **/ 14436 static void i40e_remove(struct pci_dev *pdev) 14437 { 14438 struct i40e_pf *pf = pci_get_drvdata(pdev); 14439 struct i40e_hw *hw = &pf->hw; 14440 i40e_status ret_code; 14441 int i; 14442 14443 i40e_dbg_pf_exit(pf); 14444 14445 i40e_ptp_stop(pf); 14446 14447 /* Disable RSS in hw */ 14448 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0); 14449 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0); 14450 14451 /* no more scheduling of any task */ 14452 set_bit(__I40E_SUSPENDED, pf->state); 14453 set_bit(__I40E_DOWN, pf->state); 14454 if (pf->service_timer.function) 14455 del_timer_sync(&pf->service_timer); 14456 if (pf->service_task.func) 14457 cancel_work_sync(&pf->service_task); 14458 14459 /* Client close must be called explicitly here because the timer 14460 * has been stopped. 14461 */ 14462 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14463 14464 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { 14465 i40e_free_vfs(pf); 14466 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; 14467 } 14468 14469 i40e_fdir_teardown(pf); 14470 14471 /* If there is a switch structure or any orphans, remove them. 14472 * This will leave only the PF's VSI remaining. 14473 */ 14474 for (i = 0; i < I40E_MAX_VEB; i++) { 14475 if (!pf->veb[i]) 14476 continue; 14477 14478 if (pf->veb[i]->uplink_seid == pf->mac_seid || 14479 pf->veb[i]->uplink_seid == 0) 14480 i40e_switch_branch_release(pf->veb[i]); 14481 } 14482 14483 /* Now we can shutdown the PF's VSI, just before we kill 14484 * adminq and hmc. 14485 */ 14486 if (pf->vsi[pf->lan_vsi]) 14487 i40e_vsi_release(pf->vsi[pf->lan_vsi]); 14488 14489 i40e_cloud_filter_exit(pf); 14490 14491 /* remove attached clients */ 14492 if (pf->flags & I40E_FLAG_IWARP_ENABLED) { 14493 ret_code = i40e_lan_del_device(pf); 14494 if (ret_code) 14495 dev_warn(&pdev->dev, "Failed to delete client device: %d\n", 14496 ret_code); 14497 } 14498 14499 /* shutdown and destroy the HMC */ 14500 if (hw->hmc.hmc_obj) { 14501 ret_code = i40e_shutdown_lan_hmc(hw); 14502 if (ret_code) 14503 dev_warn(&pdev->dev, 14504 "Failed to destroy the HMC resources: %d\n", 14505 ret_code); 14506 } 14507 14508 /* shutdown the adminq */ 14509 i40e_shutdown_adminq(hw); 14510 14511 /* destroy the locks only once, here */ 14512 mutex_destroy(&hw->aq.arq_mutex); 14513 mutex_destroy(&hw->aq.asq_mutex); 14514 14515 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ 14516 rtnl_lock(); 14517 i40e_clear_interrupt_scheme(pf); 14518 for (i = 0; i < pf->num_alloc_vsi; i++) { 14519 if (pf->vsi[i]) { 14520 i40e_vsi_clear_rings(pf->vsi[i]); 14521 i40e_vsi_clear(pf->vsi[i]); 14522 pf->vsi[i] = NULL; 14523 } 14524 } 14525 rtnl_unlock(); 14526 14527 for (i = 0; i < I40E_MAX_VEB; i++) { 14528 kfree(pf->veb[i]); 14529 pf->veb[i] = NULL; 14530 } 14531 14532 kfree(pf->qp_pile); 14533 kfree(pf->vsi); 14534 14535 iounmap(hw->hw_addr); 14536 kfree(pf); 14537 pci_release_mem_regions(pdev); 14538 14539 pci_disable_pcie_error_reporting(pdev); 14540 pci_disable_device(pdev); 14541 } 14542 14543 /** 14544 * i40e_pci_error_detected - warning that something funky happened in PCI land 14545 * @pdev: PCI device information struct 14546 * @error: the type of PCI error 14547 * 14548 * Called to warn that something happened and the error handling steps 14549 * are in progress. Allows the driver to quiesce things, be ready for 14550 * remediation. 14551 **/ 14552 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, 14553 enum pci_channel_state error) 14554 { 14555 struct i40e_pf *pf = pci_get_drvdata(pdev); 14556 14557 dev_info(&pdev->dev, "%s: error %d\n", __func__, error); 14558 14559 if (!pf) { 14560 dev_info(&pdev->dev, 14561 "Cannot recover - error happened during device probe\n"); 14562 return PCI_ERS_RESULT_DISCONNECT; 14563 } 14564 14565 /* shutdown all operations */ 14566 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14567 i40e_prep_for_reset(pf, false); 14568 14569 /* Request a slot reset */ 14570 return PCI_ERS_RESULT_NEED_RESET; 14571 } 14572 14573 /** 14574 * i40e_pci_error_slot_reset - a PCI slot reset just happened 14575 * @pdev: PCI device information struct 14576 * 14577 * Called to find if the driver can work with the device now that 14578 * the pci slot has been reset. If a basic connection seems good 14579 * (registers are readable and have sane content) then return a 14580 * happy little PCI_ERS_RESULT_xxx. 14581 **/ 14582 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) 14583 { 14584 struct i40e_pf *pf = pci_get_drvdata(pdev); 14585 pci_ers_result_t result; 14586 u32 reg; 14587 14588 dev_dbg(&pdev->dev, "%s\n", __func__); 14589 if (pci_enable_device_mem(pdev)) { 14590 dev_info(&pdev->dev, 14591 "Cannot re-enable PCI device after reset.\n"); 14592 result = PCI_ERS_RESULT_DISCONNECT; 14593 } else { 14594 pci_set_master(pdev); 14595 pci_restore_state(pdev); 14596 pci_save_state(pdev); 14597 pci_wake_from_d3(pdev, false); 14598 14599 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); 14600 if (reg == 0) 14601 result = PCI_ERS_RESULT_RECOVERED; 14602 else 14603 result = PCI_ERS_RESULT_DISCONNECT; 14604 } 14605 14606 return result; 14607 } 14608 14609 /** 14610 * i40e_pci_error_reset_prepare - prepare device driver for pci reset 14611 * @pdev: PCI device information struct 14612 */ 14613 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev) 14614 { 14615 struct i40e_pf *pf = pci_get_drvdata(pdev); 14616 14617 i40e_prep_for_reset(pf, false); 14618 } 14619 14620 /** 14621 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin 14622 * @pdev: PCI device information struct 14623 */ 14624 static void i40e_pci_error_reset_done(struct pci_dev *pdev) 14625 { 14626 struct i40e_pf *pf = pci_get_drvdata(pdev); 14627 14628 i40e_reset_and_rebuild(pf, false, false); 14629 } 14630 14631 /** 14632 * i40e_pci_error_resume - restart operations after PCI error recovery 14633 * @pdev: PCI device information struct 14634 * 14635 * Called to allow the driver to bring things back up after PCI error 14636 * and/or reset recovery has finished. 14637 **/ 14638 static void i40e_pci_error_resume(struct pci_dev *pdev) 14639 { 14640 struct i40e_pf *pf = pci_get_drvdata(pdev); 14641 14642 dev_dbg(&pdev->dev, "%s\n", __func__); 14643 if (test_bit(__I40E_SUSPENDED, pf->state)) 14644 return; 14645 14646 i40e_handle_reset_warning(pf, false); 14647 } 14648 14649 /** 14650 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up 14651 * using the mac_address_write admin q function 14652 * @pf: pointer to i40e_pf struct 14653 **/ 14654 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf) 14655 { 14656 struct i40e_hw *hw = &pf->hw; 14657 i40e_status ret; 14658 u8 mac_addr[6]; 14659 u16 flags = 0; 14660 14661 /* Get current MAC address in case it's an LAA */ 14662 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) { 14663 ether_addr_copy(mac_addr, 14664 pf->vsi[pf->lan_vsi]->netdev->dev_addr); 14665 } else { 14666 dev_err(&pf->pdev->dev, 14667 "Failed to retrieve MAC address; using default\n"); 14668 ether_addr_copy(mac_addr, hw->mac.addr); 14669 } 14670 14671 /* The FW expects the mac address write cmd to first be called with 14672 * one of these flags before calling it again with the multicast 14673 * enable flags. 14674 */ 14675 flags = I40E_AQC_WRITE_TYPE_LAA_WOL; 14676 14677 if (hw->func_caps.flex10_enable && hw->partition_id != 1) 14678 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY; 14679 14680 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14681 if (ret) { 14682 dev_err(&pf->pdev->dev, 14683 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up"); 14684 return; 14685 } 14686 14687 flags = I40E_AQC_MC_MAG_EN 14688 | I40E_AQC_WOL_PRESERVE_ON_PFR 14689 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG; 14690 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL); 14691 if (ret) 14692 dev_err(&pf->pdev->dev, 14693 "Failed to enable Multicast Magic Packet wake up\n"); 14694 } 14695 14696 /** 14697 * i40e_shutdown - PCI callback for shutting down 14698 * @pdev: PCI device information struct 14699 **/ 14700 static void i40e_shutdown(struct pci_dev *pdev) 14701 { 14702 struct i40e_pf *pf = pci_get_drvdata(pdev); 14703 struct i40e_hw *hw = &pf->hw; 14704 14705 set_bit(__I40E_SUSPENDED, pf->state); 14706 set_bit(__I40E_DOWN, pf->state); 14707 14708 del_timer_sync(&pf->service_timer); 14709 cancel_work_sync(&pf->service_task); 14710 i40e_cloud_filter_exit(pf); 14711 i40e_fdir_teardown(pf); 14712 14713 /* Client close must be called explicitly here because the timer 14714 * has been stopped. 14715 */ 14716 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14717 14718 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14719 i40e_enable_mc_magic_wake(pf); 14720 14721 i40e_prep_for_reset(pf, false); 14722 14723 wr32(hw, I40E_PFPM_APM, 14724 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14725 wr32(hw, I40E_PFPM_WUFC, 14726 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14727 14728 /* Since we're going to destroy queues during the 14729 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14730 * whole section 14731 */ 14732 rtnl_lock(); 14733 i40e_clear_interrupt_scheme(pf); 14734 rtnl_unlock(); 14735 14736 if (system_state == SYSTEM_POWER_OFF) { 14737 pci_wake_from_d3(pdev, pf->wol_en); 14738 pci_set_power_state(pdev, PCI_D3hot); 14739 } 14740 } 14741 14742 /** 14743 * i40e_suspend - PM callback for moving to D3 14744 * @dev: generic device information structure 14745 **/ 14746 static int __maybe_unused i40e_suspend(struct device *dev) 14747 { 14748 struct pci_dev *pdev = to_pci_dev(dev); 14749 struct i40e_pf *pf = pci_get_drvdata(pdev); 14750 struct i40e_hw *hw = &pf->hw; 14751 14752 /* If we're already suspended, then there is nothing to do */ 14753 if (test_and_set_bit(__I40E_SUSPENDED, pf->state)) 14754 return 0; 14755 14756 set_bit(__I40E_DOWN, pf->state); 14757 14758 /* Ensure service task will not be running */ 14759 del_timer_sync(&pf->service_timer); 14760 cancel_work_sync(&pf->service_task); 14761 14762 /* Client close must be called explicitly here because the timer 14763 * has been stopped. 14764 */ 14765 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false); 14766 14767 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE)) 14768 i40e_enable_mc_magic_wake(pf); 14769 14770 /* Since we're going to destroy queues during the 14771 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this 14772 * whole section 14773 */ 14774 rtnl_lock(); 14775 14776 i40e_prep_for_reset(pf, true); 14777 14778 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); 14779 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); 14780 14781 /* Clear the interrupt scheme and release our IRQs so that the system 14782 * can safely hibernate even when there are a large number of CPUs. 14783 * Otherwise hibernation might fail when mapping all the vectors back 14784 * to CPU0. 14785 */ 14786 i40e_clear_interrupt_scheme(pf); 14787 14788 rtnl_unlock(); 14789 14790 return 0; 14791 } 14792 14793 /** 14794 * i40e_resume - PM callback for waking up from D3 14795 * @dev: generic device information structure 14796 **/ 14797 static int __maybe_unused i40e_resume(struct device *dev) 14798 { 14799 struct pci_dev *pdev = to_pci_dev(dev); 14800 struct i40e_pf *pf = pci_get_drvdata(pdev); 14801 int err; 14802 14803 /* If we're not suspended, then there is nothing to do */ 14804 if (!test_bit(__I40E_SUSPENDED, pf->state)) 14805 return 0; 14806 14807 /* We need to hold the RTNL lock prior to restoring interrupt schemes, 14808 * since we're going to be restoring queues 14809 */ 14810 rtnl_lock(); 14811 14812 /* We cleared the interrupt scheme when we suspended, so we need to 14813 * restore it now to resume device functionality. 14814 */ 14815 err = i40e_restore_interrupt_scheme(pf); 14816 if (err) { 14817 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n", 14818 err); 14819 } 14820 14821 clear_bit(__I40E_DOWN, pf->state); 14822 i40e_reset_and_rebuild(pf, false, true); 14823 14824 rtnl_unlock(); 14825 14826 /* Clear suspended state last after everything is recovered */ 14827 clear_bit(__I40E_SUSPENDED, pf->state); 14828 14829 /* Restart the service task */ 14830 mod_timer(&pf->service_timer, 14831 round_jiffies(jiffies + pf->service_timer_period)); 14832 14833 return 0; 14834 } 14835 14836 static const struct pci_error_handlers i40e_err_handler = { 14837 .error_detected = i40e_pci_error_detected, 14838 .slot_reset = i40e_pci_error_slot_reset, 14839 .reset_prepare = i40e_pci_error_reset_prepare, 14840 .reset_done = i40e_pci_error_reset_done, 14841 .resume = i40e_pci_error_resume, 14842 }; 14843 14844 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume); 14845 14846 static struct pci_driver i40e_driver = { 14847 .name = i40e_driver_name, 14848 .id_table = i40e_pci_tbl, 14849 .probe = i40e_probe, 14850 .remove = i40e_remove, 14851 .driver = { 14852 .pm = &i40e_pm_ops, 14853 }, 14854 .shutdown = i40e_shutdown, 14855 .err_handler = &i40e_err_handler, 14856 .sriov_configure = i40e_pci_sriov_configure, 14857 }; 14858 14859 /** 14860 * i40e_init_module - Driver registration routine 14861 * 14862 * i40e_init_module is the first routine called when the driver is 14863 * loaded. All it does is register with the PCI subsystem. 14864 **/ 14865 static int __init i40e_init_module(void) 14866 { 14867 pr_info("%s: %s - version %s\n", i40e_driver_name, 14868 i40e_driver_string, i40e_driver_version_str); 14869 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); 14870 14871 /* There is no need to throttle the number of active tasks because 14872 * each device limits its own task using a state bit for scheduling 14873 * the service task, and the device tasks do not interfere with each 14874 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM 14875 * since we need to be able to guarantee forward progress even under 14876 * memory pressure. 14877 */ 14878 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name); 14879 if (!i40e_wq) { 14880 pr_err("%s: Failed to create workqueue\n", i40e_driver_name); 14881 return -ENOMEM; 14882 } 14883 14884 i40e_dbg_init(); 14885 return pci_register_driver(&i40e_driver); 14886 } 14887 module_init(i40e_init_module); 14888 14889 /** 14890 * i40e_exit_module - Driver exit cleanup routine 14891 * 14892 * i40e_exit_module is called just before the driver is removed 14893 * from memory. 14894 **/ 14895 static void __exit i40e_exit_module(void) 14896 { 14897 pci_unregister_driver(&i40e_driver); 14898 destroy_workqueue(i40e_wq); 14899 i40e_dbg_exit(); 14900 } 14901 module_exit(i40e_exit_module); 14902